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1. Introduction

The spatial price equilibrium models of Takayama and Judge have provided the basic

framework for the analysis of competitive systems over space and time. Moreover, their

fundamental contributions have stimulated the development of new methodologies and

uncovered vistas for applications in agriculture, energy markets, mineral economics, and

finance (see, e.g., Judge and Takavama (1973), Uri (1975), Takayama and Labys (1986),

Newcomb, Reynolds, and Masbruch (1988), Moore and Nagurney (1989)).

In the past decade, spatial price equilibrium problems have captured the interest of

scholars from a wide spectrum of disciplines, including: operations research, mathematical

programming, economics, regional science, and transportation science. The attraction

has come from several factors: the richness of the problems for model development, the

computational challenges posed by the large- scale nature of the problems, and the evolving

connections with equilibrium problems in distinct disciplines.

Historically, spatial price equilibrium models were usually reformulated as optimiza-

tion problems, provided that a certain symmetry or integrability assumption held for the

underlying functions. Utilizing such an approach, Samuelson (1952) and Takayama and

Judge (1964, 1971) introduced a variety of spatial price equilibrium models. Convex pro-

gramming algorithms could then, at least in principle, be used for the computation of the

regional commodity production, consumption, and interregional (and intertemporal) trade

patterns. Analogously, Beckmann. lIcGuire, and Winsten (1956) reformulated traffic net-

work equilibrium models with both fixed and elastic demands as optimization problems.

It has now been realized that equilibrium problems governed by distinct equilibrium

conditions and operating under distinct behavioral assumptions - for which the integrability

assumption need no longer be imposed - can be modelled and studied via the theory of

variational inequalities.

The theory of variational inequalities (VI) had been introduced by Hartman and Stam-

pacchia (1966) as a tool for the study of partial differential equations. The identification

by Dafermos (1980) that the traffic network equilibrium conditions had the structure of a

finite-dimensional VI problem opened new avenues for the development of more general,

asymmetric multicommodity (and multimodal) models and the design of mathematically

correct and convergent algorithms. Florian and Los (1982) then formulated the spatial
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price equilibrium conditions as a variational inequality problem (see also, e.g., Dafermos

and Nagurney (1984a), Friesz, Harker, and Tobin (1984)). Later, Dafermos and Nagur-

ney (1985) (see, also, e.g., Dafermos (1986a)) showed that the spatial price equilibrium

problem could be cast into a traffic network equilibrium problem with a special, simple

network structure. This special network structure in which each origin/destination pair

consists of paths which are disjoint, has been exploited computationally by Dafermos and

Nagurney (1989), Nagurney (1989a), Eydeland and Nagurney (1989), and Nagurney and

Kim (1989) by observing that each restricted demand market (or supply market equilib-

rium subproblem) could be solved exactly in closed form. Interestingly, the special network

structure can also be used to link spatial price equilibrium problems and constrained ma-

trix problems. Such a connection had been postulated earlier by Stone (1951) and recently

formalized by Nagurney (1989a). These constrained matrix problems include the estima-

tion of input/output matrices, social/national accounts, origin/destination traffic flows,

and demographic patterns.

Other equilibrium problems which have also been studied as VI problems include:

imperfectly competitive oligopolistic market equilibrium problems, both aspatial (Gabay

and NIoulin (1980)), and spatial (Dafermos and Nagurney (1987), Harker (1986), Nagurney

(1988)). market equilibrium problems with production (Dafermos and Nagurney (1984b)),

Walrasian price and general economic equilibria (Border (1985), Dafermos (1986b), Zhao

(1989)). and migration equilibria (Nagurney (1989b)). Most of these problems can be

viewed as network equilibrium problems, in which, however, the nodes of the underlying

abstract network representation need no longer correspond to locations in space. The

principal advantage of a network formalism from a conceptual standpoint is that seemingly

disparate problems can be studied in a unified fashion. On the other hand, the main

advantage from a computational standpoint is that previously intractable problems can be

efficiently computed.

In this paper we focus on the application of the methodology of variational inequalities,

combined with network theory, to the study of spatial price equilibrium problems and - in

the case of policy interventions - disequilibrium, or "constrained equilibrium" problems.

We note that although our emphasis in this paper is on applications, in particular, on per-

fectly competitive spatial price problems, within an equilibrium/disequilibrium framework,
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the variational inequality problem contains, as special cases not only such problems and

minimization problems, but virtually all the classical problems of mathematical program-

ming, such as linear and nonlinear complementarity problems, fixed point problems, and

minimax problems. For further discussion and a list of references, see Nagurney (1987a).

The paper is organized as follows:

In Section 2 we provide the necessary background for the theory of variational in-

equalities and focus on the qualitative properties of existence and uniqueness.

In Section 3 we present a synthesis of asymmetric spatial price equilibrium models in

quantity variables and in price variables, and give the variational inequality formulations

of the governing spatial price equilibrium conditions. We also relate the models to other

models in the literature.

In Section 4 we then generalize the models described in Section 3 to handle policy in-

terventions explicitly, again within a variational inequality framework. Policy instruments

which we consider include price supports and trade restrictions. These VI formulations

differ from those given in Section 3 in the defining functions and/or feasible sets.

We then show in Section 5 that both the equilibrium problems and the disequilibrium

problems can be solved using a variational inequality decomposition algorithm which re-

solves the original variational inequality under consideration into three simpler variational

inequality problems, in which the "dominant" subproblem has the structure of a network

equilibrium problem. We also provide in Section 6 numerical results to illustrate the com-

putational performance of the algorithm for both equilibrium and contrained equilibrium

problems.

Finally, we conclude with a summary and discussion in Section 7.
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2. Background

In this Section wne briefly review the basic theory of variational inequalities. For

amplified discussions. see the book by Kinderlehrer and Stampacchia (1980), the surveys

of Magnanti (1984). Dafermos (1987), Nagurney (1987a), and the thesis of Zhao (1989).

The finite dimensional VI problem is to determine x such that

f(x) (x'-x) > , for all x' E I (1)

where K is a closed convex subset of Rn and f(.) is a known function from IC to Rn.

In the case where the feasible set K is bounded and f(-) is a continuous function.

there exists at least one solution x to (1). When K is not necessarily bounded, a solution

to (1) exists, provided that f(.) is continuous and coercive, i.e.,

(f( ) - f(x')) ( - x') , as 
oo, as -+ 00 (2)

for some fixed x' E K. where 11 J denotes the Euclidean norm.

In the case where certain monotonicitv conditions can be expected to hold, the theory

of variational inequalities becomes particularly powerful. For example, when f() is strictly

monotone, i.e.,

(f(X) - f(X')) ( - ') > (3)

for all x,x' E K. x x'., then VI (1) has at most one solution.

Furthermore, when f(.) is strongly monotone, that is:

(f() - f(x')). ( - x') > aIl - x'112, for every x, x' E I (4)

where ac is a positive constant. then there exists a unique solution x to VI (1). Necessary

and sufficient conditions for (4) to hold is that the (not necessarily symmetric) Jacobian

matrix [f] is positive definite over the feasible set K. A sufficient condition for the

coercivity condition (2) to hold is that the strong monotonicity condition (4) holds.

Finally, the function f is called monotone if the left-hand side of (4) is greater than

or equal to zero for every x, x' E K.

The connection between variational inequality problems and minimization problems.

in which monotonicity for the former plays an analogous role as convexity in the latter, is

as follows:
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Let F(.) be a continuously differentiable scalar-valued function defined on some open

neighborhood of K and denote its gradient by VF(.). If there exists an x E Ki such that

F(x) = minF(x') (5)
x'EK

then x is a solution to the variational inequality

VF(x) (x'-x) > 0, for all x' K. (6)

On the other hand, if f(), again on an open neighborhood of K, is the gradient of a convex

continuously differentiable function F(.), then VI (1) and the minimization problem (5)

are equivalent; in other words, x solves (1) when x minimizes F(.) over I. Note that f(.)

is a gradient mapping if and only if its Jacobian matrix [f ] is symmetric, in which case

the objective function = f (y)dy.

Moreover, if F(.) is convex, strictly convex, or uniformly convex, then its gradient

mapping is, respectively, monotone, strictly monotone, or strongly monotone.

We note that the above "symmetry" or "integrability" condition had been utilized by

Samuelson (1952) and Takayama and Judge (1971) to reformulate the equilibrium condi-

tions of spatial price equilibrium models as the Kuhn-Tucker conditions of appropriately

defined optimization problems. We note that now, in view of the above, a single inequality

of the form (1) can be used to formulate the equilibrium conditions of spatial price equi-

librium problems in which the symmetry condition need no longer be assumed. Hence,

multicommodity spatial price equilibrium problems, either static or intertemporal, can now

be modelled and studied under more realistic conditions without the restrictive symmetry

assumption. However, VI (1) still contains such symmetric problems as special cases.

In the next two Sections we will present variational inequality formulations of a series

of spatial price equilibrium models in quantity variables and in price variables, in the

absence and then in the presence of policy interventions in the form of trade restrictions

and price controls. The motivation stems from the seminal book of Takavama and Judge

(1971) and the edited volume of Judge and Takayama (1973).

We now turn to a brief overview of the numerical procedures for the computation of

VI (1).

VI (1) can be solved via the general iterative scheme of Dafermos (1983) which contains

both projection methods (Dafermos (1980, 1982), Bertsekas and Gafni (1982)), as well as
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other linearization methods (Pang and Chan (1981)), and relaxation/diagonalization meth-

ods (Florian and Spiess (1982)), as special cases. The computation of the solution x to VI

(1) is accomplished iteratively via the computation of the solutions to a series of simpler VI

subproblems, which, typically, are mathematical programming (minimization) problems,

since efficient algorithms for such problems exist. Projection methods resolve the original

variational inequality problem into series of quadratic programming problems, whereas, re-

laxation methods resolve the original variational inequality problem into, typically, series of

nonlinear programming problems. Hence. the overall efficiency of a VI algorithm depends

on the efficiency of the algorithm selected for the computation of the embedded mathemati-

cal programming problems. Indeed, the desire to compute general multicommodity spatial

price equilibrium problems within realistic time frames has spurred the development of

special- pupose algorithms for single commodity spatial price equilibrium problems, which

exploit the underlying problem structure. Such special-purpose algorithms have outper-

formed convex programming algorithms (see, e.g., Nagurney (1987b), Nagurney (1989a,c),

Dafermos and Nagurney (1989), and Eydeland and Nagurney (1989)).

For computational comparisons of variational inequality algorithms, see Nagurney

(1984, 1987b) and the references therein.

Moreover, in the case where the feasible set KI (cf. (1)) can be expressed as a Cartesian

product of sets, where
z

I = I I (7)
a=l

where each Ka is a subset of Rna the reformulation of VI (1) over (7) induces natural de-

compositions of the original variational inequality into subproblems of lower dimensions.

Such decompositions are especially appealing in the case of large-scale multicommodity

spatial price equilibrium problems. Recently, parallel and serial variational inequality de-

composition algorithms have been applied to multicommodity spatial price equilibrium

problems by Nagurney and Kim (1989) to compute solutions to problems with as many

as 100 markets and 12 commodities using serial and parallel computers. For VI decom-

position algorithms applied to intertemporal spatial price equilibrium problems with dis-

counting, gains and losses, and other modelling enhancements, see, e.g., Nagurney and

Aronson (1988, 1989), Nagurney (1989d). For decomposition schemes applied to spatial

6
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oligopoly models operating under the Cournot-Nash postulate of noncooperative behavior,

see Nagurney (1988). For alternative parallel and serial decomposition algorithms. see

Pang (1985).

In the subsequent Sections we focus on the derivation of variational inequalities over

Cartesian products of sets for a variety of spatial price models and and provide a synthesis

of many of the recent research results. These variational inequality formulations are not

the immediately obvious ones, but are notable in that they induce efficient decomposition

schemes which we then describe in Section 5.

7
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3. Equilibrium Models

In this Section we synthesize spatial price equilibrium models within a variational

inequality framework. In particular, we present both quantity and price formulations.

We consider m supply markets and n demand markets involved in the production

/consumption of a commodity. We denote a typical supply market by i and a typical

demand market by j. We let s denote the supply at supply market i and we let dj denote

the demand at demand market j. We let ri denote the supply price associated with supply

market i and pj the demand price associated with demand market j. We group the supplies

and supply prices into vectors s E R m and r E Rm , respectively. Similarly, we group the

demands and demand prices into vectors d E Rn and p E R ' , respectively.

We let Qij denote the nonnegative commodity shipment between the supply and

demand market pair (i, j) and we let cij denote the nonnegative transaction cost associated

with trading the commodity between (i,j). We assume that the transaction cost cij

includes the transportation cost. Hence, the supply and demand markets can be spatially

separated. We note that the transaction cost may also include such policy intruments as

tariffs, taxes, fees. duties, or subsidies. We group the commodity shipments into a vector

Q E Rm n and the transaction costs into a vector c E Rm .

The well-known market equilibrium conditions, assuming perfect competition take,

following Samuelson (1952) and Takayama and Judge (1971), the following form: For all

pairs of supply and demand markets (i, j); i = 1,....m: j = 1,..., n:

-=pj, if Q > 0
i ij > Pj, if Qi = 0. ()

The conditions (8) state that a pair of markets (i,j) will trade, provided that the supply

price at supply market i plus the transaction cost between the pair of markets is equal to

the demand price at demand market j. Moreover, the following feasibility conditions must

hold:

Si {> fj Qij (9)
> I Qij, if 7ri= 0

and
dT { ZtQuif pj > 0

d t~~~ ifZ~ pI,~ ~(10)
< Y;QiJ, if Pj = 0.

8
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Typically, it is assumed that both supply and demand prices are positive in equilibrium.

Hence, usually the equalities are assumed to hold in both (9) and (10). Here, however, we

consider the above more general situation, which is in the spirit of Takayama and Judge

(1971).

Introducing now the nonnegative variables u i and wj, where ui denotes the possible

excess supply at supply market i and wj denotes the possible unmet demand at demand

market j, we may rewrite (9) and (10), respectively, as: For every i, i = 1,...,m:

=0, ifr > 0
~u fWi (11)

>_0, ifri = 0

and for every j,j = 1,... 72:

~~wj{>0'~~~ .fPJ 0 (12)-ji > 0, if pj = 0

where

si = Qij + ui and dj = Qi-wj (13)
J i

We group the uis into a vector u E R m and the wj's into a vector w E R ' .

We now discuss the supple price, demand price, and transaction cost structure.

We assume that the supply price associated with any supply market may depend upon

the supply of the commodity at every supply market, that is,

7r = r() (14)

where r is a known smooth function. On the other hand, in the case where the supply

function, rather than the supply price function is given, we assume that the supply can

depend, in general, upon the supply price at every supply market, that is,

S = s(7r). (15)

Similarly, the demand price associated with any demand market may depend upon

the demand of the commodity at every demand market, that is,

p = p(d) (16)

9



where p is a known smooth function. Analogously, in the case where the demand function,

rather than the demand price function is given, we assume that the demand can depend,

in general, upon the demand price at every demand market, that is.

d = d(p) (17)

The transaction cost, which includes the transportation cost between a pair of supply and

demand markets may depend, in general, upon the shipments of the commodity between

every pair of markets, that is,

c = c(Q) (18)

where c is a known smooth function.

In the special case where the number of supply markets m is equal to the number

of demand markets n, the transaction cost functions are assumed to be fixed and the

supply price functions and demand price funcions are symmetric, i.e., ,ai = a-k for allsk - i

z = 1,., m; k = 1,... ,m, and ap ap', for all j = 1,... ,n; = 1.... ,n, then thead, -ad' 

above model with supply price functions (14) and demand price functions (16) collapses

to the quantity models introduced in Takayama and Judge (1971) for which an equivalent

optimization formulation exists. Similarly, if the analogous symmetry assumption holds

for the supply functions (15) and demand functions (17), then the above model contains

as a special case the price models of Takayama and Judge (1971).

In the case where the equalities in (9) and (10) are assumed to hold the above model

in quantity variables collapses to the spatial market model of Dafermos and Nagurney

(1985) which has been solved as a VI problem in Nagurney (1987b). For the relationship

between this model and a general spatial oligopoly model, see Dafermos and Nagurney

(1987). On the other hand, the spatial model in price variables, using (15) and (17) had

been introduced by Dafermos and McKelvey (1986).

Before proceeding to state the VI formulations of the spatial price equilibrium models

discussed above, we first introduce some notation for simplification purposes. We define

the vector r in RTn consisting of m vectors {iri} in R' with components {7i}. Simi-

larly, we define the vector p in R m" consisting of m vectors {pj} in R n with components

{P, P2,.- Pn}. We further define the vectors r = 7r E Rm , and ) = p E R n. In view of

10



the feasibility conditions (9) and (10), we can express 7r and in the following manner:

= ir(Q, u) and p = (Q, w). (19)

We also define the vectors r E R"m consisting of m vextors {*r} E R n with components

{ ii,..., i} and the vector p E Rmn consisting of m vectors {j} E R' with components

P1,p2 *, pn}

We are now ready to present variational inequality formulations of a spectrum of

spatial price equilibrium models in quantity variables, in price variables, and in "combined"

price-quantity variables:

Assuming that we are given the supply price functions (14), the demand price functions

(16), and the transaction cost functions (18). then the spatial price equilibrium conditions

(8) subject to (11), (12), and (13) take on the following alternative formulations:

VI 3.1a

A pattern (s, d, Q, u, w) E Kla, where Id M - {(s', d', Q', u', w') satisfying(13) where

u' E R and w' E R} satisfies equilibrium conditions (8), (11), (12) if and only if it

satisfies the VI

(-r(s) + c(Q) - p(d)) (Q' - Q) + ;,(s) (u' - u) + p(d) (w' - w) > (20)

for all ('.d',Q',u',w') E ICla

or, equivalently,

VI 3.lb

((Q,u) + c(Q) - (Q,w)) (Q' - Q) + ,(Q,u) (u' - u) + (Q,w) (w' - w) > O (21)

for all (Q', u'. u'I) E Ki= R n x R x R.

For detailed derivations of similar variational inequality formulations, see Nagurney

and Zhao (1988), Dafermos (1982), Nagurney (1987b). We note that, in the case where

the equalities in (9) and (10) are assumed to hold, then the governing VI contains only

the first term in (20), where the feasible set Kla is accordingly simplified.
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Assuming. on the other hand, that we are given the demand functions (17), then a -VI

formulation akin to VI 3.1b, is given by:

VI 3.2

(*(Q, ) + C(Q) - (Q' - Q) + (Q, U) (u' - u) -D(Q, p) (p' - p) > 0 (22)

for all (Q', u',p') E K _ Rmn x R+ x R

where D E R n consists of components Dj -Yij -dj(p) and p is a now a vector

variable.

For details. see Nagurney and Zhao (1989a).

If now, instead, we are given the demand price functions (16) and the supply functions

(15), then the VI formulation is given by:

VI 3.3

(r + c(Q) - (Q, w)) (Q' - Q) + S(7, Q) (r' - 7) +p(Q, w) (w' - w) > (23)

for all (Q', ,w') E mn x Rm x Rn,7rt,w)CK- _R+n xR+ xR+,

where S E R m consists of components Si si(r)- Ej Qij, and X is now a vector variable.

Finally, if we are given both the supply functions (15), and the demand functions (17).

then the formulation becomes:

VI 3.4

(+ C(Q) - ) (Q' - Q)+ S(r, Q) (Tr' -7r)-D(Q,p) (p'-p)>O (24)

for all (Q', 7r', p') E IK - Rn x Rm x R.

For a detailed derivation, see Dafermos and McKelvey (1986). For an excess demand.

single price model, see Friesz, Harker, and Tobin (1984).

Observe that each of the above VI formulations is of the form of inequality (1). where

the vector f and x are defined accordingly. Moreover, observe that each of the feasible

sets KI, for VI 3.lb through 3.4, is, in fact, a Cartesian product, of the form (7). In

12



particular, each such K consists of the product of three simpler feasible sets. Hence, as

intimated in Section 2, a decomposition approach is especially appealing. Indeed, as we

will show in Section 5, both the above problems and the disequilibrium or "constrained

equilibrium " problems which will be outlined in the subsequent Section can be solved

using a variational inequality decomposition algorithm which will resolve each of the vari-

ational inequality problems over a Cartesian product of sets into three simpler variational

inequality subproblems. Each of these, in turn, will have a special structure in which

the "dominant" VI subproblem can be formulated and solved as a network equilibrium

problem.

A qualitative analysis of the above equilibrium problems can be obtained by applying

the theory described in Section 2. Illustrative and complete analyses in terms of existence

and uniqueness of solutions to the above VI problems can be found in Nagurney and Zhao

(1988, 1989a,b) and Dafermos and McKelvey (1986). Stability and sensitivity analysis

results for spatial price equilibrium problems are described in Dafermos and Nagurney

(1984). A general approach to sensitivity analysis for variational inequalities can be found

in Dafermos (1988).
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4. Disequilibrium or Constrained Equilibrium Models

In this Section we focus on spatial models in the case of trade restrictions and price

controls. Policy interventions in the form of tariffs, subsidies, and quotas played a promi-

nent role in applied spatial price models studied by Takayama and Judge (1971). In

particular, our goal here is to demonstrate how the equilibrium models outlined in the

preceding Section can be generalized within the variational inequality framework to han-

dle policy instruments. The modifications result in changes to the governing functions

and/or the feasible sets. As noted by Thore (1986), in the case of policy interventions

the governing state may be one of disequilibrium. As mentioned earlier, the modelling

of tariffs and subsidies can also be incorporated into the VI framework by modifying the

transaction cost functions appropriately.

We denote a minimum nonnegative supply price floor for supply market i by 7ri, and

the maximum supply price ceiling by Iri. We group the supply price floors into a vector

7r E R m and the supply price ceilings into a vector 7r C Rm. We denote then a minimum

nonnegative demand price floor for demand market j by pj and the maximum demand

price ceiling by pj. We group the demand price floors into a vector p E R and the

demand price ceilings into a vector E R n .

We also denote a nonnegative trade floor for the commodity shipment Qij by /lij

and the maximum trade ceiling by ¥lij. We group the trade floors into a vector l E R m n

and the trade ceilings into a vector Al E Rmn. The market condition (8), in the presence

of trade restrictions, is now extended to: For all pairs of supply and demand markets

(i,j),i = 1,...,m;j = 1,...,n:

< pj, if Qij = Mij
7ri + cj = pj, if Mij < Qij < Mij (25)

pj, if Qij = M ,

whereas, conditions (9) and (10) now take the form:

< j Qij, if7ri=? ir

Si = j Qij, if i< ri < i (26)

>-jQij, if 7ri =

14



and
> Ei Qij, if pj P i

dj = Y ' Qij, if pj < pj < Pi (7)

< i Q j, ifpj = pj.

In the case where only the price floors 7r are imposed on the producers, then the analogue

of condition (11) is: For every i, i = 1,.... m:

Ui = 0, if7ri >r i (28)
> 0, if 7ri 7 i

We now present variational inequality formulations of the constrained equilibrium coun-

terparts of VI 3.1a through VI 3.4. The models presented below are in increasing order of

generality.

We first present the VI formulations, akin to VI 3.1a and VI 3.1b, satisfying conditions

(25) in the presence of supply price floors only. In particular, assuming that we are given the

supply price functions (14), the demand price functions (16), and the trade cost functions

(17), then the market conditions (25) take on the following formulations.

VI 4.1a

A pattern (s, d, Q, u, w) E la, where a _ {(s', d', Q', ', w') A/ M Q' < , and

satisfying (13) where u' E R+, and w' E R'}, satisfies conditions (25), subject to (12) and

(28), if and only if it satisfies the VI

(,.(s) + c(Q) - (d)). (Q' - Q) + ((s) - ir) (u' - u) + p(d) (w' - w) > 0

for all (s',d',Q',u',w') E Ila (29)

or. equivalently,

VI 4.1b

((Q,u) +(Q) - (Q,w)) (Q' - Q) +((Q, u) - 7) (u' - u) + (Q, w) .(w'-w) > 0 (30)

for all (Q', u',w') K x R x R

where Kl1 -{Q'I M < Q' < M}.

The above model generalizes the model of Greenberg and Murphy (1985). For a

detailed derivation. see Nagurney and Zhao (1988).
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In the case that we retain the supply price floors , and include now the demand price

floors p and ceilings , then the VI formulation of the constrained equilibrium analogue of

VI 3.2 is given by:

VI 4.2

(;r(Q, u) + c(Q) -) (Q' -Q) + ((Q, u) - ) (u' - u) -D(Q, p) (p' -p) > (31)

for all (Q', u', p') E KI - K 1 x R+ x K3

where 3 -{p'l P < p' < P}.

For a discussion of this model, see Nagurney and Zhao (1989a).

On the other hand, if we now include the supply price ceilings, and retain only the

demand price floors, we may rewrite VI 3.3 now as

VI 4.3

(a + c(Q) - p(Q, W)) .(Q' - Q) + S(7, Q). (w' - w) + (p(Q, w) - p) (w' - w) > 0 (32)

for all (Q',r',w') EI K 1 x 2 x R

where K 2 - { r'l <7r' }.

Finally, we present the most general formulation, akin to VI 3.4, in which the supply

and demand functions are used, price floors and price ceilings are permitted on both the

production and consumption sides and the trade restrictions remain, i.e.,:

VI 4.4

(;r + c(Q) - ) (Q' -Q) + S(r, Q) (7' - )-D(Q,p) (p' - p) > O (33)

for all (Q', 7r, p') E r = IK 1 x K 2 x K 3 .

See also, e.g., Nagurney and Zhao (1989b) and Dafermos and McKelvey (1986).
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5. The Variational inequality Decomposition Algorithm

Recall that the variational inequality formulations of the spatial price equilibrium

models, VI 3.1b - VI 3.4. and their constrained equilibrium analogues, VI 4.1b - VI 4.4.

were each defined over a Cartesian product K. Each such set, in turn, consisted of three

sets. Hence, we can decompose each of the variational inequalities into three simpler VI

subproblems in lower dimensions. The first encountered or "dominant" VI subproblem

will have a structure identical to a network equilibrium problem adjusted to the case of

bounds on the transaction links to handle trade restrictions.

We state the algorithm for the computation of the disequilibrium problem VI 4.1b

and then for VI 4.2. We also relate the statement of the algorithm for the computation of

equilibrium problems VI 3.1b and VI 3.2. The statement for VI 4.3 and VI 4.4 and their

equilibrium analogues should then be readily apparent. For proof of global convergence.

see Nagurney and Zhao (1988) and Nagurney and Zhao (1989a).

Computation of VI 4.1b

The algorithm computes a sequence (Q 0 , u0 , w), (Q 1,u l , w'), by solving three VI's

sequentially and converges to the solution of (30).

The steps are:

Step 0: Start with any (u ° ,w ° ) E Rm x R.

Step 1:(t = 0, 1,2,...) Solve the VI

[(Q, t) + c(Q) - (Q, wt)] (Q' - Q) > 0 for all Q' IK (34)

The solution to (34) is Q t .

Step 2: (t = 0,1,2,...,) Solve the VI

[(QtU)-r,] .(u'-u) > O, for all u' R. (35)

The solution to (35) is Ut 1 .

Step 3: (t = 0, 1,2,...) Solve the VI

(Qt, w) ( w -W ) > o for all w' E R. (36)

The solution to (36) is W t +l .
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Let t = t + 1, and go to Step 1.

The solution of equilibrium problem VI 3.lb can be obtained by setting in (35)

equal to zero and letting K 1 = R" in (34)..

As shown in Nagurney and Zhao (1988), under the assumption that the supply price

r(s), demand price p(d), and the transaction cost functions are strongly monotone in s,

d, and Q, respectively, then each of the above subproblems (34), (35), and (36) admits a

unique solution and, hence, the sequence {(Qt, ut, wt)},t = 1,2,... is well-defined. The

economic meaning of such an assumption is that the supply price at a supply market

depends primarily upon the supply of the commodity at that supply market, the demand

price at a demand market depends primarily upon the demand for the commodity at the

demand market, and the transaction cost between a pair of supply and demand markets

depends primarily upon the commodity shipment between the pair of supply and demand

markets. Such a condition is not unreasonable in appropriate applications.

Moreover, the algorithm is globally convergent under conditions given in Nagurney

and Zhao (1988).

The effectiveness of the decomposition algorithm is based on the fact that the first

VI subproblem given in (34) is actually the one governing the well-known spatial price

equilibrium problem in the case of equality constraints (see, e.g., Dafermos and Nagurney

(1985), Nagurney (1987b)). Furthermore, this problem can be cast into a traffic network

equilibrium problem (with bounds on the transportation links) on a network with special

structure (cf. Figure 1) (see also, e.g., Dafermos and Nagurney (1985), Dafermos (1986)).

This problem can be efficiently solved using a Gauss-Seidel serial linearization algorithm (or

a projection method) in which each restricted demand market equilibrium subproblem can

be solved exactly in closed form via the algorithm introduced in Dafermos and Nagurney

(1989) (see also, e.g., Nagurney (1987a, b, 1989a), Eydeland and Nagurney (1989), and

Nagurney and Kim (1989)). VI subproblems (35) and (36) are very simple and can also

be computed using a serial linearization method outlined in Nagurney (1987b).

In a similar manner, we have the
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Computation of VI 4.2

The algorithm computes a sequence (Q0 , u0 ,p 0 ), (Q',u1, p),..., by solving three VI's

sequentially and converges to the solution of (31).

The steps are:

Step 0: Start with any (u ° , p) E R x 3.

Step 1: (t = 0, 1,2,...) Solve the VI

[ir(Q, ut)+c(Q)- (Q'-Q) >0 for all Q' E K. (37)

The solution to (37) is Qt.

Step 2: (t = 0,1,2,...) Solve the VI

[r(Qtu)- · (u - U) > , forall u'E R+. (38)

The solution to (38) is u t +l .

Step 3: (t = 0, 1, 2,...) Solve the VI

-D(Q t ,p)· (p' - p) > 0, for all p' e T 3. (39)

The solution to (39) is pt+l.

Let t = t + 1, and go to Step 1.

The solution of the equilibrium analogue, VI 3.2, follows by setting 7r = 0 in (38), and

letting K 1 = R"n in (37) and K 3 = R' in (39)

Each of the above VI subproblems (37), (38), and (39) will admit unique solutions.,

provided that r(s), c(Q), and d(p) are each strongly monotone in s, Q and p, respectively.

Thus, the sequence {(Qt, ut, pt)}, t = 1, .... is well-defined and can be obtained by apply-

ing any appropriate algorithm for the computation of the individual variational inequalities

(37), (38), and (39). In particular, VI (38) is identical to VI (35). VI (37), on the other

hand, also has a simple network structure which should be exploited and which will now

be elaborated upon, cf. Figure 2.

Specifically, VI (37) is a specially-structured network problem in which there are m

origins and n potential destinations, where users at each origin seek to establish their user
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cost- minimizing destinations, where the transportation cost associated with traveling from

origin i to any destination j is given by:

aij(Q) = cij(Q) -p, for j = 1,..., n (40)

and the attractiveness function associated with locating at origin i is defined to be ,i(Q)

wi. The paths available consist of single disjoint links (i,j). This network equilibrium

problem. thus constructed, is a member of one of the classes of integrated traffic network

equilibrium problems formulated by Dafermos (1976). Observe that the characteristic

network representation of VI (37) is even simpler than the one encountered in the traffic

network equilibrium representation of the spatial price equilibrium problem encountered in

(34). In particular. VI (37) can be solved by a Gauss-Seidel serial linearization decomposi-

tion algorithm by supply markets given in Nagurney (1987b), in which the supply market

equilibration algorithm introduced in Dafermos and Nagurney (1989) and further theoret-

ically analyzed in Nagurney and Eydeland (1989) is embedded. This algorithm exploits

the "disjointness" of the origin/destination paths explicitly, by solving each supply market

equilibrium subproblem exactly in closed form.

A mirror image network on the demand side to the one in Figure 2 may be constructed

for the dominant VI subproblem encountered in the application of the decomposition

algorithm to VI 4.3 and VI 3.3. On the other hand, VI 4.4 and VI 3.4, although the most

general formulations, have no apparent network structure in the principal VI subproblem

which can be exploited. Nevertheless, the encountered principal VI subproblem is simple

to compute using, again, a term-by-term Gauss-Seidel scheme.

In the next Section, we provide computational results for the decomposition algorithm

applied to VI 4.2 and VI 3.2.
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6. Numerical Experience

In this Section we consider, as an illustration, the spatial market models formulated

as VI 4.2 and VI 3.2 and we provide numerical experience with the variational inequality

decomposition algorithm outlined in Section 5.

Since the decomposition algorithm resolves the solution of VI 4.2 and VI 3.2 into

three simpler variational inequality subproblems, the decomposition algorithm allows one

the opportunity to select any appropriate algorithm for the individual VI subproblems.

However, due to the special structure of the first and principal VI subproblem (37), the

application of a special-purpose algorithm is appealing. Hence, as mentioned in the pre-

ceding Section, we will apply the Gauss- Seidel serial decomposition algorithm by supply

markets (with the appropriate simplification since the demand prices now are fixed) in

which we embed, also accordingly simplified, the supply market equilibration algorithm,

proposed in Dafermos and Nagurney (1989) which solves each restricted supply market

equilibrium subproblem exactly, rather than iteratively. Gauss-Seidel serial decomposition

algorithms are also adapted to compute the solutions to (38) and (39). For alternative

algorithms and references, see Nagurney (1987b).

In our computational test, we, hence, utilized the above described algorithms for the

computation of the individual VI subproblems.

In order to illustrate how the decomposition algorithm performs computationally we

considered spatial market problems with linear asymmetric functions, where the supply

price functions are given by

i = ii(s) = S rijj + t = di(Q, u) = E ri,( Qjk + Uj) + ti, (41)
i j k

the demand functions are given by

dj = dj(p) = - PjkPk + Ij (42)
k

and the transaction cost functions are given by

cij = cij(Q) = E gijklQkl + hij, (43)
kl
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where the not necessarily symmetric Jacobians of the supply price and transaction cost

functions are positive definite. whereas the Jacobian of the demand functions is negative

definite.

In this Section we considered randomly generated market problems in which the sup-

ply price (41), and transaction cost functions (43) were generated uniformly in the same

manner as described in Nagurney (1987b). In particular, the function term ranges were as

follows: rii E [3, 10],ti E [10.25] and gijij E [1, 15],hij E [10,25], i = 1,... ,m; j = 1,...,n.

The demand functions were generated so that: -pjj E [-10, -15], ij E [150,650]. The

remaining rij, -pjk, and gijkl terms were generated to ensure that the Jacobian matrices

were strictly diagonal dominant and, hence, positive definite. We set the number of supply

markets m equal to the number of demand markets n and varied the problem sizes from

45 supply markets and 45 demand markets (90 markets total) to 90 supply markets and

90 demand markets (180 markets total) in increments of 15 markets. These problems are

larger than the equilibrium problems considered in Nagurney (1987b) and of the same size

as the disequilibrium problems solved for the inverse demand models in Nagurney and

Zhao (1988).

In Table 1 we fixed the number of cross-terms in the functions (41), (42), and (43)

to 5, whereas in Table 2, we fixed the number of cross-terms to 10. We set M = 0, and

M = o. The termination criterion utilized was I7r + cj -pjl < e = 5, if Qij > 0 and

ri + cij - pj > -e if Qij = 0 and 7i > r,p j < pj < pj, where p was set at zero and

(7ri - ri) u < 5; (pi Qii - dj(p)) x pj < 5, if P < Pj < j; (i Qijdj d(P)) < O, if

pj = pj, and (i Qij -dj(p)) > 0, if p = p.. Since verification of convergence can in

itself be computationally time-consuming, especially in large-scale examples, we verified

convergence for VI (37) after every other iteration.

The algorithm was coded in FORTRAN and compiled using the FORTVS compiler,

optimization level 3 on the IBM 4381-14 mainframe at the Cornell National Supercomputer

Facility. The CPU times reported in Tables 1 and 2 are exclusive of input and output.

The initial pattern was set at Qij = 0 for all i and j, ui = max(0, -_ ), for all i, and

pj = max(0, _ ) for all j.
-Pjj

In each of the first column examples in Tables 1 and 2, we set 7ri = 0 for all i and

pj = 1000 for all j. (In view of the generation of functions such price floors and ceilings
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would generate equilibrium solutions.) Hence, the reported CPU times in these columns

reflect the computational time for the decomposition algorithm to solve the market model

governed by VI 3.2.

To the same problems, we then tightened the bounds on the demand side in column

2 of each Table where Ir = 0, p = 0, and = 50. We also report the number of supply

and demand markets in which the respective prices are at one of the bounds. In column 3

of each Table we then raised the supply price floors to r = 150 and loosened the demand

price ceilings to = 750, but kept p = 0, and report the number of supply and demand

markets with prices at the bounds.

As can be seen from Tables 1 and 2, the decomposition algorithm was robust, con-

verging for all the examples and requiring only seconds of CPU time on a readily available

mainframe. The other models discussed in Sections 2 and 3 can now also be solved in a

timely fashion using the variational inequality decomposition procedure.

The spatial price models presented and synthesized in this paper should enable the

computation of a greater spectrum of problems than heretofore was possible, thus expand-

ing the potential scope of applications for policy analyses.
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7. Summary and Conclusions

In this paper we have focused on general. asymmetric, perfectly competitive spa-

tial price equilibrium problems using as the stimulus the fundamental contributions of

Takayama and Judge (1971). In particular, we have shown how variational inequality the-

ory and networks can be utilized to formulate. study, compute, and synthesize a spectrum

of spatial price problems. We first considered market models in the absence of policy

instruments, and then in the presence of such interventions as price controls on the pro-

duction and consumption sides and trade restrictions. The models presented were related

to other models in the literature and include quantity models, price models, and combined

quantity-price models.

The theory of variational inequalities. hence, can be viewed as playing the same role in

the analysis of equilibrium and disequilibrium problems as mathematical programming has

in optimization problems. Indeed, although we have concentrated our attention on per-

fectly competitive partial equilibrium models, imperfectly competitive oligopolistic market

equilibrium problems operating under the Cournot-Nash behavioral postulate, *Walrasian

price and general economic equilibrium problems, and migration equilibrium problems,

have all been formulated and studied as variational inequality problems. Moreover, since

the variational inequality problem contains, as special cases: linear and nonlinear comple-

mentarity problems, fixed point problems. min/max problems, as well as, minimization

problems. it provides us with a powerful unifying framework, of which we can expect to

see more use in economics in the future.
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Table 1 Computational Experience on

Large-Scale Spatial Market Problenms

Number of Crossterms = 5

CPU time in seconds ( *, **, ** )

7r = O,p = 0, p = 1000 7r = 0, = 0, = 50

4.33(0,0,0) 1.64(0,0,33)

7.26(0,,0,0) 3.07(0,0,50)

12.00(0,0,0) 4.88(0,0,61)

18.02(0,0,0) 5.74(0,0,78)

7r = 150, p = , = 750

3.82(38,0,0)

5.05(55,0,0)

10.64(65,0,0)

15.86((84,0,0)

Table 2 Computational Experience on

Large-Scale Spatial Market Problems

Number of Crossterms = 10

CPU time in seconds ( * , ** , *** )

=O,= O,p = 1000 = o = o , = ,p50

9.11(0,0,0) 2.72(0,0,34)

14.30(0,0,0) 4.96(0,0,45)

21.09(0,0,0) 6.29(0,0,59)

24.66(0,0,0) 11.80(0,0,67)

7= 150 ,e =

5.10(39,0,0)

10.41(51,0,0)

16.81(64,0,0)

5.98(79,0,0)

* Number of supply marl.,ts, i, with supply price 7ri = ri.

** Number of demand markcts, j, with demand price pj = j.

*' * Number of demand nmi:cts, j, with demand price pj = pj.

(m, n)

(45,45)

(60,60)

(75,75)

(90,90)

(m,n)

(45,45)

(60,60)

(75,75)

(90,90)

0, = 750
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