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ABSTRACT

In this paper two equilibration algorithms are introduced for the general quadratic

constrained matrix problem, whose object is to compute the best possible estimate of

an unknown matrix with known bounds on individual entries, row and column totals,

and totals of subsets of individual entries. The problem has been widely studied due its

frequent appearance as a "core" problem in numerous application areas of operations

research. A considerable amount of work has been done on this problem with the

quadratic objective function restricted to be diagonal; here we allow any positive definite

quadratic form as minimand. We also provide computational comparisons of the two

algorithms with each other, and with our implementation of an algorithm of Bachem

and Korte.



1. INTRODUCTION

This paper discusses the problem of computing the best possible estimate X of an

unknown matrix with known bounds on individual entries, row and column totals, and

totals of subsets of individual entries. The matrix X might be required to be a functional

form of another known matrix, or to be the minimum "distance" from a given matrix

X ° . Bacharach [1] gave the problem its name (i.e. "Constrained Matrix"); before and

since it has been widely studied due to its frequent appearance as a "core" problem

in numerous application areas of operations research . These include the estimation of

origin-destination flows in traffic analysis (Carey and Revelli [7], Carey, Hendrickson

and Siddharthan [6]), the estimation of input-output tables (Bachem and Korte [3]),

social-accounting matrices (Van der Ploeg [43,44], Morrison and Thuman [31], Harri-

gan and Buchanan [21], Byron [5], Friedlander [19], Zenios, Drud and Mulvey [47]),

of contingency tables in statistics (Deming and Stephan [14]), the projection of traffic

within telecommunication networks (Kruithoff [27]), the treatment of census data (Er-

ickson [15]), and the analysis of political voting patterns (Johnston, Hay and Taylor

[25]). Recently, there has also been considerable interest in these methods in image

resconstruction in electron microscopy and diagnostic radiology (Herman and Lent [22],

Herman, Lent, and Rowland [23], Lent and Censor [28]).

Deming and Stephan [14] treated as a constrained matrix problem the statistical

problem of estimating an unknown contingency table X as an "iteratively proportioned"

(i.e. row and column scaled) version of an initial matrix X ° , with nonnegative individual

entries and given marginals. They gave, however, no existence, uniqueness, nor conver-

gence proofs for their method. These proofs followed later (Gorman [20], Bingen [4],

'Bacharach [1]) after Sir Richard Stone [42] independently discovered and resurrected

the method, which has become widely known as the RAS method, after the functional

form it deals with.

Other researchers have formulated constrained matrix problems as mathematical

programming problems, with an objective function that forces "conservatism" on the

1



process of rationalizing X from the initial estimate X 0. The intellectual foundation for

the approach is threefold. Firstly, if viewed from the perspective of mathematical statis-

tics, the quadratic penalty function gives as solution the minimum variance unbiased

linear estimate of the matrix X (Byron [5], Van der Ploeg [43,44], Carey and Revelli

[7]). Secondly, if viewed from the perspective of information theory, the entropy function

gives rise to the estimate of X which minimizes the "information added" to X 0 needed

to conform to the contraints (Wilson [46], Snickars and Weibull [41], Erickson [15], Er-

lander, Jornsten and Lundgren [161). Lastly, it has been shown (Bacharach [1]) that a

particular functional form, the result of application of the RAS method, is equivalent to

constrained entropy minimization.

In this paper we consider the general quadratic constrained matrix problem. We al-

low any positive definite quadratic form as objective function, allow for row and column

totals to be specified, allow bounds on individual entries, and allow for constraints on

totals of subsets of individual entries. Byron [5] and Van der Ploeg [43,44] considered

general penalty matrices and general equality constraints on variables, but did not allow

for variable bounding. Ohuchi and Kaji [36,37] considered a diagonal quadratic form,

and constraints of the transshipment type. Morrison and Thuman [31] considered sev-

eral nonlinear objective functions subject to equality constraints, but also did not allow

for bounding of variables. Cottle, Duvall, and Zikan [8] developed a specialized decom-

position scheme for the case where the quadratic matrix was the identity, and did allow

bounds on individual entries. A computational scheme for a more general version (al-

though a diagonal matrix is still assumed) is given Harrigan and Buchanan [21] who used

the algorithm of Bachem and Korte [2] to compute the solution of interval-constrained

input-output problems.

Our computational procedure is motivated, in part, by the problem at hand; the

"equilibration" of matrices (cf. Van der Sluis [45]). We propose a decomposition scheme

which resolves the main problem into a series of equilibrium subproblems of three types,

which we shall call the row, column, and cut-set problems. We introduce equilibra-

tion operators for each of these problem types, and embed these in the iterative price

2
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decentralization scheme of Pang [38]. Equilibration operators were first introduced by

Dafermos and Sparrow [13] for the traffic assignment problem. The theory has since

been extended to the framework of the spatial price equilibrium problem (where de-

mands and supplies are elastic) by Nagurney [33,34] and Dafermos and Nagurney [12].

Nagurney [35] has established that the spatial price equilibrium problem is isomorphic

to the constrained matrix problem with a diagonal quadratic form and unknown row

and column totals. For analytical results about equilibration operators, the interested

reader might wish to consult Eydeland and Nagurney [17].

The paper is organized as follows: in Section 2 we present the formulation of the

problem. In Section 3 we-give the algorithms, including the outer loop and the alter-

native equilibration operators. In Section 4 we present the computational experiments

illustrating the relative performance of the two algorithms and an algorithm of Bachem

and Korte [2]. The test runs covered a wide range of problem sizes and densities. We

then summarize and conclude.

3
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2. FORMULATION OF THE PROBLEM

We now give the formulation of the constrained matrix problem considered in this

paper. The constraints are of the transportation type with an arbitrary set of side

constraints. We denote the given m x n matrix by X ° = (°j), and the matrix estimate

by X = (xij). Let si denote the given row i total, dj the given column j total, and t h

the right hand side of the hth additional constraint. Let uij, lij denote respectively the

upper and lower bounds of the variable xij. Let the mn x mn matrix Q = (Qijkl) denote

the imposed weight for the mixed variable term (ij - x°i)(xkl- xzl) and assume the

matrix Q to be strictly positive definite. Note that while Q is an mn x mn matrix, we

shall continue to use double subscripting to refer to its individual components.

Then our problem may be written as follows:

Minimize 1/2 E Qijkl(iij - )(Xkl - xt) (1)
i=1 j=1 k=1 1=1

n

subject to: E ij = S , = 1,... ,m (2)
j=1

Z j = dj, j=1,...,n (3)
i=1

Z aijxij = th, h=l,...,p (4)
ij

lij < zXj < uij for all i,j (5)

where the minimand represents the weighted squared sums of the deviations.

Deming and Stefan [14] considered (1) with Q diagonal, (Qijij) = 1/x°A subject

to constraints (2) and (3), whereas Friedlander [19] considered the case where Q = I.

Bachem and Korte [2] treated (1) for a general diagonal matrix Q with all the constraints

(2)-(5). Cottle et al. [8], on the other hand, studied Friedlander's problem with the

additional constraints (5). Ohuchi and Kaji [36,37] also studied the Bachem and Korte

problem with upper and lower bounds. For a discussion of applications to transportation

with constraints (2),(3), and (5), see Florian [18].

4



In a more general setting, Morrison and Thumann [31] studied the constrained ma-

trix problem with constraints (2)-(5), but retained the requirement that Q be diagonal.

Harrigan and Buchanan [21] formulated the problem in the framework of input-output

estimation, with interval constraints, rather than equalities in (2)-(4) and used an ex-

panded diagonal objective function. For an overview of input/output matrices and

applications, see Polenske [39] and Miller and Blair [30]. Van der Ploeg [43,44] stud-

ied problem (1) with the equality constraints (2)-(4) and applied it to social/national

accounts. The objective function (1) permits the utilization of mixed-variable weight

terms and so extends the modelling capabilities of the constrained matrix problem. An

example of a possible fully dense Q matrix is the inverse of the variance-covariance ma-

trix (cf. Mosteller and Tukey [32]). For other applications where mixed variable weight

terms might be desirable, the interested reader should consult Judge and Yancey [26],

or Harrigan and Buchanan [21].

Our method uses Lagrangean relaxation to resolve the above problem into three

categories of subproblems that are easy to solve: a row subproblem, a column subprob-

lem, and a cut-set subproblem. Each subproblem in turn is viewed as an equilibrium

problem and is efficiently solved by specially designed equilibration operators. As noted

by previous authors, this general approach may be thought of as a block cyclic ascent

method applied to the dual problem, or a modified Gauss-Seidel scheme to solve the

Kuhn-Tucker conditions. Q may be any strictly positive definite matrix.

5
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3. THE ALGORITHM

We begin this section with a discussion of the outer loop of the algorithm. In Sections

3.2 and 3.3 we discuss two alternative equilibration operators to solve the row subprob-

lems, and in Section 3.4 we summarize the solution procedure for the row subproblems.

In Section 3.5 we discuss the solution of the column and cut-set subproblems.

3.1 The Outer Loop

For simplicity of exposition, we shorthand the constraints (2)-(4) to A 1z = bi,

A 2z = b2 and A 3x = b3. denotes the vectorization of the matrix X; i.e. =

(211i, , ln,X21, , 2n ,,.. ,Xi ..,Z,,mn). We shall continue, however, to use double sub-

scripting to refer to individual components of x. Let y E R m , Y2 E R n ,y 3 R P be the

dual vectors corresponding to the row, column and cutset constraints respectively. Let

S = {x satisfies (5)}. The outer loop is as follows:

Algorithm: Outer Loop

Step 1 (Initialization) Let y = (yO, yOy) be an arbitrary non-negative

vector. Let k = 0.

Step 2 To obtain y+l = (y'+l,yh+l,y3+l) solve three quadratic problems

(QP,) consecutively for a = 1,2,3:

Minimize 1/2xTQX + (T (yk+l)TA -_ (yk)TA x
P<a P>a

Subject to: A,zx = b, and S. (6)

Step 3 If the convergence criterion is not satisfied, return to step 2, otherwise

stop.

6
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Pang [38] proposed the above scheme, and proved its convergence for any strictly convex

quadratic programming problem that is feasible. Cottle et al. [8] prove convergence

of their algorithm under a strong consistency assumption which is a Slater-type con-

straint qualification. Problems (QP,a) for a = 1,2,3 are referred to henceforth as the

row equilibration subproblems, the column equilibration subproblems, and the cut-set

equilibration subproblems respectively. Figure 1 gives a pictorial overview of the decom-

position scheme.

7
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Figure 1: The Decomposition Scheme
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3.2 Explanation of First Method for Row Equilibration

We now present the equilibration operators for the solution of each of these sub-

problems QPo,. As the column and cut-set equilibration operators are straightforward

modifications of the row equilibration operator, we present only the row operator here

and indicate later in Section 3.5 the changes needed to solve subproblems QP2 and QP3 .

At iteration k + 1 of the outer loop, the row equilibration subproblem which must

be solved is

Minimize 1/2XTQX + (cT - ykAz - yA3)Z

Subject to: A 1x = b, x E S (7)

Each of the two equilibration operators described below solves (7). Both are based

conceptually in the theory of equilibration operators for the traffic assignment problem

introduced by Dafermos and Sparrow [13], and later generalized by Dafermos [9]. It is

to be noted, however, that these early operators did not allow for bounded variables.

We first let = (ij) = (cT - y}A 2 - ykA 3 ) in the objective function of (7). Our

subproblem then becomes:

Minimize 1/2zTQX + TX
n

subject to: zxij = si i = 1,...,m (8)
j=1

lij < zij uij i = 1,..,m; j = 1,..,n

If we now define Cij(x) = (Qx)ij + :j then the equilibrium conditions for the problem

(8) are given in the following Theorem:

Theorem 1. A vector x satisfying the constraints of (8) is a solution of (8) iff it has

the following property: For any row i = 1,... ,m, the columns j = 1,...,n can be so

9
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numbered that

Cij < Cij2 _ < Cij, < Cij+ = Cj = Ai < C+, < ... < Cij, (9)

where zij = uij, = jl . * ,l

lij < xij < ij, j = jl+l,... js

xij = lij, = jo+1,) ,jn

Proof: The property stated above is equivalent to the Kuhn-Tucker conditions.

Both schemes for solving (8) exploit the special structure of these equilibrium condi-

tions. The first scheme attacks the conditions directly, adjusting matrix entries towards

the Kuhn-Tucker conditions until these are satisfied. The second scheme uses some

recent results in the theory of variational inequalities to solve (8) via a series of sub-

problems where the quadratic term is diagonalized, and the linear term is iteratively

updated until convergence occurs.

10
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3.2.1 The Row Equilibration Operator R1

Conditions (9) characterize the optimal solution as an equilibrium point in the fol-

lowing sense: all variables xij at lower bound have high marginal cost Cij(x), those at

upper bound have low marginal cost, and those in the interior of their bounds must

all have the same marginal cost A. This scheme updates a vector k to zx+ l for each

row i in turn iteratively adjusting a pair of variables i, and ziq which are most "out

of equilibrium." These are altered, while all other variables are held constant, until one

of them hits a bound, or until a minimum is reached. Formally; for any z k and row i,

Rixk is defined by the following procedure:

Equilibration Operator R'

Step 1. Find:

r = column indexj

q = column index j

s.t. Cij = max{CijIxj > 0, j = 1,... ,n}

S.t. Cj = min(Cijlxj uij,j = 1, ... ,n}

Step 2. Solve:

Minimize xT Q x

n

subject to: E ij
j=1

lij < a:ij

axij

+ ZTx

= si i=l,... ,m

< uij i,j=l,...,m,n

= Xij. unless j = r,q

This is easily solved. Let

A = min (Q Qiq -2Qq' zi"r, Uiq - iq (10)

Then Rixk = xk+l - Aei, + Aeiq, where ejk E Rn is the (jk)th unit vector.

11
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We apply RI until the equilibrium conditions given in Theorem 1 hold for row i. We

then proceed to R+ to equilibrate the (i + 1)°t row. We continue this procedure until

all rows are in equilibrium. The operator R' is defined as the composition

(R I o R2*.R~ )o( o ~.. R~)..o (n oR R * R. )

Convergence follows from an adaptation of the proof of convergence for the equilibration

operator without upper bounds in Dafermos [9].

In the special case where Q is a diagonal matrix, then all rows can be equilibrated in

parallel, for each row subproblem is independent of all other row subproblems. Cottle

et al. [8] also make this observation.

.12
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3.3 Explanation of Second Method for Row Equilibration

We now present a second operator that may be used to solve (8). It is based o a

projection method for the solution of variational inequalities first proposed by Dafermos

[11]. This method calls the Row Equilibration Operator R 2 as a subroutine at each

iteration. Denote by

K = {Il Ej ij = s i, lij < xij uij Vi,j}

the (convex) feasible region to problem (RE). Since a strictly convex function has only

one local minimizer over a bounded, closed convex region, the optimal solution satisfies

the variational inequality

Vf(X*)T(x _ X*) > 0, V x K

The reader may verify that this is equivalent to the fixed point problem

Find x* e K s.t. x* = P[z*-G-1Vf(*)]

where PK(x) denotes the projection of x onto K with respect to the inner product

norm < ,y >G=< , Gy >2, where G is any symmetric positive definite matrix. Our

projection algorithm is thus

X k+1 = PK[Xk GlVf(Xk)]

We choose G to be diagonal(Q). So we need to solve

zk+ l = minEK Iz - z k + G-1Vf(xk)llG

to find zk. The reader can verify that this gives rise to the iterative scheme

k+l = min,EK1/2x Q + (Qxk + - Q2)x (t)

where Q = diagonal(Q). For proof that (t) is indeed a contraction map, and the as-

sociated fixed-point is unique, the reader should consult Dafermos [11]. The projection

method is as follows:

13
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Algorithm: Projection Method

Step 1. Start with any feasible flow z °.

Step 2. Given x k, find xk+l by solving the quadratic program:

Minimize 1/2 xT + c z
n

subject to: E:Xij = Si (11)
j=1

lij ij < uij

where Q denotes diagonal(Q), and k = Qxk + c- Qxk.

Step 3. If a convergence criterion is satisfied, then stop, otherwise set
=k+l

k = k + 1, update c and repeat step 2.

3.3.1 The Row Equilibration Operator R2

We now give a specialized, efficient and exact equilibration operator R' to solve (11).

As for R, this is motivated by the Kuhn-Tucker conditions for the problem (11). The

scheme is based on the computation of the Lagrange multiplier Ai where Cijo of (9) takes

now the special form:

Cij.o = WijoijoXijo + ij

since Q is diagonal. This scheme provides the exact solution for subproblem (7). R is

motivated as follows: If we know Ai in (9) with the Cij's given by (9), then

zij =( for j+l < j < j
wijij

Xij = 0, for j,+l< ji < (12)

Xij = uij, for j < < it

14
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wherei =
Si - '3= 1 1L2 + = 

,3= $1 wi'ii

The statement of the operator is as follows (for a special case where wijij = 1 see Cottle,

et al. [8]; for the unbounded case, in disjoint networks, see Dafermos and Sparrow [13]).

Row Equilibration Operator R2

Step 1. Sort the components i.,... , in in ascending order and relabel

1il,..., Xin and c accordingly. Henceforth, we assume that cil < ci2 < ... <

cin. Define M = {1,...,m+ 1} and 7= 0. Let KC = M/7 = {ji,...,jik+l}

where jl < ... <jR < JR+ = m + 1. Let = 1.

Step 2. Define

Si- hen uih + k=l1 wijv

EL 1
k=l w;i il

Step 3. If Al E [ci, +ij+1] , then for k = 1, ... , K, let

A--a..

xi = Wijij

10

(14)

If for k = 1,... ,e, xiji> ui., redefine zij = uij, and transfer j from

K to t. Let e = 1 and go to Step 2. Otherwise row i is equlibrated so stop.

Step 4. If A i [.j, cijc+i], let = e + 1, and go to Step 2.

R 2 is then defined by the composition R20... .oR. Problem (RE}dig) is solved exactly

through a single pass. This operator can be implemented on all rows i in parallel. Since

R2 is in essence a sort and search algorithm its computational requirements will depend

on the sorting routine used. It is important that any implementation of these operators

15
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be done with great care; for some suggestions the reader might wish to consult Eydeland

and Nagurney [17].

3.4 Summary of Row Equilibration

To summarize, one can solve the relaxed problem (8) in two ways:

1. Repeated application of the operator R1 until the equilibrium conditions are

satisfied.

2. Solution of a series of diagonal approximations to (8) using the exact operator R 2

until the equilibrium conditions are met.

3.5. Column and cut-set operators

After the row equilibration (and consequent updating of yk to yk+l is complete), we

then proceed to the column equilibration (to update yk to yk+l') and then to the cut-set

equilibration (to update y to yk+l). Analogous operators T1,T 2 and C 1,C 2 exist for

the cut-set and column equilibrium problems respectively. It is to be noted that these

operators can be combined in any way to form the outer loop, i.e. RC'T l, R 2C1T 2,

R1C 2T 2 and R 2C 2 T2 are all valid outer loop schemes.

16



4. COMPUTATIONAL EXPERIMENTS

In this section we report on our computational experience with a wide variety of

randomly generated constrained matrix problems using the decomposition schemes with

embedded equilibration operators described in Section 3. We include comparisons of

both types of equilibration with the algorithm given in Bachem and Korte [2]. All

computer programs were coded in Fortran, and were compiled under VS FORTRAN at

optimization level 3, running under VM/XA 5.5 on the IBM 3090-600E at the Cornell

National Supercomputing Facility at Cornell University. The CPU times reported are

exclusive of input and output times, but include initialization times.

The matrix Q in (1) was generated to be symmetric and strictly diagonally dominant,

which ensured strict positive definiteness. In particular, each element of Q was generated

in two stages. First, for each pair (k, I) a random number u E U[0, 1] is generated. If

u E [0, density], then Qkl is selected to be non-zero, otherwise Qkl is set to zero. If Qkl

is to be non-zero, then its value is generated in the second stage in such a manner that

the resulting Q matrix will be strictly diagonally dominant. In the above-diagonal part

of Q, Qkl is generated randomly row by row in the range [.01, Q"a':], where

QkaZ = .5 x min[Qkk - Qkj, Qu - Qil]
j<l:jok j<1

. Qlk in the lower triangular part is obtained from Qkl in the upper triangular part.

Each element of the vector c in (1) was generated in the range [100,1000]. The

upper bounds uij were generated uniformly in the range [1, 100]. The lower bounds were

set uniformly to zero. The row totals si of each row i were set equal to .1 Ej uij, and

the column totals d were set equal to .1 Ei uij. In the equilibration codes, we set the

initial vector y to be zero in all experiments, and all ij were initialized to dj/m. The

termination criteria were based on the relative residuals R(s2 ) = ( xj ij- s)/si, and

R(dj) = (i xi - d)/dj. If, following the solution of the row equilibration problems,

R(dj) < .001 for all j, then the problem was considered solved; likewise, the problem was
also considered solved if an analogous situation occurred after solution of the column

17



equilibration problems. The sorting algorithm used in R2 and C2 was Straight Insertion

Sort (see Press et al. [40], Cottle et al. [8]), with permutations not saved between

iterations. Pointers were used for both the projection and equilibration methods, except

for the runs on fully dense problems.

The algorithm of Bachem and Korte [2] (BK) is a derivative of Hildreth's quadratic

programming procedure [24], and dualizes all the constraints, including the upper and

lower bounds on variables. BK is an iterative algorithm, updating from one iterate to

the next by a series of matrix multiplications (involving Q-1, D-1, and the (possibly

augmented) constraint matrix of the transportation type) and vector additions. We were

unable to find any suitable library routines for the sparse inversion of the type required

by BK (we did not wish to compare some appropriate assembly language routines such

as those in ESSL with our FORTRAN codes).

The algorithm requires that the mn*mn matrix Q be inverted, together with another

much denser (m+n-1)*(m+n-1) matrix D. The reader should note that the algorithm

given in the paper assumed Q to be positive and diagonal in order to derive some elegant

special structure algorithms; this assumption was not necessary for the validity of the

algorithm, positive definiteness of Q is all that is required. The authors noted that

(like the methods given in this paper) BK could also solve problems with additional

constraints.

We report on the performance of two versions of BK. First, the specialized version

whose convergence is proven by Theorem 1 in Bachem and Korte (1978), where Q is

assumed to be a diagonal matrix. Second, a generalized version where Q is allowed

to be any diagonally dominant symmetric matrix. Because Q is strongly diagonally

dominant no principal pivoting is needed; both the Q matrix and the D matrix were

inverted using a standard LU factorization. Early in the computational experimentation

we also implemented a sparse matrix inversion routine, but found that the overhead of

pointers was too costly at densities greater than 20 percent or so, and so did not report

on this implementation here. For example, we observed an average 4-fold improvement

in processing times when no pointers were used in problems with 10 rows and columns
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with densities greater than 30 percent. In both codes, we required the convergence of

successive iterates (i.e. x +l - xi < .001) and the convergence of the relative residuals

R(si) and R(dj) to a tolerance of .001. These latter tolerances are the same as those

required for the equilibration methods.

In the first two tables, we give results for diagonal problems, and for problems of

increasing density of Q. Table 1 shows the results of the computational runs on problems

without upper bounds. Table 2 gives the results of the computational runs on problems

with upper bounds. Table 3 gives results for the projection method on larger problems.

Except in the diagonal case, our results would seem to suggest that the two equili-

bration algorithms presented in this paper are quite efficient in practice. As was to be

expected, the CPU time required for BK for a given problem size was largely indepen-

dent of problem density, since BK is based on matrix inversion. It is to be noted that

the additional restriction of upper bounds did not seem to affect solution times for any

of the algorithms very much. All runs of the equilibration and projection methods on

problems that were not fully dense were done with codes using pointers, even though

the overhead of the sparse machinery seems not be advantageous above 30-50 percent

density. We included the runs with the sparse code here, so that the reader could see

the tradeoff point for him/herself. The CPU time for the fully dense problem is an ap-

proximate upper bound on the practical run times for sparser problems, since the latter

could easily have been run in dense form with zeroes stored explicitly.

The problem data, like any data, will have its limitations. We do not believe that

test runs with a diagonally dominant Q gave unrepresentative results about the relative

performance of these algorithms. Structurally, all algorithms tested in this paper did

not care about the form of Q, only that it was positive definite. As mentioned earlier,

the projection method combined with exact equilibration is, in fact, a parallel algorithm

which can be applied to either the general or the diagonal case of the problem. The

relative performance of BK and the equilibration algorithms on parallel architectures is

an avenue of research that merits further consideration.
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Table 1: Computational results for problems without upper bounds

Run Time (CPU sec.)
# runs Density Equilibration Projection

10

10

10

10

10

Diagonal

30

50

70

100

10 Diagonal

10 30

10 50

10 70

10 100

.0238

.6803

1.2828

1.9123

.6434

.1376

29.1673

57.1891

90.5185

36.6513

.0104

.0948

.1602

.2303

.1270

.0479

1.4914

2.4618

3.6123

1.8373

900 x 900 10 Diagonal

2 30

2 50

2 70

2 100

Dimension
of Q

100 x 100

400 x 400

BK

.0044

.7326

.7428

.7483

.7725

.0186

75.4334

75.5325

75.3804

78.9557

.5127

249.3400

425.9000

631.9799

308.7723

.1972

7.6269

12.8084

17.6258

9.5129

.0820

1454.6160

1455.1595

1460.7494

1458.3820



Table 2: Computational results for problems with upper bounds

Dimension Run Time (CPU sec.)
of Q runs Density Equilibration Projection BK

100 x 100 10 Diagonal .0307 .0171 .0066

10 30 .8482 .1281 .7334

10 50 1.5866 .2063 .7456

10 70 2.3940 .3016 .7481

10 100 .7833 .0726 .7522

400 x 400 10 Diagonal .1811 .1033 .0270

10 30 35.9120 1.7467 75.2602

10 50 68.9153 2.7732 75.3745

10 70 109.4292 4.2474 75.3860

10 100 44.7596 1.7156 75.5292

900 x 900 10 Diagonal .5048 .2900 .0736

2 30 289.2019 7.5886 1462.0900

2 50 460.6929 11.9050 1456.1765

2 70 666.5816 15.6453 1457.3540

2 100 353.1348 9.7596 1460.2340



Table 3: Computational results for the projection method

on fully dense larger problems

# runs Run Time (CPU sec.)

26.7217

71.4807

208.3290

428.8780

493.5415

809.3456

1305.5940

3000.5200

Dimension
of Q

1600

2500

3600

4900

6400

8100

10000

14400

x 1600

x 2500

x 3600

x 4900

x 6400

x 8100

x 10000

x 14400

1

1

1

1

1

1

1

1
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