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1. INTRODUCTION

Highways, telephone lines, electric power systems, computer chips, water delivery systems, and rail lines:

these physical networks, and many others, are familiar to all of us. In each of these problem settings, we often
wish to send some good(s) (vehicles, messages, electricity, or water) from one point to another, typically as

efficiently as possible-that is, along a shortest route or via some minimum cost flow pattern. Although these
problems trace their roots to the work of Gustav Kirchhoff and other great scientists of the last century, the

topic of network optimization as we know it today has its origins in the 1940's with the development of linear

programming and, more broadly, optimization as an independent field of scientific inquiry, and with the parallel

development of digital computers capable of performing massive computations. Since then, the field of network
optimization has grown at an almost dizzying pace with literally thousands of scientific papers and multitudes of

applications modeling a remarkably wide range of practical situations.

Network optimization has always been a core problem domain in operations research, as well as in

computer science, applied mathematics, and many fields of engineering and management. The varied

applications in these fields not only occur "naturally" on some transparent physical network, but also in

situations that apparently are quite unrelated to networks. Moreover, because network optimization problems
arise in so many diverse problem contexts, applications are scattered throughout the literature in several fields.

Consequently, it is sometimes difficult for the research and practitioner community to fully appreciate the

richness and variety of network applications.

This chapter is intended to introduce many applications and, in doing so, to highlight the pervasiveness of

network optimization in practice. Our coverage is not intended to be encyclopedic, but rather attempts to

demonstrate a range of applications, chosen because they are (i) "core" models (e.g., a basic production planning

model), (ii) depict a range of applications including such fields as medicine and the molecular biology that might

not be familiar to many readers, and (iii) cover many basic model types of network optimization: (1) shortest

paths; (2) maximum flows; (3) minimum cost flows; (4) the assignment problems; (5) matchings; (6)

minimum spanning trees; (7) convex cost flows; (8) generalized flows; (9) multicommodity flows; (10) the

traveling salesman problem; and (11) network design. We present five applications for each of the core shortest

paths, maximum flows, and minimum cost flow problems, four applications of the matching, minimum

spanning tree, and traveling salesman problems, and three applications for each of the remaining problems.

The chapter describes the following 42 applications, drawn from the fields of operations research, computer

science, the physical sciences, medicine, engineering, and applied mathematics:
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1. System of difference constraints

2. Telephone operator scheduling

3. Production planning problems

4. Approximating piecewise linear functions

5. DNA sequence alignment

6. Matrix rounding problem

7 Baseball elimination problem

8. Distributed computing on a two-processor computer

9. Scheduling on uniform parallel machines

10. Tanker scheduling

11. Leveling mountainous terrain

12. Reconstructing the left ventricle from X-ray projections

13. Optimal loading of a hopping airplane

14. Directed Chinese postman problem

15. Racial balancing of schools

16. Locating objects in space

17. Matching moving objects

18. Rewiring of typewriters

19. Pairing stereo speakers

20. Determining chemical bonds

21. Dual completion of oil wells

22. Parallel saving heuristics

23. Measuring homogeneity of bimetallic objects

24. Reducing data storage

25. Cluster analysis

26. System reliability bounds

27. Urban traffic flows

28. Matrix balancing

29. Stick percolation problem

30. Determining an optimal energy policy

31. Machine loading

32. Managing warehousing goods and funds flow

33. Routing of multiple commodities

34. Racial balancing of schools

35. Multivehicle tanker scheduling

36. Manufacturing of printed circuit boards
37. Identifying time periods for archeological

Finds

38. Assembling physical mapping in genetics

39. Optimal vane placement in turbine engines
40. Designing fixed cost communication and

transportation systems

41. Local access telephone network capacity

expansion

42. Multi-item production planning

In addition to these 42 applications, we provide references for 140 additional applications.

2. PRELIMINARIES

In this section, we introduce some basic notation and definitions from graph theory as well as a
mathematical programming formulation of the minimum cost flow problem, which is the core network flow
problem that lies at the heart of network optimization. We also present some fundamental transformations that
we frequently use while modeling applications as network problems.

Let G = (N, A) be a directed network defined by a set N of n nodes, and a set A of m directed arcs. Each arc
(i, j) e A has an associated cost cij per unit flow on that arc. We assume that the flow cost varies linearly with
the amount of flow. Each arc (i, j) E A also has a capacity uij denoting the maximum amount that can flow on
the arc, and a lower bound lij denoting the minimum amount that must flow on the arc. We associate with each

node i E N an integer b(i) representing its supply/demand. If b(i) > 0, then node i is a supply node; if b(i) < 0,
then node i is a demand node; and if b(i) = 0, then node i is a transshipment node.

The minimum cost flow problem is easy to state: we wish to determine a least cost shipment of a
commodity through a network that will satisfy the flow demands at certain nodes from available supplies at
other nodes. The decision variables in the minimum cost flow problem are arc flows; we represent the flow on
an arc (i, j) A by xij. The minimum cost flow problem is an optimization model formulated as follows:
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Minimize £ cij xij (la)
(i, j)E A

subject to

ij i; - E Xji = b(i), for all i E N, (Ib)
j: (i,j) E A {j: (j, i) e A)

/ij < xij < uij, for all (i, j) A. (Ic)

The data for this model satisfies the feasibility condition 1=lb (i) = 0 (that is, total supply must equal the total

demand). We refer to the constraints in (lb) as mass balance constraints. The mass balance constraints state
that the net flow out of each node (outflow minus inflow) must equal the supply/demand of the node. The flow
must also satisfy the lower bound and capacity constraints (Ic) which we refer to as theflow bound constraints.
The flow bounds typically model physical capacities or restrictions imposed upon the flows' operating ranges.
In most applications, the lower bounds on arc flows are zero; therefore, if we do not state lower bounds
explicitly, we assume that they have value zero.

We now collect together several basic definitions and describe some notation. A walk in G = (N, A) is a
sequence of nodes and arcs i, (il, i2), i2 , (i02, 3), i 3, . ( i i), i, i satisfying the property that either
(ik, ik+1) E A or (ik+l, ik) e A for each k = 1 . . ., r-1. A walk might revisit nodes. A path is a walk
whose nodes (and, hence, arcs) are all distinct. For simplicity, we often refer to a path as a sequence of nodes i 1

- i2 - . -ik when its arcs are apparent from the problem context. A directed path is defined similarly except
that for any two consecutive nodes ik and ik+1 on the path, the path must contain the arc (ik, ik+l). A directed
cycle is a directed path together with the arc (i r, il), and a cycle is a path together with the arc (ir , i l ) or

(i1 , ir).

A graph G'= (N', A') is a subgraph of G =(N, A) if N' N and A'C A. A graph G' = (N', A') is a

spanning subgraph of G = (N, A) if N' = N and A' C A. Two nodes i and j are said to be connected if the graph

contains at least one undirected path between these nodes. A graph is said to be connected if every pair of its
nodes are connected; otherwise, it is disconnected. The connected subgraphs of a graph are called its
components. A tree is a connected graph that contains no cycle. A subgraph T is a spanning tree of G if T is a
tree of G containing all its nodes. A cut of G is any set Q C A satisfying the property that the graph G' = (N,

A-Q) is disconnected, and no subset of Q has this property. A cut partitions the graph into two sets of nodes, X
and N-X. We shall sometimes represent the cut Q as the node partition [X, N-X]. A cut [X, N-X] is an s-t cut
for two specially designated nodes s and t if s E X and t E N-X.

Transformations

Frequently, we require network transformations to model an application context, to simplify a network
problem, or to show equivalencies between different network problems. We now briefly describe some of these
transformations.
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Removing undirected networks. Sometimes minimum cost flow problems contain undirected arcs.

Whereas a directed arc (i, j) permits flow only from node i to node j, an undirected arc {i, j) permits flow from

node i to node j as well as flow from node j to node i. To transform the undirected case into the directed case,
we replace each undirected arc i, j) of cost cij and capacity uij, by two directed arcs (i, j) and (j, i), both of cost

cij and capacity uij. It is easy to see that if xij and xji are the flows on arcs (i, j) and (j, i) in the directed

network respectively, then xij - xji or xji - xij, whichever is nonnegative, is the associated flow on the

undirected arc (i,j).

Removing nonzero lower bounds. Suppose arc (i, j) has a nonzero lower bound lij on its flow xij.

We can eliminate this lower bound by sending lij units of flow on arc (i, j), which decreases b(i) by lij units

and increases b(j) by Iij units, and then we measure (by the variable xij) the incremental flow on the arc

beyond the flow value Iij (therefore, we reduce the capacity of the arc (i, j) to uij - Ij).

Node splitting. Node splitting transforms each node i into two nodes i' and i" corresponding to the

node's output and input functions. This transformation replaces each original arc (i, j) by an arc (i', j") of

the same cost and capacity. It also adds an arc (i", i') of zero cost and with infinite capacity for each i. The

input side of node i (i.e., node i") receives all the node's inflow, the output side (i.e., node i') sends all the

node's outflow, and the additional arc (i", i') carries flow from the input side to the output side. We define

the supplies/demands of nodes in the transformed network in accordance with the following three cases: (i)

if b(i) > 0, then b(i") = b(i) and b(i') = 0; and if b(i) < 0, then b(i") = 0 and b(i') = b(i). It is easy to

show a one-to-one correspondence between a flow in the original network and the corresponding flow in the

transformed network.

We can use the node splitting transformation to handle situations in which nodes as well as arcs have
associated capacities and costs. In these situations, each unit of flow passing through node i incurs a cost ci

and the maximum flow that can pass through the node is ui . We can reduce this problem to the standard

"arc flow" form of the network flow problem by performing the node splitting transformation and letting ci

and ui be the cost and capacity of arc (i", i').

3. SHORTEST PATHS

The shortest path problem is among the simplest network flow problems. For this problem, we wish to

find a path of minimum cost (length) from a specified source node s to another specified sink node t in either a
directed or undirected network assuming that each arc (i, j) E A has an associated cost (or length) cij. In the

formulation of the minimum cost flow problem given in (1) for a directed network, if we set b(s) = 1, b(t) = -1,
and b(i) = 0 for all other nodes, and set each lij = 0 and each uij > 1, then the solution to this problem will send

one unit of flow from node s to node t along the shortest directed path. If we want to determine shortest paths

from the source node s to every other node in the network, then in the minimum cost flow problem, we set b(s)
= (n-l) and b(i) = -1 for all other nodes. We can set each arc capacity uij to n-1. The minimum cost flow

solution would then send one unit of flow from node s to every other node i along a shortest path. We will

consider several applications defined on directed networks. We can model problems defined on undirected

networks as special cases of the minimum cost network flow problem by using the transformations described in

Section 2.



5

Shortest path problems are alluring to both researchers and to practitioners for several reasons: (i) they arise
frequently in practice since in a wide variety of application settings we wish to send some material (for example,
a computer data packet, a telephone call, or a vehicle) between two specified points in a network as quickly, as
cheaply, or as reliably as possible; (ii) they are easy to solve efficiently; (iii) as the simplest network models,
they capture many of the most salient core ingredients of network flows and so they provide both a benchmark
and a point of departure for studying more complex network models; and (iv) they arise frequently as
subproblems when solving many combinatorial and network optimization problems. In this section, we
describe a few applications of the shortest path problem that are indicative of its range of applications. The
applications arise in applied mathematics, biology, computer science, production planning, and work force
scheduling. We conclude the section with a set of references for many additional applications in a wide variety
of fields.

Application 1. System of Difference Constraints (Bellman [1958])

In some linear programming applications (see Application 2) with constraints of the form Ax < b, the nxm
constraint matrix A contains one +1 and one -1 in each row; all the other entries arc zero. Suppose that the kt h

row has a +1 entry in column jk and a -1 entry in column ik; the entries in the vector b have arbitrary signs.

This linear program defines the following set of m difference constraints in the n variables x = (x(1), x(2),....

x(n)):

XOk) - x(ik) < b(k), for each k=l,..., m. (2)

We wish to determine whether the system of difference constraints given by (2) has a feasible solution, and
if so, we want to identify one. This model arises in a variety of applications; Application 2 describes the use
of this model in the telephone operator scheduling; additional applications arise in the scaling of data (Orlin and
Rothblum [1985]) and just-in-time scheduling (Elmaghraby [19781 and Levner and Nemirovsky [19911).

Each system of difference constraints has an associated graph G, which we call a constraint graph. The
constraint graph has n nodes corresponding to the n variables and m arcs corresponding to the m difference
constraints. We associate an arc (ik, jk) of length b(k) in G with the constraint X(jk) - x(ik) < b(k). As an

example, consider the following system of constraints:

x(3) - x(4) < 5, (3a)

x(4) - x(1) < -10, (3b)

x(l)- x(3) < 8, (3c)

x(2) - x(1) < -1 , (3d)

_ 1111··_·1 -1-.�---�1 .__..__. I�--_---_l�-UIIII1�_I--····_^-1I1-P-i·-·--·*�-��_�ly--·--·· --

x(3)- x(2) < 2. (3e)
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Figure 1. Graph corresponding to a system of difference constraints.

To model the system of difference constraints as a shortest path problem, we use the two following well-
known results about shortest paths (see, e.g., Cormen, Leiserson, and Rivest [19901, and Ahuja, Magnanti, and
Orlin [1993]):

Observation 1. The shortest path distance d(i) from source node s to node i for every node i N satisfy the
following optimality conditions: d) - d(i) < cij for every arc (i, j) A.

Observation 2. The shortest path distances in a network G exist if and only if G contains no negative cycle
(i.e., a cycle whose total cost, summed over all its arcs, is negative).

First, notice that the structure of the shortest path optimality conditions given in Observation I is similar
to the inequalities of the system of difference constraints (3). In fact, Figure 1 (a) gives the network for which
(3) become the shortest path optimality conditions. The second observation implies that the system of
difference constraints has a feasible solution if and only if the corresponding network contains no negative cycle.
For instance, the network shown in Figure 1(a) contain a negative cycle 1-2-3-1 of length -1, and the
corresponding constraints (i.e., x(2) - x(l) < -11, x(3) - x(2) < 2, and x(l) - x(3) < 8) are inconsistent because
summing these constraints yields 0 < -1. We can thus conclude that the system of difference constraints given
by (3) has no feasible solution.

We can detect the presence of a negative cycle in a network by using a label correcting algorithm. Label
correcting algorithms require that all the nodes in the network are reachable by a directed path from some node,
which we use as the source node for the shortest path problem. To satisfy this requirement, we introduce a new
node s and join it to all the nodes in the network with arcs of zero cost. For our example, Figure 1(b) shows
the modified network. Since all the arcs incident to node s are directed out of this node, node s is not contained
in any directed cycle and so the modification does not create any new directed cycles, and so does not introduce
any cycles with negative costs. Label correcting algorithms either detect the presence of a negative cycle or
provide the shortest path distances. In the former case, the system of difference constraints has no solution, and
in the latter case, the shortest path distances constitute a solution of (2).
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Application 2. Telephone Operator Scheduling (Bartholdi, Orlin and Ratliff [1980])

The following telephone operator scheduling problem is an application of the system of difference

constraints. A telephone company needs to schedule operators around the clock. Let b(i) for i = 0, 1, 2, ....
23, denote the minimum number of operators needed for the ith hour of the day (b(0) denotes number of

operators required between midnight and 1 AM). Each telephone operator works in a shift of 8 consecutive
hours and a shift can begin at any hour of the day. The telephone company wants to determine a "cyclic

schedule" that repeats daily, i.e., the number of operators assigned to the shift starting at 6 AM and ending at 2
PM is the same for each day. The optimization problem requires that we identify the fewest operators needed to
satisfy the minimum operator requirement for each hour of the day. If we let yi denote the number of workers

whose shift begins at the ith hour, then we can state the telephone operator scheduling problem as the
following optimization model:

Minimize 230 (4a)

subject to

Yi- 7 + Yi-6 + -- + Yi 2 b(i), for all i = 8 to 23, (4b)

Y17+i +---+ Y2 3 + Yo +---+ Yi > b(i), for all i = 0 to 7, (4c)

i > 0 for all i = 0 to 23. (4d)

Notice that this linear program has a very special structure because the associated constraint matrix contains

only O's and 's and the l's or O's in each row appear consecutively. In this application, we study a restricted
version of the telephone operator scheduling problem: we wish to determine whether some feasible schedule uses

p or fewer operators. We convert this restricted problem into a system of difference constraints by redefining the
variables. Let x(0) = y0 , x(l) = y 0

+ yl, x(2) = y0
+ + Y2....., and x(23) = y + Y2 + ... + Y2 3

= P In

terms of these new variables, we can rewrite each constraint in (4b) as

x(i) - x(i-8) 2 b(i), for all i = 8 to 23, (5a)

and each constraints in (4c) as

x(23) - x(16+i) + x(i) = p - x(16-i) + x(i) > b(i), for all i = 0 to 7. (5b)

Finally, the nonnegativity constraints (4d) become

x(i)- x(i- 1)

I_ ^��IIl �1·C^11�1·11 -��-�I1 ---·--�-4···---·1111IIICIII-.··�--·IIP·-- I_-lll--^··_�_._L·_l-LI�^L�I--�I.I�____·__---�--·-�.�-��I

0. (5c)
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By virtue of this transformation, we have reduced the restricted version of the telephone operator scheduling
problem into a problem of finding a feasible solution of the system of difference constraints. Application I
shows that we can further reduce this problem into a shortest path problem.

Application 3. Production Planning Problems (Veinott and Wagner [1962],

Zangwill 1969], Evans [1977])

Many optimization problems in production and inventory planning are network optimization models. All
of these models address a basic economic order quantity issue: when we plan a production run of any particular
product, how much should we produce? Producing in large quantities reduces the time and cost required to set up
equipment for the individual production runs; on the other hand, producing in large quantities also means that
we will carry many items in inventory awaiting purchase by customers. The economic order quantity strikes a
balance between the set up and inventory costs to find the production plan that achieves the lowest overall costs.
The models that we consider in this section all attempt to balance the production and inventory carrying costs
while meeting known demands that vary throughout a given planning horizon. We present one of the simplest
models: a single product, single stage model with concave costs and backordering, and transform it to a shortest
path problem. This is an example not naturally as a shortest path problem, but that becomes a shortest path
problem because of an underlying "spanning tree property" of the optimal solution.

In this model, we assume that the production cost in each period is a concave function of the level of
production. In practice, the production xj in the jth period frequently incurs a fixed cost Fj (independent of the
level of production) and a per unit production cost cj. Therefore, for each period j, the production cost is 0 for xj
= 0, and F. + c xj if xj > 0, which is a concave function of the production level xj. The production cost might

also be concave due to other economies of scale in production. In this model, we also permit backordering,
which implies that we might not fully satisfy the demand of any period from the production in that period or
from current inventory, but could fulfill the demand from production in future periods. We assume that we do
not lose any customer whose demand is not satisfied on time and who must wait until his or her order
materializes. Instead, we incur a penalty cost for backordering any item. We assume that the inventory carrying
and backordering costs are linear, and that we have no capacity imposed upon production, inventory, or
backordering volumes.

In this model, we wish to meet a prescribed demand dj for each of K periods j = 1, 2 ... , K by either

producing an amount xj in period j, by drawing upon the inventory Ij 1 carried from the previous period, and/or

by backordering the item from the next period. Figure 2(a) shows the network for modeling this problem. The
network has K+1 nodes: the jth node, for j = 1, 2 ... , K, represents the j'h planning period; node 0 represents
the "source" of all production. The flow on the production arc (0, j) prescribes the production level xj in period

j, the flow on inventory carrying arc (, j+1) prescribes the inventory level Ij to be carried from period j to period
j +1, and the flow Bj on the backordering arc ( j,j-1) represents the amount backordered from the next period.

The network flow problem in Figure 2(a) is a concave cost flow problem, because the cost of flow on every
production arc is a concave function. The following well-known result about concave cost flow problems helps
us to solve the problem (see, for example, Ahuja, Magnanti and Orlin [1993]):

Spanning tree property: A concave cost network flow minimization problem whose objective function is
bounded from below over the set of feasible solutions always has an optimal spanning tree solution, that is, an

_�_ ···L�I-Y --�--�--LLI. -----· �-X-·· -IiL-�LI-�-�I--�I_^* __--·IIX---·LIQIIII_-_LIC· ��··IIII�·IIULLC-II1111
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optimal solution in which only the arcs in a spanning tree have positive flow (all other arcs, possibly including
some arcs in the spanning tree, have zero flow).

Figure 2(b) shows an example of a spanning tree solution. This result implies the following property,
known as the production property: In the optimal solution, each time we produce, we produce enough to meet
the demand for an integral number of contiguous periods. Moreover, in no period do we both produce and carry
inventory from the previous period or into next period.

K
di

x

(a)

(b)

(c)

Figure
(a)
(b)
(c)

2. Production planning problem.
Underlying network.
Graphical structure of a spanning tree solution.
The resulting shortest path problem.

The production property permits us to solve the production planning problem very efficiently as a shortest

�_1 __ yl__�_lllCIII1___I_1-11- 1·(..I-1 --l- -I__ I1_~1.· --- _----- t I~ II~-~_YYX
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path problem on an auxiliary network G' shown in Figure 2(c), which is defined as follows: The network G'
consists of nodes 1 through K+1 and contains an arc (i, j) for every pair of nodes i and j with i < j. We set the
cost of arc (i, j) equal to the sum of the production, inventory carrying and backorder carrying costs incurred in
satisfying the demands of periods i, i+1,..., j-1 by producing in some period k between i and j-l; we select this
period k that gives the least possible cost. In other words, we vary k from i to j- 1, and for each k, we compute
the cost incurred in satisfying the demands of periods i through j-1 by the production in period k; the minimum
of these values defines the cost of arc (i, j) in the auxiliary network G'. Observe that for every production
schedule satisfying the production property, G' contains a directed path from node 1 to node K+1 with the same
objective function value, and vice-versa. Therefore, we can obtain the optimal production schedule by solving a
shortest path problem.

Several variants of the production planning problem arise in practice. If we impose capacities on the
production, inventory, or backordering arcs, then the production property does not hold and we cannot formulate
this problem as a shortest path problem. In this case, however, if the production cost in each period is linear,
the problem becomes a minimum cost flow model. The minimum cost flow problem also models multistage
situations in which a product passes through a sequence of operations. To model this situation, we would treat
each production operation as a separate stage and require that the product pass through each of the stages before
completing its production. In a further multi-item generalization, common manufacturing facilities are used to
manufacture multiple products in multiple stages; this problem is a multicommodity flow problem. The
references cited for this application describe these various generalizations.

Application 4. Approximating Piecewise Linear Functions (Imai and Iri [1986])

Numerous applications encountered within many different scientific fields use piecewise linear functions.
On several occasions, because these functions contain a large number of breakpoints, they are expensive to store
and to manipulate (for example, even to evaluate). In these situations, it might be advantageous to replace the
piecewise linear function by another approximating function that uses fewer breakpoints. By approximating the
function, we will generally be able to save on storage space and on the cost of using the function; we will,
however, incur a cost because the approximating function introduces inaccuracies in representing the function.
In making the approximation, we would like to make the best possible tradeoff between these conflicting costs
and benefits.

Let fl(x) be a piecewise linear function of a scalar x. We represent the function in the two-dimensional
plane: it passes through n points a1 = (xl,yl), a2 = (x2 ,y2), ..., an = (Xn'Yn). Suppose that we have ordered the
points so that x1 < x2< ... < xn . We assume that the function varies linearly between every two consecutive
points xi and xi+. We consider situations in which n is very large and for practical reasons we wish to
approximate the function fl(x) by another function f2(x) that passes through only a subset of the points a, a2,
..., an (but including a1 and an). As an example, consider Figure 3(a): in this figure, we have approximated a
function fl(x) passing through 10 points by a function f2(x) (drawn with dotted lines) passing through only 5 of

the points.
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t
f(x)

x, ..

(a) (b)

Figure 3. Approximating precise linear functions.
(a) Approximating a function fl(x) passing through 10 points by a function f2(x) passing
through only 5 points.

(b) Corresponding shortest path problem.

This approximation results in a savings in storage space and in the use (evaluation) of the function.
Suppose that the cost of storing one data point is cx. Therefore, by storing fewer data points, we incur less
storage costs. But the approximation introduces errors with an associated penalty. We assume that the error of
an approximation is proportional to the sum of the squared errors between the actual data points and the
estimated points. In other words, if we approximate the function fl (x) by f2(x), then the penalty is

4= 1 [fl(xk) - f2(xk)2 (6)

for some constant 1. Our decision problem is to identify the subset of points to be used to define the
approximation function f2(x) so we incur the minimum total cost as measured by the sum of the cost of storing

and the cost of the errors incurred by the approximation.

We formulate this problem as a shortest path problem on a network G with n nodes, numbered 1 through n,
as follows. The network contains an arc (i, j) for each pair of nodes i and j. Figure 3(b) gives an example of
the network with n = 5 nodes. The arc (i, j) in this network signifies that we approximate the linear segments
of the function fl(x) between the points ai, ai+l,..., aj by one linear segment joining the points ai and aj. Each
directed path from node 1 to node n in G corresponds to a function f2(x), and the cost of this path equals the

total cost for storing this function and for using it to approximate the original function. For example, the path
1-3-5 corresponds to the function f2(x) passing through the points a, a3 and a5. The cost cij of the arc (i, j)
has two components: the storage cost a and the penalty associated with approximating all the points between ai

and aj by the line joining ai and aj. Observe that the coordinates of ai and aj are given by [xi, yi] and [xj, yj]

The function f2(x) in the interval [xi, xj] is given by the line f2(x) (x - [f(x) f(x)] This interval

contains the data points with x-coordinates as xi, xi+, ... , xj, and so we must associate the corresponding terms
of (6) with the cost of the arc (i, j). Consequently, we define the cost cij of an arc (i, j) as

Cij = a + 3j= i [fl(Xk) - f2 (xk)]2 .

As a consequence of the preceding observations, we see that the shortest path from node I to node n
specifies the optimal set of points needed to define the approximating function f2(x).

I
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Application 5. DNA Sequence Alignment (Waterman'[1988])

Scientists model strands of DNA as a sequence of letters drawn from the alphabet A, C, G, T). Given two
sequences of letters, say B = b1 b2 ...bp and D = dld2 ..dq of possibly different lengths, molecular biologists are

interested in determining how similar or dissimilar these sequences are to each other. (These sequences are
subsequences of the nucleic acids of DNA in a chromosome typically containing several thousand letters.) A
natural way of measuring the dissimilarity between the two sequences B and D is to determine the minimum
"cost" required to transform sequence B into sequence D. To transform B into D, we can perform the following
operations: (i) insert an element into B (at any place in the sequence) at a "cost" of a units; (ii) delete an
element from B (at any place in the sequence) at a "cost" of 3 units; and (iii) mutate an element bi into an
element dj at a "cost" of g(bi, dj) units. Needless to say, it is possible to transform the sequence B into the

sequence D in many ways and so identifying a minimum cost transformation is a nontrivial task. We show
how we can solve this problem using dynamic programming, which we can also view as solving a shortest path
problem on an appropriately defined network.

Suppose that we conceive of the process of transforming the sequence B into the sequence D as follows.
First, add or delete elements from the sequence B so that the modified sequence, say B', has the same number of
elements as D. Next "align" the sequences B' and D to create a one-to-one alignment between their elements.
Finally, mutate the elements in the sequence B' so that this sequence becomes identical with the sequence D. As
an example, suppose that we wish to transform the sequence B = AGTT into the sequence D = CTAGC. One
possible transformation is to delete one of the elements T from B and add two new elements at the beginning,
giving the sequence B' = ®DAGT (we denote any new element by a placeholder E and later assign a letter to
this placeholder). We then align B' with D, as shown in Figure 4, and mutate the element T into C so that the
sequences become identical. Notice that because we are free to assign values to the newly added elements, they
do not incur any mutation cost. The cost of this transformation is +2a+g(T,C).

B'= ®EAGT C TAGC

D =C T AGC C TAGC

Figure 4. Transforming the sequence B into the sequence D.

We now describe a dynamic programming formulation of this problem. Let f(i, j) denote the minimum
cost of transforming the subsequence bb 2...bi into the subsequence dld 2... d j. We are interested in the value

f(p,q), which is the minimum cost of transforming B into D. To determine f(p,q), we will determine f(i,j) for
all i = 0, 1, ... p, and for all j = 0, 1,..., q. We can determine these intermediate quantities f(i, j) using the
following recursive relationships:

f(i,O) = i for all i; (7a)

f(0,j) = j for all j; and (7b)

f(i,j) = min{f(i-1, j-1) + g(bi, dj), f(i, j-l) + a, f(i-1, j) + ). (7c)

We now justify this recursion. The cost of transforming a sequence of i elements into a null sequence is
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the cost of deleting i elements. The cost of transforming a null sequence into a sequence of j elements is the
cost of adding j elements. Next consider f(ij). Let B' denote the optimal aligned sequence of B (i.e., the
sequence just before we create the mutation of B' to transform it into D). At this point, B' satisfies exactly one
of the following three cases:

Case 1. B' contains the letter bi which is aligned with the letter dj of D (as shown in Figure 5(a)). In this
case, f(ij) equals the optimal cost of transforming the subsequence blb 2... bi. 1 into dld2 ...dj. 1 and the cost of
transforming the element bi into dj. Therefore, f(ij) = f(i-l, j- 1) + g(bi, dj).

Case 2. B contains the letter bi which is not aligned with the letter dj (as shown in Figure 5(b)). In this
case, bi is to the left of dj and so a newly added element must be aligned with b. As a result, f(ij) equals the
optimal cost of transforming the subsequence blb2 ...bi into dld2...dj 1 plus the cost of adding a new element to

B. Therefore, f(ij) = f(ij-l) + a.

Case 3. B' does not contains the letter bi . In this case, we must have deleted b; from B and so the optimal

cost of the transformation equals the cost of deleting this element and transforming the remaining sequence into
D. Therefore, f(ij) = f(i-lj) + 3.

B' =

D =

B'

(a)

D

(b)

Figure 5. Explaining the dynamic programming recursion.

The preceding discussion justifies the recursive relationships specified in (7). We can use these
relationships to compute f(ij) for increasing values of i and, for a fixed value of i, for increasing values of j.
This method allows us to compute f(p, q) in O(pq) time, that is, time proportional to the product of the number
of elements in the two sequences.

We can alternatively formulate the DNA sequence alignment problem as a shortest path problem. Figure 6
shows the shortest path network for this formulation for a situation with p = 3 and q = 3. For simplicity, in
this network we let gij denote g(bi, dj). We can establish the correctness of this formulation by applying an

induction argument based upon the induction hypothesis that the shortest path length from node 00 to node iJ
equals f(ij). The shortest path from node 00 to node iJ must contain one of the following arcs as the last arc in
the path: (i) arc (i-lj i l , ii); (ii) arc (ij-l , ii), or (iii) arc (i-li, i). In these three cases, the lengths of these paths
will be f(i-lj-l) + g(bi, dj), f(ij-l)+ oa, and f(i-1, j) + . Clearly, the shortest path length f(ij) will equal the
minimum of these three numbers, which is consistent with the dynamic programming relationships stated in

I I 1 l bil

d1 ...... dil d 

.. .. i .

di . .. .

··------- ·--------- -·-----------·------·--·--- I -�II-
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(4).

Figure 6. Sequence alignment problem as a shortest path problem.

This application shows a relationship between shortest paths and dynamic programming. We have seen
how to solve the DNA sequence alignment problem through the dynamic programming recursion or by
formulating and solving it as a shortest path problem on an acyclic network. The recursion we use to solve the
dynamic programming problem is just a special implementation of one of the standard algorithms for solving
shortest path problems on acyclic networks. This observation provides us with a concrete illustration of the
meta statement that "(deterministic) dynamic programming is a special case of the shortest path problem".
Accordingly, shortest path problems model the enormous range of applications in many disciplines that are
solvable by dynamic programming.

Additional Applications

Some additional applications of the shortest path problem include: (1) knapsack problem (Fulkerson
[1966]); (2) tramp steamer problem (Lawler [1966]); (3) allocating inspection effort on a production line
(White [1969]); (4) reallocation of housing (Wright [1975]); (5) assortment of steel beams (Frank [19651); (6)
compact book storage in libraries (Ravindran [1971]); (7) concentrator location on a line (Balakrishnan,
Magnanti, Shulman, and Wong [1991]); (8) manpower planning problem (Clark and Hasting [1977]); (9)
equipment replacement (Veinott and Wagner [1962]); (10) determining minimum project duration (Elmaghraby
[1978]); (11) assembly line balancing (Gutjahr and Nemhauser [1964]); (12) optimal improvement of
transportation networks (Goldman and Nemhauser [1967]); (13) machining process optimization (Szadkowski
[1970]); (14) capacity expansion (Luss [1979]); (15) routing in computer communication networks (Schwartz
and Stern [1980]); (16) scaling of matrices (Golitschek and Schneider [1984]); (17) city traffic congestion
(Zawack and Thompson [19871); (18) molecular confirmation (Dress and Havel [19881); (19) order picking in an
isle (Goetschalckx and Ratliff [1988]); and (20) robot design (Haymond, Thornton, and Warner [19881.

�_�� ___L�_�·_ __II(____1___I_1__I_11rml·-------_111·�-_I .-·I--·IIY·II�I*W�-L·�-_---LLIIYLi---I- ·.1�- I·I··I- IIC-·-LIPIIIY-L�I�- .II·Y-L---·IIPIIIIIIIC--l- -
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Shortest path problems often arise as important subroutines within algorithms for solving many different types

of network optimization problems. These applications are too numerous to mention.

4. MAXIMUM FLOWS

In the maximum flow problem we wish to send the maximum amount of flow from a specified source node
s to another specified sink node t in a network with arc capacities uij's. If we interpret uij as the maximum flow

rate of arc (i, j), then the maximum flow problem identifies the maximum steady-state flow that the network can
send from node s to node t per unit time. We can formulate this problem as a minimum cost flow problem in
the following manner. We set b(i) = 0 for all i E N, lii = cij = 0 for all (i, j) E A, and introduce an additional
arc (t, s) with cost cts = -1 and flow bounds Its = 0 and capacity uts = o. Then the minimum cost flow solution

maximizes the flow on arc (t, s); but since any flow on arc (t, s) must travel from node s to node t through the

arcs in A (since each b(i) = 0), the solution to the minimum cost flow problem will maximize the flow from

node s to node t in the original network.

Some applications impose nonzero lower bounds lij as well as capacities uij on the arc flows. We refer to

this problem as the maximum flow problem with lower bounds.

The maximum flow problem is very closely related to another fundamental network optimization problem,
known as the minimum cut problem. Recall from Section 2 that an s-t cut is a set of arcs whose deletion from
the network creates a disconnected network with two components, one component S contains the source node s

and the other component S contains the sink node t. The capacity of an s-t cut [S, S] is the sum of the

capacities of all arcs (i, j) with i E S and j S The minimum cut problem seeks an s-t cut of minimum
capacity.

The max-flow min-cut theorem, a celebrated theorem in network optimization, establishes a relationship
between the maximum flow problem and the minimum cut problem, namely, the value of the maximum flow
from the source node s to the sink node t equals the capacity of a minimum s-t cut. This theorem allows us to

determine in O(m) time a minimum cut from the optimal solution of the maximum flow problem.

The maximum flow problem arises in a wide variety of situations and in several forms. Examples of the
maximum flow problem include determining the maximum steady state flow of (i) petroleum products in a

pipeline network, (ii) cars in a road network; (iii) messages in a telecommunication network; and (iv) electricity
in an electrical network. Sometimes the maximum flow problem occurs as a subproblem in the solution of

more difficult network problems such as the minimum cost flow problem or the generalized flow problem. The
maximum flow problem also arises in a number of combinatorial applications that on the surface might not

appear to be maximum flow problems at all. In this section, we describe a few such applications.

Application 6. Matrix Rounding Problem (Bacharach [1966])

This application is concerned with consistent rounding of the elements, row sums, and column sums of a
matrix, We are given a pxq matrix of real numbers D = (djJ}, with row sums axi and column sums 3j. AL our

discretion, we can round any real number c to the next smaller integer LaJ or to the next larger integer Foal.
The matrix rounding problem requires that we round the matrix elements, and the row and column sums of the
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matrix so that the sum of the rounded elements in each row equals the rounded row sum, and the sum of the
rounded elements in each column equals the rounded column sum. We refer to such a rounding as a consistent
rounding.

This matrix rounding problem arises is several application contexts. For example, the U.S. Census Bureau
uses census information to construct millions of tables for a wide variety of purposes. By law, the bureau has
an obligation to protect the source of its information and not disclose statistics that could be attributed to any
particular individual. We might disguise the information in a table as follows. We round off each entry in the
table, including the row and column sums, either up or down to a multiple of a constant k (for some suitable
value of k), so that the entries in the table continue to add to the (rounded) row and column sums, and the
overall sum of the entries in the new table adds to a rounded version of the overall sums in the original table.
This Census Bureau problem is the same as the matrix rounding problem discussed earlier except that we need to
round each element to a multiple of k > 1 instead of rounding it to a multiple of 1. For the moment. let us
suppose that k = 1 so that this application is a matrix rounding problem in which we round any element to a
nearest integer.

We shall formulate this problem and some of the subsequent applications as a problem known as the
feasible flow problem. In the feasible flow problem, we wish to determine a flow x in a network G = (N, A)
satisfying the following constraints:

Xij - E xji = b(i), for i E N, (8a)
{j:(i, j)e A} (j:(j, i)e A }

0 <xij < uij, for all(i,j)e A. (8b)

As we noted in Section 2, this model includes feasible flow applications with nonzero lower bounds on arc
flows since we can transform any such problem into an equivalent problem with zero lower bounds on the arc
flows.

We assume that iEN b(i) = 0. We can solve the feasible flow problem by solving a maximum flow

problem defined on an augmented network as follows. We introduce two new nodes, a source node s and a sink
node t. For each node i with b(i) > 0, we add an arc (s, i) with capacity b(i), and for each node i with b(i) < 0,
we add an arc (i, t) with capacity -b(i). We refer to the new network as the transformed network. Then we solve
a maximum flow problem from node s to node t in the transformed network. It is easy to show that the
problem (8) has a feasible solution if and only if the maximum flow saturates all the arcs emanating from the
source node.

We show how we can discover such a rounding scheme by solving a feasible flow problem for a network
with nonnegative lower bounds on arc flows. Figure 7(b) shows the maximum flow network for the matrix
rounding data shown in Figure 7(a). This network contains a node i corresponding to each row i and a node j'
corresponding to each column j. Observe that this network contains an arc (i, j') for each matrix element dij, an
arc (s, i) for each row sum, and an arc (j', t) for each column sum. The lower and upper bounds of arc (k, I)
corresponding to the matrix element, row sum, or column sum of value ct are LxaJ and Fcx, respectively. It is
easy to establish a one-to-one correspondence between the consistent roundings of the matrix and feasible

^111^ -_1_111·111 -�--�---^-1111_·1_11_----�·-----�·ls__iIllll�llll�Ill�-�LYLIIIIII--_II--- 1-1 _.__
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integral flows in the associated network. We know that there is a feasible integral flow since the original matrix
elements induce a feasible fractional flow, and maximum flow algorithms produce all integer flows.
Consequently, we can find a consistent rounding by solving a maximum flow problem with lower bounds.

column sum 16.3 10.4

row sum

17.2

12.7

11.3

14.5

(a)

O aii, Ui L

(b)

Figure 7. (a) Matrix rounding problem.
(b) Associated network.

The solution of a matrix rounding problem in which we round every element to a multiple of some positive
integer k, as in the Census application we mentioned previously, is similar. In this case, we define the
associated network as before, but now defining the lower and upper bounds for any arc with an associated real
number 'cc' as the greatest multiple of k less than or equal to cc and the smallest multiple of k greater than or
equal to ct.

3.1 6.8 7.3

9.6 2.4 0.7

3.6 1.2 6.5

i. --····--·- ·-II---·
... z
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Application 7. Baseball Elimination Problem (Schwartz [1966])

At a particular point in the baseball season, each of n + 1 teams in the American League, which we number
as 0, 1, ..., n, has played several games. Suppose that team i has won wi of the games it has already played

and that gij is the number of games that teams i and j have yet to play with each other. No game ends in a tie.

An avid and optimistic fan of one of the teams, the Boston Red Sox, wishes to know if his team still has a

chance to win the league title. We say that we can eliminate a specific team 0, the Red Sox, if for every
possible outcome of the unplayed games, at least one team will have more wins than the Red Sox. Let wmax

denote wo (i.e., the number of wins of team 0) plus the total number of games team 0 has yet to play, which,

in the best of all possible worlds, is the number of victories the Red Sox can achieve. Then, we cannot
eliminate team 0 if in some outcome of the remaining games to be played throughout the league, wmax is at

least as large as the possible victories of every other team. We want to determine whether we can or cannot

eliminate team 0.

We can transform this baseball elimination problem into a feasible flow problem on a bipartite network
shown in Figure 8, whose node set is N1 u N2 . The node set for this network contains (i) a set N1 of n team

nodes indexed 1 through n, (ii) n(n-1)/2 game nodes of the type i-j for each 1 < i < j < n, and (iii) a source node
s. Each game node i-j has a demand of gij units and has two incoming arcs (i, i-j) and j, i-j) The flows on

these two arcs represent the number of victories for team i and team j, respectively, among the additional gij

games that these two teams have yet to play against each other (which is the required flow into the game node i-
j). The flow xsi on the source arc (s, i) represents the total number of additional games that team i wins. We

cannot eliminate team 0 if this network contains a feasible flow x satisfying the conditions

max > wi + xs i, for all i = 1, ... , n,

which we can rewrite as

Xsi < Wmax - wi, for all i = 1, ..., n.

This observation explains the capacities of arcs shown in the figure. We have thus shown that if the

feasible flow problem shown in Figure 8 admits a feasible flow, then we cannot eliminate team 0; otherwise,

we can eliminate this team and our avid fan can turn his attention to other matters.

�.��11111111 --I1 _.-Xi --
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b(i) b(D

Team Game
nodes nodes

nodes0 /
2

3

1 l_.~j.n gij

Figure 8. Network formulation of the baseball elimination problem.

Application 8. Distributed Computing on a Two-Processor Computer (Stone [1977])

This application concerns assigning different modules (subroutines) of a program to two processors of a
computer system in a way that minimizes the collective costs of interprocessor communication and
computation. The two processors need not be identical. We wish to execute a large program consisting of
several modules that interact with each other during the program's execution. The cost of executing each
module on the two processors is known in advance and might vary from one processor to the other because of
differences in the processors' memory, control, speed, and arithmetic capabilities. Let cci and Pi denote the cost

of computation of module i on processors I and 2, respectively. Assigning different modules to different
processors incurs relatively high overhead costs due to interprocessor communication. Let cij denote the

interprocessor communication cost if modules i and j are assigned to different processors; we do not incur this
cost if we assign modules i and j to the same processor. The cost structure might suggest that we allocate two
modules to different processors-we need to balance this cost against the communication costs that we incur by
allocating the jobs to different processors. Therefore, we wish to allocate modules of the program on the two
processors so that we minimize the total processing and interprocessor communication cost.

To formulate this problem as a minimum cut problem on an undirected network, we define a source node s
representing processor 1, a sink node t representing processor 2, and a node for every module of the program.
For every node i, other than the source and sink nodes, we include an arc (s, i) of capacity Pi and an arc (i, t) of
capacity cai. Finally, if module i interacts with module j during the program's execution, we include arc (i, j)
with a capacity equal to cij. Figures 9 and 10 give an example of this construction. Figure 9 gives the data of

this problem and Figure 10 gives the corresponding network.



{Cij = 2

3

4

(b)

Figure 9. Da

1

ita

2 3 4

for the distributed computing model.

Figure 10. Network for the distributed computing model.

We now observe a one-to-one correspondence between s-t cuts in the network and assignments of modules

i 1 2 3 4

ai 6 5 10 4

pi 4 10 3 8
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(a)

0 5 0 0

5 0 6 2

0 6 0 1

0 2 1 0
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to the two processors; moreover, the capacity of a cut equals the cost of the corresponding assignment. To
establish this result, let Al and A2 be an assignment of modules to processors 1 and 2 respectively. The cost of

this assignment is s ie Al ai + Fie A2 Pi + c(i, j) E AlxA2 ij. The s-t cut corresponding to this

assignment is ({s)uA1, (t)uA2 ). The approach we used to construct the network implies that this cut contains

an arc (i, t) of capacity ai for every i E Al, an arc (s, i) of capacity Pi for every i A2 , and all arcs (i, j) with i

E A1 and j E A2 with capacity cij. The cost of the assignment Al and A2 equals the capacity of the cut

({s)uAl, (t)uA2 ). (The reader might wish to verify this conclusion on the example given in Figure 10 with

A1 = (1, 2) and A2 = (3, 4).) Consequently, the minimum s-t cut in the network gives the minimum cost

assignment of the modules to the two processors.

Application 9. Scheduling on Uniform Parallel Machines (Federgruen and

Groenevelt [1986])

In this application, we consider the problem of scheduling a set J of jobs on M uniform parallel machines.
Each job j E J has a processing requirement pj (denoting the number of machine days required to complete the

job); a release date rj (representing the beginning of the day when job j becomes available for processing); and a

due date dj > rj + pj (representing the beginning of the day by which the job must be completed). We assume

that a machine can work on only one job at a time and that each job can be processed by at most one machine at

a time. However, we allow preemptions, i.e., we can interrupt a job and process it on different machines on

different days. The scheduling problem is to determine a feasible schedule that completes all jobs before their

due dates or to show that no such schedule exists.

This type of preemptive scheduling problem arises in batch processing systems when each batch consists of

a large number of units. The feasible scheduling problem, described in the preceding paragraph, is a fundamental

problem in this situation and can be used as a subroutine for more general scheduling problems, such as the

maximum lateness problem, the (weighted) minimum completion time problem, and the (weighted) maximum

utilization problem.

To illustrate the formulation of the feasible scheduling problem as a maximum flow problem, we use the

scheduling data described in Figure 11.

Figure 11. A scheduling problem.

First, we rank all the release and due dates, rj and dj for all j, in ascending order and determine P < 2 IJI -1

mutually disjoint intervals of dates between consecutive milestones. Let Tkl denote the interval that starts at

job (i) 1 2 3 4

Processing time (pi) 1.5 1.25 2.1 3.6

Release time (r;) 3 1 3 5

Due date (d;) 5 4 7 9
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the beginning of date k and ends at the beginning of date 1+1. For our example, this order of release and due
dates is 1, 3, 4, 5, 7, 9. We have five intervals represented by T1 ,2 T3 ,3, T4 .4 T5, 6 and T7 ,8 . Notice that
within each interval Tk, the set of available jobs (that is, those released, but not yet due) does not change: we
can process all jobs j with rj < k and dj > I + 1 in the interval.

We formulate the scheduling problem as a maximum flow problem on a bipartite network G as follows.
We introduce a source node s, a sink node t, a node corresponding to each job j, and a node corresponding to each
interval Tkl, as shown in Figure 12. We connect the source node to every job node j with an arc with capacity
pj, indicating that we need to assign a minimum of pj machine days to job j. We connect each interval node
Tkl to the sink node t by an arc with capacity (-k+1)M, representing the total number of machine days
available on the days from k to 1. Finally, we connect job node j to every interval node TkI if rj < k and dj >

1+1 by an arc with capacity (-k+l) which represents the maximum number of machines that we can allot to job
j on the days from k to 1. We next solve a maximum flow problem on this network: the scheduling problem
has a feasible schedule if and only if the maximum flow value equals ,jE J pj (alternatively, for every node j, the

flow on arc (s, j) is pj). The validity of this formulation is easy to establish by showing a one-to-one

correspondence between feasible schedules and flows of value equal to je j pj from the source to the sink.

Figure 12. Network for scheduling uniform parallel machines.

Application 10. Tanker Scheduling (Dantzig and Fulkerson [1954])

A steamship company has contracted to deliver perishable goods between several different origin-destination
pairs. Since the cargo is perishable, the customers have specified precise dates (i.e., delivery dates) when the
shipments must reach their destinations. (The cargoes may not arrive early or late.) The steamship company
wants to determine the minimum number of ships needed to meet the delivery dates of the shiploads.

To illustrate a modeling approach for this problem, we consider an example with four shipments; each
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shipment is a full shipload with the characteristics shown in Figure 13(a). For example, as specified by the first

row in this figure, the company must deliver one shipload available at port A and destined for port C on day 3.

Figures 13(b) and 13(c) show the transit times for the shipments (including allowances for loading and

unloading the ships) and the return times (without a cargo) between the ports.

(a)

C D

A 3 2

B 23

(b)

A B

C 2 1

D 1 2

(c)

Figure 13. Data for the tanker scheduling problem.

We solve this problem by constructing a network shown in Figure 14(a). This network contains a node for

each shipment and an arc from node i to node j if it is possible to deliver shipment j after completing shipment

i; that is, the start time of shipment j is no earlier than the delivery time of shipment i plus the travel time

from the destination of shipment i to the origin of shipment j. A directed path in this network corresponds to a

feasible sequence of shipment pickups and deliveries. The tanker scheduling problem requires that we identify

the minimum number of directed paths that will contain each node in the network on exactly one path.

(a)

Ship- Origin Destin- Delivery

ment ation date

1 Port A Port C 3

2 Port A Port C 8

3 Port B Port D 3

4 Port B Port C 6
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Figure 14. Network formulation of the tanker scheduling problem.

(a) Network of feasible sequences of two consecutive shipments.

(b) Maximum flow model.

We can transform this problem into the framework of the maximum flow problem as follows. We split

each node i into two nodes i' and i" and add the arc (i', i"). We set the lower bound on each arc (i', i"), called the
shipment arc, equal to one so that at least unit flow passes through this arc. We also add a source node s and

connect it to the origin of each shipment (to represent putting a ship into service), and we add a sink node t and
connect each destination node to it (to represent taking a ship out of service). We set the capacity of each arc in

the network to value one. Figure 14(b) shows the resulting network for our example. In this network, each

directed path from the source node s to the sink node t corresponds to a feasible schedule for a single ship. As a

result, a feasible flow of value v in this network decomposes into schedules of v ships, and our problem reduces
to identifying a feasible flow of minimum value. We note that the zero flow is not feasible because shipment

arcs have unit lower bounds. We can solve this problem, which is known as the minimum value problem, in

the following manner. We first remove lower bounds on the arcs using the transformation described in Section

2. We then establish a feasible flow in the network by solving a maximum flow problem, as described in

Application 6. Although the feasible flow x satisfies all of the constraints, the amount of flow sent from node

s to node t might exceed the minimum. In order to find a minimum flow, we need to return the maximum

amount of flow from t to s. To do so, we find a maximum flow from node t to node s in the residual network,
which is defined as follows: For each arc (ij) in the original network, the residual network contains an arc (i,j)
with capacity uij - xij, and another arc (j,i) with capacity xi - li. A maximum flow between nodes t to s in the

residual network corresponds to returning a maximum amount of flow from node t to node s, and provides

optimal solution of the minimum value problem.

As exemplified by this application, finding a minimum (or maximum) flow in the presence of lower

bounds on arc flows typically requires solving two maximum flow problems. The solution to the first

maximum flow problem is a feasible flow. The solution to the second maximum flow problem establishes a

minimum (or maximum) flow.

Several other applications that bear a close resemblance to the tanker scheduling problem and are solvable

using the same technique. We next briefly introduce some of these applications.

N
1%
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Optimal coverage of sporting events. A group of reporters wants to cover a set of sporting events in an
Olympiad. The sports events are held in several stadiums throughout a city. We know the starting time of each
event, its duration, and the stadium where it is held. We are also given the travel times between different
stadiums. We want to determine the least number of reporters required to cover the sporting events.

Bus scheduling problem. A mass transit company has p routes that it wishes to service using the fewest
possible number of buses. To do so, it must determine the most efficient way to combine these routes into bus
schedules. The starting time for route i is a i and the finishing time is bi . The bus requires rij time to travel

from the point of destination of route i to the point of origin of route j.

Machine setup problem. A job shop needs to perform eight tasks on a particular day. We know the start
and end times of each task. The workers must perform these tasks according to this schedule and so that exactly
one worker performs each task. A worker cannot work on two jobs at the same time. We also know the setup
time (in minutes) required for a worker to go from one task to another. We wish to find the minimum number
of workers to perform the tasks.

Additional Applications

The maximum flow problem arises in many other applications, including: (1) problem of representatives
(Hall [1956]); (2) open pit mining (Johnson [1968]); (3) the tournament problem (Ford and Johnson [1959]); (4)
police patrol problem (Khan [1979]); (5) nurse staff scheduling (Khan and Lewis [1987]); (6) solving a system
of equations (Lin [1986]); (7) statistical security of data (Gusfield [1988], Kelly, Golden and Assad [1992]); (8)
minimax transportation problem (Ahuja [1986]); (9) network reliability testing (Van Slyke and Frank [1972]);
(10) maximum dynamic flows (Ford and Fulkerson [1958]); (11) preemptive scheduling on machines with
different speeds (Martel [1982]); (12) multifacility rectilinear distance location problem ([Picard and Ratliff
[1978]); (13) selecting freight handling terminals (Rhys [1970]); (14) optimal destruction of military targets
(Orlin [1987]); and (15)fly away kit problem (Mamer and Smith [1982]). The following papers describe
additional applications of the maximum flow problem or provide additional references: Berge and Ghouila-Houri
[1962]; McGinnis and Nuttle [1978], Picard and Queyranne [1982], Abdallaoui [1987], Gusfield, Martel and
Femandez-Baca [1987], Gusfield and Martel [1992], and Gallo, Grigoriadis and Tarjan [1989].

5. MINIMUM COST FLOWS

The minimum cost flow model is the most fundamental of all network flow problems. In this problem, as
described in Section 1, we wish to determining a least cost shipment of a commodity through a network that
will satisfy demands at certain nodes from available supplies at other nodes. This model has a number of
familiar applications: the distribution of a product from manufacturing plants to warehouses, or from
warehouses to retailers; the flow of raw material and intermediate goods through the various machining stations
in a production line; the routing of automobiles through an urban street network; and the routing of calls
through the telephone system. Minimum cost flow problems arise in almost all industries, including
agriculture, communications, defense, education, energy, health care, manufacturing, medicine, retailing, and
transportation. Indeed, minimum cost flow problems are pervasive in practice. In this section, by considering a
few selected applications, we illustrate some of these possible uses of minimum cost flow problems.
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Application 11. Leveling Mountainous Terrain (Farley [1980])

This application was inspired by a common problem facing civil engineers when they are building road
networks through hilly or mountainous terrain. The problem concerns the distribution of earth from high
points to low points of the terrain in order to produce a leveled road bed. The engineer must determine a plan for
leveling the route by specifying the number of truck loads of earth to move between various locations along the
proposed road network.

We first construct a terrain graph which is an undirected graph whose nodes represent locations with a
demand for earth (low points) or locations with a supply of earth (high points). An arc of this graph represents
an available route for distributing the earth and the cost of this arc represents the cost of per truck load of
moving earth between the two points. (A truckload is the basic unit for redistributing the earth.) Figure 15
shows a portion of the terrain graph.

I

5

Figure 15. A portion of the terrain graph.

A leveling plan for a terrain graph is a flow (set of truckloads) that meets the demands at nodes (levels the
low points) by the available supplies (by earth obtained from high points) at the minimum cost (for the truck
movements). This model is clearly a minimum cost flow problem in the terrain graph.

Application 12. Reconstructing the Left Ventricle from X-ray Projections (Slump

and Gerbrands [1982])

This application describes a minimum cost flow model for reconstructing the three-dimensional shape of the
left ventricle from biplane angiocardiograms that the medical profession uses to diagnose heart diseases. To
conduct this analysis, we first reduce the three-dimensional reconstruction problem into several two-dimensional
problems by dividing the ventricle into a stack of parallel cross sections. Each two-dimensional cross section
consists of one connected region of the left ventricle. During a cardiac catheterization, doctors inject a dye
known as Roentgen contrast agent into the ventricle; by taking X-rays of the dye, they would like to determine
what portion of the left ventricle is functioning properly (that is, permitting the flow of blood). Conventional
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biplane X-ray installations do not permit doctors to obtain a complete picture of the left ventricle; rather, these

X-rays provide one-dimensional projections that record the total intensity of the dye along two axes (see Figure

16). The problem is to determine the distribution of the cloud of dye within the left ventricle, and thus the

shape of the functioning portion of the ventricle, assuming that the dye mixes completely with the blood and

fills the portions that are functioning properly .
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Figure 16. Using X-Ray projections to measure a left ventricle.

We can conceive of a cross section of the ventricle as a p x r binary matrix: a I in a position indicates that

the corresponding segment of the ventricle allows blood to flow and a 0 indicates that it doesn't permit blood to

flow. The angiocardiograms gives the cumulative intensity of the contrast agent in two planes which we can
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translate into row and column sums of the binary matrix. The problem is then to construct the binary matrix
given its row and column sums. This problem is a special case of the feasible flow problem (discussed in
Application 6) on a network with a node i for each row i of the matrix with the supply equal to the cumulative
intensity of the row, a node j' for each column j of the matrix with demand equal to the cumulative intensity of
the column, and a unit capacity arc from each row node i to each column node j'.

Typically, the number of feasible solutions are quite large; and, these solutions might differ substantially.
To constrain the feasible solutions, we might use certain facts from our experience that indicate that a solution
is more likely to contain certain segments rather than others. Alternatively, we can use a priori information: for
example, after some small time interval, the cross sections might resemble cross sections determined in a
previous examination. Consequently, we might attach a probability Pij that a solution will contain an element

(i, j) of the binary matrix and might want to find a feasible solution with the largest possible cumulative
probability. This problem is equivalent to a minimum cost flow problem on the network we have already
described.

Application 13. Optimal Loading of a Hopping Airplane (Gupta [1985] and

Lawania [1990])

A small commuter airline uses a plane, with a capacity to carry at most p passengers, on a "hopping
flight" as shown in Figure 17(a). The hopping flight visits the cities 1, 2, 3, ..., n, in a fixed sequence. The
plane can pick up passengers at any node and drop them off at any other node. Let bij denote the number of
passengers available at node i who want to go to node j, and let fij denote the fare per passenger from node i to

node j. The airline would like to determine the number of passengers that the plane should carry between the
various origins to destinations in order to maximize the total fare per trip while never exceeding the plane
capacity.

O0 
(a)



29

b(i) c. or uj b(j)

Uj or u 34

b14 b24 b 34

cost -

(b)

Figure 17. Formulating the hopping plane flight problem as a minimum cost flow
problem.

Figure 17(b) shows a minimum cost flow formulation of this hopping plane flight problem. The network
contains data for only those arcs with nonzero costs and with finite capacities: any arc without an associated cost
has a zero cost; any arc without an associated capacity has an infinite capacity. Consider, for example, node 1.
Three types of passengers are available at node 1, those whose destination is node 2, node 3, or node 4. We
represent these three types of passengers by the nodes 1-2, 1-3, and 1-4 with supplies b12, b 3 , and b14 . A

passenger available at any such node, say 1-3, either boards the plane at its origin node by flowing through the
arc (1-3, 1), and thus incurring a cost of -f 13 units, or never boards the plane which we represent by the flow

through the arc (1-3, 3). Therefore, each loading of the plane has a corresponding feasible flow of the same cost
in the network. The converse result is true (and is easy to establish): each feasible flow in the network has a
corresponding feasible airplane loading. Thus, this formulation correctly models the hopping plane application.

Application 14. Directed Chinese Postman Problem (Edmonds and Johnson [1973])

Leaving from his home post office, a postman needs to visit the households on each block in his route,
delivering and collecting letters, and then returning to the post office. He would like to cover this route by
travelling the minimum possible distance. Mathematically, this problem has the following form: Given a
network G = (N, A) whose arcs (i, j) have an associated nonnegative length cij, we wish to identify a walk of

minimum length that starts at some node (the post office), visits each arc of the network at least once, and
returns to the starting node. This problem has become known as the Chinese postman problem because it was
first discussed by a Chinese mathematician, K. Mei-Ko. The Chinese postman problem arises in other
application settings as well; for instance, in patrolling streets by a police officer, routing of street sweepers and
household refuse collection vehicles, fuel oil delivery to households, and the spraying of roads with sand during
snow storms. In this application, we discuss the Chinese postman problem on directed networks.
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In the Chinese postman problem on directed networks, we are interested in a closed (directed) walk that
traverses each arc of the network at least once. The network need not contain any such walk! Figure 18 shows
an example. The network contains the desired walk if and only if every node in the network is reachable from
every other node; that is, it is strongly connected. The strong connectivity of a network can be easily
determined in O(m) time (see, e.g., Ahuja, Magnanti, and Orlin [1993]). We shall henceforth assume that the
network is strongly connected.

Figure 18. Network containing no feasible solution for the Chinese postman problem.

In an optimal walk, a postman might traverse arcs more than once. The minimum length walk minimizes
the sum of lengths of the arcs that the walk repeats. Let xij denote the number of times the postman traverses

an arc (i, j) in a walk. Any walk of the postman must satisfy the following conditions:

{j: (i, j) A} Xij -' (j:, i) E A} Xji = 0, for all i E N, (9a)

xij 2 1, for all (i, j) E A. (9b)

The constraints (9a) state that the postman enters a node the same number of times that he/she leaves it.
The constraints (9b) state that the postman must visit each arc at least once. Any solution x satisfying (9a) and
(9b) defines a postman's walk. We can construct such a walk in the following manner. We replace each arc (i,
j) with flow xij with xij copies of the arc, each carrying a unit flow. Let A' denote the resulting arc set. Since

the outflow equals inflow for each node in the flow x, once we have transformed the network, the outdegree of
each node will equal its indegree. This implies that we can decompose the arc set A' into a set of at most m
directed cycles. We can connect these cycles together to form a closed walk as follows. The postman starts at
some node in one of the cycles, say W 1, and visits the nodes (and arcs) of W1 in order until he either returns to
the node he started from, or encounters a node that also lies in a directed cycle not yet visited, say W2. In the
former case, the walk is complete; and in the latter case, the postman visits cycle W2 first before resuming his
visit of the nodes in W1. While visiting nodes in W2 , the postman follows the same policy, i.e., if he
encounters a node lying on another directed cycle W3 not yet visited, then he visits W3 first before visiting the
remaining nodes in W2 , and so on. We illustrate this method on a numerical example. Let A' be as indicated in
Figure 19(a). This solution decomposes into three directed cycles W1, W2 and W3. As shown in Figure 19(b),

the postman starts at node a and visits the nodes in the following order: a-b-d-g-h-c-d-e-b-c-f-a.
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(a) (b)

Figure 19. Constructing a closed walk for the postman.

This discussion shows that the solution x defined by a feasible walk for the postman satisfies (9), and,
conversely, every feasible solution of (9) defines a walk of the postman. The length of a walk equals X(i.j)E A

cijxij. Therefore, the Chinese postman problem seeks a solution x that minimizes (i,j)E A cijxij subject to

the set of constraints (9). This problem is clearly an instance of the minimum cost flow problem.

Application 15. Racial Balancing of Schools (Belford and Ratliff [1972])

Suppose a school district has S schools. For the purpose of this formulation, we divide the school district
into L district locations and let bi and wi denote the number of black and white students at location i. These

locations might, for example, be census tracts, bus stops, or city blocks. The only restrictions on the locations
is that they be finite in number and that there be a single distance measure dij that reasonably approximates the

distance any student at location i must travel if he or she is assigned to school j. We make the reasonable
assumption that we can compute the distances dij before assigning students to schools. School j can enroll uj

students. Finally, let p denote a lower bound and p denote an upper bound on the percentage of blacks assigned

to each school (we choose these numbers so that school j has same percentage of blacks as does the school

district). The objective is to assign students to schools in a manner that maintains the stated racial balance and

minimizes the total distance travelled by the students.

We model this problem as a minimum cost flow problem. Figure 20 shows the minimum cost flow

network for a three-location, two-school problem. Rather than describe the general model formally, we will

merely describe the model ingredients for this figure. In this formulation, we model each location i as two
nodes i and I and each school j as two nodes s and s . The decision variables for this problem are the number

of black students assigned from location i to school j (which we represent by an arc from node Ii to node s) and

the number of white students assigned from location i to school j (which we represent by an arc from node I to

node sj). These arcs are uncapacitated and we set their per unit flow cost equal to dij. For each j, we connect

the nodes and sj to the school node sj. The flow on the arcs (s, sj) and (sj, sj) denotes the total number of

black and white students assigned to school j. Since each school must satisfy lower and upper bounds on the

number of black students it enrolls, we set the lower and upper bounds of the arc (s, sj) equal to (puj, puj).
I~ .1 
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Finally, we must satisfy the constraint that school j enrolls at most uj students. We incorporate this constraint

in the model by introducing a sink node t and joining each school node j to node t by an arc of capacity u. As

is easy to verify, this minimum cost flow problem correctly models the racial balancing application.

atcow
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upper bounds
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Figure 20. Network for the racial balancing of schools.

Additional Applications

A complete list of additional applications of the minimum cost flow problem is too vast to mention here.

A partial list of additional references is: (1) distribution problems (Glover and Klingman [1976]); (2) building

evacuation models (Chalmet, Francis and Stary [1982]); (3) scheduling with consecutive ones in columns

(Veinott and Wagner [1962]); (4) linear programs with consecutive circular ones in rows (Bartholdi, Ratliff and

Orlin [1980]; (5) the entrepreneur's problem (Prager [1957]); (6) optimal storage policyfor libraries (Evans

[1984]); (7) zoned warehousing ( Evans [1984]); (8) allocation of contractors to public works (Cheshire,

McKinnon and Williams [1984]); (9) phasing out capital equipment (Daniel [1973]); (10) the terminal

assignment problem (Esau and Williams [1966]); (11) capacitated maximum spanning trees (Garey and Johnson

[1979]); (12) caterer problem (Jacobs [1954]); (13) allocating receivers to transmitters (Dantzig [1962]); (14)

faculty-course assignment (Mulvey [1979]); (15) automatic karyotyping of chromosomes (Tso et al. [1991]);

(16) just-in-time scheduling (Elmaghraby [1978] and Levner and Nemirovsky [19911); (17) time-cost tradeoff in

project management (Fulkerson [19611] and Kelley [1961]); (18) warehouse layout (Francis and White [19761);
(19) rectilinear distance facility location (Cabot, Francis and Stary [1970]); (20) dynamic lot-sizing (Zangwill

[1969]); (21) multistage production-inventory planning (Evans [1977]); (22) mold allocation (Love and
Vemuganti [1978]); (23) a parking model (Dirickx and Jennergren [1975]); (24) the network interdiction problem

(Fulkerson and Harding [1977]); (25) truck scheduling (Gavish and Schweitzer [1974]); and (26) optimal

deployment of firefighting companies (Denardo, Rothblum and Swersey [1988]); (27) warehousing and
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distribution of a seasonal product (Jewell [1957]); (28) economic distribution of coal supplies in the gas industry
(Berrisford [1960]); (29) upsets in round robin tournaments (Fulkerson [1965]); (30) optimal container

inventory and routing (Horn [1971]); (31) distribution of empty rail containers (White [1972]); (32) optimal
defense of a network (Picard and Ratliff [1973]); (33) telephone operator scheduling (Segal [1974]); (34)
multifacility minimax location problem with rectilinear distances (Dearing and Francis [1974]); (35) cash

management problems (Srinivasan [1974]); (36) multiproduct multifacility production-inventory planning

(Dorsey, Hodgson and Ratliff [1975]); (37) "hub" and "wheel" scheduling problems (Arisawa and Elmaghraby
[1977]); (38) warehouse leasing problem (Lowe, Francis and Reinhardt [1979]); (39) multi-attribute marketing

models (Srinivasan [1979]); (40) material handling systems (Maxwell and Wilson [1981]); (41) microdatafile

merging (Barr and Turner [1981]); (42) determining service districts (Larson and Odoni [1981]); (43) control of

forestfires (Kourtz [1984]); (44) allocating blood to hospitals from a central blood bank (Sapountzis [1984];
(45) market equilibrium problems (Dafermos and Nagurney [1984]); (46) automatic chromosome classifications

(Tso [1986]); (47) city traffic congestion problem (Zawack and Thompson [1987]); (48) satellite scheduling
(Servi [1989]); (49) determining k disjoint cuts in a network (Wagner [1990]); (50) controlled rounding of

matrices (Cox and Ernst [1982]); (51) scheduling with deferral costs (Lawler [1964]).

6. THE ASSIGNMENT PROBLEM

The assignment problem is a special case of the minimum cost flow problem and can be defined as
follows: Given a weighted bipartite network G = (N1 u N2, A) with IN l = N2 1 and arc weights cij, find a
one-to-one assignment of nodes in N1 with nodes in N2, so that the sum of the costs of arcs in the assignment

is minimum. It is easy to notice that if we set b(i) = 1 for each node i E N1 and b(i) = -1 for each node i E N2,

then the optimal solution of the minimum cost flow problem in G will be an assignment. For the assignment

problem, we allow the network G to be directed or undirected. If the network is directed, then we require that
each arc (i, j) E A has i E N1 and j E N2. If the network is undirected, then we make it directed by designating

all arcs as pointing from nodes in N1 to nodes in N2. We shall, therefore, henceforth assume that G is a

directed graph.

Examples of the assignment problem include assigning people to projects, jobs to machines, tenants to

apartments, swimmers to events in a swimming meet, and medical school graduates to available internships.

We now describe three more clever applications of the assignment problem.

Application 16. Locating Objects in Space (Brogan [1989])

This application concerns locating objects in space. To identify an object in (three-dimensional) space, we

could use two infrared sensors, located at geographically different sites. Each sensor provides an angle of sight
of the object and, hence, the line on which the object must lie. The unique intersection of the two lines

provided by the two sensors (provided that the two sensors and the object are not co-lincar) determines the unique

location of the object in space.

Consider now the situation in which we wish to determine the locations of p objects using two sensors.
The first sensor would provide us with a set of lines L1, L2, ..., Lp for the p objects and the second sensor

would provide us a different set of lines L , ...., L. To identify the location of the objects-using the fact

that if two lines correspond to the same object, then the lines intersect one-another-we need to match the lines
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from the first sensor to the lines from the second sensor. In practice, two difficulties limit the use of this
approach. First, a line from a sensor might intersect more than one line from the other sensor, so the matching
is not unique. Second, two lines corresponding to the same object might not intersect because the sensors make
measurement errors in determining the angle of sight. We can overcome this difficulty in most situations by
formulating this problem as an assignment problem.

In the assignment problem, we wish to match the p lines from the first sensor with the p lines from the
second sensor. We define the cost cij of the assignment (i, j) as the minimum Euclidean distance between the
lines Li and Lj. We can determine cij using standard calculations from geometry. If the lines Li and Lj
correspond to the same object, then cij would be close to zero. An optimal solution of the assignment problem

would provide an excellent matching of the lines. Simulation studies have found that in most circumstances,
the matching produced by the assignment problem defines the correct location of the objects.

Application 17. Matching Moving Objects (Brogan [1989] and Kolitz [1991])

In several different application contexts, we might wish to estimate the speeds and the directions of
movement of a set of p objects (e.g., enemy fighter planes, missiles) that are moving in space. Using the
method described in the preceding application, we can determine the location of the objects at any point in time.
One plausible way to estimate the movement directions of the objects at which the objects are moving is to take
two snapshots of the objects at two distinct times and then to match one set of points with the other set of
points. If we correctly match the points, then we can assess the speed and direction of movement of the objects.
As an example, consider Figure 21 which denotes the objects at time I by squares and the objects at time 2 by
circles.

n First set of locations

* Second set of locations

Figure 21. Two snapshots of a set of 8 objects.

Let (xi, Yi, zi) denote the coordinates of object i at time 1 and (x, y, z) denote the coordinates of the same
object at time 2. We could match one set of points with the other set of points in many ways. Minimizing the
sum of the squared Euclidean distances between the matched points is reasonable in this scenario because it
attaches a higher penalty to larger distances. If we take the snapshots of the objects at two times that are
sufficiently close to each other, then the optimal assignment will often match the points correctly. In this
application of the assignment problem, we let N1 = ( 1, 2, ... , p denote the set of objects at time 1, let N2 =
( 1', 2',..., p' denote the set of objects at time 2, and we define the cost of an arc (i, j') as [(xi - x'i)2 + (yi yi )2

D--*
0-_*
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+ (zi - z'i) 2]. The optimal assignment in this graph will specify the desired matching of the points. From this

matching, we obtain an estimate of the movement directions and speeds of the individual objects.

Application 18. Rewiring of Typewriters (Machol [1961])

For several years, a company had been using special electric typewriters to prepare punched paper tapes to

enter data into a digital computer. Because the typewriter is used to punch a six-hole paper tape, it can prepare

26 = 64 binary hole-no-hole patterns. The typewriters have 46 characters and each punches one of the 64

patterns. The company acquired a new digital computer that uses different coding hole-no-hole patterns to

represent characters. For example, using 1 to represent a hole and 0 to represent a no-hole, the letter A is

111100 in the code for the old computer and 011010 in the code for the new computer. The typewriter presently

punches the former and must be modified to punch the latter.

Each key in the typewriter is connected to a steel code bar, and so changing the code of that key requires

mechanical changes in the steel bar system. The extent of the changes depends upon how close the new and old

characters are to each other. For the letter A, the second, third and sixth bits are identical in the old and new

codes and no changes need be made for these bits; however, the first, fourth and fifth bits are different and so we

would need to make three changes in the steel code bar connected to the A-key. Each change involves removing

metal at one place and adding metal at another place. When a key is pressed, its steel code bar activates six

cross-bars (which are used by all the keys) that are connected electrically to six hole punches. If we interchange

the fourth and fifth wires of the cross-bars to the hole punches (which is essentially equivalent to interchanging

the fourth and fifth bits of all characters in the old code), then we would reduce the number of mechanical

changes needed for the A-key from three to one. However, this change of wires might increase the number of

changes for some of the other 45 keys. The problem, then, is how to optimally connect the wires from the six

cross-bars to the six punches so that we can minimize the number of mechanical changes on the steel code bars.

We formulate this problem as an assignment problem as follows. Define a network G = (Nlu N2 , A) with

node sets N 1 = 1, 2,... 6) and N2 = (1', 2',.., 6', and an arc set A = N1 x N2; the cost of the arc (i, j') E A

is the number of keys (out of 46) for which the ith bit in the old code differs from the jth bit in the new code.

Thus if we assign cross-bar i to the punch j, then the number of mechanical changes needed to correctly print the
ith bit of each symbol is cij. Consequently, the minimum cost assignment will minimize the number of

mechanical changes.

Additional Applications

Additional applications of the assignment problem include: (1) bipartite personnel assignment (Machol

[1970], and Ewashko and Dudding [1971]); (2) optimal depletion of inventory (Derman and Klein [1959]); (3)

scheduling of parallel machines (Horn [1973]); (4) solving shortest path problems in directed networks (Hoffman

and Markowitz [1963]); (5) discrete location problems (Francis and White [1976]); and (6) vehicle and crew

scheduling (Carraresi and Gallo [1984]).
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7. MATCHINGS

A matching in an undirected graph G = (N, A) is a set of arcs with the property that every node is incident

to at most one arc in the set; thus a matching induces a pairing of (some of) the nodes in the graph using the

arcs in A. In a matching, each node is matched with at most one other node, and some nodes might not be

matched with any other node. In some applications, we want to match all the nodes (that is, each node must be

matched to some other node); we refer to any such matching as a perfect matching. Suppose that each arc (i, j)
in the network has an associated cost cij. The (perfect) matching problem seeks a matching that minimizes the

total cost of the arcs in the (perfect) matching. Since any perfect matching problem can be formulated as a

matching problem if we add the same large negative cost to each arc, in the following discussion, we refer only

to matching problems.

Matching problems on bipartite graphs (i.e., on a graph G = (N1 u N2, A), where N = N1 u N2 and each

arc (i, j) E A has i E N1 and j E N2), are called bipartite matching problems and those on general graphs that

need not be bipartite are called nonbipartite matching problems. There are two further ways of categorizing

matching problems: cardinality matching problems, that maximize the number of pairs of nodes matched, and

weighted matching problems that minimize the weight of the matching. The weighted matching problem on a

bipartite graph is the same as the assignment problem, whose applications we described in the previous section.

In this section, we describe applications of matching problems on nonbipartite graphs.

The matching problem arises in many different problem settings since we often wish to find the best way to

pair objects or people together to achieve some desired goal. Some direct applications of nonbipartite matching

problems include matching airplane pilots to planes, and assigning roommates to rooms in a hostel. We

describe now three indirect applications of matching problems.

Application 19. Pairing Stereo Speakers (Mason and Philpott [1988])

As a part of its manufacturing process, a manufacturer of stereo speakers must pair individual speakers

before it can sell them as a set The performance of the two speakers depends upon their frequency response. In

order to measure the quality of the pairs, the company generates matching coefficients for each possible pair. It

calculates these coefficients by summing the absolute differences between the responses of the two speakers at

twenty discrete frequencies, thus giving a matching coefficient value between 0 and 30,000. Bad matches yield a

large coefficient, and a good pairing produces a low coefficient.

The manufacturer typically uses two different objectives in pairing the speakers: (i) finding as many pairs as

possible whose matching coefficients do not exceed a specification limit; or (ii) pairing speakers within

specification limits in order to minimize the total sum of the matching coefficients. The first objective

minimizes the number of pairs outside of specification, and so the number of speakers that the firm must sell at

a reduced price. This model is an application of the nonbipartite cardinality matching problem on an undirected

graph: the nodes of this graph represent speakers and arcs join two nodes if the matching coefficients of the

corresponding speakers are within the specification limit. The second model is an application of the

nonbipartite weighted matching problem.
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Application 20. Determining Chemical Bonds (Dewar and Longuet-Higgins [1952])

Matching problems arise in the field of chemistry as chemists attempt to determine the possible atomic
structures of various molecules. Figure 22(a) specifies the partial chemical structure of a molecule of some
hydrocarbon compound. The molecule contains carbon atoms (denoted by nodes with the letter "C" next to
them) and hydrogen atoms (denoted by nodes with the letter "H" next to them). Arcs denote bonds between
atoms. The bonds between the atoms, which can be either single or double bonds, must satisfy the "valency
requirements" of all the nodes. (The valency of an atom is the sum of its bonds.) Carbon atoms must have a
valency of 4 and hydrogen atoms a valency of 1.

(a) (b)
Figure 22. Determining the chemical structure of a hydrocarbon.

In the partial structure shown in Figure 22(a), each arc depicts a single bond and, consequently, each
hydrogen atom has a valency of 1, but each carbon atom has a valency of only 3. We would like to determine
which pairs of carbon atoms to connect by a double bond so that each carbon atom has valency 4. We can
formulate this problem of determining some feasible structure of double bonds to determining whether or not the
network obtained by deleting the hydrogen atoms contains a maximum cardinality matching with all nodes are
matched. Figure 22(b) gives one feasible bonding structure of the compound; the bold lines in this network
denote double bonds between the atoms.

Application 21. Dual Completion of Oil Wells (Devine [1973])

An oil company has identified several individual oil traps, called targets, in an offshore oil field and wishes
to drill wells to extract oil from these traps. Figure 23 illustrates a situation with eight targets. The company
can extract any target separately (so called single completion) or extract oil from any two targets together by
drilling a single hole (so called dual completion). It can estimate the cost of drilling and completing any target

,
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as a single completion or any pair of targets as a dual completion. This cost will depend on the three-

dimensional spatial relationships of targets to the drilling platform and to each other. The decision problem is

to determine which targets (if any) to drill as single completions and which pairs to drill together as duals, so as

to minimize the total drilling and completion costs. If we restrict the solution to use only dual completions,

then the decision problem is a nonbipartite weighted matching problem.

Z2:·: Oil
sand

Oil
sand

Oil
AX AX AX sand

Figure 23. Targets and matchings for the dual completion problem.

Application 22. Parallel Savings Heuristics (Ball, Bodin and Dial [1983], Altinkemer and

Gavish [1991])

A number of combinatorial optimization problems have an underlying clustering structure. For

example, in many facility location applications we wish to cluster customers into service regions, each

served by a single facility (warehouses in distribution planning, concentrators in telecommunication

systems design, hospitals within a city). In vehicle routing, we wish to form customer clusters, each

representing the customer deliveries allocated to a particular vehicle. The cost for any particular cluster

might be simple, for example, the total cost of traveling from each customer to its service center, or

complex: in vehicle routing, the cost of a solution is the sum of the costs required to service each cluster

(which usually is computed by solving a traveling salesman problem-see Section 12) plus a cost that

depends on the number of clusters. Airline or mass transit crew scheduling provide another example. In

this context, we need to assign crews to flight legs or transit trips. A cluster is a set of flight legs or trips

that forms the workload for one crew.

In these examples, as well as in other applications, the generic problem has an input set T together
with a cost function c(S) defined on subsets S of T. The problem is to partition T into subsets S I, S2 ,

.... Sk in a way that minimizes the sum c(S 1 ) + c(S2 ) + ... + c(Sk).

In these settings, matching can be used as a tool for designing "smart" heuristic solution procedures. A

standard "greedy" savings heuristic, for example, starts with an initial solution consisting of all subsets of

size 1. Suppose we are given an intermediate solution that partitions the elements of T into disjoint
subsets S1 , S2.... Sk. For any pair of subsets, Si and Sj, we define the savings obtained by combining

J
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Si and Sj as:

c(Si) + c(Sj) - c(S i u Sj).

The general step of the greedy algorithm computes the savings obtained by combining all pairs of
subsets and combines the two that provide the largest savings. A parallel savings algorithm considers the
sets S1, S2 ... , Sk simultaneously rather than just two at a time. At each iteration, it simultaneously
combines the set of pairs--e.g., Slwith S6 , S2 with S1 1' S3 with S4 , etc.--that yields the greatest
savings. We can find this set of combinations by solving a matching problem. The matching graph
contains a node for each subset Sj. The graph contains the arc (i, j) whenever combining the two end nodes
(i.e., the sets Si and Sj) is feasible and yields positive savings. We allow nodes to remain unmatched. A
maximum weight matching in this graph yields the set of combinations producing the greatest savings.

As stated, the savings algorithm always combines sets to form larger ones. Using a similar approach,
we can construct a parallel savings improvement algorithm for this same class of problems. We start with
any set of subsets that constitute a "good" feasible solution (if we had obtained this partition by first using
the parallel savings algorithm, combining no pair of subsets would induce a positive savings). We
construct a matching graph as before, except that the savings associated with two subsets Si and Sj
becomes:

c(S i) + c(Sj) - (c(S) + c(S))

In this expression, S and S are the minimum cost partitions of Si u Sj. We then replace Si and Sj with

Si and S. We then iterate on this process until the matching graph contains no positive cost arcs.

In the most general setting, the minimum cost partitions could involve more than 2 sets. If finding
the minimum cost partitions of Si u Sj is too expensive, we might instead use some heuristic method to
find a "good" partition of these sets (the parallel saving heuristic is a special case in which we always
choose the partition as the single set Si u Sj).

We then iterate on this process iterates until the matching graph contains no positive cost edges.

Analysts have devised parallel savings algorithms and shown them to be effective for problems arising
in vehicles routing, crew scheduling, and telecommunications.

Additional Applications

Additional applications of the matching problems include: (1) solving shortest path problems in undirected
networks (Edmonds [1967]); (2) the undirected Chinese postman problem (Edmonds and Johnson [1973]); (3)
two-processor scheduling (Fujii, Kasami and Ninomiya [1969]); (4) vehicle and crew scheduling (Carraresi and
Gallo [1984]); (5) determining the rank of a matrix (Anderson [1975]); and (6) making matrices optimally sparse
(Hoffman and McCormick [1984]).
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8. MINIMUM SPANNING TREES

As we noted previously, a spanning tree is a tree (i.e., a connected acyclic graph) that spans (touches) all the

nodes of an undirected network. The cost of a spanning tree is the sum of the costs (or lengths) of its arcs. In
the minimum spanning tree problem, we wish to identify a spanning tree of minimum cost (or length).

Minimum spanning tree problems generally arise in one of two ways, directly or indirectly. In direct

applications, we typically wish to connect a set of points using the least cost or least length collection of arcs.

Frequently, the points represent physical entities that need to be connected to each other. In indirect

applications, we either (i) wish to connect some set of points using a measure of performance that on the surface

bears little resemblance to the minimum spanning tree objective (sum of arc costs), or (ii) the problem itself

bears little resemblance to an "optimal tree" problem--these instances often require creativity in modeling so

that they become a minimum spanning tree problem. In this section, we consider several indirect applications.

Section 12 on the network design problem describes several direct applications of the minimum spanning tree

problem.

Application 23. Measuring Homogeneity of Bimetallic Objects (Shier [1982], and

Filliben, Kafadar and Shier [1983])

This application shows how a minimum spanning tree problem can be used to determine the degree to

which a bimetallic object is homogeneous in composition. To use this approach, we measure the composition

of the bimetallic object at a set of sample points. We then construct a network with nodes corresponding to the

sample points and with an arc connecting physically adjacent sample points. We assign a cost with each arc (i,

j) equal to the product of the physical (Euclidean) distance between the sample points i and j and a homogeneity

factor between 0 and 1. This homogeneity factor is 0 if the composition of the corresponding samples is

exactly alike, and is 1 if the composition is very different; otherwise, it is a number between 0 and 1. Note that

this measure gives greater weight to two points if they are different and are far apart. The cost of the minimum

spanning tree is a measure of the homogeneity of the bimetallic object. The cost of the tree is 0 if all the

sample points are exactly alike, and high cost values imply that the material is quite nonhomogeneous.

Application 24. Reducing Data Storage (Kang et al. [1977])

In several different application contexts, we wish to store data specified in the form of a two-dimensional

array more efficiently than storing all the elements of the array (that is, to save memory space). We assume that

the rows of the array have many similar entries and differ only at a few places. Since the entities in the rows are

similar, one approach for saving memory is to store one row, called the reference row, completely, and to store

only the differences between some of the rows so that we can derive each row from these differences and the
reference row. Let cij denote the number of different entries in rows i and j; that is, if we are given row i, then

by making cij changes to the entries in this row we can obtain row j, and vice-versa. Suppose that the array

contains four rows, represented by R 1, R2, R3 and R4 , and we decide to treat R as a reference row. Then one

plausible solution is to store the differences between R 1 and R2, R2 and R4 , and R 1 and R3. Clearly, from

this solution, we can obtain rows R2 and R3 by making c12 and c 13 changes to the elements in row R 1.
Having obtained row R2 , we can make c2 4 changes to the elements of this row to obtain R4. We can depict

this storage scheme in the form of a spanning tree shown in Figure 24.
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Figure 24. Compact storage of a matrix.

It is easy to see that it is sufficient to store differences between those rows that correspond to arcs of a
spanning tree. These differences permit us to obtain each row from the reference row. The total storage
requirement for a particular storage scheme will be the length of the reference row (which we can take as the row
with the least amount of data) plus the sum of the differences between the rows. Therefore, a minimum
spanning tree would provide the least cost storage scheme.

Application 25. Cluster Analysis (Gower and Ross [1969], and Zahn [1971])

In this application, we describe the use of spanning tree problems to solve a class of problems that arises in
the context of cluster analysis. The essential issue in cluster analysis is to partition a set of data into "natural
groups"; the data points within a particular group of data, or a cluster, should be more "closely related" to each
other than the data points not in that cluster. Cluster analysis is important in a variety of disciplines that rely
upon empirical investigations. Consider, for example, an instance of a cluster analysis arising in medicine.
Suppose we have data on a set of 350 patients, measured with respect to 18 symptoms. Suppose, further, that a
doctor has diagnosed all of these patients as having the same disease which is not well understood. The doctor
would like to know if he or she can develop a better understanding of this disease by categorizing the symptoms

into smaller groupings using cluster analysis. Doing so might permit the doctor to find more natural disease
categories to replace or subdivide the original disease.

Suppose we are interested in finding a partition of a set of n points in two-dimensional Euclidean space into
clusters. A popular method for solving this problem is by using Kruskal's algorithm for solving the minimum
spanning tree problem (see, e.g., Ahuja, Magnanti and Orlin [1993]). Kruskal's algorithm maintains a forest
(i.e., a collection of node-disjoint trees) and adds arcs in a nondecreasing order of their costs. We can regard the
components of the forest at intermediate steps as different clusters. These clusters are often excellent solutions
for the clustering problem and, moreover, we can obtain them very efficiently. Kruskal's algorithm can be
thought of providing n partitions: the first partition contains n clusters, each cluster containing a single point,
and the last partition contains just one cluster containing all the points. Alternatively, we can obtain n
partitions by starting with a minimum spanning tree and deleting tree arcs one by one in nonincreasing order of
their lengths. We illustrate the later approach using an example. Consider a set of 27 points shown in Figure
25(a). Suppose that Figure 25(b) shows a minimum spanning tree for these points. Deleting the three largest
length arcs from the minimum spanning tree gives a partition with four clusters shown in Figure 25(c).
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(a) (b) (c)

Figure 25. Identifying clusters by finding a minimum spanning tree.

Analysts can use the information obtained from the preceding analysis in several ways. The procedure we
have described yields n partitions. Out of these, we might select the "best" partition by simple visualization or
by defining an appropriate objective function value. A good choice of the objective function depends upon the
underlying features of the particular clustering application. We might note that this analysis is not limited to
points in the two-dimensional space; we can easily extend it to multi-dimensional space if we define inter-point
distances appropriately.

Application 26. System Reliability Bounds (Hunter [1976], Worsley [1982])

All systems/products are subject to failure. Typically, the reliability of a system (as measured by the
probability that it will operate) depends upon the reliability of the system's individual components as well
as the manner in which these components interact; that is, the reliability of the system depends upon the
both the component reliabilities and the system structure. To model these situations, let us first consider a

stylized problem setting with a very simple system structure. After analyzing this situation, we will

comment on how this same analysis applies to more general, and often more realistic, systems.

In our simple setting, several components k = 1, 2, ... , K of a system can perform the same function
so a system fails only if all its components fail. Suppose we model this situation as follows. Let Ek

denote the event that the kth component is operable and let Ec denote the complementary event that the kth

component fails. Then, since the systems operates if and only if at least one of the components 1, 2,...
K operates (or, equivalently, all its components don't fail),

Prob(system operates) = Prob(uK=l Ek) = 1 - Prob(rK=l Ek).

If component failures are independent events, then Prob(rnK l EC) = FIKK= Prob(E), and so we can

determine the system's operating probability if we know the failure probabilities of each component. In
more complex situations, however, the component failure probabilities will be dependent (for example,
because all the components wear together as we use the system or because the components are subject to

similar environmental conditions (e.g., dust)).

0
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In these situations, in theory we can compute the system operating probability using the principle of
inclusion/exclusion (also known as the Boole or Poincard formula), which requires knowledge of
Prob(nie S Ei) for all subsets S of the components k = 1, 2, ... , K. In practice, the use of this formula is

limited because of the difficulty of assessing the probability of joint events of the form ElnrE 2
n --. nEq,

particularly for systems that have many components. As a result, analysts frequently attempt to find
bounds on the system operating probability using less information than all the joint probabilities. One
approach is to use more limited information, for example, the probability of single event of the form Ei and

the joint probability of only two events at a time (i.e., events of the form Eij _ EinEj). Using this

information, we have the following bound on the system's operating probability.

Prob(system operates) = Prob(uk Ek) < ZK=1 Prob(Ek).

Can we obtain better bounds using only the probabilities Prob(Eij) of joint events?

Figure 26(a) shows a situation with three events. In this familiar Venn diagram, the three squares
represent the three events, the intersection of two squares the joint events E, and the intersection of all
three squares the joint event ElnE2 nE 3. Suppose, for convenience, that the area of any event (or joint

event) equals the probability of that event. Summing the three events Prob(E1 ), Prob(E 2 ), Prob(E 3) gives

an upper bound on the system's operating probability since the sum double counts the areas (probabilities)
of the events Eij - E1nE 2 nE 3 and triple counts the areas of the event ElrnE 2 nE 3 (see the shading in

Figure 26(b)). Note that the probability ZK=1 Prob(Ek) - Zi<j Prob(EirnEj) gives a lower bound on the

system's operating probability since it by (generally) overcompensating for the double and triple counting:
it eliminates the double counting of areas of all the events Eij - E1 nE2 rE 3 , but also eliminates all three

counts of the event E1 nE 2 nE 3 and so doesn't account for this event at all (see Figure 26(c)). Note,

however, that in this case if instead of subtracting all three events of the form Prob(Eij) from ZK=I

Prob(Ek), we subtract any two of them, then as shown by the shading in Figure 26(d), we obtain an upper

bound on the system operating probability.

We can generalize this observation for situations with more than three events Ek as follows: suppose

we construct an undirected network with a node j for each event Ej. For any two events E and Ej, the

network contains an arc (i, j) with a cost cij = Prob(Eij). If T is any spanning tree on this network, we then

obtain the spanning tree upper bound

Prob(uK=l Ek) < lK=1 Prob(Ek)- (ij)e T Prob(Eij).

To see that this bound is valid, let us decompose the events E, E2... EK into disjoint events F1,

F2 , ... , FQ satisfying the following property: no subset Fi is partially contained within a subset Ej for any

i and j, that is either Fi c Ej or else F i n Ej = 0. For example, in Figure 2.6, the subset E 1 n E2 is

partially contained within E3, but it can be decomposed into two disjoint subsets Fl = E1 n E2 n E3 and

F2 = E 1 r E2 - E3 . Neither F 1 nor F2 is partially contained within a subset Ej. In general, it is easy to

decompose the events E, E2 , ... , EK in this manner.

Since FirF = 0 whenever i j,
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Prob(system operates) = Prob(uKl Ek) = Prob(uQ= Fq)= Q1 Prob(F.)

and so wish to show that

Prb Prob(Ek) -'Fq TProb(Eij).q=' q(i,j)ET

To see that this inequality is valid, note that each region Fi contributes Prob(Fi) to the left-hand side of

the inequalities. Now let us consider what it contributes to the right-hand side. Without loss of generality,
renumber the events so that Fi is contained in events E1 , ... , Er for some r > 1. Then the region Fi

contributes exactly r Prob(Fi) to the term K =l Prob(Ek). Fi also contributes Prob(Fi) to each t erm
Prob(Ejk) on the right-hand side when O(,k) T with 1 < j,k < r since in these circumstances Fi C Ejk.

However, because the set of arcs (j,k) E A with 1 < j,k < r forms a subgraph with only r nodes, it contains
at most r-1 arcs ,k) from the tree T. We conclude that Fi contributes at most (r-1) Prob(Fi) to X(ij)ET
Prob(Eij), and so the contribution of Fi to the right-hand side of the inequality is at least Prob(F).

To obtain the best spanning tree upper bound, we choose T as the maximum spanning tree with respect
to the costs cij. Figure 26(d) shows the network for the three event example. In this case, the figure

provides the upper bound for the maximum spanning tree with the arcs (1,3) and (2,3). We would obtain
inferior, but valid upper bounds by choosing any other spanning tree, for example, the tree with the arcs
(1,2) and (2,3). Using this approach, by assessing the joint probabilities of two events at a time, and by
performing a maximum spanning tree computation, we obtain an improved upper bound on the system's
operating probability.
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Figure 26. Computing bounds on systems reliability.

In many contexts, the system structure is more complicated than the simple structure we have considered in

which the system operates only if one of its components operates. "Coherent binary systems" provide one such

generic set of applications. One way to represent the system structure in this setting is to produce a list of

"pathsets": a pathset is a component subset S satisfying the property that if all elements in S operate then so

does the system. (In the simple setting we have analyzed, each set S is a single component.) If we assume that

all component states are independent, then the probability that an individual pathset operates is the product of

the reliabilities of the components contained in that pathset. In more general problem settings, the components

in any pathset might not be independent and so obtaining the probability that any pathset operates might be
more difficult In any event, if Ek represents the event that the kth pathset operates, then we can use our prior

analysis to obtain the system reliability from the pathset reliabilities. Further development of this approach

(particularly, how to define pathsets) would take us beyond the scope of our coverage here. We simple note that

the analysis we have considered applies to much more general problems settings, including problem contexts

broader than system reliability.

Additional Applications

Some additional applications of the minimum spanning tree problem arise in the following situations: (1)

optimal message passing (Prim [1957]); (2) all-pairs minimax path problem (Hu [1961]); (3) solving a special

case of the traveling salesman problem (Gilmore and Gomory [1964]); (4) chemical physics (Stillinger [1967]);

(5) Lagrangian relaxation techniques (Held and Karp [19701); (6) network reliability analysis (Van Slyke and

Frank [1972]); (7) pattern classification (Dude and Hart [1973]); (8) picture processing (Osteen and Lin [1974]);

and (9) network design (Magnanti and Wong [1984]). The survey paper of Graham and Hell [1985] provides

references for additional applications of the minimum spanning tree problem.

9. CONVEX COST FLOWS

In the minimum cost flow problem, we assume that the cost of the flow on any arc varies linearly with the

amount of flow. Convex cost flow problems have a more general cost structure: the cost is a convex function

of the flow. Flow costs vary in a convex manner in numerous problem settings including (i) power losses in a

electrical network due to resistance; (ii) congestion costs in a city transportation network; and (iii) expansion

costs of a communication network.

Many of the linear network flow models that we have considered in our previous discussions arise in more

general forms with nonlinear costs. System congestion and queueing effects are one source of these

nonlinearities (since queueing delays vary nonlinear with flows). In finance, we often are interested in not only

the returns on various investments, but also in their risks, which analysts often measure by quadratic functions.

In some other applications, cost functions assume different forms over different operating ranges, and so the

resulting cost function is piecewise linear. For example, in production applications, the cost of satisfying

customers demand is different if we meet the demand from current inventory or by backordering items. To give

a flavor of the applications of convex cost network flow models, in this section, we describe three applications.
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Application 27. Urban Traffic Flows (Magnani [1984], Sheffi [1985], Florian and Hearn [1992))

In road networks, as more vehicles use any road segment, the road become increasingly congested and so the
delay on that road increases. For example, the delay on a particular road segment, as a function of the flow x on
that road, might be ctx/(u-x). In this expression, u denotes a theoretical capacity of the road and ct is another

constant: as the flow increases, so does the delay; moreover, as the flow x approaches the theoretical capacity
of that road segment, the delay on the link becomes arbitrarily large. In many instances, as in this example, the

delay function on each road segment is a convex function of the road segment's flow and so finding the flow
plan that achieves the minimum overall delay, summed over all road segments, is a convex cost network flow

model.

The most general model of this form has a multicommodity flow structure (see Section 11) with a
commodity, and hence a separate set of mass balance equations (Ib), defined for each pair of nodes that serve as
each origins and destinations for travelers in the transportation system. In this case, the congestion effects (e.g.,
the function of the form cx/(u-x)) applies to the total flow x on any arc, which is the sum of flows by all
commodities. The problem is a single commodity model whenever all the trips either originate or terminate at a
single node; the flow x on any arc then is the total number of trips from the common origin (or destination) that
use that arc.

Another model of urban traffic flow rests upon the behavioral assumption that users of the system will
travel, with respect to any prevailing system flow, from their origin to their destination using a path with the
minimum delay. So if Cij(xij) denotes the delay on arc (i, j) as a function of the arc's flow xij, each user of the

system will travel along a shortest delay path with respect to the total delay cost Cij(xij) on the arcs of that

path. This problem is a complex equilibrium model because the delay that one user incurs depends upon the
flow of other users, and all of the users are simultaneously choosing their shortest paths. In this problem
setting, we can find the equilibrium flow by solving a convex network flow model with the objective function

x..
Ij

2C(ij)e A i Cij(Y)) dy.
0

If the delay function is nondecreasing for each variable xij, then the integral within the summation is

convex and, since the sum of convex functions is convex, the overall objective function is convex. Moreover,

if we solve the network optimization problem defined by this objective function and the network flow

constraints, the optimality conditions are exactly the shortest path conditions for the users. (See the references

for the details of these claims.)

This example is a special case of a more general result, known as variational principle, that arises in many

settings in the physical and social sciences. The variational principle says that to find an equilibrium of a

system, we can solve an associated optimization problem: the optimality conditions for the problem are

equivalent with the equilibrium conditions.

Application 28. Matrix Balancing (Schneider and Zenios [1990])

Statisticians, social scientists, agricultural specialists and many other practitioners frequently use
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experimental data to try to draw inferences about the effects of certain control parameters at their disposal (for

example, the effects of using different types of fertilizers). These practitioner often use contingency tables to

classify items according to several criteria, with each criteria partitioned into a finite number of categories. As

an example, consider classifying r individuals in a population according to the criteria of marital status and age,

assuming that we have divided these two criteria into p and q categories, respectively. As categories for marital

status, we might choose single, married, separated, or divorced; and as categories for age, we might choose

below 20, 21-25, 26-30, and so forth. This categorization gives a table of pq cells. Dividing the entry in each

cell by the number of items r in (i.e., the total population) gives the probability of that cell.

In many applications, it is important to estimate the current cell probabilities which continually change

with time. We can estimate these cell probabilities very accurately using a census, or approximately by using a

statistical sampling of the population; however, even this sampling procedure is expensive. Typically, we

would calculate the cell probabilities by sampling only occasionally (for some applications, only once in several

years), and at other times revise the most recent cell probabilities based on partial observations. Suppose we let

cij denote the most recent cell probabilities. Suppose, further, that we know some aggregate data in each
category with high precision; in particular, suppose we know the row sums and column sums. Let ui denote

the number of individuals in the ith marital category and let vj denote the number of individuals in the jth age

category. Let r = iP= u i. We want to obtain an estimate x j's of the current cell probabilities so that the

cumulative sum of the cell probabilities for ith row equals ui/r, the cumulative sum of the cell probabilities for

jth column equals vr, and the matrix x is, in a certain sense, nearest to the most recent cell probability matrix

a. One popular measure of defining the nearness is to minimize the weighted cumulative squared deviation of

the individual cell probabilities. With this objective, our problem reduces to the following convex cost flow

problem:

P q
Minimize w ij (xij - ij)2

i= j=l

subject to

q
I x ij = ui/r, for all i = 1 ... p,

j=1

p
- x ij = -vj/r, for all j = 1 ..., q,

i=l

xij 2 0, for all i = 1, ... , p, and for all j = 1 ... , q.

This type of matrix balancing problem arises in many other application settings. The inter-regional

migration of people provides another important application. In the United States, using the general census of

the population, taken once every ten years, the federal government produces flow matrices with detailed

migration characteristics. It uses this data for a wide variety of purposes, including the allocation of federal

funds to the states. Between the ten year census, net migration estimates for every region become available as

lll___Ll1l�i__i_�_·�---- --�.�.-�.
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by-products of annual population estimates. Using this information, the federal government updates the
migration matrix so that it can reconcile the out-of-date detailed migration patterns with the more recent net
figures.

Application 29. Stick Percolation Problem (Ahlfeld, Dembo, Mulvey, and Zenios [1987])

One method for improving the structural properties of (electrically) insulating materials is to embed sticks
of high strength in the material. The current approach used in practice is to add, at random, sticks of uniform
length to the insulating material. Because the sticks are generally conductive, if they form a connected path
from one side of the material to the other, then the configuration will destroy the material's desired insulating
properties. Material scientists call this phenomenon percolation. Although longer sticks offer better structural
properties, they are more likely to cause percolation. Using simulation, analysts would like to know the effect
of stick length on the possibility that a set of sticks causes percolation, and when percolation does occur what is
the resulting heat loss due to (electrical) conduction.

source

sink

(a) (b)

Figure 27. Formulating the
(a) Placement of sticks.
(b) Corresponding network.

stick percolator problem.

Analysts use simulation in the following manner: the computer randomly places p sticks of a given length
L in a square region; see Figure 27(a) for an example. We experience heat loss because of the flow of current
through the intersection of two sticks. We assume that each such intersection has unit resistance. We can
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identify whether percolation occurs and determine the associated power dissipation by creating an equivalent
resistive network as follows. We assign a resistor of one unit to every intersection of the sticks. We also
associate a current source of one unit with one of the boundaries of the insulant and a unit sink with the
opposite boundary. The problem then becomes of determining the minimum power dissipation of the resistive
network.

Figure 27(b) depicts the transformation of the stick percolation problem into a network model. In this
network model, each node represents a resistance and contributes to the power dissipation. The node splitting
transformation described in Section 2 permits us to model the node resistances as arc resistances. Recall from
Ohm's law that a current flow of x amperes across a resistor of r ohms creates a power dissipation of rx 2 watts.
Moreover, the current flows in an electrical network in a way that minimizes the rate of power dissipation (i.e.,
follows the path of least resistance). Consequently, we can state the stick percolator problem as the following
convex cost flow problem.

Minimize r.. xk

(i,j)e A

subject to

1, for i = s,
C xij Xji = , for all i E N - s and t)

{j:(i,j)e A) lj:(,i)e A) -1, for i = t

xij 2 0, for all (i, j) E A.

In this model, xij is the current flow on arc (i, j). The solution of this convex cost flow model indicates

whether percolation occurs (that is, if the problem has a feasible solution), and if so, then the solution specifics
the value of the associated power loss.

Additional Applications

Some additional applications of the convex cost flow problem are (1) flows in electrical networks (Hu
[1966]); (2) area transfers in communication networks (Monma and Segal [1982]); (3) the target-assignment
problem (Manne [1958]); (4) solution of Laplace's equation (Hu [1967]); (5) production scheduling problems
(Ratliff [19781); (6) pipeline network analysis problem (Collins et al. [1978]); (7) microdata file merging (Barr
and Turner [1981]) and (8) market equilibrium problems (Barros and Weintraub [1986]). Papers by Ali, Helgason
and Kennington [1978], Dembo, Mulvey and Zenios [19891, and Schneider and Zenios [1990] provide additional
references on applications of the convex cost flow problem.

10. GENERALIZED FLOWS

In the minimum cost flow problem, arcs conserve flows, i.e., the flow entering an arc equals the flow
leaving the arc. In generalized flow problems, arcs might "consume" or "generate" flow. If xij units of flow
enter an arc (i, j), then .ij xij units arrive at node j; ij is a positive multiplier associated with the arc. If 0 <

ij 1, then the arc is lossy, and if 1 < .ij < , then the arc is gainy. Generalized network flow problems

arise in.several application contexts: for example (i) power transmission through electric lines where power is
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lost with distance; (ii) flow of water though pipelines or canals that lose water due to seepage or evaporation;

(iii) transportation of a perishable commodity; and (iv) cash management scenarios in which arcs represent

investment opportunities and multipliers represent appreciation or depreciation of an investment's value.

Generalized networks can successfully model many application settings that cannot adequately be represented

as minimum cost flow problems. Two common interpretations of the arc multipliers underlie many uses of

generalized flows. In the first interpretation, we view the arc multipliers as modifying the amount of flow of

some particular item. Using this interpretation, generalized networks model situations involving physical

transformations such as evaporation, seepage, deterioration, and purification processes with various efficiencies,

as well as administrative transformations such as monetary growth due to interest rates. In the second

interpretation, we view the multiplication process as transforming one type of item into another. This

interpretation allows us to model processes such as manufacturing, currency exchanges, and the translation of

human resources into job requirements. The following applications of generalized network flows use one or

both of these interpretations of the arc multipliers.

Application 30. Determining an Optimal Energy Policy (Gondran and Minoux [1984])

As part of their national planning effort, most countries need to decide upon an energy policy, i.e., how to

utilize the available raw materials to satisfy their energy needs. Assume, for simplicity, that a particular

country has four basic raw materials: crude oil, coal, uranium, and hydropower; and it has four basic energy

needs: electricity, domestic oil, petroleum, and gas. The country has the technological base and infrastructure to

convert each raw material into one or more energy forms. For example, it can convert crude oil into domestic

oil or petrol, coal into electricity, and so forth. The available technology base specifies the efficiency and the

cost of each conversion. The objective is to satisfy, at the least possible cost of energy conversion, certain

annual consumption levels of various energy needs from a given annual production of raw materials.

Figure 28 shows the formulation of this problem as a generalized network flow problem. The network has

three types of arcs: (i) source arcs (s, i) emanating from the source node s; (ii) sink arcs (j, t) entering the sink

node t; and conversion arcs (i, j). The source arc (s, i) has a capacity equal to the availability ox(i) of the raw

material i and a flow multiplier of value one. The sink arc (j, t) has capacity equal to the demand 3(j) of type j

energy need and flow multiplier of value one. Each conversion arc (i, j) represents the conversion of raw

material i into the energy form j; the multiplier of this arc is the efficiency of the conversion, i.e., units of

energy j obtained from one unit of raw material i; the cost of the arc (i, j) is the cost of this conversion.
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crude oil electricity

4

T-1 Ri)
i=1

4

I1=

hydropower gas

Figure 28. Energy problem as a generalized network flow problem.

Application 31. Machine Loading (Dantzig [1962])

Machine loading problems arise in a variety of application domains. In one of the most popular contexts,

we would like to schedule the production of r products on p machines. Suppose that machine i is available for
ai hours and that any of the p machines can produce each product. Producing one unit of product i on machine

j consumes aij hours of the machine's time and costs cij dollars. To meet the demands of the products, we must

produce 3j units of product j. In the machine loading problem, we wish to determine how we should produce,

at the least possible production cost, r products on p machines.

In this problem setting, products compete with each other for the use of the more efficient, faster machines;

the limited availability of these machines forces us to use the less economical and slower machines to process

some of the products. To achieve the optimal allocation of products to the machines, we can formulate the

problem as a generalized network flow problem as shown by Figure 29. The network has p product nodes, 1, 2,

..., p and r machine nodes, 1, 2, ..., r. Product node i is connected to every machine node j. The multiplier aij

on arc (i, j) indicates the hours of machine capacity needed to produce one unit of product i on machine j. The

cost of the arc (i, j) is cij. The network also has arcs (j,j) for each machine node j; the multiplier of each of

these arcs in 2 and the cost is zero. The purpose of these arcs is to account for the unfulfilled capacities of the

machines: we can send additional flow along these arcs to generate enough flow (or items) to exactly consume

the available machine capacity.
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Figure 29. Formulating a machine loading

problem.

problem as a generalized network flow

Application 32. Managing Warehousing Goods and Funds Flows (Cahn [1948])

An entrepreneur owns a warehouse of fixed capacity H that she uses to store a price-volatile product.

Knowing the price of this product over the next K time periods, she needs to manage her purchases, sales, and

storage patterns. Suppose that she holds Io units of the good and CO dollars as her initial assets. In each period,

she can either buy more goods, or sell the goods in the warehouse to generate additional cash. The price of the

product varies from period to period and ultimately all goods must be sold. The problem is to identify a buy-

sell strategy that maximizes the amount of cash CK available at the end of the Kth period.

inventory carrying arcs

Co

Co

cash flow arcs

Figure 30. Formulating the warehouse funds flow model.

Ck

Figure 30 gives a generalized network flow formulation of the warehousing goods and funds flow problem.
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This formulation has the following three types of arcs:

(i) Inventory carrying arcs. The cost of this type of arc is the inventory carrying cost per unit; its capacity is
H. The multiplier on this arc is less than one or equal to one, depending upon whether carrying inventory
incurs any loss.

(ii) Cash flow arcs. These arcs are uncapacitated and have zero cost. The multiplier of this type of arc is the

bank interest rate for that period.

(iii) Buy and sell arcs. These arcs also are uncapacitated and have zero cost. If pi is the purchase cost of the

product in period i, then a buy arc has a multiplier of value 1/Pi and a sell arc has a multiplier of value Pi.

It is easy to establish a one-to-one correspondence between buy-sell strategies of the entrepreneur and flows
in the underlying network. To enrich this model, we could easily incorporate various additional features such as
policy limits on the maximum and minimum amount of cash held or goods flow in each period or introduce
alternative investments such as certificates of deposits that extend beyond a single period.

Additional Applications

Additional applications of the generalized network flow problem arise in (1) resort development (Glover and
Rogozinski [1982]; (2) airline seat allocation problems (Glover et al. [1978], and Dror, Trudeau and Ladany
[1988]); (3) personnel planning (Gorham [1963]); (4) a consensus ranking model (Barzilai, Cook and Kress
[1986]); (5) cash flow management in an insurance company (Crum and Nye [1981]); and (6) land management

(Glover, Glover, and Martinson [1984]). The survey papers of Glover et al. [19781, and Glover, Klingman and

Phillips [1990] contain additional references concerning applications of generalized network flow problems.

11. MULTICOMMODITY FLOWS

The minimum cost flow problem models the flow of a single commodity over a network.

Multicommodity flow problems arise when several commodities use the same underlying network. The

commodities might be differentiated either by their physical characteristics or simply by their origin-destination
pairs. Different commodities have different origins and destinations, and commodities have separate mass
balance constraints at each node. However, the sharing of common arc capacities binds the commodities

together. In fact, the essential issue addressed by the multicommodity flow problem is the allocation of the
capacity of each arc to the individual commodities in a way that minimizes overall flow costs. Multicommodity
flow problems arise in many practical situations including (i) the transportation of passengers from different

origins to different destinations within a city; (ii) the routing of nonhomogeneous tankers (nonhomogeneous in
terms of speed, carrying capability and operating costs); (iii) the worldwide shipment of different varieties of
grains (such as corn, wheat, rice, and soybeans) from countries that produce grain to those that consume it; and
(iv) the transmission of messages in a communication network between different origin-destination pairs.

Multicommodity flow problems arise in a wide variety of application contexts. In this section, we consider
several instances of one very general type of application as well as a racial balancing example and a vehicle fleet
planning example.
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Application 33. Routing of Multiple Commodities (Golden [1975], and Crainic, Ferland, and

Rousseau [1984])

In many applications of the multicommodity flow problem, we distinguish commodities because they are
different physical goods, and/or because they have different points of origin and destination; that is, either (i)
several physically distinct commodities, for example different manufactured goods, share a common network, or
(ii) a single physical good (e.g., messages or products) flows on a network, but the good has multiple points of
origin and destination defined by different pairs of nodes in the network that need to send the good to each other.
This second type of application arises frequently in problem contexts such as communication systems or
distribution/transportation systems. In this section, we briefly introduce several application domains of both
types.

In some of these applications, the costs sometimes are convex, as in the case of the urban traffic
equilibrium (see Application 27), due to congestion effects (e.g., delays) on arc flows.

Communication networks. In a communication network, nodes represent origin and destination stations
for messages, and arcs represent transmission lines. Messages between different pairs of nodes define distinct
commodities; the supply and demand for each commodity is the number of messages to be sent between the
origin and destination nodes of that commodity. Each transmission line has a fixed capacity (in some
applications the capacity of each arc is fixed, in others, we might be able to increase the capacity at a certain
cost per unit). In this network, the problem of determining the minimum cost routing of messages is a
multicommodity flow problem.

Computer networks. In a computer communication network, the nodes represent storage devices,
terminals, or computer systems. The supplies and demands correspond to the data transmission rates between
the computer, terminals, and storage devices, and the transmission line capacities define the bundle constraints.

Railroad transportation networks. In a rail network, nodes represent yard and junction points, and arcs
represent track sections between the yards. The demand is measured by the number of cars (or, any other
equivalent measure of tonnage) to be loaded on any train. Since the system incurs different costs for different
goods, we divide traffic demand into different classes. Each commodity in this network corresponds to a
particular class of demand between a particular origin-destination pair. The bundle capacity of each arc is the
number of cars that we can load on the trains that are scheduled to be dispatched on that arc (over some period of
time). The decision problem in this network is to meet the demands of cars at the minimum possible operating
cost.

Distribution networks. In distribution systems planning, we wish to distribute multiple
(nonhomogeneous) products from plants to retailers using a fleet of trucks or railcars, and using a variety of
railheads and warehouses. The products define the commodities of the multicommodity flow problem, and the
joint capacities of the plants, warehouses, railyards, and the shipping lanes define the bundle constraints. Note
that this application has important bundle constraints imposed upon the nodes (plants, warehouses) as well as
the arcs.

Foodgrain export-import network. The nodes in this network correspond to geographically dispersed

_I__I _ _ _
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locations in different countries, and the arcs correspond to shipments by rail, truck, and ocean freighter. Between

these locations, the commodities are various foodgrains such as corn, wheat, rice and soybean. The capacities at

the ports define the bundle constraints.

Application 34. Racial Balancing of Schools (Clarke and Surkis [1968])

In 1968, the Supreme Court of the United States ruled that all school systems in the country should begin

admitting students to schools on a nondiscriminatory basis, and should employ faster techniques to promote

desegregated schools across the nation. This decision made it necessary for many school systems to develop

radically different procedures for assigning students to schools. Since the Supreme Court did not specify what

constitutes an acceptable racial balance, the individual school boards used their own best judgments to arrive at

acceptable criteria upon which to base their desegregation plans. This application describes a multicommodity

flow model for determining an optimal assignment of students to schools that minimizes the total distance

travelled by the students, given a specification of lower and upper limits on the required racial balance in each

school.

Suppose that a school district has S schools and the capacity of the jth school is uj. For the purpose of

this formulation, we divide the school district into L population centers. These locations might, for example,

be census tracts, bus stops, or city blocks. The only restriction on the population centers is that they be finite

in number, and that a single distance measure reasonably approximates the distance any student at center i must
travel if he or she is assigned to school j. Let Sik denote the available number of students of the kth ethnic

group at the ith population center. The objective is to assign students to schools in a way that achieves the

desired ethnic composition for each school and minimizes the total distance traveled by the students. Each
school j has the ethnic requirement that it must enroll at least ijk and no more than ujk students from the kth

ethnic group.

__ I·1- I --



56

Sii

i=1i2±aSi
1= I U

-Si

±si 2

ethnic population schools schools ethnic
groups centers (input) (output) groups

(sources)

Figure 31. Formulating the racial balancing problem as a multicommodity flow
problem.

We can model this problem as a multicommodity flow problem on an appropriately defined network.
Figure 31 shows this network representation for a problem with three population centers and three schools.

This network has one node for each population center and for each school as well as a "source" and a "sink" node
for each ethnic group. The flow commodities represent the students of different ethnic groups. The students of
the k th ethnic group flow from the source ak to the sink ek via population center and school nodes. We set the

upper bound on arc (ak, bi) connecting the kth ethnic group source node and the ith population center equal to

Sik and the cost of the arc (bi, cj) connecting the ith population center and jth school equal to fij the distance
between that population center and that school. By setting the capacity of the arc (cj, dj) equal to uj, we ensure

that the total number of students (of all ethnic groups) allocated to the jth school do not exceed the maximum

student population for this school. The students of all ethnic groups must share the capacity of each school.

Finally, we incorporate constraints on the ethnic compositions of the schools by setting the lower and upper
bounds on the arc (dj, ek) equal to ljk and ujk It is fairly easy to verify that the multicommodity flow problem

models the racial balancing problem and so a minimum multicommodity flow will specify an optimal

assignment of students to the schools.
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Application 35. Multivehicle Tanker Scheduling (Bellmore, Bennington, and

Lubore [1971 ])

Suppose we wish to determine the optimal routing of fuel oil tankers required to achieve a prescribed
schedule of deliveries: each delivery is a shipment of some commodity from a point of supply to a point of
demand with a given delivery date. In the simplest form, this problem considers a single product (e.g., aviation
gasoline or crude oil) to be delivered by a single type of tanker. As shown by Application 10, it is possible to
determine the minimum tanker fleet to meet the delivery schedule for this simple version of the problem by
solving a maximum flow problem. The multivehicle tanker scheduling problem, studied in this application,
considers the scheduling and routing of a fixed fleet of nonhomogeneous tankers to meet a prespecified set of
shipments of multiple products. The tankers differ in their speeds, carrying capabilities, and operating costs.

To formulate the multivehicle tanker scheduling problem as a multicommodity flow problem, we let the
different commodities correspond to different tanker types. The network corresponding to the multivehicle
tanker scheduling problem is similar to that of the single vehicle type, shown in Figure 32, except that each
distinct type of tanker originates at a unique source node sk . This network has four types of arcs (see Figure 32
for a partial example with two tankers types): in-service arcs, out-of-service arcs, delivery arcs, and return arcs.
An in-service arc corresponds to the initial employment of a tanker type; the cost of this arc is the cost of
deploying the tanker at the origin of the shipment. Similarly, an out-of-service arc corresponds to the removal
of the tanker from service. A delivery arc (i, j) represents a shipment from origin i to destination j; the cost ck

of this arc is the operating cost of carrying the shipment by a tanker of type k. A return arc (j, k) denotes the
movement ("backhaul") of an empty tanker, with an appropriate cost, between two consecutive shipments (i, j)
and (k, ).

Tanker
origin nodes

tik se C. c -" 

.I

_e' '

I o ut-of-servi- ee rce 'r c

Figure 32. Multivehicle tanker scheduling problem as a multicommodity flow
problem.

Each arc in the network has a capacity of one. The shipment arcs have a bundle capacity ensuring that at
most one tanker type services that arc. Each shipment arc also has a lower flow bound of one unit, which
ensures that the chosen schedule does indeed deliver the shipment. Some arcs might also have commodity-based
capacities uj. For instance, if tanker type 2 is not capable of handling the shipment on arc (i, j), then we set
u2 .= 0. Moreover, if tanker type 2 can use the return arc (j, k), but the tanker type 1 cannot (because it is too
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slow to make the connection between shipments), then we set ulk = 0

Airline scheduling is another important application domain for this type of model. In this problem context,
the vehicles are different type of airplanes in an airline's fleet (for example, Boeing 727s or 747s or McDonald
Douglas DC 10s). The delivery arcs in this problem context are the flight legs that the airline wishes to cover.

We might note that in this formulation of the multivehicle tanker scheduling problem, we are interested in
integer solutions of the multicommodity flow problem. The solutions obtained by the multicommodity flow
algorithms (see Kennington and Helgason [1980], and Ahuja, Magnanti and Orlin [1993]) need not be integral.
Nevertheless, the fractional solution might be useful in several ways. For example, we might be able to
convert the non-integral solution into a (possibly suboptimal) integral solution by minor tinkering or we might
use the non-integral solution as a bound in solving the integer-valued problem by a branch and bound
enumeration procedure.

Additional Applications

Additional applications of the multicommodity flow problem include: (1) warehousing of seasonal products
(Jewell [1957]); (2) optimal deployment of resources (Kaplan [1973]); (3) multiproduct multistage production-
inventory planning (Evans [1977]); (4) multicommodity distribution system design (Geoffrion and Graves
[1974]); (5) railfreight planning (Bodin et al. [1983] and Assad [1980]); and (6) VLSI chip design (Korte [1988]).

12. THE TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) is perhaps the most well known problem in the field of
network optimization, or in fact in all of operations research. The problem is deceptively easy to state: We
are given n cities denoted 1, 2, 3, ... , n, as well as an inter city distance cij between each pair i of cities.

The problem is to determine a tour (cycle) that passes through each city exactly once and minimizes the
total distance traveled. In general this problem is known to be difficult to solve. In the parlance of
computational complexity theory, it is NP-hard.

The simplicity of the problem belies the difficulty of solving it to optimality. The problem has
attracted an immense amount of attention from researchers in combinatorial optimization, who have written
hundreds have papers on this particular topic. In fact, the classic book on this problem, The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization, lists over 400 references.

There are a number of ways of mathematically describing the Traveling Salesman Problems. We
describe them in terms of permutations.

Let N = (1, 2, ... , n. We represent a tour by a function t, letting t(i) denotes the iLh city visited on
the tour. Let T denote the set of all tours. Using this notation, we can describe the Traveling Salesman
Problem as follows:

Minimize cl(n)t(l) + -=l ct(i)t(i+l)
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subject to t e T.

In some problem instances, the tour need not return to its starting city. In this case, the tour is a path,

often referred to as a hamiltonian path, and we refer to the problem as the minimum cost Hamiltonian Path

Problem, or more briefly as the Hamiltonian Path Problem. To formulate the Hamiltonian Path Problem

mathematically, we can use of slight variant of the previous TSP formulation:

n-1
Minimize E i=l t(i)t(i+l)

subject to t e T.

We might note that the Hamiltonian Path Problem is easily transformed into a Traveling Salesman

Problem. We simply add a dummy node whose distance from all other nodes is some constant, say 1.

Matrix Representations of Traveling Salesman Problems

To describe two of our applications, we use a particularly useful representation of the Traveling

Salesman Problem that we next describe.

Suppose that u and v are each vectors with m 0 or 1 components The hamming distance from u to v,

which we denote as d(u,v), is the number of components in which u differs from v. For example, if u = 1

00011 0andv= 10011 00, thend(u,v)=2.

We say that a Traveling Salesman Problem (or the Hamiltonian Path Problem) is matrix representable
if each city i has an associated 0-1 vector Ai and cij = d(Ai,Aj). Any Traveling Salesman Problem with

integral distances can be matrix represented if we permit ourselves to add a constant M to each cij prior to

representing it (we will not establish this fact). Suppose that a Traveling Salesman Problem is matrix

represented. Can we interpret the optimal tour in terms of the representing vectors? To illustrate how to do

so, consider the following representing vectors.

Al = 1 1 1 0

A2 = 0 1 0 0

A3 = 1 1 0 0

A4 0 0 0 1

A5 =0 0 0 1

A6 = I 0 1 1

A7 = 1 1 1 1

A8 =0 0 0 0

In this case, cl 2 = c2 1 = d(A1,A 2 ) = 2; c1 3 = c31 = d(A 1,A 3)= 1; and so forth.

In this context, the rows of the matrix correspond to the cities and a tour is a permutation of the rows.

That is, t(i) denote the ith row "visited" by the tour. For example, we can represent the tour 1-2-3-7-6-5-4-
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8-1 by the following permuted version of the matrix:

A1 = 1 1 1 0

A2 = 0 1 0 0
A3 = 1 1 0 0

A7 = 1 1 1 1
A6 = 1 0 1 1
A5 = 0 0 0 1

A4 = 0 0 0 1

A8 =0 0 0 0

This matrix has a row of all O's, which we may assume without loss of generality to be the last city of
the tour. Note that column 1 contributes a distance of 4 to the hamiltonian path since its has different
elements in rows 1 and 2, rows 2 and 3, rows 5 and 6, and rows components 8 and 1. In general, if the last
row of the matrix consists of all O's, each block of consecutive ones in a column contributes 2 to the tour
length. Therefore, the traveling salesman distance is twice the number of consecutive blocks of ones in the
columns.

Put another way, in this case the Traveling Salesman Problem is equivalent to the problem of
determining how to permute the rows of a matrix so that the columns of the resulting matrix has the fewest
possible blocks of consecutive ones.

Application 36. Manufacturing of Printed Circuit Boards (Magirou [1986])

In the manufacturing of printed circuit boards (PCB's), lasers need to drill hundreds of small holes at
pin locations. Subsequently, a manufacturer will solder electronic components to the PCB's at these
points. To expedite the production of each chip, the laser must move efficiently from one drilling site to
the next, ultimately visiting each drilling site along its "tour." This manufacturing problem can be solved
as a Traveling Salesman Problem. More precisely, we can model the problem as a Hamiltonian Path
Problem: the drill must visit each node at least once, but the first and last nodes need not be the same.

In practice, we would not list the between site transit times for each pair of drilling sites, but would
instead list the coordinates of each drilling site. Typically, the distance between sites is the maximum of
the distance from site i to site j in the x coordinate and the distance from site i to site j in the y coordinate.
This distance models two independent motors, one working in the x direction and one working in the y
direction.

This problem also arises in the manufacturing of VLSI circuits. The primary difference
computationally is one of size. Bentley [1990] writes "VLSI-designs in the near future could employ the
solution of 107 -city TSPs."
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Application 37. Identifying Time Periods for Archeological Finds (Shuchat [19841)

One part of an archeologist's work is to assign dates to archeological finds or deposits. Consider a
collection of deposits from m different excavation sites containing artifacts (e.g., pottery. jewelry), sorted
into n-1 different types. We assume that each artifact type is associated with an (unknown) time period
during which it was in use, and that each excavation site contains artifacts from consecutive (or nearly
consecutive) time periods.

Associated with type i is a vector Ai, whose jth component aij is one if excavation site j contains an

artifact of type i and is zero otherwise. If the artifact types were in their true order, then the ones of each
column of the corresponding matrix would be in consecutive (or nearly consecutive) time positions. As in
the matrix-represented TSP discussion, we introduce an artificial type n with an associated vector An of all

O's. Without loss of generality, we assume that n will be the last node of the tour. If denotes a traveling
salesman tour, the interpretation is that the oldest artifact is t(1), the second oldest is t(2), and so forth. A
gap between two blocks of consecutive ones corresponds to a time period omitted from an excavation site
between two time periods that are represented at the site.

By solving the Traveling Salesman Problem, we are assigning periods to types and thus implicitly
permuting the rows of A so as to minimize the number of blocks of consecutive ones in the resulting
matrix. Equivalently, we are minimizing the number of time period gaps at the excavation sites.

Application 38. Assembling Physical Mapping in Genetics (Alizadeh et al. [19923, Arratia
et al. [1991])

The human genome consists of 23 pairs of chromosomes. Each chromosome contains a single very
long molecule of DNA, which is constructed as a linear arrangement of 4 distinct nucleic acids, each
represented by a letter A, C, T or G. Thus a chromosome can be thought of as a long sequence of letters
such as ACTGACCTGGATTCG. . . Biologists estimate that in total all the human chromosomes contain
3 billion letters. As a pictorial image, if printed in a single line of type, a line containing all of the letters
would be over 6,000 miles long.

DNA has often been described as the "language of genetics" and the chromosomes might be thought of
as a "blueprint" for the human body. In order to decode the information stored in the chromosomes, the
United States government has funded The Human Genome Project, whose goal is to determine the sequence
of genes in each chromosome and ultimately to determine the sequence of nucleic acids that makes up the
DNA of each chromosome. An interim goal of the Human Genome Project is to create rough maps of the
chromosomes known as "physical maps." Here we show how to construct a reasonably accurate physical
map by solving a related Traveling Salesman Problem.

A clone is a fragment of DNA, stored in such a way that copies are easy to make. A common method
of storing extremely large clones (large in terms of the amount of DNA of the clone) is to store them inside
a yeast cell. When the yeast cell duplicates, the clone also duplicates. By controlling the replication of the
yeast, biologist can create as many copies of a clone as they want.

�1__1�0�____1�__1_� ___1 I�L_ XI � _ _ I
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Biologists often refer to a collection of clones from the same DNA source as a library. Suppose for

example that we have a library of chromosome number 1 from humans. Such a library is a very useful

source of genetic material for biologists studying chromosome 1 (and perhaps looking for some genetic

disease); unfortunately, in creating a library from a genetic source such as a human chromosome, we lose

all positional information. The biologist has no simple way of determining where each clone lies on the

chromosome. Rather, through experimental means, the scientists infer where clones lie; a physical map is

a plausible (and hopefully accurate) layout of the clones on the chromosome.

A probe may be thought of as a unique point on the genome. Biologists can select probes randomly
and they can experimentally determine whether a clone contains a probe. Let aij = 1 if clone j contains

probe i, aij = 0 otherwise. As before, we insert a dummy probe n with anj = 0 for all j, that is, this

"artificial" probe does not occur in any clone. Assuming that probes occur uniquely within the genome,

and assuming that experimental data is error free, then any two clones that have a common probe must

overlap in the genome. Moreover, if the probes are arranged in the correct linear order on the chromosome,

then the collection of probes contained by a given clone will occur in consecutive positions. Determining

the order of the probes on the genome will simultaneously order the clones as well. Such an ordering of

either the clones or the probes is referred to as a physical map. Figure AAA gives an example of a some

probe-clone data and a physical map.
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Figure 33b. A physical map based on the data from Figure a.

Reordering the probes so that the probes within each clone are consecutive is equivalent to ordering the
rows of A so that the 's in each column are consecutive. This matrix ordering problem is known as
"determining whether A has the consecutive 's property in columns" and is efficiently solvable.

Unfortunately, in practice, the data is not so perfect. Many clones contain not one but two fragments
of DNA that were accidentally "glued" together in the cloning process. Two-fragment clones are referred to
as chimeras. In addition, the data is subject to experimental error. Quite frequently an experiment falsely
reports that a probe is not contained within a clone. (Error rates of 10% or higher are common.)
Occasionally, an experiment also falsely reports that a probe is contained within a clone. To account for
the problems with cloning and with experimental errors, an alternative objective is to order the rows of A in
a way that minimizes the number of blocks of consecutive 's, summed over all the columns. This is the
matrix-represented Traveling Salesman Problem in which the vector associated with the ith probe is Ai. In

the case of perfect data, this problem reduces to the previous problem of identifying consecutive ones since
each column will have exactly one block of consecutive ones.

Application 39. Optimal Vane Placement in Turbine Engines (Plante et al. [1987])

A nozzle guide vane is a critical component of a gas turbine engine used in both military and
commercial aircraft. The nozzle guide vane accelerates, deflects, and distributes the gases that drive the
turbine rotor. The nozzle assembly (see Figure 34) consists of a number of vanes (generally 46 to 100)
placed around the circumference of the nozzle guide vane. Vane i has two associated parameters Ai and Bi

that can be effectively measured. If vane j is placed immediately clockwise in relation to vane i, then the
area between these two vanes is estimated to be Ai + Bj. Ideally, all of these areas should be approximately

the same value, say d. A good choice in practice for ordering the vanes is a tour t that minimizes

(dAt(n) t(l)) + ni (d-At(iBt(i+ 1))

This order places the vanes so as to minimize the squared deviations from the target value d.

______1_1
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(a) Nozzle Guide Vane (b) Nozzle Guide Assembly

Figure 34. Optimal Vane Placement in Turbine Engines.

This problem is a special case of the Traveling Salesman Problem, with cij = (d-Ai-Bj) 2. Observe that
minimizing the displayed quantities is equivalent to minimizing At(n)Bt(l) + At(i) Bt(i+l) since the

other terms in the expansion, nd2 -ndY At(i) - nBt(i) + XE(At(i) 2 + '(B(i)) 2 , are independent of the
permutation. In this instance, Traveling Salesman Problem has the additional property that cij = AiBj

This special case of the Traveling Salesman Problem is known as the product form, and it too is NP-hard.

Additional Applications

The Traveling Salesman Problem has also been applied to cutting wallpaper (Garfinkel { 19773), job

sequencing (Gilmore and Gomory [1964]), computer wiring (Lenstra and Rinnooy Kan [1975]), reading
records from a rotating storage device (Fuller { 1972]), clustering and aggregation (McCormick, Schweitzer

and White [1972} and Lenstra and Rinnooy Kan 1975]), order picking in a warehouse (Ratliff and
Rosenthal [1983]).

13. NETWORK DESIGN

In traditional network flow models (shortest paths, minimum cost and maximum flows, generalized
flows, and multicommodity flows), we are given a network G = (N, A) and we wish to route flow on this
network in order to fulfill some underlying flow requirements. In network design, we are given a node set
N and a set A of candidate arcs, and we wish to simultaneously define the underlying network G = (N, A)
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with A c A, and determine an optimal flow on it. In one standard version of this problem, we incur a
fixed cost Fij for including any arc (i, j) from A in the network.

The following model is an optimization formulation of the network design problem:

minimize -=1 (ij)e A c f + (ij)e A FijYij (la)

subject to

= if i = (k)£ E f- I - {-l if i=D(k) forall 1 < k K (10b)
10 otherwise

k=1rkf < uij Yij for all (ij) E A (10c)

t ,i' Y i for all (ij) A and all 1 < k K (10d)

0O for all (ij) E A and all I < k < K (10e)
y Y (10)

Yij O0 and integer for all arcs (ij). (lOg)

In this multicommodity flow version of the problem, each commodity k = 1, 2 ... , K, has an origin
node 0(k), a destination node D(k), and a flow requirement rk. fti is the fraction of commodity k's flow
requirement that flows on arc (ij) and yij is an integer variable indicating how many copies of arc (ij) we
install on the network, each copy providing uij units of capacity. Another popular model, a 0-1 model,
imposes the restriction yij < 1 stating that we can add each arc at most once. Constraints (lOb) are mass

balance constraints. Constraints (10c) state that the total flow on arc (i,j) cannot exceed its installed
capacity. Constraint (10d) is a forcing constraint stating that we can't flow on arc (ij) if we don't install it,
e.g., if ij = 0; this constraint is redundant in the integer programming version of this model, but not in its
linear programming relaxation and so it is useful to include it in the model. Constraint (10f) permits us to
impose restrictions on the design variables Yij, for example, degree constraints on the nodes. Fij is the fixed

k 
cost for installing any copy of arc (i j) and ci; is the cost for routing all of the flow requirement of

commodity k on arc (ij).

This model in quite general. If we choose the data appropriately, it includes the following problems as
special cases:

(1) The minimum spanning tree problem: If dij are the minimum spanning tree costs, then we

set each c = 0 and each Fij = Fji = dij (note that in the network design model, the arcs are
directed, so we replace each arc in the minimum spanning tree graph with two directed arcs, each
with the same fixed cost); uij > -1 rk, each O(k) = the same node (say, node 1), Y states that
the design has INI - 1 arcs, and rk = 1 for each node k • 1. Note that if each dij > 0, then we can
eliminate constraints (10f) entirely and every optimal solution to the network design problem will
be a spanning tree.

(2) The traveling salesman problem: If dj are the TSP costs, then we set each ck = 0 and each
Fij = dij; Y states that the design has INI arcs, each pair of nodes defines a commodity and each rkIi1,
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= 1). Alternatively, if Fj = dij + M (M is a large constant), then we can eliminate the constraints
Y and every optimal solution will be an optimal TSP tour.

(3) Facility location models: In this case, we use the familiar node splitting device of network
flows to convert the decision as to whether we place a facility on a node into a decision about
placing a facility on an arc.

We next describe several network design applications.

Application 40. Designing Fixed Cost Communication and Transportation Systems.

The primary purpose of a communication (transportation) system, such as telephone or computer

networks, is to provide communication (transportation) links between the system's users. In many of these

application contexts, routing costs are zero or negligible. Therefore, once we have constructed the system,

we can send as many messages (trucks, passengers) as we like (within the system's operating capacity) at no

cost There are many variants on this general theme: for example, models with or without capacity

restrictions, models with or without reliability considerations, and models that impose special topological

restrictions (e.g., node degree constraints) on the system's design. The following generic models illustrate a

few of these features. In each case, the only costs in the model are the fixed costs imposed upon the arcs.

Minimum Spanning Tree. If we need to connect all the nodes of the network, then we need to find a

minimum spanning tree on the given network. As we have previously indicated, this model is a special

case of the network design problem.

Steiner Tree (Maculan [1987], Winter [19871). If we need only a subset of the nodes of the network

(customer nodes), then we need to find a minimum cost spanning tree that includes these nodes as well

perhaps as some or all of the other nodes (called Steiner nodes). This generalization of the minimum

spanning tree is known as the Steiner tree problem. The formulation of this model as a special case of the

network design model is similar to that of the minimum spanning tree except that now we assume node 1

is one of the customer nodes and we define commodities only for the customer nodes k •1; for each such
node k, we set O(k) = 1, D(k) = k and rk = 1.

Private Network Leasing (Magnanti et al. [1991]). In this instance, one or more types of facilities

(communication lines) are available to carry flow on each arc: for example, DSO and DS1 lines (digital

service type 0 and 1 lines). DS1 lines cost more than DSO lines, but have 24 times the flow carrying

capacity. Given demands between the users of the system, we need to find a minimum cost network

configuration that has sufficient capacity to carry the flow. Therefore, we need to specify how many units

of each type of transmission line to load on each arc of the network and how to route the flow through the

resulting network. This model is a variant of the network design model, with zero routing costs for all arcs
and with two different types of parallel arcs joining each arc in A, a DSO arc and a DS1 arc. If we load xij

units of DSO lines and Yij units of DSI lines between nodes i and j, then one of these parallel arcs has a

capacity xij and the other a capacity of 24yij. (Therefore, the capacities on the righthand side of the

constraints (10c) will be uij = I and uij = 24.)

In a freight transportation system, the arcs correspond to different types of trucks, for example 24 and

36 footers, each with a different capacity and cost, that we can dispatch on the arc.

��-�-�li-----X_--- I
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Network Survivability (Monma and Shallcross [1989], Groetschel et al. [1992]). Almost all networks
are subject to failure, in the sense that periodically the nodes and/or arcs fail and therefore become
unavailable to carry flow. With the advent of new high capacity transmission lines, for example, fiber
optic lines, the failure of a single line can lead to enormous service disruptions (major "brown outs"). To
deal with these contingencies, network planners sometimes need to build redundancy into a network's deign.
That is, rather than designing a spanning tree with a single path between each node, we might impose a
redundancy or survivability requirement by specifying the need to include at least rij arc-disjoint paths (if the
arcs are subject to failure) between nodes i and j. For this application, each pair of nodes i and j with rij >

O defines a commodity. In this version of the 0-1 network design model, the routing costs are again zero,
the capacity uij for each arc (ij) is one, and each variable is a 0-1 variable.

Application 41. Local Access Telephone Network Capacity Expansion (Balakrishnan et al.
[1991a, 1991b]).

As the demand for services (voice, data, video) increases, telephone companies must determine the
optimal investment policy for adding capacity to their networks. The local access component of the overall
telephone system is the part of the service network that connects end subscribers to local switching centers
and to the long distance, or backbone, network. Typically, the local access network uses copper cables to
carry messages and network has a tree structure as shown in Figure 35(a). In this example, the current
capacity of links (0,1), (1,2), (1,3), (2,4) and (2,5) are insufficient to meet future demand.

A Switching Center

400

so __ so

140 -_ 200 (Available Capacity)

-SO- _'110-C 110 (Demand)
9Q 200 _ / 

Expansion

120 70
100

BOrXX E ECK arcs > cap Dotted lines show concentrated traffic
Cumulative demand > capacity Numbers on edges denote number of lines used

(a) Problem Data (b) Expansion Plan

Figure 35. Capacity expansion example.

Telephone companies have several options for adding capacity. They can (i) add more copper cable to
any link of the network, (ii) add fiber optics links to the network, and (iii) add remote switches and message
concentrators to the nodes of the network. Figure 35(b) shows a possible expansion plan for this problem
(without the fiber optic cable option). This expansion loads the network with additional capacity on links
(1,3) and (2,4) and adds a concentrator (with a compression ratio of 10) at node 5 which handles all the
traffic from nodes 2, 5, 8, and 9. The concentrator makes it possible to compress messages so that they use
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less capacity on all arcs that lie "upstream" towards the local switch.

In one popular practical version of this problem, (i) all the traffic from any subscriber node i must
home to (i.e., be routed to) the same node j which must contain a concentrator or the local switch, and (ii)
the traffic pattern must satisfy a contiguity property stating that if node i homes to node j and node k lies
on the tree path Pij between nodes i and j, then node k must also home to node j. Therefore, any feasible
solution is a "packing" of subtrees in the given tree T; that is, is a collection of subtrees T1, T2, ... , Tq of
T that are node-disjoint and that collectively contain all the nodes of T. In Figure 35.b, the tree T1 contains
the nodes 2, 4, 5, 8, and 9 and the tree T2 contains the nodes 1, 3, 6, and 7. We assume that we either

connect any concentrator directly to the switching center or that the compression ratio of any concentrator is
so high that we can ignore the capacity used by any compressed traffic. Therefore, the cost of any feasible
solution is just the sum of costs of the subtrees T1, T2 ..... Tq. Then the cost of the subtree is (i) the
fixed cost Fj of placing a concentrator at some node j in the subtree, (ii) the cost aij for assigning any node i
in the tree to node j (this is the variable cost of adding more capacity to a concentrator), and (2) the cost, if
any, of expanding any arc of the network beyond its current capacity Bij so that it has sufficient capacity to
carry the required flow in the subtree to node j.

Letting node 0 be the location of the switching center in the given local access tree, we can view this
problem is a variant of the network design model (10) if our underlying network has three type of arcs: (i)
an arc for each arc (ij) in the tree with uij = B and with no associated fixed or routing costs, (ii) a parallel
arc to (ij) with the fixed cost of cable expansion on that arc and a routing cost equal to the variable cable
expansion cost, and (iii) an arc (j,0) for each node j in T with fixed and routing costs equal to the fixed and
variable costs for installing a concentrator at that node.

In the special instance of this problem without any existing capacity on any arc, the problem is easy to
solve by dynamic programming (see Aghezzaf et al. [1992] and Barany et al. [1986]). In this case, we can
include the arc expansion cost for assigning node i to node j (that is, the cost of expanding all the arcs on
the path Pij) in the assignment cost aij, and so the problem has only the costs (i) and (ii). In the general
case, the model will contain added complexity (this version of the problem is NP-hard), but can be solved
fairly efficiently by a Lagrangian relaxation decomposition method that solves the version of the problem
without any existing arc capacities as a subproblem. This modeling and solution approach extends to more
general situations as well-for example, a version of the problem with alternate types of concentrators, each
with its own fixed and variable costs.

Application 42. Multi-item Production Planning (Leung et al. [1989], Pochet and Wolsey
[1991])

In Application 3, we showed how to convert certain single-item production planning problems into
shortest path and minimum cost flow problems. In more general problem settings with production
capacities or with multiple items that share scarce resources (e.g., machine capacity), the problems often
become network design models. Even the special case that we examined in Application 3 is a special
network deign problem with the following interpretation (see Figure 2): (i) the production arcs (0,t) for t =
1, 2, ... , T incur a fixed cost Ft; (ii) we can define a commodity t for each time period t with O(t) = 1,
D(t) = t, and rt = d; (iii) the routing cost of the arcs (0,t) equals the variable production cost C; (iv) the

-- 11
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arcs (t,t+l) and (t+l,t) have zero fixed costs and have a routing cost for commodity k equal to the one period
inventory holding cost and backorder cost for the entire demand dk of that item. For the uncapacitated

version of the problem that we considered in Application 3, uij > ZT= 1 dt and so we can eliminate the

constraints (10c). We can also eliminate the constraints (10f).

When we impose production capacities, we include constraint (10c) for each arc (0,t) with u0t equal to
the production capacity in period t (often ut = U, a constant capacity throughout the planning horizon).

For multi-item version of the problem with Q items, we can define a "multi-layered" version of the
network in Figure 3, with a demand node qt for each item q = 1, 2, .. , Q, and time period t. We also insert
a new node t in each period with an arc (0,t) that carries the total production in period t, and arcs (t, qt) that
carries the production in period t of item q = 1, 2, .. , Q. The flow on arc (0,t) equals the sum of the flows
on the arcs (t, qt) for q = 1, 2, .. , Q. For each commodity O(q, t) = 1, D(q, t) = t, and rqt = dqt the

demand for item q in period t. Arc (0, t) imposes a total production capacity for all items in period t and
the arcs (t, qt) impose a production capacity, if any, for item q in period t.

Other versions of this problem can also be viewed as network design problems, for example, in some
applications we can produce only one item in any period and we incur a changeover cost whenever we
switch between the production of any two items (for example, to clean dies or to reconfigure machine
settings). Magnanti and Vachani [1990] and van Hoesel et al. [1991] provide details about the network
design formulation of these problems.

Additional Applications

Magnanti and Wong [1984] and Minoux [1989] provide many additional references on network design,
including several additional applications, and Magnanti and Wolsey [1993] describe applications, models and
algorithms for several tree versions of network design problems. Bertsekas and Gallagar [1992], Graves et
al. [1993], and Mirchandani and Francis [1990] contain extensive discussions of communication networks,
production planning, and facility location. Some additional applications of network design include (1)
airline route planning (Jaillet and Yu [1993]); (2) centralized network design (Gavish [1984]); (3) computer
teleprocessing networks (Chandy and Russell [1972], Esau and Williams [1966]; Kershenbaum and
Boorstyn [1975]); (4) electricity distribution planning (Bousba and Wolsey [1990], Gascon et al. [1991]);
(5) less-than truckload (LTL) consolidation (Leung et al. [1990] and Braklow et al. [1992]; (6) regional
water resources systems (Jarvis et al. [1978]); and (7) VLSI design (Korte et al. [1990].

14. SUMMARY

In this paper, we have described several applications of the following network optimization problems:
shortest paths, maximum flows, minimum cost flows, assignment and matchings, minimum spanning trees,
convex cost flows, generalized flows, multicommodity flows, the traveling salesman problem, and network
design. We have adapted about 75% of these applications from Ahuja, Magnanti and Orlin [1993] who describes
many other applications as well. The survey papers of Bennington [1974], Glover and Klingman [1976], Bodin
et al. [1983], Aronson [1989], and Glover, Klingman and Phillips [1990] provide many additional application
references. The books by Gondran and Minoux [1984], Evans and Minicka [19921, and Glover, Klingman and
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Phillips [1992] also describe a variety of applications of network optimization.

Some of the models included in this discussion have direct relevance to practitioners in such fields as
communications, manufacturing and transportation; other models are generic mathematical problems of some
interest to applied mathematicians (e.g., finding a solution to certain types of inequality systems) and that
themselves have applications in varied practical settings (for example, in personnel scheduling). Some models
are formulated naturally as network optimization problems; others don't appear naturally as network models, but
are transformable into the form of network optimization problems (for example, by taking linear programming
duals of "natural" formulations). Taken as a whole, the models we have considered, and those we have cited,
establish network optimization as an unusually powerful and rich modeling environment, adding evidence to
justify the claim that applied mathematics, computer science, and operations research do indeed have much to
offer to the world of practice.
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