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Abstract

In this paper we characterize exactly the departure process of a GI/G/1

queue and use this characterization to propose a new algorithm for the analysis

of single server tandem queues with general distributions. We first establish a

close connection of the departure process with the idle time and obtain that in

steady state interdeparture times are identically distributed but they are not

independent. Using the Hilbert factorization combined with complex analy-

sis methods, we find exactly the Laplace transform of the stationary interval,

determine exactly the correlation of the departure times and characterize the

counting process of the departure process. We then use these results to propose

i new approximate algorithm for the steady-state analysis of tandem queues.

We implemented the algorithm and we found that the answers produced by the

algorithm are very close to those produced by simulation. We believe that the

power of the algorithm rests in the direct exploitation of the characteristics of

the-departure process. We report several computational results.
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1 Introduction

The study of departure processes in queueing systems is primarily motivated by the

need to analyze queueing network models, in which the departure process of one

queue is the arrival process of another queue. Probably the most well known result

in the theory of departure processes in queueing theory is the result of Burke [2] that

the departure process of a M/M/s queue is a Poisson process. It is also well known

that if one goes beyond the exponentiallity assumptions, the departure processes

become not renewal. There are very few exact results for departure processes if one

considers queues with arbitrary distributions. Daley [4] finds the stationary distri-

bution of the departure process for the GI/M/1 and M/G/1 queues and considers

structural properties of the departure process for these systems. Whitt [9], [12] ap-

proximates the departure process of various systems as renewal processes and uses

these approximations for an approximate analysis of a general queueing network.

Queueing network models have recently become the focus of attention in the

queueing theory literature primarily because of their applications in manufactur-

ing and communications. Closed form solutions for queueing networks, however,

are restricted to Kelly networks (see Kelly [8]) and their special cases. For FCFS

models analytical solutions are known only in the case of Poisson arrivals and ex-

ponential service times (Jackson networks). Unfortunately, if one goes beyond the

exponentiallity assumptions no exact results are known under FCFS. Motivated

by the intractability of the models researchers have focused their attention to ap-

proximations. Whitt [10], [11] proposes a two moment theory by approximating

the processes involved by renewal processes. Harrison and Dai [5] approximate the

queueing network model by a Brownian network, which they then solve exactly.

The simplest network one can imagine is a series of queues in tandem. Despite its

apparent simplicity, the analysis of tandem queues seems quite challenging. Whitt

[12] considers the performance of the QNA to the tandem queue problem and com-

pares it with other approximations. In Whitt [13] these approximations are used for
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the ordering the queues in series so that the total sojourn time is minimized.

In this paper we characterize exactly the departure process of a GI/G/1 queue

and use this characterization to propose a new approximate algorithm for the steady-

state analysis of queues in tandem. In section 2 we establish a close connection of

the departure process with the idle time, obtain that in steady state interdeparture

times are identically distributed but they are not independent and find exactly the

Laplace transform of the stationary interval. In section 3 we determine exactly the

correlation of the departure times for the GI/G/1 queue and also consider the special

cases of the GI/M/1 and M/G/1 queues. In section 4 we characterize the counting

process of the departure process. In section 5 we formulate the tandem queue

problem, while in section 6 we propose the algorithm for its solution. In the final

section we report computational results and compare our results with simulation.

2 The distribution of interdeparture times

In this section we use the Hilbert factorization technique to characterize the prop-

erties of the departure process from a GI/G/1 queue. We first briefly review the

standard Lindley process for the GI/G/1 queue, and then discuss the interdeparture

times.

Consider the Lindley process

W,- In = Wn-_ + X - T,, (1)

where

Wn = the waiting time of the nth customer.

In = the idle period prior to the arrival of the nth customer.

T, = the interarrival time between the (n - 1)th customer and the nth customer.

Xn = the service time of the nth customer.

The key observation is that the interdeparture time is a sum of two independent

random variables, namely the service time and the idle time proceeding the service
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time. In fact, when the server is busy, the idle time is zero, thus the interdeparture

time is equal to the service time. On the other hand, when the server is idle, then the

last departure epoch is the beginning of the idle period and the next departure is at

the service completion of a customer who arrives during this idle period. These two

random variables are independent, since the length of the idle period does not affect

the length of the service time of the customer arriving during this idle period. If D,

is the interdeparture time between the (n - l)th customer and the nth customer,

then

on = In. + Xn.. (2)

We introduce the transforms

· n(0) = E[(eC-W], T8() = E[e-'T-], ac(8) = E[C'-], P(s) = E[-X-], An() =

E[e-'Df].

The corresponding transforms in steady-state are denoted by (s), P(s), a(s), P(s), A(s),

i.e. we drop n in the previous definitions. Therefore, equations (1) and (2) become

in the transform region

n () + ,n(-8)- 1 = On-1()Jn-()Cmn(-8)

A(o) = ()(S)

In steady state, by taking n going to infinity, we obtain

1- 9(-s) = (1 a(-s)i(s))-(s) (3)

A(S) = ,(),(,). (4)

By differentiating (3) we can find the first two moments of the interdeparture time

for the GI/G/l queue:

E[D] = E[T],

Var[D] = Var[Tl +2 Var[X] -2 E[T- X] E[W.

In the general GI/G/1 case, the solution of the factorization problem can be
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expressed in terms of Cauchy-Fourier integration as follows:

(s) = exp (2 ic lg( -- s)dlog(l (-)())

A(S) = () (1-i8 E[T - X]exp (2 I log( )d log(1- (- )P())),

where the contour Co contains the negative half complex plane only and the contour

C1 contains all the positive half complex plane only.

The proof of this requires heavy machinery from complex analysis. Although this

a result in closed form, we do not believe that it is numerically useful, since the

inversion of such a transform is numerically unstable due to the multiple branch

points in the integrand. In order to find numerically useful results, we consider the

GI/R/1 and R/G/1 queues, where one of the interarrival or service time distributions

have rational Laplace transform. We obtain closed form solutions for these two cases

which are computationally very tractable.

2.1 The R/G/i queue

In this case (s) = , where orD(s) is a monic polynomial in of degree L and

aN(S) is a polynomial of degree less than L. Then

Theorem For the R/G/I qeue

O(o) a E[T- XD,(O) Z fzt-
,N(-,)(8)- ao(-a) i=1 ,i

A(s) (s) (1- E[T-X]°o(O) L z t + ) (5)AaD) = ~ (5)

where z = +,...,Zl, 0 are the roots of the equation

a(-z)>(z) = 1,

with Re() > 0 (i = 1... L-1).
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Proof

Let z = +,..., z -, 0 be the roots of the equation

C(-)p(X) = 1,

with Re(zt) > 0 (i = 1 ... L - 1). The proof of this is easily established by applying

Rouche's theorem. Now, (3) can be written as

*() 1- ((-6).n.0:/~.,,_.~ (6)
· taN(--s3(s)-aD(--) CID(-

By observing that the expression in the Ihs of the equation (6) is analytic for

Re(s) > 0 and the expression in the rhs of the the equation (6) is analytic for

Re(s) < 0 and using Liouville's theorem we conclude that both expressions should

be equal a constant K.

To complete Liouville's theorem, we need that the expressions in both sides of

the equation (6) are bounded. But for the Ihs, with Re(s) > 0, it is easily seen

(since the zeros cancel out) that the denominator is bounded away from 0, and thus

for some e > 0,

CN(-S)(S) - aD(-S) 

Also I(s)l < 1. In an analogous way the denominator of the rhs, with Re(s) < 0,

is bounded away from 0, i.e., for some e > 0,

arD(-8) E,

and 11- *(-s) < 2. Thus by applying Liouville 's theorem we conclude that the

unique solution to the Hilbert factorization problem is:

(s) = K I='L ( S - 8)
ON(-s)(s) - ,CD(-8)'

By taking the limit as s - 0 and using Hospital's rule we obtain that K =

,.T.,-1_] from which (5) follows. O
[[i- i
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2.2 The GI/R/1 queue

In this case 3(s) = w, where PD(s) is a monic polynomial in s of degree M and

fiN(s) is a polynomial of degree less than M. Then, in a completely analogous way

as in the previous section we can prove the following.

Theorem 2 For the GI/R/1 qeue

= D(O) j=-1 

A() = (s) ( D(S - () II8 Z)7+ 8) ' (7)

where z = zx,...,zM- are the roots of the equation

(-t)p(z) = 1,

withA Re(zj) < O (j = ... M).

3 The autocorrelation of the interdeparture times

In the previous section we characterized the distribution of the interdeparture inter-

val. As it is well known the interdeparture times are not independent. In this section

we characterize the dependence structure of the interdeparture times by considering

the autocorrelation function of the interdeparture times. Given two intervals A, B

from a stationary point process the autocorrelation of A, B is defined as

Autocorrelation(A, B) = AB- E[A]2
Var[A]

We will use the Hilbert factorization technique, which leads us to use the heavy

machinery of complex analysis. We first study the intermediate problem of char-

acterizing the the covariance between adjacent interdeparture times in steady state

and then study the covariance of arbitrary interdeparture times.
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3.1 Adjacent interdeparture times

Throughout this and the next subsection we will use the notation {De,, De,+l} to

denote a pair of two adjacent interdeparture times in steady state. This notation is

motivated by the simplicity of the resulting expressions. Our aim in this subsection

is to find the joint distribution of {D,, De+l }.

We first note that since {D, D+l) = {D, ,I+l + X,+l1} and Xn+l is indepen-

dent from D, In+ W,,n+l, it suffices to look at {D, W,+ - In+1}. The dynamics

of the system are described recursively as follows

Dn Wn +Xn W + X - T+ 1} (Wn > O)

{Xn + In- Xn Tn+l) (In > O)

By defining1 $(sl, 82) = E[e-SDo-°2W'o+],

4( 81 , 82) = E`1D_-$21-l l

(8, ) = (,, 0) = A(),

and noting that (0, a) = (s), %(0, a) = (s) and A(O, s) = A(s), we obtain by

taking transforms and limits

(81,82) + 't(8 1, -2)- (SI) = ,C(-S2)p(81 + 82)( 4 (82) + 4i(81) - 1). (8)

In order to solve this factorization problem we use the Laurent expansion of the rhs of

(8). Note that all the singularities (A's) of 9(sl, -2) are in the region Re(s2 ) > 0,

i.e. they are equal to the singularities of ca(-s2). Combined with I(s, 0) = A(s),

we have that

I(81,-82) = A(os)

+ E ( + )Residual o(-s)(s + )(4(s)+ 
Re(A)>o A 2)

'We follow the notation introduced by Keilson of using the same symbols , 1 and A for both

single and double parameter functions. The relation between them is that when the first parameter

si of the two parameter functions becomes zero, they reduce to the corresponding single parameter
functions.
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Expressing this in terms of a Cauchy integral, we obtain that

A(S1 , 82) = E[C(e(D-2D+ ]

- (82)Q(8 l 82)

,0- fC(-)( '1 + ) ( X( ' ) + - )( " - ) dw= Jc21 1 j () W 82+W

where the contour C2 contains 0 and all the singularities of a(-a), but it does not

contain -82 and the singularities of (s), P(sl + a) for a fixed sl. Similarly

e(s,,.2) = 2iC '(-w)(s" +w)(4(w) + P(u,) - l)d w (10)

where the contour C4 contains 0, all the singularities of (s) and (s8 + 8) for a

fixed sl, but not the singularities of a(-s) and s2.

From (9), we can compute the covariance:

Cov(D, DOo+l) = lim 2 A(1, 82) - E[D]2

s1 ,--o 0sl i082

= E[T E[X- 1 (11)

+ 2 , (-w)(E[X - 13(w) + w()1(w)) dw

where the contour C3 contains all the singularities of at(-) but it does not contain

the singularities of O(s), Pf(s) and 0.

For the R/G/1 queue with

.,(S) = CN(S)

OD(S) = I(,+Ai)'
i

(11) becomes

Cov(Do., Doo+) = E[ E[X - 1

dL,-1 aN(-,) (E[X -1 () + (s))
+E Li lim/, d.

We evaluated this expression numerically, using the symbolic software package

Mathematica [14]. The evaluation requires several differentiations, especially when
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the transform of the interarrival distribution has poles of high multiplicity like the

Erlang distribution. We also note that we verified using Mathematica that indeed

Cov(Do, Do+l) = 0 for the M/M/1 case.

3.2 Pairs of arbitrary interdeparture times

We are now ready to find the generating function for the autocorrelation function

of the departure process in steady state. We note first that for > 2, Xn+k-l and

Tn+, are independent from D,, In+k-l, Wn+k-1. The dynamics are can be written

as follows:

{D,W,+k-,+k}= { {D., W+k-l + Xn+k-l - Tn+k) (Wn+k-I >0) (12)

{D., X+k-I -- Tn+k} (In+k-I > 0)

We define 1¢(z, 81, 82) = _ z4 E[e-DW '],

0 (Z, 81, 82) = E 1 zk E[e-1DO-'I+,],

(Z, 8=, 0) = (,,0= T (),

&(z, s1, 82) = =I k E[e - Do-S2Do+,] = Y(82)9c(z, 81, 82).

By taking transforms of (12) and summing we obtain

Z'c(Z, 81, 82)-Z(S1, 82)+c(Z, 81,-8 2 )-Z(L, -82)- Z) (-82)(82)C(z,,, 1, 2)

(13)

where I(es, 82), 9(81, 82) were calculated in the previous subsection (see (9), (10)).

We will solve (13) for the R/R/1 case. We will use the Green's function method,

a technique most commonly used for solving differential equations, originated by

Keilson [7]. The difficulty of this problem is the presence of the functions I(sl, 82)

and 9(si, 82) in the equation. Without them equation (13) is a simple factorization

problem, called the homogeneous problem. A solution for this homogeneous problem

is called the Green function, or in ODE terminology it is also known as the general

solution.

The first step in our calculation is the determination of the Green function,
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which is obtained by solving

(1- Za(-82)P3(82))$C(z,81,82)= () - c(Z, 81, -82)

Using the usual factorization arguments (see the proof of theorem 1) we obtain the

Green functions as follows:

c(Zt, 81, 82) = -n /()_ C

C(z,81, -82) = l ) i(Z)-82)C
1-z + D(-82)

for some constant C, where z+(z),... ,+(z),z(z), . . . , z(z) are the roots of the

equation

z4(-z)p() = 1

with the property that Wzt(z) > 0, (i = 1,...,L) and Re(zt(z)) < 0, (j =

1,..., M). The latter is established by applying Rouche theorem.

In the second step of the calculation we substitute C by a function 82Xc(z, 81, 82),

so that it will compensate for the missing terms 4(s8, 82), (s81, 2) in the homoge-

neous equation. Guided by the solution to the homogeneous problem we assume

that

-c(Z, 2) = - ZI(8, 82)8_ Xc(_ 81,8) (14)

= 1- ZC(-82)p( 2 ) - I 1 (a2 - Z;(Z))x(z"82) (14)

c(, 81,-82 = Zz 2 A(ui) + 2 fli(( )- 2) X(Z, 81, 8215)c(z,a1,-82) = Zv(s1,-o2)+ 1 ) + i tD() 
1 - Z CDo(-8)

Our goal is to determine Xc(Z, ,s82) so that all the conditions are satisfied.

Since .(z, sl, s2) is regular in Re(s 2 ) > 0, we must have

L C(Z, 1)
Xc(Z,81,82) = E C )

i=l 82-

To find Ci(z, 81), we must set the residual of (14) at 2 = tr (z) equal to zero, and

thus

ZCD,(-Z,(ZA))A(, -(z))
C(, ) = - z)f( (4:(z) - z (z))

h' ()n itW

11



Hence

L ZA)ZazD(-Z.(Z)),(81,Zt(z))
,= zt(Z)(zj(z) - 82) rkI (4(z) - ti(z))

2wzTf 0a(-(W) d_
-r '. '(82 - W) nil (;- (z)- w)
ZaD(-82)(A(81)- (81,-82))

82 In=1(,+(Z) - 82)

z o acN(-W)(81 + W)((w) + (s 1 ) - 1) 
2rV(, -_ ) n(2.) -,W)

where the contour C contains 0,8s2, all the singularities of $(s) and P(81 + s)

for a fixed sl but it does not include z+(z) (i 1,.. , L). The contour Cs includes

z+(z)(i = 1,..., L) only. Note that the last step of the above expressions is attained

by substituting (8), (10) and using the complimentary contour integration. The

interested reader can check the algebra:

XC(Z, 81, 82) = 1 ZaD(-Z)4 (, ) dz2 r/ cs Z(82 - ) iL( i ( z ) )

1 Za f (-z)ca(-)f(81 + w)(() + '(si) - 1) ddz dw
2rvl--T JC4 (82 - Z)W( - W) I1 (Zt (Z)- Z)

W(W - 82) '__z -. W)

+ 1 . ZcD(-82)a(-W)P(8 + w)($(w) + '(,,)-- )
+2r""T J, 4 W(2 -)1 (t (Z - 82) -

1 j, ZCN(--W),(8i + W)(4() + ,(1) - 1)

Z aD(-82)'(8, 82)
+82= (z (Z) -,-82)

1 , ZVXN(-W,)1(81 + w )(() + (81)-1) - 1)

82 =I~(-zt(z) - 82)
+ £Z . cN(-)1(81, +W)(() + '(sI) - 1)

+V:'r ,(W - 82) niL= (zt+(z) - W)
zag)0(81,~ ~~ = 
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From the definition of tA(z, sl, s) and (15), we get 2

z
= (8l)0(82) +1-z

Z821(82),P(81 + w)aoN(-) , + 82 (( ) +W (S2+w)D(82) i=l S (Z):- 

1
2r'z-7

~~ 1)dw
X81))

where the contour C7 contains xt(z) (i = 1,. , L), but it does not contain 0, -2

and the singularities of 4(8), 0(si + S).

The generating function R(z) for the autocorrelation function of the departure

process is thus given:3

= k E[DooDoo+kl- ED]2

k=l Var[D]

1 82
= j1 lim 4(, 81, 82) -

Var[D] i,a2-0 88182)-

E[1 E[X - z
Var[Do]( - z)

E[D]2 z
Var[D](1 - z)

(16)

1 GaD() zt(z) E[X - 1
2 Fo r the generlD z Var[D

2For the general GIIGI1,

+((w) dlog(P(w)) dw
Var[D] dw

s -(81),(S2) +
-- l-

I~ ( a(,) + - 1 ) 821(82)(81 +w)a(-w)
2wvf AJO (e ) w(2 + W)

exp (---- .' 2 d"og(" - (-,)(,)) ,

SFor the peeral GI/G/1

R(S)

+ 2-f E[X .. II (w) d+lo ((w)
w2 Var[D] + W VrD] dw J

exp ( 2f lofg( - ) dlos(l - a(-z)(z)))) di

where the contour C contains the positive half complex plane only.

13
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where the contour Cs contains zt (z) (i = 1, L), but it does not contain 0 and

the singularities of 4(s) and P(8).

Again for the M/M/1 we symbolically verified using Mathematica that the result

is indeed correct. The final form is relatively simple in terms of the roots zt(z), but

in order to find the autocorrelation function numerically, we need to differentiate

several times with respect to z, which is a nontrivial task. To obtain numerical

answers we experimented using the fast Fourier transform algorithm. As an accuracy

check, we used the results from the previous subsection for adjacent interdeparture

times.

In order to acquire some insight about the behavior of the departure process we

next consider two simpler cases.

3.3 The departure process of a M/G/1 queue

Let A = be the arrival rate, p be the service rate, p = - be the traffic

intensity. Then the interdeparture time transform pdf is:

,(s) = + (o).

If r, = Autocorrelation(D, Do+n) = EDD D, R(z) I zrn

and y(z) = 1(z+(z)), we evaluate the complex integral (16) using the Pollaczek-

Khintchine formula for 0(s):

R(z) = I-( c)d (I I (z) 1+ II ( _ _ 1 _ (1 1

where Cl is the square coefficient of variation of the service time distribution and

y(z) = O((1-y(z)))
A (Az)n d

---O (n + )! dA"+
The last expression is obtained by applying the Lagrange implicit function formula.

In particular, the autocorrelation for adjacent departures is

r = r -(1 c2 )P (()-1 dA log((A)))
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Using Mathematica we computed for the M/D/1 the various autocorrelations.

1 1-p
l+p l+p

= -2_ I -P
l+p

2+4p + 3p2 e 3 0 _

2(1 + p)

3 + 9p + 12pP + 8p
3(1 + p)

1-p
l+p

_401-pC -_ -p
1 +p

24 + 96 p + 180p2 + 200p3 + 125p4

24(1 + p)

n-1 = (np) 1-

Ln k ~O n k!( + p) +

-- 5,0_ 1 P

1 + pl+p

P
p

A proof of the last expression is as follows:

R() = 1 ( zy(z) I
(z) = - y() -* d 

dz

(Z) ( Z) + z y(~Z) )

= py(z) ((z) +

Hence

(z) (y(z) + zzy(P)
y(z) ((Z) + zi.u(Z))

Now let

4(z) = - zy(z)

= ( + (())e-*T*
Gol zn"l 

n=l C-o dn-1 

00 zn 1

ni=1

0 (np)k

n=1 k=O k

(1 + )e-T)

1C ( +4) "
1 + n-k

)
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Figure 1: Autocorellations of the the departure process in a M/D/1 queue as p - 1

(=

where the infinitesimal contour 6lo contains O only. By expanding R(z), we have

the expression.

Clearly when p - 0 (the light traffic limit) the autocorrelations vanish. Sur-

prisingly, however, when the traffic intensity p -, 1 (the heavy traffic limit), the

autocorrelations do not vanish. In figure 1 we present the autocorellation structure

of the departure process of the M/D/1 queue as p - 1.

3.4 The departure process of a GI/M/I queue

Similar to the M/G/1 case, let

y(Z) = c(-z1(z))

= Ca((1 - y(z)))

E (PIz) d(
-E(n+ 1)!di"

16
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We obtain

0(8)

A(s)
- yO S + y(l))

= A y(l) - 0-y(i ))(o)
a+u .- p(i-y(i))

_- p(-y(i)(yOi-) z y(z)
y(I){C (T)(i - y(l))- 2p(y(1) - p)) 1- zy(z)

The last expression is obtained from the evaluation of the following alternative

formula with M = 1;

R(z) = E[T] E[X - ] z
Var[D](I - z)

I PD()(I- ) z (Z(z)-W (E[X - I *(w) dlog(P(w)))
2 r/ 0 1s, Jw2(13D(W) - Z3N(W)a(-W)) il z () Var[D + Var[D] dw J

where the contour Cl: contains 0, all the singularities of (s) and i(s).

For D/M/1 system, contrary to M/D/1, we found that when the traffic intensity
p - 1 (the heavy traffic limit) the autocorrelations vanish, but when p - 0 (the
light traffic limit) the autocorrelation between adjacent departures does not vanish.

lim R(z)
p--0

lim R(z)
p-1

z
= -_

2
= O

To see this, we first compute

R(z) = z() - y()2 y(l) 1 - zy(z)

y(z) = e "

I y(i)E[W = Y
1 - y(l)

Since limp-i E[W] = oo, we have limp.. 1l y(i) = 1, which immediately gives

limR(z) = 0.
p-l

Using the Lagrange implicit function formula, we obtain

R) (n=z-1 - 1(Q -±- .( -- 1)- ( )

R(z) = "o L o -e n 
Enoo n (pc1)*- o)e-' 1 -- · ao ~n~n= -l 1

17



I~O

Since lim.o 0eo = 0, and lim-.o e- = 0, we have

lim R(z)= -Z

The results for both M/D/1 and D/M/i can be explained intuitively if we observe

that when the interdeparture time approaches exponentiallity, i.e. in the light traffic

limit for M/D/i or in the heavy traffic limit for D/M/1, the correlations disappear,

and the departure process approaches a Poisson process.

4 On the departure point process

Bertsimas and Nakazato [1] have found a distributional Little's law for queueing

systems under FCFS. If the input process to an arbitrary queueing system is a

stationary point process, not necessarily a renewal process, and Na(t) is the number

of arrivals up to time t, given that the first interarrival time is distributed as the

forward recurrence time of the interarrival stationary distribution, then under FCFS

the z:transform GL(z) = E[zL] of the queue length distribution and the waiting time

cdf Fw(t) in steady-state are related as follows:

GL(z) = K(t, z)dFw(t),

where K(z,t) = z=ozPr{N*(t) = n) is the equilibrium counting process of the

arrival process.

Motivated by this distributional Little's law we will study in this section the

equilibrium counting process for the departure process. The reason we are interested

in the equilibrium counting process for the departure process is that in the next

section we will study queues in tandem, where the departure process of one queue

is the input process for the next queue. Since our analysis of tandem queues only

considers waiting times under FCFS, using our distributional law we will be able

to compute queue lengths provided we have a method to calculate the equilibrium

counting process for the departure process.
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In order to find the equilibrium counting process of the departure process we will

first need to compute the joint distribution of {( - Doo+,, Doo+&k}. The analysis

in this section is almost identical to the case of the autocorrelation function in the

previous section, but slightly more complicated.

We first write the equations of the dynamics:

k-2k-il f k-o2 Dn+t + Xn+,~i, + In+k-l (Wn+k-l > 0)r=- - o Dn+, + Xn+k-l (In+k-1 > 0)

Wn+k - In+k = Wn+k- + Xn+klI - Tn+k (Wn+k -l > 0)

Xn+k_ - Tn+k (In+k-i > 0)

We introduce the generating functions in the transform region

O(, 8, 82) = Ek=O k E[e- i,0 DMo+,-W4+*].

(*, 1, 2) = Ek_=-O Z E[cl 0 D ,+ -r,+].

A(z, i8, 82) = Eko Zk El[e- °' r0 O+-DO+] = (a2)'(z, Si, 82).

A(z, s) = A(z, a, 0) = (Z, s, 0) = %(Z, , 0) = 1 + ZP(s)(Z, , 8).

In terms of generating functions the equations for the dynamics become

,r(z,al, 2) - (82) + (Z, 81, ,-2) - I(-S2) - A(z, ) + 

= z(-s2)/(sl + 2)('(z, 81,82)+ g(z, 8l,sl)- A(z, 1)), (17)

where 4(s), (s) were defined in section 2 as the transforms of the waiting time and

idle time distribution respectively.

We will solve (17) for the R/R/1 case using again the Green's function method.

An additional trick we need is that the Hilbert factorization for the homogeneous

part of (17) must be performed between '(z, 81,s2) + (z, al, s) - A(z, ) and

t (z, a), -82)-( z, , )-( -s 2)+(81), because of the presence of the additional

unknown terms I(z, sI, sl), A(z, si). The derivation then proceeds along the lines

of the previous section, so we omit the details.

Let zt (z, ), z7 (z, s) be the roots of the equation

zcI(-Z)I(a + ) = 1,
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such that Re(z+(z, )) > 0, (i = 1,..., L) and Re(z'(z, )) < 0, (j 1,...,M).

Then using similar arguments as in the previous section we find 4

A(z, s) = 1+

)1 s)D((-)) z{ t +(z,')

Z -7r A~l2 W( + W)( - O())D(O) i t z (z - ( Jp()

A(Z,S,8 2 ) = ,( ) +

(82 81)(8)D()() + 8(2 (( + ( 1 ) +-1) 
(S + W)(82 + W)aD(2)) il ~(, () - W+ (81)

where both contours Cl2 and C13 contain 0 and z(z, S) (i = 1,..., L), but they

do not contain any singularity of O(s). In addition, contour C12 excludes -s, and

C13 excludes Sl and -s2.

We should note, however, that inverting the above expressions is a nontrivial

matter. As an accuracy check of the algebra, we have tested using Mathematica

that the formulas for the M/M/1 queue are indeed correct.
4For the general GI/G/1 queue,

A(, ) = 1+

1 ( + ( )+1) Zs_(s)f ((w)+ ) - W( + W)( - z(l)s))

e (irf f log(-) dblog(1 - a(-z)p(s + )) w

A( ., (,) exp (1 f1( -)dl(l - (-z)P(s, + ))
W(SI + W)(1 - s,6()l ) s-

+ (2- 1)0(8) ex( 10( r+ l ) ( - za(-z)(a + ))) dw
( + )(8 + ) UV7 Jc,. z _- 

where the contour C contains only the nonnegative half complex plane, and the contour Cls

contains the positive half complex plane.
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We are now ready to compute the backward equilibrium counting process of the

departure process

K(t, z) = Pr[D > t]+f n-2 n-I
D~ I+ D , t] - Pr[D'+ + Do+ < t]-Pr + Dt]

n=l r=O r=o

where Dn = is the time elapsed from the (n - )th departure until a random epoch,

which occurs before the nth departure.

K(t, z) can be found provided the inverse of A(z, s, 82) is given. If we define

Pn(t,lt 2) as the inverse transform of

A(z, , s 2) = ze-jljz-8n2 p,(tl,2) dtdt d

then the generating function for the backward equilibrium counting process is

K(t, ) = 1-(1- z)

x E zn At R(f o fPn(tl,t 2) dt2 d 1t) 2 (7,r - )J) J yin (tl t 2) dt2 dtl d d,

n=1 r°fllo t2Pon(tl,t 2)dt 2 dtl Jlo Jt 2Vn(tl,t2 )dt 2dtl

since

k-i

Pr[ Doo+ < rl, D'+ < ]
g=O

-/lo o2p J o.(tl,t2)dt2 dt

Having characterized the departure process of a GI/G/1 queue we apply in the

next section our results to the analysis of tandem queues.

5 Formulation of the tandem queue problem

Consider a queueing system that consists of Q single server queues in tandem.

Our goal is to characterize the waiting time distribution in each of the queues.

Using our distributional Little's law and our characterization of the equilibrium

counting process of the departure process we will be able to compute the queue
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length distribution as well. Arrivals come to the system only through the first

queue with a general renewal process, while the service time at each queue follows

a general distribution. In order to model the system we define

Tn = the interarrival time between the (n - 1)th customer and the nth customer at

the first queue.

Xi, = the service time of the nth customer at the ith queue.

Wi,n = the waiting time of the nth customer in the ith queue.

Ii,n = the idle period of the ith server prior to the arrival of the nth customer to

the ith queue.

Di,, = the interdeparture time between the (n-l)th customer and the nth customer

from the ith queue.

The corresponding random variables in steady state are denoted by T, Xi, W;, li

and Di, i.e. dropping n in the previous definitions. Let Li denote the time average

queue length at the ith queue. Let us also define the steady state transforms:

O(s) =E[-*T],

pi(J)= E[-Xi],

i(8) = E[-'Wil,

Gi(z)-= E[zL'],

Ai(s) = E[e-"],

A(B) = E[-.'Di].

The analysis problem for the tandem queue problem can now be stated as follows:

Given the transform a(s), pi(s), such that pi = -X < 1, find the transforms

,i(8), Gi(z), i(s) and A(s).
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5.1 System Dynamics

The dynamics of the system can be described as follows:

Win - Ii,n = Win- + Xi,n- - Di-l,n (i = 1... Q)

Di,n = li,n + Xi,n ( < i < Q)

Do,n = Tn

Observe that Xi,n- is independent from both Wi,n-1 and Di-l,.. The random

variables Wi,,,- and Di-l,n, however, for finite n are not independent. It is not

clear what happens in the limit as n goes to infinity. It is this dependency structure

that complicates the problem considerably. We were unable to solve the problem

exactly. In the next section, however, we make the simplifying assumption that in

steady-state Wi and Di-l are indeed independent. As a result, with the simplifying

assumption, we are able to solve the problem exactly.

6 The approximation

In this section we propose an algorithm based on the following independence as-

sumption:

Assumption A

The random variables Wi and Di-I are independent.

For a series of M/M/1 queues this assumption is accurate, since the input pro-

cess to each queue is Poisson, i.e. all the Di's are exponential independent random

variables. In the general case, if the departure process were a renewal process, the

assumption would also be accurate. As a result, our method can also be seen as

a renewal approximation, which approximates the interdeparture interval exactly,

however. Moreover, unlike Whitt [12], we use information about the entire interde-

parture distribution rather than its first two moments. In the next section we report

numerical results, which are very close to simulation experiments.

Although this is not essential for the method, for tractability purposes we further

restrict our attention to a series of R/R/1 queues, i.e. we assume that
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* a(s) = 'N- , where aOD(s),aN(s) is a monic polynomial of degree do and a

polynomial of degree < do,

* Ai() = O where PDi(s), pNs() is a monic polynomial of degree Mi and a

polynomial of degree < Mi.

Assumption A forces Di to have rational Laplace transform, i.e. Ai(s) = E[e-'Di ] =

8fif, with ADi(s), ANi(s) a monic polynomial of degree di and a polynomial of
degree < d. The polynomials ANi(s), ADi(8) will be determined in the algorithm.

For notational purposes we will denote Ao(s) = a(s).

We now take transforms in the equation of the basic dynamics, take limits and

use assumption A. We thus obtain

(1- _(-s),(s))i() = 1- (-o)

Ai(s) = ,i(o)i(s)

ho(s) = a(8).

Using the usual Hilbert factorization arguments we can solve these equations

inductively from i = 1 to i = Q as follows:

Tandem queue Algorithm

For i= 1,...,Q

1. Solve the equation

>If(-z)~i(z,) = 1,

ad let zl * * , sz +i,.-l O i, ,... Z ,M; denote the di-l + Mi roots.

2. Solutions for the i queue:

Ooi (0) s ij=(8 i(O) M, Of j-

Gi(z) = 1 + A z (1 _ i(z)) I, -
j=1 Z( l fruiai(zm,)) te i,k -

where the last formula is from the distributional Little's law.
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3. Compute the interdeparture transform pdf:

di-I-, 1(0) '. . ·

p =ADi-1(8) j=1 · )

The bottleneck part in the above algorithm is step 1. Clearly d, = Mi + dil and

thus di = do + jr= Mk, where do is the order of the interarrival time pdf. In order

to solve for the ith queue we need to solve a polynomial equation with di roots. As

a result, we need to find in total EQ=I d = doQ + EQ=,(Q + 1 - r)M, roots.

In the next section we examine the performance of the algorithm compared to

simulation results.

7 The implementation and performance of the algo-

rithm

We programmed the algorithm using Mathematica. The main reason for choosing

Mathematica is the availability of built-in very accurate root finding techniques for

polynomials, and symbolic manipulation operations. The algorithm takes as input

the transforms of the interarrival distribution at the first queue and the transforms of

the service time transforms. Alternatively, one can give as input the first moments

and the coefficient of variation of these random variables. The algorithm then

automatically fits distributions with rational Laplace transforms. The algorithm

compute the aeptdidon and the coefficient of variation of the waiting time, the

queue lth and the departure process. It also computes the autocorrelations for

the deputur procem, which is an indication if our approximation is accurate, as

well as the waiting time and interdeparture distribution by inverting numerically

the Laplace transforms. For the numerical inversion of the Laplace transforms we

used the algorithm by Hosono [6].

We ran several examples. As a general rule we found that the correlations of the

departure process were very low, in the neighborhood of 0.01. This means that we
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expect that the departure processes are almost renewal and thus assumption A is

accurate. In the cases where simulation results were available from the literature we

found that the algorithm was quite accurate. In comparison with the QNA package

of Whitt [10] we found that our algorithm gave answers close to those obtained by

QNA. We present below three examples.

Example 1 (Whitt [11])

There are two queues in tandem. The characteristics of each queue are:

E[TJ = 1, C = 1,E[XI] = 0.6, CX = 2, E[X 2] = 0.8, C 2 = 4,

i.e. P = 0.6 and P2 = 0.8.

Running our algorithm we found for the first queue

E[Wi] = 1.35, C, = 2.54526,E[L 1] = 1.95, C2, = 1.92209,

E[Di] = 1, CD, = 1.36,

and for the second queue

E[W2] = 8.69681, C2 = 1.57799,E[L2] = 9.49681, CL = 1.49431,

E[D2] = 1,C2D = 3.00128.

The simulation results of Whitt [11] were E[W1] = 1.360, E[W2] = 8.131. In order

to understand the behavior of the algorithm we calculated the correlation structure

of the departure process. We found that ro = 1, rl = -0.0118, r2 = -0.0129, r =

-0.0118, i.e. the input process to the second queue is almost renewal.

Example 2 (Whitt [11])

There are also two queues in tandem. The characteristics of each queue are:

E[T = 1, C = , E[X] = 0.3, C, = 0.5,E[X 2] = 0.2, CX2, = 0.5,

i.e. Pl = 0.3 and P2 = 0.2.

Running our algorithm we found for the first queue

E[W1l = 0.0964286, Cw = 2.54526, E[L1] = 0.396429, C1 = 3.11346,

E[DI] = 1, CD = 0.955,

and for the second queue

E[W2] = 0.0264537,Cw 2 = 10.746, E[L2] = 0.226454, C2 = 1.49431,
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E[D2] = 1, C2D2 = 0.952674.

The simulation results of Whitt [11] were E[W1] = 0.096, E[W2] = 0.026. In this

case the correlation structure of the departure process is as follows:

ro = 1, r = 0.0124, r = 0.0055, r = 0.0026.

In both examples the results of the algorithm are close to the ones obtained

by simulation. An interesting remark can be made about the relative accuracy of

the method in the two examples. In the second example, where the results of the

simulation and our method are identical, the correlations are very close to 0, while

in example 1 the correlations are higher and therefore the results of the simulation

and our method differ slightly.

Example 3

As it is quite difficult to find reliable simulation results in the literature we present

a random example so that researchers can compare these results with simulation

results and with their methods. This example consists of four queues in tandem,

with E[T] = 1,C T = 0.75 and E[X1 ] = 0.5,CX2, = 0.5,pt = 0.5,

E[X2] = 0.6, Cx = 0.6, = 0.6,

E[X3 ] = 0.7, Cx = 0 .7,p3 = 0.7,

E[X4 ] = 0.8, C 4 = 0.8, p = 0.8.

We found that E[WI] = 0.292606, E[W2] = 0.53196, E(W3] = 1.09019, E[W] = 2.42284.
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