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Abstract

We propose a primal dual approach to design approximation algorithms from stronger

integer programming formulations of the covering type. We also quantify the notion of

strength of different valid inequalities for discrete optimization problems of the cover-

ing type and show that the proposed primal dual algorithm has worst case performance

bounded by the strength of the valid inequalities used in the algorithm and the bound is

tight. This bound generalizes a large class of results obtained in the literature and pro-

duces several new ones. By introducing the notion of reducible formulations, we show

that it is relatively easy to compute the strength of various classes of valid inequalities

for problems with reducible formulations. We also propose a multiphase extension of

the primal dual algorithm and apply it to a variety of problem classes.
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1 Introduction

In the last twenty years, two approaches to discrete optimization problems have emerged:

polyhedral combinatorics and approximation algorithms. Under the first approach

researchers formulate problems as integer programs and solve their linear programming

relaxations. By adding strong valid inequalities (preferably facets) of the convex hull of

solutions to enhance the formulations, researchers are able to solve large scale discrete

optimization problems within a branch and bound or branch and cut framework. Extensive

computational experience suggests that the success of this approach critically depends on the

choice of the valid inequalities. The principal difficulty with this approach, however, is that

it is not a priori clear which class of valid inequalities is better to use at particular instances.

Typically the research community depends on computational experience to evaluate the

power of different valid inequalities.

The second approach involves the design and analysis of approximation algorithms. The

quality of solutions produced is usually judged by the worst case criterion, for which there

are two main motivations: a) understanding, from a theoretical point of view the class of

problems that can be approximated well, b) designing algorithms for problems that are

robust, i.e., work well for all inputs. The area has produced significant insight into our finer

understanding of A/P and for some problems it has produced algorithms which have been

successfully used in practice. Despite its success, we believe that there some difficulties in

the area:

1. Approximation algorithms are designed to produce the best worst case bound, which

usually adds considerable complexity into the design and analysis of the algorithm.

Most importantly, the success of approximation algorithms in practice has been ques-

tionable. For example the Christofides heuristic for the traveling salesman problem

under triangle inequality that has the best known worst case bound of 3/2 from op-

timum is consistently outperformed by various methods whose worst case behavior is

particularly bad.

2. There is a lack of a unified method to construct approximation algorithms. Insights

gained from one successful analysis typically do not transfer to another. Moreover,

finding the worst case performance of an approximation algorithm is often a nontrivial

task involving ingenious but often adhoc arguments.

3. Approximation algorithms are somewhat inflexible as they typically generate a single

feasible solution. In part, this is due to the need to facilitate the analysis, but it makes
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these algorithms unsuitable in situations when one needs to generate a large number of

good feasible solutions, which can be ranked subsequently via other selection criteria.

Another advantage of generating many feasible solutions is that the best solution

selected from the list of candidate solutions may after all improve upon the worst case

bound guaranteed by each individual solution! Balakrishnan et.al. [2] showed that

certain network design problems have this characteristic.

In summary, guaranteed worst case bounds for approximation algorithms do indeed provide

qualitative insight on their performance, but simplicity, time complexity and flexibility are

also essential features for a good approximation algorithm that can be used reliably in

applications.

In recent years progress in approximation algorithms has crystalized the idea that to a

large extent our ability to design good approximation algorithms depends on tight integer

programming formulations, i.e., there is a deeper connection between approximability of

discrete optimization problems and strong formulations of these problems as integer pro-

gramming problems (see Bertsimas and Vohra [31).

Our goals in this paper is to propose an approach to design approximation algorithms

from stronger integer programming formulations and to provide a way to judge the strength

of valid inequalities for discrete optimization problems. We address covering problems of

the form:

(IP) IZ = min cx

subject to Ax > b

E {O ,1} n,

where A, c have nonnegative integer entries; entries in b are integral but not restricted to be

nonnegative, since rows corresponding to negative bi are redundant. We denote with Z the

value of the linear programming relaxation, in which we relax the integrality constraints

x E {0, 1}n with x > 0. Our contributions in this paper are as follows:

1. Given a valid inequality aix > i in a class F we introduce the notion of strength

Ai of this inequality as well as the notion of strength A of the class F. We also

introduce the notion of reducible formulations for covering problems. This class

includes a large collection of problems, including general covering problems, all the

problems considered in [8, 9, 20], polymatroids, intersections of polymatroids, network

design problems, etc. For reducible formulations we show that it is relatively easy to

bound the strength of a class of inequalities.
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2. Inspired by the primal-dual methods proposed recently in [8, 9, 201 for cut covering

problems, we propose a general primal-dual approximation algorithm and a multiphase

extension that uses valid inequalities in a class F, and show that the worst case

behavior of the primal-dual algorithm is bounded by the strength AF. As a by-

product, we also obtain bounds between the optimal integer programming value and

its LP relaxation. The algorithm generalizes earlier work of [8, 9, 20] to general

covering problems and uses a new (and in our opinion considerably simpler) inductive

proof to show the bound. By using geometric arguments we show that the analysis is

tight, i.e., the notion of strength is inherent in the primal-dual approach and not an

artifact of the analysis.

In addition we propose a multiphase extension of the th primal dual method and prove

a bound for its worst case performance.

5. We apply the primal dual algorithm and its multiphase extension to a variety of prob-

lem classes, matching or improving upon the best known guarantee for the problem.

We also prove the integrality of several polyhedra using the primal-dual algorithm.

We believe that the proposed approach addresses to a large extent some of the difficulties

that the areas of polyhedral combinatorics and approximation algorithms have experienced:

1. Regarding the choice of the class of valid inequalities to use in a branch and cut

exact algorithm or a primal-dual approximate algorithm for a discrete optimization

problem, we propose the notion of strength of the class of valid inequalities, which is

easily computable at least for reducible formulations, as the criterion to differentiate

valid inequalities.

2. Regarding flexibility in approximation algorithms, by varying the class of valid in-

equalities we use in the primal-dual approach, we can produce a large collection of

feasible solutions, each of which has a guarantee for its suboptimality. In this way

we achieve two goals: From a theoretical viewpoint, progress in deriving stronger

inequalities translates in potentially better worst-case bounds and from a practical

perspective, we can generate a large collection of feasible solutions, which even if

they have the same worst-case guarantee, they might have very different average case

behavior.

3. Bounding the worst-case performance of a primal-dual algorithm for a problem that
has a reducible formulation is now reduced to the considerable easier problem of

computing the strength of a valid inequality. In this way we can calculate a priori the
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bound of a primal-dual method knowing that the bound is tight. This also eliminates

the often nontrivial task of providing special examples that show tightness.

The paper is structured as follows. In Section 2 we describe the general primal-dual

approximation algorithm, introduce the notion of strength of a set of valid inequalities

and prove that the performance of the primal-dual algorithm is bounded by the strength.

Furthermore, we show using a geometric argument that the bound is tight. In Section 3, we

introduce the notion of reducible formulations and show that a large collection of problem

formulations fall into this framework. We further show how to compute the strength of

a large collection of problems that have reducible formulations and show that our result

encompasses and unifies a large set of results in the literature. In Section 4 we consider

extensions of the basic primal dual algorithm to more general problems.

2 A Primal-Dual Approximation Algorithm

In this section we propose and analyze a primal dual approximation algorithm for problem

(IP). Before presenting the algorithm formally we first illustrate informally the ideas on

which the algorithm is based. At each step the algorithm introduces a valid inequality,

updates the dual variables and the costs, fixes one variable to one, thus reducing the size of

the problem. An important step of the algorithm is the idea of reverse deletion originated

in [8] in the context of cut covering problems, in which we set variables that were previously

set to one, equal to zero in order to ensure that the solution produced is minimal. More

formally the algorithm is as follows:

Primal-dual Algorithm PD

* Input : A, b, c, (A, c O0).

* Output: x feasible for (IP) or conclude that the problem is infeasible.

1. Initialization : Let Al = A, b = b, c = c; r = 1; IZS1 = { E {0, l} n : Ax > b};

let F1 = {1, ... , n} be the set of variables that has not yet been fixed.

2. Addition of valid inequalities : Construct a valid inequality EiEFr Crxi > for

the convex hull of solutions in IS,;

Set

yr , mint ai > 0},
iCar

r
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3. Problem modification: Set Xk(r) = 1; Fr+i = Fr \ {k(r)};

Delete the column Ar() corresponding to Xk(,), i.e., set A' + l = Ar \ Ar(,);

set b' +1 = br Ak(r); set r+l r - yr

set IS+1 = {x E {O, 1}n-r : Ar+lx > br+l};

let (Pr+) : min Cr+lX St. X E 2Sr+l be the current problem instance;

Set r + r + 1 and repeat Step 2 until the solution obtained is feasible to the original

problem, else conclude that the problem is infeasible.

4. Reverse deletion : Consider the variables selected in each step Xk(1), Xk(2),... Xk(t),

in that order. Let Ct = {Xk(t)}. For r from t - 1 to 1, in reverse order,

· Set Cr {k(r)} UCr+l.

· Delete xk(r) if Cr \ {Xk(r)} corresponds to a minimal feasible solution to problem

instance ZPr.

5. Set xH = 1 if xi E C 1. Return xH. Let ZH = cXH.

Remarks:

1. Another way to understand the reverse deletion process is to delete the variables

Xk(1),Xk(2),..., k(t) in reverse order, while maintaining feasibility to the original
problem instance (IP), which is the same as Pl1. This observation is particularly

useful in implementing the above heuristic.

2. If n is the dimension of Problem (IP) the running time of Algorithm PD is O(n(n +

C(n)), where C(n) is the time to check feasibility of an instance of (IP) of size n.

There are at most n stages for Steps 2 and 3. The work per stage is O(n). In the

reverse deletion step we need to check feasibility at most n times in order to ensure

minimality.

Note that we have not specified the valid inequalities to be used at each stage of the

primal-dual algorithm PD. The performance of the algorithm depends critically on the

choice of the inequalities. In order to analyze the algorithm, we introduce the notion of

strength of the inequalities used.

For ease of presentation, if zi does not appear in the current problem instance, we set

a' = 0. This is to maintain the same dimensionality throughout for all the inequalities

used. We also write a for the vector corresponding to (al, a2,..., an)
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Definition 2.1 The strength A, = s(a', /3') of the inequality i caxzi > pr with respect to

instance IP, is defined to be

A, = max{ , : y minimal integral solution for IPr,}.

In order to bound the performance of the primal-dual algorithm let

(LPPD) ZD = min{cx: atrx >/r ,r = 1, 2,. ,t, x > 0}.

and A = ma,=l,...,t A,.

Theorem 2.2 The solution XH is a feasible minimal solution to Problem (IP), the vector

y = (,... yt) is a feasible dual solution to Problem (LPPD) and

t

ZH = cH < A yrr < AZD.
r=1

In particular,

a. ZH <AIZ.

b. Moreover, if all the inequalities arx > /T3) are redundant inequalities for Ax > b, x >

0, then ZH < AZ.

Proof:

Let Xk(r) be the variable selected in the rth stage of the algorithm (note that. xk(,) need not

be the same as xH(,), since Xk(r) might have been deleted in the reverse deletion step). Let

x(r) be obtained from XH by setting Xk(l), ... , Xk(r-1) to 0. By construction xr is a minimal

solution to ITP,. We first prove by induction that for every r = t to 1:

czx' <A yiP. (1)
i>r

For r = t, since xt is a minimal solution to ZPt and by the definition of strength

atzt _ APt,

which implies that

ctxt = ytCtxt t Ayt3t.

Assuming that the induction hypothesis holds for all k > r + 1, we obtain (by the way we

update the cost vectors) that
crZr = [cr+l + ratr]xr,
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Since Ckr) = 0

crXr = cr+lxr+l + yr trxr.

Applying the induction hypothesis and using arzr < Ar by the definition of strength and

the minimality of xr, as well as Yr > 0 by construction, we obtain (1).

We next prove by induction that for every r = t to 1:

E yj ci < cir, i = 1, m. (2)
j>r

For r = t, yt C< cit which follows since by construction

Ct
Yt= min { )

i: a1>o a;

Assuming (2) holds for r + 1, then

E ai= E a + r Yr< C<cr+l + Yar = C
j>r j>r+l

where the last equality holds from the way the cost vector is updated, proving (2). As an

additional remark, note that for i = k(r) (2) holds as equality since ak(r) = 0 for each

j > k(r), since xk(r) does not appear in the subsequent problems.
Therefore, {Yj}j>l forms a dual feasible solution to dual of the relaxation

ZD = min{cx: aix >_i', i = 1,2,...,t,x > 0}.

Letting ZD = ji> 1 yi3 i , be the value of this dual feasible solution we obtain

ZH• ZYr13< AZD < AIZ.
r

If in addition, all the inequalities (ar', /r) are redundant to Ax > b, x > 0, then ZH < AZ.
0

By the previous theorem, we have reduced the construction of a A-approximation algo-

rithm to one of finding valid inequalities with strength bounded by A. Since there are cases

where more than one such inequalities exist, each inequality suggest a different primal-dual

approximation algorithm, all attaining the same bound A.

2.1 A geometric view of the primal-dual algorithm

Let us first develop some geometric insight on the strength of an inequality. Let CH(IP)

denote the convex hull of all minimal integral solutions to problem (IP). Let ax > 3
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denote a valid inequality for CH(IP), touching CH(IP) at a vertex xl (see Figure 1). It

corresponds to a hyperplane with all the vertices of CH(IP) on one side. Let A denote

the strength of this inequality with respect to (IP). By the definition of A, the vertices

of CH(IP) are "sandwiched" between the hyperplane ax = and ax = A. A valid

inequality that gives us the "thinnest" slab sandwiching the vertices of CH(IP) will thus

result in the best bound in terms of strength. This geometric view enables us to show next

that the bound of Theorem 2.2 is essentially tight.

Figure 1: Geometry of strength of an inequality

Theorem 2.3 Assume that the first valid inequality ax > ,3 we introduce in Algorithm PD

achieves the maximum strength A. Then, for all e > 0 there exists a cost vector such that

Algorithm PD outputs a solution XH with cost

ZH > A(1 - E)IZ.

Proof: Let x' be a minimal solution with ax' = max{ax : x minimal in (IP)} = AO. Let

C denote the set of indices k with x = 1. For each k E C, set Ck = ak. Set ck = ak + 7

for all k g C, with y > 0. By this choice of cost function c, the reduced cost at all xi,

i E C, are 0 after the first step. Thus the algorithm will always return the solution x', with

objective value

ZH = ax' + Y x > AX3.
iOC

Moreover, IZ < cxl, where xl is a vertex in CH(IP) with axl = 3. Therefore,

IZ < axl + Y xl,i < + yn.
iqC
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By choosing -y = W, we can ensure that under c

ZH > A3 A >A(1-E)
IZ - + y 1 + E

Remarks:

1. The previous theorem illustrates that the notion of strength is inherent in the primal

dual approach and not an artifact of the analysis.

2. The fundamental reason the bound is essentially tight is that the cost function is not

incorporated in the design of Algorithm PD. In other words, the valid inequalities

used in each stage of the algorithm are independent of the cost function. The previous

theorem shows that in order to obtain a better bound within a primal-dual framework,

we need to take into account the cost function in the choice of valid inequalities.

3. In the next section we apply Algorithm PD in many problems. In all these applications

the maximum strength is attained at the first stage. Therefore, the bounds attained

for the respective problems are essentially tight. This eliminates the need to construct

problem specific examples that attain the bound.

3 Reducible formulations and approximability

In this section we illustrate the power of Theorem 2.2 by showing that the best known

results in approximation algorithms for covering problems are special cases of Theorem 2.2.

Theorem 2.2 reduces the construction of good approximation algorithms to the design of

valid inequalities of small strength. At first sight it appears difficult to bound the maximum

strength of a class of inequalities, since we need to bound the strength of each inequality

we add with respect to a new, each time, problem instance. We next illustrate that for a

rather rich class of formulations bounding the strength can be greatly simplified.

3.1 Reducible formulations

We consider covering problems of the form:

(IPn) IZ, = min cx

subject to Ax > b
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X E {O,1 } n ,

where A is an m x n matrix and c is an n-vector with nonnegative integer entries; entries

in b are integral but not restricted to be nonnegative, since rows corresponding to negative

bi are redundant. Note that we have explicitly stated the dependence on the problem size

n. We assume that formulation (IPn) models problems from a problem class C. By fixing

variable xj to 1, we create the following problem:

(IPn-l) IZnL = min ce

subject to A > b- Aj

E {0,1} n -l,

where A is an m x (n - 1) matrix.

Definition 3.1 Formulation (IPn) is reducible with respect to problem class C if for all j,

formulation (IPn_1) belongs to problem class C.

In other words, reducible formulations of a problem with respect to a problem class C

have the property that the new smaller instance that results by fixing a variable, still

belongs in problem class C. The importance of reducible formulations in the context of

the primal dual algorithm PD is that, we can bound the strength of an inequality with

respect to the original problem's instance, since by the definition of a reducible formulation

even after fixing a variable, the problem instance belongs in the same class. Therefore,

given a reducible covering formulation, there is no need to calculate the strength of a given

inequality with respect to an instance generated in the course of the primal-dual algorithm.

Since by reducibility all the instances belong in the same class, it suffices to calculate the

strength with respect to the original instance. This greatly simplifies the calculation of

strength as we show next.

3.2 General Covering Problems

Consider the problem

(GC) IZcc = min cx

subject to Ax > b

E {O, l}n ,

where aij and cj are nonnegative integers. Fixing some variable x; to 1, results in a new

instance that still has the property that the matrix A and the vector c are nonnegative
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integers. Thus, formulation (GC) is reducible with respect to the class of general covering

problems.

Hall and Hochbaum [11] proposed a dual heuristic for the case when aij are 0 or 1,

with ZH(GC) < fZGc, f = maxi ,E=1 aij. We refer to this bound as the row-sum bound.

Bertsimas and Vohra [3] proved that the same bound holds with general values of aij. We

next show that algorithm PD) produces the same bound for problem (GC).

Theorem 3.2 The strength of the inequalities aix > bi, i = 1,..., m is at most f, i.e.,

Algorithm PD applied to these inequalities produces a solution such that

ZH< f. (3)
ZGC

Proof: Consider an inequality aix > bi. Let x' be a minimal solution to (GC). Clearly

aix' < f. Therefore, Ai < f < f. Since the row sum reduces after each step of the algo-
rithm, the strength of all inequalities is bounded above by f. Therefore, from Theorem 2.2

(3) follows. 0

3.3 The Minimum Spanning Tree Problem

Let G denote an undirected graph on the vertex set V and edge set E. The minimum

spanning tree (MST) problem asks for a spanning tree that minimizes a given nonnegative

objective function c. Since c is nonnegative, we can solve the problem by the following

cut-formulation

(CUT) IZCUT = min cx

subject to E xe > 1, VS c V,
eE6(S)

Xe E {0,1}.

By fixing some xe to be 1, we obtain the cut formulation for the MST on IVI - 1 nodes on

the multigraph created by contracting the edge e = (i, j) (combining i, j into a supernode

a and adding an edge (a, k) whenever (i, k) E E or (j, k) E E). Thus formulation (CUT) is

reducible with respect to the MST problem.

By adding the multicut constraints, first suggested by Fulkerson [7], we arrive at the multicut

formulation:

(MCUT) IZMCUT = min cx
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subject to Z Xe > k - 1, V(SI, ... , Sk) partitioning of V,
eE6(S1,...,Sk)

Xe E {0, 1}.

Fixing Xe = 1 in (MCUT) we again arrive at a multicut formulation for G contracted at the

edge e. Thus the multicut formulation is reducible. The LP relaxation of this formulation

gives the complete characterization of the dominant of the spanning tree polytope (see [4]).

By applying Theorem 2.2 we provide a genuinely simple proof of the integrality of the

multicut polyhedron, as well as the known tight bound on the duality gap of the IZCUT

and ZCUT-

Theorem 3.3 The inequality EeEE Xe > n - 1 is valid for the multicut polyhedron and has

strength 1, i.e.,

IZMCUT = ZMCUT- (4)

The inequality ZeEE Xe > is valid for the cut polyhedron and has strength 2(1 - ), i.e.,

ZH < 2(1--). (5)
ZCUT n

Proof: We first consider the multicut formulation (MCUT). Since Ee xe > n- 1 is a valid

inequality (consider a partition of V into the nodes) and all minimal solutions, being trees,

have at most n - 1 edges, the strength of this inequality is 1. By using inequalities of this

type in each stage of the algorithm, we obtain an optimal integral solution to the spanning

tree problem, thus showing (4).

We next consider the cutset formulation (CUT). Since Ee Xe > n is a valid inequality

(add all the cut inequalities for singletons), the strength is 2(1 - 1/n), thus showing (5).

The bound obtained is again tight. o

Remark: Algorithm P) applied to the multicut formulation corresponds to the classical

Kruskal Algorithm.

3.4 The Shortest Path Problem

Let s,t be two distinct vertices in an undirected graph G. The problem of finding the

shortest path from s to t can be modelled as an edge-covering formulation

(SP) IZsp = min cx

subject to Ze > l, VS:s E S ortES,
eEl(S)

Xe E {O,1}.
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It is easy to observe that formulation (SP) is again reducible. In this case, the following

theorem is immediate

Theorem 3.4 Inequalities

1. x(6(s)) > 1,

2. x(6(t)) > 1, and

3. x(6(s)) + (6(t)) > 2.

have strength 1, i.e.,

IZsp = Zsp.

Using any of these inequalities in each stage of our primal-dual approach, we would

have obtained an optimal shortest path solution. Each choice of the inequalities gives rise

to the (1) forward Dijkstra, (2) backward Dijkstra and (3) bidirectional Dijkstra algorithm

respectively. Our analysis indicates that one can in fact use any of the three inequalities at

each stage of the algorithm.

3.5 Uncrossable functions

Consider the following edge-covering problem introduced in Goemans and Williamson [8]:

(UC) IZuc = min cxe
e

subject to x(6(S)) > f(S),S C V,
S

Xe E {0, 1,

where the function f defined on 2 v is a symmetric 0-1 function, f(V) = 0, and f satisfies

further the following uncrossability property:

* if S, T are intersecting sets with f(S) = f(T) = 1, then either f(S-T) = 1, f(T-S) =

1 or f(SnT) = f(SUT) = 1.

A 2-approximation algorithm for this class of problem was first proposed by Williamson et.

al. [20]. It generalized an earlier algorithm [8] designed for a more restrictive 0-1 function

f such that

f(S u T) < max{f(S), f(T)}, (6)

for all disjoint S and T, and f symmetric. Symmetric functions f satisfying (6) are called

proper functions. Note that the conditions for properness imply uncrossability. We refer
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the readers to Goemans and Williamson [8] for a long list of problems that can be modelled

as edge-covering problems with 0-1 proper functions f (note that formulations (CUT) and

(SP) for the minimum spanning tree and the shortest path belong in this class). The

edge-covering formulations are reducible with respect to both 0-1 uncrossable functions and

proper functions. By fixing an edge Xe to 1, we see that the cut condition for all S containing

e in the cut set is satisfied. Hence the problem reduces to an edge-covering problem on C

contracted at e (denoted by G o e). The corresponding function f on G o e inherits the

uncrossability (or respectively properness) property.

In this section we exhibit valid inequalities for (UC) of strength at most 2. While a

proof of the next theorem can be extracted from [20], we offer a new self-contained proof.

Theorem 3.5 Let {S1, ... ,SI} denote a maximal collection of disjoint subsets Sj with

f(Sj) = 1 for all Sj, and f(T) = 0 if T C Sj for some j. The strength of the inequal-

ity

E E Se > (7)
j=1 e6(Sj)

is 2(1 i.e.,

ZH < 2(1- 1
ZvU - I

Proof: Let F denote a minimal set of edges corresponding to a feasible solution and let

G[F] the graph induced by the set of edges F. It suffices to prove that

XF(6(SJ)) < 2(1 - 1) (8)
j=l

Note that the coefficients of edges in 6(Si, Sj) are 2 whereas those between 5(Si, V - UjS)

are 1.

Let U = V \ {S,..., Sj}. Let T 1,..., T, denote the connected components in U under

F. Let G' denote the new graph obtained from G[F] by treating all Sj's and Tk's as nodes.

Let f' be the function induced on G' by f. Clearly f' is also uncrossable and symmetric,

and F' = F n E(G') is again a minimal solution with respect to f'. F' consists of all the

edges counted in (8). Note that this construction need not necessarily reduce the size of

the graph. If none of the nodes T has degree 1 in G', then (8) follows immediately from

the forest structure of F'. So we may assume that deg(Ti) = 1, and the edge e connect T1

to the vertex S1.

We will use induction on the number of nodes in G' to compute (8). To do so, we will

contract a suitable subgraph of G' of size at least 2.
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Case 1 : If deg(Si) is also 1, then f'({Si,T1 }) = 0. Contract the graph at the component

{S1,T 1}. If there is no set S containing the component {Si,T 1} but not Si for i > 2, with

f'(S) = 1, then the number of disjoint minimal sets in the contracted graph reduced to

1 - 1. Using induction on the number of nodes, the contribution by the rest of the edges of

F' to (8) is at most 2(1 - 2). Counting e, we have

ZXF(6(S)) < 2(1-2) + 1 < 2(1-1).
j=l

If a set S with the above property exists, then the number of disjoint minimal sets for the

contracted graph remains at 1, but there must be an edge e' incident to S and some Si,

i > 2. This edge will be counted twice in this contracted instance under the induction

hypothesis, whereas its contribution to (8) is 1. So we have

F(6(Sj)) < {2(1- 1) - 1} + 1 = 2(1-1).
j=l

Case 2: Suppose degG,(Si) > 2. By minimality of F', there exists a set W in the vertex

set of G' such that 6(W) = {e}, f'(W) = 1 and S C W. By symmetry, f'(W) = 1.

Thus IWI > 2, IWI > 2. Let Gw, GW denote respectively the graph obtained from G' by

contracting W and W into a single node. These are minimal solutions with respect to f'

restricted to the vertex sets of Gw and G-W . Let 1w, I-W denote the number of Si's contained

in W and W respectively. By our modification, the number of disjoint minimal sets in Gw

and GW are w + 1 and IW + 1 respectively. Using induction on the number of nodes, the

contribution of edges in Gw and Gw to (8) are at most 21w and 21W respectively. Note

that the edge e = (Si, T 1) has been counted thrice, once in Gw and twice in Gw, whereas

its contribution to (8) is 1. Therefore,

ZXF(6(i)) < 21w + 2 1w- 2

j=1

= 2(1 - ).

Therefore the theorem holds. O

A direct corollary of the analysis in the previous theorem is the observation that the

strength of

, (6()) > I - 1
j=ljok
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and

x(6(Sj)) > -2
j=l,jk 1 ,jk 2

are 2 - 1 and 2 respectively. Using these inequalities in Algorithm PZ) leads to an

approximation algorithm with bound not worse than 2.

So far we have not indicated how one could find the minimal sets Si's used in the

construction of the inequality. If f is proper, then the sets Si's are simply all the nodes v

with f(v) = 1, and thus we could implement the primal-dual algorithm in polynomial time.

For the case of uncrossable function, the question is still open.

3.6 Constrained Contra-Polymatroids

Consider the problem

(CP) IZcp = min cixi
i

subject to x(S) = xi > f(S),S C N = {1,...,n},
iES

xi E {o0, 1}.

where f satisfies f(0) = 0 and

f(S) + f(T) < f(S n T) + f(S U T) (supermodular); (9)

f(S) < f(T), V S C T. (nondecreasing), (10)

The function f is called a contra-polymatroid function (see [181). Notice that we have the

additional restriction that xi E {0, 1}, giving rise to what we call a constrained contra-

polymatroid problem.

If we set xi = 1 and modify the constraints, we have a problem instance on N \ {i}, with

f'(S) = max(f(S), f(Sui)-l1) for all S in N\{i}. Clearly f'(S) < f'(T) if S C T C N \{i}.

To show supermodularity, suppose f'(S) = f(S), f'(T) = f(T U i) - 1. Then

f'(S) + f'(T) < f(S n T) + f(S U {T + i}) - 1 < f'(S n T) + f'(S U T).

The other cases can be handled similarly. Thus f' is a contra-polymatroid function. The

formulation is thus reducible.

Theorem 3.6 The inequality

E i > f(N)
i
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has strength 1, thus

IZcp = ZCp.

Proof: Let x' be a minimal solution. By

(called a tight set) containing each xi = 1

x'(S) + '(Sj) =

minimality, there exists a set Si with f(Si) = 1

. Hence

f(si) + f(Sj)

f(Si n Sj) + f(Si u Sj)

'(si n sj) + x'(Si u sj)

X'(Si) + X'(Sj).

Hence Si U Sj is again tight. By repeating this procedure, we obtain x'(N) = f(N).

Hence the strength of the inequality is 1. The constrained contra-polymatroid polytope is

thus integral. o

This analysis reveals that one can indeed remove the conditions that f is nondecreasing,

and the LP formulation will still be tight. This is due to the presence of the inequalities of

the form xi < 1.

A direct generalization of this argument to the intersection of k constrained contra-

polymatroids leads to the following theorem, which is, to the best of our knowledge, new:

Theorem 3.7 The strength of the inequality Ei xi > f1(N)+.j+fk(N) for the intersection of

k contra-polymatroids is k, i.e., Algorithm PD has a worst case bound of k.

Remark: Although for k = 2 there exists a polynomial algorithm, Algorithm PD has

a faster running time.

3.7 Set covering problems

In this section we consider special cases of the set covering problem:

(COVER) IZcOVER = min cx

subject to Ax > 1

X E {O, }n,

where A is a 0-1 matrix. We show that the application of Theorem 2.2 in the following

cases gives rather strong results.
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1. Row-inclusion matrices (see [17]):

A does not contain the submatrix ( ); Row-inclusion matrices play an important

role in the study of totally balanced matrices (see [17]). It is easy to verify that

the covering formulation is reducible with respect to the row-inclusion property: by

removing all redundant constraints after deleting the kth column from A, one obtains

another constraint matrix with the row inclusion property. It is well known that the

underlying polyhedron is integral. Surprisingly, we can prove it simply by applying

Theorem 2.2.

Theorem 3.8 The strength of the first inequality allxl +... + alnxn > 1 is 1.

Proof: Consider a minimal solution x'. We will show that allzx + ... + alnxn I 1.

Assuming otherwise, then there exist i, j with

ali = alj = x = xj = 1

and i < j. By the minimality of x', if we set zx to 0, then the solution is no longer

feasible. Thus there must exist a row k such that aki = 0 and akj = 1. This how-

ever contradicts the fact that A is a row-inclusion matrix. Therefore, the inequality

alxlz +... + alnxn > 1 has strength 1, proving that Algorithm PPD finds an optimal

solution in this case. o

2. Matrices A with consecutive ones in columns.

This class of matrices belongs to the class of totally unimodular matrices (see [17]) and

therefore the underlying polyhedra are integral. There exists an optimal algorithm

that transforms the problem to a shortest path problem. We show that Algorithm

PD is a direct optimal algorithm for the problem.

Theorem 3.9 The strength of the first inequality alll +... + alnxn > 1 is 1.

Proof: Consider a minimal solution x'. We will show that allx + ... + aln < 1.

Assuming otherwise, then there exist i, j with

ali = alj = = j = 1

and i < j. By the minimality of x', if we set xj to 0, then the solution is no longer

feasible. Thus there must exist a row k such that aki = 0 and akj = 1. Symmetrically,
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there must exist a row I such that aj = 0 and ali = 1, where i < j. Assuming k < 1

(otherwise we consider the jth column), we have ali = 1, aki = 0 and ali = 1, violating

the consecutive ones property. Therefore, the inequality allxl + ... + alnn > 1 has

strength 1, proving that Algorithm PD finds an optimal solution in this case. [

3. Arbitrary 0- 1 matrices A.

A direct generalization of the previous argument yields:

Theorem 3.10 The first inequality allxl +... + alnn > 1 has strength

max {gi + },
i=1,2,...,n

where gi is the maximum gap between any 2 ones in the ith column.

Obviously the previous bound can be optimized by considering permutations of the

rows that

min max {gi(ir)+ 1}.
7r i=1,2,...,n

4. Matrices A with consecutive ones in rows.

We may assume without loss of generality that there is no redundant inequality in

the constraints.

Theorem 3.11 Inequality x1 + X2 + ... + XL > 1 has strength 1.

Proof: Let x' be a minimal solution. We show that x' + x' +... + x', < 1. Assuming

otherwise, suppose x u = x = 1 for some u < v < L. Then by minimality, there exists

a constraint Ej aijxj > 1 with ai, = 1 but air = 0. By the consecutive ones property,

this implies that the inequality xl + X2 + ... + XL > 1 is redundant, a contradiction.

Therefore, inequality xz + X2 + ... + XL > 1 has strength 1. 0

5. Matrices A with circular ones in rows. Again we may assume that there is no redun-

dant inequality in the constraints. By similar reasoning as in the previous case, we

can show

Theorem 3.12 Every constraint in Ax > 1 has strength at most 2.
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4 Multiphase extension of the primal-dual algorithm

In this section we propose an extension of Algorithm PD to problem (IP) that uses the

primal-dual approach in phases. Let b,, = maxi bi.

Multiphase Primal Dual Algorithm MFPD

* Input : A, b, c, (A, c > O).

* Output: H feasible for (IP) or conclude that the problem is infeasible.

1. Initialization: k = 1.

2. Phase step k : Let hi = 1 if bi = bma, and hi = 0 otherwise.

Delete redundant rows from Ax > h (resulting in A'x > 1) and apply Algorithm PD

(using the same inequalities A'x > 1) to the problem

IZk = min cx

subject to A'x > 1

x E {0, 1}n .

yielding a solution xk of cost Z = cxk. Let Zk denote the LP relaxation where we

substitute constraints x E {0, 1}n with x E [0, 1]n.

Jk = {j : xk,j = 1}; A := A \ {Aj}jEJk, i.e., delete the columns of A corresponding

to the indices in set Jk; b := b- EJk Aj; c := c \ {Cj}jEJk; k := k + 1.

3. Repeat Step 2 until a feasible solution is found. The feasible solution is xj = 1 for all

j E UkJk- If after min(ba,, n) phases a feasible solution is not found conclude that

the problem is infeasible.

Let XH be the solution of obtained by Algorithm M FPD and ZH its cost. In the next

theorem we bound the performance of the algorithm.

Theorem 4.1 1. If at each phase k the worst case bound for Algorithm PD is Z <

AZk, then

H < A /H(bm), (11)
Z

where 1t(n) = zs=l t-
2. If at each phase k the worst case bound for Algorithm PD is ZH < AIZk, then

H < A bma, (12)
IZ-
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Proof: We prove the theorem by induction on b,,. For bar = 1, Algorithm MFPD

reduces to Algorithm PD and (11) follows from the assumed bound on the performance

of Algorithm PD. Assuming (11) is true for b.,= - 1, we prove it for b,,. For ease of

exposition we introduce the notation:

P(b, c) Z(b, c) = min cx

subject to Ax > b

x E [0, ]n.

We denote the corresponding optimal solution x*(b, c). We also denote with IZ(b, c) the

value of the corresponding 0 - 1 problem. After the first phase of Algorithm MFPD the

solution x1 produced has cost

Zbc
E j < Zh,c < Ab
jEJ1 bmax

because the solution x(b,c) is feasible for the problem P(h, c). The cost function for the

next stage is cj = cj for j not in J 1. Although the variables xj with j E J1 are not present

in the next phase, we prefer to set cj = 0 for j E J1. By this slight abuse of notation, we

can view c' as the cost function for the second phase of the algorithm. Clearly,

Zb,dc < Zb,cd < Zb,c

Since bm is at most b,,y - 1 in the next phase we can invoke the induction hypothesis to

assert that the solution xH (with JH = {j : xH,j = 1}) that the Algorithm MfP1D returns

has cost

j < A'(bmax - 1)Zb,c, < A(bmax - 1)Zb,c.
jEJ~

The superposition of the solutions xl and xH with support J1 U JH is the solution produced

by Algorithm MFPi) on the original input has cost

ZH = E Cj < A(H(bmax- 1) + )c = H(bmx)Zbc
jEJiUJ}.

proving (11).

When the value of the heuristic is within A from the optimal integer solution, the proof

is identical except that we can only guarantee

Z, cj < A IZh,c < A IZb,c
iEJ1
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The induction on b,, proceeds along the same lines except that

ZH = E cj < A(bax - 1)IZb,c + AIZb,c = AbmaxIZb,c.
jEJiUJ~

O

4.1 Applications

In this section we outline a number of applications of Theorem 4.1. All of these applications

are special cases of formulation (IP).

1. Matrix A with consecutive ones in columns (or rows), b arbitrary.

At each phase of Algorithm M.FPD, columns from matrix A and redundant con-

straints are deleted; therefore we obtain A'x > 1, where A' has again the consecutive

ones property. Therefore, at each phase Theorem 3.9 (respectively 3.11) with A = 1.

Applying Theorem 4.1 Algorithm M:FPD leads to a solution XH with

ZH <
Z -

In contrast, the known optimal algorithm for the problem transforms the problem to

a min-cost flow algorithm, at the expense of doubling the problem size.

2. Matrix A satisfies the row-inclusion property, b is arbitrary.

In this case by exactly the same argument leads to

ZH
Z < (bmax).

3. A, b arbitrary.

From Theorem 3.10 A = minr maxi=l,2,...,n{gi + 1}, leading to

ZH < min max {gi + 1}H(bmx).
Z - i=1,2,...,n

Notice that to the best of our knowledge this a new result, which can be substantially

better that both the max-row sum bound (Theorem 3.2) as well as 'H(maxj Ei Aji)

proposed in [6].

4. Cut covering problems with weakly supermodular functions.

For functions f taking values over integers, the notion of an uncrossable function con-

sidered in Section 2 has been generalized in [9] to the notion of a weakly supermodular
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function, defined as a symmetric function f with

f(S) + f(T) max{f(S-T) +f(T-S), f(SUT) +f(S n T)}. (13)

If f satisfies the stronger property (6), then f is called proper. Again weakly su-

permodular functions encompass the class of proper functions. Moreover, the edge-

covering formulation is reducible with respect to weakly-supermodular functions: Let

F be the set of edges fixed to 1, then f(S) - e-EFr(S) xe is weakly supermodular.

However, the formulation is not reducible with respect to arbitrary proper functions

(although it is for 0- 1 proper functions). These observations underscore an impor-

tant advantage of the notion of reducible formulations: By considering a wider class

of problems (weakly supermodular functions), we simplify the analysis for a more

restrictive class of problems (proper functions).

Theorem 4.1 immediately applies to derive approximation algorithm for cut covering

problems with weakly supermodular function f, first obtained in [91 using considerably

more complicated proof methods.

Theorem 4.2 ([9]) Algorithm MFPD is a 2H7 (f,,ax) approximation algorithm for

cut covering problems with weakly supermodular functions, where fma, = maxs f(S).

Proof:: Letting h(S) = 1 if f(S) = fmx, h(S) = 0 otherwise, implies h(S) is a

symmetric uncrossable function, since f(S) is weakly supermodular. Since f(S) -

EeEFr6(S) Xe is still weakly supermodular, the formulation is reducible with respect

to weakly supermodular functions and therefore, Theorem 4.1 applies with A = 2 (for

uncrossable functions, Theorem 2.2) leading to

ZH < 2 (fmax).

Remarks:

(a) In comparison with the proof methods used in [9], we believe that the inductive

proof method in Theorem 4.1 is considerably simpler.

(b) When f is proper, there is a polynomial time procedure to construct the minimal

sets used in the construction of the valid inequalities (see [20]). The case for

weakly supermodular function is again open.
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5. More general cut covering problems

We consider next an extension of the edge covering problem (also considered in [9]),

in which ae copies of the edge e are to be used if we decide to include the edge e in

the solution. We assume ae > O. This leads to the following formulation:

(MU) rmin E c Xe
e

st A aexe > f(S), Sc V
eE6(S)

Xe E {O, 1},

where f is again weakly supermodular.

Note that the LP relaxation of the above formulation could be arbitrarily bad, due to

the presence of ae in the constraint matrix. In the case when f is 0-1, then the set of

integral solution remains the same even if we set all ae to 1, corresponding to the cut

covering problem described in the previous section. Thus there is an approximation

algorithm, which returns a solution not worse than 2 time of the optimal integral

solution. The reason that the result does not hold for the optimal LP solution is

because the valid inequalities used are not redundant. Given that the formulation is

still reducible, we use (12) and obtain a bound of

ZH
< 2fmax,

IZMU 

which is also the bound obtained in [9].

5 Conclusions

By showing a general max-min bound (strength) provided by the greedy type primal dual

algorithm, we have unified a large part of combinatorial optimization under a single frame-

work and reduced the analysis of approximation algorithms to computing the strength of

inequalities. This approach also offers insights as to why certain algorithms achieve the

stipulated performance bounds, and reduces the design of greedy type algorithms to the

construction of valid inequalities with small strength. A direction for further research is to

incorporate other nongreedy type approximation algorithms into a single framework with

the goal of offering insights into the design of robust algorithms.
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