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Abstract

We present a practical algorithm for computing the minimum volume n-dimensional
ellipsoid that must contain m given points ai,...,a, € R*. This convex con-
strained problem arises in a variety of applied computational settings, particu-
larly in data mining and robust statistics. Its structure makes it particularly
amenable to solution by interior-point methods, and it has been the subject of
much theoretical complexity analysis. Here we focus on computation. We present
a combined interior-point and active-set method for solving this problem. Our
computational results demonstrate that our method solves very large problem in-
stances (m = 30,000 and n = 30) to a high degree of accuracy in under 30 seconds
on a personal computer.
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1 Introduction

This paper is concerned with computing the minimum volume ellipsoid in n-dimensional
space R containing m given points aq, ag, . .., a, € R*. This minimum volume cover-
ing ellipsoid (MVCE) problem is useful in a variety of different application areas. In
computational statistics, the minimum volume ellipsoid covering k of m given points
in R™ is well known for its affine equivariance and positive breakdown properties as a
multivariate location and scattering estimator [2]. In the area of robust statistics and
data mining, efficiently finding outliers is a challenge that has attracted much research
interest [10]. Indeed, one can identify data outliers quickly if one can compute the min-
imum volume ellipsoid quickly, since outliers are essentially points on the boundary of
the minimum volume covering ellipsoid. Another emerging research area in data mining
is that of finding linear-transformation-invariant (or scale-invariant) clustering methods
that work for very large data sets; invariance under linear transformation is important
in a multi-dimensional setting where different coefficients have different units of mea-
surement. Traditional distance-based clustering methods such as k-mean or k-median
methods are not scale-invariant. However, clustering using minimum volume ellipsoids,
which use the minimum volume covering ellipsoid to cover all points in each cluster and
minimizes the total volume of these covering ellipsoids, has the linear-transformation-
invariance property.

The minimum volume covering ellipsoid problem has been studied for over fifty years.
As early as 1948, Fritz John [6] discussed this problem in his work on optimality con-
ditions. Barnes [1] provides an algorithm for this problem based on matrix eigenvalue
decomposition. Khachiyan and Todd [9] first used interior-point methods in developing
an algorithm and a complexity bound for the closely related maximum volume inscribed
ellipsoid problem (MVIE) together with a linear reduction from MVCE to MVIE; the
complexity of their algorithm is O(m?®In (£) In (%2£)) arithmetic operations. Here
R is defined such that the convex hull of the given points contains the unit ball cen-
tered at 0 and is contained in the concentric ball of a given radius R. Nesterov and
Nemirovski [11] obtain a complexity bound of O(m3® In(£)) operations, and more re-
cently Khachiyan [8] has reduced this to O(m?*®In(2)) operations. Zhang [16] presents
interior-point algorithms for MVIE, based on various equation system reduction schemes.
In [17], Zhang and Gao extend their earlier results and compare different practical algo-
rithms for the maximum volume inscribed ellipsoid problem. Boyd et. al [15] and Toh
[12] both consider the minimum volume ellipsoid problem as a special case of the more
general maximum determinant problem.

In contrast to the theoretical work on the MVCE problem, herein we develop a prac-
tical algorithm for the problem that is designed to solve very large instances (m = 30, 000
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and n = 30) such as those that arise in data mining contexts. We present a combined
interior-point and active-set method for solving this problem. Our computational results
demonstrate that our method solves these very large problem instances to a high degree
of accuracy in under 30 seconds on a personal computer.

The paper is organized as follows. In the rest of this section, we present notation. In
Section 2, we review different relevant primal and dual problem formulations. In Section
3 we present our interior-point algorithm for solving the MVCE. In section 4, we briefly
review the Frank-Wolfe method for this problem, and in Section 5 we develop active set
strategies. Computational results are presented in Section 6. Section 7 discusses some
unsuccessful algorithmic approaches that we tried, and Section 8 contains concluding
remarks. Last of all, we show in Section 9 the relationship between our interior-point
algorithm and the theory of self-concordance of [11].

Acknowledgement The authors thank Kim Chuan Toh for his assistance with the
software SDPT3 and for his guidance on computational matters. The authors also
thank Yurii Nesterov for guidance on issues regarding self-concordant functions.

1.1 Notation

Let S7, and S | denote the convex cone of n xn symmetric positive semidefinite matrices
and symmetric positive definite matrices, respectively. We use > and > to denote the
partial ordering induced by the cones S} and S7,, respectively. The vector of ones
is denoted by e := (1,1,...,1)7, where the dimension is dictated by context. The
capital letters U and T are used to denote the diagonal matrices whose diagonal entries
correspond to the entries of the vectors v and t: U := diag(u) and T := diag(t). The
Euclidean norm /4Ty is denoted by ||y||. For a given symmetric positive definite matrix
M, define the M-norm by ||v|y := VT M.

2 Primal and Dual Formulations

Our concern is with covering m given points ay,as,...,a, € R* with an ellipsoid of
minimum volume. In order to avoid trivialities, we make the following assumption for
the remainder of this paper:

Assumption 1 The points ay,...,a, are affinely independent.



Let A denote the n X m matrix whose columns are the vectors ay,as, ..., e, € R™:

A= [ar]ag] -+ |am)] -

We point out that in most applications of the minimum volume covering ellipsoid
problem, particularly those in data mining, one cannot presume much in the way of
special structure of the data aj,as,...,an,. In particular, the matrix A may be fairly
dense, and in all likelihood AT A as well as AAT will be completely dense.

For ¢ € R* and @ € ST |, we define the ellipsoid
Eq.:={z€R"(z—¢)"Qz—c) <1};
here ¢ is the center of the ellipsoid and @) determines its general shape. The volume of

Eg . is given by the formula F(’;—%Hj#, see [4] for example.
7

Under Assumption 1, a natural formulation of the minimum volume covering ellipsoid
problem is:

(MVCE') ming, detQ?
st (ai—0)"Qai—c)<1,i=1,...,m
Q0.
As written, MVCE! is not a convex program. By the change of variables:
M=Q% and z:Q%c,
we restate the problem as

(MVCE?) miny, %(M,2) :=-—Indet M
s.t. (Mai—z)T(Mai~z)§1,i=1,...,m (1)
M0,

which is now a convex program. If (M_, Z) is a solution of MVCE?, we recover the solution
of MVCE! by setting (Q,¢) = (M?, M~13).

Using standard Lagrange duality constructs, one can construct the following dual
problem of MVCE?:

(DY) max, o¢(u) := (2In2+ %) + LIndet [AUAT - f%] —elu
s.t. u>0,

(2)



and ¢(u) < (M, z) for all v and (M, 2) feasible for (1) and (2), respectively.

Using the fact that

det |AU AT —

)

AuuTAT} — det (AUAT Au) 1

eTu UTAT eTu eTu

we can re-write (D') as:

— 2In(eTu) — eTu 3)

2

. i AUAT  Au
(D?) max, (%In2+ %)+ }lindet ( AT eTu) L

st. u>0.

If we then re-write u as u = A where A = €7

(D?) as follows:

u and % € RT, we can further re-write

(D) maxj g, InX— X

S.t.

N

at AT eTq

._.
=
N}
[N
Sa—r’
+
l:
[
-
—
=
St
+
rol—
—
]
o
D
=t
N

AU AT Aa) B
(4)

Gathering terms in the objective function and optimizing with respect to A yields A = 5
which when substituted yields the following refined dual problem:

(RD) max,
s.t.

AUAT  Aq )

aTAT  eTg

D~

%Inn) + %lndet (
T 1 (5)

IV &
S |l

T

We call RD a refinement of (D?)
variable A.

ecause we have optimized with respect to the scalar

2.1 Solution via Available Interior-Point Software

MVCE? can be re-written as a log-determinant maximization problem subject to linear
equations and second-order cone constraints:

(MVCE®) minps,y. —Indet M
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s.t. Ma, —2z—-y;=0,i=1,...,m

wi=1,i=1,...,m
(yi,w;) €Cy , 1=1,...,m
M=0,

where C} denotes the second-order cone {(y,w) € R | ||y|| < w}. The format of
MVCE? is suitable for solution using a slightly modified version of the software SDPT3
(see [14], [13]), where the software is modified in order to handle the parameterized
family of barrier functions:

Bo(M,y,t) == —Indet M — 6> In (w? — (3:)" (vi)) (6)

i=1

for # > 0 (and where the parameter @ is of course absent from the first term above).
However, because SDPT3 does not allow for unrestricted variables, the linear equations
defining the variables y;, w;,4 = 1,...,m, cannot be eliminated, and as a result the
Newton step at each iteration must unavoidably form and factorize an m(n+1) xm(n+1)
Schur-complement matrix. Even for only reasonably large values n and m, say n = 10
and m = 1,000, the computational burden becomes prohibitive.

Notice that RD is also a determinant maximization problem subject to linear in-
equality constraints and can also be solved using a modified version of SDPT3. The
computational bottleneck at each iteration of SDPT3 lies in forming and factorizing a

. . 2 2
Schur complement matrix of size ("—%) N ("——*g—"ﬂ)

In order to solve large practical instances of the minimum volume covering ellipsoid
problem (n > 20, m > 1,000, for example), we develop our own specialized methodology,
designed to take explicit advantage of the structure of the problem and the typical
instance sizes that one might encounter in practice, particularly in the context of data
mining. In Section 3, we present our basic algorithm, which we call the “dual reduced
Newton” (DRN) algorithm; this algorithm is then applied and/or modified to work with
active set strategies in Section 5.

2.2 Some More Duality

Taking the Lagrange dual of RD and further refining the resulting minimization problem
yields the following problem:



(PL) miny (%2Inn)— (%In(n+1)) — ;IndetY

T
A . 7
s.t. (‘;) [Y](al’)gl Li=1,...,m ™

Y e Syt
Problem (PL) seeks to find the minimum volume ellipsoid in R"*! centered at the origin
that contains the lifted points (a;,1)* for ¢ = 1,...,m, where each point a; has now
been lifted into R*™! onto the hyperplane H := {(z,Zn+1) | Zny1 = 1}. [9], [8], and [11]
propose algorithms for solving minimum volume covering ellipsoids based on this lifting.
The minimum volume ellipsoid of the original problem is recovered as the intersection

of the hyperplane H and the minimum volume covering ellipsoid centered at the origin
containing the lifted points (a;,1)7,i =1,...,m.

3 Dual Reduced Newton Algorithm

In this section we describe and derive our basic algorithm for the minimum volume
covering ellipsoid problem; we call this algorithm the “dual reduced Newton” algorithm
for reasons that will soon be clear.

3.1 Newton Step

By adding a logarithmic barrier function to the problem formulation MVCE?, we obtain
the formulation

(MVCE]) miny,., —IndetM -0 Int;
=1
s.t. (Mai—z)T(Mai~—z)+ti:1,i:l,...,m
M >0
t>0.

The parameterized solutions to this problem as 6 varies in the interval (0,00) de-
fines the central trajectory of the problem MVCE?. Identifying dual multipliers u;, i =
1,...,m, with the first set of equations in MVCE}, the optimality conditions for (MVCE2)




can be written as:

iui [(Ma,- —2)al +a (Mai—z)T} -M1' =0 (8)
Xm: u;i (z— Ma;)) = 0 9)

(Ma,-—z)lT(Mai—z)+ti =1 ,z':l,...,m (10)

Ut = fe (11)

ut > 0 (12)

M - 0 (13)

We could attempt to solve (8)-(13) for (M, z,t,u) directly using Newton’s method,
which would necessitate forming and factorizing an (-"("T’F?’z + Qm) X (ﬂ%a) + Qm)
matrix. However, as we now show, the variables M and z can be directly eliminated,
and further structural analysis will result in only having to form and factorize a single
m x m matrix. To see how this is done, note that we can solve (9) for z and obtain:

_ MAu

Zz =

eTu (14)

Substituting (14) into (8), we arrive at the following Lyapunov equation for the matrix

Auu® AT

T AT
(AUAT - ) M+ M (AUAT - i‘ﬂ-’f’—) — Mt (15)

eTu
The following proposition, whose proof is deferred to the end of this section, demon-
strates an important property of the matrix arising in (15):

Proposition 2 Under Assumption 1, if u > 0, then (AUAT - AE:T%{—F-) = 0. I

The following remark presents a closed form solution for Lyapunov equation systems
like (15), see Corollary 2.6-3 of [7]:

Remark 3 For a given S > 0, X := S=3 is the unique solution of the equation system.:

% (x7s+5x)=x"1 I



Utilizing Proposition 2 and Remark 3, the unique solution of (15) is easily derived:

M)F | )

M= M(u) = [2 (AUAT -7,

and substituting (16) into (14), we conclude:

Proposition 4 Under Assumption 1, if v > 0 the unique solution of (8) and (9) in
M, z s given by:

AuyT AT 3
M = M(u) = [2 (AUAT — —6T—u—>] (17)
and )
2 (AUAT — 2 a®) | Ay
z = z(u) := 1 (18)

eTy

Substituting (17) and (18) into the optimality conditions (8)-(13), we can eliminate
the variables M and z explicitly from the optimality conditions, obtaining the following
reduced optimality conditions involving only the variables (u, t):

h(u)+t = e
Ut = 0e (19)
u,t > 0,

where h;(u) is the following nonlinear function of u:

hi(w) = (M(u)a; = 2(u)” (M(u)a; — 2(u))

= (o — 4" [2 (AUAT - A—TA)]*1 (ai — 4%) ,

et u e’ u m
for i =1,...,m, where M(u) and z(u) are specified by (17) and (18).

For a given value of the barrier parameter 6, we will attempt to approximately
solve (19) using Newton’s method. Let V,h(u) denote the Jacobian matrix of h(u).
The Newton direction (Au, At) for (19) at the point (u,t) is then the solution of the
following system of linear equations in (Au, At):

Vih(u)Au + At = ry = e—t—h(u)

TAu + UAt = ry = Oe—-Ut. (21)



This system will have the unique solution:

Au = (Veh(u) = UT) " (ry — Ulry)
At = U-lpy—U-'TAu,

provided we can show that the matrix (V,h(u) — U7'T) is nonsingular.

(22)

In order to implement the above methodology, we need to explicitly compute V, h(u),
and we also need to show that (V, h(u) — U'T) is nonsingular. Towards this end, we
define the following matrix function:

S(u) = (A - AMT) ' M2(u) (A - A“6T> (23)

elu elu

as a function of the dual variables u. Let A ® B denote the Hadamard product of the
matrices A, B, namely (A ® B)ij = A;;B;; for 4,7 = 1,...,m. The following result
conveys an explicit formula for V,h(u) and also demonstrates other useful properties.

Theorem 5 Under Assumption 1,

(6) Vuh(u) = —2 (%l LYW ® E(u))
(i) Vah(u) <0
(i73) h(u) = diag (X(u)).

The proof of this theorem is also presented at the end of this section.

Corollary 6 Under Assumption 1, ifu > 0 andt > 0, then (V,h(u) — U™T) < 0, and
50 18 nonsingular.

Proof: This follows immediately from part (i¢) of Theorem 5 and the fact that U~!T >

0.

Now let us put all of this together. In order to compute the Newton direction
(Au, At) for the reduced optimality conditions (19) at a given point (u,t), we compute
according to the following procedure:

Procedure DRN-DIRECTION(«u,t,6): Given (u,t) satisfying u,t > 0 and given
g>0,
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(i) form and factorize the matrix M ~2(u) = [2 (AUAT — M)]

eTuy

eTu ely

(ii) form the matrix X(u) = (A _ AﬂT_)TMQ(u) (A B éyﬁ)

(iii) form V,h(u) = -2 (M +2(u) ® Z}(u)) and factorize (V,h(u) — U™'T)

eTu

(iv) solve (22) for (Au, At).

The computational burden of each of the five computations in Procedure DRN-DIRECTION
is dominated by the need to factorize the matrices in steps (i) and (iii) above. The ma-

. . T AT . N - . . .
trix (AD AT — A—":T%) in step (i) is » X n; it requires mn? operations to form and n®

steps to factorize, while the matrix (V,h(u) — U™'T) in step (iv) is m x m; it requires
nm? steps to form and m3 steps to factorize.

The direction (Au, At) given in Procedure DRN-DIRECTION is the solution to the
linearization of the reduced optimality conditions (19), which were derived from the
original optimality conditions (8)-(13) of MVCEj. We call (Au, At) the DRN direction
for “dual reduced Newton.” The reason for this is that we started with the optimality
conditions (8)-(13), and reduced them by eliminating the primal variables M, z before
linearizing the resulting equation system in defining the Newton step.

Notice that MVCEZ is itself an optimization problem of a self-concordant barrier
function, see [11]. Because the theory of self-concordant functions is essentially a theory
for Newton-based algorithms, it is natural to ask whether or not the Newton direction
(Au, At) given in Procedure DRN-DIRECTION is the Newton direction of some self-
concordant function. In Section 9, we give a negative answer to this question. However,
we show that the Newton direction (Au, At) given in Procedure DRN-DIRECTION is
the Newton direction of a function that is “almost” self-concordant.

Note from (14) that ¢ = M~'z = 4%, which states that the center of the optimal
ellipsoid is a convex weighting of the points a,...,an,, with the weights being the
normalized dual variables 7,1 = 1,...,m. It is also easy to see that when 8 = 0,
the complementarity condition u;t; = # = 0 has a nice geometric interpretation: a
point has positive weight w; only if it lies on the boundary of the optimal ellipsoid.
These observations are well-known. Another property is that if one considers the points

ai,...,an to be a random sample of m ii.d. random variables, then with u := = we

T
have M~2(u) = 2 (A — %ﬁ) (A — 1_4%”) is proportional to the sample covariance

matrix.
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3.2 Algorithm DRN

Based on the Newton step procedure outlined in Subsection 3.1, we construct the follow-
ing basic interior-point algorithm for solving the MVCEZ formulation of the minimum
volume covering ellipsoid problem. We name this algorithm “DRN” for dual reduced
Newton algorithm.

Algorithm DRN

Step 0: Inmitialization. Set 7 + 0.99. Choose initial values of (u°, %) satisfying
u®, 1% > 0. Set (u,t) + (u?,t°).

Step 1: Check Stopping Criteria. If |le — h(u) — t|| < ¢; and uTt < €5, STOP.
Return u, Q := [M(uw)]?, and ¢ := [M(u)] " 2(u).

Step 2: Compute Direction. Set 0 + % Compute (Au, At) using Procedure
DRN-DIRECTION(u, t, 6).

Step 3: Step-size Computation and Step. Compute 3 < max{8 | (u,t) +
B(Au, At) > 0} and 8 « min{rg,1}. Set (u,t) + (u,t) + 5(Au, At). Go to Step
1.

The algorithm is initialized in Step 0. Strategies for choosing (u°,#°) are discussed
immediately below in Subsection 3.3. The quantity » < 1 is used to keep the iterate
values of (u,t) strictly positive, see Step 3. The stopping criteria are checked in Step
1; the tolerances are €; for feasibility and e; for optimality. We discuss the stopping
criterion in a bit more detail below in Subsection 3.4. In Step 2 the barrier parameter
¢ is updated and the DRN direction is computed; similar to standard interior-point
methods for conic optimization, we use a rather aggressive shrinking factor of 10 when
updating & at each iteration. In step 3 we compute the step-size using a standard min-
ratio test augmented by a fraction r € (0,1.0) that keeps the new iterate values of (u,t)
strictly positive. We found that setting r = 0.99 tended to work best.

3.3 Initialization Strategies

One way to start algorithm DRN is to choose any pair (u?,t°) that satisfies u°,¢° > 0,
for example (u°,t°) = (ae, ae) for some suitable positive scalar . However, we found
it preferable to choose (u’,°) in a way that guarantees the initial primal feasibility of
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M(u®), z(u®). We start by setting u® = J-e (where the factor 7= was chosen empirically).
We then compute M (u?), 2(u®) via (17) and (18) and test for strict primal feasibility by
checking if h(u®) < (0.95)e, and if so we set t° = e — h(u®) > 0, thus ensuring positivity
of (u®,#%) as well as initial feasibility of the equations h(u) +t = e at (u,t) = (u°,%).
If h(u®) £ (0.95)e, observe that since h(au) = Lh(u) from (20), we can rescale u’ to
ensure strict feasibility of the algorithm as follows: compute

max{h1(u®),...hm (u)}

o = 0.95
w0 — ol (24)

9 «— e—h(u?).

This initialization strategy then guarantees strict positivity of (u° t°) as well as initial
feasibility of the equations h(u) +t = e at (u,t) = (u®,#°).

3.4 Stopping Criteria
The following result is the basis of the stopping criteria of Algorithm DRN:

Lemma 7 Under Assumption 1, suppose that u > 0. If h(u) < e, then (M,z) =
(M (u), z(u)) is feasible for MVCE* and u is feasible for D*, and ¢(M, z) — ¢(u) = u't

where t := e — h(u).

Lemma 7 states that the duality gap between feasible solutions of MVCE? and D! is
simply u”t, for t = e — h(u) > 0. The stopping criteria of Algorithm DRN, specified in
Step 1, is to check that primal feasibility is satisfied to a pre-specified tolerance ¢;, and
then to check if the duality gap is not greater than the pre-specified tolerance €;. In our
computational tests, we set ¢; = ¢ = 10~7. However, in practical applications in data
mining where optimal objective function values are desirable but not critical, we might
expect the optimality tolerance to be on the order of e; = 10~*, for example.

3.5 Proofs of Proposition 2, Theorem 5, and Lemma 7

Proof of Proposition 2: Let v = Uze. Then note that (AU AT — _Au_g;_AZ) = AU=[I -
%]U%AT > 0 because P := [[ — 5—%—] > 0 (P is a projection matrix, P? = P, P = PT).
Now suppose that y7 (AUAT — A“—;‘Tiﬂ)y =0, y # 0. This can only happen if U3 ATy =
fv for some scalar 0, i.e., Us ATy = QUze. Therefore ATy = e, y # 0, which violates

Assumption 1. I
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Proof of Theorem 5: Define C(u) := M?(u) = [2(AUAT — &‘f%’ﬁ)]‘l and a;(u) =

a; — g—’;. From the definition of ¥(u), we have

o5 () = [S(w)];; = (@(w)" M (u)(@;(u)) , (25)

and thus h;(u) = [2(u)]; from (20), which shows part (iii) of Theorem 5. In order to
compute V,h(u) we employ the chain rule. We have

da;(u)  Au g —G
ou;  (eTu)?  eTu €Ty
and
0C(u) r AuwTAT  quTAT  Aual
= 9 ol - _
Ou; Clu) Jase; + (eTu)? el'u el'u (u

= —2C(u)i;(u)(@;(w)TC(u).

Now invoke the chain rule on (25):

Ohi(u) _ i(ai(u))TC(u)&j(u)—Q(di(u))TC(U)&j(U)(dj(u))TC(u)ai(u)

Ou, eTy

= -2 (Ui(y—) + (Uz‘j(u))Z) :

eTy

Therefore V, h(u) = =2 <%(~“I) +2(u) ® E(u)), proving part (i). Now notice that X(u) >
0, efu > 0, and S(u) ® (u) = 0 since the Hadamard product of symmetric positive
semi-definite matrices is also symmetric positive semi-definite, see Theorem 7.5.3 of [5].

Therefore V,h(u) < 0, proving part (ii). 1

Proof of Lemma 7: Let (M,z2) = (M(u), z(v)). M(u) > 0 from Proposition 2, and
from (20) we see that h(u) < e is the same as (Ma’ — 2)T(Ma' —2) < 1,i =1, ..., m,
whereby (M, z) is feasible for MV CE?. Notice that u is feasible for the dual D', with
duality gap

1 AuuT AT
W(M,z) — ¢p(u) = —Indet M — gln2 - g — 5 Indet | AUAT - “:T +ely
= —g +eu (from(17))
n



This yields the result provided we can show that w”h(u) = %, which we do now:

uTh(u) = Zui(Mai ~2)T(Ma; - 2)

n
where “ o” denotes the trace operator A e B = trace(AT B) = Z(ATB)“.I

=1

4 The Frank-Wolfe Method

Interior-point methods and other second-order methods exhibit computational superi-
ority in a number of settings in convex optimization. However, the work per iteration
is necessarily large, which suggests that one might use a first-order method such as
the Frank-Wolfe method [3] in the early solution stages. Khachiyan [8] analyzed the
theoretical complexity of a first-order method for the solution of the minimum volume
covering ellipsoid problem via formulation RD. Upon careful examination, the algorithm
in [8] can be interpreted as a version of the Frank-Wolfe method applied to this problem.
Here we re-state this algorithm in our notation and interpretation. Let S(™~1) denote
the standard simplex in R™, namely S~ := {u € R™ | u > 0,eTu = 1}, and let

AUAT  Au
V(u) = [ WTAT Ty ] :
Then problem RD can be cast as max,cgm-1 Indet V(u). It is straightforward to derive

the partial derivatives of the objective function of RD:

o () ::@C‘GGTW@: (o 1) V(w)™! ( “ ) G=1,....m.

15



Let @ € S 1 be the current iterate value. At each iteration of the Frank-Wolfe
method, we compute the gradient g(@) := (g1(a@), ..., gm(t@)) of the objective function
of RD and solve the subproblem max,cg(m-1 g(@)7u, whose optimal solution is given by

the jth unit vector e; € R™ where j = argmax; g;(%). The method then requires the
solution of the line-search problem:

max fz ;(a) :=IndetV ((1 — a)u + ae;) = Indet ((1 —a)V (@) + ( “1]‘ ) (af 1)) :

a€l0,1]

Khachiyan [8] cleverly observed that this line-search problem has a closed form solution,
namely o = ﬁ%{% (see [8] for details). This leads to the following algorithm:

7

Algorithm FRANK-WOLFE

Step 0: Initialization. Choose an initial values of (u°) satisfying u® > 0,e7u’ =
1. Set u + u°.

Step 1: Solve subproblem. Compute g;j(u) = (af 1)V (u)™ ( i ) o=
1,...,m. Set j « argmax; g;(u).

Step 2: Step-size Computation and Step. a + (—5—’%)(—;]—((% u <+ (1—a)u+
ae;j. Go to Step 1.

The computational effort at each iteration of the Frank-Wolfe method is dominated
by the gradient computation, which is m(n + 1)? operations to form and factorize V (u)
and another m(n + 1)? operations to then compute g(u).

5 Active Set Strategies

It is easy to see from the optimality conditions (9)-(13) at # = 0 that the minimum
volume covering ellipsoid is determined only by points a; located on its boundary. The
following well known result of John [6] states that the number of such boundary points
is not too large:

Remark 8 [6/ The minimum volume covering ellipsoid is determined by a subset of at
most ﬁ%ﬂl points.
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This motivates the design of active-set strategies for solving MVCE? wherein we try to
make an intelligent guess of active points a; at each iteration and we discard presumably
inactive points from time to time. Let M denote the set of points that must be covered,
namely M := {ay,...,a,}, and consider the following active-set method:

GENERIC ACTIVE SET METHOD

Step 0: Initialization. Define some initial active set of points Sy := {ai;, a4y, ..., a;, }
for which Sy satisfies Assumption 1. Define an initial starting point uJ. k + 0.

Step 1: Solve MVCE? for the set of points S;. Use Algorithm DRN with
starting point uf. Let (i*, Qx, cx) be the output returned.

Step 2: Check Feasibility. If ||a; — cx|lg, < 1+ € for i € M\ Sk, stop. Return
(u, Q, ¢) = (g, Qx, cx)- Otherwise go to Step 3

Step 3: Update Active Set. Update the active set to Sgy1. Determine a new
starting point uf ™. k < k + 1. Go to Step 1.

In order to implement the above framework, we need to address the following specific
questions: how to determine the initial active set Sy and the initial starting point u),
how to update the active set from iteration to iteration, and how to choose the starting
point u£ for all subsequent iterations.

5.1 Initial Active Set

One naive approach is to randomly choose | > n + 1 points that satisfy Assumption 1.
Not surprisingly, this method is inefficient in practice. Also, linear programming could
be used to test and permanently eliminate all points a; that lie in the convex hull of
M\ {a;}. This also is inefficient.

We concentrated on developing heuristics for determining which points a; were “far
away” from the “center” of the data. We developed two main active set initialization
schemes which we call Sample Covariance Initialization (SCI) and Frank-Wolfe Initial-
ization (FWI), both of which we now describe.
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5.1.1 Sample Covariance Initialization (SCI)

Following (16), the matrix M ~2(e) is proportional to the sample covariance matrix

(ml—l) [AAT - %A—T] of the data points ay,...,a,,. The inverse of the sample covari-
ance matrix can serve as a reasonable initial guess of the shape matrix of the covering
ellipsoid and its induced norm || - ||g() where Q(e) := M?(e) can serve as a natural ini-

tial distance metric to determine which points are far from the sample mean a := %Ae.
Following this idea, we define the initial active set to contain mg points whose distances
from the sample mean d; := ||a; — @||g) are the largest. In order to determine the
cardinality of the initial set m®, we need to trade off small size (for faster computa-
tion) against quality of information (which improves for larger mg). We found that
mg := min{n'® m} worked well in practice. The computational burden of the SCI
scheme is O(mn?) operations.

5.1.2 Frank-Wolfe Initialization (FWT)

The strategy in the Frank-Wolfe initialization scheme is to run the Frank-Wolfe algo-
rithm for a small number of iterations starting at the barycenter u = %e of (=1 At
each iteration, we record the point a; whose index j gave rise to the maximum partial
derivative g;(u) at that iteration, see Step 1 of the algorithm in Section 4. We accu-
mulate these points to form the initial active set S;. Although this method tended to
produce initial active sets that were superior to those produced by the SCI scheme, the
computational effort of this method is much greater than for SCI. Each Frank-Wolfe step
needs O(mn?) operations (which is the same as the entire SCI scheme), and running the
method for [ steps then is O(lmn?) operations. To satisfy Assumption 1, we need to
have at least n + 1 affinely independent points in the initial active set to have a full
dimensional ellipsoid, and so we must set ! > n + 1. Because of this, we chose I =n +1
as the number Frank-Wolfe steps to run.

We compare the computational performance of SCI versus FWI in Section 6.

5.2 Determining u}

We first discuss the issue of determining ). If the initial active set S is chosen via SCI,

we set (ug); proportional to the distance d; := |la; — @||g() for i € Sy, normalizing so
that e”(uf) = Z. If the initial active set is chosen via FWI, we set (u3); proportional

to the output values u; of the Frank-Wolfe algorithm for ¢ € Sy, normalizing so that
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eT(ud) = %. The reason for this normalization is that it follows from the formulation D?
that u optimal for D? must satisfy e’u = 2.

We now discuss how uf is determined for £ > 1. At the end of the previous active
set step, algorithm DRN has computed @y for the active set S. If the active set has just

been expanded so that Spi1 = SR UAS, we set u’é“ to be a combination « ( 18‘ ) +(1-

d
We found that a = 0.75 worked well in practice. Then we normalize so that e” (uf*!) =

n

R

@) ( 0 ), where the indices are partitioned here into S, and AS and d; = ||a; — cx]|o, -

If the active set has just been shrunk, we simply re-normalize @, so that the remaining

indices satisfy Y~ (uf™); = 2.
1€8k+1

5.3 Updating the Active Set
5.3.1 Expanding the Active Set

Suppose that the current active set is Sy and that we have just run algorithm DRN
on this set, obtaining (@, Qk,ck) as output. We consider expanding the active set
to Sgp1 = Sk U AS for some set AS. When we expand the active set, we choose
points a; ¢ S whose distances from the current center ¢ are largest, using the current
ellipsoidal norm to define the distances: d; = ||a; — ¢kl|g,. We would like to add a
reasonable number of points to the active set whose distances d; satisfy d; > 1 (otherwise
a; would remain inactive in the current active set), and are large. We sort the d;’s to
determine a priority ranking. The simple strategy of choosing the [ > 1 farthest points
to enter the active set does not work well, since for example the second farthest point
may be nearby and dominated by the farthest point. Intuitively we want the points
that we add to the active set to be spread around the current ellipsoid E¢, ... This is
handled in our code as follows: after sorting points according to the d;’s and considering
only points a; with d; > 1, if there are fewer than 30 such points we simply include all
of them in AS. Otherwise, the first point to be included in AS is the point a; with
the largest d;. After that, we examine points one by one in descending order of d;, and
we include a; into AS if Y, Ag(a; — k)" Qr(a; — ¢x) < 0. In this way, the points that
wind up in AS will tend to make larger angles with other points in AS (measured with
respect to the matrix @), and so will hopefully be spread around the ellipsoid Eq, ., .
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5.3.2 Shrinking the Active Set

There are several ways to delete points from the current active set with the guarantee
that they will not enter the active set again. One way is to use linear programming to
test if a given point in the active set lies in the convex hull of the other points in the
active set, but this approach is obviously too expensive. Another possibility is to check
if any of the points in the active set lie in the inscribed Lowner-John ellipsoid E¢,2,) ¢, »
which is guaranteed to be contained in the convex hull of the current active set (see [6]).
Checking this is relatively inexpensive, but is not effective in higher dimensions because
it simply deletes too few points.

We used the following simple heuristic to delete points: when the cardinality of the
active set first reaches 100, 150, 200, ..., we delete all points a; whose current distance
from the current center (using the current ellipsoidal norm) satisfies d; < 0.9999.

6 Computational Results

In order to perform computational tests, we generated data sets of varying dimension
n and number of points m. The data sets were generated using independent random
multinomial Gaussian distribution or several Gaussian distributions, in order to mimic
the data points from one or more clusters as might be encountered in practice. All
computation was done in MATLAB 6.1.0.450 on a Pentium IV 1.5GHz PC with 512M
RAM running LINUX.

6.1 Small and Medium-Size Problems

Table 1 shows computational results for the solution of the minimum volume covering
ellipsoid problem on small- and medium-sized problems, namely 4 < n < 20 and 20 <
m < 500). We tested three different algorithms: (i) solution via the DRN algorithm
described in Section 3, (ii) solution via formulation RD solved using a modified version
of SDPT3 (modified to handle the parameterized family of barrier functions in (6) with
6 absent from the first term), and (iii) solution via formulation MVCE? using the same
modified version of SDPT3. In Table 1 and elsewhere we refer to these three approaches
simply as DRN, RD-SDPT3, and MVCE3-SDPT3. All three methods were run on the
full problems, i.e., without any active-set methodology. The starting point used for
the DRN algorithm was as described in Subsection 3.3. We tried a variety of different
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ways to choose starting points for algorithms RD-SDPT3 and MVCE3-SDPT3, but
ultimately found no obvious advantage over the default starting point methodology
built into SDPT3. All feasibility and duality gap tolerances were set to ¢ = 1077, The
“Iterations” columns in Table 1 shows the number of IPM/Newton iterations for each
method. Table 1 also shows the geometric means of iterations and solution times. Notice
in Table 1 that there were two problem instances of size n = 10 and m = 500 for which
MVCE?-SDPT3 terminated prematurely due to numerical problems.

Table 1: Performance of algorithms DRN, RD-SDPT3, and MVCE3-SDPT3,
on small and medium-sized problem instances of the minimum volume cov-
ering ellipsoid problem. (* indicates premature termination of SDPT3 with
termination code “failure to solve the Shur-complement equation by using the
Sherman-Morrison update.”)

Algorithm
DRN RD-SDPT3 MVCE3-SDPT3
Dimensions Solution Time Solution Time Solution Time

n m Iterations (seconds) Iterations (seconds) Iterations (seconds)
4 20 10 0.02 19 0.59 16 1.00
4 20 10 0.03 18 0.56 12 0.77
4 20 12 0.03 17 0.53 16 1.02
4 20 10 0.02 19 0.58 12 0.76
4 20 10 0.02 18 0.56 14 0.88
4 20 11 0.03 18 0.55 14 0.89
4 20 10 0.02 20 0.61 17 1.09
4 40 10 0.04 17 0.64 15 1.65
4 40 10 0.04 15 0.56 11 1.23
4 40 10 0.05 15 0.57 13 1.45
4 40 10 0.04 17 0.62 16 1.75
4 60 11 0.11 17 0.91 12 2.16
4 60 11 0.09 17 0.75 11 2.00
4 60 11 0.09 18 0.81 13 2.33
4 60 11 0.10 18 0.81 13 2.34
Geometric Mean 10.45 0.04037 17.48 0.6343 13.54 1.3164
10 200 13 1.61 28 4.38 12 104.6
10 200 11 1.36 26 3.99 14 121.6
10 200 11 1.37 21 3.31 14 124.9
10 200 12 1.47 21 3.21 14 1254
10 200 12 1.48 26 3.98 13 116.6
10 200 11 1.35 21 3.17 14 124
10 200 12 1.48 29 4.43 13 113.2
10 200 13 1.63 24 3.59 13 113.3
10 200 14 1.73 24 3.62 14 122
10 200 11 1.35 22 3.39 14 122.5
Geometric Mean 11.96 1.48 24.04 3.68 13.48 118.63
10 500 12 17.62 23 13.43 15* 4210.7*
10 500 14 20.59 27 15.71 16 3770.1
10 500 13 19.13 23 13.38 15 3704.9
10 500 15 22.09 33 18.53 17 4222.8
10 500 13 19.19 29 16.31 16 3892.3
10 500 15 22.1 30 17.24 16 3731.1
10 500 13 19.16 20 11.23 15* 4118.9*
10 500 14 20.65 19 10.89 15 3483.8
10 500 15 22.07 25 14.7 15 3354.3
10 500 14 20.57 28 16.09 15 3518.8
Geometric Mean 13.76 20.26 25.34 14.55 15.49 3789.73




Algorithm
DRN RD-SDPT3 MVCE?®-SDPT3
Dimensions Solution Time Solution Time Solution Time
n m Iterations (seconds) Iterations (seconds) ITterations (seconds)
20 500 12 17.98 35 28.78
20 500 12 17.92 21 16.65
20 500 12 17.96 29 23.56
20 500 13 19.53 27 22.23 ouT
20 500 12 17.77 29 23.04 OF
20 500 14 20.94 30 23.92 MEMORY
20 500 12 17.97 29 22.99
20 500 13 19.4 27 21.36
20 500 12 17.92 31 24.56
20 500 13 19.37 36 28.43
Geometric Mean 12.48 18.65 29.11 23.31

The first observation from Table 1 is that MVCE3-SDPT?3 has vastly inferior solution
times to DRN and to RD-SDPT3. This is almost surely due to the very large Schur-
complement matrix (m(n + 1) x m(n + 1)) that must be formed and factorized to solve
MVCE? via SDPTS3.

The second observation from Table 1 is that DRN needs to take roughly one half as
many Newton steps as RD-SDPT3, which shows that the directions generated by DRN
are better than those for RD-SDPT3. Further analysis of the output of SDPT3 showed
that this was particularly true in the first 10 iterations of RD-SDPT3, where RD-SDPT3
routinely had slow convergence to primal and /or dual feasibility. (In interior-point codes
such as SDPT3, slow convergence to feasibility is indicated by step-sizes that are much
less than 1.) However, in the last few iterations of RD-SDPT3, the iterates converged as
quickly as for DRN. This could also indicate that SDPT3 is not as capable of capitalizing
on good starting point information. Of course, the performance of RD-SDPT3 could
potentially improve if a more successful starting point methodology is found, but so far
such a methodology has eluded us even after testing of several different approaches.

The computational effort per iteration for DRN is dominated by factorizing and
solving an m X m matrix, whereas for RD-SDPT3 it is dominated by factorizing and

solving an (”2+3"+4) X ("2+g"+4) matrix. When % << 1 we might expect DRN to

dominate RD-SDPT3 due its superior choice of direction. However, when 2 >> % we
might expect RD-SDPT3 to dominate DRN. This intuition is verified by the numbers in
Table 2. The right-most column in Table 2 shows the ratio of the DRN solution times
to the RD-SDPT?3 solution times. Table 2 shows the trend that the relative advantage
of DRN over SDPT3 diminishes as /5 grows. However, for 75 < %, DRN outperforms
RD-SDPTS3.
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Table 2: Geometric mean of solution times of algorithms DRN and RD-SDPT3 as a
function of the dimensions, for random samples of 10 problems.

Geometric Mean of

Solution Time (seconds) Ratio
n| m | % | DRN | RD-SDPT3 | praiprs
10| 50 | 0.5 0.047 0.943 0.05
10| 100 1 0.224 1.54 0.15
10 | 200 2 1.46 3.17 0.46
10 | 400 4 10.64 9.34 1.14
10 | 600 6 34.37 18 1.91
10| 800 8 85.45 31.19 2.74
20| 200 | 0.5 1.37 5.28 0.26
20 | 300 | 0.75 4.24 8.51 0.5
20 | 400 1 10.26 15.16 0.68
20| 600 | 1.5 32.29 29.39 1.10
20 | 800 2 78.67 52.86 1.49
20 | 1000 | 2.5 || 166.2 81.25 2.05
20 | 1200 | 3 322.77 125.58 2.57
30| 450 | 0.5 15.1 29.44 0.51
30 | 900 1 121.02 103.34 1.17
30 | 1350 | 1.5 || 425.68 258.65 1.65
30 | 1800 | 2 1031.65 519.89 1.98
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6.2 Solving Large Problems using DRN and Active-Set Strate-
gies

The computational results in Subsection 6.1 are for small- to medium-size problems; for
larger-sized problems, an active-set strategy is necessary to achieve good computational
performance. Recall from Remark 8 that the minimum-volume ellipsoid is determined
by at most "2—%32 points. Furthermore, our computational experience indicates that the
number of points that determine the minimum-volume ellipsoid tends to be closer to
"72 in practice. Based on the analysis reported in Table 2, this suggests that the DRN
algorithm should be used to solve the active-set subproblems at each major iteration,
since its performance is superior to RD-SDPT3 when Z¢ < % < i, where my, is the

n2
number of points in the active set at iteration k.

Table 3 shows the computational performance of the DRN algorithm coupled with
the active-set strategy described in Section 5, for dimensions n and m in the ranges
10 < n < 30 and 1000 < m < 30000. The table presents results using the two ini-
tialization schemes FWI and SCI which were described in Subsections 5.1.1 and 5.1.2.
The “Iterations” column reports the number of outer iterations, that is, the number of
different subproblems solved, and the “Final Active Set” column reports the number
of points present in the last active-set subproblem. (Note: the active-set is the current
working set of points, as opposed to the set of points that lie on the boundary of the
optimal ellipsoid, which we call the set of “binding points.” Clearly the final active set
is a superset of the set of binding points.) The “Initialization Time” columns report the
time taken by the algorithm to initialize the active set using the FWT and the SCI initial-
ization schemes. The “Total Solution Time” columns report the total time to solve the
problems. As before, all subproblems were solved to a feasibility tolerance and a duality
gap tolerance of ¢ = 1077, Notice that the Final Active Set numbers are different for
the two initialization schemes. This reflects the fact that the two initialization schemes
start with different active sets, and hence terminate with different active sets as well.

Table 3: Performance of DRN algorithm with an active-set strategy using FWI

and SCI initialization schemes on large problem instances of the minimum
volume covering ellipsoid problem.

FWI SCI
Final  Initialization Total Solution Final Initialization  Total Solution

Dimensions Active Time Time Active Time Time
n m Iterations Set (seconds) (seconds) Tterations Set, (seconds) (seconds)
10 10000 7 43 0.61 1.17 13 46 0.07 24
10 10000 9 71 0.6 2 7 46 0.07 1.35
10 10000 10 52 0.65 1.78 9 46 0.07 1.32
10 10000 8 68 0.61 1.86 10 42 0.07 1.62
10 10000 10 54 0.6 1.42 9 51 0.06 1.17
10 10000 5 41 0.61 1.16 12 36 0.07 1.88
10 10000 6 50 0.6 1.38 7 37 0.06 0.9
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FWI SCI
Final Initialization  Total Solution Final Initialization = Total Solution

Dimensions Active Time Time Active Time Time
n m Iterations Set (seconds) (seconds) Iterations Set (seconds) (seconds)
10 10000 6 51 0.6 1.25 6 49 0.07 0.74
10 10000 12 74 0.6 2.65 15 58 0.07 2.62
10 10000 6 35 0.6 1.08 9 30 0.06 1.24
Geometric Mean 7.61 52.46 0.61 1.51 9.33 43.39 0.067 1.41
20 1000 12 91 0.25 1.78 7 73 0.03 1.43
20 1000 13 126 0.25 3.63 6 94 0.01 1.39
20 1000 11 94 0.25 1.98 7 87 0.01 1.58
20 1000 12 98 0.24 1.81 10 92 0.01 2.45
20 1000 8 69 0.24 0.95 5 66 0.02 1.2
20 1000 13 93 0.25 2.06 7 73 0.01 1.53
20 1000 16 144 0.25 4.71 5 99 0.02 1.14
20 1000 7 73 0.24 1.08 8 78 0.01 1.68
20 1000 12 95 0.25 2.05 8 83 0.02 1.79
20 1000 11 125 0.23 3.15 5 112 0.01 1.56
Geometric Mean 11.22 98.34 0.24 2.08 6.63 84.7 0.014 1.54
20 10000 22 138 2.14 11.09 14 105 0.13 5.67
20 10000 17 176 2.12 10.38 11 137 0.13 5.42
20 10000 22 177 2.12 12.13 18 138 0.13 8.27
20 10000 14 142 2.12 7.67 12 110 0.13 5.33
20 10000 15 147 2.12 8.64 7 136 0.13 3.26
20 10000 17 152 2.12 10.18 9 130 0.13 4.56
20 10000 19 214 2.12 14.99 11 148 0.13 5.42
20 10000 14 107 2.12 5.68 17 112 0.13 7.49
20 10000 14 133 2.12 7.16 15 101 0.13 6.81
20 10000 21 174 2.12 13.79 10 153 0.13 5.84
Geometric Mean 17.22 153.43 2.12 9.77 11.94 125.8 0.13 5.84
20 20000 20 126 4.25 13.1 18 102 0.26 10.63
20 20000 13 110 4.26 9.54 9 117 0.26 5.12
20 20000 15 163 4.26 12.29 17 148 0.26 9.37
20 20000 14 126 4.32 9.95 11 90 0.26 5.68
20 20000 15 167 4.25 12.07 13 110 0.26 7.04
20 20000 35 154 4.26 22.35 16 97 0.26 8.62
20 20000 18 147 4.27 12.49 9 111 0.26 4.52
20 20000 14 133 4.27 9.7 14 123 0.26 8.16
20 20000 12 148 4.26 10.04 8 110 0.25 3.85
20 20000 14 129 4.26 11.31 15 130 0.26 9.14
Geometric Mean 16.16 139.21 4.27 11.9 12.53 112.7 0.269 6.85
20 30000 11 122 6.46 12.06 11 116 0.38 7.13
20 30000 21 212 6.38 26.07 17 166 0.38 12.88
20 30000 14 152 6.39 14.72 16 155 0.39 11.23
20 30000 17 181 6.37 16.74 11 155 0.39 8.21
20 30000 17 159 6.36 16.66 14 125 0.39 10.06
20 30000 15 116 6.35 13.27 13 138 0.39 8.32
20 30000 71 220 6.36 88.15 14 138 0.39 9.69
20 30000 15 135 6.36 13.7 13 112 0.39 9.16
20 30000 15 136 6.36 13.79 16 107 0.39 11.96
20 30000 13 148 6.36 13.25 13 105 0.39 8.62
Geometric Mean 17.64 154.69 6.37 18.1 13.66 130.1 0.388 9.58
30 10000 18 202 5.36 22.18 11 188 0.22 9.64
30 10000 30 265 5.37 58.56 21 234 0.22 33.51
30 10000 53 274 5.36 102.4 20 210 0.22 23.44
30 10000 48 259 5.42 78.81 14 195 0.22 15.28
30 10000 23 221 5.36 30.39 18 182 0.22 18.68
30 10000 26 242 5.34 33.59 15 195 0.22 13.7
30 10000 18 201 5.38 21.87 20 162 0.22 22.01
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FWI SCI
Final  Initialization Total Solution Final  Initialization Total Solution

Dimensions Active Time Time Active Time Time
n m Iterations Set (seconds) (seconds) Iterations Set (seconds) (seconds)
30 10000 16 182 5.44 17.01 16 173 0.22 15.96
30 10000 60 285 5.37 133.79 10 234 0.22 15.79
30 10000 41 268 5.38 86.59 12 209 0.22 19.26
Geometric Mean 29.96 237.36 5.38 46.39 15.23 196.9 0.22 19.26
30 20000 21 226 10.84 33.26 23 173 0.44 25.76
30 20000 34 280 10.82 61.29 22 182 0.43 25.56
30 20000 22 235 10.78 37.89 18 225 0.44 23.46
30 20000 64 255 10.81 131.28 19 202 0.44 25.06
30 20000 68 303 10.8 180 16 209 0.44 28.37
30 20000 26 264 10.76 49.61 18 213 0.43 26.21
30 20000 19 253 10.82 37.57 10 230 0.45 16.91
30 20000 22 283 10.77 49.21 12 219 0.44 21.5
30 20000 25 306 10.76 65.59 13 261 0.44 24.95
30 20000 20 233 10.93 34.73 16 206 0.43 18
Geometric Mean 28.64 262.42 10.81 57.3 16.20 210.7 0.438 23.29
30 30000 27 188 16.59 51.16 16 183 0.7 20.46
30 30000 54 331 15.98 181.31 14 229 0.66 30.53
30 30000 17 160 16.12 31.75 14 172 0.64 16.41
30 30000 48 208 16.05 79.31 20 170 0.63 20.39
30 30000 37 266 16.26 95.63 17 254 0.64 34.34
30 30000 21 209 16.13 38.75 16 194 0.66 19.87
30 30000 132 381 16.16 566.81 15 244 0.65 36.12
30 30000 24 232 16.19 53.05 19 197 0.64 26.69
30 30000 24 280 16.16 58.74 13 256 0.67 28.44
30 30000 22 245 16.13 47.18 21 222 0.63 36.61
Geometric Mean 33.03 242.32 16.18 76.88 16.30 209.8 0.652 26.04

The table indicates that SCI dominates FWI in terms of Total Solution Times,
becoming more advantageous for larger problem dimensions. This is probably due to
the fact that FWI requires roughly mn® operations as opposed to mn? for SCI, but also
it appears from the numbers in Table 3 that the active set generated by FWI is just not
as good, as evidence by the fact that if the initialization times are subtracted from the
total times then SCI still wins by a large margin, especially on the larger problems.

The Total Solution Times reported in Table 3 for the largest problems (n = 30,
m = 30000) clearly indicate that the DRN algorithm coupled with a suitable active-set
strategy solves these problems to a high degree of accuracy (e; = €5 = 1077) in under
30 seconds on a personal computer.

7 Some Unsuccessful Strategies

In developing the DRN algorithm and the active-set strategies discussed in Section 5, we
tested and discarded a wide variety of computational strategies in favor of more efficient
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methods. Some of these strategies were mentioned in Section 5; here is a short list of
other strategies that were not previously discussed.

8

e Expanding the Active Set

The strategy for expanding the active set was described in detail in Subsection
5.3.1, where we described how points are chosen to be added to the active set based
on the idea of having the new points be far from the center ¢; as measured in the
ellpsoidal distance d; for each point a; (see Subsection 5.3.1 for details) and also
spread out in all directions around the ellipsoid. This was originally accomplished
by examining points one by one in descending order of d;, and then including a;
into AS if (a;—cx)TQx(a; —cx) < 0 for all i € AS. However, computational testing
revealed that this resulted in too few points being added at each outer iteration.

Hybrid of SCI and FWI

We tested several hybrids of SCI and FWI. In one approach, SCI was used to
obtain 7 points, and then these points were used to initialize the Frank-Wolfe
algorithm, which would then be run for [ = n + 1 iterations to then produce the
initial active set Sy and u3. The motivation for this strategy was that this would
essentially cut the computation time of FWI by one third. Another idea that we
tested was to start the FWI from a point 1y whose i™* component was proportional
to the distance from a; to the sample mean a := %Ae. Neither of these approaches

proved to be very effective.

Frank-Wolfe algorithm for Solution of RD

Khachiyan [8] provides the best known complexity bound for the solving the min-
imum volume covering ellipsoid problem, and his method can be interpreted as
the Frank-Wolfe algorithm applied to the formulation RD. However, as one might
expect, this algorithm is not effective in practice.

Concluding Remarks

Algorithms and associated software for conic formulations of convex optimization prob-
lems that use primal-dual interior-point methods are intended for general convex prob-
lems presented in such conic format. While these algorithms generally perform well in
practice, they are not designed to be able to consider any special structure of certain
classes of problems, such as the minimum volume covering ellipsoid problem. Herein, we
have presented the DRN algorithm for solving the minimum covering ellipsoid problem,
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which is itself an interior-point type algorithm, and which is designed around the opti-
mality conditions of the problem augmented with a logarithmic barrier term, although
it does not quite fall into the existing interior point algorithm theoretical framework of
self-concordant functions. We have shown that this algorithm performs very well for
problems of moderate size. When the number of points to be covered is large, we show
how the DRN algorithm can be used with an active-set strategy (where the active-set
strategy is also designed specifically for the minimum volume covering ellipsoid problem),
and we report computational results on large problems which validate the efficiency of
these approaches.

From a practical point of view, most applications of the minimum volume ellipsoid
are based on the ideal situation in which there are no outliers in the data. To make
the minimum volume ellipsoid problem more amenable in the presence of outliers, it
is necessary to explore problem formulations that allow points that lie outside of the
ellipsoid, such as in the following problem formulation which penalizes such points:

(MVCEP) miny,¢ —Indet M + Pel¢
s.t. (Mai—z)T(Jllai—z)§1+§i,izl,...,m
£€>0
M >0,

in which P is a user-specified penalizing coefficient. Formulation (MVCEP) could also
be solved by a slight modification of the DRN algorithm, with the active-set strategy
if need be. This formulation has the potential of identifying outliers in the data, which
has been an important focus in data mining, see [10]. However, from the point of view
of determining a “robust” minimum volume ellipsoid, MVCEP still has the drawback
that the shape of the optimal ellipsoid is potentially determined in part by points that
lie outside of the optimal ellipsoid. Future work in this area could include developing
formulations and solution methods for this problem that include non-convex penalizing
terms such as Py ;" sign (&;).

9 The DRN direction is not a Newton direction of
a self- concordant function

In this section we show that the (Newton) direction produced by the DRN algorithm
is not the Newton direction of a self-concordant function. However, it is the Newton
direction of a function that is almost self-concordant.
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For a given v > 0 and ¢ > 0, the DRN direction is given by the formula:
Au = (Vyh(u)=U'T) " (e — 80U e — h(w)) , (26)
see (22).

TAT

Let Dy := {u e R™ | (AUAT - %——) - 0}, and for u € Dy define the function:

(27)

T AT
flu) = —% In det (AUAT - Aﬂi)

eTy

and recall the definition of A(u) in (20).

Proposition 9 Suppose that u € Dy. Then V f(u) = —h(u).

Proof: This follows by direct but tedious application of the chain rule. I

Our analysis relies on the non-self-concordance of f(u), which is stated in the next
proposition, and whose proof appears at the end of this section.

Proposition 10 f(u) is not a self-concordant function on Dy. I

Now consider the following optimization problem, which is equivalent to the program
D! with a logarithmic barrier term added:

(D;) min, f(u)+eTu—0 il In(u;)

(28)
st. u>0.
At any point u > 0, the Newton direction for D} is given by:
Au = (V2f(u)+0U )" (=Vf(u) —e+ 60U te) | (29)

and notice from Proposition 10 that the objective function of D} is not a self-concordant
function for # > 0 and sufficiently small. The following proposition shows that when u, ¢
satisfy Ut = fe, then the directions Au of (26) and Awu of (29) are the same.

Proposition 11 Suppose that u,t > 0 and that Ut = fe. Then Au = Au.
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Proof: From Proposition 9 we have Vf(u) = —h(u) and so V2f(u) = —V,h(u).
Substituting these equalities and the hypothesis of this proposition into (29) yields:

Au= (=Vuh(u) + U™'T) i (h(u) —e+ 60U 'e) = Au 1

From Proposition 11, we see that at points (u,t) satisfying Ut = fe, the DRN
direction is exactly the Newton direction of the non-self-concordant objective function
of Dy for # > 0 and sufficiently small.

Notice that if the DRN direction were instead derived as a “dual only” direction,
then it would correspond to the Newton direction of problem D} for all u > 0, and
so would correspond to the Newton direction of a non-self-concordant function for all
u > 0. To see this, let us re-write equations (19) as

h(u) + 80U 'e =e,u >0, (30)
and the Newton direction Au at a point u > 0 for (30) is:
Au= (Vyh(u) — 0U2) " (e — h(u) — U ) .

It then follows from Proposition 9 that Au = Aw, and so the “dual only” version of the
DRN algorithm is the Newton direction of a non-self-concordant function for # > 0 and
sufficiently small.

Finally, we point out that while f(u) is not a self-concordant function, the function
f(u)—3In(eu) = —§ Indet [AUAT — Auu? AT, which is known to be a self-concordant
function, see [11], and so f(u) is very closely related to a self-concordant function.

Proof of Proposition 10: For each u € Dy and any direction d, define the univariate
function f, 4(e) := f(u+ ad). Then f(-) is self-concordant or not depending on whether

the quantity
| f.a(0))]

(f10))}

can be bounded independent of u and d, see [11]. Here we will show that this quantity
cannot be bounded, thereby demonstrating that f(-) is not self-concordant. We can
write

AU 4+ aDYAT  A(u+ ad
Jug(e) = —jzlndet ( (1(1 + ad)TllT eT((u + ad))> +3In (" (u+ ad)
= —% Indet (M + aN) + %ln (eTu + aer)
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where
AUAT Ay ADAT Ad]

M:[UTAT eTu] and N:[ dTAT  eTq

It then follows from the rules of differentiation that

La(0) = —3Tr(MTIN) + &
2
10) = ST (MTINMUIN) - (52)
7,\3
o) = - (Tr (M- 'NMINMIN) - (52) )

where “Tr(B)” denotes the trace of a matrix B.

Now let

1 0 -100 B . B -
A=19 21 o 10],u—(11111),andd_(000(51—6)

for a given scalar 6. Then

2 00 000 00 0
M= |020| N=[060d8| MI'N = 0%5%5
005 041 0 36 3

and 2—;% = ¢, and direct substiution of these equalities yields f} ,(0) = ;6% and f.,(0) =
0% + 262, Therefore for § > 0 we have:

O L v
(fua@)®  (5)*0°

which goes to +o0o as § | 0. I
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