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for
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James B. Orlin and Ravindra K. Ahuja*
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA. 02139, USA

Abstract

In this paper, we suggest new scaling algorithms for the assignment and

minimum cycle mean problems. Our assignment algorithm is based on applying

scaling to a hybrid version of the recent auction algorithm of Bertsekas and the

sequential shortest path algorithm. The algorithm proceeds by relaxing the

optimality conditions and the amount of relaxation is successively reduced to zero.

On a network with 2n nodes, m arcs, and integer arc costs bounded by C, the

algorithm runs in O(-n m log nC) time and uses simple data structures. This time

bound is comparable to the time taken by Gabow and Tarjan's scaling algorithm and

is better than all other time bounds under the similarity assumption , i.e., C = O(nk)

for some k. We next consider the minimum cycle mean problem. The mean cost of

a cycle is defined as the cost of the cycle divided by the number of arcs it contains.

The minimum cycle mean problem is to identify a cycle whose mean cost is

minimum. We show that by using ideas of the assignment algorithm in an

approximate binary search procedure, the minimum mean cycle problem can also be

solved in O(<n- m log nC) time. Under the similarity assumption, this is the best

available time bound to solve the minimum cycle mean problem.

* On leave from Indian Institute of Technology, Kanpur, INDIA
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1. Introduction

In this paper, we propose new scaling algorithms for the linear assignment

problem and the minimum cycle mean problem. The linear assignment problem
consists of a set N 1 denoting persons, another set N 2 denoting jobs for which

I N 1 I = I N 2 I , a collection of pairs A N 1 x N 2 representing possible person to
job assignments, and an integer cost cij associated with each element (i, j) in A. The

objective is to assign each person to exactly one job and minimize the cost of the

assignment. This problem can be stated as the following linear program:

Minimize I cij xij (la)
(i, j) A

subject to

; C xij =1 l,forall i N 1, (lb)
{j: (i,j) A}

I xij = 1, for all j E N 2 (lc)
{i: (i,j)e A)

xij > 0, for all (i, j)E A. (Id)

The assignment problem can be considered as a network optimization
problem on the graph G = (N, A) consisting of the node set N = N1 u N 2 and the

arc set A. In the network context, this problem is also known as the weighted

bipartite matching problem. We shall assume without any loss of generality that
cij > O for all (i, j) E A, since a suitably large constant can be added to all arc costs
without changing the optimum solution. Let C = max cij + 1. We also assume that

the assignment problem has a feasible solution. The infeasibility of the assignment

problem can be detected in O('Ti-m) time by the bipartite cardinality matching

algorithm of Hopcroft and Karp [1973], or by using the maximum flow algorithms of

Even and Tarjan [1975] and Orlin and Ahuja [1987].

Instances of the assignment problem arise not only in practical settings, but
also are encountered as a subproblem in algorithms for hard combinatorial

optimization problems such as the quadratic assignment problem (Lawler [1976]), the

traveling salesman problem (Karp [1977]), crew scheduling and vehicle routing
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problems (Bodin et al. [1983]). In view of these applications, the development of

faster algorithms for the assignment problem deserves special attention.

The literature devoted to the assignment problem is very rich. Kuhn [1955]

developed the first algorithm for this problem, which is widely known as the

Hungarian algorithm. The subsequent algorithms for the assignment problem can be

roughly classed into the following three basic approaches:

(i) Primal-Dual Approach: Kuhn [1955], Balinski and Gomory [1964],

Bertsekas [1981], Engquist [1982], and Glover et al. [1986], Dinic and

Kronrod [1969].

(ii) Dual Simplex Approach: Weintraub and Barahona [1979],

Hung and Rom [1980], Balinski [1985], and Goldfarb [1985].

(iii) Primal Simplex Approach: Barr et al. [1977], Hung [1983], Akgul [1985], and

Orlin [1985].

The algorithms based on the primal-dual and dual simplex approaches have,

in general, better running times in the worst case. Most of these algorithms

(including the Hungarian algorithm) consist of obtaining, either explicitly or

implicitly, a sequence of n shortest paths and augmenting flows along these paths.

Using very simple data structures these algorithms run in O(n3 ) time, but can be

implemented to run in O(nm + n2 log n) time using the Fibonacci heap data

structure of Fredman and Tarjan [1984], or in O(nm + n2 NTog ) time using the

Redistributive heap data structure of Ahuja, Mehlhorn, Orlin and Tarjan [1988].

(Recall that C is a strict upper bound on the largest arc cost in the network. )

Recently, scaling based approaches have been pursued for the assignment

problem by Gabow [1985] and Gabow and Tarjan [1987]. Gabow [1985] developed the

first scaling algorithm, which runs in time O(n3/4 m log nC). This time bound was

subsequently improved to O(/Wm log nC) by Gabow and Tarjan [1987]. Under the

similarity assumption, i.e., that C = O(nk) for some k, this scaling algorithm runs in

O(ln m log n) time. In this case, they are substantially faster than non-scaling

algorithms in the worst case and, further, they do not require any sophisticated data

structures.



The improved scaling algorithms rely on the concept of -optimality and

execute a number of c-scaling phases. The input at the -scaling phase is an

assignment solution whose value is within 2nkc of the optimum solution value for

some small constant k (usually 2 or 3). The output of the -scaling phase is a

solution whose value is within 2ne of the optimum solution value. At this point,

the value of is replaced by c/k and a new scaling phase begins. Initially, = C.
When < 1/(2n) , the algorithm terminates with an optimum solution. Goldberg

and Tarjan [1987] showed that -scaling has very nice theoretical properties, and they
used the approach to give improved algorithms for the minimum cost flow problem.

Gabow and Tarjan [1987] used this approach to give an O(T-n m log nC) algorithm
for the assignment problem based on alternatively solving shortest path and

blocking flow problems.

Recently, Bersekas [1987] developed a new approach for the assignment

problem which assigns jobs to persons using "auction". The original version

(Bertsekas [1979]) of this auction algorithms is not a polynomial time algorithm but

Bertsekas [1987] pointed that - scaling can be used in conjunction with the auction

algorithm to give an O(nm log nC) time bound for the assignment problem. In this

paper, we improve Bertsekas's [1987] algorithm and show that a hybrid algorithm can

achieve the same time bound as that of Gabow and Tarjan [1987] . Our algorithm also

uses the c-scaling approach, but at each scaling phase we run both the auction

algorithm and the successive shortest path algorithm. The auction phase finds a

partial assignment in which O(in-) nodes remain unassigned. These remaining

nodes are assigned via a successive shortest path algorithm. This hybrid algorithm

runs in O(nii- m) time per scaling phase for a O(-nm log nC) time bound overall.

Although this algorithm is comparable to that of Gabow and Tarjan in its worst case

performance, it is different in many computational aspects. As such, the algorithms

may run very differently in practice. Since the shortest path problem with arbitrary

arc lengths can be reduced to the assignment problem (Lawler [1976]), our approach as

well as that of Gabow and Tarjan yields O(nr-m log nC) algorithm for the former

problem.

We also use a variant of our assignment algorithm to solve the minimum

cycle mean problem efficiently. The mean cost of a directed cycle W is defined as

Y' cij/ IW I . The minimum cycle mean of a network is a directed cycle whose
(i,j) E W
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mean cost is minimum. Some applications of the minimum cycle mean problem

can be found in periodic optimization (Orlin [1981]) and in the minimum cost flow

algorithm of Goldberg and Tarjan [1988]. The minimum cycle mean problem can be

solved in O(nm) time by the algorithm of Karp [1978], or in O(nm log n) time by the

algorithms of Karp and Orlin [1981] and Young [1987] . The minimum cycle mean

problem is a special case of the minimum cost-to-time ratio cycle problem (see Lawler

[1967]) and can also be solved as O(log nC) shortest path problems with arbitrary arc

lengths. This gives an O(i- m log2 nC) algorithms for the minimum cycle mean

problem if our assignment algorithm is used to solve the shortest path problems.

We show that the scaling algorithm for the assignment problem can be used more

efficiently to obtain an O(/- m log nC) algorithm for the minimum mean cycle

problem, i.e., the same running time as for the assignment problem. This

improvement relies on "approximate binary search" as developed by

Zemel [1982, 1987].

2. Exact and Approximate Optimality

A 0-1 solution x of (1) is called an assignment. If xij = 1 then i is assigned to

j and j is assigned to i. A 0-1 solution x for which I xij < 1 for all
{j : (i,j) A)

i E N 1 and ij 1 for all j E N 2 is called a partial assignment. In
{i: (i, j) E A)

other words, in a partial assignment, some nodes may be unassigned. Associated
with any partial assignment x is an index set X defined as X = {(i, j) e A: xij = 1 ).

We associate the dual variable Ir(i) with the equation corresponding to node i in (lb)

and the dual variable -(j) with the equation corresponding to node j in (c). We

subsequently refer to the 2n vector r as the vector of node potentials. We define the
reduced cost of any arc (i, j) E A as cij = cij - r(i) + 7r(j) . It follows from the linear

programming duality theory that a partial assignment x is optimum for (1) if there

exist node potentials so that the following (exact) optimality conditions are

satisfied:

CL (Primal Feasibility) x is an assignment.
C2. (Dual Feasibility) (a) cij = O0 for all (i, j) E X; and

(b) cij 0 for all (i, j) E A.
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The concept of approximate optimality as developed by Bertsekas [1979] and

Tardos [1985] is essential to our algorithms. This is a relaxation of the exact

optimality conditions given above. A partial assignment x is said to be E -optimal

for some 2> 0 if there exist node potentials X so that the following e - optimality

conditions are satisfied:

C3. (Primal Feasibility)
C4. (e-Dual Feasibility)

x is an assignment.
(a) cij < E for all (i, j) E X; and

(b) cij - e for all (i, j) E A.

We associate with each partial assignment x a residual network G(x). The

residual network G(x) has N as the node set, and the arc set consists of A plus an arc
(j, i) of cost - cij for every arc (i, j) for which xij = 1. Observe that cij = - cji,

wherever both (i, j) and (j, i) are in the residual network.

The above conditions can be slightly simplified if presented in terms of the

residual network. Observe that for all (i, j) E X, (j, i) is also in the residual network
G(x), and cij < E is equivalent to cji = - cij 2 - E. With respect to the residual

network, the following conditions are equivalent to the £- optimality conditions:

C5. (Primal Feasibility) x is an assignment.
C6. (e- Dual Feasibility) cij - for all (i, j) in G(x).

By setting = 0 , the E - optimality conditions reduce to the (exact) optimality

conditions. In fact, when the costs are integer, the need not necessarily be equal to 0

for C6 to become equivalent to C2 as proved by Bertsekas [1979].

Lemma 1. (Bertsekas [19791) If x* is an optimum assignment and x is an
e- optimal assignment, then c x - c x* 2nE

Proof. Let xr be the node potentials corresponding to the - optimal assignment x.

Since x is an - optimal assignment, it follows from condition C4 (a) that

IE cij = cx- X(i)+
(i,j)E X is N 1

Y 7r(j) < n .
jE N 2

Further, since cij - c for every arc (i, j) e A, it follows from condition C4(b) that

(2)
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cij=cx*- I (i) + I (j) -n. (3)
(i,j)e X* iE N 1 jE N 2

Combining (2) and (3), we get

cx- c x* < 2n E. (4) ·

Corollary 1. For any E < 1/(2n), an E- optimal solution x of the assignment
problem with integer costs is an optimum solution.

Proof. For any £ < 1/(2n), c x - c x* < 1. Since x and all arc costs are integer, c x = c x*.

3. The Scaling Algorithm

In this section, we present an O(nm log nC) algorithm for the assignment

problem. The algorithm described here is a variant of Bertsekas's [1987]

O(nm log nC) scaling algorithm. An improved algorithm running in time

O(X'Ti m log nC) will be described in the next section.

This scaling algorithm proceeds by obtaining - optimal assignments for

successively smaller values of . In other words, the algorithm obtains solutions

that are closer and closer to the optimum until < 1/(2n) , at which point the

solution is optimum. The algorithm performs a number of cost scaling phases. In a

cost scaling phase, the major subroutine of the algorithm is the

Improve-Approximation procedure, which starts with a k - optimal assignment and

produces an -optimal assignment. The parameter k is a constant and will typically

have values 2, 3, or 4. A high-level description of the scaling algorithm is given

below.
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algorithm SCALING;

begin

set;n:=0 and :=C;

while E£ 1/(2n) do

begin

: = E/k;

IMPROVE-APPROXIMATION (c, k, e, L, x, x);

end;

the solution x is an optimum assignment;

end;

We describe the Improve-Approximation in detail below. It iteratively

performs three basic operations: (i) assignment, i.e., assigning a node i to a node j;

(ii) deassignment, i.e., deassigning a node from a node j; and (iii) relabel, i.e.,

increasing a node potential by e units. An arc (i, j) is called admissible if -E < cij < 0.

The procedure performs assignment only on admissible arcs. A node that is

relabeled L + k times (for an appropriate choice of L) during an execution of the

Improve-Approximation is not assigned anymore and is called ineligible. A node

that is not ineligible is called an eligible node. For the algorithm in this section, we

set L to a suitably large number so that all nodes are assigned at the termination of

Improve-Approximation. A smaller value of L leads to the improvement in

running time at the expense of leaving some nodes unassigned; we discuss

improved choices of L in the next section. The Improve-Approximation works as

follows.
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procedure IMPROVE-APPROXIMATION (c, k, , L, x, x);

begin

x: = O;

r(j): = (j) + k for all j E N 2 ;

while there is an eligible unassigned node i in N1 do

if there is an admissible arc (i, j) then

begin

assign node i to node j;

Jr(j): = r(j) + E;

if node j was already assigned to some node I then

deassign node I from node j;

end

else (i): = x(i) + e;

end;

We now make a few observations about the procedure.

Observation 1. The procedure stops examining a node in N 1 whenever its distance

label has been increased (L + k) times. Consequently, at termination, it may not

obtain a complete assignment if L is small. We will show that at most 2n(k + 1)/L
nodes in N1 are not assigned by the procedure. For L = 2(k + 1)n + 1, the procedure

yields a complete assignment.

Observation 2. In each execution of the Improve-Approximation, the algorithm

constructs an - optimal assignment starting with an empty assignment. The

algorithm does not use the previous kE- optimal solution explicitly, it only implicitly

uses the fact that there exists a kce- optimal solution. However, the node potentials

are carried over to the next scaling phase and used explicitly.

Observation 3. The potential of an unassigned node j e N 2 never changes until it is

assigned (except at the beginning when it increases by ke units). Further, if a node
j E N 2 is assigned to a node in N 1 , then in all subsequent iterations of the

Improve-Approximation procedure it remains assigned to some node in N 1 .

In the above description, we left out the details on how to identify an

admissible arc (i, j) incident on the node i. As per Goldberg and Tarjan [1986], we use
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the following data structure to perform this operation. We maintain with each node

i N 1 , a list A(i) of arcs emanating from it. Arcs in this list can be arranged

arbitrarily, but the order once decided remains unchanged throughout the algorithm.

Each node i has a current arc (i, j) which is the next candidate for assignment. This

list is examined sequentially and whenever the current arc is found to be

inadmissible, the next arc in the arc list is made the current arc. When the arc list is

completely examined, the node potential is increased and the current arc is again the

first arc in its arc list. Note that if any arc (i, j) is found inadmissible during a scan of

the arc list, it remains inadmissible until r(i) is increased. This follows from the fact

that all node potentials are nondecreasing.

In this section, we show that if L = 2(k + 1)n + 1, then Improve-Approximation

runs in time O(nm). In the next section, we will allow L to be 2(k + 1) r/inl . In this

case Improve-Approximation subroutine runs in time O(Tn-m ) time and assigns all

but at most r-l nodes. The remaining nodes can be assigned using a sequential

shortest path algorithm that takes O(Wnm) time to assign to all unassigned nodes,

leading to an O(i-n-im ) time bound for the Improve-Approximation subroutine, and

an O(i-nm log nC) time bound overall.

We now prove the correctness and the complexity results of the scaling

algorithm. These results use ideas from bipartite matching theory given in

Lawler [1976] , Bertsekas [1979] and the minimum cost flow algorithm of Goldberg

and Tarjan [1987].

Lemma 2. The partial assignment maintained by the Improve-Approximation
procedure is always e- optimal.

Proof. This result is shown by performing induction on the number of iterations. At

the beginning of the procedure, we have cij - i(i) + ir(j) > - kE for all (i, j) E A.

Alternatively, cij - r(i) + (c(j) + ke) 2 0, for all (i, j) E A. Hence when the potentials

of all nodes in N2 are increased by ke, then condition C4(b) is satisfied for all arcs in

A. The initial solution x is a null assignment and C4(a) is vacuously satisfied. The

initial null assignment x, therefore, is £- optimal (in fact, it is O-optimal).

Each iteration of the while loop either assigns some unassigned node i E N 1

to a job j E N 2 , or increases the node potential of node i. In the former case,

-£ < cij < 0 by the criteria of admissibility, and hence satisfies C4(a). Then ir(j) is
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increased by and we get 0 < cij < . If node j was already assigned to some node 1,

then deassigning node I from node j does not affect the - optimality of the partial

assignment. In the latter case, when the node potential of node i is increased, we
have cij > 0 for all (i, j) E A(i) before the increase, and hence cij > - for all

(i, j) e A(i) after the increase. It follows that each iteration of the procedure

preserved £- optimality of the partial assignment. ·

Lemma 3. The Improve-Approximation procedure runs in O((k + L)m) time.

Proof. Each iteration of the procedure results in at least one of the following
outcomes: (i) assignment; (ii) deassignment; and (iii) relabel of a node in N 1.

Clearly, the number of relabels of nodes in N1 is bounded by O((k + L)n). Initially,

no node is assigned and, finally, all nodes may be assigned. Thus the number of

assignments are bounded by n plus the number of deassignments. The

deassignment of node I from node j causes the current arc of node I to advance to the

next arc. After I A(I) I such advancements for node 1, a relabel operation takes place.
Since any node I e N 1 can be relabeled at most (k + L) times, we get a bound of

O( 7_ I A(I) I (k + L)) = O((k + L)m) on the number of deassignments, and the
Ie N1

lemma follows. 

Lemma 4. At the termination of Improve-Approximation procedure, at most
n(k + 1) /L nodes in N 1 are unassigned in the partial assignment x.

Proof. Let x' denote some k-optimal assignment. Let xr (resp., ') and cij

(resp., c'ij) denote the node potentials and reduced costs corresponding to

x (resp., x'). Let i0 e N1 be an unassigned node in x. We intend to show that there

exists a sequenceof nodes i0 - i1 - i2 - . - iI such that i N 2 and i is

unassigned in x. Further, this sequence satisfies the property that ( i0 , i),

(i 2 , i3), ... , ( il 1 , i) are in the assignment x' and the arcs ( i2 , i 1), (i 4 , i3 ),...
,( i 1 , i 2 ) are in the assignment x. Finally, we will show that I L/k+l.

Suppose that node i0 E N 1 is assigned to node i1 in x'. If node ileN2 is

unassigned in x, then we have discovered such a path; otherwise let node i2 e N 1

be assigned to the node i in x. Observe that i2 ; i0 . Now let node i2 be assigned to

node i3 E N 2 in x'. Observe that i3 i . If node i3 is unassigned in x, then we are
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done; else repeating the same logic yields that eventually a sequence satisfying the

above properties would be discovered. Now observe that the path P consisting of the

node sequence i0 - i1 - i2 - .. - i is in the residual network G(x) and its

reversal P consisting of node sequence i I - i_ 1 -... i 2 - il -i is in the residual

network G(x'). The E-optimality of the solution x yields that

_ Cij = (il)- (i 0 )+ Cij > - (5)
(i, j)E P (i, j)E P

Further, from the kE- optimality of the solution x it follows that

c. = i'(i 0 ) - t (il) + _cij > -kl (6)
(i, j) P (i, j) P

Note that (il) = tr'(il) + k since the potential of node i increases by kE at the

beginning of the scaling phase and then remains unchanged. Also note that

Cij = - cij. Using these facts in (5) and (6), we get
(i,j)E P (i, j)E P

7t(i 0) '(i0 ) + k + (k + 1)I)c (7)

Finally, we use the fact that (i 0) = '(i0) + (L + k)c, i.e., the potential of each

unassigned node in N1 has been increased (L + k) times. This gives > L/(k+l). To

summarize, we have shown that for every unassigned node i0 in N1 there exists an

unassigned node i in N 2 and a path P between these two nodes consisting of at

least L/(k+l) nodes such that P is in the G(x) and its reversal P is in G(x'). The facts

that x' is an assignment and x is a partial assignment imply that these paths
corresponding to two different unassigned nodes in N 1 are node disjoint.

Consequently, there are at most 2n(k + 1)/L unassigned nodes in N1 .

The Lemmas 3 and 4 immediately yield the following result:

Theorem 1. By setting L = 2(k + 1)n + 1, the Improve-Approximation procedure
yields an - optimal assignment in O(nm) time. Consequently, the scaling algorithm
solves the assignment problem in O(nm log nC) time. 
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We derive another result from the proof of Lemma 4 that will be used in the

next section.

Corollary 2. cij/E < k+kl .
(i, j) P

Proof. Using the facts that r(io) >2 '(i 0) and nr(il) = nr'(i/) + kE in (6) we get

(il) - (i ) + X cij k+kl (8)
(i, j) E P

The corollary is now evident. E

3. The Improved Scaling Algorithm

In this section, we improve the complexity of the scaling algorithm to
O( n m log nC) This improvement is based on the observation that the procedure

Improve-Approximation takes a relatively small amount of time to assign a large

number of nodes in N 1 and then a potentially large amount of time to assign a small

number of nodes. To explain this in rigorous terms, consider the procedure with

L = 2(k + 1)-n . It follows from Lemmas 3 and 4 that the procedure runs in O(~'m)
time and yields an assignment in which at least n - rl-n- nodes in N1 are assigned.

If the procedure is allowed to run further, then it would take another O((n - ;nf )m)

time to assign the remaining Fr-- nodes in N 1 . Our improvement results from

setting L = 2(k + 1) rF-l and then assigning the remaining at most r-"l nodes

more efficiently by using the successive shortest path method for the minimum cost

flow problem. The successive shortest path method takes O(m) time to assign an

unassigned node and hence takes a total of O( W m) time. Consequently, the

improved scaling algorithm runs in O( n m log nC) time.

Our algorithm is related to the assignment algorithm of Gabow and Tarjan in

the following manner. During an -scaling phase, the algorithm of Gabow and

Tarjan performs O(W-) iterations. Each iteration consists of solving a shortest path

problem to update node potentials, defining a layered network and then establishing

a maximal flow in the layered network; these operations take O(m) time per

iteration. On the other hand, our algorithm applies auction algorithm until at most
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-n -nodes are unassigned, and then uses the successive shortest path algorithm to

assign the unassigned nodes.

Let x, It°, and c?. respectively denote the partial assignment, the node

potentials and reduced costs at the end of the Improve-Approximation procedure.

We use the following method to assign the remaining unassigned nodes.

procedure SUCCESSIVE SHORTEST PATH;

begin
X* = X°'

71(i): = 0 for all i E N;
0, if- e c. I , for all (i, j) in G(x°);

dij rj /l otherwise;

while there are unassigned nodes in N 1 do

begin
select an unassigned node i0 in N 1 ;

define reduced costs as dij = dij - il(i) + n'1(j);

apply Dijkstra's algorithm with dij as arc lengths

starting at node i0 until some node i in N 2 is

permanently labeled;

let w(i) denote the distance labels of nodes;

set tl (i): = t1 (i) - w(i) for all permanently labeled nodes i and
set t'1(i) =t l(i) - w(i ) for all temporarily labeled node i;

augment one unit of flow along the shortest path
from node i0 to i and update x*;

end;

end;

At the beginning of the above method we define the new arc lengths as dij.

The manner in which the new arc lengths are defined it follows that

-1 < dij( < C/)+ 1 (9)

Now observe from Corollary 3 that for every unassigned node i0 E N 1 in x°

there exists an unassigned node i E N 2 and a path P of length I between these two
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nodes in the residual network such that Y c?. / < k + k 1. Using (9) we obtain
(i, j) E P )

that A dij < k + I + k I = O(n). The fact that this path has a small length is used
(i, j) E P

to improve the complexity of Dijkstra's shortest path algorithm.

It can be easily verified that the initial partial assignment x satisfies the exact
optimality conditions C1 and C2 with respect to the arc lengths dij and the node

potentials 71 = 0. The optimality of the partial assignment is then maintained and

the partial assignment is gradually converted into an assignment by applying the

well known successive shortest path method for the minimum cost flow problem

(see Lawler [1976], Glover et. al [1986]). We use reduced costs as arc lengths so that

they are nonnegative, and hence Dijkstra's [1956] algorithm can be applied. Observe
that we stop Dijkstra's algorithm whenever an unassigned node in N 2 is

permanently labeled. The manner in which node potentials are updated assures that

the dual feasible conditions C2(a) and (b) are satisfied and there is a path of zero
reduced arcs from node i0 to node i in the residual network. We use Dial's

implementation (Dial et al. [1979]) of Dijkstra's algorithm to solve the shortest path

problems. This implementation consists of maintaining the linked lists LIST(r) to

store nodes whose temporary distance labels equal r, and sequentially scanning these

lists to identify a node with smallest distance label. It can be easily shown that this

implementation will solve the above shortest path problems in O(m) time. As there

are at most rFn-l such iterations, the above method would take O(-n-m) time to

terminate. Let x* be the final assignment and 71 be the final node potentials.

We now show that the assignment x* is an e - optimal assignment with

respect to the node potentials * = + K1 . It follows from the optimality of the
solution x* with respect to the arc costs dij and node potential lr that

dij- l(i) + l() = 0, for all (i, j) E X*, (10)

dij- l(i) + n'(j) > 0, for all (i, j) E A. (11)

The inequalities in (9) can be alternatively stated as

edij >cij - r(i) + °(j) - , (12)
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cdij < cij - (i) + °(j) + c. (13)

Multiplying (10) and (11) by £ and substituting for £dij from (12) and (13)

respectively yields

Cij - (°(i) + x'(i)) + ((j) + £ r(j)) < 4 for all (i, j) E X, (14)

cij - ((i) + £E '(i)) + ((j) + '(j)) > -, for all (i, j) E A. (15)

Hence the assignment x* satisfies C3 and C4 with respect to the node
potentials tr + e 7r and is - optimal. We have thus obtained the following result:

Theorem 2. The modified Improve-Approximation procedure runs in
O( 'rT' m) time. The modified scaling algorithm determines an optimum
assignment in O( -nJ- m log nC) time. 

5. The Minimum Cycle Mean Problem

In this section, we develop scaling algorithms for the minimum cycle mean
problem. Recall that the mean cost of a directed cycle W is defined as

(i cij / I W I and the minimum cycle mean problem is to identify a cycle of
(i, j)E W
minimum mean cost. The minimum cycle mean problem is a special case of the
minimum cost-to-time ratio cycle problem studied by Dantzig, Blattner and
Rao [1967], Lawler [1967], and Fox [1969], and we use its special structure to develop
more efficient algorithms.

We consider the network G = (N, A) where (possibly negative) integer cij

represents the cost of each arc (i, j) A. Let n = INI and m = IAI. Let
C = 1 + max (I cij I: (i, j) E A). We assume that the network contains at least one

cycle, otherwise there is no feasible solution. Acyclicity of a network can be
determined in O(m) time (see, for example, Aho, Hopcroft and Ullman [1974]). We
first show how the minimum mean cycle problem can be solved by performing
binary search on the interval containing the optimum value and solving an
assignment problem to reduce the interval length by a constant factor. We then
improve this algorithm by using Zemel's [1982, 1987] "approximate binary search."
Each approximate binary search iteration is solved using a single application of
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Improve-Approximation procedure. This refined algorithm is shown to run in

0(4 n m log nC) time, which is same as solving an assignment problem.

Our algorithms are based on a well known transformation using node

splitting. We split each node i e N into two nodes i and i', and replace each arc (i, j)

in the original network by the arc (i, j'). The cost of the arc (i, j') is same as that of

arc (i, j) . We also add arcs (i, i') of cost 6 for each i N in the transformed network.
This gives us an assignment problem with N 1 = 1, 2, . . . , n and

N 2 = {1',2',. .. , n'). An example of this transformation is given in Figure 1.

We treat S as a parameter in the transformation. We represent the costs of

the assignment problem by C(S) and refer to the problem as ASSIGN(S). An

optimum solution of ASSIGN(S) either consists solely of the arcs

(i, i') for all i, or does not contain (i, i') for some i. In the former case, the assignment

is called the uniform assignment, and in the latter case the assignment is called a

nonuniform assignment. We represent the minimum mean length in the network

by *. Our first algorithm is based on the following result:

Lemma 5. (a) If an optimum assignment of ASSIGN(o) is uniform, then S*.
(b) If an optimum assignment of ASSIGN(S) is nonuniform, then * < &

Proof. (Part(a)) Suppose that the optimum assignment of ASSIGN(S) be uniform.

Suppose further that there is a cycle W in G consisting of node sequence

i1 - i 2 - ..i r - i1 whose mean cost is less than S. Then X cij < r. Now,
(i, j)E W

note that replacing the arcs (i1, i), (i2 , i2), ... , (i, i r) in the uniform assignment by

arcs ( i 1, i2), (i2, i 3),.. (ir_1 , ir ), (ir, i) yields an assignment of lower cost, which

contradicts the optimality of the uniform assignment.

(Part (b)) Since the optimum assignment is nonuniform there exists a node
Jl e N 1 that is assigned to a node j 2 E N2 where jl j2 Suppose that node j2 is

assigned to some node j3 . Note that j2 b j3. Extending this logic further indicates

that eventually we would discover a node r e N1 which is assigned to the node

JjE N 2 . Since the partial assignment (jl, 2) (j2 j 3 ) . . . (jr, j1 ) is not more

expensive than the partial assignment (jl, j) (j2, j 2), (j3, j3 ) .. . , (jr, jr), it follows
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(a) The original network.

I.

(b) The transformed network.

FIGURE 1. AN EXAMPLE OF TRANSFORMATION USING NODE SPLrITING.
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that the cost of the cycle W in G consisting of the node sequence

jl - j2 - j3 - jr - l is no more than r. Thus W is a cycle with mean cost no

more than 6. 

Notice that -C < ,p* < C since the absolute value of all arc costs are strictly less

than C. Furthermore, if the mean cycle costs of two cycles are unequal, then they
must differ by at least 1/n 2 . This can be seen as follows. Let W 1 and W 2 be two

distinct cycles and Lk= X cij and rk = IWk I for each k = 1, 2. Then
(i, j) E Wk

L1 L2 r 2 L - rL21
-- --'= •0.

r1 r2 r1 r2

The numerator in the above expression is at least 1 and the denominator is at

most n2 , thereby proving our claim. These observations and the above lemma yield

the following minimum mean cycle algorithm using binary search.

procedure MIN-CYCLE-MEAN I;

begin
setLB:=-C andUB:=C;

while (UB - LB) > 1/n 2 do

begin
6: = (UB + LB)/2;

solve the problem ASSIGN(8);

if the optimum assignment x is uniform then LB: = 8
else UB: = and x*: =x;

end;

use the nonuniform assignment x* to construct

the minimum mean cycle of cost g* in the interval [LB, UB] ;
end;

The above algorithm starts with an interval [LB, UB] of length 2C containing

the minimum mean cost and halves its length in every iteration. After

2 + log(n 2C)1 = O(log nC) iterations, the interval length goes below 1/n 2 and the

algorithm terminates. Since the minimum mean cycle value is strictly less than the

initial upper bound (which is C), and the network has at least one cycle, the final

interval [LB, UB] has UB < C and there is a nonuniform assignment corresponding

to this value of UB. If we use the improved scaling algorithm described in
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Section 4 to solve the assignment problems, then the above algorithm runs in time

O(Xin-m log2 nC).

We now improve the above algorithm to obtain a bound of O(-i-m

This improvement is based on the following generalization of Lemma 5.

log nC).

Lemma 6 (a) If an e- optimal assignment
6- 2E< u*.

(b) If an E- optimal assignment x

* < + 2E

x

of

of ASSIGN(a)

ASSIGN(6)

is uniform, then

is nonuniform, then

Proof. (Part(a)) Let be the node potentials corresponding to the

assignment x.

e- optimal

Suppose the cycle W* in G consisting of the node sequence

i -i 2 - i 3 - . .. -i r - i

I* = {(i1 i2), (i2,i3),., (ir 1 , i r ),

(i, j) E

is a minimum mean cycle of cost L * .

(ir ,i'l). It follows from condition C4(b) tl

= r * - X (i)
i= ii

cij
I*

+
ir
1 ,

= 1

r(i) -r E. (16)

As I is part of the £- optimal assignment X, itLet I = co(i nd itio), (2, 2 ) , (irthatr)}

follows from condition C3 that

= r - I t(i)
i= ii

Combining (16) and (17)

+ (i) - r .

1 = 

we get

6- 2 u . (18)

(Part(b)) Let W be a cycle consisting of the node sequence j - j2 - . jr -Jl

constructed from the nonuniform assignment X in the same manner as described in

the proof of Lemma 5(b). Let p. be the mean cost of W. Then g* < . Let

I= ((j1 , 2), ( j2, j ) , 3) (jr - l )jr ) (jr ,jl )} and J=(jlilj) ( j2 j 2 ) - - (jr j r ))

It follows from C4(b) and C3(a), respectively, that

Let

hat

, cij
(i, j)E X

(17)
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jr Jr
c c =r6 - 7r(j) + £ it(j) -re. (19)

(i, j) E J j =Jl

jr jr
£ cj =rgL- T7r(j)) + Y ir(j) < re. (20)

(i,j) I i=l j=

Combining (19) and (20) we get

g* < < + 2. (21) 

We use this result to obtain an improved algorithm for the minimum mean

cycle problem. The algorithm maintains an interval [LB, UB] containing the

minimum mean cycle value L* and in one application of the

Improve-Approximation procedure with carefully selected values of 6 and £ reduces

the interval length by a constant factor. A formal description of this algorithm is

given below followed by its justification.

algorithm MIN-CYCLE-MEAN II;

begin

set LB: =-C and UB:= C;
set r(i): = - C/2 for all i E N1 and r(i'): = 0 for all i' N 2 ;

let x be the uniform assignment;

while (UB- LB) 1/n2 do

begin

6: = (UB + LB)/2;

e: = (UB - LB)/8;

k: = 3;

IMPROVE-APPROXIMATION (c(6), k, , L, it, x);

if x is an uniform assignment then LB: = 6- 2E

else UB: = 6+ 2 and x*:= x;

end;
end;
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At termination, we consider the nonuniform assignment x* and identify a

cycle as described in the proof of Lemma 5(b). This cycle has the mean cost in the

range (LB, UB) and since UB - LB < 1/n2 , the cycle must be a minimum mean cycle.

Theorem 3. The above algorithm correctly determines a minimum mean cycle in
O(-n-m log nC) time.

Proof. The algorithm always maintains an interval [LB, UB] containing the

minimum mean cost. If the execution of Improve-Approximation procedure yields a

uniform assignment x, then the new lower bound is - 2e = (UB + 3LB)/4; otherwise

the new upper bound is + 2 = (3UB + LB)/4. In either case, the interval length

(UB - LB) decreases by 25%. Since, initially UB- LB = 2C, after at most
1 + Flog4/3 n 2 C = O(log nC) iterations, UB-LB <1/n 2 and the algorithm terminates.

Each execution of the Improve-Approximation procedure takes O/-m) time and the

algorithm runs in O(n-m log nC) time.

To show the correctness of the algorithm, we need to show that the solution x

is 3 e- optimal with respect to the costs C(S) before calling Improve-Approximation

procedure. Initially, x is the uniform assignment, = 0 and e = C/4. Hence for each
arc (i, i') in the uniform assignment, cii = C/2 < 3C/4, thereby satisfying C4(a).

Further, for each arc (i, j') in ASSIGN(S), we have cij = cij + C/2 >

-C + C/2 = -C/2 2 -3(C/4), which is consistent with C4(a).

Now consider any general step. Let the assignment x be an - optimal
solution for ASSIGN(5) and let cij denote the reduced costs of the arcs at this stage.

Further, let UB', LB', ', ' and cij be the corresponding values in the next iteration.

We need to show that the solution x is 3'-optimal for ASSIGN(8'). We consider the

case when 5' > . The case when ' < can be proved similarly. It follows from the

above discussion that ' = 3E/4 and ' = (UB' + LB')/2 = (UB + (UB + 3LB)/4)/2 =

+ E. Since arc costs do not decrease in ASSIGN(') , all arcs keep satisfying C4(b). For

an arc (i, j') E X, we have cij , < cij + because the costs increase by at most e units.

We then use the fact that cij, < £ to obtain cij < 2c < 3 ', which is consistent with

C4(a). The theorem now follows. 

The minimum cycle mean algorithm can possibly be sped up in practice by

using a better estimate of the upper bound UB. Whenever an application of the

Improve-Approximation procedure yields a non-uniform assignment x, then a cycle
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is located in the original network using the assignment x and the upper bound UB is

set of the mean cost of this cycle. Further, if it is desirable to perform all

computations in integers, then we can multiply all arc costs by n 2 , initially set UB =

klog k n2 Cl , and terminate the algorithm when < 1. The accuracy of this

modified version can be easily established.

6. Conclusions

In this paper, we have developed an -scaling approach for both the

assignment problem and the minimum cycle mean problem for which each scaling

phase is a hybrid between the auction algorithm and the successive shortest path

algorithm. In doing so, we have developed an algorithm that is comparable to the

best for the assignment problem and an algorithm that is currently the best for the

minimum cycle mean problem, in terms of worst-case complexity.

The algorithms presented here illustrate the power of scaling approaches.

Under the similarity assumption, scaling based approaches are currently the best

available in worst-case complexity for all of the following problems: the shortest

path problem with arbitrary arc lengths, the assignment problem, the minimum

cycle mean problem, the maximum flow problem, the minimum cost flow problem,

the weighted non-bipartite matching problem, and the linear matroid intersection

problem.

The algorithm presented here also illustrates the power of hybrid approaches.

The auction algorithm used with scaling would lead to an O(nm log nC) time bound.

The successive shortest path algorithm used with scaling would lead to an

O(nm log nC) time bound. (This latter time bound is not even as good as the time

bound achievable for the successive shortest path algorithm without scaling.) Yet

combining the auction algorithm and the successive shortest path algorithm leads to

an improvement in the running time by '-. As an example, if n = 10, 000, then in

each scaling phase the auction algorithm without scaling would assign the first 99%

of the nodes in 1% in the overall running time, and would assign the remaining 1%

of the nodes in the remaining 99% of the running time. By using a successive

shortest path algorithm, we can improve the running time for assigning the last 1%

of the nodes by a factor of nearly 100 in the worst case.
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In addition, our algorithm for the minimum cycle mean problem illustrates

that one can get computational improvements by using Zemels' approach of solving

binary search approximately. Suppose that g* is the optimal solution value for the

minimum cycle mean problem. In classical binary search, at each stage we would

have a lower bound LB and an upper bound UB that bound g*. Then we would

determine whether * < (LB + UB)/2 or g"* > (LB + UB)/2. In either case, the size of

the bounding interval is decreased by 50%. In our version, we only determine the

interval for g approximately. In particular, we determine either

i. p.* < LB/4 + 3UB/4, or

ii. >* > 3LB/4 + UB/4.

In either case, the size of the bounding interval is decreased by 25%. The number of

iterations is approximately twice that of the traditional binary search; but each

iteration can be performed much more efficiently

We close the paper with an open question. The question is whether the

problem of detecting a negative cost cycle in a network can be solve faster than the

problem of finding the minimum cycle maan of a network. This latter problem is

more general in that the minimum cycle mean is negative if and only if there is a

negative cost cycle. In addition, the minimum cycle mean problem seems as though

it should be more difficult to solve. Nevertheless, the best time bounds for these two

problems are the same. The best time bound under the similarity assumption is

O(X-m log nC). Under the assumption that C is exponentially large, the best time

bound for each of these problems is O(nm). Determining a better time bound for the

problem of detecting a negative cost cycle is both of theoretical and practical

importance.
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