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1. Introduction

In recent years, queueing models, which are frequently used to estimate a

system's performance and to optimize server management policies or customer profit
strategies, have been developed and applied in a wide variety of settings. Urban
police operations is one of the now classic application areas.

The police patrol and dispatch system can be described and modeled as a multi-

server queueing system in which calls for service (CFS's) and patrol-initiated
activities (PIA's) arrive randomly over time and space and require various amounts
of service time. A CFS is initiated by a citizen telephoning the police, reporting the
need for on-scene police service. A PIA is a discretionary activity undertaken by the

mobile police patrol officer as a result of something he or she sees from the patrol car

(e.g., traffic violation, building check, car check, pedestrian check, resident check,

car chase). The first analytic model to incorporate the spatial queueing aspects of
police patrol and dispatch was Larson's hypercube queueing model; he described
both an exact model incorporating a 2N state continuous time Markov process
(assuming N police cars in the system) (1974) and an "approximate model" that

reduces the number of equations to solve from 2N to N (1975). In 1978, building on
word described by Larson in Chapter 5 of his book Urban Police Patrol Analysis,

Chaiken and Dormont designed the Patrol Car Allocation Model (PCAM). The
original versions of both models have two major limitations. First, they assume that
only a single unit is dispatched to each call, and second, they allow only two activity

states for each patrol unit: busy on a CFS, or free on patrol. In applications, these
assumptions are not always realistic. For instance, Larson and McKnew reported

that up to fifty percent of the busy time of a police patrol unit may be on PIA's (1982).

Green and Kolesar (1984), in New York City, reported that thirty percent of
dispatches were multiple unit dispatches (i.e., dispatches in which more than one

police patrol vehicle was assigned to respond to the scene of the CFS.)

To extend the hypercube models' applicability, Chelst and Barlach (1981)
presented two models, one exact and the other approximate, that capture the
simultaneous response of one or two identical units dispatched to a single call.
Furthermore, to incorporate patrol-initiated activities that consume a sizable
fraction of a patrol unit's time, Larson and McKnew (1982) developed a hypercube
type queueing model of a police patrol force that allows PIA's. With regard to
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PCAM, Green (1984) presented a multi-server, multi-priority queueing model in
which the number of servers assigned to each customer is a random variable that

depends on the customer's "type" and the availability of servers. Recently, Schaack
and Larson (1986 and 1988) considered the differences between high- and low-
priority demands for service and developed cutoff priority queues to optimize server
management, including the complexity of multiple unit assignments.

Basically, the Chelst and Barlach and the Larson and McKnew methods are built

on Larson's hypercube model (1974 and 1975), both exact and approximate forms. In

this paper, we present two models, one exact and the other approximate, to allow

multiple-unit dispatches and police patrol-initiated activities within a system

queueing model, thereby merging into one model the earlier generalization of Chelst

/ Barlach and Larson / McKnew. This is the first generalization of the hypercube

model that incorporates both of these complexities, which are important in

implementation environments in such cities as St. Louis, New York City, and

Peoria, Illinois.

On the basis of these two models, we then create two computer programs that can

be run on any 16-bit microcomputer such as the IBM PC/AT (since most city-

supported computer facilities do not have mainframe systems). The approximate

version is more feasible to use since the state space of the exact model expands to

become computationally infeasible for even medium-sized emergency service
problems. Our purpose is to develop more accurate, management-oriented tools to

improve patrol dispatch policies. The outcomes of our tests on these two models

using simulations and statistics support our work.

Section 2 introduces the models and their assumptions. In Sections 3 and 4, we
describe the required notation and discuss the mathematical structure of the exact

model and the approximate model. We then implement the models' formulae in two

computer programs that are written in FORTRAN and can be run on a 16-bit
microcomputer. (The Appendix describes the organization and computational
results of these implementation tools). Section 5 lists some statistical results of the

approximate model. Finally, in Section 6, we offer some remarks on implementing
the results, and briefly discuss the possible applications of the models.
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2. An introduction to the models and their assumptions

In order to develop a spatially-oriented, N-patrol-unit system, we consider a

continuous-time, discrete-state Markov model that is a generalization of the

hypercube model (Larson 1974). In addition to yielding values for all the

performance measures of the hypercube model, our version allows multiple-unit

dispatches and police-patrol initiated activities. We assume the reader is familiar

with Larson (1974, 1975), Chelst and Barlach (1981), and Larson and McKnew

(1982).

Suppose we have J geographical atoms and N servers. CFS ( calls for service )

from each atom j, and PIA ( patrol-initiated activities ) opportunities for each server

n, arrive according to independent Poisson processes. For simplicity, we distinguish

between two types of CFS's: type I calls summon only a single unit to service, while

type II calls require two units. For any given atom j, type I and type II CFS's

arrive independently at the rate Al(1) (j) and A1
(2) (j), respectively. Similarly, X2(n) is

the arrival rate of PIA opportunities for server n.

We assume that the (on scene) service times for both the CFS's and the PIA's are

independently and exponentially distributed for each server n. The same condition

is also true for the two units dispatched under type II CFS's. In other words, when

service begins, the "completion time" for CFS's (type I or type I ) and PIA's for each

server, say server n, has a distribution that is exponential, with mean pl(n)- 1 and

P 2(n)- , respectively. If pl(n)- 1equals p 2(n) - 1 for each server n, two units servicing a
type II CFS can be treated as equivalent to two units servicing two separate type I

CFS's. In such a case, we can reduce the number of states and simplify the model. In

order to save computer storage space and simplify the computation, we make some

assumptions about the service times. Considering the case in which the variation in

service times between a CFS and a PIA is more than that between servers, we have

the following assumption for the approximate model: p,(n) = p, and p 2(n) = p 2 , for
all servers n.

Upon completion of service, the server immediately returns to one of its possible
locations, which depends on the probability that the server is located in one of

several possible atoms. Let Inj be the probability that server n, when available, is

located in atom j. Associated with each atom k is a list that ranks servers in order of
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their dispatch preference. The ranking is determined by the relative average travel

time, tnk, from the possible locations of each server n to atom k, the atom under

consideration. The server that has the smallest tnk occupies first place, followed by

the server with the next smallest tnk, and so forth. The determination of tnk depends
on

* Inj - the probability that server n is located in atom j, for all j,
* dk - the distance between atomsj and k, and

v - the effective average respond speed of each server.

Clearly each atom has a fixed list of servers, independent of the state of the system.

This dispatch policy, labeled EMCM (expected modified center-of-mass) by Larson

has been shown (Larson 1972) to be a more appropiate dispatch policy compared to

the methods SCM (strict center-of-mass), MCM (modified center-of-mass) and ESCM

(expected strict center-of-mass).

We consider a finite state system. When a type I CFS arrives at an atom, the

highest ranked available server is dispatched. In the case where all N servers are

busy, the CFS will be lost. For type II CFS's, the two highest-ranked available

servers are dispatched. If only one server is available, we will treat this CFS as a

type I CFS and dispatch the available server. In all other cases, this CFS will be

lost. PLA opportunities not observed by a free (patrolling) server are also lost. There

is no preemption.

In practice, no service system will ever satisfy the mathematical model's

assumptions exactly. We can check compatability of the model with real system by

means of test results and simulations.
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3. The exact model

Before we describe the formulation of the exact model, we need to introduce some
new notation. We define

S(i,n) r status of server n when the system is in state i; i = 0, 1, , 4N-1;

n= 1, 2, , N;
=0 [free]
= 1 [busyon type I CFS's]
= 2 [ busy on type II CFS's ]

= 3 [busy on PLA's].

Thus we have the following 1-1 mapping from 4N system states { i; i = 0, 1, 2, ,

4N-1 } into the status of servers{ ( S( i, n); n = 1, 2, -, N ), i = 0, 1, 2 ,, 4 N-1 }:

i = S(i, N).4N-1+ -+ S(i, m)4m-1+ + S(i, 2)'41+ S(i, 1)-40.

By the assumptions stated in Section 2, we see that when the system is in state i,

and a CFS arrives from atom j, one or two servers n(i, j) that satisfy S(i, n(i, j))= 0

should be dispatched to the CFS. Otherwise, the call will be lost.

Let nij, = identification number of the server to be assigned to the CFS,

given a type I CFS from atom j when the system is in state i;
i = 0, 1, 2, -, 4N-1; j= 1, 2, -, J.

nij2(1), ni j2(2) identification numbers of two servers to be assigned to the

CFS, given a type II CFS from atom j when the system is in
state i; i= 0, 1; 2, '", 4N-; j= 1 2, , J.

P(i) = equilibrium probability that the system is in state i;

i= 0, 1, 2, ., 4N-1.

Obviously, these definitions imply the following conditions.

S(i, nil) = S, n nj2(1)) = S(i, nij2(2 )) = 0
and
P(i)=0 for all i < 0 and i > 4N.
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We can now proceed to derive a balance-of-flow formula for the exact model by

equating the output flow from and the input flow into each state i :

p(i ()1) +(2)[) +

m:1 S [' ) = 
m: S(i,m)=0

A2 (m)
m: S(i,m)= O

P(i-4 m - )+ I
m: S(i,m) = 

+

+ +

m: S(i,m) = 1,2 E P2(m )
m: S(i,m)=3

1
: n - 1 .=m

i-4 ,j

P(i- s(ml,m 2 ))

m',m2: S(i,) = S(i, 2) =2 2 2
i E .,lmC_ _ .i_,,), nim,.(2),-(m llm) ' j _ (m llm) ' i

(2)
1

P(i- 3 4m- 1) ( ) ,2 m+ I
m: S(i,m) = 3

where s(ml ,m 2) = 24m1-1 + 24m2 -1

24ml-1

i+l

if there exist m,m 2 such that

S(i,ml) =S(i,m 2) = 2.
if only one m, say m l , satisfies S(i,m l ) = 2.

if for all m, S(i,m) = 2.

§ = 1
0

J

A() (1 )

j=l

J
,(2) .

j=l

if at least one server is free.

if all servers are busy.

N

A2 E }A2 (n) .

n=l

Each term on the left-hand side of (1) contains the rate the system leaves state i,

due respectively, to
O dispatch assignments to CFS's
® initiations of PIA's

® completions of service on CFS's
® completions of service on PIA's.
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On the right-hand side of (1), each term contains the rate the system enters state i,
due respectively, to

) both types of service completions that bring the system into state i
® the rates for dispatch assignments for type I CFS's
® the rates for dispatch assignments for type II CFS 's
® the rates of PIA opportunities that take the system into state i

Since the system equations (1) are linearly dependent, we add the condition that

4Nl1

I P(I= 1
i=o

to solve for 4 N unknown probabilities. Once we obtain the P(i)'s, system performance
measures and additional key statistics are easy to calculate. For instance,

* The workloads of server n on type I and type II CFS's and on PIA's, respectively,
are

CFS I
pn

CFS II
n

PIA
Pn

i: S(i,n)= 1

i: S(i,n)= 2

i: S(i,n)=3

P( ;

P(I;

P(I 

The total workload for server n is pn = PnCFS + PnCFSII + Pn IA

* The saturation probability is

PSAT = P(i)
i: S(i,n) sO, Vn

(2a)

(2b)

(2c)

(3)
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* Consider type I CFS's from atom j, the fraction of dispatches that are assigned
to server n is

fn,ji, 1

1
1 -PSAT

Y P(l) .
1

n=njLJ

* Consider type II CFS's from atom j, the fraction of dispatches that are assigned
to server m and server n is

(m,n),j, 2 1 
{m,n}={n. .(1), n. (2)}

is is

P(i)

* Consider type II CFS's from atom j, the fraction of dispatches that are assigned
to a single server, the server m, is

1
f(m,O),j, 2 1-

SAT
(6)

2 2
m( n. j(),n n.(2)

3 9 7 lI 

· The average travel time to atom j is

N N t .+t .

f,,j, ltmj + f(m,n,,, 2( 2 ) + f(m,O),j,2 tjj
-m=1 n=l

(7)T. 
' -N N

I fm,j, + (mn) j, 2 + ( mO)j, 2
m=l n=1

· The average travel time of server n is

N
(2) 2

' [,(X1)(f +( 1 (j) T(mn)j, 2t nj +1 (nO)j 2 njx= g=n,j , ,tn
_ j=l m=l

TU N

(2) + (2)
n1 n,j, 1 f(m,n),j, 2+ f( 1 IO)nj, 2

j=1 m=l

(8)
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* The average travel time to requests in the primary response area of server n is

TRA n

N

j ( response area n m = 1

N t. +t 1

fm,.j ltj + I f(tl),j,.2( m 2 )+f(m.O),j.,2tni
1=1 

N

,+ f(ml,).+ f(mo).j. 2
1=1

N

E E fmi.
j response area n m = 1
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4. The approximate model

In many practical applications, the number of servers is greater than 5. This
reduces tremendously the applicability of the exact model. The number of
simultaneous linear equations that must be solved, 4N, increases exponentially as
the number of servers, N, increases. Calculating the steady-state probabilities thus
requires enormous amount of storage and execution time. To handle this drawback,
we now present an approximate model that requires only the solution of N
simultaneous linear equations (which describe an "aggregate" model) and N
simultaneous nonlinear equations to solve the workload performance measures.

To compute system performance measures in the approximate model, we need
dispatch probabilities rather than fine-grain Markov system state probabilities. We
formulate the aggregate model to estimate "correction" factors in a product form
solution, and use the correction factors to account for the false assumption that the
servers in the approximate model are mutually independent of each other. Our
approximate model is analogous to Larson's (1975) for the hypercube model, and
differs mainly in both the details of the aggregate model and in the correction factors
required.

To simplify the aggregate model, we assume that all servers are identical. This
implies that mean service times are server independent, i. e., p,(n)=pl, p 2(n)=p 2

for all n =1, 2, ... , N.

We assume that there is a fixed preference dispatch list for each atom. To derive
the correction factors, we define the following terms.

Wn the nth ranked server is working. (i. e., "busy")
WnC = the nth ranked server is not working. (i. e., "not busy")

P(WlW 2....WkWCk+l ) = the probability that the (k+l)th server
will be dispatched. (10')

P(WiW2....Wl_lWCW 1 ....Wk WC,+) = the probability that the th and (k+l1)th
(1 I- k ) servers will be dispatched.(11')

P(WiW2....WWC+lWk+2....WN) - the probability that only the (k+l)th
server will be dispatched. (12')

-10-



If the servers are independent of each other, we can obtain, by the product of

respective servers' utilization factors or availability factors, the probabilities (10'),

(11') and (12') that some servers will be dispatched to CFS's. We then introduce the

factors Q(N, k, 1) and Q(N, k, 2) to "correct" this independence argument. Thus we

have the following expressions.

Consider a type I CFS from atomj. We approximate (10') as follows:

k

P(WW 2. Wk WC 1)Q(N,k, 1) H p(r)(-p+ 1)) (o)10
r=1

Consider a type II CFS from atomj. We approximate (11') and (12'), respectively,
as follows:

k

P( W W WlW WW +l)Q(Nk,2) P)) p 11)1 2......1-i I 1+1 ... k k+1 ' (r) () (k+1)
r-1, rl

P(WW 2... W W+lWA+ 2 . W )Q(N,N-1, 1) 1 p(r) 1(- p(+)) (12)
r=l,rr-k+l

where p(r)= fraction of time that the rth preferred server is busy on CFS or PIA

opportunities, and
Q(N, k, 1) and Q(N, k, 2) are correction factors for dispatching one and two

servers, respectively.

Because of the assumption that all servers are identical, the right-hand sides of

Equations 10, 11 and 12 reduce, respectively, to

Q(N, k, l)pk(1 -p); Q(N, k, 2)pk- 1(1- p) 2; and Q(N, N-I, 1)pN- (1 -p).

To derive the correction factors, we try to solve the left-hand sides of Equations 10
11 and 12. Following the theory developed by Larson (1975) for sampling servers
without replacement, we condition on all states of the system having exactly m

- 1 1 -



servers busy, where m=1, 2, ... , N. Thus the left-hand sides of 10, 11 and 12,
respectively, can be obtained as follows.

N-1

P(WlW2 ... Wk+l ) = P(WW 2 .... WWk k+1Sm)P(Sm)
m=k

N-2

P(W1 2 ....W WW+ 1.... WW+)= >E P(WiW ....WW W....W Wc IS )P(S )
m=k-I

P(W 1 W 2.... WC W W+2 ... )= P(WW2 .... W +2 ... WIS )P(S )

where Sm is the state corresponding to exactly m servers being busy.

By arguments similar to those of Larson and McKnew (1982), we find the
following correction factors:

N- (N - m) P
Q(N,k,1 )= (N-r) m

m=k C (N-k) rk(l r)

N-2 C 1 (N-m)(Nm-1) P

(m= 1Ck (N-k+l)(N-k) r-(, _ r)2m=k-1 _-l

k=1,2, ... , N- 1.

k=1,2,...,N- 1.

where r is the average utilization factor of servers in the aggregate model, i. e.,

N
r - 3 mP

m=1

To solve Pm=P(Sm) and derive the above correction factors, we develop an
appropriate aggregate model. Figure 1 is the state-transition-rate diagram for this
model. We say that the queueing system " is in state n " in the aggregate model
whenever n servers are busy (n = 0, 1, 2, ..., N).

-12-
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1 (2)1 A (2) A (2)
1

S * *

p[1] p[2] p[3] p[N]

Figure 1. Transition diagram of the aggregate model.

The following global balance equations (14) can be used to compute the correction
factors Q(N, k, 1) and Q(N, k, 2).

{ A[O] + X(2)I }Po

}P1 A[o] Po

p[1 ] P

+ p[2] P2{X[l]+A(2)+p[1]

{ [n]+ A(2 ) + p[n] }P A2)P + A[n-1] P + p[n+l]Pn 1 n-2 n- n+ n=2,3,...,N- 2

{AN [N-] +1 [N-I}PN1 = A 1 P_ 3 + A[N-2] pPN 2+ [N1

P[N] PN = AP A(2)[4N] P =ApN-2 + A[N-1] PN-1 N-2 N-I

N

ePi
i=O

1,

where
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Aln] = A(1) -+ A2 n=O, 1, ... ,N-1 N 2

A[N-l =A(1) 1 1)N11 =| 1 , - + 1 N 2 1

1 2 1 1

N-(n-l)

n] A(1+(N) A 1 (1)+ n=2, 3,..., N.

1 1 N 2 1 1 N 2

Because the approximate model assumes that all servers are identical, each
available server initiates PIA opportunities at the same rate, A2 / N. In other words,
if i servers are busy ( i N- 1 ), the transition rate from state i to state (i + 1) is
X1(')+1 2 (N-i) / N: the first term corresponds to CFS's and the second to PIA's. The
other upward transition rate, due to type II CFS's, from state i to state (i + 2) is A1(2).

The downward transition rates from state i to state (i-1) are obtained to
approximate the average service rate of mixed work between CFS's and PIA's for
each state. Consider the state i. There are three possible dispatches into this state:
type I CFS's, type II CFS's and PIA's. Type I CFS's and PIA's are dispatched from
state (i-2) into state i, while type II CFS's are dispatched from state (i -1) into state
i. We approximate the average fraction of customers in service that correspond to
CFS's by

fCFS = [ll) + 1(2)] / [l(l) + 1(2)+ (N - i + 1)A2/N].

Of course, the average fraction of customers in service that are PIA customers is
1 -fcFs. The average service times for CFS's and PIA's are /pi and 1/p2,
respectively. The average time for any one of the busy servers to complete its service
on a current customer would then be fcS(1l/pl) + (1 -fCFS)(1/p2). If we use the inverse
of this average time to approximate the rate of service completions for every busy
server, the downward transition resulting from the completion of service from state i
to state (i -1) is p[n], as given above.
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By solving N simultaneous linear equations (14), we obtain Pm, the equilibrium

probability that exactly i servers are busy. We then compute the correction factors,

based on the equilibrium probabilities. After computing the correction factors, we

can develop an iterative procedure to estimate the server workloads.

Let Gnk = set of atoms for which unit n is the kth preferred server.

Vj,k identification number of the kth preferred server for atom j.
Rn rate at which server n becomes busy.

Following the derivation of Larson and McKnew (1982), we have the following

equations:

R =A2(n)P{WC}+ 1)U)+( (2) P{WCI

jEG1
en

(1) + P{w jw}+ I A()0P{Wc WC}

jEG2 jEG "
n n

+ x(fkIV+A2J P{W W WC}I + A MO(~)[ pW W WC + P{W WC WC

I I I V. V. V.( N n

jEGNV J JN-
n

N-1

+ A 1, em Ppw ....W Wc W ....w wc
JEGN k=1 jl j(k) jk ) Vj(+) j(N-1)
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= X2(n)+ 

jEG1
n

jEG2

A(1) +A (2) 
1 I

Q(N,1,1)P + X(2)(1)Q(N1,2)(1-p )

jEOn

+

+ E
fEGl

(I) (2) J a NN11
A J(Nj(N- 1)

N-1 N-1

A( )(j)Q(N, N-1, 2) ( 
k=1 =e1 =k

PV. )(1-pv )
ds jk

=F n (1-P )

R n= pl+t2(n)(1-Pn) -- 

By equating (15) and (16), we obtain the following expression for workloads pn.

F
n

n

-i
n=1, 2, ..., N.

(15)

(16)

(17)

Based on the expressions for workloads shown in (17), we can solve iteratively
each workload Pn, n = 1, 2, ... , N, by setting all the initial values equal to r, which is
given in (13).

Now we can calculate the workload, Pn, for server n, where n = 1, 2, ... , N.

- 16-
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The iterative processes are convergent if the maximum difference in our
implementation between any successive corresponding Pn is less than c, where c is a
small number (for instance, is set to be 10-6 ). Experimental observations show
that the required number of iterations is roughly between 3 and 6.

As the last step in deriving the approximate model, we can calculate some
performance measures based on the correction factors and workloads. For instance,
we can determine that

The saturation probability is

PSAT =PN (solved by (14)).

* The fraction of type I CFS's from atom j dispatches that are assigned to server n,
where n = vj l , vj, ... , vj, is

1
f.j,1 sunjl 1 j, 1

1

kJ,1 sumjl V.kj,
k 2.

* The fraction of type II CFS's from atom j dispatches that are assigned to server m

and server n, where m = vjk, n = jp, 1 < k < p < N, is

1 
(vJvp).i.2 sumj2 (j).i, 2

* The fraction of type II

m, where m = vj,1, vj,2,

l k <pa N.

CFS's from atom j dispatches that are assigned only server

·.., vjN' is

k =1,2,..., N.

where

-17-
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1-pv
Aj

Q(N, k-I, 1)
k-I

n Pv (-P )
1=1 ji jk

p-1

= Q(N,p-1, 2) 
1=1

Pv (1-PVjt jk
)(1-pv. )

JP
1<k<p N.

N

Q(N,N-1,1) n PV.. (1-P,ftv o, j, 2
XA l= 1 jL k

) k=1,2,...,N.

N

sumj = f 
k=l jV '

j =,2,...,J.

N

sumj2 = 
k=1

I

f(V.jO), j, 2+ 1 Ik, p=k+l f(v v.), j, 2
J jP I j=1,2,...,J.

* The average travel time to atom j is as given in Equation 7.

· The average travel time to atom j is as given in Equation 7.

· The average travel time of server n is as given in Equation 8.

* The average travel time to requests in the primary response area of server n is as
given in Equation 9.
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5. Testing the numerical results of
the exact model and the approximate model

For most real-world cases, we cannot apply the exact model due to the huge

storage requirements and long execution times of such problems. The approximate
model is the more usable and important evaluation tool. In this section, we test the

accuracy and the speed of the approximate model and find that, it works extremely
well.

As a test for accuracy, we first develop several data sets that are representative of

actual police patrol configurations. We then compare the numerical results based on

the exact model or the approximate model with those resulting from simulations

using the same data set, and use the latter figures as the standard for comparison.

We compare two measurements: workload of each unit and the fraction of dispatches

of each atom that are assigned to different server(s). Fig. 1 exhibits the test results

using the exact model versus the simulation. Figs. 2, 3, 4 and 5 exhibit the test

results using the approximate model versus the simulation. These results confirm

that the output of the approximate model is sufficiently close to the true

performance. By comparing the numerical results using the exact model with those

using the simulation method, we conclude that the simulation results represent true

performance to a great extent.

The testing process involves three comparisons. First, we compare corresponding

workload measurements for each unit. The data represented by the bars filled in

heavy vertical lines are derived from the exact model (Fig. 1) or the approximate

model (Figs. 2, 3, 4 and 5). The data represented by the bars filled in light horizontal

lines are derived from the simulations. Next we compare the saturation
probabilities of two comparing models, P1SAT and P2SAT, from the exact model or the

approximate model and the simulations. In the last step, we calculate the

correlation coefficient (Corr. Coe.) of two sets of " fraction of dispatches " and the

percentage distribution of corresponding differences, Di, between them.

The adopted data sets are AS1003, AS1206 AS1506 and AS2010, whose number

of atoms and number of units are (10, 3), (12, 6), (15, 6) and (20, 10) respectively. The

testing is done by running lengthy simulations on a mainframe to assume accuracy.
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The number of CFS's and PIA's generated in a simulation process is approximately
80,000.

We estimate the workloads for each server, p,, in the simulation process as
follows:

time period during which server n is busy 1 2 ...

Pn = total time period under consideration

In addition, we estimate the saturation probability PSAT in the simulation
process in the following way:

PSAT _no. of type I CFS's that are lost + no. of type II CFS's that are lost
SAT no. of type I CFS's + no. of type II CFS's

Evaluating performance measures such as average travel times, workload
measurements, and saturation probability is an important step in setting or
adjusting dispatch policies. We found that the performance measures of both models,
the exact and the approximate, and the simulation yielded very similar results.
Comparing the corresponding fraction of dispatches, we observe that the relative
differences between these performance measurements are small. The most
important criterion for these tests is the quality of numerical results as a function of
N (number of servers) and PSAT (saturation probability). From Figures 2, 3, 4 and
5, we observe that the quality of the numerical results of the approximate model
improves as N gets large and/or as PSAT gets smaller.
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unit / workload(%)
U

1

2

3

Exact Model:

Simulation:

workload PSAT

PSATworkload

= 0.162384

= 0.162274

Corr. Coe. (Ei, Si) = 0.9940

Ei = fraction of dispatches in
exact model.

Si = fraction of dispatches in
simulation.

Di = Ei-Si; i = 1, 2, ..,90

Di

0.00 0.03 0.06

Fig. 1 Exact model vs. Simulation with data file AS1003
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unit /workload(%)
U

I I I I

10 20

I I I I I I I I I

30
I I I I

40
I I I I

M.

iflllh~~~~~~~~~i~~~ll~~~~~llINHIAN~~~~~~~~~~flB~~~~~~llhIBBB~~~~~~~~~~flNBHNB~~~~~~~~~flB~~~~~~flIBB~~~~~~~ll~~~~~flfl~~~~~~flNBH~~~~~

Appr. Model:

Simulation:

workload

workload

PlSAT =0.160561

P2SAT =0.162274

Corr. Coe. (Ai, Si) = 0.8816

Ai = fraction of dispatches in
del.
ches in

2, ., 90

Di

-0.10 0.00 0.10 0.20

Fig. 2 Approximate model vs. Simulation with data file AS1003
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unit /workload(%)
u

1

2

3

4

5

6

Appr. Model:

Simulation:

In/ an
t-/o ou

70

60

50

40

30

20

10

0

:,·,w~:r:+·,Iworkload

workload
SAT = 0.0071063

P2SA T = 0.0079020SAT-

)797

es in
.1.
es in

., 324

Di

-0.16 -0.08 0.00 0.08 0.16

Fig. 3 Approximate model vs.Simulation with data file AS1206
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unit /workload(%)
U IU

I I I IIlI I 1- j--I I - -I

Appr. Model:

Simulation:

(%) 80
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40
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P2SA T = 0. 1000243SAT-
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Fig. 4 Approximate model vs. Simulation with data file AS1506
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Fig. 5 Approximate model vs.Simulation with data file AS2010
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6. Summary

We have presented exact and approximate models of an emergency service that

includes PIA opportunities and in which two identical units may be dispatched to

one call. We then generalized and created two computer-implemented versions

based on these two models. Because of the computational infeasibility of the exact

model, we concentrated more on the approximate version.

The programs that accompany this paper are intended to serve as a local police

planner's tool. An assignment manager can evaluate a policy by running the

program in advance and can then perform appropriate adjustments to arrive at an

efficient dispatch policy. After entering the required data, the manager obtains the

dispatch list for each atom. Based on each dispatch list, he or she can estimate some

performance measures of the whole system. To balance the workload of each server,

the manager can adjust the patrol or location probabilities. In addition to the

model's usefulness as an aid in determining allocations of service facilities, it has

proven to be a valuable tool for evaluating policies by considering fractional dispatch

measures and/or average travel time.

The present model could be extended to relax the assumption of identical servers, or

to allow CFS's to be queued, or to include the case of random number (_- 3) of servers.

Such extensions would increase even further its applicability to real world problems.
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7. Appendix

In Sections 3 and 4, we developed the probabilistic deployment model and its
approximate analog. To implement these two models, we have written two computer
programs, EXAC.FOR and APPR.FOR. In practice, an assignment manager can
choose the appropriate policy by comparing the computational results of either
model. In general, the maximum number of atoms and servers allowed in the exact
model are 230 and 3, respectively, while in the approximate model, the numbers are
120 and 15, respectively.

In this Appendix, we first outline the data requirements and potential outputs of
these two programs. We then explain briefly how to execute them. We illustrate our
explanation with two examples, one for the exact model and the other for the
approximate model.

7.1 Input and output

The following input data are required to run the programs.

J, N = number of atoms and servers.
All)Q(j) = arrival rate oftype I CFS forjth atom.
Al(2)(j) = arrival rate of type II CFS forjth atom.

A2 (n) = arrival rate of PIA opportunities for server n.
(n)- 1 = mean service time for server n corresponding to CFS.

p2(n)- 1 = mean service time for server n corresponding to PIA.
(lnj) = the probability that server n is located in atom j when

available for dispatch.
(diJ) = distance between atom i and atom j.

J
j
n

n

n

n

J
i,j

For simplicity, we set v, the speed of each server, to be 1 in both programs.

The output of the exact model contains a preference list for each atom, P(i);
equilibrium probabilities, Pn; workloads, Tj, TUn, TRAn; average travel time, PSAT;
saturation probability; and fraction of dispatches, fn, j, , f(m,n), j, 2. In the
approximate model, on the other hand, instead of P(i), we have more output on the
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state probabilities of the aggregate model and the correction factors Q(N, k, 1) and
Q(N, k, 2).

7.2 Execution

As a first step in executing these programs, the user enters in the name of the
appropriate program, EXAC or APPR, which corresponds to the exact or the
approximate model. He or she is then asked to provide the name of the input data
file. After the name of data file is input, the output will be displayed on the screen.
The user may also print out the result. We will illustrate the execution of these two
programs with the following examples.

7.3 Implementation of exact model and computational results

EXAMPLE 1. Implementation of the exact model.
DATA NAME: AS1003 PROGRAM NAME: EXAC.FOR

Before running the program, the user should create a data file which contains the
input data, as in the following format.

Data file: 10 3
(AS 1003) 0.4 0.2 0.5 0.2 0.4 0.4 0.2 0.3 0.9 0.4

0.3 0.1 0.1 0.5 0.1 0.2 0.3 0.1 0.1 0.4
0.3 0.1 0.6
5.0 10.0 5.0 10.0 5.0 10.0
0 0 0 1.0 0 0 0 0 00
0 O O 0 1.00 0 0 0 0
0 0 0 0 0 0 0.50.50 0
0 3 5 2 5 7 5 5 7 7
3 0 2 5 2 4 8 6 10 8
5 2 0 7 4 2 10 8 12 10
2570353355
5243026486
7 4 2 5 2 0 8 6 10 8
5 8 10 3 6 8 0 2 2 4
5 6 8 3 4 6 2 0 4 2
7 10 12 5 8 10 2 4 0 2
7 8 10 5 6 8 4 2 2 0

<-- J N
<-- A t(1)(J)

<-- A (n)
<-- pJTn)-l,2(n)'l
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The following procedures and information are shown on the screen while the
program EXAC.FOR is executing.

>EXAC <return>
Please input the name of data file ? AS1003 < return >

Preference list: atom 1 ->
atom 2 ->
atom 3 ->
atom 4 ->
atom 5 ->
atom 6 ->
atom 7 ->
atom 8 ->
atom 9 ->
atom 10 ->

i 0 1 2 3 4 5 6
P(i) 0.2409 0.0490 0.0445 0.0062 0.0692 0.0258 0.0171

i 1 7 8 9 10 7 12 13
P(i) 0.0020 0.0355 0.0132 0.0372 0.0009 0.0021 0.0006

i 14 15 16 17 18 19 20
P(i) 0.0004 0.0001 0.0777 0.0275 0.0172 0.0021 0.0260

21 22 23 24 25 26 27
P(i 0.0210 0.0130 0.0012 0.0160 0.0118 0.0265 0.0007
i 28 29 30 31 32 33 34

P(i 0.0007 0.0004 0.0002 0.0001 0.0308 0.0126 0.0296
35 36 37 38 39 40 41

P(i) 0.0008 0.0134 0.0108 0.0228 0.0006 0.0139 0.0149
i 42 43 44 45 46 47 48

P(i) 0.0287 0.0011 0.0003 0.0002 0.0005 0.0001 0.0125
i 49 50 51 52 53 54 55

P(i 0.0036 0.0023 0.0003 0.0037 0.0022 0.0014 0.0001
56 57 58 59 60 61 62

P(i 0.0020 0.0012 0.0030 0.0001 0.0001 0.0001 0.0001
i 63

P(i) 0.0001
P(i) = equilibrium probabilities i=0, 1,2,....,4N- 1.

** Saturation probability PSAT = 0.1624
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server n workload TRAn TUn
1 0.455 1.515 1.984
2 0.442 2.209 2.074
3 - 0.455 2.139 1.942

III IIf___.lof-_.__ ____ _

T KAn = the average travel time to requests In primary
TUn = the average travel time of server n.

response area or server n.

atomj 1 2 3 4 5 6 1 7
Tj 2.093 2.217 3.293 1.012 0.920 2.217 1.594

atom j 8 9 10

Tj ..1.226 2.507 2.528
Tj = the average travel time to atom j.

atom server Fm,j, F(m),j,2 Fm,n) ,2m n=1 n=i n=3
1 1 0.650 0.091 0.000 0.432 0.127
1 2 0.234 0.115 0.000 0.000 0.119
1 3 0.116 0.116 0.000 0.000 0.000
2 1 0.218 0.091 0.000 0.000 0.127
2 2 0.666 0.115 0.432 0.000 0.119
2 3 0.116 0.116 0.000 0.000 0.000
3 1 0.218 0.091 0.000 0.000 0.127
3 2 0.666 0.115 0.432 0.000 0.119
3 3 0.116 0.116 0.000 0.000 0.000
4 1 0.650 0.091 0.000 0.432 0.127
4 2 0.234 0.115 0.000 0.000 0.119
4 3 0.116 0.116 0.000 0.000 0.000
5 1 0.218 0.091 0.000 0.000 0.127
5 2 0.666 0.115 0.432 0.000 0.119
5 3 0.116 0.116 0.000 0.000 0.000
6_ .. 0.218 0.091 0.000 0.000 0.127

6 2 0.666 0.115 0.432 0.000 0.119
6 3 0.116 0.116 0.000 0.000 0.000
7 1 0.235 0.091 0.000 0.144 0.000
7 2 0.115 0.115 0.000 0.000 0.000
7 3 0.650 0.116 0.415 0.119 0.000
8 1 0.235 0.091 0.000 0.144 0.000
8 2 0.115 0.115 0.000 0.000 0.000
8 3 0.650 0.116 0.415 0.119 0.000

(table con inuea on next page
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atom server F(mn) 2
j m Fmj,1 (m,),j,2 n n=1 n = 3
9 1 0.235 0.091 0.000 0.144 0.000
9 2 0.115 0.115 0.000 0.000 0.000
9 3 0.650 0.116 0.415 0.119 0.000
10 1 0.235 0.091 0.000 0.144 0.000
10 2 0.115 0.115 0.000 0.000 0.000
10 3 0.650 0.116 0.415 0.119 0.000

f,,1 = the fraction of dispatches for type I CFS that assign server n to atom j.
f(mo),j, = the fraction of dispatches for type II CFS that only assign server m to atom j.
f(m,n), j,2 = the fraction of dispatches for type II CFS that assign server m and n to atom j.f(m~n),j, 2 -- the fraction of dispatches for type [I CFS that assign server mn and n to atom j.

Do you want to print out the results ? ( Y/N ) - > N

EXAMPLE 2. Implementation of the approximate model.

DATA NAME: AS1506 PROGRAM NAME: APPR.FOR

Before running the program, the user should create a data file which contains the
input data, as in the following format.

Data file: 15 6
(AS 1506) 0.6 0.5 1.0 0.4 0.3 0.3 0.3 0.6 0.3 0.7 0.7 0.4 0.4 0.6 0.5

0.3 0.4 0.4 0.3 0.7 0.5 0.7 1.00.40.5 0.4 0.3 0.3 0.3 0.3
0.40.4 0.6 0.8 1.1 0.7
6.012.0 6.012.0 6.012.0 6.012.0 6.0 12.0
0 O 0 1.00 0 0 0 O O O O O O O0
0 0 0 0 1.00 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.50.50 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1.00 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.30.30.40
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0
0 3 5 2 5 7 5 5 7 7 9 7 9 9 12
3 0 2 5 2 4 8 6 10 8 6 4 6 6 9
5 2 0 7 4 210 8 1210 4 6 4 8 7
2 5 7 0 3 5 3 3 5 5 7 5 7 7 10
524302648642447
7 4 2 5 2 0 8 610 8 2 4 2 6 5
5 8 10 3 6 8 0 2 2 4 10 4 6 6 9
568346204282447
7 10 12 5 8 10 2 4 0 2 12 6 8 4 7
7 8 10 5 6 8 4 2 2 0 10 4 6 2 5
9 6 4 7 4 210 81210 0 6 4 8 5
746524426460225
964742648642043
9687466442 8 2 4 0 3
12 9 7 10 7 5 9 7 7 5 5 5 3 3 0

<--J, N
<-- A 1)(n)
<-- A(2(n)
<-- A(n)
<-. p n)-'l p2(n)- l
<-- &lnj)

<-- (dij)
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The following procedures and information are shown on the screen while
program, APPR.FOR, executes.

>APPR < return >
Please inputthe name of data file ? AS1506

Preference list: atom 1 ->
atom 2 ->
atom 3 ->
atom 4 ->
atom 5 ->
atom 6 ->
atom 7 ->
atom 8 ->
atom 9 ->
atom 10->
atom 1 1->
atom 12- >
atom 13->
atom 14->
atom 15->

< return >

123546
215436
245163
123546
215436
245163
315264
315264
315624
351624
426513
523164
562431
562314
654231

k 0 1 2 3 4 5 6
P(k) 0.0458 0.11901 0.1880 0.2117 0.1912 0.1462 0.0981

Q(N,k,1) j 0.8396 0.8022 0.8468 0.9706 1.1894
QNk,2) 1 0.97271 0.8828 0.7508 0.7040 0.7181

P(k) = equilibrium probability that k servers are busy in aggregate model.
Q(N,k, 1) = correction factor for dispatching one server.
Q(N,k,2) = correction factor for dispatching two servers.
** Saturation probability = P( 6).

server n workload TRAn TUn
1 0.548 2.397 2.198
2 0.579 2.347 1.985
3 0.543 2.417 1.811
4 0.484 1.808 2.504
5 0.598 1.913 2.328
6 0.463 1.831 2.835

primary response area ot server n.
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atomj 1 2 3 4 5 6 7
Tj 2.903 2.735 2.995 1.785 1.665 1.920 2.483

atom j 8 9 10 11 12 13 14
Tj 1.927 3.195 2.591 1.808 1.684 1.979 2.049

atom j 15
Ti 1.831

.~~~~~~~~~~~~~~~~~~~~~~~~~~~I .II.,I.I. 

Tj the average travel time (Min) to atom j.

atom server Fmj,i F(m,O),j,2 2 ,n),j,24 ~M n=l n=2-n3 n=4 n=5 n=6

1 1 0.500 0.000 0.219 0.125 0.036 0.051 0.019
1 2 0.214 0.024 0.000 0.000 0.110 0.032 0.045 0.017
1 3 0.129 0.027 0.000 0.000 0.000 0.037 0.052 0.019
1 4 0.057 0.034 0.000 0.000 0.000 0.000 0.000 0.024
1 5 0.065 0.022 0.000 0.000 0.000 0.030 0.000 0.015
1 6 0.035 0.038 0.000 0.000 0.000 0.000 0.000 0.000
2 1 0.244 0.027 0.000 0.000 0.029 0.072 0.110 0.019
2 2 0.469 0.024 0.219 0.000 0.025 0.063 0.097 0.017
2 3 0.045 0.027 0.000 0.000 0.000 0.000 0.000 0.019
2 4 0.092 0.035 0.000 0.000 0.037 0.000 0.000 0.024
2 5 0.114 0.022 0.000 0.000 0.024 0.058 0.000 0.015
2 6 0.035 0.038 0.000 0.000 0.000 0.000 0.000 0.000
3 1 0.072 0.027 0.000 0.000 0.014 0.000 0.000 0.034
3 2 0.470 0.023 0.049 0.000 0.012 0.248 0.085 0.030
3 3 0.026 0.027 0.000 0.000 0.000 0.000 0.000 0.000
3 4 0.279 0.034 0.071 0.000 0.017 0.000 0.124 0.043
3 5 0.101 0.022 0.045 0.000 0.011 0.000 0.000 0.027
3 6 0.053 0.037 0.000 0.000 0.019 0.000 0.000 0.000
4 1 0.500 0.027 0.000 0.219 0.125 0.036 0.051 0.019
4 2 0.214 0.024 0.000 0.000 0.110 0.032 0.045 0.017
4 3 0.129 0.027 0.000 0.000 0.000 0.037 0.052 0.019
4 4 0.057 0.034 0.000 0.000 0.000 0.000 0.000 0.024
4 5 0.065 0.022 0.000 0.000 0.000 0.030 0.000 0.015
4 6 0.035 0.038 0.000 0.000 0.000 0.000 0.000 0.000
5 1 0.244 0.027 0.000 0.000 0.029 0.072 0.110-0.019
5 2 0.469 0.024 0.219 0.000 0.025 0.063 0.097 0.017
5 3 0.045 0.027 0.000 0.000 0.000 0.000 0.000 0.019
5 4 0.092 0.035 0.000 0.000 0.037 0.000 0.000 0.024
5 5 0.114 0.022 0.000 0.000 0.024 0.058 0.000 0.015
5 6 0.035 0.038 0.000 0.000 0.000 0.000 0.000 0.000

(able contnue aonnextpage)

- 33 -

I i



. I

a

atom server ,j, F(mn),j,2
M | Fmji (mO),j,2 n=1 n=2 n=3 n=4 n=5 n=6

T 1' ~'0.072 0.027 0.000 0.000 0.014 0.000 0.000 0.034
6 2 0.470 0.023 0.049 0.000 0.012 0.248 0.085 0.030
6 3 0.026 0.027 0.000 0.000 0.000 0.000 0.000 0.000
6 4 0.279 0.034 0.071 0.000 0.017 0.000 0.124 0.043
6 5 0.101 0.022 0.045 0.000 0.011 0.000 0.000 0.027
6 6 0.053 0.037 0.000 0.000 0.019 0.000 0.000 0.000
7 1 0.227 0.027 0.000 0.055 0.000 0.017 0.103 0.038
7 2 0.070 0.024 0.000 0.000 0.000 0.015 0.000 0.033
7 3 0.505 0.027 0.237 0.056 0.000 0.018 0.105 0.039
7 4 0.032 0.034 0.000 0.000 0.000 0.000 0.000 0.000
7 5 0.106 0.022 0.000 0.045 0.000 0.014 0.000 0.031
7 6 0.059 0.038 0.000 0.000 0.000 0.024 0.000 0.000
8 1 0.227 0.027 0.000 0.055 0.000 0.017 0.103 0.038
8 2 0.070 0.024 0.000 0.000 0.000 0.015 0.000 0.033
8 3 0.505 0.027 0.237 0.056 0.000 0.018 0.105 0.039
8 4 0.032 0.034 0.000 0.000 0.000 0.000 0.000 0.000
8 5 0.106 0.022 0.000 0.045 0.000 0.014 0.000 0.031
8 6 0.059 0.038 0.000 0.000 0.000 0.024 0.000 0.000
9 1 0.228 0.027 0.000 0.024 0.000 0.017 0.102 0.070
9 2 0.037 0.023 0.000 0.000 0.000 0.015 0.000 0.000
9 3 0.507 0.027 0.237 0.024 0.000 0.017 0.105 0.071
9 4 0.032 0.034 0.000 0.000 0.000 0.000 0.000 0.000
9 5 0.106 0.022 0.000 0.019 0.000 0.014 0.000 0.057
9 6 0.090 0.037 0.000 0.033 0.000 0.024 0.000 0.000
10 1 0.130 0.027 0.000 0.024 0.000 0.017 0.000 0.070
10 2 0.037 0.024 0.000 0.000 0.000 0.015 0.000 0.000
10 3 0.507 0.027 0.129 0.024 0.000 0.018 0.211 0.071
10 4 0.032 0.034 0.000 0.000 0.000 0.000 0.000 0.000
10 5 0.203 0.022 0.103 0.019 0.000 0.014 0.000 0.057
10 6 0.090 0.038 0.000 0.033 0.000 0.024 0.000 0.000
11 1 0.037 0.026 0.000 0.000 0.013 0.000 0.000 0.000
11 2 0.189 0.023 0.021 0.000 0.012 0.000 0.033 0.112
11 3 0.025 0.027 0.000 0.000 0.000 0.000 0.000 0.000
11 4 0.567 0.034 0.030 0.245 0.017 0.000 0.048 0.164
11 5 0.049 0.021 0.019 0.000 0.011 0.000 0.000 0.000
11 6 0.133 0.037 0.033 0.000 0.019 0.000 0.053 0.000
12 1 0.080 0.027 0.000 0.000 0.000 0.017 0.000 0.038
12 2 0.236 0.024 0.055 0.000 0.121 0.015 0.000 0.034
12 3 0.142 0.027 0.064 0.000 0.000 0.018 0.000 0.039
12 4 0.033 0.035 0.000 0.000 0.000 0.000 0.000 0.000
12 5 0.449 0.022 0.051 0.196 0.111 0.014 0.000 0.031
12 6 0.060 0.038 0.000 0.000 0.000 0.024 0.000 0.000

- -______________ (-taule continued on next page
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atom serveraFomr ,j,1 F(m,),j,2 F(m,n),j,2atom serve Fn=l n=2 n3 n=4 n=5 n=6

13 1 0.025 U.026 0.000 0.000 0.000 0.000 0.000 0.000
13 2 0.105 0.023 0.012 0.000 0.021 0.053 0.000 0.000
13 3 0.039 0.027 0.013 0.000 0.000 0.000 0.000 0.000
13 4 0.078 0.034 0.017 0.000 0.031 0.000 0.000 0.000
13 5 0.450 0.022 0.011 0.081 0.020 0.049 0.000 0.246
13 6 0.302 0.037 0.019 0.140 0.034 0.084 0.000 0.000
14 1 0.043 0.027 0.000 0.000 0.000 0.017 0.000 0.000
14 2 0.105 0.023 0.024 0.000 0.047 0.015 0.000 0.000
14 3 0.069 0.027 0.027 0.000 0.000 0.017 0.000 0.000
14 4 0.033 0.034 0.000 0.000 0.000 0.000 0.000 0.000
14 5 0.449 0.022 0.022 0.081 0.043 0.014 0.000 0.246
14 6 0.302 0.037 0.038 0.140 0.075 0.024 0.000 0.000
15 1 0.025 0.026 0.000 0.000 0.000 0.000 0.000 0.000
15 2 0.052 0.023 0.012 0.000 0.021 0.000 0.000 0.000
15 3 0.038 0.027 0.013 0.000 0.000 0.000 0.000 0.000
15 4 0.125 0.034 0.017 0.052 0.031 0.000 0.000 0.000
15 5 0.171 0.021 0.011 0.033 0.020 0.098 0.000 0.000
15 6 0.589 0.037 0.018 0.057 0.034 0.170 0.244 0.000

-~~ ~~ ~~~~~~~~~~~~~~~ mI -I

fm,j, 
f(m,O), j, 2
f(m,n), j, 2

= the fraction of dispatches for type
= the fraction of dispatches for type
= the fraction of dispatches for type

Do you want to print out the results ? ( Y/N ) ->

[ Printing is now in process. ]

CFS from atom j assigned to server n.
CFS from atom j assigned only to server m.
CFS fromatom j assigned to server m and server n.

Y
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