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Abstract

In this paper we demonstrate that the distributional laws that relate the number

of customers in the system (queue), L (Q) and the time a customer spends in the sys-

tem (queue), S (W) under the first-in-first-out (FIFO) discipline lead to a complete

solution for the distributions of L, Q, S, W for queueing systems which satisfy dis-

tributional laws for both L and Q (overtake free systems). Moreover, in such systems

the derivation of the distributions of L, Q, S, W can be done in a unified way. Our

results include a generalization of PASTA to queueing systems with arbitrary renewal

arrivals under heavy traffic conditions, a generalization of the Pollaczek-Khinchin for-

mula to the GI/G/1 queue, an extension of the Fuhrmann and Cooper decomposition

for queues with generalized vacations under mixed generalized Erlang renewal ar-

rivals, new approximate results for the distributions of L, S in a GI/G/oo queue, and

new exact results for the distributions of L, Q, S, W in priority queues with mixed

generalized Erlang renewal arrivals.
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1 Introduction

What are the laws of electrodynamics? In order to address this question we should first

define the fundamental quantities of electrodynamics, the electric field 0 and the magnetic

field A. The fundamental laws of electrodynamics are the Maxwell equations. The goal of

electrodynamics is then to find f and A in various applications. The Maxwell equations

form a complete set of laws in the sense that just starting from them and using the calculus

of partial differential equations one is able to compute P and B either analytically or

numerically in a variety of applications. What is important here is that the physics of a

problem is summarized in the Maxwell equations, which then lead to a complete solution

for and in a unified way.

Let us then ask the key question which motivated the present paper. What are the

laws of queueing theory? The fundamental quantities in queueing theory are the stationary

queue and system length (Q, L) and the waiting and system time (W, S) under the First-

In-First-Out (FIFO) discipline. Of course there are several other random variables of

interest (often particular to the application studied), but these are the most widely used.

The goal of queueing theory is then to find the distributions of Q, L, W, S in various

applications. In its almost a hundred year history queueing theory has addressed a great

variety of problems using a variety of techniques, which solve some problems but fail on

others. What is interesting is the lack of a unified way to solve a particular application.

Queueing theory research does not start from a set of well established laws and then

proceed to the solution using some well established mathematical techniques. It rather

uses the particular characteristics of the application to achieve its solution.

Coming to our original question regarding the laws of queueing theory, one would like

to have a set of laws which, similar to Maxwell equations in electrodynamics, lead to a

complete solution of the queueing application. One first candidate for a queueing law is

Little's law [13] (see the recent review of Whitt [16] which traces the different forms of the

law and its extensions). Let us examine whether Little's law leads to complete solution for

the steady state E[Q], E[L], E[W], E[S] in a GI/G/s queue. Let A, , p = - < 1 be
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the mean arrival, service rate and traffic intensity. Then, from Little's law in the system

and the queue

E[L] = AE[S], E[Q] = AE[W].

But, E[S] = E[W] + -, while the relation of Q, L is

s-1

E[z L] = z8E[zQ] + E P{L = n}[n - z],
n=O

from where
8-1

E[L] = s + E[Q] - (s - n)P{L = n}.
n=O

Combining the previous equations we obtain that

E s- (L = n = 1 -p,

n=O

which is exactly what Little's law would give if it were applied to a service box including

the customers in service. For example, in a GI/G/1 queue one would be able to find that

P{L = O} = 1 - p, but it would not be possible to find E[L]. As a result, despite its

importance, Little's law does not lead to a complete solution for expected performance

measures.

Our goal in this paper is to demonstrate that the distributional laws first obtained by

Haji and Newell [7] are the fundamental queueing laws for queueing systems which satisfy

distributional laws for both the number in the system and the number in the queue (we

will call them overtake free systems). We demonstrate that the distributional laws lead

to a complete solution for the stationary distributions of L, Q, S, W in overtake free

systems. Moreover, in such systems the derivation of the distributions of L, Q, S, W can

be done in a unified way. In this way not only we obtain new simple derivations of known

results providing new insights to old results, but we obtain several new results as well.

We propose two methods of analysis An asymptotic (as p 1) method which applies to

overtake free systems with arbitrary renewal arrivals and an exact method which applies

to overtake free systems with mixed generalized Erlang arrivals.
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For the case of Poisson arrivals Keilson and Servi [10], [11] found that the distributional

laws have a very convenient form that can lead to complete solutions for some overtake

free systems. For the case of mixed generalized Erlang renewal arrivals Bertsimas and

Nakazato [1] gave another proof of the distributional laws that lead to a very convenient

form of the law. They also proposed a framework to find E[LJ, E[Q], E[S], E[W] in

heavy traffic for overtake free queueing systems based on the distributional laws. In this

paper we develop a methodology to find the distributions of L, Q, S, W for overtake free

systems with arbitrary renewal arrivals, thus generalizing all earlier work. Our approach

is to use asymptotic analysis (which is exact in heavy traffic) for the case of arbitrary

renewal processes and exact analysis for the case of mixed generalized Erlang renewal

arrivals.

The paper is structured as follows: In Section 2 we review the distributional laws. In

Section 3 we present an asymptotic method of analysis for overtake free queueing systems

based on the asymptotic properties of the distributional laws and a generalization of the

well known result of Poisson arrivals see time averages (PASTA) to queueing systems with

arbitrary renewal arrivals under heavy traffic conditions. Furthermore, we illustrate the

efficiency of the method by deriving the distributions of L, Q, S, W in GI/G/1, GI/D/s

queues and obtaining new approximate results for the distributions of L, S in a GI/G/oo

queue. Our derivation unifies the heavy traffic results and leads to a generalization of

the Pollaczek-Khinchin formula to the GI/G/1 queue. In Section 4 we present an ex-

act method of analysis for overtake free systems with mixed generalized Erlang (MGE)

renewal arrivals and we implement it in the case of MGEM/GI1 queue. This section

demonstrates that there is a direct closed form expression for the number of customers in

a MGEM/G/1 system while our approach reproduces the known results for the waiting

time involving roots of a certain nonlinear equation in a direct way without the need for

Hilbert factorization. In Section 5, as another application of the exact method of analysis

for overtake free systems, we extend the decomposition results for queues with generalized

vacations considered in Fuhrmann and Cooper [5] for the M/G/1 queue to MGE arrivals.
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In Section 6 we propose an algorithm to find the distributions of L, Q, S, W in priority

queues with mixed generalized Erlang renewal arrivals, thus we generalize earlier results

for Poisson arrivals. The derivations in this section are considerably more complicated

compared with the results in previous sections. Finally, in Section 7 we include some

concluding remarks and indicate directions for future research.

2 The distributional law

In this section we first review the distributional law for arbitrary arrivals and then consider

the case in which the arrival process is a mixed generalized Erlang renewal process.

2.1 A review of the general distributional law

Consider a general queueing system, whose arrival process is a stationary process. Let

Na(t) be the number of customers up to time t for the ordinary process (where the time

of the first interarrival time has the same distribution as the stationary interarrival time).

Let N*(t) be the number of customers up to time t for the equilibrium process (where

the time of the first interarrival time is distributed as the forward recurrence time of the

arrival process). Let also L-, L+ (Q-, Q+) be the number in the system (or in the queue)

just before an arrival or just after a departure, respectively, for a system that satisfies the

assumptions of Theorem 1 below. The distributional law can be stated as follows:

Theorem 1 (Haji and Newell [7]) Let a given class C of customers have the following

properties:

1. All arriving customers enter the system (or the queue) one at a time, remain in the

system (or the queue) until served (there is no blocking, balking or reneging) and

leave also one at a time.

2. The customers leave the system (or the queue) in the order of arrival (FIFO).

3. New arriving class C customers do not affect the time in the system (or the queue)

for previous class C customers.
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Then, given that they ezist in steady state, the stationary time spent in the system (queue)

S (W) of the class C customers and the stationary number of the class C customers in

the system (or queue) L (Q) are related in distribution by:

L N(S), (1)

q Na(W ). (2)

In addition,

L- L+ _ Na(S),

-Q+ - N(W).

We define as overtake free systems those systems that satisfy both (1) and (2). Note

that for the general distributional law the arriving process need not be a renewal process.

If we consider renewal arrivals, however, some interesting relations between the generating

function of L and the Laplace transform of S have been proved in Bertsimas and Nakazato

[1] and are reviewed in Theorem 2 below. For the rest of the paper let a(s) be the Laplace

transform of the interarrival distribution, with arrival rate A = -1/&(0). Let N 0 (t) be

the number of renewals up to time t for the ordinary renewal process and N*(t) be the

number of renewals up to time t for the equilibrium renewal process.

Theorem 2 (Bertsimas and Nakazato [1]) Arrivals of class C form a renewal process

whose interarrival time has a transform a(s). Under the assumptions of Theorem 1, the

distribution function Fs(t) = P{S < t of S and the generating functions GL(z), GL-(z),

GL+ (Z) satisfy the following relations:

GL(z) = fo K(z,t) dFs(t), (3)

GL-(z) = GL+(z) = j Ko(z,t)dFs(t), (4)

and the distribution function Fw(t) = P{W < t} of W and the generating functions

GQ(z), GQ_(z), GQ+(z) satisfy the relations:

GQ(Z) = j K(z,t)dFw(t), (5)
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GQ_(z) = GQ+(z) = J Ko(z,t)dFw(t), (6)

with

n=O

Ko(z, t) = Z znP{N,(t) = n}.
n=O

The Laplace transform of the renewal generating functions K(z, t) and K(z, t) are given

by

K*(z,s)= e - t K(z,t)dt= - A(- z)(1 - a(s)) (7)
s2 (1- a(s))

1- a(s)
K*(z,s) = e - St Ko(z,t)dt = (1

For the case of Poisson arrivals K(z, t) = Ko(z, t) = e-At(l-z) and thus the distribu-

tional laws become a relation between transforms (Keilson and Servi [10]):

GL(z) = Os(A(1 - Z)). (8)

2.2 A vector distributional law

A vector generalization of (8) has been proposed in Bertsimas and Nakazato [1] under the

assumption that the arrival process is a mixed generalized Erlang (MGE) process, which

can approximate any renewal arrival process arbitrarily closely. The stage representation

of the MGE distribution is presented in Figure 1, i.e., we conceive the arrival process as an

arrival timing channel (ATC) consisting of M consecutive exponential stages with rates

A1, A2, ... , AM and with probabilities P1,P2, ... ,PM (PM = 1) of entering the system after

the completion of the 1st, 2nd, ... , Mth stage.

Let ak(t) be the pdf of the remaining interarrival time if the customer in the ATC is

in stage k = 1,...,M. Therefore, a(t) = al(t) is the pdf of the interarrival time. For

notational convenience we will drop the subscript for k = 1. Also f denotes the mean

interarrival time.

Let ak(s) be the Laplace transform of ak(t).
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Figure 1: The Coxian class of distributions

Let a(t) be the probability to move from stage i < j of the ATC to stage j during the

interval [0, t) without having any new arrival.

We will also use the notation:

l(t) = (al(t),...,am(t))', ak(t)= (.. .,ak(t),...,a (t))'.

ak(s) denotes the Laplace transforms of a(t).

By = (introducing the fol...lowing upper sei...)',diagona matrix A and the d...,1,yadc m...atrix ,1)'.

By introducing the following upper semidiagonal matrix Ao and the dyadic matrix Al:

A1

0

-(1 - P)O,

A2

0

-(1 - p2)A2

0

AM-1 -(1 -PM-1)AM-1

0 AM0

-plA 1 0

Al= = i

-PMAM 0

we can express compactly the transforms defined

· ,J

above as follows:

above as follows:

Ofk'(s) = e' '(Is + Ao)-l,

ak(s) = -e-k '(Is + Ao)- -1Al e = E pArt () = 1pr, AI, ( p (= pi

r=k r-k H~k(a + A) 
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a(s) = - trace((Is + Ao)- 1 A 1 ),

thus the interarrival pdf becomes

a(t) = - trace(e-AOtAl).

Note that a mixed generalized Erlang renewal process is fully characterized by the matri-

ces A 0, A1. In queueing systems with mixed generalized Erlang renewal arrival processes

we introduce:

L+, Q+ = The number of customers in the system (or queue) immediately after a depar-

ture epoch.

L, Q = The number of customers in the system (or queue) just before a transition epoch

of the arrival process. A transition includes both arrivals in the system and shifts to the

next exponential stage of the ATC. We emphasize that L- is not the number of customers

before an arrival epoch. The motivation for considering L- is that using uniformization

the epochs of transition are Poisson distributed and thus we can apply PASTA.

R + = The ATC stage immediately after a departure epoch.

R t = The ATC stage just before a transition epoch of the arrival process.

i=1 M= [P{L+ = n n R+ = i}] (Z) = O znfl+ = [P{L- = n n R =i}
FL n = [PL = nnR = i}]', PL(Z) = =oZ n.

We denote with Pf(z), /7(z), and Q(z) the corresponding transforms for the number

of customers in the queue. The vector distributional law is described in the following

theorem.

Theorem 3 (Bertsimas and Nakazato [1]) Under the assumptions of Theorem 1 and for

mized generalized Erlang interarrival times characterized by the matrices AO, Al,

PL(Z)= FL(Z)

PQz = ;(z),

PL(z) = A(1 - z)P A(z)(Ao + zA)- , (9)

PQ(z) = A(1 - z)A+(z)(Ao + zA 1)- ', (10)
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Pi(z) = e' s(Ao + zAj),

fQ+(z) = el 'w(Ao + zA1),

PL(z) = A(1 - z) 'l 's(Ao + zA1)(Ao + zA) - ', (11)

/Q(z) = A(1 - z) ei 'bw(Ao + zA,)(Ao + zA,)- ', (12)

where for any matriz D we symbolically define:

s(D) fo e-DtdFs(t).

The kernel K(z, t) in (3) is given by

K(z, t) = A(1 - z)eil e-(Ao+ZA')t(Ao + zAl)- ,

which leads to

GL(Z) = A(1 - z)e'l 's(Ao + zAl)(Ao + zAl)-11.

Once again in the case of Poisson arrival the vector forms reduce to scalars and we obtain

(8).

3 An asymptotic method of analysis for overtake free queue-

ing systems

In this section we consider overtake free systems with general arrival processes that

satisfy the assumptions of Theorem 1 and have the property that whenever p - 1,

L, Q, S, W -- oo, and we propose a unified asymptotic method for the derivation of the

distributions of L, Q, S, W, as well as L+ and Q+. This section is structured as follows:

In Section 3.1 we derive the asymptotic form of the distributional law while in Section 3.2

we give an asymptotic generalization of the PASTA property. In Section 3.3 we present

the asymptotic method of analysis for overtake free system. Finally, in Section 3.4, we

implement this method in specific examples, i.e, GI/G/1, GI/D/s and GI/G/oo queues,

to obtain new asymptotic results.
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3.1 The asymptotic distributional law

The important advantage of the Poisson arrival process is that the kernel K(z, t) in The-

orem 2 has the very tractable form K(z, t) = e-A(1-z)t. As mentioned above, the distri-

butional law then becomes a relation among transforms, i.e., GL(Z) = Os(A(1 - z)). For

mixed generalized Erlang arrivals K(z, t) is given explicitly in Theorem 3. For arbitrary

renewal arrivals, however, K(z, t) is not known in closed form. In order to exploit the dis-

tributional laws we try to understand in this section the asymptotic behavior of K(z, t).

For systems in heavy traffic (p --+ 1) both L, Q, S, W tend to infinity (we need to exclude

systems with deterministic arrivals and deterministic service, i.e DID/l). As a result, we

are interested in the behavior of K(z, t), Ko(z, t) as t -+ oo and z --+ 1.

Theorem 4 Asymptotically, as t --+ oo and z --+ 1 the kernels in Theorem 2 behave as

follows:

K(z, t) e - t f (z) ,

and

Ko(z,t) [1 - (1 - )( - 1) 0((1 -))]e- f ) ,

where

f(z) = (1- z)- 1A(1- z)2(c2- 1)2

and c2 is the square coefficient of variation of the interarrival process.

Proof

From (7) by writing K*(z, s) = o and expanding N(z, s), D(s, z) as a Taylor series

up to second order terms in a (note that t --+ oo in the time domain is equivalent to

s -- 0 in the transform domain) we have

Ks)= 2a(0)z - A(1- z)a(0) + [zd(0) - Ml1-z)E[A3
15 + 0(s 2 )

(3 - 31)(s - 2)Zd(0)

where the Taylor series expansion of the smaller root sl in terms of (1 - z) is

s1 =-A(1 - z) + 2A(1 - )2(c - 1) + 0((1 - ),
2
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d(O)$2 = -2 - sl.

Using a partial fraction expansion we invert in the time domain. Since we are interested

in the behavior as t - oo only the smaller root s will be asymptotically important. As

a result, after some tedious, but straightforward manipulations we obtain that

K(z, t) N (1 + 0(1 - z) 2 )elt,

i.e.,

K(z, t) - (1 + 0(1- Z)2)e-t(A(-)- I( -Z)2(C2-_))

In a similar way, by expanding K*(z, s) as a Taylor series in terms of s and inverting in

the time domain keeping only the most important term asymptotically, we obtain that

Ko(z, t) ([1 - (1 - z)(c - 1) + 0((1 )]et((z)T( 2 (c-))

Combining Theorems 3 and 4 the asymptotic form of the distributional Little's law be-

comes

Theorem 5 In a queueing system that satisfies the assumptions of Theorem 1 and as-

suming that as p -- 1, L, Q, S, W - oo the following asymptotic relations hold as p -- 1:

GL(Z) ~S(f (Z)), (13)

GQ(z) qw(f (z)), (14)

GL+(Z) [1 - (1- )( - 1)]s((z)), (15)

GQ+(z) [1 - (1 - z)(c - 1)]4w(f(z)) (16)

with

f(z) = A(1 - z) - Z)(C - 1).

Proof

Substituting in (3),(5) and (4), (6) the asymptotic form of K(z,t) and Ko(z,t) from the

previous theorem we obtain (13), (14) and (15), (16), respectively. O
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Although only valid asymptotically, (13), (14) and (15), (16) are very useful since they

are relations among transforms, which we will further exploit in the section. Also, the

previous expressions are exact for the Poisson case (C2 = 1). In order to develop some

further insight on the asymptotic expressions of Theorem 5 we consider the case of E2

arrivals, i.e., a(s)= (2. )2. Then,

= (1 + z) 2 -2X(1-,)t _ (1 - e-2A(1+n tK(z, t) -e4J

and

Ko(z,) = (1t - V/+ ) e_2(l)t (1- )e-z 2x(l+v)t

As z + 1 only the first of the two exponentials contributes to K(z, t), Ko(z, t). Expressions

(13) and (15) are the Taylor series expansions of the first exponential in terms of 1 - z.

3.2 An asymptotic generalization of PASTA

Theorem 5 leads to an interesting generalization of PASTA in systems in heavy traffic.

Consider a queueing system that satisfies the assumptions of Theorem 1. Since in such

systems the number of customers in the system always changes by one (for example a

GI/G/s queue), L + = L- in distribution. In the case of Poisson arrivals, PASTA implies

that L- = L in distribution. For general arrival processes the distribution of L- depends

on the queueing discipline, while the distribution of L does not. In heavy traffic (p -, 1),

however, where Theorem 5 is applicable we have that

1
GL-() = GL+()- GL(Z)[1 -(1)( - 1)]. (17)

In particular the first moments are related by

2 1

E[L-] E[L]+ 2

which means that in heavy traffic, where both E[L-], E[L] are very large, their difference

asymptotically depends only on the coefficient of variation of the arrival process. Appar-

ently, a relation similar to (17) holds for the number of customers in the queue by a similar
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reasoning. We remark that we need that L-, L (or Q-, Q) go to infinity as p - 1. For

example, in a DID/1 queue, even if p -- 1, (17) does not hold, since L-, L (and Q-, Q)

remain bounded and therefore the assumptions of Theorem 4 are not valid.

3.3 An asymptotic method

Theorem 5 as well as (17) provide us with the necessary analytical tools to form a unified

method that solves, asymptotically, overtake free systems.

Let L, Q be the number of customers in the system and queue respectively, and S and W

be the time spent in the system and queue. Let the random variable X denote the service

time and let also L+ (Q+) be the number of customers in the system (or in the queue)

just after a departure. We can describe the proposed method in an algorithmic way as

follows:

Asymptotic method of analysis

1. Relate the transforms of L and S, using the asymptotic form of the distributional

law (13).

2. Relate the transforms of Q and W, using the asymptotic form of the distributional

law (14).

3. Relate the transforms of S and W using the fact that S = W X.

4. Relate the transforms of L and Q using the characteristics of the system (see Section

3.4 for further details).

5. Solve the 4 x 4 system of equations from the previous 4 steps to find the transforms

of L, Q, S and W.

6. Using the asymptotic generalization of PASTA, (17), find the transforms of L + and

Q+ from the transforms of L and Q .

14
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3.4 Applications of the asymptotic method

The GI/G/1 and GI/D/s queues

As a first application we consider a GI/G/1 queue with a FIFO service discipline. Let

1/A, E[X], c2, c2 be the means and the square coefficients of variation for the interarrival

and service time distributions. Let x(s) be the Laplace transform of the service time

distribution.

Theorem 6 In a GI/G/1 queue under FIFO as p -- 1 the Laplace transform of the

waiting time distribution and the z-transform of the number of customers in the queue are

given by:

Ow(s) = (1- f(s))(1 - p)8)
x(s) - f-1(s) 

and

GQ(z) (1 z) - p) (l9)
cx(f(z))- z'

where f(z) = A(1 - z)- A(1 - z) 2 (c2 - 1).

Proof

The distributional law holds for both L and Q. Performing the two first steps of the

asymptotic method we obtain from (13) and (14), as p -, 1:

GL(Z) = s(f(z)),

GQ(z) = qw(f(z)).

Performing the third step, since S = W ($ X and W, X are independent we obtain

Os(f(Z)) = kw(f(z)) Ox(f(z)).

Finally, performing the fourth step, we obtain the relation of the generating functions of

L, Qis

GL(z) = (1 - z)(1 - p) + GQ().

The previous equations form a system of four equations with four unknowns. By setting

s = f(z) and thus z = f-l(s) and solving the system of equations we obtain (18) and
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(19), as well as the transforms of the system time and the number of customers in the

system. 

Remarks:

1. Using (17) we can also find GL+(z) or GQ+(z) as p - 1.

2. In the case of Poisson arrivals, it is important to notice that (18), (19) are exact and

generalize the well known Pollaczek-Khinchin formulae for the M/G/1 queue.

3. By expanding w(s) in powers of s we obtain

kw(s) =1- sp 2 ( + 1)- p(1-c a+ As 2 + o( 2),

with
A (1- c2)2 p4 (1 c2)2

2 p 2 (1- c)(1 + 4)]
4 2 (1 p) 2

-2(1 p)2 A2 (1- p)2

Then, as p - 1

E[W] = P2 (C + 1) _ p(1 _ C2)
2A(1 - p)

and

E[W2] = 2A.

As a result, the coefficient of variation of W tends to one as p + 1, which is consistent

with the diffusion approximation for the waiting time in a GI/G/1 queue, i.e., W is

exponentially distributed in heavy traffic.

4. The previous results for the GI/G/1 system can also be used in a GI/D/s queue.

Since the service times are deterministic, every s customers are served by the same

server. Therefore, as it is well known, each customer sees a GI(')/D/1 queue, where

GI(,) is the s fold convolution of the interarrival distribution. As a result, the waiting

time in queue in the GIlDI queue is the same as in the GI()/D/1 queue.

The GI/G/ oo queue

We now apply the asymptotic method to find approximate closed form expressions for the

variance of the number in a GI/G/ oo system.
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Theorem 7 In a GI/G/oo queue in heavy traffic conditions (E[X] -* oo)

GL() -e- ( -
)E

[X ]+ ( -) ' ( ~
-1

) fo Xf:(z)d

E[L] = AE[X],

and

Var[L] - AE[X] + (2 -1)1 Xfx2()dx.

Proof

In a GI/G/oo system the distributional law doesn't hold because Assumption 2 in Theo-

rem 1 is violated (i.e., the system allows overtaking). In the special case of the GIlD/oo

queue, however, the distributional law does hold because, due to the deterministic service

distribution, the customers exit the system in the order they arrived. Thus we can write

L Na(S).

Moreover, because of the presence of infinite number of servers there is no waiting and

thus S = X, i.e., the time in the system is exactly the service time. But, the pdf of X is

fx(t) = 6(t - E[X]) and thus from (2)

GL(z) = K(z, E[X]). (20)

We will now decompose the GI/G/oo system into a number of GIlD/oo systems. Suppose

that instead of having a general service distribution the service time is P{X = zj} =

pj, j = 1,..., k. The customers with service times z can be treated as a separate class

Cj of customers with arrival process being a renewal process with Laplace transform aj(s)

00

aj ($) = (S) Pi E a(k-l(s)(1 - pj)k-1 = a( )pj
r-1

i.e., the arrival rate and coefficient of variation for class Cj customers is

Aj = Apj

c: = l + pj(c- 1).a a
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If Lj, j = 1,..., k is the number of class Cj customers in the system, then

k

L = ELj.
j=1

The random variables Lj are not independent since the arrival processes are not inde-

pendent (in the special case of Poisson arrivals they are indeed independent). Using the

approzimation that they are indeed independent we obtain

k

GL(Z) ]I GLj(z).
j=1

Each class Cj sees an GI/D/oo for which the distributional law holds. Then applying

(20)

GLi(z) = K(z, j).

For large zj the asymptotic form of the distributional law of Theorem 4 is valid and thus

K(z, zj) e-'[j(1-z)- j(-z)2(cE2-1)]

Therefore,

GL(Z) It e->(-rl-)=1 Pjlj+_ p l- -Z)2(C2 _1) p2Wj

Since any general service distribution is the limit of a sequence of mixtures of deterministic

distributions we obtain that:

G ( ) " .- \(l-)E[X]+ I\-)2(c2-1) fO f2()do

which leads to

E[L] = AE[X],

and

Var[L] AE[X] + (c2 - 1) tj x fj()d. o

Remark: For the case of Poisson arrivals (C2 = 1) the expressions of the previous theorem

are exact leading to the well known result

GL(z) = e- ( 1 - z ) E[x ],

i.e., L has a Poisson distribution with rate AE[X].
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4 An exact method of analysis for overtake free systems

In this section we focus our attention on overtake free systems with mixed generalized

Erlang (MGE) arrival processes that satisfy the assumptions of Theorem 1 and we describe

a unified exact method to obtain the distributions L, Q, S, W, L +, and Q+. We will use the

notation of Section 2.2. In order to accomplish our goal we first derive a relation between

L+ and Q+, from first principles. Then, in subsection 4.1, we present the exact method

in an algorithmic form and finally in subsection 4.2 we illustrate the method in the case

of MGEM/G1 and MGEM/DIs queues under FIFO.

Proposition 1 Under the assumptions of Theorem 1 and for mized generalized Erlang

interarrival times characterized by the matrices Ao, A 1,

PL+(z) = fl(z)4x(Ao + zA1). (21)

Proof

Conditioning on the length of the queue and the ATC stage just after a customer leaves

the queue and enters service we obtain for n > 1

n M

P{L+ = n,R+ = i} = E a P{Q+ = k,R+ = m}| am(t)*a(n-k-)(t)*a(t) dFx(t)
k=0 m=l1

(22)

And for n = 0:

M

P{L+ R = R + = i} = P{ = 0,= OR + = m} a(t) dFx(t)

For every pair of matrices C of full rank and D of rank 1,

(C + D) - ' = C - 1 - DC
1 + trace(C-'D)

Therefore,

ra(s)dV'(s)
z

(Is + Ao + zA1) - 1 = (Is + Ao) - + zal aM( (s) )

AM(~)t (~)
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which expressed in real time gives

e-(Ao+zAl)t = . n ( a1 (t) a(t) l(t) · · a ... am
o ... aaM(t) M(t)

(23)

Taking generating functions in (22) and using (23) we prove (21). 

Remark:

Equation (21) also follows from Theorem 3. The reason we have included a separate

proof is that often in more general systems (like priority systems in Section 6) we need to

generalize Proposition 1.

4.1 An exact method

Theorem 3 and Proposition 1 enable us to present an unified exact method for solving

overtake free systems with MGE arrivals under the assumptions of Theorem 1. We will

use the notation of Section 2.2.

Exact method of analysis

I. Relate the transforms PL+ and fL using (9).

2. Relate the transforms PQ+ and PQ using (10).

3. Relate the transforms AL+ and f+ using (21).

4. Relate the transforms of L and 1lQ using the characteristics of the system up to

constant terms and use Little's law to evaluate the constants (see Section 4.2 for

further details).

5. Solve the 4 x 4 system of equations from the previous 4 steps to find EL, 1Qi, fL+

and fQ+.

6. Find the transforms of S, and W, from (11) and (12).
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We are going to illustrate how the method works through an application in the next

subsection.

4.2 The MGEM/G/1 and MGEM/D/s queues under FIFO

We consider in this subsection a MGEM/G/1 queue,with a FIFO service discipline where

the arrival process is a generalized Erlang process characterized by the matrices Ao and

Al. Let a(s) = N__ be the Laplace transform of the interarrival distribution where

aD(s), aN(s) are polynomials of degree M and less than M respectively.

Theorem 8 In a MGEM/G/1 queue under FIFO

PQ(z) = (1 - z)'l(,x(Ao + zA1) - zI)- , (24)

1L(Z) = (1 - z)l(4x(Ao + zAl) - zI)- 1 x(Ao + zAl), (25)

and
aD(O) (l-p)s "j1 r (26)

aD(-s) A(1- a(-s)x(s)) r=1 ,r

where z., r = 1,..., M - 1 are the M - 1 roots of the equation

a(-s)x(s) = 1, Re(s) > 0,

and II is an M vector whose ith component is

Ai-

Hi = (1 - AipE[X]) (1 - pk). (27)
k=1

Proof

Since this system is overtake free we will use the exact method of analysis described in

the previous subsection. Thus, performing the first two steps of the exact method we use

(9) and (10) and we obtain:

PL(z) = A(1 - z)P+(z)(Ao + zAl) - ',

P/(z) = A(1 - z)PQ(z)(Ao + zA1) - '.
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Combining the previous two equations with (21), third step, we obtain, since the matrices

x x(Ao + zAl), (Ao + zA1) - 1 commute,

PL(Z) = Q(z)Ix(Ao + zAj). (28)

Applying the fourth step, the number of customers in the queue and the number of cus-

tomers in the system are also related as follows

PL(Z) = (1 - Z)i + zQ(), (29)

where II is an M-vector with Hi = P{L = , R = i}.

Combining (28) and (29) we obtain (24) and (25).

To complete the fourth step we next compute .

Hi= PL = , R = i = P{L = OIR = i)P{R = i}.

Applying the usual Little's law to the server we find that:

1 - P{L = OIR = i} = (Aipi)E[X].

In order to compute P{R = i} we represent the ATC as a continuous time Markov

chain with M states as shown in Figure 2. Solving for the steady-state distribution we

obtain

P{R = i} = l (1- pk), (30)
A k=l

and thus
~A ~i-1

H i = (1 - AipiE[X]) 11 (1 - p).
i k=l

At this point we have solved exactly for 1fL(Z) and PQ(z) (fifth step). In order to find

the transform of the waiting time distribution (sixth step) we combine (12) and (24) and

obtain

el 'w(Ao + zAl)(Ix(Ao + zA1) - zI) = Ai(Ao + zA1). (31)

We now choose a z such that Ao + zAl has M linear independent eigenvectors and thus

it can be written as:

Ao + zAl = S(z)(z)S-'(z),
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X, (-pt)

Figure 2: The Markov chain of the ATC

where O(z) is the diagonal matrix of the eigenvalues of Ao + zA 1 which we denote by 8i(z)

for i = 1,..., M. Bertsimas and Nakazato [2] have shown that the roots of the equation

satisfy:

za(-0o(z)) = 1, i= 1,...,M.

The columns of S(z) are the right eigenvectors of Ao + zA 1 which we denote by '(i(z)).

Moreover,

lw(Ao + zAj) = S(z)w((z))s-(z),

lx(Ao + zAl) - zI = S(z)(Ix(e(z)) - zI)S-'(z),

and substituting to (31) we obtain

ei 'S(z)Iw(e(z))(4x(0(z)) - I) = IS(z)e(z)

or

0W(0o(z))Wl(Ol(z))(0X(il()) - Z)= = I(0(z))ol(z),

with 1(O1(z)) being the first component of ((1l(z)) (the previous relation also holds for

every eigenvalue 02(z), i = 1... M). Since za(-Oi(z)) = 1 we have

Ow(0 (z)) = K 1 (z)a(-OI(z)) ) 1(z)),A(a(-6((z))x(0i(z)) -
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where the function g(81(z)) must have an appropriate form in order to maintain the

analytical character of Ow(1 (z)). Therefore,

S(-S)
Ow(s) = K (-S) - 1 )( (32)

Since Ow(s) is analytic

g(s) r=1 r - s

aD(S)

where ,, r = 1,..., M - 1 are the M - 1 roots of the equation

a(-s)Ox(s) = 1, Re(s) > 0.

and K is a constant such that:

lim w(s) = 1,

which leads to (26). 

Remarks:

1. Equation (24) is to the best of our knowledge new, while (26) is a generalization

of the Pollaczek-Khinchin formula for the M/G/1 queue. It is interesting to notice

that (26) could have been obtained using Hilbert factorization techniques. It is

remarkable that we were able to derive these formulae just from the distributional

laws.

2. The previous results for the MGEM/G/1 system can also be used in a MGEM/D/s

queue (see Remark 4 after Theorem 6).

5 The GI/G/1 queue with generalized vacations

In this section we consider a class of GI/G/1 queueing models with a single server who

is unavailable for occasional intervals of time. Whenever the server is either unavailable

or idle we say that he is "on vacation". Formally the GI/G/1 queue with generalized

vacations is defined as follows:

GI/G/1 with generalized vacations
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G1. The system satisfies the assumptions of Theorem 1. In particular, as long as the

server is busy, customers are served in a non-preemptive FIFO order.

G2. The service mechanism need not be ezhaustive. When the server begins his vacation

he may leave customers behind depending on the service mechanism. We denote by Zo

the number of customers present in the system in steady state when a vacation interval

starts. Zo is determined by the service mechanism.

G3. Each vacation interval is distributed as a random variable V and has Laplace trans-

form 4v(s). We assume that the number of arrivals during V is independent of Zo.

This system is a generalization of the GI/G/1 queue with ezhaustive vacations consid-

ered in Doshi [4], in which ZO = 0. It also generalizes the M/G/1 system with generalized

vacations considered in Fuhrmann and Cooper [5] (see also the discussion in Wolff [17],

p.457) in the sense that it allows more general arrival processes. In some of their results

Fuhrmann and Cooper [5], however, relax Assumption G3 above, allowing the vacation

time to depend on the arrival process. In order, however, to prove sharper decomposition

results they make exactly the same assumption (their Assumption 6). Our results also

generalize the results of Keilson and Servi [11] in two respects: They consider Poisson

arrivals and assume exhaustive service Zo = 0.

Our goal in this section is to illustrate a unified way based on the distributional laws

to solve queues with generalized vacations based on the exact method of analysis from

Section 4.1. Corollaries of our results include the decomposition results established in [4],

[5] and [11]. In this way we obtain insights on the extend to which the decomposition

results depend on the Poisson assumption.

Examples of the class of GI/G/1 queues with generalized vacations that we consider

in this section include:

1. The standard GI/G/1 queue, if all vacations correspond to idle periods (i.e., V - 0).

2. The GI/G/1 queue with ezhaustive vacations, in which, whenever the server is busy,

he serves the system exhaustively, i.e., Zo = 0.
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3. The GI/G/1 queue with gated vacations, in which the server accepts only those

customers, who were waiting when the server returned from vacation, i.e., Zo is dis-

tributed according to the number of customers who arrived after the server returned

from vacation.

4. The GI/G/1 queue with limited service, in which the server serves up to k customers

in each visit and then takes a vacation.

5. Queues served in cyclic order considered in Fuhrmann [6]. The vacations associated

with any particular queue correspond to times when the server is visiting the other

queues.

5.1 Analysis of MGEM/G/1 queue with generalized vacations

We consider the system in steady state and we let L, Q,, and R" be the number of

customers in the system, the number of customers in the queue and the ATC stage of the

arrival process respectively, when a random observer observes the system with generalized

vacations. Let V* be the elapsed time since the last vacation began (the forward recurrence

time of V). Let B the event that the server is busy at the time of observation. Obviously

B' is the event that the server is on vacation at the time of observation.

Let Ro and Zo to be the ATC stage of the arrival process and the number of customers

present in the system, when a vacation interval starts. We define

= [P{Zo = n n Ro= mlB'}]l and (z) = E zn.
n=O

We view the vector generating function ((z) as defining the service mechanism. Our main

theorem is as follows:

Theorem 9 In an MGEMIG1 system with generalized vacations satisfying Assumptions

G1 - G3 that has mixed generalized Erlang interarrival times characterized by matrices Ao

and Al, vacations distributed according to the random variable V and service mechanism
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characterized by the vector generating function ((z) the vector generating function of the

number of customers in the queue and in the system is given by

ifQ(Z) = (1 - p) ((z) Iv.(Ao + zAl)(1 - z) (x(Ao + zA1) - zI)- 1, (33)

PL,(z) = (1- p) ((z) Iv.(Ao + zA1)(1 - z) (x(Ao + zA1) - zI)-1x (Ao + zA,). (34)

Proof

Let S,, Wv, X be the system, waiting and service time of a customer. Let p be the traffic

intensity. Because of G1 using the exact method of analysis for overtake free systems and

applying (28) for Q, and L, we obtain

ftL,(z) = flQ.(z)Ix(Ao + zA1). (35)

Our goal is to establish another relation between fiL(z) and fQ.(z). Consider a random

observer of the system. Recall that B is the event that the server is busy and B' is the

event that the server is on vacation, at the time of observation. By applying Little's law

to the server P{B} = p and P{B'} = 1 - p. By conditioning on the event B we obtain

P{Q, = n, R,, = i} = pP{Qo = n, R, = ilB} + (1 - p)P{Qv = n, R, = ilB'}, (36)

Conditioning on Zo, Ro, V* we obtain

P(Qv = n, R = iB'} =
M n 

= |j P{Q = n,R = iB', V* = t, Zo = m, Ro = k}
k=1 m=O

P{Zo = m, Ro = k, V' = tB'}dt
M n-1 00

- E p{Z = m, Ro = kB'} ak(t) * a(nm 1 )(t) * (t) dFv.(t)
k=1 m=O

M

+ P{Zo = n, Ro = kB'}10 aL(t)dFv.(t), (37)
k=1

where we used the independence of V' and (Zo, Ro) (Assumption G3 in the definition

of queues with generalized vacations). Let B(z) = [ =oP{Qv = n, RV = ilB}zn]M.

Taking generating functions in (36) and using (23) to (37), we obtain

fPQ(Z) = pB(z) + (1 - p) ~(z) 'v. (Ao + zAj).
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Similarly

P(L, = n, R,, = i} = pP{Q,, = n - 1 n R, = ilB} + (1 - p)P{Q, = n n R,, = iB,

from where, by taking generating functions, we obtain

PL,(z) = pzA(z) + (1 - p) C(z) kv.(Ao + zAl).

Therefore,

PL,(Z) = zPQ,,(z) + (1 - z)(1 - p) ((z) v.*(Ao + zA1), (38)

which combined with (35) gives (34) and (33). 

Remarks:

1. Equation (34), as well as (33), is not formally a decomposition result. It demon-

strates, however the contributions of the various characteristics of the system to the

system length distribution. The first term 5(z) represents the effect of the service

mechanism used. The second term 'iv.(Ao + zAj) represents the effect of the va-

cation, while the third term (1 - p)(l - z) (x(Ao + zA1) - zI)- l x(Ao + zAl)

represents the contribution from the underlying MGEM/G/1 queue without vaca-

tions.

2. In the case of Poisson arrivals we obtain

PL.(Z) = C(z) ov.*(A - Az) (1 - )( - z) A- Az)
Kx(AX - z)-z

which is a formal decomposition result obtained in Fuhrmann and Cooper [5]. The

number of customers in the system is distributed as the sum of three independent

random variables: (1) The number of customers that are left in the system when

a vacation begins, (2) the number of customers that arrive in the system during

a vacation period, and (3) the number of customers in a M/G/1 queue without

vacations. A similar relation is, obviously obtained for the queue length distribution.
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3. Assumption G3 was only used in deriving (37). Without Assumption G3, instead of

(38) we would obtain

P-L.(Z) = ZAQ (Z) + (1 - )( - P)PL,Bf(Z), (39)

where 1L,IBI(Z) is the vector generating function of the number in the system given

that the server in on vacation. Combining (39) with (35) we obtain

PL,(Z) = L,IB(z)(1- P) (1 - Z) (x(Ao + zAl) - zI)-1x(Ao + zA,),

which is the generalization of Proposition 5 in Fuhrmann and Cooper [5].

5.2 Applications of the MGEM/G/1 with generalized vacations

In the previous subsection we have been able to derive a formula for the number of cus-

tomers in the system and in the queue for a MGEM/G/1 queue with generalized vacations

as a function of [(z). Thus, given that one is able to solve for [(z), the queue and system

length distributions are fully characterized and from them the waiting and system time

through the distributional laws. In this subsection we will consider some specific applica-

tions of the previous analysis that have interesting consequences.

The MGEM/G/1 queue with exhaustive vacations

For the case of exhaustive vacations Theorem 9 implies the decomposition results of Doshi

[4].

Theorem 10 (Doshi [4]) For the MGEM/G/1 with vacations V under FIFO, the waiting

time is the sum of the waiting time of a MGEM/G/1 and the forward recurrence time of

the vacation V.

Proof

In this case Zo = 0 and therefore [(z) = P{Z = 0,Ro = i 1 = f, i.e., a vector

independent of z. Then (34) can be written (since all the matrices commute)

fPL,(z) = (1*- p) A (1 - z) (x(Ao + zA) - zI)-1x(Ao + zAl) 4v.(Ao + zA1).
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In a regular MGEM/G/1 queue, however (25) holds, i.e.,

PL(Z) = X (1 - z) (x(Ao + zA1) - zI)-lIx(Ao + zA 1).

But L, (1) = PL(1), since the ith component of each vector is the probability that the

ATC is in stage i which is indepedent of the vacation. Taking limits as z - 1 in the two

previous equations we obtain

(1 - p) fAv.(Ao + Al) =

Therefore, in a MGEM/G/1 with exhaustive vacations

EL,(z) = A 'Iv.(Ao+Al)- (1- z) (x(Ao+zA1) - zI)-'x(Ao+zA1) v.(Ao+zA1),

(40)

where the vector i is computed in (27). (40) offers a complete solution of the MGEM/G/1

queue with exhaustive vacations.

Following exactly the same approach leading to (32) in the proof of Theorem 8 we

obtain that

w (s) = K S)A(( = W(S) V 

i.e.,

W- W V*. n

The MGEM/G/1 queue with gated vacations

In a gated vacation system our goal is to find (z). For this reason we define the following

random variables:

Let J be the time the server spends in the system immediately after he returns from

vacation until he starts a new one. Let F(t) = P{J < t} and qj(s) be the Laplace

transform of J. Let RJ be the ATC stage of the arrival process and N be the number of

the customers that the server finds at the system just after the end of the vacation. We

define A = P{R = m}M=l and N(z) = E[zN].

Finally, we define also the vectors
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1n = P{N = n n R = m}Mm=l and Iq(z) = E,=0 z.n. Note that AJ = 1(1).

From the definition of the service mechanism in a gated system, Zo is distributed according

to the number of customers who arrived during J, thus:

E znp{ZO= n,R = kR = m} =
n=O

j aZ(t)dFj( a(t) a(t)d a )(t) a(t)Fj(t),
n=1

which leads to:

o00

E znP{ZO = n,Ro = k} =
n=O

E P{Rj = m} [ a(t)dFj(t) + E z" am(t) * a(n-1)(t) * ak(t)dFJ(t)
r = l n= 0

which in matrix notation becomes:

((z) = (1) Ij(Ao + zA1). (41)

Furthermore, the time interval J lasts as long as the server is servicing the N customers

he finds upon his arrival. So

qJ(s) = N(qbx(s)). (42)

Finally we need to evaluate N(z) from the characteristics of the system. Recalling the

definition of the gated vacation system we see that N includes the customers that the

server left behind in the system before starting his vacation as well as the customers that

arrived during the vacation interval. Therefore , for n > 1:

n M

P{N = n, Rj = } = P{Zo = k, Ro = m} am(t) * a(n-)(t) * a(t)dFv(t).
k=0 m=l1

Taking generating functions:

.(z) z) (Ao + zA1). (43)

By combining (41), (42) and (43) we have:

~(z) = (1) lv(Ao + A1) J(Ao + zA1), (44)
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where

J(s) = (x(s)) tv(Ao + L(s)Ai) 1- (45)

Equations (44) and (45) fully characterize ~(z) as we can solve for all moments. Moreover

if we use Theorem 9 and the distributional laws we can fully characterize the system.

Remark : Notice that in the Poisson case the recursion formula takes the form

((Z) = (qx(A - Az)) qv(A - Aqx(A - Az)).

6 Priority queues

Priority queues are important in communication and manufacturing systems where jobs

of different significance need to be serviced. In addition, in several applications strict

priority rules (for example the so called cp-rule) minimize a weighted combination of

expected waiting times. It is therefore important to be able to analyze priority queues.

We consider single server priority queueing systems with mixed generalized Erlang

arrivals, in which there are two distinct customer classes, numbered 1 and 2. Customers

of class 1 have priority over those of class 2. Let a(t), b(t) be the pdf of the interarrival

time for the high priority class 1 and the low priority class 2 respectively. We assume

that they are mixed generalized Erlangs of order M1, M 2 respectively. Let (Ao, Al),

(Bo0, B 1) be the corresponding matrices for class 1 and 2 arrivals respectively. Then Ao +

zA 1 = Sl(z)Ol(z)Sl 1(z), and Bo+zB = S2 (z)E 2(z)S2-l(z) where Oi(z) is the diagonal

matrix of the eigenvalues and Si(z) is the matrix with columns the right eigenvectors

(i = 1, 2). We denote with 1/A1 and 1/A 2 the means of the arrival processes. The two

classes have different (general) service time distributions with means E[X 1] and E[X 2],

and they are served by a single server.

We assume that within the same class customers are served in a FIFO order. Although

priority queues allow overtaking among classes, within the same class no overtaking can

take place and therefore the distributional laws are applicable. In this section we use

the distributional laws to derive the distributions of various performance measures. Our

results generalize earlier work of Keilson and Servi [11] for Poisson arrivals.
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We consider different types of priorities (preemptive repeat, preemptive resume, non-

preemptive). The type of priority used does not affect the service time of class 1, but

affects the service time of class 2. In order to develop a generic model to analyze priority

queues in a unified way, we define the effective service time, Gi, i = 1, 2, as the time

from the beginning of service until the customer of class i completes service (G 1 = X1,

regardless of the priority rule used). We can visualize the effective service time as the time

spent in a service boz. The service may be interrupted and resumed from where it was

left or may start over, but the customer is assumed to stay in the service box until he is

completely served. In this setting, the time in queue refers to the time from the arrival of

the customer until the customer enters the service box.

The section is organized as follows. In Section 6.1 we generalize the classical results of

Takacs [15] for the M/G/1 queue for the busy period distribution to a matrix form. This

generalization, which is also of independent interest, is essential since the service time of

class 2 customers in a preemptive priority system depends on the busy period distribution

of class 1 customers. In Section 6.2 we find the effective service time distribution in

various preemptive systems as a function of the busy period matrix. In Section 6.3 we

analyze systems with preemptive priorities, while in Section 6.4 we analyze systems with

non-preemptive priorities.

6.1 The high priority customers busy period matrix

We denote with ATC 1 and ATC 2 the two arrival timing channels. In this section we will

compute the busy period matrix Jl(s) with [El(s)]i,j = aij(s), i, j = 1,...,M 1 denoting

the Laplace transform of a sub-busy period interval for class 1 that ends with ATC1 = j

given that it started with ATC1 = i. Note that though a busy period interval is initialized

by the first customer that arrives after an idle interval, a sub-busy period is initialized

whenever a customer enters service (see for example Kleinrock [12] p. 210) and therefore

at the beginning of a sub-busy period ATC 1 can be in any stage.
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Theorem 11 In a MGEM, /G/1 queueing system where the interarrival process is char-

acterized by the matrices Ao and A1 and the Laplace transform of the service time is

qx,(s) we have that:

1(s) = E x,1 (s - xj(S))(J)( ( S)),
j=1

where zj(s) are the M1 roots of the equation

a(z)Ox,.(s - z) = 1, Re(z) < 0 for Re(s) 0,

and

[ s) ... ( ] = I -

Proof

We will use a generalization of the classical sub-busy period decomposition argument for

the evaluation of the busy period for the M/G/1 queue (Takacs [15]). The duration of

a busy period is invariant under the service discipline provided that the server is always

busy if there are customers present. We then use the last-come-first-serve (LCFS) service

discipline. Let Bi,m be the duration of the sub-busy period for class 1 customers that

ends with ATC 1 = m given that it started with ATC 1 = i. This definition is useful for

the decomposition of the busy period into sub-busy periods. Let Ra ° be the ATC 1 stage

occupied by the customer just after the first customer of the sub-busy period is served. Let

Ni(z) be the number of class 1 arrivals during z given that ATC1 = i. Then, conditionally

on the event U = {Ral = j, X1 = z, Ni(z) = n} we obtain the following decomposition,

for n > 1

E[e sBimIRa° = j,X l = 2, Ni(z) = n] = E[e(+Z ... Bj2+Bj2+...+Bin,')]
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Unconditioning, we write the previous relation in matrix form

al(x) ... aml (x)

r~(a) = " e * '. . dFx, (x)+
0 ... am'() JaMl

am ()

aMl (za) )
In order to compute El1 (s) we will compute its eigenvalues and eigenvectors. Multiplying

both parts of the previous equation with ((s), the right eigenvector of El(a) corresponding

to the eigenvalue u(s), and using equation (23) we obtain:

1l(s)(s) = u(s)g(s) = x, (sI + Ao + u(s)Al)((s). (46)

(Notice that for M1 = 1, this reduces to ol(s) = qx, (s + A - Aoa(s), which is the equation

that the transform of the busy period satisfies in a M/G/1 queue.)

Therefore e(s) must be a right eigenvector of x, (sI + Ao + u(s)A1) and equiva-

lently a right eigenvector of Ao + u(s)AI with corresponding eigenvalue -(s). Bertsi-

mas and Nakazato [2] have shown that u(s)al(x(s)) = 1 and furthermore from (46)

u(s) = kX1(s - Z(s)). Therefore, the eigenvalues uj(s) (j = 1,...,Ml) of E1(s) are

computed as follows: uj(s) = Ox, (s - xj(s)), j = 1,..., M1 where xj(s) are the M1 roots

of the equation

a(z)Ox,(s - z) = 1, Re(x) < 0 for Re(s) > O.

Moreover, -(s) is the right eigenvector of Ao + qx, (s - xj(s))A1 corresponding to the

eigenvalue -zj(s). The left eigenvectors are computed in [2] and are equal to ci'(zj(s)).

Having characterized the eigenvalues and eigenvectors of E1(s) we can spectrum de-

compose it as follows:

Ml

1(s$) = E x, ( - j($))j($)atl (Tj(s))
j=1
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where

(tS) ... [ 1() -1 

Remark: The transform a,(s) of the busy period distribution is given by

0(s) = l(S) -

6.2 Effective service time distribution in preemptive systems

According to preemptive disciplines, whenever a high priority customer finds a lower

priority customer in service, he interrupts the service in progress and starts his own im-

mediately. Once there is no higher priority customer left in the system, the interrupted

customer reenters service and depending upon the manner in which he is serviced on his

reentry, the preemptive discipline can be further broken down into the following three

categories:

* Preemptive resume discipline:

Under this discipline the interrupted customer continues his service from the point

of interruption.

* Preemptive repeat different discipline:

Under this discipline the interrupted customer continues his service by resampling.

* Preemptive repeat identical discipline:

Under this discipline the interrupted customer continues his service without resam-

pling.

Each of these three preemptive disciplines is going to affect the effective service time of

class 2 customers. In this section we calculate the effective service time in all the three

preemptive categories as a function of the class 1 busy period matrix.

We define random variables G', i, j = 1,..., M 1, which is the effective service time of

a class 2 customer such that ATC1 = j when the class 2 customer finishes service given
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that ATC 1 = i when this class 2 customer started service. Let OG (.s) be the Laplace

transform of G' and let G 2(s) denote the matrix with elements Gj (s). Our goal in this
2

section is to compute the matrix G 2(s).

Preemptive resume discipline

Proposition 2 In a single server system with two priority classes each of which satisfies

the assumptions of Theorem 1 and has mized generalized Erlang interarrival times charac-

terized by matrices Ao, A1 and Bo, B1 respectively, the effective service time of the class

2 customers for the preemptive resume discipline is given as follows:

G2 (s) = x 2(Ao + AlIl(s) + sI).

Proof

According to the preemptive resume discipline, whenever a low priority customer service

is interrupted, the duration of the interruption is exactly the duration of a high priority

customer busy period. Furthermore, due to the characteristics of the mixed generalized

Erlang arrival process we condition on Rb', the ATC 1 stage immediately before a low

priority customer enters service. Let G (s) be the Laplace transform of the effective

service time of a class 2 customer that ends leaving the ATC 1 = i given that it started

with the ATC 1 = k. Then

E[e' IX2 = ] = e-{a|(Z) + Jl 1 [1(s)]j1 ak(X)* ai (X)

M, M,

+ I E [jI 1(S)]1jI[l(S)I'Jj'l 2 ak(x) * * a() * J2 () + . . .},
jl 1 j2 =1

where the first of the right-hand side terms represents the probability that there are no

interruptions during the regular service time of the low priority customer, the second the

probability of having just one interruption, where we have to take into account the ATC

stage of the high priority customer at the end of the type 1 busy period, and so on. By

writing the previous formula in matrix notation we obtain:
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E[e G2 'IX 2 = x] = e- sek I al(Z) ... .a ()

o ... a()1( 

(al(x)[El(s)]l,l+...+aM,()[ (J)]M. )( -l)*([ 1(9)1, 1(Z)+. .+[l(J)]',MaM%(z))ei.

Using (23) we obtain:

E[e'G"' IX2 = ] = e-SZeZ e-(Ao+Ai i())

Therefore,

E[e- °G ' ] = : ek x 2 (Ao + A1El(s) + sI)ei,

and hence,

G 2(s) = x,(Ao + A 1El(s) + sI). O

Remark: For the Poisson case we obtain

G,2 (s) = qx 2(Al - Ala(s) + s),

which is in agreement with Jaiswal [9].

Preemptive repeat disciplines

Let d(t) = (al(t),..., ak(t),...,aM, (t))' and A(t) =
al'(t)

am '(t)

Proposition 3 The effective service time G 2 for the preemptive repeat discipline under

the assumptions of Proposition 1 is given as follows

* In the case of the preemptive repeat different discipline

G 2 (J) = jo A(X) efx 2 (Z)dI - J fx2(a) d(yy)e-'dydz el 1(S)]

* In the case of the preemptive repeat identical discipline

G 2(s) = j A(x) [I - j 9(y)e-dy e (s)]1 e-'t fx 2 ()dz.
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Proof

The underlying experiment is the following:

Assume that a class 2 customer enters the service facility at r0 and his service time is given

by a value of the r.v. X 2. At the moment he enters service there are no type 1 customers

in the system and ATC 1 = k. There are two possibilities for the remaining time until the

next arrival of the high priority arrival process:

* either it is greater than the selected value of X2 and in this case Gki = X2, where i

is the stage of the ATC 1 when the low priority finishes service;

* or it is less than the selected value of X 2 and at the moment that the next type 1

customer arrives the service of the type 2 customer is interrupted and it starts over

with a new value of the r.v. X2 as soon as the busy period initialized by the type

1 customer is over for the preemptive repeat different discipline or with the same

value of the r.v. X 2 for the preemptive repeat identical discipline.

So for the repeat different case, conditioning on X2 we obtain

E[e-'Gk'IX 2 = ] = ak(z)e-' + ak(y)e-'dy e E1 (s)G 2 (3) e.

Thus,

qbG,(s) = j a'(T)e -xfx 2 (z)dz + fx 2 (z) ak(y)e-'Ydydz ' E1 (s)G2 (s) ei,

And in matrix form:

G 2 (s) = fo A(z) e-fx 2 (z)dz [I- fo fxW(z)fo a(y)e-dydx e, (s)] 1

Finally for the repeat identical case:

G2 (s) = f A(z) [I- fo (y)e -'dy ev Il(3)] e-"'fx 2(z)dx.C

In the case of Poisson arrivals we can obtain the results of Jaiswal [9], namely:

G2 - (1 - x 2(s l + Al))l( and
~G'( 1 (1 - X 2 (s + Aj))o 1 (s)
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OG. (S) Jo1- (1 - e-(+ ))a l( Fx ,

for the preemptive repeat different and the preemptive repeat identical discipline, respec-

tively.

6.3 Preemptive priorities

In this section we analyze a generic preemptive discipline in terms of the distribution of

the effective service time. In this way we are able to analyze all preemptive disciplines we

considered in a unified way.

Let Li, Qi, Si, Wi, Ri, i = 1, 2 be the system and queue length, system and waiting time

and ATC stage of the arrival process, respectively, of class i = 1, 2. Notice that the low

priority customer that may be in the service box without being served is not taken into

account in the number of low priority customers in the queue.

Let L+ , Q+ and Ra+ be the number of customers of class i in the system, in the queue

and the ATC stage of class i, respectively, immediately after a departure epoch of class 2.

Let L-, QT and R- be the number of customers of class i in the system, in the queue

and the ATC stage of class i, respectively, just before a transition epoch of the arrival

process of class 2. A transition includes both arrivals in the system and shifts to the next

exponential stage of the ATC according to the definitions of Section 2.2.

Let L?, Q? and R? be the number of customers of class i in the system, in the queue and

the ATC stage of class i, respectively, just before an arrival of a class 1 customer.

We also define the matrices

n.+ [P{[L+: n n R m =m n R = = }] 1
2 2 I)m=l 1=1 

n = [P{L = n R =mn R = }]=M 
=l ]m=1 i=1

IIn = [P{L2 = n R1 = m n R 2 = }]_ l 1 'Ml 2

and the matrix generating functions
co 00oo

1L(Z) =E Z n ItL2(Z) = n, and IIL 2 (z) = O zII
n=O n=O n=O
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Exchanging L2 with Q2 we similarly define the generating functions II2(z), II2(z) and

IIQ2 (z).

High priority customers

As long as the discipline is preemptive the high priority customers see a usual MGEML /G/1

queue. Therefore , Theorem 8 can be used to find the distributions of L 1, Q1, S1, W1.

Low priority customers

We will apply the exact method of analysis of Section 4. We will first establish relations

between L + , L- and L 2 and L+ and Q+ that will be used in the analysis of preemptive

systems.

Proposition 4 Let II+2(z), - (z) and 11 L2(z) be the matriz pgf for the post-departures,

the pre-transitions and the general time probabilities of a class 2 customer for a preemptive

priority system satisfying the assumptions of Theorem 1. Then

L2 (Z) = IL 2(z), (47)

and

A2 (1 - Z) II+ (z) = (Ao + A1 )' IL , (z) + IL2 (z) (Bo + zBl). (48)

Sketch of Proof

First we apply the uniformization technique to the two phase renewal processes and we

choose the uniformization constant v = l + v2 such that vk > max Ak,ik for k = 1, 2, i =

1,..., Mk. The epochs of transitions in both processes are therefore Poisson and thus (47)

follows from PASTA.

In order to establish (48) we follow closely the approach of Bertsimas and Nakazato [1]

to establish the relation between post-departures and the pre-transitions probabilities in

stochastic processes with random upward and downward jumps. We first write down the

flow balance equations for all states, where each state has four indexes corresponding to

the two phase type arrival processes, and then we use the fact that our priority discipline is

preemptive, i.e., class 2 departures can only happen if there are no class 1 customers in the

system. Finally, by taking generating functions in the number of low priority customers in
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the system we obtain (48). The computations are algebraically involved but conceptually

simple. o

Proposition In a preemptive single server priority system with two classes of customers

each arriving according to a generalized Erlang distribution:

M1

IIL(z) e = yk II,(z) G,i(Bo + zB1) ej.(49)
k=1 2

Proof

Conditioning on the state of the queue that a class 2 customer left behind at the moment

he started service and the duration of the effective service time we obtain

{L+ = n, R+ j} =

n M M2

Z Z P {Q = k, R+ = m, R+ = 1} b,(t) * b(n-k-1 )(t) * bj(t) dFG,dP(t).
k=0 m=1 =1

By writing the previous equation in matrix form we obtain (49). oE

Let Ek, k = 1,2 be the number of class k customers in queue given that no class k

customer is in the service box. Let Ak be the number of class k customers in queue given

that there is a class k customer in the service box. We introduce the matrix generating

functions

00n=O

oo

IIa,(Z) = E zn [PIA2 = n n R = i n R = li=M' j= M_1 2 

n=O

Furthermore, let E be an M1 x M 2 matrix and I 2 be an M 2 vector such that -,j =

P{R1 = i, R 2 =j IL1 = 0, L2 = 0} and H,2 = P {R = r IL =0, La = 0}. Finally, let

B;*i be the forward recurrence time of a class 1 busy period that ended while ATC 1 = i.

Then the Laplace transform of B*,i, oJi(s) is given by

= 1
0l,il ) sE[BI,]

We also introduce the traffic intensities pi = AiE[Xi], p = P1 + P2 and we define

pa = P{one class i customer is in the service box}. Our main result is
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Theorem 12 In a preemptive queueing system with two priority classes each of which

satisfies the assumptions of Theorem 1 and has mixed generalized Erlang interarrival times

characterized by matrices Ao, A 1 and Bo, B 1 respectively, the matriz generating function

of the number of low priority customers in queue is calculated as a function of the system

characteristics and the effective service time matriz from the following algorithm:

1. Calculate the matriz generating function IIE 2 (z) such that:

E(,) ei = (l- Pl) -e i + Pl 2 4B;i(Bo+ zB), i= 1,...,M2 , (50)

where

1 - p.l,E[X] - p2,j2,jE[X2] Al ,r 

1 - J - P2 , r=

1=-1Ezrl 1,lpl,l-I,r

and B*i is the forward recurrence time of a class 1 busy period that ends while

ATC1 = i, and has Laplace transform aui(s) = 1[EIi

2. For i = 1,..., M 1 solve the system that would give the postdeparture probabilities

Ml

E k II,(Z) *G1,i(Bo + zB1) - z e/ n (z ) =
k=1

5
i(1 --pa) [(Ao + Al)' IE 2 (z) + IE 2(z)(Bo + zB1),] (51)

2

The constant Pa: is calculated from the relation

lim II2 (z ) i= 1.
z--- 1 Q

3. The general time queue length distribution for class 2 customers is calculated by

solving the system

(Ao + Al)' IIQ2(z) + IIQ 2 (z) (Bo + zB1) = A2 (1 - Z) nQ 2 (Z).
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4. The waiting time distribution for class 2 customers can be calculated by applying the

distributional law

1'Q 2(z) = 2(1- z)e1 '4w2(Bo + zB )(Bo + zB1)-1

Proof

Following the exact method of analysis of Section 4, our strategy for calculating the

queue length distribution for class 2 customers is to find two relations between IL2 (z)

and IIQ2(z) and then solve the underlying linear system. In (49) we have found the first

relation between I+l(z) and If2l(z). In order to find the second relation we condition on

whether there is a class 2 customer in the service box and we obtain that

I1Q2(Z) = PA2 IIA 2(z) + (1 - pA2) HE2 (z),

IIL2 (Z) = ZPA2 Ia 2 (z) + (1 - P, 2 ) nIE 2 (z).

Hence,

IIL (Z) = zIIQ2 (z) + (1 - z)(l - Pa2 ) IIE2(Z) (52)

In order to find HE2(z) we use the following argument:

Because of the preemptive discipline, class 1 customers are not influenced by the fact that

there is no low priority customer in the service box; so the server serves a class 1 customer

with probability pi and does not serve class 1 customers with probability 1 - pi. In order

for a random observer to see n > 1 class 2 customers given that there is no class 2 customer

in the service box, he has to arrive during a class 1 busy period. Therefore, if we denote

by H2, the probability that the high priority customer who initialized the last class 1 busy

period found, upon his arrival, the class 2 customer in stage r, we have for n > 1

P{E2 = n, R1 = i, R 2 = j} = P1 E H2r Xf b(t) * (t) b(-l) (t) dFB;,(t).

Similarly,

P{E2 = O, R1 = i, R 2 = j} =

M 2 oo

= (1 - pi)P{R = i, R2 = i | L1 = 0, L = 0} + P E H2,. Mr (t)dFB;,(t).
r'-1
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where FB;.i (t) is the cdf of the forward recurrence time of a class 1 busy period that ends

with the class 1 customer being in stage i. Taking generating functions (50) follows.

We now proceed to calculate the constants appearing in (50).

-ii= P{Ri = i,R 2 = j L = 0, L2 = 0} = P{ L = 0, L 2 = 0R1 R = j} (53)
P{L 1 = 0, L 2 = 0}

By applying Little's law to the server we obtain

P{L1 = O, L 2 = 01 R 1 = i, R2 = j} 1 - P,iAl,iE[X1] - P2,jA2,jE[X2],

and therefore, using (30) we have

P{L1 = 0, L 2 = O, R = i, R 2 = j} =

{1 - pl,Al,E[Xl] - p2,jA2,jE[X2]} (-h plr) A2Ajji -2l p,,) J -
r= A2,j r=l

We also know that P{L1 = 0, L 2 = 0} = 1 - P- P2 and by substituting to (53) we

obtain i

Finally

Ha, P Ra _ La-=O La _ O _ CfM PL = L = O R
= , R = r }

2 1 2 - PIL = 0,LI = 0}

But, because of the uniformization

P{L~ = O, L = O, Ra = 1, R = r= r A,p l ,jP(L 1 = 0, L 2 = O, R1 = 1, R2 = r}

and thus

H2r = 1M Z MA1 , 
1_1 r=l

Multiplying (52) with (A + A)' from the left and with (Bo + zBl) from the right and

using (49) we obtain (51). Notice that (51) determines II 2(z) up to the constant p%2

which is calculated from the relation

lim 'IIQ2(z) .
z--+l Q
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Having found H2(z), we find IIQ2 (z) from (48), while the waiting time W 2 can be calcu-

lated by applying the distributional law (11):

IIIQ,(z) = A2(1 - )e i'Ow,(Bo + zB 1)(Bo + zB 1)- . o

Remarks:

1. In the case of Poisson arrival processes (51) gives:

2() = 1 - )( - p) A2(1 - ) + (1 - l(X - A2z))
A2 - A)1P) qG:(A2 - A2z)- 

which is exactly the relation obtained in Keilson and Servi [11] using a different

derivation. The probability pA2 can be obtained either by requiring lim.l I S (z) =

1, which in this case leads to Pa2 = A2E[G2 ] or by applying Little's law in the

service box.

2. The system time for class 2 customers is found from

S2 = W G2,

while (52) offers a a way to calculate the distribution of the number of class 2

customers in the system once the distribution of the number of class 2 customers in

the queue is determined.

6.4 Non-preemptive priorities

In this section we analyze the single server priority system under a non-preemptive dis-

cipline, where an arriving high priority customer that finds a low priority customer in

service does not interrupt the service in progress. Therefore, the effective service time for

class 2 customers under a non-preemptive priority discipline is G2 = X 2. Furthermore, as

no customer stays in the service box unless he is actually being served, the waiting time

is in this case defined without ambiguity, exactly as in the case of a single MGEM/G/1

queue. We will first calculate the distribution of the number of class 1, customers in the

queue and in the system.
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High priority customers

Due to the fact that we do not allow preemption, the number of class 1 customers in

the queue as well as their waiting time are influenced by the possible existence of a class

2 customer in the service facility. Let Rb' be the stage of ATC 1, just before a class 2

customer enters service.

Let Bi be the event that the server is busy servicing a class i customer at a random time

of observation.

Let A1 be the number of class 1 customers in queue given that there is a class 1 customer

in service. We introduce the vector generating function:

00oo

~a, (z) = E Zn[PiA1 = nn R1 = i] i' u,
z=O

and the scalar generating function Ga, (z) = E=0 z'P(Al = n}. We also introduce the

row vectors and I1, such that:

Ei= P{L = P 1 = O. L 2 = O. R1 = i and H 1 = P({Rb r}.

Finally we will use it as defined in Section 4, i.e

Al i-1
H i = d - A,p 1,iE[Xi]) II(1- P1,k)

1,i k=l

Theorem 13 In a non-preemptive queueing system with two priority classes each of which

satisfies the assumptions of Theorem 1 and has mized generalized Erlang interarrival times

characterized by matrices Ao, A1 and Bo, B1 respectively, the vector generating function of

the number of class 1 customers in the queue and in the system is given as a function of

the system characteristics as follows:

Pq,(z) = (1 - Z)[P2IIflx;(Ao + zA1) + I] [x,(Ao + zAl) - zI]- , (54)

/Ll (z) = (1-z)[P2i 1 ix;(Ao+ zA) + E] [x(Ao + zA) - zI]- x(Ao+ + zA), (55)

where,
i-i

Ei = {1 - pl,iA,i - E[Xl](1 A2E[X2]}- ,k), (56)
k=l
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and t 1 satisfies :

i-1

P2 il1 x;(Ao + Al) = (1 - A,ipl,iE[Xl]) I (1 - P,k) - E
k=1

Proof

From the vector distributional law (28) we have:

PL, (Z) = PQ1 (z)4x(Ao + zAl). (57)

We should establish a second relation between PL, (z) and PQ1 (z). Consider a random

observer of the system and let Bi be the event that the server is busy servicing a class i

customer at the time of observation. By applying Little's law to the server P{Bi} = Pi

and by conditioning on the events Bi we have, for n > 1 :

P{Q1 = n, R1 = i} = piP{Q1 = n, R 1 = ilB1} + p2P{Q1 = n, R 1 = ilB2 },

or by using the definition of A :

P{Q 1 = n, R 1 = i} = plP{Al = n, R 1 = i} + P2P{Ql = n, R 1 = iB 2 },

and for n = 0 we also have:

P{Q1 = 0, R1 = i} =

plP{A = O, R 1 = i} + p2 P{Q1 = O, R 1 = ilB 2 } + P{L1 = O, L 2 = O, R 1 = i}

or equivalently:

P{Q1 = O, R 1 = i} = plP{AI = 0, R 1 = i} + P2 P{Q1 = 0, R1 = iB 2 } + Ei.

Furthermore, if we denote by H1, the probability that ATC1 = r just before a type 2

customer enters service, we have that for n > 1:

P{Q1 = n, R 1 = iB 2 ) = E Hi, . a(t) * a()(t) * ail(t) dFx;(t),
r=
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and P{Q1 = O, R 1 = iIB 2) = EM H1, fj' a(t) dFx;(t).

By taking generating vector functions we get:

PQ 1 (Z) = Pia,(() + P2ll x;(Ao + zAl) + £.

Using the same analysis for the number of customers in the system we also obtain:

L,1(z) = P1ZPat(z) + P2 1 1 lx;(Ao + zA1) + .

Combining the last two equations we have:

PL (Z) = ZPQ, (Z) + p2(1 - )ai 2 tx;(Ao + zAl) + (1 - z). (58)

From (57) and (58) we obtain (54) and (55). Finally we need to calculate the vectors 1

and P. First note that Ei = P{L1 = 0, L 2 = 0, Rl = i}, so by applying Little's law to

the server we get (56). In order to calculate 1 we recall that in a regular MGEM/G/1

queue (25) holds, namely

PL(z) = (1 - Z)t(lx,(Ao + zAj) - zI)- l Ix, (Ao + zA 1).

But Ll, (1) = IPL(1), since the ith component of this vector represents the probability that

the ATC of the arrival process of class 1 is in stage i. Thus by taking the limits as z - 1,

we get

pz2l1 x;(Ao + Al) = Il- ,

where Hi (1 - AliplE[Xl]) flil (1 - P1,k) C1

Remarks:

* Using (54) and (55) as well as the vector distributional law one can easily calculate

the waiting time distributions, as in the case of the single MGEM/G/1 queue.

* Note that once again for Poisson arrivals (54) take the form:

GQ(z) = (1 - )[P 2 x;(A1 - 1lz) + (1 - - P2 )](kx,(Al -PA z)- )-1,

which is the exactly the result obtained in Keilson and Servi [11].
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Low priority customers

The waiting time of the low priority customer equals in distribution the total unfinished

work in the system at the moment of his arrival subject to generalized Erlang interruptions,

corresponding to class 1 arrivals. As the work in the system as well as the distribution

and duration of the interruptions do not depend on whether we give non-preemptive or

preemptive resume priority to the class 1 customers we can conclude that the waiting time

distribution for the low priority customer under a non preemptive policy is the same as the

waiting time under a preemptive resume policy (see Keilson and Servi [11]). However this

is not true for the waiting time in the system because of the notion of the effective service

time that we used in the preemptive priority analysis. Nevertheless we can calculate

all the distributions of interest by using the distributional laws as well as the relation

S2 = W2 X 2.

7 Concluding Remarks

We have demonstrated that overtake free systems can be analyzed in a unified way through

the distributional laws, which we believe deserve a more prominent place in queueing the-

ory. More than providing a method of analysis for a class of systems, the paper identified

a subdivision of queueing theory into overtake free systems, which can be analyzed us-

ing distributional laws, but are unfortunately a small subset of the systems encountered

in applications, and systems, which allow overtaking, which are not analyzable directly

through the techniques of this paper.

In the case of overtake free systems, we showed several insights and new results that can

be obtained. One which we consider particularly satisfying is the derivation of heavy traffic

results (usually derived using diffusion methods) and exact results can be achieved in a

unified way using the asymptotic and exact method of analysis based on the distributional

laws.

The distributional laws only provide a partial answer (only for overtake free systems)

to the question we raised in the first section of the paper regarding the laws of queueing
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theory. The major open problem is to identify queueing laws for systems that allow

overtaking, which lead a complete solution. This is a rather challenging but important

problem as it includes well known open problems as special cases (GI/G/s, queueing

networks, etc.). A solution to this problem will lead, however, to a more complete theory

of queues and is likely to provide very valuable new insights.
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