
MIT Sloan School of Management

Working Paper 4465-03
Revised: June 2003
Original: April 2001

SENSITIVITY ANALYSIS FOR SHORTEST
PATH PROBLEMS AND MAXIMUM CAPACITY
PATH PROBLEMS IN UNDIRECTED GRAPHS

Ramkumar Ramaswamy, James B. Orlin, Nilopal Chakravarty

© 2003 by Ramkumar Ramaswamy, James B. Orlin, Nilopal Chakravarty. All rights reserved.
Short sections of text, not to exceed two paragraphs, may be quoted without explicit

permission, provided that full credit including © notice is given to the source.

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:

http://ssrn.com/abstract=489804

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4382304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sensitivity Analysis for Shortest Path Problems and

Maximum Capacity Path Problems in Undirected Graphs

Ramkumar Ramaswamy
Infosys Technologies Limited

3rd Cross, Electronics City
Bangalore 561 229 India
ramkumarr@infy.com

James B. Orlin
MIT E40-147

Cambridge, MA 02139
jorlin@mit.edu

Nilopal Chakravarti
Integrated Decision Systems Consultancy

1 Jalan Kilang Timor
Singapore 159303

nilotpal@idsc.com.sg

March 2001

Revised, December 2003

Abstract. This paper addresses sensitivity analysis questions concerning the shortest path problem and the
maximum capacity path problem in an undirected network. For both problems, we determine the maximum
and minimum weights that each edge can have so that a given path remains optimal. For both problems,
we show how to determine these maximum and minimum values for all edges in O(m + K log K) time,
where m is the number of edges in the network, and K is the number of edges on the given optimal path.

Key words: sensitivity analysis, shortest path problem, bottleneck shortest path, maximum capacity path
problem.

 1

mailto:nilotpal@idsc.com.sg

1. Introduction.

Let G = (N, E) be an undirected graph with n nodes and m edges, and designated source node s and sink
node t. This paper addresses sensitivity analysis questions concerning the shortest s-t path (SP) problem in
G and the maximum capacity s-t path (MCP) problem in G. For each (i, j) ∈ E, let cij denote either the
length of (i, j) or the capacity of (i, j) depending on whether we are solving the shortest path or the
maximum capacity path problem.

 Suppose that *P is a shortest s-t path in G. For each edge e E∈ , the lower SP tolerance of edge
e is the minimum non-negative value that the length of edge e can take (with all other lengths staying
fixed) so that *P remains an optimal path. Similarly, the upper SP tolerance of edge e is the maximum
value in R ∪ ∞ that the length of edge e can take so that *P remains an optimal path. We show that the

problem of finding all upper and lower tolerances of edges in E is computationally equivalent to the
Minimum Cost Interval Problem which is as follows. For each i = 1 to r, let [ai, bi] denote an interval with
endpoints in {1, ..., q}, and let di be the associated cost. For each k = 1 to q, identify a minimum cost
interval [ai, bi] containing k. We provide an O(r + q log q) algorithm for the Minimum Cost Interval
Problem, and provide an O(m + |P*| log |P*|) algorithm for finding all upper and lower tolerances of edges
in E.

 Related sensitivity analysis problems for tree solutions have been considered initially by Shier
and Witzgall (1980). Examples of subsequent research in the same direction include an O(mα (m,n))1
algorithm for sensitivity analysis of the minimum cost spanning tree problem by Tarjan (1984) and an
O(m) algorithm for sensitivity analysis of minimum spanning trees and shortest path trees in planar
graphs by Booth and Westbrook (1994). We refer the reader to Gal (1995), Greenberg (1998) and to Gal
and Greenberg (1997) for extensive references to a variety of sensitivity analysis problems in
combinatorial optimization.

 We further consider the sensitivity analysis problem for the maximum capacity path problem. For
a network with edge capacities, the capacity of a path is the minimum capacity of an edge on the path.
Let Q* be the maximum capacity s-t path in G with respect to capacity vector c. For each edge e∈ E, the
lower (resp., upper) MCP tolerance of the edge e is the minimum (resp., maximum) value in R ∪ {-∞,∞}.

that the capacity of edge e can take so that Q* remains a maximum capacity path. We show that the
problem of finding all upper and lower tolerances of edges in E can be solved in O(m + |Q*| log |Q*|) time.
Moreover, the problem of finding all tolerances is nearly computationally equivalent to the Minimum
Cost Interval Problem.

 The most vital SP edge problem is the problem of finding an edge e whose deletion from G
increases the length of the shortest path from s to t as much as possible. The most vital MCP edge
problem is the problem of finding an edge e whose deletion from G decreases the maximum capacity of a
path from s to t as much as possible. The most vital SP edge is the edge with the largest upper tolerance,
and the most vital MCP edge is the edge with the lowest MCP tolerance. Algorithms for the most vital
edge problems on shortest paths include Bar-Noy et al (1995), Malik et al (1989), Venema et al (1996).
Algorithms for finding the most vital edges in minimum cost spanning trees have been developed by Hsu
et al (1991), Hsu et al. (1992), Iwano and Kato (1993), and Banerjee and Saxena (1997). The most vital
edge problem for minimum cost spanning trees is not directly related to the problem of identifying edge
tolerances, although both are fundamental questions of sensitivity analysis.

1 α(m, n) is the inverse Ackermann function, and is VERY slowly growing in m and n.

 2

 A different approach for determining upper SP-tolerances in O(m + n log n) time for edges in a
shortest path *P was independently developed by Hershberger and Suri (2001). They incorrectly
claimed to have solved the sensitivity analysis problem for directed graphs, and pointed out their error in
Hershberger and Suri (2002).

 This paper extends previous results in the unpublished work of Ramaswamy (1994), who gave
O(n2) algorithms for the upper and lower tolerance problems considered here. In Sections 2, 3, and 4, we
consider sensitivity analysis for the shortest path problem. In Section 5, we address the Minimum Cost
Interval problem; we show its equivalence to the sensitivity analysis problem for SP and evaluate its
computational complexity. In Sections 6, and 7, we consider the maximum capacity path problem. We
offer a summary and conclusions in Section 8.

2. Upper and Lower Tolerances for Combinatorial Optimization Problems.

In this section, we give procedures for calculating the upper and lower tolerances of variables for
combinatorial optimization problems with linear costs as well as for problems with bottleneck (or
maximin) costs. We first consider linear objectives.

Combinatorial Optimization Problems with Linear Objectives.

Consider a combinatorial optimization problem X where costs are assumed to be non-negative. Let P(c)
denote the instance of X min (cx: x ∈ F), where F ⊆ {0, 1}n, and where c ≥ 0. We assume that X is closed
under substitution of linear objectives. That is, the instance P(d) = min (dx: x ∈ F) is also an instance of
X so long as c and d have the same number of components and d ≥ 0. Let z(c) denote the optimal
objective value for P(c).

 Suppose that x* is an optimal solution to P(c).

 We are interested in how much the cost coefficients of c can change with x* remaining optimal.
To this end, for each index i and for each k ∈ R, we let denote the vector derived from c as follows: ,i kc

, , if ;
, if .

i k
j

j

k j i
c

c j i
=

=  ≠
 .

For each component i, we define the lower tolerance αi := min { k: k ≥ 0 and x* is optimal for

P()} to be the least non-negative value that the cost of component i can take so that x,i kc * remains
optimal. Similarly, we define the upper tolerance βi to be max { k: x* is optimal for P()}. If x,i kc * is
optimal for P() for all finite values of k, then β,i kc i := ∞.

 The next theorem characterizes the upper and lower tolerances of x* in terms of optimal solution
values for related problems. The theorem is easily established, and we omit the proof.

Theorem 1. Let x* be optimal for P(c), and let i ∈ {1, 2, …, n}. If *

ix = 1, then αi = 0, and
, ,0()i i

i
*z c cβ ∞= − x . If *

ix = 0, then βi = ∞, and . ♦ * ,()i
i cx z cα = − 0

 3

The Shortest Path Problem

We now return to the shortest path problem on an undirected graph G = (N, E). Let and let

. For each edge e ∈ E, denotes the length of edge e. We assume that for all edges e.
We permit costs to be infinite. If S is a subset of edges, then

| |n N=

0≥| |m E= ec ec

∑ ∈
=

Se ecS)(
,e k

c . We let G denote the

graph G = (N, E) in which the cost vector c is replaced by .

,e k

c

 Let *P denote a shortest path from node s to node t in G, and let d(s, t) = c(). In general, let

 be the length of the shortest s-t path in G . We note that if e ∈ P

*P
,0 *, (,)e kd s t ,e k *, then c P . *() ()e

ec P c= −

 If we interpret Theorem 1 in terms of tolerances for the shortest path problem, we get the
following corollary.

Corollary 1. Let be a shortest path in G = (N, E). If *P *e P∈ , then 0=eα , and

. If e , then , *)P(,) (e
e ed s t c cβ ∞= − + *P∉ ∞=eβ and . * ,e

e dα 0 (,)s t()c P= −

 By Corollary 1, the lower tolerance of an edge e *P∈ is 0, and the upper tolerance can be
calculated by solving a single shortest path problem. Also by Corollary 1, the upper tolerance of an edge

 is infinity, and the lower tolerance can be calculated by solving a single shortest path problem.
Thus, we could find all of the edge tolerances by solving at most m shortest path problems.

*e P∉

 In the next sections, we will show how to find all edge tolerances in O(m + |P*| log |P*|) time,
which is nearly a factor of m improvement in running time. We will also show that the problem of
computing all tolerances reduces to the Minimum Cost Interval Problem, as defined in Section 1.

Combinatorial Optimization Problems with Bottleneck Objectives.

 For a given n-vector c, and a 0-1 n-vector x, let c xmin () min{ : 1}.i ic x= = In this subsection, the
vector c denotes a vector of capacities, and cmin(x) is the capacity of solution x.

 Consider the following instance of a bottleneck combinatorial optimization problem Y:
max (cmin(x): x ∈ F), where F ⊆ {0, 1}n, and where cj

 ∈ R ∪ {-∞, ∞} for each j = 1 to n. We assume Y is

closed under substitution of linear objectives, and we let B(c) denote the instance max (cmin(x): x ∈ F).
(Here, we permit all linear objectives, with positive and negative coefficients.) Let v(c) denote the optimal
objective value for B(c). Let x* be an optimal solution to B(c). Analogously to before, we let the lower
tolerance αi and the upper tolerance βi be defined as follows:

αi = min { k : x* is optimal for B }. ,(i kc)

)

))

βi = max { k : x* is optimal for }. ,(i kcB

If x* is optimal for B for all negative values of k, then α,(i kc i = -∞. If x* is optimal for for all
positive values of k, then β

,(i kcB
i = ∞.

 4

The following theorem is analogous to Theorem 1. It can be proved in a straightforward manner, and we
omit the proof.

Theorem 2. Let x* be optimal for B(c), and let i ∈ {1, 2, …, n}. If *

ix = 1, then the following are true:
1. . ,(i

i v cα −∞=)
)

)
2. If x* is optimal for B , then β,(ic ∞

i = ∞.
3. If x* is not optimal for B , then β,(ic ∞

i = c x , *
min ()i ∞

If *

ix = 0, then the following are true:
4. iα = −∞ .
5. If , then β,

min() (iv c c x∞ = *)
*)

i = ∞.
6. If , then β,

min() (iv c c x∞ > i = . *
min ()c x

The Maximum Capacity Path Problem

We now return to the Maximum Capacity Path Problem. We let *P denote a maximum capacity path
from s to t in G.

 The following corollary is a translation of Theorem 2 to the MCP problem.

Corollary 2. Let P* be a maximum capacity path for G = (N, E). If e ∈ P*, then the following are true:

1. and ,(e
e v Gα −∞=)

2. If P* is a maximum capacity path for G ,e ∞ , then βe = ∞;
3. If P* is not a maximum capacity path for G ,e ∞ , then βe is the minimum capacity of an edge of

P*\e.
If e ∉ P*, then the following are true:

4. eα = −∞ ;
5. If P* is a maximum capacity path for G ,e ∞ , then βe = ∞;
6. If P*is not a maximum capacity path for G ,e ∞ ,then, βe = . ♦ *

min ()c P

3. Lower S-P tolerances.

In this section, we show how to determine lower S-P tolerances for all edges in O(m) time. We first give
pseudo-code for the algorithm, and subsequently establish its correctness and running time.

Algorithm 1. Compute Lower S-P Tolerances.
begin

for each e ∈ P*, αe := 0;
determine the shortest path length d(s, i) in G from s to i for all i ∈ N;
determine the shortest path length d(j, t) in G from j to t for all j ∈ N;
for each edge e = (i, j) ∉ P*, αe = c(P*) - min (c(P*), d(s, i) + d(j, t), d(s, j) + d(i, t));

end

 5

 Before establishing the correctness of Algorithm 1, we introduce some more notation.
Let Ts denote a tree of shortest paths from node s to all other nodes, and let Tt be a tree of shortest paths to
node t. Let P(s, i) denote the path in Ts from node s to node i. Let P(j, t) denote the path in Tt from node j
to node t. For any edge (i, j) ∈ E, let W i(,) (,), (,), (,)j P s i i j P j t= , which is the s-t walk obtained by
concatenating , (i, j), and .),(isP)t,(jP

Theorem 3. Algorithm 1 correctly computes the lower S-P tolerances for an undirected network G =
(N, E), and can be implemented to run in O(m) time.

Proof. By Corollary 1, it suffices to show that for edges e ∉ P*,

 = min (c(P,0 (,)ed s t *), d(s, i) + d(j, t), d(s, j) + d(i, t)),

If there is a shortest s-t path in G that does not contain edge e, then = c(P,0e ,0 (,)ed s t *). If there is a
shortest s-t path in that does contain edge e, then = min (d(s, i) + d(j, t), d(s, j) + d(i, t)). ,0eG ,0 (,)ed s t

 Computing d for all requires only that we compute for all nodes i and
that we compute for all nodes j. This requires only two shortest path computations on undirected
networks, which takes O(m) time using the algorithm by Thorup (1997). ♦

,0 (,)e s t
),tj

*(,)e i j P= ∉),(isd
(d

4. Upper tolerances and the Minimum Cost Interval Problem

 In this section, we give an algorithm for computing upper S-P tolerances in G with respect to a
minimum length path P*. We first give pseudo-code for solving the upper tolerance problem. We later
show that the bottleneck step is equivalent to the Minimum Cost Interval Problem.

Algorithm 2. Compute Upper S-P Tolerances.
begin

for each e ∉ P*, βe := ∞;
choose ε > 0 so that for any subsets S and S’ of edges, if c(S) < c(S’) then c(S) + ε < c(S’);2
for each e ∈ P*, let c′e = ce + ε/n2;
for each e ∉ P*, let c′e = ce + ε/n;
let Ts be a tree of shortest paths from node s to all other nodes with respect to

costs c′;
let Tt be a tree of shortest paths to node t from all other nodes with respect to

costs c′;
for each i ∈ N, let P(s, i) denote the path in Ts from s to i;
for each j ∈ N, let P(j, t) denote the path in Tt from j to t;
for each edge e ∈ P*, βe := ce – c(P*) + min (c(W(i, j): (i, j) ∈ E\P*, and e ∉ W(i, j));

end

 We will soon establish the correctness of Algorithm 2. However, we first make a brief comment
on the running time. It might appear that there are four potential bottleneck operations. First of all, there
is the calculation of ε in the second line. Second, there is the calculation of the shortest path trees. Third,

2 The purpose of ε is to perturb the problem so that shortest path P* is unique and such that P* ⊆ Ts ∩ Tt

 6

there is the definition of W(i, j) for all (i,j) ∈ E\P*. Fourth, there is evaluating for all e in P* the following:
min{ .)},(,),(:)),((jiWeandAjijiWc ∉∈

 As for the calculation of ε, this can be accomplished by choosing any positive ε < 1 if all data are
integral. If data is permitted to be irrational, then one can represent the perturbation of costs implicitly as
a second component of the costs, and calculate the shortest path trees using lexicography. The calculation
of the shortest path trees using lexicography is O(m) using the technique of Thorup (1997).

 We also do not directly determine W(i, j). Instead, we show how to determine for all e in P*

min{ (by reducing it to the minimum cost interval problem. This is
accomplished in Theorem 4 below. Thus, it is the calculation of min{
that is the bottleneck step of Algorithm 2.

*(,)) : (,) \ , (,)}c W i j i j E P and e W i j∈ ∉
*((,)) : (,) \ , (,)}c W i j i j E P and e W i j∈ ∉

 We begin proving the correctness of Algorithm 2 with the following lemma concerning the
spanning trees Ts and Tt.

Lemma 1. Suppose that Ts, Tt, P(s, j), and P(j, t) are defined as in Algorithm 2. Then for each edge e ∈

*P , e ∉ P(s, j) ∩ P(j, t).

Proof. We first note that for any two paths P and P′ in G, if c′(P) ≤ c′(P′), then c(P) ≤ c(P′) by our choice
of ε. So Ts and Tt are shortest path trees with respect to c. Moreover, P* ⊆ Ts ∩ Tt.

 Let P(s, j) = P(s, i1), Q1, where i1 is the last node of P* on the path P(s, j). Let P(j, t) = Q2, P(i2, t),
where i2 is the first node of P(j, t) on path P*. Suppose e ∈ P(s, i1) ∩ P(i2, t). In that case, let P′(s, j) =
P(s, i2), Rev(Q2), where Rev(Q2) is obtained from Q2 by visiting the edges in opposite order. Similarly, let
P′(j, t) = Rev(Q1), P(i1, t). Then P′(s, j) is an s-j path, P′(j, t) is a j-t path, and c′(P′(s, j)) + c′(P′(j, t)) <
c′(P(s, j)) + c′(P(j, t)), contradicting that P(s, j) and P(j, t) are both shortest paths with respect to c′. ♦

Theorem 4. Algorithm 2 correctly computes the upper S-P tolerances for an undirected graph G = (N, E).

Proof. By Corollary 1, for each e ∉ P*, βe = ∞. So, we henceforth consider the case that e ∈ P*.

Also, by Corollary 1, it suffices to show the following:

, (,)ed s t∞ = min { , (1) *((,)) : (,) \ , (,)}c W i j i j E P and e W i j∈ ∉

 If there is no s-t path in G\e, then = ∞, and the minimization in the right hand side of (1)
is over the null set, and so (1) is valid.

, (,)ed s t∞

 We now consider the case that eP is some shortest s-t path in G\e with respect to costs c. Since
the length of the shortest s-t path is also the length of the shortest s-t walk, it follows that

, (,)ed s t∞ ≤ min { (*(,)) : (,) \ , (,)}c W i j i j E P and e W i j∈ ∉

We next prove the reverse inequality.

 7

 Let S)},(:{ isPeNi ∉∈= . Let i denote the last node on eP that is also in S, and let j be the
subsequent node on eP . We know that nodes i and j exist because eP is an s-t path, s ∈ S, and t ∉ S.
By assumption, i ∈ S and j ∉ S, and so e ∈ P(s, j). By Lemma 1, e ∉ P(j, t). Because e ∉ eP , it follows
that (i , j) ≠ e. So, e ∉ W(i, j). Path eP is a concatenation of a path from node s to node i, edge (i, j), and
a path from node j to node t. Therefore, c P , completing
the proof. ♦

, () () (, (,) ((,e e ec P d s d j t c W i∞ = ≥ + =) iji))jc+

 Theorem 4 does not generalize to directed graphs. We give a counterexample to the
generalization of Theorem 4 to directed graphs in Figure 1. It is the failure of Theorem 4 to generalize to
directed graphs that, in our opinion, makes it more difficult to compute edge tolerances in directed graphs.

s

1 2

3

t

1
1

1

1 1

5 5

s

1 2

3

t

1
1

1

1 1

5 5

 Figure 1. A counterexample to the directed version of Theorem 4, where e = (1, 2).

 Also, Theorem 4 would not be true if edge costs could be 0 and if we did not require paths to be
shortest paths with respect to the perturbed costs c′. Consider an undirected version of Figure 1 where
each edge has a cost of 0. If we do not require paths to have the fewest number of edge, we can let each
of P(s, 1), P(s, 2), P(s, 3), P(1, t), P(2, t), and P(3, t) contain edge e = (1, 2). In this case, the
minimization in Theorem 1 would be over the empty set.

 We now use Theorem 4 to transform the problem of computing upper tolerances for edges in *P
to the Minimum Cost Interval Problem. We accomplish this in Algorithm 3.

Algorithm 3. Transform SP Upper Tolerance Problem to Min Cost Interval Problem
begin

relabel edges so that P* = e1, e2, …, eK;
let Ts, Tt, P(s, j), P(j, t) be defined as in Algorithm 2;
d(s, j) := c(P(s, j)) for j = 1 to n;
d(j, t) := c(P(j, t)) for j = 1 to n;
for each i ∈ N do

begin
if P(s, i) ∩ P* = ∅, then a(i) := 1; else choose a(i) so that ea(i)-1 is the last edge of P* that is

also on P(s, i);
if P(i, t) ∩ P* = ∅, then b(i) := K; else choose b(i) so that eb(i)+1 is the first edge of P* that is

also on P(i, t);
end

for each edge (i, j) ∉ P* with a(i) ≤ b(j), create an interval [a(i), b(j)] with cost c(W(i, j)) =
d(s, i) + cij + d(j, t);

end

 Given the shortest path trees from Algorithm 2, we can easily compute a(i) in Algorithm 3 for all
nodes i in O(n) time by scanning nodes of Ts in depth first search order. If j is the predecessor of i in Ts,

 8

and if j ∈ *P , then a(i) is the index of the edge following j on *P . If j ∉ *P , then a(i) = a(j). Similarly,
we can compute b(i) for all nodes i in O(n) time by scanning nodes of Tt in depth first search order.

 Because P* ⊆ Ts ∩ Tt, it follows that all edges preceding in P(s, i) and all edges succeeding

on P(j, t) are also on
1)(−iae

1)(+jbe *P .

Theorem 5. For each edge (i, j) ∈ P* with a(i) ≤ b(j), create an interval [a(i), b(j)] with cost c(W(i, j)) =
d(s, i) + cij + d(j, t) as in Algorithm 3. Then the minimum cost of an interval covering k is

, (,)ked s t∞ = min { (. *(,)) : (,) \ , (,)}c W i j i j E P and e W i j∈ ∉

Proof. By Theorem 3 and Algorithm 2, d = . We
will complete the proof by showing that for any edge e

, (,)ke s t∞ *min{ ((,)) : (,) \ (,)}kc W i j i j E P and e W i j∈ ∉

([ak ∈k, we have ek ∉ W(i, j) if and only if .
If e

)](), jbi
k ∈ W(i, j), then ek ∈ P(s, i) or ek ∈ P(j, t) or both. Hence k < a(i) or k > b(j) or both, and thus k ∉

[a(i), b(j)]. Conversely, if ek ∉ W(i, j), then ek ∉ P(s, i) and ek ∉ P(j, t). Hence k > a(i)-1 and k < b(j) + 1,
and thus k ∈ [a(i), b(j)]. ♦

 Let TOL(K, m) denote the time to find the upper and lower tolerances for a shortest path problem
on an undirected graph with m edges and with K edges in the given shortest s-t path. Let INT(q, r) denote
the time to solve the Minimum Cost Interval Problem over r intervals with endpoints in {1, ..., q}. The
next theorem states the computational equivalence of the Minimum Cost Interval Problem and the
problem of finding upper and lower tolerances for a shortest path problem on an undirected graph.

Theorem 6. Suppose that m ≥ n. Then TOL(K, m) = O(INT(K, m)), and INT(q, r) = O(TOL(q, r)).

Proof. Theorems 3 and 4 show that computing the tolerances of edges not on *P requires the
computation of two shortest path problems, and this takes O(m) time (Thorup (1997)). Theorems 1 and 5
show that the additional time to compute tolerances of edges on *P is O(INT(K, m)). Therefore TOL(K,
m) = O(INT(K, m)).

 Now suppose that r ≥ q, and consider the Minimum Cost Interval Problem in which the intervals
are [a(i), b(i)], with cost d(i). Without loss of generality, assume that there is at most one interval with
endpoints i and j for all i and j. If there is an interval [j, j], let zj denote its cost. Otherwise, let zj = ∞. We
create a tolerance problem as follows. We create a graph G = (N, E), with q + 1 nodes, where the source
node is node 1, and the sink node is node q+1. Let P* be the path 1, 2, ..., q+1, and suppose that each
edge of P* has a cost of 0. Let ei denote the edge (i, i+1). For each i = 1 to r with a(i) ≠ b(i), there is an
edge er+i = (a(i), b(i)+1) with a cost of d(i). If an interval i is such that a(i) = b(i), we call it a zero length
interval. We do not create edges in G corresponding to zero-length intervals.

 Let βj denote the upper tolerance of edge ej in G. The minimum cost of an interval covering j is

, which we will show is equal to min { βmin(() : [(), ()])d i j a i b i∈

))(,1(iaPe j ∉ j

j, zj}. If j ∈ [a(i), b(i)] and a(i) ≠ b(i) then
, and , and so (() 1, 1)e P b i q∉ + +)1)(),((+∉ ibiaWj

(() 1,je P b i

e . Similarly, if j ∉ [a(i), b(i)], then
either j < a(i), and or else j > b(i), and))(,1(iaPe j ∈ 1)q∈ +

)1)(),((
+ . So, j is contained in a nonzero

length interval [a(i), b(i)] if and only if +∉ ibiaWe j . By Theorem 5, the cost of a minimum cost

 9

nonzero length interval covering j is the upper tolerance of ej in G. This establishes that INT(q, r) =
O(TOL(q+1, q+r)). However, since the tolerance problem can be solved in polynomial time and since
q ≤ r by assumption, it follows that TOL(q+1, q+r) = O(TOL(q, r)), and accordingly INT(q, r) =
O(TOL(q, r)). ♦

5. Solving the Minimum Cost Interval Problem.

Here we provide an O(r + q log q) algorithm for solving the Minimum Cost Interval Problem. Shigeno
and Uno (2002) independently solved the Minimum Cost Interval Problem with the same running time.

 Let F denote a set of r intervals. Let cij denote the cost of the interval [i, j] for each [i, j] ∈ F.
The minimum cost of an interval covering integer l is g(l) = min { cij : i ≤ l ≤ j}. Let fk(j) =
min { cij : 1 ≤ i ≤ k }. Then g(k) = min { fk(j) : k ≤ j ≤ q}. Moreover, for each k and for each j, fk(j) =
min {fk-1(j), ckj}.

The following algorithm computes the minimum cost of each interval.

Algorithm 4. The Minimum Cost Interval Algorithm
begin

for j =1 to q, f(j) = min {c1j ,∞};
g(1) := min{ f(j): j = 1 to q};
for k = 2 to q do
begin
 for j = k to q do f(j) = min {f(j), ckj};
 g(k) = min{ f(j): j = k to q};
end

end

 The first “for loop” computes f1(j) for each j. When the index is k, the second “for loop”
computes fk(j) for each j. The correctness of the algorithm follows from the fact that minimum cost of an
interval covering integer k is min {fk(j): j = k to q}.

 The algorithm can be implemented in O(r + q log q) using Fredman and Tarjan’s (1984)
Fibonacci Heap. At each iteration, we store the values of f(⋅) in the heap. To initialize the heap takes
O(q) steps. To update the heap in the line “f(j) = min {f(j), ckj}” takes O(r) steps in total since each
interval causes f to either stay the same or decrease, and the decrease operation takes O(1) steps. Finally,
there are q operations of finding the min and q options of deleting f(k) at the end of iteration k. Each of
these operations takes O(log q) time using Fibonacci Heaps.

We state our conclusions in the next theorem.

Theorem 7. A Fibonacci Heap implementation of Algorithm 4 solves the Minimum Cost Interval
Problem in O(r + q log q) steps. ♦

6. Upper Tolerances for the Maximum Capacity Path Problem

In this section, we return to the Maximum Capacity Path Problem on a network G = (N, E) , where ce

denotes the capacity of edge e ∈ E.

 10

 The MCP problem arises in several domains. For example, one method for implementing the
augmenting path algorithm for the maximum flow problem is to send flow along a path with maximum
capacity. This was first analyzed by Edmonds and Karp (1972). Additional details can be found in Ahuja
et. al., (1993). The maximum augmenting path problem is mathematically equivalent to the bottleneck
shortest path problem. An example of the bottleneck shortest path problem is the problem of finding a
path from s to t such that the minimum reliability of an edge is maximized.

Let *P denote a maximum capacity path from s to t in G. We next use the results of Corollary 2 to
provide algorithms for computing the upper tolerances of all edges in O(m) time.

Algorithm 5. Compute Upper MCP tolerances for edges not in P*
begin

H := {a ∈ E: ca > cmin(P*)};
let GH denote the graph (N, H);
let S be the nodes in the same connected component as s in GH;
let T be the nodes in the same connected component as t in GH;
for each edge e = (i, j) ∈ E\P* do

if i ∈ S and j ∈ T or if i ∈ T and j ∈ S, then βe = cmin(P*); else βe = ∞;
end

Algorithm 6. Compute Upper MCP tolerances for edges in P*.
begin

for each e ∈ P* such that ce ≠ cmin(P*), βe = ∞;
let e’ be any minimum capacity edge in P*;
let H := {a ∈ E: ca > cmin(P*\e’) };
let GH denote the graph (N, H);
let S be the nodes in the same connected component as s in GH;
let T be the nodes in the same connected component as t in GH;
for each e = (i, j) ∈ P* such that ce = cmin(P*) do;

begin
if i ∈ S and j ∈ T or if i ∈ T and j ∈ S, then βe = cmin(P*\e′);
else βe = ∞;

end
end

Theorem 8. Algorithm 5 correctly computes the upper MCP tolerances for edges not in P*. Algorithm 6
correctly computes the upper MCP tolerances for edges in P*. Each algorithms can be implemented to run
in O(m) time.

Proof. For each edge e = (i, j) ∉ P*, Algorithm 5 determines whether there is an s-t path in G whose
capacity exceeds c

,e ∞

min(P*), and sets βe correctly using the results of Corollary 2.

 For each edge e = (i, j) ∈ P* with ce > cmin(P*), Algorithm 6 sets βe = ∞, as per Corollary 2. We
now consider each edge e = (i, j) ∈ P* with ce = cmin(P*). The capacity of P* in G is c,e ∞

min(P*\e), which is
the second smallest capacity of an edge of P*. Algorithm 6 determines if P* is a maximum capacity path
in G by checking whether there is some path with capacity greater than c,e ∞

min(P*\e), and then sets sets βe
correctly using the results of Corollary 2.

 For Algorithms 5 and 6, determining H and the connected components takes O(m) time, as does
computing cmin(P*\e), completing the proof. ♦

 11

7. Efficient Computation of Lower Tolerances for the MCP Problem

In this section, we compute lower tolerances for edges e ∈ P*. Our results rely on a close connection
between maximum capacity paths and the maximum capacity spanning tree.

 The maximum capacity spanning tree (MST) problem for G is to find a spanning tree T for which

 is maximum. We will refer to an optimum solution as a maximum capacity spanning tree. ee T
c

∈∑

 The following lemma is easily established, and is well known.

Lemma 2. Let T denote a maximum capacity spanning tree of G = (N, E). For any pair of nodes i
and j, the path in T from i to j is a maximum capacity path from i to j in G. ♦

*

*

 Henceforth, we let T denote some maximum capacity spanning tree of G. We let b(s, j) denote the
capacity of the path in T from s to j, and we let b(j, t) denote the capacity of the path in T from j to t.

*

* *

 The tree T can be calculated in linear time via a randomized algorithm as per the technique of
(Karger et. al., 1995). The best deterministic algorithm for computing the minimum cost spanning tree is
due to Gabow et. al., (1984), and the running time is O(m

*

(,)f n m), where (,)f n m =
. The values b(s, j) and b(j, t) can be computed for all j in an additional O(n) time.

The notation b was selected since the maximum capacity of a path is the capacity of its "bottleneck" edge.
)log:min()(nni i ≤ /m

 The following algorithm computes lower tolerances in G. We will subsequently prove its
correctness and show how its running time reduces to that of finding a maximum capacity spanning tree
and solving an instance of the Minimum Cost Interval Problem.

Algorithm 7. Compute Lower MCP Tolerances
begin

for each e ∉ P*, αe = -∞;
let T* be a maximum capacity spanning tree;
for each edge e∈ P*\T*, αe = cmin(P*);
let P(i, j) denote the path in T* from node i to node j;
let b(i, j) = cmin(P(i, j)) denote the capacity of the path from i to j;
for each e ∈ P* ∩ T*, αe = max{ (min(b(s, i), cij, b(j, t)) : (i, j) ≠ e, and T* + (i, j) – e is a tree };

end

Theorem 9. The algorithm Compute Lower MCP Tolerances correctly computes the lower tolerances of
capacities in the network G = (N, E), given a maximum capacity s-t path P*.

Proof. For each edge e ∉ P*, αe = -∞ by Corollary 2. Also by Corollary 2, for each edge e ∈ P*, αe is the
maximum capacity of a path in Ge,-∞, which is denoted as ,(ev c)−∞ . If e ∈ P* and e ∉ T*, then by Lemma
2, P(s, t) is a maximum capacity path in G, and thus it is also a maximum capacity path in Ge,-∞. It
follows that αe = cmin(P*).

 If e ∈ P* ∩ T* and if there is no path in G\e from s to t, then Algorithm 7 correctly sets αe to -∞ as
there is no arc (i, j) ≠ e for which T + (i, j) – e is a tree.

 12

 Finally we consider edges e ∈ P* ∩ T* such that there is a path in G\e from s to t. For each edge
(i, j) ∉ T*, let W(i, j) = P(s, i), (i, j), P(j, t), which is a walk from s to t containing edge (i, j). If W(i, j)
contains edge e, then c W . Otherwise Since

W(i, j) contains a path from s to t whose capacity is at least as great as , it follows that

,
min ((,))e i j−∞ = −∞ ,

min ((,)) min((,), , (,)).e
ijc W i j b s i c b j t−∞ =

min ((,))c W i j

,(ev c −∞) ≥ min{b(s, i), cij, b(j, t)) : W(i, j) does not contain edge e}.

 Moreover, W(i, j) does not contain edge e precisely when T* + (i, j) – e is a tree. Therefore,

αe ≥ max{ (min(b(s, i), cij, b(j, t)) : T* + (i, j) – e is a tree }.

 We now prove the reverse inequality in the case when e ∈ P* ∩ T* and there is a path from s to t
in G\e. Let P′ be a maximum capacity s-t path in Ge,-∞. Let Se denote the nodes in T*\e in the same
component as s. Then N\Se are the nodes of T*\e in the same component as t. Then P′ contains some edge
(i, j) with i ∈ Se, and j ∉ Se. Also, e ∉ P′. So T* + (i, j) – e is a tree. Moreover,

, with the latter inequality following from the fact that the path
in P′ from s to i has capacity at most b(s, i) from Lemma 2, and the path in P′ from j to t has capacity at
most b(j, t). We conclude that

,
min min() () min((,), , (,))e

ijc P c P b s i c b j t−∞ ′ ′= ≤

αe = cmin(P′) ≤ max{ (min(b(s, i), cij, b(j, t)) : T* + (i, j) – e is a tree },

and so the theorem is proved. ♦

 We now use Theorem 9 to transform the problem of computing tolerances for edges in *P to the
Maximum Cost Interval Problem. This is equivalent to the Minimum Cost Interval Problem except that
we want to determine the maximum cost interval containing k for each k = 1 to q. Our transformation is
very similar to the one contained in Algorithm 3.

 Let T* be the maximum capacity spanning tree. For each node i ∉ N, recall that P(s, i) is a
maximum capacity path from s to i in T , and P(j, t) is a maximum capacity path from j to t in T We
assume that the edges of E are ordered so that P(s, t) ∩ P

* *.
* consists of the edges e e in the order

that they appear on the path P(s, t). For each node i, if
1 2, ,..., re

*P has no edge in common with P(s, i), then let
a(i) = 1. Otherwise, let denote the highest index edge of P(s, t) ∩ P1)(−iae * that is also on P(s, i). If *P

has no edge in common with P(j, t), then let b(j) = r. Otherwise, let denote the least index edge of
P(s, t) ∩ P

1)(+jbe
* that is also on P(j, t). We can compute a(i) and b(i) for all i ∈ N in O(n) time in a similar

manner to the way indices are computed for Algorithm 3.

Lemma 3. Consider the Maximum Cost Interval Problem, defined as follows:

For each edge (i, j) ∉ *P , with a(i) ≤ b(j), there is an interval [a(i), b(j)] with cost . Then the
minimum cost of an interval covering k is

min ((,))c W i j

,(kev c −∞) = max (cmin(W(i, j) : ek ∉ W(i, j)).

Proof. Essentially the same as the proof of Theorem 4. ♦

 13

 We let TOLCAP(K, m) denote the time to find tolerances for the maximum capacity path
problem, where K is the number of arcs of the given path. Let MST(n, m) be the time to solve a minimum
cost spanning tree problem on n nodes and m edges.3

Theorem 10. Suppose that m ≥ n. Then TOLCAP(K, m) = O(INT(K, m) + MST(n, m)). Moreover,
INT(r, q) = O(TOLCAP(r, q)).

Proof. The proof that TOLCAP(K, m) = O(INT(K, m) + MST(n, m)) relies on the fact that one can
compute tolerances by solving a maximum cost interval problem and by finding a maximum cost
spanning tree. The other details are the same as in the proof of Theorem 6.

 Now suppose that r ≥ q, and consider the Maximum Cost Interval Problem in which the intervals
are [a(i), b(i)], with cost d(i). The proof relies on the same construction as in the proof of Theorem 6,
except that here *P is a path 1, 2, ..., q + 1, where each edge of the path has a capacity of M > dmax. ♦

8. Summary and conclusion

In this paper we have considered sensitivity analysis questions for the shortest s-t path (SP) and maximum
capacity s-t path (MCP) problems and presented algorithms for answering these questions that are far
superior to successive reoptimization. Table 1 summarizes our contribution.

Table 1. Summary of results

 Problem Complexity

1

Minimum [Maximum] cost interval INT(r, q) = O(r + q log q)

 Shortest path sensitivity
2 Lower tolerances of edges O(m)
3 Upper tolerances of edges O(INT(n, m)) = O(m + n log n)
 Maximum capacity path sensitivity
4 Lower tolerances of edges O(MST(n, m) + INT(n, m)) = O(m + n log n)
5 Upper tolerances of edges O(m)

 Some open questions include the following. (1) What is the computational complexity for the
sensitivity analysis questions addressed in this paper if one permits negative cost edges in the SP, but no
negative cost cycle? (2), What is the computational complexity for the sensitivity analysis questions
addressed in this paper if considers directed rather than undirected graphs? (Some partial results have
recently been obtained by Hershberger et al. (2003)) and (3) Are there superior algorithms for solving the
Minimum Cost Interval Problem?

Acknowledgments

3 The maximum capacity spanning tree is mathematically equivalent to the minimum cost spanning tree problem,
and so has the same running time.

 14

This work was supported in part by Office of Naval Research grant ONR N00014-98-1-0317. We thank
Dan Stratila and two anonymous referees for their numerous suggestions leading to improvements in
exposition.

References

Ahuja R., T. Magnanti and J. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications, Prentice-

Hall, Englewood Cliffs, NJ.

Banerjee, S, and S. Saxena. 1997. Parallel algorithm for finding the most vital edge in weighted graphs.
Journal of Parallel and Distributed Computing 46, 101-104.

Bar-Noy, A., S. Khuller, and B. Schieber. 1995. The complexity of finding most vital edges and nodes.
Technical Report CS-TR-3539, University of Maryland Institute for Advanced Studies, College Park.

Booth H. and J. Westbrook. 1994. A linear algorithm for analysis of minimum spanning and shortest path
trees of planar graphs. Algorithmica 11, 341-352.

Edmonds J. and R. M. Karp. 1972. Theoretical improvements in algorithmic efficiency for network flow
problems. Journal of the ACM, 19, 248-264.

Fredman, M.L., and R.E. Tarjan 1984. Fibonacci heaps and their uses in improved network optimization

algorithms, Proceedings of the 25th Annual IEEE Symposium on the Foundation of Computer
Science, 338-446. Full paper in Journal of the ACM 34 (1987) 596-615.

Gabow H. N., Z. Galil, and T.H. Spencer. 1984. Efficient implementations of graph algorithms using

contraction. Proceedings of the 25th Annual Symposium on the Foundations of Computer Science
(FOCS '84), 347-357.

Gal. T. 1995. Sensitivity Analysis, Parametric Programming, and Related Topics: Degeneracy,

Multicriteria Decision Making, Redundancy W.deGruyter, Berlin and New York.

Gal, T. and H. J. Greenberg (eds.). 1997. Advances in Sensitivity Analysis and Parametric Programming.

Volume 6 of International Series in Operations Research and Management Science, Kluwer Academic
Publishers, Boston.

Greenberg H. J. 1998. An annotated bibliography for post-solution analysis in mixed integer programming
and combinatorial optimization, in D. Woodruff (Ed.), Advances in Computational and Stochastic
Optimization, Logic Programming, and Heuristic Search, Kluwer Academic Publishers, 97-148.

Hershberger, J. and S. Suri. 2001. Vickrey prices and shortest paths: What is an edge worth? In Proc.
42nd Annu. IEEE Symp. Found. Comput. Sci., pages 252–259, 2001.

Hershberger, J. and S. Suri. 2002. Erratum to “Vickrey prices and shortest paths: What is an edge worth?”
Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02),
809-810.

Hershberger, J. and S. Suri, and A. Bhosle 2003. On the difficulty of some shortest path problems.
Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS 2003), 343-
354.

Hsu, L. H., R.H. Jan, Y.C. Lee, C.N. Hung, and M.S. Chern. 1991. Finding the most vital edge with
respect to minimum spanning tree in weighted graphs. Information Processing Letters 39, 277-281.

 15

 16

Hsu, L.H., P.F. Wang, and C.T. Wu. 1992. Parallel algorithms for finding the most vital edge with respect
to minimum spanning tree. Parallel Comput. 18, 1143-1155.

Karger D. R., P. N. Klein, and R. E. Tarjan. 1995. A randomized linear-time algorithm to find minimum
spanning trees. Journal of the ACM, 42, 321-328.

Malik, K., A.K. Mittal, and S.K. Gupta. 1989. The k most vital edges in the shortest path problem.
Operations Research Letters 8, 223-227.

Ramaswamy R. 1994. Sensitivity Analysis in Combinatorial Optimization. Unpublished Fellow Programme
dissertation, Indian Institute of Management Calcutta, India.

Shier D. R. and C. Witzgall. 1980. edge tolerances in shortest path and network flow problems. Networks
10, 277.

Shigeno, M, and T. Uno. 2002. Personal Correspondence.

Tarjan R.E. 1982. Sensitivity Analysis of Minimum Spanning Trees and Shortest Path Trees. Information
Processing Letters 14, 30-33.

Tarjan R. E. 1984. A simple version of Karzanov’s blocking flow algorithm. Operations Research Letters
2, 265-268.

Thorup M. 1997. Undirected Single Source Shortest Paths in Linear Time. Proceedings of the 38th Annual
Symposium on the Foundations of Computer Science (FOCS '97).

Venema, S., H. Shen and F. Suraweera. 1996. NC Algorithms for the Single Most Vital Edge Problem
with Respect to Shortest Paths, Information Processing Letters 60, 243-248.

	Ramkumar Ramaswamy
	Nilopal Chakravarti
	Introduction.
	Upper and Lower Tolerances for Combinatorial Optimization Problems.
	Lower S-P tolerances.
	Upper tolerances and the Minimum Cost Interval Problem
	Solving the Minimum Cost Interval Problem.
	Upper Tolerances for the Maximum Capacity Path Problem
	Efficient Computation of Lower Tolerances for the MCP Problem
	Summary and conclusion
	References

