
OPERA TIONS RESEARCH CENTER

Working Paper

Pup Matching: Model Formulations and Solution Approaches

by
John M. Bossert and
Thomas L. Magnanti

OR 366-03

MASSA CHUSETTS INSTITUTE
OF TECHNOLOGY

February2003

Pup Matching: Model Formulations and Solution
Approaches

John M. Bossert and Thomas L. Magnanti

February 2003

We model Pup Matching, the logistics problem of matching or pairing semitrailers
known as pups to cabs that are able to tow one or two of the pups simultaneously,
as an AfP-complete version of the Network Loading Problem (NLP). We examine a
branch and bound solution approach tailored to the NLP formulation through the
use of three families of cutting planes and four heuristic procedures. Theoretically,
we specify facet defining conditions for a cut family that we refer to as odd flow
inequalities and show that each heuristic yields a 2-approximation. Computationally,
the cheapest of the four heuristic values achieved an average error of 1.3% among
solved test problems randomly generated from realistic data. Branch and bound
solved to optimality 67% of these problems. Application of the cutting plane families
reduced the average relative difference between upper and lower bounds prior to
branching from 18.8% to 6.4%.

1 Introduction

Trucking is a large industry. As reported by the Department of Transportation, in

1998 the U.S. trucking industry had revenues of just under $200 billion, and its 7.7

million trucks carried over a trillion ton-miles of freight. Therefore, even modest

percentage gains in operational efficiency can translate into substantial monetary

savings.

Most tractor trailers consist of a cab and a single trailer about 48 feet long, but

some cabs can accommodate in tandem up to two relatively short semitrailers known

as pups, each about 28 feet long. See Figure 1. The cost to a carrier of towing

1

two pups from one location to another is essentially the same as that of towing just

one along the same route, half that of towing either three or four, and so forth. Pup

matching is the problem of minimizing these stepwise discontinuous costs by matching

or pairing pups behind cabs in the most efficient manner.

van i.l . tractor

48 feet

28 feet

Figure 1: A conventional tractor trailer and a "tandem" of two semitrailers known as
pups.

As an example, in the shipping network of Figure 2, the arc lengths represent the

cost of sending a cab towing one or two pups from the terminal represented by the

tail node to the terminal represented by the head node. Suppose that a carrier must

send one pup from node 1 to node 4 and a second from node 2 to node 4. If each

cab could tow only one pup, it would be optimal to send each pup along its shortest

path for a cost of 5 each. However, since pups can be paired, the carrier can achieve

the optimal cost of 9 by sending both pups singly to node 3 and then pairing them

to the same cab along the arc from node 3 to node 4.

In more general situations, a cab might be paired with different pups, dropping

and adding pups at nodes along its route. Pups provide not only increased towing

capacity over conventional tractor-trailers, but also greater flexibility through options

to shift pups among cabs. The problem of optimally deploying this flexibility seems

2

Figure 2: Arc lengths represent the cost of sending a cab towing one or two pups
from the tail node to the head node.

worth studying.

Barnhart and Ratliff [6] modeled and efficiently solved two different truck/rail in-

termodal trailer routing problems. Both problems consider full length trailers. How-

ever, the latter resembles pup matching since its rail costs are per flatcar, and each

flatcar can accommodate up to two trailers. Each origin-destination path, though,

includes at most one arc over rail. Consequently, each trailer travels paired with at

most one other trailer, and a weighted matching algorithm can solve the problem.

The problems that we examine permit each trailer to pair with a different trailer over

each arc of its O-D path, and direct application of a matching algorithm cannot solve

the problem. However, the Matching Approximation that we introduce in Section 3

is similar to the solution technique of Barnhart and Ratliff.

Barnhart and Kim [5] developed an integer programming formulation of a special-

ized pup matching problem they refer to as the core inter-group line-haul problem.

This problem involves construction of cyclic driver routes to service trailer pickups

and deliveries at the end-of-line terminals associated with a single consolidation center

within a logistics network. That is, drivers or, equivalently, cabs must be routed over

circuits within the network so that the corresponding towing capacity permits each

3

pickup trailer to advance from its origin to the consolidation node and each delivery

trailer to advance from the consolidation node to its destination node. The objective

is linear in the number of cabs traversing each arc. Barnhart and Kim proposed an

approximate solution approach that uses two weighted matching subroutines, and

they demonstrated the effectiveness of this approach using both randomly generated

data and data provided by a large LTL (less than truckload) carrier. Both their

formulation and solution approach permit infeasibilities that we describe as waiting

rings in Section 2.

Li, McCormick, and Simchi-Levi [12] considered a class of problems more gen-

eral than our pup matching model that they refer to as point-to-point delivery and

connection problems. The problems involve sending a single item from each of p

origins to p destinations. Up to C items at once can share each unit (typically a

truck) of capacity installed or loaded on an arc, and costs are linear in the number

of such capacity units loaded. Pup matching under our assumptions corresponds to

the special case of C = 2. The authors considered problems with prepaired or fixed

and unfixed origins and destinations, on both directed and undirected graphs. They

also considered the special cases with large values of capacity C, the problems of

connecting origins and destinations as cheaply as possible. The authors showed that

all variations are strongly JA/P-hard, and they described a polynomial time algorithm

for the special case of point-to-point delivery with a fixed value of p.

The rest of the paper is organized as follows. Section 2 describes modeling assump-

tions, incompletely formulates the resulting problem as a special case of the network

design problem known as Network Loading, and attributes the incompleteness to

4

waiting ring infeasibilities. Section 3 describes the heuristics and valid inequalities

employed by our branch and bound solution approach, and Section 4 summarizes

computational results. Finally, Section 5 offers conclusions and poses some research

questions.

2 Formulation, Notation, and Complexity

2.1 Modeling Assumptions

We assume that the motor carrier in question operates on a well defined logistics

network that is adequately modeled as a directed graph with a known cost of sending

a cab and driver, as well as one or two pups, along each arc of the network. We assume

these costs include or dominate all other relevant costs, including those incurred

switching pups from one cab to another. We also assume that each pup is closed

before leaving its origin, not opened until reaching its destination, and that the carrier

is concerned with only the costs of transporting the closed pups. That is, the problem

addresses no load consolidation issues.

We also make several simplifying assumptions. First, we ignore any time con-

straints imposed upon the shipment of the pups and search for the minimum cost

shipping strategy that sends the pups to the required destinations. Additionally, we

ignore limits on driver and cab resources such as driver availability and cab rebal-

ancing. We effectively assume immediate availability of a loaded cab at each arc tail

node, and, in turn, that the carrier can move a pup along any outgoing arc of its cur-

5

rent node for no cost other than that attributed to moving along the arc, the marginal

cost of which might be 0. The model of Barnhart and Kim [5] requires cyclic routing

of each cab and enforces net trailer balance at each node. A model might require

such constraints to satisfy driver work rules or to ensure a longer term deployment

of resources capable of meeting future shipping requirements. The adequacy of our

simplifications depends on the application, but the model hopefully captures at least

a core structure common to this family of problems.

Within this modeling framework, we might consider two problem variations. The

first requires shipment of a pup between a specified origin-destination pair. The

second requires that each destination node receive one or more pups, but without

regard to their origin, perhaps because each trailer contains the same commodity.

Like a standard network flow problem, this second variation identifies but does not

pair origin and destination nodes. We consider the former variation the primary case,

and consider it exclusively in the remainder of this paper.

2.2 Problem Statement

The problem statement refers to the collective towing capacity allocated over a net-

work as a "loading." A feasible loading of capacity permits specification of an origin-

destination path for each pup, and for each arc of this path, an indication of another

pup, if any, that travels with it behind the same cab. We term such a specification

a routing. A routing includes both paths and pairs. Feasibility of a loading and

an accompanying routing corresponds to the existence of a dispatching sequence of

6

the loaded cabs that implements the pup routing. We refer to two pups assigned to

traverse one or more arcs together as pairs or matches. We use the latter two terms

interchangeably.

The preceding assumptions lead to the following problem statement.

Pup Matching (PM)
Instance: A directed network G = (N, A), a set of K ordered pairs of
elements of N, and a cost function c: A -+R+.
Problem: Find the minimum cost capacity loading of G that permits a
multicommodity flow with one unit flow from the first to the second node
of each of the K pairs. Each unit of capacity loaded on arc a E A costs
c(a) and permits 1 unit of flow or 2 units flowing together to traverse arc
a.

The "togetherness" requirement reflects the fact that two trailers must be available

at a tail node simultaneously to share a single unit of loaded capacity. Our discussion

of waiting rings in Section 2 details the difficulty of accounting for these constraints.

A pup may have more than one pair along its origin-destination path. As a result,

pairwise matching costs are not well defined, and we cannot solve this problem by

directly applying a weighted nonbipartite matching algorithm. In fact, Pup Matching

is at least as hard as Three Dimensional Matching and so AFP-complete.

Theorem 1 Pup Matching, posed as the decision problem of whether some feasible
cab loading costs no more than a specified value, is A/P-complete.

Proof: See [12] or [8].

Li, McCormick, and Simchi-Levi [12] proved the same complexity result by a transfor-

mation of 3-Satisfiability. The proof in [8] establishes additional results, for example,

the problem remains AfP-complete for situations with a single origin or destination.

7

2.3 Integer Programming Formulation and Waiting Rings

We formulate Pup Matching as a special case of the Network Loading Problem (see, for

example, Magnanti, Mirchandani, and Vachani [13], [14], Barahona [4], or Bienstock

and Giinliik [7]) that casts pups in the role of commodities and cabs in the role of

capacity providing facilities. The model includes the following data:

G = (N, A) : the (directed) shipping network,

cij: cost to send one cab, as well as one or two pups, on arc (i, j) E A,

Ok , Dk : origin and destination nodes, respectively, for pup k, k E {1, 2,... K),

and the following variables:

f/: · binary variable, with a value of 1 indicating that pup k is routed on
arc (i,j),

zij: integer variable, the number of cabs loaded on arc (i, j).

Using this notation, we formulate the model as follows.

NLP formulation of Pup Matching
minimize:

CijZij (1)
{i,j}EA

subject to:

1, if i = k
E J f~._y fjk/= -1, if i = Dk ,Vi E Nk E {1,2,...K}, (2)

jCN jEN 0, otherwise J
Ei fij- < 2ij,V(i,j) A (3)

k<K

zij > 0, integer,V(i,j) E A (4)

f binary,V(i, j) E A, k E {1, 2,... K}. (5)

The objective (1) minimizes the cab loading cost. Constraints (2) enforce pup flow

balance for each pup at each node, and constraints (3) require sufficient arc capacity.

Constraints (4) and (5) enforce nonnegative and binary integrality.

8

The flow variables f define pup paths but not pairings, so a solution to the NLP

formulation typically corresponds to many routings. Also, the NLP formulation fails

to explicitly enforce the constraint that a cab loading must use both units of its

capacity together, since it permits two pups traversing an arc separately to each

exhaust one unit of capacity and so effectively share a cab. That is, the formulation

implicitly assumes we can match to a single cab two pups assigned to the same arc.

Example 1 illustrates that this assumption is not necessarily valid, and that, as a

consequence, a feasible solution to the NLP formulation might not allocate enough

capacity to implement a Pup Matching solution.

10 10

Figure 3: The optimal solution to the NLP Pup Matching formulation can be infea-
sible to the Pup Matching Problem. Arc numbers are cab travel costs.

Example 1 Consider a 3 pup example on a network with topology and arc costs
shown in Figure 3. Pup A is to travel from node 1 to node 3, pup B from node 6 to
node 2, and pup C from node 5 to node 4.

Figure 4 depicts an optimal routing determined by the flow variables of the NLP

Pup Matching formulation that requires only 1 cab on each arc crossed by a pup

path. When pup A reaches node 2, it must wait for pup C if the routing is to be

implemented for the loaded capacity. Similarly, when pup C arrives at node 3, it must

wait for B. Finally, when pup B arrives at node 4, it must wait for A. After reaching

9

pup A
pup B - - -
nn r

Figure 4: Optimal routing to the NLP formulation of Example 1. The solution assigns
a single cab to each arc crossed by a pup path, yet each pup can advance only one
arc.

the inner triangle in the figure, no pup can advance while matched with another pup.

Breaking this gridlock requires allocation of additional cabs.

The following definition generalizes this class of infeasibilities.

Definition 1 Suppose that a pup A has arrived at some node but cannot advance
along its assigned path until its assigned pair, B, for the next arc of that path has
also arrived. Suppose further that B must wait at its present node until some other
pup, C, has arrived, and similarly, pup C must wait for pup D, pup D for pup E ...
pup Q for pup R. If this precedence chain closes in the sense that pup R waits upon
pup A, none of the pups in the chain can advance according to the assigned routing,
and the routing is thus infeasible. We refer to the pups involved in this gridlock and
the portion of each such pup's origin-destination path between the node where it waits
and the node where it completes travel with the pup that waits on it, as a waiting
ring. The waiting ring of Figure 4 is defined by pups A, B, and C, and their subpaths
among nodes 2, 3, and 4.

A waiting ring is a property of a routing and is independent of travel times and

the dispatch sequence used to implement the routing. In Example 1, no matter how

quickly pup A arrives at node 2 relative to pups B and C, it cannot advance according

to the assigned routing until pup C arrives at node 2, and pup C never arrives at node

2. Also, we can assume the pups forming a ring are distinct by closing a ring upon

first hitting a particular pup a second time. The time constraints of Li, McCormick,

and Simchi-Levi eliminate waiting rings. However, their paper did not formulate

10

--- O

these constraints mathematically, as it did not formulate the point-to-point delivery

problems as network loading problems.

As we show next, waiting rings account fully for the discrepancies between the

NLP formulation of Pup Matching and the combinatorial problem we stated at the

beginning of this section, in the sense that if we can construct a ring free routing

(paths and pairings) from an NLP solution, we can also construct a cab dispatching

sequence that demonstrates feasibility to the combinatorial problem.

Theorem 2 If some routing of a solution to the NLP formulation of Pup Matching
contains no waiting ring, the solution is feasible to Pup Matching itself.

Proof: Assume a ring free routing and imagine dispatching cabs along arcs to advance
each pup. Say that a pup can advance from its current node i if it is to cross the next
arc of its path singly or if its pair for that next arc has also arrived at node i. We can
find a pup that can advance by arbitrarily selecting a pup that has not yet reached
its destination, checking whether it can advance, if not, checking whether the pair
it waits for can advance, and so on, along the chain of pairing relationships. Since
the assumed routing contains no ring, no such search will cycle among the pups, and
each search will identify a pup that can advance. Each pup will eventually reach its
destination since its path is finite.

This dispatching result does not indicate how to construct a routing. A routing

specifies a path for each pup, while the flow variables for an NLP solution might

trace a cyclic walk. We can remove any such cycles without introducing infeasibility,

since we can convert any dispatching sequence corresponding to the solution before

removing any cycle to a routing of the acyclic solution by sending singly any former

pairs of a pup within a cycle. The latter routing does not require additional cab

loadings, and, with no new pup pairings, cannot create a new waiting ring. Given

an acyclic NLP solution, we can construct a routing by assigning matchings for each

arc with a flow of more than one pup. However, Theorem 4 below shows that the

11

problem of determining whether some ring free routing corresponds to such an acyclic

NLP solution is AJP-complete.

If all pups share a common origin or destination, we can modify a routing to

remove rings without an increase in cost by essentially relabeling the pups at the

ring.

Theorem 3 If all pups share a common origin (destination), we can eliminate wait-
ing rings without an increase in cost.

Proof. Suppose a solution contains a waiting ring. Each pup involved in the ring
can advance by maintaining its current ring to destination (origin to ring) subpath
and taking the origin to ring (ring to destination) subpath previously assigned to the
pup in the ring that waits on it (that it waits on). This reassignment breaks the
ring since each involved pup can complete its subpath within the ring singly with no
additional (and possibly fewer) cabs. Furthermore, this modification does not alter
the cab requirements outside the ring.

Corollary 1 The NLP formulation of Pup Matching determines the optimal loading
cost if all pups share a single origin or destination.

As previously noted, the proof of Theorem I in [8] implies that Pup Matching remains

AfiP-complete in the single origin case. Since the NLP formulation determines the

optimal solution in this special case, it is also AfiP-complete.

Corollary 2 The NLP formulation of Pup Matching, posed as the decision problem
of whether some feasible solution has a cost not exceeding a specified value, is AV'P-
complete, even in situations with a single origin or destination.

Since we can usually construct many routings from an NLP solution, a single ring

does not imply infeasibility of the underlying NLP solution. In fact, the decision

problem of whether we can construct a ring free routing from a given solution feasible

to the NLP formulation is PIP-complete. We refer to this problem as the following

Waiting Ring Problem.

12

Waiting Ring Problem
Instance: A directed network G = (N, A), a set of K (acyclic) paths
on G, and an integral capacity loading on each arc in A satisfying the
condition that the number of paths traversing each arc is no more twice
the loading on that arc.
Problem: If each unit of loading can be used once to advance one or two
tokens along its assigned arc, determine whether some utilization sequence
of the loadings advances one token from the head node to the tail node of
each of the K paths.

Theorem 4 The Waiting Ring Problem is AfP-complete.

Proof: See [8].

Suppose we could search in nondeterministic polynomial time some set of inequal-

ities that eliminates waiting rings from the NLP formulation. We could then solve the

complement to the Waiting Ring Problem (i.e., the problem of whether every routing

contains a ring) by checking all such inequalities. Consequently, these inequalities

would imply that the Waiting Ring Problem is in co-APP as well as APP, and so the

inequalities most likely do not exist. (See Karp and Papadimitriou [11].)

The following solution approach and computational study consider only the NLP

formulation of Pup Matching. The complexity implications of Theorem 4 and our

observation of few waiting rings on initial Pup Matching test instances seem to justify

our focus on this incomplete formulation. Moreover, as a relaxation of Pup Matching

that permits waiting rings, the NLP solution always provides a lower bound on the

optimal Pup Matching cost.

13

3 Branch and Bound Solution Approach

3.1 City Blocks Test Problem

To assess the difficulty of the NLP formulation of Pup Matching, we first applied the

default CPLEX branch and bound routine to a series of fabricated problems including

several defined on the grid-like graph shown in Figure 5 that might represent a set of

city blocks. Each edge in the figure corresponds to two arcs, one in each direction.

origin

Figure 5: The underlying graph for several Pup Matching test problems.

Example 2 Deliver a pup from the origin node indicated in the lower left corner of
Figure 5 to each of the other 55 nodes. Each arc cost is 1.

The objective equals the number of cab loadings needed to deliver all pups. Given

this problem, we might quickly find a solution of cost 196 similar that shown in Figure

6, with the horizontal flow occurring only on the lower most lateral street, and the

numbers indicate cab loadings. Although 196 is the optimal solution, the unmodified

branch and bound code improved its lower bound from the LP relaxation value of

182 to only 184 with several days' computation time.

14

1 7
I t

2 T2
12 T2

3 3

13

4 4

41122
1

3

3

4

I!
1

1
2 2

2 2

2 204 3

3

4 ,

24 - 20 16- 12- 8 4

origin

Figure 6: Solution of cost 196 to the problem of delivering 1 pup from the origin node
to each of the other 55 nodes. The numbers indicate cab loadings.

3.2 Heuristics and Approximation Algorithms

Pup Matching poses a trade-off between directly routing pups and efficiently utilizing

loaded capacity. To find initial solutions and, hopefully, high quality upper bounds,

we developed four heuristic approaches to address this trade-off. The first heuristic

employs an exact cubic algorithm for matching only two pups to derive pairwise

matching costs for finding an optimal Pup Matching solution subject to the additional

constraint that we can pair each pup with at most one other pup. The other three

heuristics are based upon shortest path calculations. These procedures dynamically

modify the arc lengths to steer pups toward unused capacity and so encourage efficient

capacity utilization.

3.2.1 Matching Two Pups and the Matching Approximation

We previously noted that a weighted matching algorithm does not necessarily solve

Pup Matching because an optimal solution might match a pup to more than one other

pup. Matching costs would be well defined and independent, however, if each pup

15

I

I

I

0

1

1

2

4

3

4

0

1

2

2

3

3
P 1

4

could be paired with at most one other pup along its entire origin-destination path. In

this setting, we would be able to solve Pup Matching by applying a weighted matching

algorithm to a graph with a node corresponding to each pup and edge weights given

by the optimal matching costs for these two pups. We next describe how to solve the

underlying two pup matching problem and then formalize the matching approach for

Pup Matching.

Since each cab can tow two pups, matching two pups reduces to a connectiv-

ity problem, that is, its optimal solution is the cheapest subgraph with a directed

path connecting each origin-destination pair. We next observe that in some optimal

solution these two paths merge along at most one subpath.

Lemma 1 In some optimal solution to the two Pup Matching Problem, the two 0-
D paths coincide only along some (possibly empty) directed subpath. That is, some

optimal solution has nonoverlapping 01 - D1, 02 - D 2 paths or the general structure
shown in Figure 7, with the arrows representing disjoint paths.

Figure 7: General structure of an optimal solution to two Pup Matching. Each arrow
represents a path.

Proof. The result follows from the observation that if the two O - D pup paths
contain two distinct directed paths P and Q, between two nodes p and q of the

16

network, then routing both pups on the cheaper of P and Q costs no more than
routing one pup on each path.

As a result of Lemma 1, the following algorithm yields an optimal solution to the two

Pup Matching Problem.

Algorithm 1.

1. Run an all pairs shortest path algorithm on the network. Let d(i,j) be the
shortest distance between nodes i and j.

2. Let 01, 02, D1, D2 be the origin and destination nodes. For each pair of nodes
p and q, calculate p,q = d(01, p) + d(O2, p) + d(p, q) + d(q, D1) - d(q, D2).

3. The optimal solution corresponds to min minp,q{lpq}, d(0 1, D1) + d(0 2, D2)}.

Proof of Correctness. With given initial and final junction nodes p and q, each
optimal subpath 01 - p, 02 - p, p - q, q - D1, and q - D 2 is, by contradiction, a
corresponding shortest path. So, p,q is the optimal solution value given that the pups
travel together only from node p to node q. Now, either the pups travel together or
they do not, and, if they do not, it is optimal to send each on its shortest path. Step
(3) considers both possibilities.

The two Pup Matching Problem is similar to the Directed Steiner Network Prob-

lem, that of finding a minimum cost subgraph containing a directed path from a

specified source node to each node in a specified subset of nodes (see, for example,

Winter [15]). If the two pups share a common origin or destination, Pup Matching

reduces to the Steiner Problem. The general two pup problem is a special case of

the generalized Steiner Network Problem of finding the cheapest forest that connects

each of a specified set of node pairs.

The following algorithm formalizes the approach of applying a weighted matching

routine to the costs determined by solving two Pup Matching Problems. The algo-

rithm solves Pup Matching under the additional constraint that we may pair each

pup with at most one other pup.

17

Matching Approximation (MA).

1. For every pair of pups, solve the two pup problem with the Algorithm 1.

2. Using the results of step 1, form a cost matrix C = (pq). If the number of pups
is odd, add a dummy pup with matching costs equal to the shortest origin-
destination path length of the matched pup.

3. Solve the weighted nonbipartite perfect matching problem defined by the cost
matrix C calculated in step 2.

Corollary 3 Pup Matching under the additional constraint that each pup may be
paired with at most one other pup is polynomially solvable.

A pup matched with the dummy is paired with no real pup and travels along

its shortest path. Each other pup is routed according to the solution of a two pup

problem. Some such pups might be matched in name only and actually travel singly,

as specified in the solution to the two pup matching problem.

As we already noted, a two pup problem with a single origin reduces to a Directed

Steiner Network Problem. For single origin pup matching with many destinations,

the heuristic of feasibly loading the optimal directed Steiner tree that connects the

common origin to each destination node might seem an attractive extension of the

result for two pups. Example 3 and Figure 8 illustrate that the Steiner tree does not

necessarily define the optimal solution for single origin problems with more than two

pups. Furthermore, Lemma 2 implies that the Matching Approximation provides a

lower bound on the best tree solution to the single origin problem.

Example 3 In the network of Figure 8, suppose we need to route pups A, B, C, and
D from node to nodes 2, 3, and 4 as indicated. The optimal solution loads a single
cab on each arc for a cost of 6. A tree solution must load two cabs on either arc 1-2
or arc 1-3 and costs at least 7.

18

A BCD

2/ \2

B

C D

Figure 8: The optimal directed Steiner tree connecting destinations 2, 3, and 4 to
origin 1 does not yield the optimal Pup Matching solution.

Lemma 2 If the pup paths of the single origin problem form a tree, then some routing
that pairs each pup with no more than one other pup is optimal given the pup paths.

Proof. Given any tree forming paths, we can construct the required pairing by first
pairing the two pups whose paths from the source node share the greatest number of
arcs, then pairing the two remaining pups whose paths share the greatest number of
arcs, and so forth. Suppose this routing strategy assigns pups A and B to traverse
the same arc singly. Since there is only one path from the source node to each node
of the tree, pup A and its pair, if any, and pup B and its pair, if any, share fewer arcs
than pups A and B. So, the routing procedure would pair A and B. Consequently,
the number of cabs loaded on any arc with a total flow f (which is fixed in the tree)
equals [and so is minimal. D

The Matching Approximation finds a best solution that pairs each pup with at most

one other pup and might create a nontree solution, so we have the following result.

Corollary 4 The matching heuristic provides a lower bound on the best tree solution
to the single origin problem.

Finally, we show that the Matching Approximation (MA) has an absolute perfor-

mance ratio of 2. If A is an approximation algorithm for a minimization problem

7r, A(I) is the solution value returned by A on instance I E 7r, and OPT(I) is

the optimal value to instance I, then the performance ratio of A on the instance

I is defined as RA(I) = OA(rI) The absolute performance ratio of A is defined as

rA = inf (r RA(I) < r, VI E 7).

19

Theorem 5 The absolute performance ratio rMA of the Matching Approximation is
2 for both Pup Matching and its NLP formulation.

Proof. The ratio is no greater than 2 because the Matching Approximation can
do no worse than routing each pup singly on its shortest origin-destination path.
Specifically, if mi is the cost of the ith match of the approximation, dj is the length
of the shortest origin-destination path of pup j, and d is the origin-destination path
length of pup j in an optimal solution, then for any instance I of Pup Matching,

MA(I) = ZEmMi < Ej<K dj < Ej<K d < 20PT(I).
On the other hand, Figure 9 depicts a sequence of instances with a limiting per-

formance ratio of 2. Instance n consists of n + 1 nodes and n + 1 arcs connected as
in the figure, as well as n pups. For i = 1, 2,... (n - 1), nodes i and i + 1 form an
origin-destination pair for one pup, and nodes 1 and n are the origin-destination pair
for the final pup. The optimal solution routes each pup along its unique O-D path
among nodes 1, 2,... n, pairs the final pup with each of the other n - 1 pups over a
single arc, and achieves a cost of n - 1 since it uses only one cab on each arc. The
pairing restriction, however, blinds the Matching Approximation to the efficiency of
sending the last pup along nodes 1, 2,... n. It sends the final pup via node A, routes
all pups singly, and loads a single cab on each arc for a total cost of 2n - 4.

Figure 9: Instance n of a sequence with an infimum Pup Matching performance ratio
of 2.

3.2.2 Shortest Path Heuristics

Pup Matching heuristics based on successive shortest path calculations might seem

an intuitive approach to the problem. Perhaps the simplest strategy is to route each

pup on its shortest path with arc lengths given by facility loading costs. This strategy

is equivalent to solving the LP relaxation and rounding up the number of cabs loaded

on each arc. Alternatively, we might choose a pup, route it on its shortest path,

modify the arc costs to reflect marginal costs, and repeat the procedure until we have

20

routed all of the pups. If the first pup were routed on some arc, the marginal cost of

that arc to the second pup would be 0. A third option combines the preceding two by

routing a first subset of pups pups according to loading costs and the rest according

to marginal costs. Delayed reduction of marginal costs might allow subsequent pups

to better exploit unused capacity. Having determined the O - D routes, we then set

the cab capacity on each arc to the integer round up of the flow divided by 2.

Clearly none of these procedures is optimal. Furthermore, the three heuristics do

not necessarily output feasible solutions to Pup Matching since each might produce

a waiting ring. Each would generate the three node ring of Example 1. However, the

heuristics generate feasible solutions to the NLP formulation of Pup Matching and

yield 2-approximations for that formulation.

Proposition 1 Each of the three successive shortest path heuristics provides a 2-
approximation for the NLP formulation of the Pup Matching Problem.

Proof. The cost of each heuristic never exceeds the sum of the shortest 0 - D paths
and half this sum is a lower bound on the optimal solution. So, the heuristics have
an absolute performance ratio no worse than 2.

On the other hand, the performance ratio of each heuristic is on the family of
instances (parameterized by) illustrated in Figure 10. Pup A is to be routed from
node I to node 6, and pup B is to be routed from node 4 to node 6. Each heuristic
routes pup A on path 1-2-6 and pup B on path 4-5-6, independently of the routing
order, for a cost of 4. The optimal solution routes both pups to node 3 then sends
them together to node 6 for a cost of 2 + 2e. a

Epstein [10] described two shortest path based heuristics for a two facility version

of the NLP on an undirected graph that he refers to as Edge Rounding and Path

Rounding. The former is equivalent to our first shortest path heuristic of routing on

shortest paths and rounding up. Epstein outlined instances illustrating that Edge

Rounding and Path Rounding have absolute performance ratios equal to the capacity

21

Figure 10: Pup A is to be routed from 1 to 6 and pup B from 4 to 6. The performance
ratio of each successive shortest path heuristic is 21+E

of the larger facility.

3.3 Valid Inequalities

To tighten the lower bound provided by the LP relaxation of the NLP formulation, we

appended cuts from three families of valid inequalities - cutset inequalities, residual

capacity inequalities, and a class that we refer to as odd flow inequalities.

Cutset inequalities (see Magnanti, Mirchandani, and Vachani [14], Barahona [4], or

Bienstock and Giinliik [7]) bound the capacity loaded across a cut to accommodate

the flow that must cross the cut. For Pup Matching, the inequalities assume the

following relatively simple form:

Zj > Ds 1VS c N. (6)
is,js

In this expression, Ds is the number of pups that must leave node set S, that is,

the number of pups with origin in S and destination in N\S. The left side of the

inequality is the number of cabs loaded on the cut defined by the arcs leaving nodes

S. This quantity is integral and each cab has capacity 2. Consequently, the loading

must be at least the ceiling of half the net demand. Since we are unable to efficiently

22

solve the cutset separation problem, as in Balakrishnan, Magnanti, Sokol, and Wang

[3], we append the inequalities (one for inflow, one for outflow) for each cut defined

by a single node and then iteratively calculate Gomory-Hu trees (see, for example,

[1]) to identify other promising cuts.

A residual capacity inequality (see Magnanti, Mirchandani, and Vachani [13], [14])

constrains the loading requirement on a single arc (i, j), with one inequality defined

for every commodity subset on every arc. For the Network Loading formulation of

Pup Matching, the residual capacity inequalities reduce to:

Zij > E k L2
for an odd cardinality subset L of pups. The arc capacity inequalities (3) imply the

residual capacity constraints for even cardinality subsets. For a single commodity k,

the inequality reduces to the logical condition that flow requires capacity, zij > f.

Atamtiirk and Rajan [2] have shown how to separate the residual capacity in-

equalities for a single arc of a Network Loading Problem with q commodities and

with facilities of an arbitrary capacity in O(q) time. We can also separate the resid-

ual capacity inequalities for Pup Matching in qlogq time by directly checking the

inequality for commodity subsets L of maximum flow for each possible odd cardinal-

ity, since the RHS is maximized by the commodity subset defined by the largest f.

values.

Lemma 3 A given fractional solution violates a residual capacity inequality for a
given arc of a Pup Matching Problem only if it violates the inequality for a commodity
subset L of maximum flow for some odd cardinality L .

Our solution procedure checks the inequalities identified by the q log q routine. Given

23

that the generation of cutting planes typically accounted for a small fraction of overall

solution time on larger instances, implementing the routine of Atamtiirk and Rajan

seems unnecessary.

Although the cutset and residual capacity inequalities improve the lower bounds,

they did not lead to efficient solutions of all the city blocks test problems, including

Example 2. In trying to prove optimality of the Example 2 solution shown in Figure

6, we discovered a set of inequalities that constrain flow on arcs incident to a node

with odd demand.

If total pup flow on an arc is odd, some capacity loaded on that arc must remain

unused, and we could tighten its capacity constraint. In general, the flow on a given

arc might be even or odd. However, if the net demand at a node is odd, then its

total inflow or total outflow must be odd, and the node must be incident to at least

one unit of unused capacity, half a cab's worth. Odd flow inequalities exploit this

observation to tighten the sum of arc capacity constraints over the set of arcs incident

to a node of odd demand.

Proposition 2 The following odd flow inequalities are valid for the NLP formulation
of Pup Matching for each node i E N with odd net demand:

A 1
Z Za 2 Ad p > 2. (7)

aCAi k<K aAi

In this expression, Ai denotes the set of arcs (incoming and outgoing) incident to
node i.

The odd flow inequalities are a special case of the generalized cutset inequalities

that Chopra, Gilboa, and Sastry [9] introduced in the context of the single facility,

single O-D pair NLP with both flow and loading costs. Atamtiirk showed that the

24

generalized cutset inequalities yield the convex hull of the NLP variation of shipping a

fixed amount of demand across a single directed cut. Our solution procedure appends

odd flow inequalities corresponding to only single nodes, though the same logic applies

to any subset of nodes with odd net demand.

We show in the appendix that under strong connectivity conditions, the odd

flow inequalities define facets of the convex hull of feasible solutions to the NLP

formulation.

Theorem 6 If G = (N,A) is strongly connected (contains a directed path between
each pair of nodes), the total net demand of some node i G N is odd, and node i and
those nodes adjacent to it form a clique, then the corresponding odd flow inequality
defines a facet of the convex hull of feasible solutions to the NLP formulation of Pup
Matching.

Proof. See the appendix. [

4 Computational Results

Our solution procedure first finds a lower bound by tightening the LP relaxation of the

NLP formulation by adding cutset, residual capacity, and odd flow inequalities, in that

order. As mentioned earlier, we use Gomory-Hu calculations to identify interesting

cutset inequalities. We exactly separate and append residual capacity inequalities

until the bound improvement falls below a threshold, and we append all odd flow

inequalities since they number at most the cardinality of the node set. We then

obtain an upper bound and initial feasible solution by running all four heuristics and

retaining the best value. Finally, we call the CPLEX branch and bound routine.

Figure 11 summarizes the results of our solution procedure on five city blocks

problems. Problem 7i is the city blocks problem of Example 2, and 7ii and 7iii are

25

defined on the same graph. Problems 9i and 9ii are defined on a similarly sized graph

of one way streets. The portion of the graph below the zero line depicts the error

of the best heuristic. In all cases except 9ii, at least one heuristic found the optimal

solution, and, in that case, the best value was less than 2% from optimal. The portion

of the graph above the zero line summarizes the lower bound improvement from

sequential application of the cutting plane families. The length of each composite

box is proportional to the LP relaxation error, and each inner box indicates the

bound improvement from the corresponding family of inequalities. In Problem 9ii for

example, the LP relaxation error was 12.8%, the cutset inequalities reduced the error

to 8.0%, the residual capacity inequalities reduced the error about another 1%, and

the odd flow inequalities increased the lower bound to the optimal solution value.

0

20 7 i 7ii 7iii 9i 9ii

problem

i cutset i odd flow

res. cap. cap. mheuristic

Figure 11: Results of the branch and bound procedure on city blocks problems.
The portion of the graph above the zero line depicts lower bound improvement from
sequential application of the three cutting plane families (in the order cutset, residual
capacity, and odd flow), and the portion below the zero line indicates the error of the
best heuristic.

We also applied the solution procedure to thirty problems randomly generated

from realistic data. The results seem good but not as dramatic as those exhibited for

the city blocks problems. Given a node set in (latitude, longitude) format based on a

26

real logistics network, we defined problems by selecting a subset of nodes, calculating

arc lengths as Euclidean distances, and randomly selecting origin-destination pairs.

All the underlying graphs were complete. About half the problems had a single origin.

We limited the branch and bound tree to 220M of memory and 2 hours of CPU

time. Using all three cut families, we were able to solve 67% of the problems to

optimality with an average gap reduction of 18.8% to 6.4%. (Since the procedure

did not solve all the problems, the gaps reflect relative differences between lower and

upper bounds.) Without the odd flow cuts, we were able to solve 30% of the problems

and reduced the gap to 7.8% on average. With no cuts, we solved only 17% of the

problems. Among the solved problems, the average heuristic error was 1.3%.

5 Conclusions

We have investigated four heuristic methods and a cutting plane based branch and

bound procedure for solving an Network Loading formulation of the Pup Matching

Problem. Among the more realistic test problems that we solved to optimality, the

heuristics performed very well, obtaining solutions with objective values within 1.3%

of optimal. To what extent we are witnessing a selection bias (that is, whether the

heuristics were more effective for problems we have been able to solve) remains to be

seen.

Despite the apparent practical success of the heuristics, we would consider an

approximation algorithm with a bound less than 2 a significant addition to the results

we have presented. The Matching Approximation provides a 2-approximation for Pup

27

Matching, each of the three shortest path based heuristic provides a 2-approximation

for the incomplete NLP formulation, and examples show that the ratio of 2 is tight

for all four. A ratio of 2 is often readily achieved and seems especially natural for

this problem since it coincides with the towing capacity of each cab. Consequently, a

tighter algorithm would likely reflect new insight.

Even though the heuristic methods were able to generate good feasible solutions,

because of weak linear programming lower bounds, a default implementation of branch

and bound was unable to solve problems to optimality within reasonable running

times. Consequently, as in other application settings, our computational study under-

scores the importance of high quality lower bounds to provably solve integer programs.

To this end, the odd flow inequalities have proved very effective. They permitted us

to solve in seconds city blocks problems that we were previously unable to solve with

days of computation.

Although these cuts are a special case of the generalized cutset inequalities Chopra,

Gilboa, and Sastry [9] described for a single origin-destination pair NLP variation,

we believe the parity interpretation of validity and our facet definition result are new.

The concept of odd flow inequalities generalizes for a single facility Network Loading

Problem with arbitrary facility capacities C, instead of 2, to exploit the observation

that the loading on any arc whose total flow is not a multiple of C requires spare

capacity. We suspect that cuts based on similar parity arguments would help solve

other network design problems.

Acknowledgment. We are grateful to the Singapore-MIT Alliance for providing partial
financial support for this research.

28

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, Inc., 1993.

[2] Alper Atamtiirk and Deepak Rajan. On splittable and unsplittable flow capaci-
tated network design arc-set polyhedra. Mathematical Programming, 92(2):315-
333, 2002.

[3] Anataram Balakrishnan, Thomas L. Magnanti, Joel S. Sokol, and Yi Wang.
Modeling and solving the single facility line restoration problem. Operations
Research, 50(4), 2002.

[4] Francisco Barahona. Network design using cut inequalities. SIAM Journal on
Optimization, 6(3):823-837, 1996.

[5] Cynthia Barnhart and Daeki Kim. Routing models and solution procedures for
regional less-than-truckload operations. Annals of Operations Research, 61:67-
90, 1995.

[6] Cynthia Barnhart and H. Donald Ratliff. Modeling intermodal routing. Technical
Report COC-91-11, Georgia Institute of Technology, 1991.

[7] Daniel Bienstock and Oktay Giinliik. Capacitated network design - polyhe-
dral structure and computation. INFORMS journal on computing, 8(3):243-259,
1996.

[8] John M. Bossert. Modeling and Solving Variations of the Network Loading Prob-
lem. PhD thesis, Massachusetts Institute of Technology, September 2002.

[9] Sunil Chopra, Itzhak Gilboa, and S. Trilochan Sastry. Source sink flows with
capacity installation in batches. Discrete Applied Mathematics, 85(3):165-192,
1998.

[10] Rafael Epstein. Linear Programming and Capacitated Network Loading. PhD
thesis, Massachusetts Institute of Technology, February 1998.

[11] Richard M. Karp and Christos H. Papadimitriou. On linear characterizations of
combinatorial optimization problems. In Proceedings of the 21st Annual Sympo-
sium on Foundations of Computer Science, pages 1-9, 1980.

[12] Chung-Lun Li, S. Thomas McCormick, and David Simchi-Levi. The point-to-
point delivery and connection problems: complexity and algorithms. Discrete
Applied Mathematics, 36:267-292, 1992.

[13] Thomas L. Magnanti, Prakash Mirchandani, and Rita Vachani. The convex hull
of two core capacitated network design problems. Mathematical programming,
60(2):233-250, 1993.

29

[14] Thomas L. Magnanti, Prakash Mirchandani, and Rita Vachani. Modeling and
solving the two-facility capacitated network loading problem. Operations re-
search, 43(1):142-157, 1995.

[15] Pawel Winter. Steiner problem in networks: a survey. Networks, 17(2):129-167,
1987.

A Facet Definition Proof

Theorem 7 If G = (N, A) is strongly connected (contains a directed path between
each pair of nodes), the total net demand di of some node i N, is odd, and node i
and those nodes adjacent to it form a clique, then the corresponding odd flow inequality
defines a facet of the convex hull of feasible solutions to the NLP formulation of Pup
Matching.

Proof.

Validity.
The odd flow inequality forces a solution to include at least 1 unit of unused capacity,
or, equivalently, half a cab's worth, on the arcs incident to node i. A solution can
fully utilize the capacity on a set of arcs only if the flow on every such arc is even.
However, the flow on at least one arc incident to node i must be odd because the odd
demand di forces either the total inflow or the total outflow to be odd.

More formally, we can derive the odd flow inequality as a rank 1 Gomory-Chvdval
cut:

Addition of the capacity constraints for the arcs Ai incident to node i yields:

2 za- , S fa> O.
a Ai k<Ka E Ai

Substitution via the node i flow balance constraints (2), summed over all commodities,
yields:

2 Za-25 , fa| d> i
a E Ai k<K a leaving i

Division by 2 and rounding yields:

a <K a leaving i
a E Ai <K aleavingia [i

Subtracting half of the node i flow balance yields the odd flow inequality. We take
the absolute value of di since the net demand might be negative, that is, a supply.

Face Definition.
We first show that the odd flow inequality can hold at equality. The clique assump-
tion permits us to modify any flow satisfying the flow balance constraints to some

30

other solution satisfying the properties that some arc (j, i) carries all node i inflow,
and, similarly, some arc (i, 1) carries all node i outflow. Since the demand di is odd,
either Ek fji or Ek f is odd. The odd flow inequality then holds at equality if

Also , fk Va c A.
2 1

Also, for some feasible solution, the odd flow inequality does not hold at equality,
because we can add excess loadings to any feasible solution to obtain another feasible
solution. Therefore, the odd flow inequality is a nonempty proper face of the convex
hull of feasible solutions.

Facet Definition.
Let P be the set of feasible solutions to the network loading problem, and let L
{(z, f) E conv(P) the odd flow inequality holds at equality}. Suppose some other
inequality z + -yf > 5 (**) satisfies the property that
L C {(z, f) (**) holds at equality}. We will show that (**) is a linear combination
of the odd flow inequality and the flow balance equalities, implying that dim(L) =
dim(conv(P)) - I and that L is a facet of conv(P).

(a) pa = 0 for all arcs a not incident to node i, because for any (z, f) c L, the solution
given by increasing Za by 1 is also in L.

(b) /3 a = f3 for some constant : for all a incident to node i.
Let (zo, fo) be the feasible solution described previously, with all the flow into node
i via some other node j, all the flow from node i via some node 1, and Za =

E l , Va E A. Modify (zo, fo) by sending one additional unit of flow of some

commodity k around the cycle (j, i) -- (i, l) -+ (, j) (If 1 = j, ignore the arc (, j),
and if 1 Z j, arc (, j) exists by the clique assumption.), and incrementing the loading
on either (j, i) or (i, 1) and (1, j) if necessary, to maintain feasibility. Call the new
solution (z1, fi).

Form a third solution (z2, f2) by modifying (zl, fl) in the same manner. Note that
if arc (j, i) capacity is tight in (zo, fo), then arc (i, 1) capacity is tight in (zl, fi), and
vice versa, and that (zo, fo), (z1, fi), and (2, f2) are all in L. Assume without loss of
generality that arc (j, i) is tight in (zo, fo). Then,

(zi + -rfl) - (zo + ?fo) = ji + 7ji + yil + 7lj = .(ylj is irrelevant if 1 = j).

Similarly,

(/3z 2 + Yf2) - (1 + fil) = il + ,i + Yil + Ylj = 0 =X ji = il

Since we chose nodes j and I arbitrarily among adjacent nodes, 3
a = for all arcs a

incident to node i.

(c) 7y/ = 0, Va not incident to node i.
Consider again node j, and let T = (N, A') be a directed spanning tree formed by
directed paths from this node to each other node. Such a tree exists by the strong
connectivity assumption. Furthermore, assume that node i is a leaf of T connected

31

to the tree by arc (j, i). The clique assumption guarantees that we can reroute any
paths through node i via adjacent nodes. We can modify (**) by adding to it flow
balance constraints so that yk = 0, Va E A', Vk < K. We could prove this claim using
induction on the number of nodes.

To show that yak = 0 for a A' not incident to node i, first modify the initial
solution (z0, f0o) by adding 1 unit of flow through T for some commodity k to each
node p j, : i and along each arc of a p - j directed path that does not include
node i. Strong connectivity and the clique assumption guarantee that such directed

paths exist. Load E+ 1 facilities on all arcs a not incident to i and [Ef1

facilities on all arcs incident to i. Call the resulting solution (3, f3), and note that
(z3, f3) L since the flows on arcs incident to node i are the same as those of (z0, fo).
Now consider some arc (r, q) A' that is not incident to node i. Incrementing the
flow of k on (r, q) and the j - r path of T, and decrementing the flow on the j - q
path of T, generates a new solution in L. Since yak = 0, Va E A', W,q = 0. Since we
chose commodity k and arc (r, q) arbitrarily, the result follows.

(d) iky,, = -, Vk c K.
Increment the flow of fo around the cycle (1, j) -+ (j, i) -÷ (i, 1) (if I = j, ignore the
first arc, which does not exist) for some commodity k. One additional loading will
be required on either (j,i) or (i, 1), and, perhaps, on (, j). The resulting solution
(Z4, f4) E L. Comparing (zo, fo) with (z 4, f4) yields Yki + Yikl + / = 0
=> ik = _/, since (j, i) is in the tree T.
Now suppose the network contains some other adjacent node 1', and modify (z 4, f4)
by sending 2 additional units of k around the cycle (1, j) (j, i) -+ (i, 1') -+ (1', 1)
(again, ignore (1, j) if I = j, and if 1' = j, the argument still holds). Add 1 loading
to each of (1, j), (j, i), (i, 1'), and (1', 1) to create (Zs, f) L. Comparing (Zs, f5) with
(Z4, f4) yields 2ki + 21, + 2 = 0
=> i, = -/3.

Y = -/, Va, with i as tail node, for all commodities.

(e) 'y4,i = 0, Vj, Vk E K.
Consider some node j' : j adjacent to node i. Modify (z0o, fo) by adding 2 units of
flow of commodity k around the cycle (1, j') -+ (j', i) -+ (i, 1) (if 1 = j', ignore (1, j'),
analogous to before), and by adding 1 loading to each of (1, j'), (j', i) and (i, 1), to
create (Z6, f6) L. Comparing (z 6, f6) and (zo, fo) yields 2k, i + 2jk l + 2 = 0
=~ 'k,i = 0.

So, k,i = 0 for all arcs with head node i, for all commodities k.

(f) Summary
/a = 0, for all arcs a not incident to node i,
3a = 3, for all arcs a incident to node i, for some constant /,
ki = 0, Vj E N i, Vk < K,
i,l = -, el · N, Z i, Vk K,

yq = 0, V(r, q) not incident to i, Vk < K.
Using the flow balance constraints on node i, we can convert y so that

jCi = -12

32

I 1_ ---1�11·-·�-·1 111111 ----·-(IPI·-ll--- _�-----�- ___ _1·__1_1

ik, = 1
'Yr,q 0 ° Q

The clique assumption is not necessary. The proof still holds if we assume only a

directed path not including node i between any nodes j and 1 adjacent to node i.

33

