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Abstract

The transactional data of a queueing system are the recorded times of service

commencement and service completion for each customer served. With increasing

use of computers to aid or even perform service one often has machine readable

transactional data, but virtually no information about the queue itself. In this paper

we propose a way to deduce the queueing behavior of Poisson arrival queueing

systems from only the transactional data and the Poisson assumption. For each

congestion period in which queues may form, the key quantities obtained are mean

wait in queue, time-dependent mean number in queue, and probability distribution

of the number in queue observed by a randomly arriving customer. The methodology

builds on arguments of order statistics and usually requires a computer to evaluate a

recursive function. The paper concludes with a proposed procedure for estimating

the extent of balking and/or reneging present in a queueing system.
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I. Introduction

Consider a Poisson arrival queueing system for which we have transactional

data. That is, we know the time of service commencement and time of service

completion for each customer who has been served by the system. Whenever there is

a queue of customers waiting for service, we assume that following a customer's

departure from service the next customer to enter service from the queue does so

virtually immediately following said departure. Given this assumption the

transactional data, when rank ordered, allow us to identify "congestion" periods that

may involve the back-to-back sequential service of two or more customers. Such

congestion periods are periods during which arriving customers must wait in queue

prior to service.

Our objective is to derive the queue statistics, including mean time spent waiting

in queue, and the time-dependent mean number in queue from the transactional

data. In other words, we wish to deduce queue behavior without observing the

queue, but by drawing inferences from the transactional data and from the Poisson

arrival assumption. There are many potential applications, including analysis of

customers queueing at automatic teller machines (ATM's), automobile traffic

delayed at signalized intersections, and individuals queued awaiting access to a

limited number of communications channels.

Our approach focuses on a single congestion period. Since the completion (or

commencement) of a congestion period constitutes a renewal point in any Poisson

arrival queue, once we have obtained the results for one congestion period we have in

essence solved the entire problem. As will become clear, our approach exploits

arguments drawn from the field of "order statistics." (cf. Barlow et. al. [1972] and

David [1981] ). We will find that for most of our results we do not need to know the
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arrival rate parameter of the Poisson process. In all of our work, the server or

servers can be completely general; for instance, successive service times need not be

i.i.d.
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II. Examples

Example 1: Automatic Teller Machines

Consider a facility housing k automatic teller machines (ATM's) fed by a single

queue. The system is said to be operating within a congestion period whenever all k

ATM's are simultaneously busy, requiring any new arrivals to wait in queue. A

congestion peiod commences (terminates) whenever the number of busy ATM's

jumps from k-1 to k (k to k-l, respectively). A customer service time is the time (s)he

"occupies" the space directly in front of the ATM. For many ATM systems this time

is closely approximated by the magnitude of the difference in times between the

customer's ATM card insertion and the machine's card ejection. These transaction

times may be routinely recorded in a master data file. When the data for all k

ATM"s are merged and time-ordered, they constitute (to close approximation) the

customer transaction times required to determine queue statistics developed herein.

These queue statistics may in turn be used by bank managers to monitor the use of

ATM sites, providing an accurate means to identify those sites requiring additional

(fewer) ATM's.

Example 2: "Invisible" Queues in Communications Systems

Many finite capacity communications systems have during periods of congestion

invisible queues of customers outside the system, continuously trying to gain access

to it.

One example is a k-channel land mobile radio system. Whenever all k channels

are simultaneously in use, potential users in the field (in vehicles) having a message

to transmit continuously monitor channel use and attempt to acquire a channel as

soon as any one of the current k communications is completed. If at a given time
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there are n such potential users awaiting a channel, they constitute a spatially

dispersed invisible queue, a queue in which one of the waiting customers enters

service very shortly after another customer completes service. Service discipline is

not necessarily first-come, first-served. Within the context of this paper the

customer transaction times are the moments of gaining channel access (service

initiation ) and message termination (service completion). These times can be

routinely monitored and recorded by electronic sensors measuring energy in the

various broadcast channels.

Another communication system example is a telephone system having system

capacityj , capacity measured by the maximum number of customers allowed in

service and in queue. This system is "congested" wheneverj customers are in the

system and subsequent potential customers ("callers") are lost (they get a "busy"

signal). If all such lost customers continuously and repeatedly call back until they

successfully enter the system, then the real time population m of such lost customers

constitutes an invisible queue. Within the context of this paper, initiation of

"service" occurs the moment a caller successfully enters the system and

"termination" of service occurs the moment the telephone conversation is completed;

hence the "service time" of this paper represents the sum of queueing delay and

telephone conversation time in the telephone system.

Example 3: Traffic Queued at Intersections

Imagine a street intersection in which one of the streets entering the intersection

is equipped with a pressure-sensitive cable placed across the street. Whenever a

vehicle passes over the cable, its presence is detected and recorded. Suppose that

vehicles traveling along that street toward the intersection arrive in the vicinity of

the intersection according to a Poisson process. As the vehicles stop at the

-6-
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intersection, perhaps due to a stop sign or a traffic light, a queue may form. This

queue is depleted as vehicles pass over the cable and enter the intersection.

Within the context of this paper, the service initiation time for each vehicle is the

time that the vehicle's front axle passes over the cable. The service completion time

is the time the rear axle passes over the cable plus some reasonable constant

(perhaps dependent on vehicular speed - which can be estimated) to allow for space

between vehicles. A congestion period exists whenever the cable is registering

vehicular movement and, if the intersection is signalized, whenever the light is "red"

for vehicles attempting to pass over the cable and enter the intersection. Note that

with a signalized intersection (1) successive moveups in vehicular queue position are

not i.i.d., and (2) congestion periods can be caused by exogenous events (a "red light")

as well as by simple queueing congestion.

The methods of this paper allow a traffic engineer to deduce the queueing

behavior of vehicles at the intersection simply from the cable-recorded information,

without ever observing the queue.

Example 4: Queueing Networks

A not so obvious application is in communication networks. At any given node of

a communications network one has in general a complex queueing system in which

arrivals are not Poisson (and not even regenerative) and the service process is

complicated, typically not following i.i.d. or other "nice" assumptions. However, the

cause of analytical tractability would be served if the (complex) arrival process could

be approximated to be Poisson. Using transactional data (from the real system), one

could estimate queue behavior at the node using the methods herein and compare to
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observed queue behavior; if the two are "similar," then the Poisson arrival

assumption is probably a reasonable approximation for modeling purposes.

9
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III. Preliminaries

Suppose we consider a homogeneous Poisson process with rate parameter A > 0.

Over a fixed time interval [0,T] we are told that precisely N Poisson events occur.

The N ordered arrival times are 0 X X 2, . .. XX ' T (by implication X + >

T). The N unordered arrival times are U 1,U 2, ..., UN, 0 c U i < T (i = 1, 2, ... , N).

From the theory of order statistics, it is well-known that the Ui's are independent,

uniformly distributed over [0,T]. If we now let N(t) be the number of arrivals over [0,

t], 0 < t T, without further conditioning information the following are well-known

for N(t):

(a)
E (t) = (t/T)Na)

VAR N(t) = t) ( t )( T (b) (1)
N(t ) T T

Pr {N(t) = k} ( t)k T-t )N (C)

In a queueing environment, N(t) could represent the number of customers in queue

at time t, assuming bulk service of all waiting customers at time T, such as occurs as

signalized pedestrian crosswalks.

In more general queueing environments, customers usually leave one-at-a-time.

Their service completion times within a congestion period impose a set of

inequalities on the arrival times of other customers who waited in queue. It is this

set of inequalities that produces precise conditioning information within the general
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context of order statistics, conditioning information that we use to deduce queue

behavior.

To illustrate key ideas and introduce notation, consider the sample function for a

three server queue shown in Figure 1. In the example the congestion period

commences at t = 0 upon arrival of a customer who changes the remaining idle

server's status from idle to busy. From transactional data the queue exhibits both

service departures and service commencements at times t,, t2, t 3 and t4, indicating

that (1) all three servers were continuously busy during this time; (2) a queue existed

at least at times t-, t 2-, t 3 -, and t4-; and (3) that the total number of customers queued

was N = 4. At time t5 the transactional data indicate a service completion but no

service commencement, thus ending the congestion period and thereby creating an

idle server. From the transactional data, the cumulative number of departures

through time t, d(t), is an observed function whereas the cumulative number of

arrivals a(t) is not. From the conditioning information we know that the first arrival

during the congestion period occurred at X 1 _ t, and that subsequent arrivals obey

the inequalities X 2 t2, X 3 t, X t, t4=T. (Note that the end point of the conditional

arrival interval for queued customers is T = t4, not t). During the congestion period

the number of customers in queue is NQ(t) = a(t) - d(t) -1. (For values of t equal to

service completion times, i.e., t = tj, one must be careful whether one is considering

tj + or tj-, as the former substracts from the queue the customer who enters service at

time t, whereas the latter does not). The number of customers in the system (in

service and in queue) is N(t) = NQ(t) + 3.

The same concepts apply in more general queueing systems, including those with

state-dependent service rates, shortest-job-first queue discipline, etc. The key idea

-10-



is to locate those service completion times which are accompanied by (nearly)

simultaneous service commencement times.
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Figure 1

Illustrative Sample Function for a Three Server Queue

End of
Congestion
Period

=N+1

a(t) [unobserved]

1 '2 3 .4 5

X1 < t 1 X2 t 2 X3 < t 3 X4 St 4

a(t) = cumulative number of arrivals from commencement of congestion period
d(t) = cumulative number of departures from commencement of congestion period
NQ(t) = number of customers in queue
t i = departure time of it h customer served
X i = arrival time of ith customer to enter queue (i = 1, 2, 3, 4)
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IV. Main Results

In this section we show how to deduce from transactional data (1) mean number

of customers in queue X time units after commencement of a congestion period; (2)

time average queue length; (3) mean delay in queue; and (4) incidence probabilities.

All of the results follow simply once we can determine, using order statistics, the a

priori probability that the arrivals during a congestion period obey the time

orderings imposed by the observed departure times.

1. Computing the Fundamental A Priori Probability

Recalling that X i is the i th arrival time during a congestion period and that t i is

the ith departure time during the congestion period (i = 1, 2, ... ,, N), define the a priori

k-rank ordering probability,

Wk (tl' t 2, ... , tk N(T)= k ) = Pr{X XktkNT = kj,

with o -1.

For N = 1 we have,

IF, (t l lN(T) = 1) = Pr {X1
- tl precisely one Poisson arrival in [O,T]}

or

' 1 (tljN(T) = 1) = t/T. (2)

We now find that k () can be computed from 'o(.), P1 (), ... , k-1l() by the

recursion in

-13-



Lemma 1.

(3)

k

j=1

k

k-j+l )( T )

( T-t 1

T

Proof: (Induction) Equation 2 demonstrates that (3) holds for k = 1. Suppose (3)

holds for k; we prove it holds for k + 1.

Define the vector of k unordered arrival times Uk = (U 1, U 2, ... , Uk) and i(Uk )=

ith largest of U, U 2, ... , U k. For instance el(Uk) = MAX {U1, U 2, ... Uk} and ek(Uk) =

MIN {U1, U 2 , ... , Uk}.

The argument proceeds as follows:

k+ 1 (t l t 2 , tk tk tk + IN(T)

Pr X < t 1, X 2 <

=k+l)=

t2' k < tk' Xk+l tk+lN(T) = k+ 

= Pr Xk+l • tI Pr Xk < tand t < Xk + 1 

+ Pr Xk 1 tand tl < Xk < tk t l < Xk+1

tl} + Pr {e2 (Uk+1l) tland tl< l (Uk+ 1)

+ Pr e3 (Uk+l) tl and t< e2 (Uk+1) tk,tl< el(Uk+l)stk+l1

-14-

tk+ 

< tk+l + ...

(Uk+l)

tk + }

< tk+l1

I~k ti t' ""· tk JNM = k 

qji-Ijtk-(j-2) t1' "" tk- -t V tk -t SNT-tl)=j- 1

+ Pr X I < '1V and t < X - 2·y... PI X- - tk'tI < X+1 <

=Pr 1



t1 k+ + P r k
1 k+ l k - IF -. .. t.'k+ 1 ( 1)<tl and tl<ek(U 1 t

l k+ t Ik-) T -t 1 2

+ ( )(T ) (T ) 2 (tk t - tN(T-tl) =2) +

k )(T! )( T )k (t2-ti,..., tk- tltk+I -t 1lN(T-t ) k)

Consider a queue congestion period starting at t = 0 during which N customers

arrive. Observed departure epochs followed immediately by a service

commencement are ti, t 2, ... , t, = T, where 0 < ti < ti+ < T i = 1, 2,..., N - 1. The a

priori probability that the Poisson generated order statstics will obey the observed

orderings in the data, given N arrivals in [0, T], is,

P{ X < t I,X 2 t,..., XN tN I N(T) = N}- P{E(t) I N(T) = N} =

IFN (tl t2 ,..., tN I N(T) = N),

where t - (t l, t2,..., tN) and E(t) = Event {Xl _ t,, X 2
< t2,.. XN

< tN}.

Unfortunately computing (4) from the recursion in Lemma 1 requires 0( 2N)

computations.
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In Lemma 1, we may consider the "left-hand" interval [0, t] as containing the

"arrival time" of one or more tagged customers, with the arrival times of the

remaining customers appropriately distributed over [t l, T]] and subsumed in the

rank ordering probability. An alternative approach is to place the tagged arrival

time(s) of the recursion in a corresponding "right-hand" interval, with the remaining

arrival times dispersed appropriately from 0 to the boundary of that interval. The

advantage of this approach is that it reduces the computational work from 0( 2N) to

O(N3) by utilizing efficiently previously computed quantities.

Define

aki(t) P{Xl tl, X2 t2...,Xi ti...,Xk c ti karrivalsin[0, tN]} fork i

This is the conditional probability that the first i arrival times obey the departure

time inequalities and that the next k-i arrival times are also less than t i, given that

there are precisely k arrivals in [0, tN]. In this notation the key quantity of interest

is

P {E(t)I N(T) = N= aNN (t).

To calculate ki (t) first note that

ak1 (t = t) (5)

The fundamental recursion is given by

Lemma 2.

k-i+l t t
Q i(t) k a k i (6)

j=o J '

-16-



Proof: The proof is similar in nature to that of Lemma 1 and will not be reported

here.

To compute Eq. (6) iteratively one is filling out a lower triangular matrix A(t)

(aki(t)), including terms on the diagonal. One first uses Eq. (5) to compute all N

entries of the first column of A(t). Then to compute the kth entry (k > 2) in the

second column, one adds k terms, the jth involving a multiplication with entry

(k -j + 1) in the first column. In this way, one sweeps through the matrix column by

column, starting in column one. The number of separate terms that have to be

computed to complete the matrix is equal to
N

i(i+l) 1 3 1 2 1y ~ = N + N + N
2 6 2 3i=l

hence yielding an 0(N 3) procedure for evaluating P{E(t) I N(T) = N}.

2. Computing Arrival Time Cumulative Probabilities

Consider now the "arrival time cumulative probabilities,"

ki(t)- Pr {Xk < t E(t), N(T) = N}.

In words, Pki(t) is the conditional probability that the kth arrival in [0, tN = T] occurs

before t i, given that all N arrivals obey the inequalities imposed by the observed

service completion times. For instance, A42(t) is the probability that the fourth

ordered arrival time in [0,T] is less than or equal to t2, given by the conditioning

event E(t) that it must be less than or equal to t4 (and, of course, given E(t)). Clearly

Oki (t) = 1 for all k = 1,2,..., i.

-17-



There are two alternative methods for computing the matrix D = ([ki (t))

depending on whether one uses Lemma 1 or Lemma 2 for the fundamental

recursions. In the context of Lemma 1, for k > i, we compute the arrival time

cumulative probabilities as follows:

Oki(t) = Pr X < tiE(t)t - X = t Xi+ ti Xk i k+ k+
PN(tl, t 2, ... , tNIN(T)= N)

or

' N (tl' t2 ."ti' ti ', t ti'tk + l' ... tNIN(T)= N) (7)
t N(tl' t2, ... , tNIN(T)= N)

With Lemma 2 the notation for determining = (Pki(t)) is somewhat more

complex, but the computational effort for large N is considerably less. First, it

should be clear that the bottom row of is obtained by a simple division,

aNi(t) (8)
Ni(t) a (t)

For the general term, write

ki(t ) P{X k t1i E(t), N(T)}

P{X1 t ... Xi < ti . ,Xk ; ti Xk+1 tk+l' ' XN t NT) (9)

P{E I N(T)}

Recognizing the denominator as aNN(t), we can write

k ( P . .Xi ti ,Xk ~ ti,Xk+l ti, k+ 2 k+2

+ P Xi t ... Xi k ti, ' Xk < ti' ti < Xk+1 k+l

t i < Xk+ 2 tk+ 2 t< XN tNI (~~~~t i < X < t [ '' N (T}

-18-



The first probability in the brackets, when divided by aNN(t), is seen to be 3 k+ 1)i (t),

thereby giving rise to a recursion. To compute the second term, consider the ( )

ways of assigning k of the N unordered arrival times to the "left-hand" interval [0, ti]

and the remaining (N-k) to the "right-hand" interval (ti, t). Those assigned to the

left would have to obey the first k in equalities in the second probability term above,

while those assigned to the right would have to obey the final N-k inequalities.

Invoking independence of the unordered arrival times, we can now write the

recursion

fBkl(t) = +,,,,9(N ak (t) rk(t)/ aNN(t) (10)

where

k.(t) P{t k < arr(U k)tk+l ' ,ti <e (UN k) tNN -k arrivalsin[0, tN]} (11)

If we define the time-shifted vector t' = (t'),

tk+ j - t forj = 1,2,..., N-k

tN j =N-k+l,..., N

and invoke the uniformity property of the unordered arrival times, (11) can be

computed using the algorithm for computing aki(.) as follows,

r (6~~~~~~=a~ ~(12)
rki(t = a(Nk)(N-_) ( t )

Hence, computation of 3ki(t) using this technique requires 0((N-k)3) new

computations (i.e., to evaluate Eq. (12)). The worst case performance of the entire

algorithm, i.e., to compute the entire matrix D = (ki(t)), is O(N5), although the
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occurrence of numerous "near-zero" probability events for large N results in much

better performance in practice.

3. The Mean Cumulative Number of Arrivals at Time t

We now wish to compute

Na(t) the expected cumulative number of arrivals to the system up to

and including time t, given E(t).

This is the quantity analogous to E[N(t)] displayed in Equation (1) (a) for

unconditioned order statistics. To avoid counting ambiguities we assume in Lemma

3 a strict ordering of the ti's: 0 < t < t 2 < ... < tN. The generalization to nonstrict

inequalities is straightforward and will not be stated here.

Lemma 3

N
Nt)= 13 (13)

(i) NNa(ti) = Pkj(t) forallj = 1,2,...,N
k= 

(ii) Define to 0O. For tj < t t j, j =1,2, ... , N,

t. - t -tj - , (14)
N (t) - Na(t ,)+ N (t.)

j j-1 iJ J-1

Remark: (i) states that the expected cumulative number of arrivals up to and

including time tj is equal to a simple sum of arrival time cumulative probabilities.

(ii) states that N 8(t) grows linearly during any time interval between two successive

conditioning times tj 1 and tj.

-20-



Proof:

N

(i) N (t.)= 5 k Pr exactly k arrivals in [O, t.jE(t), N(T) = N
k=l

N

= Y k (Pr{atleastkarrivalsin[0,tj]IE(t),N(T)=N}}
k=l

-Pr {at least k + 1 arrivals in [0, t E(t), N(T) = N)

N

= I k j(t)- P(k+lj(t)),
k-1

where

P(.+ 1 (t) 0= forallj= 1,2,..., N.

But the last expression is

N a(t)=1 (j(t)- P2j(t)) +2 (2(t) - 3j(t)) + 3 (3j(t)- 4j(t)) +

which simplifies to Equation (13).

(ii) Suppose Na(tj 1) = e and Na(tj) = + m, m > O. Then over (t 1, tj] we have m

random variables that are conditionally independent, uniformly distributed,

the m "unordered arrival times" over (tj_,, tj], where the expected value of the

cumulative number of arrivals through time t, tj.1 < t < tj, grows linearly

with t (with zero growth, of course, for the case m = O0). Thus,

-~~~- m
Na(tJNa(t.j )=eand N(t.) = +m) = + t (t-tj ).

J- t. -t.
J j-1

Unconditioning first on Na(tj~),

m
N a(t Na(tj)-Na(tj 1)= m)= Na(tj 1) + (t -t 1)

J J- 

Then unconditioning on N,(tj,

-21-



N (t.)Ia 
Na(t)= N(t_,)+

- N(tj_1) (t - tj 1)1
t. -t.
J J- 1

which simplifies to Equation (14).

As a final interesting property regarding Na(t), we have

Lemma 4: For t Ž 0, N (t) is a concave function oft.

Proof See Appendix I.

Note that none of the results of this section depend on the value of the Poisson

rate parameter A.

-22-
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4. Numerical Example

To illustrate the mechanics, we solve using Lemma 1 a simple N = 3 example with

ti = 1/3, t 2 = 2/3 and t3 = T = 1. These data correspond to a queueing system for

which (1) a congestion period commences at time t=O 0; (2) departures followed

immediately by service initiations occur at t, t 2, and t3; and (3) the departure

occurring sometime later at time t4 is not followed immediately by a service

initiation, thereby signaling the end of the congestion period. Hence, a queue

existed at least at times t-, t2-, and t3-.

First we compute from (3) and (4)

-1 2(1 3 =1P E(t) N(T)N = E I N()= 3 3 1 1 N (1 )= 33 1 3 1 322

obey the departure time inequalities. Now we wish to obtain the matrix of arrival+ 1))3 IIN 3 I3 ) = 2 )
3 2 3/ 3 3 3/ 3 3 3 3 3

Clearly

1 2 2 1/ N( 1/3 1/3 1/3
V2 =,2[N - +2 - -

2 3,3N+2/3 2/3 2/3 1/3

Combining results, we obtain

This is the a priori probability that the arrival times, given 3 arrivals over [0, 1],

obey the departure time inequalities. Now we wish to obtain the matrix of arrival

time cumulative probabilities,

-23-



1

1 1

a(t) 1

We illustrate by computing the most complicated entry,

32(t) = Pr X3 t 2 1 E(t), N(T) 3 =

16 3 2 3 3

Y3(1/3, 2/3, 2/31N(1) = 3)

16/27

3 1 (3 ) )]
3 3~/

I N( ))=23 \3 / = ( - )2
7

thus 32 (t) = -
16

The complete matrix, together with the column sums representing mean cumulative

number of arrivals, is given by

(t) =

a

1

7/16

1/16

1.5

1 1

1 1

7/16 1

39/16 3

-24-
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Finally, using (6) and (7) the mean queue length as a function of time is displayed in

Figure 2.

Figure 2

Mean Queue Length as a Function of Time for N = 3 Numerical Example

2.0

1.5
1

1.0

0

NQ(t)

1/3 2/3 1

5. Expected Queue Length

Letting NQ represent the time average queue length over a congestion period

of length T, we have

NQ = E NQ(t)dt =l if 1
T

N Q(t) dt.Q

Since NQ(t) is piecewise linear, with drops of magnitude one at t (i = 1, 2, ... , N), we

can easily evaluate NQ as follows (defining to - 0):

-25-
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N Q =T ti - ti) i N Qti- + NQ (ti +)| (15)

Example. Drawing from our continuing N = 3 example,

NQ= () + 1.5 + 1.437 5 +0.5 + 0.4375) =0.8125

Note that NQ is the time average queue length during the congestion period for

which the departure instants are known; NQ is not the average queue length

observed by a random customer arriving during the congestion period, because the

conditioning information removes the Poisson arrival assumption (!).

To find the time average queue length over larger time intervals, including

multiple congestion and uncongestion periods, one simply computes appropriate

(time) weighted averages.

It is well-known that Poisson arrivals see time averages [Wolff, 1981]. Assuming

that the queueing system is ergodic (which would be true for instance if each

congestion period is governed by the same probability laws) our computations for NQ

and incidence probabilities (see Section IV.7) when averaged over many congestion

periods would approach time averages.

6. Mean Delay in Queue

The expected total number of minutes spent in queue by customers during a

congestion period is

E NQ(t)dt = J NQ(t) dt =TN Q

Since there are N customers arriving during the congestion period, the average

amount of time spent in queue per customer is
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I T T - (16)E WQ WQ= - NQ(t)dt=()NQ (16)Q Q N 0 Q N Q

Since N customers arrive (depart) during the period (0, T), the quantity (N/T) is the

average arrival (departure) rate of customers during the congestion period.

Equation (16), when rewritten

_ Q=(X)WNQ= W Q
is equivalent to Little's formula LQ = WQ [Little, 1961]. In our running numerical

example, WQ = 0.2708.

7. Incidence Probabilities

In this section we wish to compute the probability distribution of the queue

length upon arrival of a random customer during a congestion period. Since the

congestion period commences and terminates with zero customers in queue, we use

the observation that for each queue length transition from i to i + 1 during the

congestion period there must be a transition from i + 1 to i (i = 0, 1, 2, ... ). If we

define

Ik - Prob {a randomly arriving customer finds k customers in queue},

k=0, 1, 2, ...

then, nk can be found by computing the probability that a randomly departing

customer leaves behind k customers in queue. (This is a familiar argument found in

the analysis of M/G/1 queues. [cf. Kleinrock [1975] ].)

We can write
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1 N
k = N - Prob th departing customer leavesbehind k in queue}

j=l

N

Prob {exactly j + k arrivals in [0,tj] }
j=1

Prob {at leastj + k arrivals in [O,T] - Prob{at leastj+ k+ 1 arrivals in [0,T]
1

Nj=
or,

( + (t) i- 3(j+k + j t)
1 N

nk N

For our continuing numerical example, we find the following:

1 7 1 7 13
= - - - + - = - 0.271

3 16 16 16 48

I 1

3 16

1
- - 0.021
48

34
I o = 1 - ( + = 48 % 0.708

or

/ 34
- = 48'

48 81 ) (0.708, 0.271, 0.021)

The average queue length experienced by an arriving customer, call it eQ, is

- 34 13 1 7

Q 48 48 48 12,

in this case considerably less that the time average queue length LQ = 0.8125.

-28-
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We have developed a computer program that carries out all of the computations of

this paper, including plotting NQ(t). We show in Figure 3 NQ(t) for a congestion

period having N = 8 simultaneous departures and service initiations as follows:

Congestion period starts at t= 0

t, = 3.0

t 2 = 3.5

t3 = 5.1

t 4 = 5.3

t5 = 6.0

t6= 7.6

t7 = 7.75

t8 = 8.0

The key statistics for this example are displayed in Table 1.

As a final example, we plot in Figure 4 NQ(t) for an example having N = 29.
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Matrix of the Betas

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.9485 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.7299 0.8647 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.4220 0.5940 0.9816 1.0000 1.0000 1.0000 1.0000 1.0000

0.1696 0.2923 0.8143 0.8718 1.0000 1.0000 1.0000 1.0000

0.0446 0.0957 0.4868 0.5569 0.7984 1.0000 1.0000 1.0000

0.0070 0.0188 0.1870 0.2321 0.4445 0.9789 1.0000 1.0000

0.0005 0.0017 0.0338 0.0459 0.1227 0.7184 0.8209 1.0000

Cumulative Expected Number of Customers

3.3222 3.8673 5.5035 5.7067 6.3656 7.6972 7.8209 8.0000

Incidence Probabilities

I-0 - 1 1-2 3 4 H5 I6 7

0.2169 0.3009 0.2877 0.1322 0.0501 0.0111 0.0010 0.0001

* Average Number of Customers in the Queue

as seen by a randomly arriving customer = 1.5354

* Time Average Number of Customers in the Queue = 2.0332

* Average Waiting Time for Customers in the Queue = 2.0332

Table 1

Detailed Statistics for N = 8 Example
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V. Lost Customers: Balking and Reneging

Using the transactional data with the (unconditional) Poisson arrival

assumption, it is possible to estimate the number of customers who choose not to

enter the system because the system is too congested at their time of arrival. Such

prospective customers who do not even join the queue are said to balk due to

congestion; others who join but later depart before entering service are said to

renege. With transactional data, we are unable to distinguish between the two

types of behavior.

Suppose there are M noncongestion periods, each terminated by a "first arriving

customer" who initiates a congestion period. This customer enters service

immediately. All others arriving during that congestion period are delayed in

queue. For the ith such congestion period, let the time from its commencement until

the first departure of a serviced customer be -i. Under the Poisson arrival

hypothesis, with no balking or reneging, the probability that a queue will form

during [0, ui] is 1-e-Ai, where X is the Poisson rate parameter. The expected number

of the M congestion periods that will be accompanied by queueing is

.I (i .e~'i) )(18)
i=l

(When allowing the possibility of balking and reneging, the parameter A should be

estimated from the average value of the duration of the noncongestion period [which

should equal A-1], during which no balking or reneging can occur.)

Suppose from the M congestion periods one observes q(M) congestion periods

having queues. Suppose q(M) < Q(M). Then one could perform various statistical

tests to determine if the difference is statistically significant, and if it is, one could
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reasonably conclude that congestion causes the measured amount of balking and/or

reneging.

Suppose the balking/reneging is of a simple binary type. With probability p a

Poisson arrival representing a potential customer will balk/renege whenever any

congestion (i.e., delay) is to be experienced, regardless of the queue length. Then the

queueing system would be driven by an alternating Poisson process, with rate

parameter X during noncongestion periods and A(l-p) during congestion periods. If

only this simple type of balking/reneging occurs then all the results represented by

Equations (2)-(17) remain valid. However, if more complicated state-dependent

balking/reneging occurs, then since (unconditioned) arrivals during congestion

periods are no longer Poisson, Equations (2)-(17) are not valid.

To test for the presence of state-dependent balking/reneging, one can obtain

expressions using the transactional data for the number of congestion periods having

length greater than k customers, given length at least equal to k, for k = 2, 3, 4, ... ,

under the hypothesis of no balking/reneging. One can than compare with the data to

discover the extent of state-dependent balking/reneging.

As an example consider a congestion period having at least 2 customers, with Ei

defined as above and <i l the time between the first and second service completions

during the ith congestion period. Note that only the second customer is delayed in

queue. Then we can write

Pr{only one arrival in (0, i + till )la t least one arrival in (0, i)} =

Pr{only one arrival in (0, ji)at least one in (0, ti)}.Pr {0 arrival in (Ti, i + i l l)}

-A . e . - A

-I 

1-e
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If there are Ml congestion periods having at least two customers, the second of whom

is delayed in queue, then under the Poisson-arrival-no-balking/reneging hypothesis,

the expected number of congestion periods having more than two customers is

~M -M~-E. + 111

Ql(M1) = (I- -e (19)
i=l -e

A similar line of reasoning can be continued to higher levels of congestion. When

comparing with data, successive differences between theoretical and observed values

reveal estimates of congestion-related balking and/or reneging. If the levels of

balking/reneging are significant, then as stated previously Equations (2)-(17) are no

longer valid. Further research is required to develop accurate queue estimation

methods from transactional data in the presence of congestion-level-dependent

balking/reneging.
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VI. Summary and Conclusions

In this paper we have shown how to apply ideas of order statistics to deduce the

behavior of Poisson-arrival queues without observing them. We simply use

transactional data (i.e., times of service commencement and service completion) for

each customer together with the Poisson assumption to derive time-dependent mean

number in queue, mean wait in queue and the probability distribution of the number

of customers in queue upon arrival of a random customer. Using the same ideas,

additional performance measures could be devised if desired. The paper concluded

with a proposed methodology to determine whether customers are balking and/or

reneging during periods of congestion, again using only transactional data and the

assumption that potential arrivals to the queue occur according to a Poisson process.

With the exception of the balking/reneging results, none of our formulas contain

the rate parameter A of the Poisson process. This is because the total number of

(Poisson) arrivals over a congestion period is given as part of the conditioning

information. Thus our results could be averaged over congestion periods occurring

during times of different Poisson rate intensities. In fact, A could be a slowly varying

function of time, A(t), and our results would be approximately correct, so long as X(t)

does not "change very much" over any congestion period.

A limitation in implementing the methods proposed herein is that evaluation of

the matrix A requires O(N5 ) computations for a congestion period having N arrivals.

Clearly this is not practical for very large N. However, with today's computers, such

calculations are feasible certainly for N • 50 and probably for N - 100. As a bench

mark, the average number of customers who queue in an M/G/1 system during a

period of congestion is p/(l-p) (where p = A E[service time] ), which is less than 10 for

p < 0.9 (Kleinrock [1975], p. 217 ). So for many important applications the fifth
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order growth in computational work with N should not be an impediment to

implementation. For more saturated systems, we may seek approximations or

limiting results.
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Appendix I

Lemma 4: For t Ž 0, Na(t) is a concave function of t.

Proof From Lemma 1 we know that Na(t) is piecewise linear, continuous, monotone

non-decreasing. We first prove the theorem for N = 2, then for general N. For x 2> x1

define the "truncated ramp function"

0 fort x

t;Xl, X2)- { (t-x 1)/(X2 -x2 ) forxl< t x2

1 for t > x2

Without loss of generality we can assume that the N time-conditioned arrivals occur

in [0,1]. Define

Na(tlr) = mean number of arrivals in [O,t], given event r.

N = 2. Let the unordered arrival times be U,, U 2. The time conditioning information

is MIN [Ul , U2] _ t I where O < t < 1, and MAX [U, U2] < 1. Without time

conditioning, call that event A, U 1 and U 2 are i.i.d., uniformly over [0,1] and Na (tIA)

= 2t, 0 t 1. Hence, given A, one can write

2t = p1 2e(t; 0, tj) + P2 2e(t; t1, 1) + p3 [e(t; 0, t1 ) + t(t; t1, 1)],

where p1 > 0, P2 > 0 , p3 > 0 represent probabilities that the two unordered

(unconditioned) arrival times are (1) both in [O,t]; (2) both in (t 1 ,1]; and (3) such that

one is in [0, t l] and the other is in (t l, 1]. But the time conditioning information

excludes possibility (2), implying that

N t) P 2et;0, tl) + e m e(t;o, tl)+et;tl 1)

1 -P2 1 - P2

Since P2 > 0, we must have at t= t,
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N a(tl) > P 2(t l; , t1) + p3 (t; 0, t 1) = 2t1,

implying N(t) is concave.

Arbitrary N. (contradiction) If Na(t) is not concave they there must exist at least

one k for which

N (t ) <N (tk-l) + |N(tk+l) -N( tk-1)| tk+l-tk-

where t = (ti) is the vector of conditioning times such that the ith smallest Uj must be

less than or equal to ti, where we assume O to < t < t 2 < ... < tN < tN -l1.

Expanding the logic shown for N = 2, we can write

N-1 N-J (Al)

N a(t) t; tj+ )Pij
j=0 i=1

where the probabilities Pij are conditionally multinomial. But (Al) can be written

k-2 N-j k N-j

N a(t) = IE E it; tj; +I)Pj + I I ie(t;tj;tj+l)Pij
j=0 i=1 j=k-l i=l

+ ~i~l~ (A2)+ I I it(t;tj;tj+l)Pi(
j=k+l i=l

For tk_1 < t _ tk+1, the first term in (A2) contributes a positive constant to NW(t) and

the third term contributes zero. Hence to determine concavity we focus on the second

term and on the intervals [tk-1, tk] , [tk, t k +l]1

Suppose in any given realization of the process, we are given additional conditioning

information that N,(tk l) = j forj > k. Then of the remaining N-j time-conditioned

arrivals, we may have any positive number (up to N-j) of them uniformly

(conditionally) independently distributed over the joint interval [tk.1, tk+ ], with the

remainder distributed appropriately (given the time conditioning information) over
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[tk+ ,1]. For each such possibility, for tk1 < t < t, , the conditional contribution to

Na(t) is a positively sloped straight line; probabilisticly weighting each possibility,

the corresponding weighted sum of straight lines is a positively sloped straight line,

a property that does not violate concavity.

Now focus on the conditioning information Na(tk-l) = k-1. Assume further (for the

moment) that N (tk+ l) = k-l +m, i.e., m arrivals occur in [tk l, tk+l], for

m = 2, 3, ... , N-k + 1. If the m arrivals were uniformly independently distributed

over [tk, tk+ ,], then we could write for tk, 1 < t tk+,

Na(t m) k - 1 + n/(tk+l-tk,)| ( t - t k )

k-lI Pi i e(t;tk-1 tk) +(n-i (t;tk tk+1 )

i=O

for appropriate conditional probabilities pi > O0 ( i =0, 1,..., m) and where p1m event

that k-1 time-conditioned arrivals are in [0, tk. l] and m arrivals are uniformly

independently distributed in [tk_,, tk + 1]' But considering Na(t), time- conditioning

prohibits the event whose probability is p0, i.e., the event having zero of the n

arrivals in (tkl, tk]. Let P, = . - event that all n arrivals are in (tk, tk+ 1] }

Then,

N (tIpn)= k-1 + Iie t;tk t k +n-i)et;ttk+
i=O 0 I

and at the t breakpoint" tk we have

n ip*
N at k n) = k-1 ip+ > k-l1+ n/(tk+l - tkl)(tk tkl)

i=0

Hence for any n (n = 2, 3, ... , N-k + 1) we have shown that Na(tlDn) is concave over

[tk-l, tk+ ]' To complete the proof we multiply each Na (tIP,) by the appropriate
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probability, sum to obtain Na(t) over [tk_,, tk+ 11], and use the fact that a sum of

concave functions is concave.
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