
Routing in Point-to-Point Delivery
Systems

by

Janny M.Y. Leung, Thomas L. Magnanti,
and

Vijay Singhal

OR 174-88 January 1988

**This paper is also printed as a Working Paper at the Yale School of
Organization and Management, Series B, No. 103.



Routing in Point-to-Point Delivery
Systems

Janny M. Y. Leung
School of Organization & Managment, Yale University

Thomas L. Magnanti
Sloan School of Management, MIT

Vijay Singhal
Resource Management Systems

January 21, 1988

1



Abstract

We develop an optimization-based approach for a point-to-point
route planning problem that arises in many large scale delivery sys-
tems (for example, less-than-truckload freight, rail, mail and pack-
age delivery, communications). In these settings, a firm which must
ship goods between many origin and destination pairs on a network
needs to specify a route for each origin-destination pair so as to min-
imize transportation costs and/or transit times. Typically, the cost
structure is very complicated. The approach discussed in this pa-
per exploits the structure of the problem to decompose it into two
smaller subproblems, each amenable to solution by a combination of
optimization and heuristic techniques. One subproblem is an 'assign-
ment' problem with capacity constraints. The other subproblem is
a mixed-integer multicommodity flow problem. We propose solution
methods based on Lagrangian relaxation for each subproblem. Com-
putational results with these methods and with a heuristic procedure
for the multicommodity flow problem on a problem met in practice
are encouraging and suggest that mathematical programming meth-
ods can be successfully applied to large-scale problems in delivery
systems planning and other problems in logistical system design.

2



In many large scale delivery systems, a firm must ship goods between
many origin and destination pairs of nodes on a network. Delivery route
planning attempts to specify a route for each origin-destination pair so as
to minimize transportation costs and/or transit times. The complication
in many delivery systems is that the costs are nonlinear, nonseparable by
origin-destination pairs, and usually include fixed charges.

This type of point-to-point delivery route planning problem arises in
numerous applications settings, for example, package delivery, telephone
circuit switching, mail delivery and rail freight shipping. As the service
sector's share of the GNP increases, these application contexts will continue
to grow in scope and importance. For example, from 1975 to 1981, total
outlays for freight transportation doubled from $ 115.5 billion to $234.7
billion (Transportation in America, 1983). In addition, the globalization of
many industries adds new demands for system integration of transportation
and communication, and for more rapid and reliable point-to-point delivery
services. As but one indication of the changes taking place, international air
freight increased 16.2 percent from 1985 to 1986 (U.S. Industrial Outlook,
1987).

Effective planning in these settings typically poses significant challenges
to managers and analysts because of the enormous scale of the underlying
routing networks. For example, the telephone network in the United States
connects over a hundred million subscribers, and the postal service delivers
over a billion pieces of mail per year. In the real-world application that
motivates this research, a cost savings of one percent translates into profits
of millions of dollars a year.

Despite the demonstrated importance of these problems and their as-
sociated high payoffs, most problems of practical interest have yet to be
solved successfully by mathematical programming methods. This gap be-
tween practice and relevant planning methods serves as a testimony to the
difficulty of these problems.

In this paper, we present a model and solution methods for such deliv-
ery systems. The model is a complex large-scale non-linear mixed integer
program. Our solution approach decomposes the problem into two smaller
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subproblems:

1. a capacitated "assignment" problem that models the assignment of
origin-destination pairs to pairs of intermediate distribution centers,
and

2. a mixed-integer multicommodity flow routing problem that specifies
routes connecting the intermediate distribution centers.

We propose to solve each subproblem by integer programming decomposi-
tion (Lagrangian relaxation) and heuristic methods.

This research originates from a project we conducted with a large-scale
transportation carrier. The algorithms we developed form part of a decision
support system used for operations planning. As reported in Section 7, our
computational experience with this application indicates cost savings of 5
percent.

1 The Delivery Route Planning Problem

We first discuss briefly some of the features of the delivery systems we are
trying to model.

The delivery network contains nodes of two types - terminal nodes and
distribution centers (see Figure 1). All traffic originates and is destined
for terminal nodes. Distribution centers are intermediate transshipment
nodes at which the shipper may consolidate or disaggregate (break down)
goods for distribution. The required volume to be shipped for each origin-
destination pair is specified a priori, and the objective is to specify a route
for each origin-destination pair that minimizes total system costs. There
are two cost components - shipping costs on each link of the network and
processing costs at each node.

Note that we are modeling shipments between origin-destination pairs
and not the collection/distribution of goods from/to customers. For ex-
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Distribution center (DC)

Terminal Node

Figure 1: A sample delivery network

ample, in mail delivery the terminals will correspond to local post offices,
and the distribution centers will correspond to major sorting facilities. We
are not, therefore, modeling the local pickup and delivery of mail from end
customers (which typically is a vehicle routing problem).

The goods are shipped on a link in trailerloads (trainloads or commu-
nication packets in other settings), and so the shipping cost on a link is a
step function of the amount of goods sent on a link. Figure 2 shows an
example of the link shipping costs. Notice that the 'steps' might not be
even since the shipper might use several possible trailer sizes (e.g., 24-feet
trailers, 48-feet trailers, double trailers). In practice, even the capacity for
each trailer type is not fixed because the items are not of uniform size.

The processing at a distribution center involves the following operations:

1. unloading arriving trailers,

2. sorting the unloaded items by destination, and

3. reloading the sorted items onto trailers to be dispatched
to other distribution centers or to terminals.

The processing cost at the distribution centers as a function of the volume
to be sorted has the typical nonlinear functional form shown in Figure 3.

5



C

Volume

Figure 2: Graph of Link Shipping Cost as Function of Volume.

Each distribution center (henceforth called a DC node) has a nominal ca-
pacity, beyond which the costs increase rapidly due to congestion, as well
as a minimum level of efficiency, usually about 50% of capacity. When the
DC node operates within these limits, the processing cost per item is ap-
proximately constant. In the application context that motivated this study,
and in many similar applications, the location of distribution centers is not
a major concern; the firm would occasionally contemplate a very few ad-
ditions or deletions of distribution centers (at a very high cost). It would
analyze such changes by considering a very few alternate scenarios, using
the type of route planning application considered in this paper to evaluate
the possible scenarios. Consequently, in contrast with the plant/warehouse
location literature, the problem we are investigating need not encompass
fixed costs at the distribution centers.

In practice, the cost and route structure is even more complicated.
Driver work rules might limit the distance between terminals and DC's.
At times, the shippers can avoid the processing at a DC node by dispatch-
ing a full trailerload directly on to the next DC node without sorting. (In
these instances, the DC might serve merely as a drop off point for an ex-
change of drivers.) Moreover, operationally it is often impossible to allow
multiple routes for each origin-destination pair. Single routes simplify sys-
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Figure 3: Distribution Center Processing Cost as Function of Volume.

tern control as well as operations at the DC where operating staff typically
sort goods only by final destination. In addition, flows must satisfy service
requirements, which guarantee delivery within a certain time frame. These
service requirements prevent goods from being sent on a very indirect route
to save on transportation and processing costs.

Other issues to be considered include the balance of flow of trailers and
the number of destinations that a DC node can handle. Because these
considerations are of secondary importance for our application context, we
do not include them in the mathematical models we will present.

1.1 Size of the Problem

The test data from the real-world problem that motivates this study has a
network with approximately 250 nodes (of which about 40 are distribution
centers), 2000 links and 8000 origin-destination pairs. As a device to model
service requirements (timing features) adequately, we let each node of the
network represent an activity at a particular location at a specific time of
day; thus the number of nodes in the network representation is often four
or five times the number of physical locations in the system.
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For this network, a mixed integer multicommodity flow formulation of
the route planning problem (see Section 5) contains sixteen million zero-one
variables, which is clearly beyond the capacity of current state-of-the-art
general integer programming codes. The route planning problem cannot be
solved as a monolithic integer program and we must find a way to reduce
it to a manageable size. We also feel that a modular approach to solving
the problem might be attractive practically since it allows more flexibility
in adjusting specific portions of the model as data and problem ingredients
change over time.

2 Related Research

The operations research and transportation service communities have con-
ducted considerable research on distribution systems design and route plan-
ning; we will not attempt to review the literature in detail. Comprehensive
surveys by Eilon, Watson-Gandy and Christofides [1971], Geoffrion [1975],
Magnanti [1981], Bodin, Golden, Assad and Ball [1983], Magnanti and
Wong [1984] and Dejax and Crainic [1987] summarize much of this liter-
ature. The problem studied in this paper does not fit the usual vehicle
routing framework because goods are not carried from their origin to their
destination on a single vehicle. Moreover, because of the step increments
in cost on the links, the cost structure is complicated and differs from the
usual plant/warehouse location literature, which focuses on location and
sizing of the distribution centers (i.e., the fixed cost depicted in Figure 3).
Similar problems that involve both assignment and routing with discon-
tinuous link cost functions often lead to large mixed integer programming
models. Some examples are the less-than-truckload loading problem (see
Powell and Sheffi [1983] ), the train blocking problem (see Bodin, Golden,
Schuster and Romig [19801 and Assad [19801), and the warehouse location-
routing problem (see Perl and Daskin [1985]).

Fisher and Jaikumar [1981] studied a vehicle routing problem and used
a "dual-ascent" solution strategy similar in spirit to the one we propose in
Section 5. In studying the less-than-truckload problem, Balakrishnan and
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Graves [1985] applied a dual ascent approach. Lamar, Powell and Sheffi
[1984] also investigated the LTL loading problem, using ideas from fixed
cost network design (see also Balakrishnan, Magnanti and Wong 1987]).

The modeling approach adopted in this paper addresses tactical plan-
ning issues: route selection, operating levels of the distribution centers, and
vehicle loading. As we indicate in our brief discussion of implementation
issues (Section 7.4 and 8), the model can also be used to address a vari-
ety of what if" and strategic planning issues (e.g. location of distribution
centers and terminals). Other, more aggregate, planning tools might also
prove useful for addressing these system design issues: for example, the
macroscopic approach of Daganzo [1987] or of Burns, Hall, Blumenfield
and Daganzo [1985]. Indeed, a macroscopic approach can sometimes lead
to surprising and insightful results: for example, in many logistics location
problems, such as locating the terminals in our problem setting, facilities
should be placed as centers of hexagons in a hexagonal partitioning of the
service region (see Fejes Toth [1953], Papadimitriou [1981] or Haimovich
and Magnanti [1987]). These results seem more than academic: in the
past, our industrial collaborators has used this design strategy to locate its
terminals.

3 A Decomposition of the Routing Problem

We propose a decomposition approach to the route planning problem which
separates it into two linked subproblems. Each subproblem is solved 'ap-
proximately' to generate a 'good' solution to the overall problem.

Consider the routing decision for each origin-destination pair in two
steps:

1. the assignment of each origin-destination pair to a (first DC)-(last
DC) pair,

2. the choice of route from the first DC node to the last DC node.
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Separating the routing decision into these two steps decomposes the
route planning problem into two subproblems. The first sub-problem con-
siders the assignment of a first and last DC node on the route for every
origin-destination terminal node pair. After all such assignments have been
made, the second subproblem seeks a minimum cost routing of the aggre-
gated flow of goods among the DC nodes. This decomposition forces all
items with the same first and last DC nodes to be shipped via the same in-
termediate nodes irrespective of their origin and destination terminal nodes.
This property of the route plan greatly simplifies the processing task at the
DC nodes, and is a very desirable feature from an operational standpoint.

There are several other advantages in adopting this decomposition ap-
proach. Focusing the routing problem on the DC network rather than the
complete network significantly reduces the size of the routing problem. Not
only does this approach considerably reduce the size of the network, it also
dramatically decreases the number of origin-destination pairs because of
volume aggregation. In effect, this approach collapses the original network
into an aggregate network consisting only of the DC nodes. With this re-
duction in problem size, we can formulate a more detailed and accurate
model of the routing problem and investigate optimization-based solution
methods or heuristic procedures that would be prohibited by the size of the
complete problem.

A second advantage of the decomposition approach is that it decouples
the major decisions of the problem and simplifies the problem structure.
Effectively, the routing problem acts as a costing procedure for pricing out a
given assignment. From this perspective, we can view the complete problem
as that of finding the terminal-to-DC assignment with the minimum total
cost.

However, the two problems are linked and cannot be optimized sepa-
rately. In solving the assignment problem, we must ensure that the service
requirement is met by the route that is chosen subsequently by the routing
problem. An additional complication involves computing the cost for each
possible assignment. This cost depends on the route between the first DC
node and the last DC node, which is determined by the routing subprob-
lem. However, the routing subproblem is not defined until we obtain the
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volumes from the assignment problem. Even then, we can obtain only an
estimate of the assignment cost since the shipping cost on a link does not
separate by origin-destination pair.

One approach to deal with this dilemma is to iterate between the two
problems. Using an estimate of the routing component of the assignment
cost, we solve the assignment problem. With aggregate volumes from the
solution to the assignment problem, we solve the routing problem to obtain
an exact routing cost. Thus, we have 'priced out' one possible assignment.
Next, we update our estimates of the assignment costs using the solution
from the routing problem, and re-solve the assignment problem and the
corresponding routing problem. We iterate back and forth between the two
subproblems. We can view this iterative scheme as an heuristic search over
the possible assignments. In our computational study, we have focused
on testing the algorithms for each subproblem, and thus not tested the
iterative scheme.

In the remainder of this paper, we will present mathematical formula-
tions for both the assignment and routing subproblems, discuss optimization-
based solution approaches for each subproblem as well as a heuristic method
for the routing subproblem, and present some computational results on a
large scale problem met in practice.
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4 The Assignment Subproblem

Instead of determining the complete route for each origin-destination ter-
minal pair, the assignment subproblem focuses on assigning only the first
and last DC nodes for each origin-destination terminal pair.

The assignment subproblem can be formulated as follows:

Problem AP:

Z* = min E v'dijxij +
Zy~WU ij

xsi = 1

iiEV zii < Ch + Wh

Evixi < Ky,
ij

0 < xij < 1 integer

0 < Wh < Wh"M

yi > O, integer

SIWh + E CltY
h I

V O-D pairs i

V DC nodes h

V links I

Vij

V DC nodes h

V links 1.

The decision variables for the model are

1 if O-D pair i is assigned to DC-pair j,
t0 otherwise

Yt = number of trailers dispatched on link 1, and
wh = excess capacity at DC node h (beyond the nominal capacity).

The cost and constraint parameters are
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vi = volume for O-D pair i,
dj = assignment cost for assigning O-D pair i to DC pair j

= (processing cost per unit at the two end DC nodes)
+ (estimated DC-to-DC shipping and processing cost)

zl = cost of dispatching one trailer on link 1,
sh = additional processing cost per unit for excess items at DC node h,
K = capacity of a trailer,
Ch = processing capacity at node h, and
Whmax= maximum excess capacity at DC node h.

Constraints (1) and (4) of this problem (which we refer to as AP) force
each O-D pair to be assigned to one DC node pair. The assignments ij need
not include all possible assignments, but can be pre-selected to eliminate
those that violate service-time restrictions. Constraint (2) ensures that
sufficient excess capacity is allocated at the distribution centers to cover
the volume processed. This constraint, together with the objective function,
models (as a piecewise linear approximation) the nonlinear DC cost function
shown in Figure 3. The lefthand side of the constraint is summed over all
assignments ij for which node h is one of the nodes in the DC-node pair j.

Constraint (3) ensures that the volume on the link I can be carried by the
number of trailers dispatched on that link. This constraint, together with
the objective function coefficients of y models the link cost step-function
shown in Figure 2. Note that in this model, we are assuming a homogeneous
fleet of trailers with a fixed capacity K. Therefore, on each link the cost
step-function has jumps of equal size which occur at every increment K of
capacity.

The assignment subproblem focuses only on the assignment of a DC-
node pair to each O-D terminal pair and the dispatch of trailers on each
terminal-DC and DC-terminal link, but does not deal with the dispatch of
trailers on the intermediate DC-to-DC links. The two sets of decisions must
be compatible so that the demand between the origin and destinations can
be carried with the number of trailers dispatched on the end links.

This assignment problem does not explicitly model the intermediate
shipping and processing costs, but uses a linear approximation, the 'assign-
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ment' cost dii, of the intermediate transportation costs. For each DC node,
there is a nominal per unit processing cost, assuming that the processing
facilities at the DC nodes are operating at the efficient levels (see Figure 3).
Similarly, there is a nominal per unit shipping cost for each link assuming
all trucks sent along a link carry full loads. These costs are linear approx-
imations of the true costs. The assignment cost di includes the nominal
processing costs at the first and last DC node and the transportation cost
between these two DC's along the cheapest path according to the nomi-
nal costs. These costs do not reflect any additional cost due to congestion
at the processing facilities. The loads on the DC-DC links are typically
large, which means that a linear approximation to the transportation cost
should be acceptable. On the other hand, since the terminal-DC link loads
are typically small, it is important to model accurately the 'step-function'
nature of the costs.

4.1 Solution Method

Our solution approach to this problem iterates between a trailer alloca-
tion problem and an (O-D pair)-to-(DC pair) assignment problem. We
first fix the maximum number of trailers that can be dispatched on each
terminal-distribution center link. Then we try, using a Lagrangian relax-
ation approach, to find the cheapest assignment that uses no more than the
allowable number of trailers on each link. This approach has the benefit of
providing price information from the assignment solution that suggests how
to adjust the allocation of trailers for each link. We then adjust the trailer
allocation on several of the terminal-DC links and again try to find a com-
patible assignment. After repeating these steps several times, we choose as
the final solution the assignment with the minimum overall cost.

Once the number of trailers for a link has been fixed, we effectively have
a capacity constrained assignment problem. Thus, once we fix y, say to ,
AP for this value j becomes the following problem:
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Problem AP(y):

Z (g) = ECi + min E v'di Si + E shwh
ZW

ii hI,~~

Exij = 1

i

E V i u < Ch + Wh

Sv'ixij < min{ml, Ky1}

0 < Xij < 1 integer

0 < Wh < WX

V O-D pairs i

V DC nodes h

V links I

v ij

V DC nodes h

ml = maximum volume on link I based on demand requirements.

4.1.1 Solution of AP(y) by Lagrangian Relaxation

We "solve" AP() by Lagrangian relaxation: dualizing constraints (8) and
(9) produces the following relaxed problem, (a,cA; ), for a given set of
values for the Lagrangian dual variables a, A and trailer assignments y:

L(a,A;y) = Ecl] - AhCh- lamin{ml,KjI} +V(a,A).
I h l

The final term in this expression represents the optimal value of the opti-
mization problem
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Problem C(ca, A; ):

V(,A) = min vi(dij + all + 12 + Ahl + Ahl)Xij + (Sh - Ah)Wh
V )ij h

subject to

Exij = 1 V O-D pairs i (12)
i

0 < xij < 1 integer V ij (13)

< Wh < Whax V DC nodes h. (14)

The indices hil and h2 refer respectively to the first and last DC of the DC
pair j. Similarly, the index 11 refers to the link from the origin of the O-D
pair i to the first DC of the DC pair j and 12 refers to the link from the
last DC of DC pair j to the destination of the O-D pair i.

The problem £C(a, A; j) is easy to solve. For each i, we simply set xij = 1
for the index j with the smallest cost coefficient of xij. For each h, we set
Wh to its upper (respectively lower) bound according to whether the sign of
its coefficient in the objective function is negative (respectively positive).

The elementary "weak duality" result from the theory of Lagrangian
relaxation (see Shapiro [1979b]) shows that L(a, A; 5) is a lower bound on
the objective value Z*(j) of the problem AP(). We are interested in
obtaining the tightest lower bound on Z*(j), i.e., we would like to solve for

L'() = max L(a, A;5) < Z*(9). (15)_>o

Our implementation uses a subgradient optimization approach (see Sha-
piro [1979b]) to solve (15). Since Z*(j) is unknown, an upper bound on
it is used in computing the subgradient stepsize. Thus, convergence is not
guaranteed. In our implementation, we perform subgradient iterations until

1. either the duality gap is smaller than 1 %,

2. or the algorithm has taken a pre-set number of subgradient steps.
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4.1.2 Updating of y

When the Lagrangian dual problem L*(y) has been solved, the final values
of the Lagrangian multipliers will indicate the degree to which the cor-
responding capacity constraints are binding. A Lagrangian multiplier al
of zero indicates that the constraint is not binding, and suggests that it
is possible to decrease the allowable number of trailers on link . On the
other hand, a large Lagrangian multiplier indicates that the correspond-
ing capacity constraint is tight and suggests that we should increase the
allowable number of trailers.

We have implemented a heuristic scheme for updating the value of y
from iteration to iteration. The change in y is based on the value of L*(y)
(or our best estimate of its value). Notice that, in terms of the solution
(c*, A*) of the dual problem (15), L*(y) can be expressed as

L*(y) = . . + E (c-a K)E + * c + .. (16)
m>K1l ml<K1i

We try to increase ti if its coefficient in L*(y) is negative and decrease 3y
if its coefficient is positive. In our implementation, we first tried changing
all the y's simultaneously, but the new set of . values were often infeasible
for the original problem (in that they did not provide sufficient transport
capacity). Thus, to avoid infeasibility, we change the value of . for only
a few of the links and increment or decrement each t by only one unit.
At each iteration, we always try to increment a pre-set number (e.g., 40)
of 5l's. The implementation examines the jj's eligible to be incremented
in increasing order of their coefficients, and increments each unless it is
currently at its upper bound. If no l can be increased, we try to decrease
the value for a (possibly different) pre-set number (e.g. 5) of PI's. In this
case, the implementation examines the jt's in decreasing order of their
coefficients, and decrements each unless it is already at its lower bound.

The rationale for changing the value of jl based on the sign of its co-
efficient in L*(y) can be described as follows. We know that Z*() is a
piecewise linear function of y. For a given value of P, L*(y) is a lower ap-
proximation of Z*(). Thus, we are using L*(y) as an approximation of
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the function Z*(.). Hence, our updating procedure is a local improvement
scheme, except that it uses the subgradient of L* (j) at as a surrogate for
the unknown subgradient of Z*(.) at .

4.1.3 Bounds on Z*

For fixed a and A, the solution of the Lagrangian problem does not depend
on the value of 5. Hence for any given a > 0 and A > 0, if [xl denotes the
smallest integer greater than or equal to x, we can define

LL(a,) = c[Kel1 - AhCh-E aIt K1 + V(, A)
c1<O h a>O

by setting y to its lower (respectively upper) bound whenever its coefficient
in L(a, A; y) is positive (respectively negative). Now for any given a > 0,
A >0,

LL(a,A) < L(a,A;) < L*(y) < Z*(5) for all .

Thus, in particular, if L(a*, A*; ) is our approximation of L*(y), then
LL(ra*, A*) gives a lower bound on the value of Z*.

An upper bound on Z* is provided by the current best solution to AP.
This best assignment can be found as we solve L*(y). While any assign-
ment generated by the solution of £(a, A; j) might not satisfy the capacity
constraint imposed by a fixed allocation of trailers , it is nonetheless a
valid assignment for the problem AP for some value of y. In our imple-
mentation, we evaluate all the possible assignments considered irrespective
of the current trailer allocation , and retain the one with the minimum
overall cost as the final solution.

Figure 4 shows a flow chart of the complete algorithm.
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Figure 4: Flow Chart for the Assignment Algorithm

19



5 The Routing Problem

In this section, we will formulate the DC-DC routing problem and present
a Lagrangian relaxation approach for solving it. We consider the following
version of the routing problem:

Problem (R):

min E cijyij + E si E Ev bzib
ij DC node i DC node j ab

subject to

1i ifj=b
z 1 b - = -1 if j=a Vj, V O-D pairs ab (17)

k 0 otherwise
Eab vab z < Kyi, V links ij (18)

zj b {0, 1}

Yij > 0 integer.

The decision variables in this model are

yij = number of trailers dispatched from DC i to DC j, and

z.b = { 1 if demand for O-D pair (i.e. DC pair) ab flows from DC i to DC j
"tjb 10 otherwise

The parameters are

vab = volume (demand) between DC pair ab,
cij = cost of dispatching a trailer from DC i to DC j,
si = cost of processing one unit of demand at DC node i, and
K = capacity of a trailer.

The volume vab between DC pair ab depends upon the assignment of
O-D terminal pairs i to DC pairs ab as specified in the assignment problem
considered in the previous section (i.e., vab equals the sum of volumes v i

for all terminal pairs i assigned to the DC pair ab).
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This model ignores the distribution center capacity and timing con-
straints. In this formulation, we have also assumed that the processing
cost per item is constant for each distribution center. The problem R is
essentially a multi-commodity flow problem that distinguishes the com-
modities by their origin-destination pair. The complication of the problem
is that the link cost is not proportional to the flow on the link, and hence
cannot be separated by commodities.

Note that when applied to the overall delivery planning problem, this
route planning problem would be large: for our application with 2000 links
and 8000 terminal pairs, it would contain 16 million binary variables z.
The decomposition approach we have adopted has reduced this number
considerably; yet with 40 DC's, it will still contain 404 = 2.56 million of
these variables.

For the problem R, we have a choice of dualizing either constraints (17)
or (18). By dualizing the constraints (18), we obtain a lower bound on
the optimum value which equals that obtained from the LP-relaxation of
R. (See Fisher [1981] or Geoffrion [1977].) The LP-duality gap for vehicle
fleet planning problems may often be large, and we would like to obtain
a Lagrangian relaxation that gives a tighter lower bound. Therefore, we
choose to dualize constraints (17) instead. The corresponding Lagrangian
problem then becomes:

L(A) = min E ciyij - Z (,Xab _ Aab _ Si)vabzab + _ Aab
ii ij ab b

subject to

S vabzajb Kyij V links ij (18)
ab

Ziab E (0,1}, yij > 0, integer.

Again we try to obtain the best possible Lagrangian lower bound by solving
the Lagrangian dual problem:

L* = maxL(A).
A
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Our hope is that dualizing (17) instead of (18) will close some of the LP-
relaxation duality gap; for several applications, our computational results
seem to bear out this prospect.

Notice also that the Lagrangian problem L(A) separates into a knapsack-
like subproblem for each link. Thus L(A) = ,ij Lij(A) + Eb XAb where

Lij(A) = min cijij -- _:( b - Aab - Si)VabZab
ab

subject to
E v bz? _ Kyi; (19)
ab

Zab E {0,1}, yij > 0, integer.

We can take advantage of this observation and solve L(A) by solving a
sequence of subproblems, one for each link in the network. Changing the
,Ab's individually permits us to exploit this advantage computationally; a
change in Ab induces a change in Lij(A) for only the links adjacent to
node j.

5.1 Solution of the Dual Problem by Multiplier Ad-
justment

We propose a multiplier adjustment procedure that achieves dual ascent
(i.e., never diminishes the value of L(A)) and that provides a mechanism
for constructing feasible solutions to the original problem R.

Suppose (, ) solves the Lagrangian problem L(A) for some . If the
ibi's define exactly one path from a to b for each ab, then (, i) is an optimal
solution to our original problem R. Otherwise, we want to construct a
feasible solution to R using the values of ,.b.

We next describe how to construct a path, using solutions to the La-
grangian relaxation, for a given origin-destination pair ab. For the given
ab, let

Eab = ij b = 1}
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be the set of "chosen" links for the origin-destination pair (obtained from
solving for the Lij(A)). If there is a path from a to b using only the "chosen"
links of the network, we let this path be the assigned route from a to b.
If such "chosen" paths can be found for all ab, they constitute a feasible
solution to the problem R.

Suppose there is no "chosen" path from a to b. Let R be the set of
nodes reachable from a along only links in E. The network might look like
the diagram in Figure 5.

Figure 5: Network with no chosen path from a to b.

In order for there to be a "chosen" path from a to b, we want the value
of zb on some link in the cutset to be set to one, which would be so if the
coefficient of z.ab in the objective function of L(A) is a large enough negative
number. Hence, we want to increase Lab for some node j R. Define

Ab = minimum increase in jab so that zij = 1 in the Lagrangian problem L(A).

Let
Aab = min {Aj i E R,j R}
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and let
i'j' = argmin A?;.

At this point, we increase the value of Lb by aMb for every node j R.
By the definition of Aab, this change affects the Lagrangian subproblem only
for the link i'j'. Hence, we need to re-solve only the Lagrangian subproblem
for one link (i'j') to obtain the new solution L(A) for the new values of A.

Because of the way MAb is chosen, it is not difficult to see that the new
value of Lij,(A) must be no less than its previous value Lij,(). Since Ab

increases by A b, the value of L(A) increases by at least Aab.

We can repeat this multiplier adjustment procedure as we probe for a
path from a to b. When the method has constructed a path of "chosen"
links, it has simultaneously constructed a feasible route from a to b and
also obtained a tighter lower bound for L*.

Our solution procedure constructs a path for each ab in turn in a pre-
defined order. As we probe for a path from a to b, we update the values of
Aib's and the solutions corresponding to the Lii(A)'s, changing the complete
flow pattern at each updating. Because the values of z b may change when
the subproblems corresponding to the Li,(A) are re-solved, the set of paths
found so far may not be compatible with the current set of values of z.
Nonetheless, the values of z b represent a feasible solution to the routing
problem. Our implementation examines the list of the origin-destination
pairs ab twice. Since the algorithm modifies the complete flow pattern, the
path for a given ab may change in the second pass through the list of O-D
pairs. The number of passes through the list of O-D pairs is a parameter
to be set heuristically.

5.1.1 Solution of the Lagrangian Problem L(A)

As indicated in the earlier part of this section, the Lagrangian problem (to
find L(A)) separates into a knapsack-like problem (to find Lij(A)) for each
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link ij of the network. Although an exact solution by dynamic program-
ming is possible, to avoid costly computation, we 'solve' this problem by
using a greedy heuristic. We compute

where Sij = ab X a b -i i
vab

We then solve for Lii () by using a greedy heuristic for the knapsack prob-
lem with the righthand side of the constraint (19) fixed at either K or
K(Y- 1). The better of the two solutions is chosen.

5.2 A Lagrangian Relaxation Method for the Routing
Problem

Let us now summarize the overall scheme to solve the routing problem.
We start with an arbitrary assignment of Ab and solve the Lagrangian
relaxation problem L(A). The following choice is a useful initial assignment
of the Aq,'s:

For each ab, set Aab = o and let A.b = Aab + Sivab + -Cij for all
other nodes j, where link ij is on the cheapest path from a to
j with respect to the linearized cost si "ab + KCij.

Such an assignment of the Ab's has the property that for any node j in the
network, Ab is the cheapest per unit linearized cost of shipping goods from
node a to node j. Thus if link ij is on a cheapest path (with respect to

the linearized cost) from node a to node b, ( _ 1 ,a) i is zero and
consequently z b is likely to be set to 1 in the solution for the knapsack
subproblem Lij(A) for link ij.

The solution of the Lagrangian problem gives an lower bound on the
optimum value of R. With the Lagrangian solution we can also construct a
feasible solution to R by probing for a route for each origin-destination pair
ab by the method described in Section 5.1. The value of the best feasible
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solution found, call it VF, provides an upper bound on the optimum value
of R. We can continue the multiplier adjustment procedure, simultaneously
generating feasible solutions and increasing the value of L(A), until

VF - L(A) < (20)
L(A)

where E is some pre-determined bound.

Since we are using a heuristic solution procedure to solve the subproblem
Lij (A), we are overestimating the value of L(A), and so the expression
on the left hand side of (20) slightly underestimates the gap between the
best feasible solution found and L(A). Moreover, because we solve L(A)
approximately, every change in A does not guarantee dual ascent.
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6 Marginal cost Heuristic for the Route Plan-
ning Problem

In addition to the optimization-based method described in the previous
sections, we also investigated heuristic approaches to the route planning
problem.

One heuristic, called the Marginal Cost Heuristic, tries to improve one
route at a time, according to the 'marginal' cost of using a link. To represent
both the DC processing costs and link transportation costs as edge costs
on a network, we construct an extended network with each DC node split
into two nodes with an adjoining edge. The cost of this edge represent the
DC processing cost. (See Figure 6.)

Inflow Sorting Costs Outflow

Figure 6: 'Splitting' DC node to form extended network

The Marginal Heuristic proceeds by sequentially trying to improve the
route for one origin-destination terminal pair at a time. The current route
plan is taken to be the initial solution. We then examine each O-D terminal
pair in turn. We first remove the volume from the current path for this
O-D pair, say, ab. Then for each edge, we compute the marginal cost of
sending the volume for this O-D pair on each edge, as follows.

If the edge is one adjoining two 'split' DC nodes, then

Cost on edge d = PCost(d, f + v) - PCost(d, f)
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where
v

f

PCost(d, g)

Pdcdin
CdCdax

= volume for O-D pair ab,
= flow through DC node d due to the current path assign-

ments for all paths except ab,

= total processing cost for DC node d when the flow
through the node is g.

Pd9 for C" in < g < Cmaz
= pd(1 + 0.04(g- Cdmaz))g for g > C~daz

pd( + 0.01(Cd in g))g for g < Cdi"

= nominal processing cost per item at DC node d,
= minimum capacity at DC node d, and
= maximum capacity at DC node d.

The function PCost(d,g) is an approximation that reflects the non-
linearity of the processing cost at the DC node as indicated by Figure 3.

If the edge represents an actual link in the network, then

Cost on link I = Cost(l, f) - Cost(l, f + v) + Time(l)

where
f = flow on link I due to the current path assignments for

all paths except ab,
0 = weighting constant (pre-set parameter),

Time(l) = Time interval between the activities at the two end-
nodes of link 1, and

Cost(l, g) = total transportation cost on link I when the flow on the
link is g.

After computing all the costs of the edges, the heuristic applies Dijk-
stra's [1962] algorithm and finds a 'shortest' path between the O-D pair ab.
If this new path improves upon the current path (with respect to actual
cost), the new path is made the current path and the volume v for the O-D
pair ab is added to all edges on the new path. We then repeat this entire
procedure for each O-D pair in turn, making changes in the current paths
whenever the method finds an improvement. If, after cycling through all
O-D pairs, the improvement obtained is too small, the algorithm stops.
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Otherwise, it again starts by examining the first O-D pair and repeats the
cycle. It also stops after a maximum number of cycles. Figure 7 gives a
flow chart for this heuristic.

Notice that the edge cost used in Dijkstra's algorithm is a weighted
combination of the transportation cost and the transportation time. This
approach attempts to incorporate the service requirements into our model.
(A similar approach would permit us to use this costing procedure in the
routing model R to account for service requirements.) We have found that
for our application, with a judicious choice of the weighting parameter
(0 = 5), the heuristic generates routes that are cost effective and contain
very few service violations.

Singhal [1984] provides more details on the marginal cost heuristic.
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7 Computational Results

7.1 The Assignment Algorithm

We tested the algorithm for the assignment problem as described in Sec-
tion 4 on a delivery application (with real data) with 211 terminal nodes,
36 distribution centers and 7976 origin-destination pairs for a large-scale
transportation company. We pre-processed the data to compile a list of
"feasible" DC-node pair assignments for each O-D pair. Assignments that
clearly violate the timing requirements for service were not included in the
list. For the problem we studied, the average number of feasible assign-
ments was 3. Table 1 shows the computational results of the assignment
algorithm for two runs on the same physical network using slightly different
cost structures. The data have been rescaled to facilitate comparisons.

Table 1 contains the following entries:

1. The initial solution ZI is a normalized 'assignment cost' of the current
operating plan,

2. The final solution with 'assignment cost' ZF is the best solution gen-
erated by the assignment algorithm,

3. ZL is the value of the initial solution when costed with respect to the
LP-relaxation of the problem AP,

4. The lower bound on Z* is the best bound from all the Lagrangian
problems as computed according to Section 4.1,

5. The average Lagrangian duality gap is the average discrepancy be-
tween the best solution found for a fixed j and the highest Lagrangian
value (The entry is the average for all Lagrangian problems for y
where Z*(j) is finite.),

6. The integrality gap estimates the discrepancy between the optimum
value of AP and its LP-relaxation; since ZL > ZLP, ZLP being the
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Table 1: Computational Results - Assignment Algorithm

optimum value of the LP-relaxation, this entry may underestimate
the integrality gap,

7. The savings is the percentage reduction in cost of the best solution
found as compared to the initial solution,

8. The number of iterations is the number of times the value of y was
updated during the run,

9. The next entry indicates when the best solution, ZF, was found, and

10. The last entry gives the CPU time on a Prime 850 computer.

Notice that the duality gap for the Lagrangian problem (for fixed y) is
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Dataset ASG1 ASG2
Initial Solution ZI 1000.00 1000.00
Best Solution ZF 989.86 989.48

Initial LP Value ZL 815.33 837.55
Lower Bound on Z* ZLB 583.71 572.46
Average Lagrangian (L' (est) 3.42% 1.80%
Duality Gap

Integrality Gap ZPzL 21.41% 19.40%ZL

Savings zI-zp 1.02% 1.06%ZI

Total no. of iterations 10 10
Iteration when best 2 2
solution found

CPU Time (Prime 850) (minutes) 39.70 47.53



quite small. On the other hand the difference between the optimum value of
AP and its LP-relaxation, i.e., the integrality gap, is quite large. A naive
approach to the assignment problem may be to solve the LP-relaxation
and then round up the values of the integer variables. Our computational
experiments indicate that this heuristic method yields very poor results for
the delivery route planning problem; the actual costs of the route plans it
generated were often more than 10% higher than the initial solution.

The large integrality gap is common for problems containing a step
function or fixed-charge costs. Any relaxation algorithm for these problems
must retain some of the integral structure in order to obtain tight bounds.
Our algorithm attempts to do so by trying to fix y at judiciously chosen
(and hopefully near-optimal) values. The results in Table 1 also suggest
that a tighter estimate of the lower bound for Z* is needed.

The initial solution represents the current operating plan of the com-
pany that supplied the data. This plan is perceived to be fine-tuned and
large improvements were not expected. As Table 1 shows, the assignment
algorithm seems to make only very modest improvements.

However, the 'assignment cost' for this problem uses a linear approxi-
mation for the intermediate shipping and DC processing cost, which does
not accurately reflect the actual operating costs. Combined with the rout-
ing heuristic, the improvements to the overall routing plan is actually much
better than the results indicated by the assignment algorithm. Table 2 is a
breakdown of the costs for the dataset ASG2. The numbers in parenthesis
indicate the percentage reduction in costs. For this dataset, the assignment
algorithm reduces the DC processing cost at the expense of increasing the
transportation cost on the terminal-DC links. The routing heuristic further
reduces the intermediate transportation cost, giving an overall (actual) cost
savings of almost 5%, instead of the 1% indicated by the assignment algo-
rithm alone. Since the initial solution used in our computation is perceived
to be close to the optimum, neither we nor our industrial collaborators
expected savings of more than 5%.
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Table 2: Cost Comparison for dataset ASG2.

7.2 The Routing Algorithm

We tested the algorithm for the problem R as outlined in Section 5 on six
'real' data sets. The data sets represented problems of different sizes, as
shown in Table 3.

Table 3: Size of Test Problems

The first three data sets were extracted from the same real database.
The underlying network and costs are the same, but the number of O-D
pairs and the volume to be shipped between them are different. The next
two data sets contain different demand patterns, but identical network
structure and costs. The last data set NET3 represents a different net-
work with a different cost structure.

Our algorithm for the routing problem R has been implemented in FOR-
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Actual Cost Assignment Cost
Initial Solution: Terminal-DC links 400.37 400.37

Intermediate links 703.06 599.63
and processing
Total 1103.43 1000.00

Best Solution: Terminal-DC links 411.15 (-2.69%) 411.15 (-2.69%)
Intermediate links 638.97 (9.12%) 578.33 (3.55%)
and processing
Total 1050.12 (4.83%) 989.48 (1.06%)

Dataset NET1A NETlB NET1C NET2A NET2B NET3

No. of nodes 12 40 43 36 36 36
No. of links 89 317 381 848 848 848
No. of O-D pairs 20 130 515 111 347 310



TRAN77 on a Prime 850 mini-computer. The algorithm combines both
subgradient optimization and the multiplier adjustment procedure as de-
scribed in Section 5.

The experience with the test problems suggests that subgradient op-
timization consumes large amounts of computation time (over 60%) but
does not improve the Lagrangian lower bound by much. Nonetheless, in-
corporating the subgradient steps in the algorithm is useful as a method of
generating a new starting point for the multiplier adjustment procedure.

Table 4 summarizes the results of the algorithm on the six test problems.
The costs have been re-scaled for ease of comparison.

Table 4: Computational Results-Routing Algorithm

Table 4 contains the following entries:

1. The initial solution is obtained by assigning to each O-D pair the
route that is obtained from solving the LP-relaxation of R (i.e., the
cheapest route according to the linearized cost). The cost is computed
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Dataset NET1A NET1B NET1C NET2A NET2B NET3
Initial Cost V I 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00
Final Cost VF 678.69 925.39 976.23 933.10 669.01 999.04

LP value VLP 428.75 685.58 797.23 699.50 476.33 472.22
Lower Bound L* 630.34 842.01 797.23 701.32 481.98 703.08

Duality Gap vo -L' 7.67% 9.90% 22.45% 33.05% 38.80% 42.09%

Savings VI-Vp 38.84% 11.60% 1.58% 7.58% 32.91% 0.96%

Gap -VPVLP 80.65% 65.23% 0.00% 0.78% 2.93% 43.82%
Reduction

CPU Time (min) 2.08 97.45 117.81 50.25 110.34 90.92



exactly. The program also allows the option of starting with the
current operation plan.

2. The best solution value is the cost of the best feasible solution gen-
erated in the course of the algorithm.

3. The next entry is the optimum value of the LP-relaxation of R.

4. The lower bound is the highest values of L(A) generated in the course
of the algorithm.

5. The duality gap is an estimate of the remaining duality gap at the
termination of the algorithm.

6. The savings is the percentage reduction in cost of the best feasible
solution found as compared to the initial solution.

7. The reduction in gap measures the percentage of the duality gap (as
estimated by the difference between the best solution value found and
the LP optimum value) that is closed by the Lagrangian lower bound.

8. The last row gives the computation time on the Prime 850.

The results are satisfactory in that the algorithm generates routes whose
total cost is lower than routes generated according to a 'naive' linear cost
approximation. For the smaller problems, the algorithm also closes a sub-
stantial portion of the duality gap, thus providing a much tighter bound
on the optimum value of the problem R. This result seems to justify the
decision to dualize constraints (17) instead of (18). However, the algorithm
does not seem to make much headway in closing the gap for problems
of larger size. The problem NET1C is particularly intransigent and the
algorithm achieves no improvement at all over the linear programming re-
laxation bound. One explanation for this poor performance may be that
the difference between an exact link cost and the linear approximation is
small when the volume of flow on the links is large and the algorithm can-
not make much improvement. However, if this is the case, then the duality
gap (VF - VLP) should also be small, but the results in Table 4 indicate
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otherwise. More experimentation with the algorithm over a wider range of
problems is necessary to understand its behavior.

In the computational tests, the first five data sets have the DC process-
ing costs si fixed at zero, while the dataset NET3 contains nonzero values
of si. The result on NET3 appears to be different that those of the other
problems of comparable size. This result seems to suggest that the DC
processing cost may have an important effect on the performance of the
algorithm.

7.3 Marginal Cost Heuristic

The marginal cost heuristic was tested on a network with 36 DC nodes, 212
terminal nodes and 7976 origin-destination pairs. The current route plan
was used as the initial solution. Table 5 gives the results from different
runs of this heuristic using different values of the parameter 0 for weighting
travel time.

Table 5: Computational Results for Marginal Cost Heuristic

When the timing considerations are ignored (i.e., when = 0), the
marginal cost heuristic produced a 6.5% savings, but 462 origin-destination
terminal pairs violated service time requirements. As increases, the num-
ber of routes that violate service requirements decreases drastically. Our
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8=0 8=5 0=8
Initial Cost 1000.0 1000.0 1000.0
Cost after Marginal Cost Heuristic 935.3 945.7 955.4
% savings 6.5 5.5 4.5
No. of service violations 462 9 6

Cost after post-processing 1001.4 952.0 963.5
% savings -0.1 4.8 3.6
CPU-time (mins) (Prime 850) 58 187 249



programs also contains a post-processing stage that re-routes the volume
for those origin-destination pairs that do not meet the required service tim-
ing levels. This is done by re-applying the heuristic (with Time(l) as link
cost) for those origin-destination pairs whose assigned routes exceed the
service time requirement. The CPU time given in Table 5 is the combined
total for both stages.

7.4 Overall System

We have developed a comprehensive decision support system for the com-
pany whose problem motivated this research. This system includes the op-
timization algorithms and heuristics discussed in this paper as well as cost-
ing routines and an interactive network modification program (for adding
and deleting DC's and links and changing demand assumptions and other
parameters). In the solution approach used in the real delivery planning
problem, we use the optimization approach we have described on the as-
signment problem and the marginal cost heuristic for the routing problem
(as described in Section 6) instead of the routing algorithm described in
Section 5. In this application setting, the intermediate routing cost com-
prises only 10% of the total cost and the routing heuristic works as well as
the more time-consuming optimization.

Based on results from our computational testing, this modified opti-
mization approach indicates a 4 to 5 percent cost improvement over the
delivery route plan currently in use. Not all the indicated savings may be
realizable, though, because operating rules may prevent the implementation
of the routing plan generated by the optimization approach. Nonetheless,
as we mentioned before, savings of this magnitude are substantial, repre-
senting profits of hundreds of thousands of dollars per year. Moreover, the
company with which we have been working is noted for its efficiency; conse-
quently, these cost savings indicate the potential of optimization methods
in improving upon the schemes devised by even the most finely tuned plan-
ning systems that do not fully exploit modern mathematical programming
methodology.
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More importantly, the use of the decision support system facilitates
delivery route planning by dramatically reducing the time required for a
planning exercise. For the application that motivated this study, delivery
route planning is done 18 months in advance (based on forecasted demand)
and may take several weeks to complete. The algorithms presented in this
paper can quickly generate a delivery routing plan for a given network
configuration and demand pattern. This quick turnaround time enables
the planning team to evaluate many more scenarios (with varying demand
patterns and network configurations) and permits them to conduct a richer
set of 'what-if' analysis.

A major disadvantage of heuristic approaches, as compared to optimiza-
tion-based methods, is that they often do not provide an estimate of how
far the final solution is from optimality. The optimization algorithms for
both the assignment and routing problems presented in this paper provide
upper and lower bounds on the optimum solution value. However, the
computational results indicate that these bounds are not very tight. It
would be useful to further analyze the models and algorithms and construct
tighter bounds on the optimum solution value.

8 Conclusion

In this paper, we developed an optimization-based approach for a point-
to-point route planning problem. The test data used represent only a part
(but an important part) of the operations of the real-world problem that
motivated this study, yet the resulting mixed-integer programming model
is already prohibitively large. This fact, and the difficulty of solving the
optimization models, highlight the discrepancy between mathematical pro-
gramming theory and the practical needs of industry. The approach dis-
cussed in this paper exploits the structure of the problem to decompose
it into two smaller subproblems, to which we can then apply optimiza-
tion techniques independently. The computational results are encouraging
and suggest that mathematical programming methods can be successfully
applied to large-scale problems in delivery systems planning and to other
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contexts of logistical system design. We feel it is important to structure the
complete problem as a mathematical programming model. While we may
apply heuristics to solve each of the modules, the mathematical program-
ming framework permits us to delineate the approximations we are making
in developing algorithms for each module.

We also believe that the use of a collection of linked subproblems, rather
than a single model, is a good modeling approach. This approach is advan-
tageous, not only because it reduces computational costs, but also because
it eases the effort required to maintain the model. Though the speed and
power of computers have increased dramatically in recent years, we feel that
comprehensive monolithic models may not provide the flexibility necessary
to evolve gracefully as the operations and needs of the user change.
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