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Exact and Heuristic Algorithms for the Weapon Target Assignment Problem 

Ravindra K. Ahuja*, Arvind Kumar*, Krishna C. Jha*, and James B. Orlin** 

 

Abstract 

The Weapon Target Assignment (WTA) problem is a fundamental problem arising in defense-related 
applications of operations research. This problem consists of optimally assigning n weapons to m targets 
so that the total expected survival value of the targets after all the engagements is minimum. The WTA 
problem can be formulated as a nonlinear integer programming problem and is known to be NP-complete. 
There do not exist any exact methods for the WTA problem which can solve even small size problems 
(for example, with 20 weapons and 20 targets). Though several heuristic methods have been proposed to 
solve the WTA problem, due to the absence of exact methods, no estimates are available on the quality of 
solutions produced by such heuristics. In this paper, we suggest linear programming, integer 
programming, and network flow based lower bounding methods using which we obtain several branch 
and bound algorithms for the WTA problem. We also propose a network flow based construction 
heuristic and a very large-scale neighborhood (VLSN) search algorithm. We present computational 
results of our algorithms which indicate that we can solve moderately large size instances (up to 80 
weapons and 80 targets) of the WTA problem optimally and obtain almost optimal solutions of fairly 
large instances (up to 200 weapons and 200 targets) within a few seconds. 
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1.  Introduction 

The Weapon-Target Assignment (WTA) problem is a fundamental problem arising in defense-
related applications of operations research. The problem consists of optimally assigning weapons to the 
enemy-targets so that the total expected survival value of the targets after all the engagements is 
minimized. There are two versions of the WTA problem: static and dynamic. In the static version, all the 
inputs to the problem are fixed; that is, all targets are known, all weapons are known, and all weapons 
engage targets in a single stage. The dynamic version of the problem is a multi-stage problem where some 
weapons are engaged at the targets at a stage, the outcome of this engagement is assessed and strategy for 
the next stage is decided. In this paper, we study the static WTA problem; however, our algorithms can be 
used as important subroutines to solve the dynamic WTA problem. 

We now give a mathematical formulation of the WTA problem. Let there be n targets, numbered 
1, 2, …, n, and m weapon types, numbered 1, 2, …, m. Let Vj denote the value of the target j, and Wi 
denote the number of weapons of type i available to be assigned to targets. Let pij denote the probability 
of destroying target j by a single weapon of type i. Hence qij=1 - pij denotes the probability of survival of 
target j if a single weapon of type i is assigned to it. Observe that if we assign xij number of weapons of 

type i to target j, then the survival probability of target j is given by . A target may be assigned 

weapons of different types. The WTA problem is to determine the number of weapons x

ijx




ijq

ij of type i to be 
assigned to target j to minimize the total expected survival value of all targets. This problem can be 
formulated as the following nonlinear integer programming problem: 

 Minimize                           (1a) 1
xijmn

jj iji 1V q= =


 

∑ ∏

subject to 

 1
n

ij ij x W= ≤∑ ,      for all i = 1, 2, …, m,                             (1b) 

 ijx ≥ 0 and integer, for all i = 1, 2, …, m, and for all j = 1, 2, …, n.               (1c) 

In the above formulation, we minimize the expected survival value of the targets while ensuring 
that the total number of weapons used is no more than those available. This formulation presents a 
simplified version of the WTA problem. In more practical versions, we may consider adding additional 
constraints, such as (i) lower and/or upper bounds on the number of weapons of type i assigned to a target 
j; (ii) lower and/or upper bounds on the total number of weapons assigned to target j; or (iii) a lower 
bound on the survival value of the target j. The algorithms proposed in this paper can be easily modified 
to handle these additional constraints.   

Research on the WTA problem dates back to the 1950s and 1960s where the modeling issues for 
WTA problem were investigated (Manne [1958], Braford [1961], Day [1966]). Lloyd and Witsenhausen 
[1986] established the NP-completeness of the WTA problem. Exact algorithms have been proposed to 
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solve the WTA problem for the following special cases: (i) when all the weapons are identical 
(DenBroder et al. [1958] and Katter [1986]) or (ii) when the targets can receive at most one weapon 
(Chang et al. [1987] and Orlin [1987]). Some of the heuristics proposed to solve the WTA problem are 
based on nonlinear network flow (Castanon et al. [1987]), neural networks (Wacholder [1989]), and 
genetic algorithms (Grant et al. [1993]). Green et al. [1997] applied a goal programming-based approach 
to the WTA problem. Metler and Preston [1990] have studied a suite of algorithms for solving the WTA 
problem efficiently, which is critical for real-time applications of the WTA problem. Maltin [1970], 
Eckler and Burr [1972] and Murphey [1999] provide comprehensive reviews of the literature on the WTA 
problem. Research to date on the WTA problem either solves the WTA problem for special cases or 
develops heuristics for the WTA problem. Moreover, since no exact algorithm is available to solve the 
weapon target assignment problems, it is not known how accurate are the solutions obtained by these 
heuristic algorithms.   

In this paper, we propose several exact and heuristic algorithms to solve the WTA problem. Our 
branch and bound algorithms are the first implicit enumeration algorithms that can solve moderately size 
instances of the WTA problem optimally. We also propose heuristic algorithms which generate almost 
optimal solutions within a few seconds. Our paper makes the following contributions: 

 We formulate the WTA problem as an integer linear programming problem, that is, as a generalized 
integer network flow problem on an appropriately defined network.  The linear programming 
relaxation of this formulation gives a lower bound on the optimal solution of the WTA problem. We 
describe this formulation in Section 2.1. 

 We propose a minimum cost flow formulation that yields a different lower bound on the optimal 
solution of the WTA problem. This lower bound is, in general, not as tight as the bound obtained by 
the linear programming formulation described above but it can be obtained in much less 
computational time. We describe this formulation in Section 2.2. 

 We propose a third lower bounding scheme in Section 2.3 which is based on simple combinatorial 
arguments and uses a greedy approach to obtain a lower bound. 

 We develop branch and bound algorithms to solve the WTA problem employing each of the three 
bounds described above. These algorithms are described in Section 3.  

 We propose a very large-scale neighborhood (VLSN) search algorithm to solve the WTA problem. 
The VLSN search algorithm is based on formulating the WTA problem as a partition problem. The 
VLSN search starts with a feasible solution of the WTA problem and performs a sequence of “cyclic 
and path exchanges” to improve the solution. We describe in Section 4 a heuristic method that 
obtains an excellent feasible solution of the WTA problem by solving a sequence of minimum cost 
flow problems, and then uses a VLSN search algorithm to iteratively improve this solution. 

 We perform extensive computational investigations of our algorithms and report these results in 
Section 5. Our algorithms solve moderately large size instances (up to 80 weapons and 80 targets) of 
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the WTA problem optimally and obtain almost optimal solutions of fairly large instances (up to 200 
weapons and 200 targets) within a few seconds. 

2.  Lower-bounding Schemes  

 In this section, we describe four lower bounding schemes for the WTA problem, using linear 
programming, integer programming, minimum cost flow problem, and a combinatorial method. These 
four approaches produce lower bounds with different values and have different running times.  

2.1  A Lower Bounding Scheme using an Integer Generalized Network Flow Formulation 

In this section, we formulate the WTA problem as an integer-programming problem with a 
convex objective function value. This formulation is based on a result reported by Manne [1958] who 
attributed it to Dantzig (personal communications).  

In formulation (1), let sj = 1
xijm

i ijq=∏ . Taking logarithms on both sides, we obtain, log(sj) = 

1
( )ij iji

m x log q
=∑ or -log(sj) = ( ( ij )m

1
)iji

x log q−

1

m
ij iji

d x
=

=∑ . Let yj = -log(sj) and dij = -log(qij). Observe that since 0 

≤ qij ≤ 1, we have dij  ≥ 0. Then yj = ∑ . Also observe that 1
xijm

i ijq=∏ = . By introducing the 

terms d and y

j2 y−

ij j in formulation (1), we get the following formulation: 

Minimize                      (2a) 
1

jn y
jj

V 2−

=∑

subject to 

∑ =

n

j ijx
1

  ≤ Wi  for all i = 1, 2, ..., m,                  (2b) 

∑=

m

i ijij xd
1

 = yj  for all j = 1, 2, ..., n,                  (2c) 

ijx  ≥ 0 and integer for all i = 1,..., m and for all j = 1,..., n,                (2d) 

yj ≥ 0    for all j = 1, 2, ..., n.                  (2e) 

Observe that (2) is an integer programming problem with separable convex objective functions. 
This integer program can also be viewed as an integer generalized network flow problem with convex 
flow costs. Generalized network flow problems are flow problems where flow entering an arc may be 
different than the flow leaving the arc (see, for example, Ahuja, Magnanti, and Orlin [1993]). In a 
generalized network flow problem, each arc (i,j) has an associated multiplier γij and the flow xij becomes 
γijxij as it travels from node i to node j. The formulation (2) is a generalized network flow problem on the 
network shown in the Figure 1. We give next some explanations of this formulation. 
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Weapons Targets 

 

 The network contains m weapon nodes, one node corresponding to each weapon type. The supply 
at node i is equal to the number of weapons available, Wi, for the weapon type i. The network contains n 
target nodes, one node corresponding to each target. Further,  there is one sink node t whose demand 
equals the sum of all supplies. The supplies/demands of target nodes are zero. We now describe the arcs 
in the network. The network contains an arc connecting each weapon node to each target node. The flows 
on these arcs are given by xij, representing the number of weapons of type i assigned to the target j. The 
multipliers for these arcs are dij’s. Since there is no cost coefficient for xij’s in the objective function, the 
cost of flow on these arcs is zero. The network contains an arc from each of the target nodes to the sink 

node t. The flow on arc (j, t) is given by yj and the cost of flow on this arc is Vj .2 jy−  Finally, there is a 
loop arc (t, t) incident on node t with multiplier ½. An appropriate flow on this arc is sent so as to satisfy 
the mass balance constraints at node t. 

In formulation (2), the cost of the flow in the network equals the objective function (2a); the mass 
balance constraints of weapon nodes are equivalent to the constraint (2b); and mass balance constraints of 
target nodes are equivalent to the constraint (2c). It follows that an optimal solution of the above 
generalized network flow problem will be an optimal solution of the WTA problem. 

The generalized network flow formulation (2) is substantially more difficult than the standard 
generalized network flow problem (see, Ahuja et al. [1993]) since the flow values xij’s are required to be 
integer numbers (instead of real numbers) and the costs of flows on some arcs is a convex function 
(instead of a linear function). We will approximate each convex function by a piecewise linear convex 
function and relax the integer flows by real-valued flows so that the optimal solution of the modified 
formulation gives a lower bound on the optimal solution of the generalized formulation (2). 

We consider the cost function V 2 jy
j

− at values yj that are integer multiples of a parameter p > 0, 

and draw tangents of V 2 at these values. Let Fjy−
j j(p, yj) denote the upper envelope of these tangents. It is 

: 

1  W1   1 

2  W2 2 

m n

t
xij i 

: 
j
: 1/2 yj 

dij   W3 

:
Wm 

Figure 1. Formulating the WTA problem as an integer  
generalized network flow problem. 
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easy to see that the function Fj(p, yj) approximates V 2 jy
j

− from below and for every value of yj provides a 

lower bound on V 2  Figure 2 shows an illustration of this approximation. .j

4 5
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Figure 2: Approximating a convex function by a lower envelope of linear segments. 

Thus, in formulation (2) if we replace the objective function (2a) by the following objective 
function: 

1
( , )n

j jj
F p y

=∑ ,                  (2a′) 

we obtain a lower bound on the optimal objective function of (2a). Using this modified formulation, we 
can derive lower bounds in two ways: 

LP Based Lower Bounding Scheme: Observe that the preceding formulation is still an integer 
programming problem because are flows xij’s are required to be integer valued. By relaxing the integrality 
of the xij’s, we obtain a mathematical programming problem with linear constraints and piecewise linear 
convex objective functions. It is well-known (see, Murty [1976]) that linear programs with piecewise 
linear convex functions can be transformed to linear programs by introducing a variable for every linear 
segment. We can solve this linear programming problem to obtain a lower bound for the WTA problem. 
Our computational results indicate the lower bounds generated by this scheme are not very tight. 
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MIP Based Lower Bounding Scheme: In this scheme, we do not relax the integrality of the xij’s, which 
keeps the formulation to be an integer programming formulation. We, however, transform the piecewise 
linear convex functions to linear cost functions by introducing a variable for every linear segment. We 
then use cutting plane methods to obtain a lower bound on the optimal objective function value. We have 
used the built-in routines in the software CPLEX 8.0 to generate Gomory and mixed integer rounding cuts 
to generate fairly tight lower bounds for the WTA problem. 

We summarize the discussion in this section as follows: 

Theorem 1. Both the LP and MIP based lower bounding schemes give a lower bound on the optimal 
objective function value for the WTA problem. 

2.2  A Minimum Cost Flow Based Lower Bounding Scheme 

The objective function of the WTA problem can also be interpreted as maximizing the expected 
damage to the targets. In this section, we develop an upper bound on the expected damage to the targets. 

Subtracting this upper bound on the expected damage from the total value of the targets (that is, ) 

will give us a lower bound on the minimum survival value. We will formulate the problem of maximizing 
the damage to targets as a maximum cost flow problem. We show the underlying network G for the 
maximum cost flow formulation in Figure 3. 

1=∑ ii Wm

m
ii=1

- W∑

arc capacity = 1 
arc cost = c(i, jk)

arc capacity = 1 
11 arc cost = c(jk, t) 

12W1 1 

13 

21

22W2  2 t 

23

31

3 W3 32

33

Weapons Targets

Figure 3. A network flow formulation of the WTA problem. 
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This network has three layers of nodes. The first layer contains a supply node i for every weapon 
type i with supply equal to Wi. We denote these supply nodes by the set N1. The second layer of nodes, 
denoted by the set N2, contains nodes corresponding to targets, but each target j is represented by several 
nodes j1, j2,…, jk, where k  is the maximum number of weapons that can be assigned to target j. A node jp 
represents the pth weapon striking the target j. For example, the node labeled 31 represents the event of the 
first weapon being assigned to target 3, the node labeled 32 represents the event of the second weapon 
being assigned to target 3, and so on. All nodes in the second layer have zero supplies/demands. Finally, 

the third layer contains a singleton node t with demand equal to 
1 ii
W

=

m∑ . 

We now describe the arcs in this network. The network contains an arc (i, jk) for each node i∈N1 
and each node jk∈N2; this arc represents the assignment of a weapon of type i to target j as the kth 
weapon. This arc has a unit capacity. This network also contains an arc (jk, t) with unit capacity for each 
node jk∈N2. 

 We call a flow x in this network a “contiguous flow” if it satisfies the property that if x(i,jk) = 1, 
then x(i,jl) = 1 for all l=1,2,…,k-1. In other words, the contiguous flow implies that a weapon i is assigned 
to target j as the kth weapon provided that (k-1) weapons have already been assigned to it. The following 
result directly follows from the manner we have constructed the network G:  

Observation 1. There is one-to-one correspondence between feasible solutions of the WTA problem and 
contiguous flows in G. 

While there is a one-to-one correspondence between feasible solutions, it is not a cost preserving 
correspondence if we require costs to be linear. We instead provide linear costs that will overestimate the 
true non-linear costs.  We define our approximate costs next. 

 The arc (i, jk) represents the assignment of a weapon of type i to target j as the kth weapon. If k = 
1, then the cost of this arc is the damage caused to the target: 

c(i, j1) = Vj(1-qij)                                                  (3) 

which is the difference between the survival value of the target before strike (Vj) and the survival value of 
the target after strike (Vjqij). Next consider the cost c(i, j2) of the arc (i, j2) which denotes the change in the 
survival value of target j when weapon i is assigned to it as the second weapon. To determine this, we 
need to know the survival value of target j before weapon i is assigned to it. But this cost depends upon 
which weapon was assigned to it as the first weapon. The first weapon striking target j can be of any 
weapon type 1,2,…,m and we do not know its type a priori. Therefore, we cannot determine the cost of 
the arc (i, j2). However, we can determine an upper bound on the cost of the arc (i, j2). We will next derive 
the expression for the cost of the arc (i, jk) which as a special case includes (i, j2). 

 Suppose that the first (k-1) weapons assigned to target j are of weapon types i1, i2, ..., ik-1, and 
suppose that the type of the kth assigned weapon is of type i. Then, the survival value of target j after the 
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first (k-1) weapons is V q and the survival value of the target j after k weapons is 

. Hence, the cost of the arc (i, j
1 2 1kj i j i j i j−

...q q

...V q q q q

)

m

1 2 1kj i j i j i j ij−

k) is the difference between the two terms, which is  

c(i, jk) = V q .                   (4) 
1 2 1

... (1 )
kj i j i j i j ijq q q
−

−

 Let qj
max = max{qij: 1, 2, ..., m}.Then, we can obtain an upper bound on c(i, jk) by replacing each 

qij by qj
max. Hence, if we set 

c(i ,jk) = V q ,                     (5) max 1( ) (1k
j j ijq− −

we get an upper bound on the total destruction on assigning weapons to targets. It directly follows from 
(5) that 

c(i, j1) > c(i, j2) > . . .> c(i, jk-1) >c(i, jk),                   (6) 

which implies that the optimal maximum cost flow in the network G will be a contiguous flow. It should 
be noted here that since this is a maximization problem, we solve it by first multiplying all arc costs by -1 
and then using any minimum cost flow algorithm. Let z* represent the upper bound on destruction caused 
to targets after all the assignments obtained by solving this maximum cost flow problem. Then, the lower 

bound on the objective function of formulation (1) is 
1 ii
W

=∑ - z*. 

We can summarize the preceding discussion as follows: 

Theorem 2. If z* is the optimal objective function value of the maximum cost flow problem in the network 

G, then - z* is a lower bound for the weapon target assignment problem. 
1 ii
W

=∑m

2.3 Maximum Marginal Return Based Lower Bounding Method 

In this section, we describe a different relaxation that provides a valid lower bound for the WTA 
problem. This approach is based on underestimation of the survival of a target when hit by a weapon as 
we assume that every target is hit by the best weapons.  

Let qj
min be the survival probability for target j when hit by the weapon with the smallest survival 

probability, i.e., qj
min = min{qij: i = 1, 2, …, m}. Replacing the term qij in formulation (1) by qj

min, we can 
formulate the WTA problem as follows: 

 Minimize 
j

V∑                    (7a) min
1 1

( ) ijmn x
j ji

q
= =∏

subject to 

 
1

n
ijj

x
=∑ ≤ Wi,  for all i = 1, 2, …, m,                   (7b) 
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 ijx  ≥ 0 and integer for all i = 1, 2, …, m and for all j = 1, 2, …, n.               (7c) 

1
Let ,m

j iji
x x

=
=∑  and if we let , then we can rewrite (7) as: min( ) ( ) jx

j j j jg x V q=

Minimize                      (8a)    
1

( )n
j jj

g x
=∑

subject to 

 
1

n
ijj

x
=∑ ≤ Wi,  for all i = 1, 2, …, m,                   (8b) 

 
1

n
ij ji

x x
=

=∑   for all i = 1, 2, …, m,                   (8b) 

 ijx  ≥ 0 and integer for all i = 1, 2, …, m and for all j = 1, 2, …, n.                            (8d) 

It is also possible to eliminate the variables xij entirely.  If we let W  then we can rewrite 

(8) as an equivalent integer program (9): 
1

m
ii=

=∑ W

Minimize                      (9a)    
1

( )n
j jj

g x
=∑

subject to 

 
1

n
jj

x
=∑ ≤  W,                       (9b) 

 jx  ≥ 0 and integer for all j = 1, 2, …, n.                       (9c) 

It is straightforward to transform a solution for (9) into one for (8) since all weapon types are 
identical in formulation (8).   

Observe that the formulations (1) and (7) have the same constraints; hence, they have the same 
set of solutions. However, in the formulation (7), we have replaced each qij by qj

min= min{qij: i =1, 2, …, 
m}, where qj

min < qij .  Noting that the optimal solution value for problems (7), (8) and (9) are all identical, 
we get the following result: 

Theorem 3. An optimal solution value for (9) is a lower bound for the WTA problem. 

Integer program (9) is a special case of the knapsack problem in which the separable costs are 
monotone decreasing and concave. As such it can be solved using the greedy algorithm. In the following, 
assigned(j) is the number of weapons assigned to target j, and value(i, j) is the incremental cost of 
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assigning the next weapon to target j.  
 

algorithm combinatorial-lower-bounding; 
begin 

for j := 1 to n do 
begin 

assigned(j) := 0;  
value(j) := gj(assigned(j)+1) – gj(assigned(j)); 

end 
for i = 1 to m do 
begin 

find j corresponding to the minimum value(j); 
assigned(j) := assigned(j) + 1; 
value(j) := gj(assigned(j)+1) – gj(assigned(j)); 

end; 
end. 

 
 This lower bounding scheme is in fact a variant of a popular algorithm to solve the WTA problem 
which is known as the maximum marginal return algorithm. In this algorithm, we always assign a 
weapon with maximum improvement in the objective function value. This algorithm is a heuristic 
algorithm to solve the WTA problem but is known to give an optimal solution if all weapons are identical. 

 We now analyze the running time of our lower bounding algorithm. If we store value(j) in a 
Fibonacci heap. We point that that after the initialization of the heap with the initial values, we perform W 
“find-min” operations and W decrease-key steps, for a total running time of O(W) time. In our 
implementation, we used binary heaps, which run in O(W log W) time but are comparably fast for the 
problem sizes that we considered.   

3. A Branch and Bound Algorithm 

 We developed and implemented four branch and bound algorithms based on the four lower 
bounding schemes described in the previous section. A branch and bound algorithm is characterized by 
the branching, lower bounding, and search strategies. We now describe these strategies for our 
approaches. 

Branching strategy: To keep the memory requirement low, the only information we store at any node is 
which variable we branch on at that node; and the lower and upper bounds at the node. To recover the 
partial solution associated with a node of the branch and bound tree, we trace back to the root of the tree.  
The branching strategy we have used in our implementation is based on the maximum-marginal return. 
For each node of the branch and bound tree, we find the weapon-target combination which gives best 
improvement and set the corresponding variable as the one to be branched on next. Ties are broken 
arbitrarily. 

Lower bounding strategy: We used the three lower bounding strategies described in Section 2. We 
provide a comparative analysis of these bounding schemes in Section 5.  
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Search strategy: We implemented both the breadth-first and depth-first search strategies. We found that 
for smaller size problems (i.e., up to 10 weapons and 10 targets), breadth-first strategy gave overall better 
results; but for larger problems, depth-first search had a superior performance. We report the results for 
the depth-first search in section 5. 

4. A Very Large-Scale Neighborhood Search Algorithm 

 In the previous two sections, we described branch and bound algorithms for the WTA problem. 
These algorithms are the first exact algorithms that can solve moderate size instances of the WTA 
problem in reasonable time.  Nevertheless, there is still a need for heuristic algorithms which can solve 
large-scale instances of the WTA problems. In this section, we describe a neighborhood search algorithm 
for the WTA problem which has exhibited excellent computational results. This algorithm is an 
application of very large-scale neighborhood (VLSN) search to the WTA problem. A VLSN search 
algorithm is a neighborhood search algorithm where the size of the neighborhood is very large and we use 
some implicit enumeration algorithm to identify an improved neighbor. We refer the reader to the paper 
by Ahuja et al. [2002] for an overview of VLSN search algorithms. 

 A neighborhood search algorithm starts with a feasible solution of the optimization problem and 
successively improves it by replacing it by an improved neighbor until it obtains a locally optimal 
solution. The quality of the locally optimal solution depends both upon the quality of the starting feasible 
solution and the structure of the neighborhood, that is, how we define the neighborhood of a given 
solution. We next describe the method we used to construct the starting feasible solution followed by our 
neighborhood structure. 

4.1  A Minimum Cost Flow formulation based Construction Heuristic 

 We developed a construction heuristic which solves a sequence of minimum cost flow problems 
to obtain an excellent solution of the WTA problem. This heuristic uses the minimum cost flow 
formulation shown in Figure 3, which we used to determine a lower bound on the optimal solution of the 
WTA problem. Recall that in this formulation, we define the arc costs (i, j1), (i, j2), …, (i, jk), which, 
respectively, denote the cost of assigning the first, second and kth weapon of type i to target j. Also recall 
that only the cost of the arc (i, j1) was computed correctly, and for the other arcs, we used a lower bound 
on the cost. We call the arcs whose costs are computed correctly as exact-cost  arcs, and the rest of the 
arcs as approximate-cost  arcs. 

 This heuristic works as follows. We first solve the minimum cost flow problem with respect to 
the arc costs as defined earlier. In the optimal solution of this problem, exact-cost arcs as well as 
approximate-cost arcs may carry positive flow. We next fix the part of the weapon target assignment 
corresponding to the flow on the exact-cost arcs and remove those arcs from the network. In other words, 
we construct a partial solution for weapon-target assignment by assigning weapons only for exact-cost 
arcs. After fixing this partial assignment, we again compute the cost of each arc. Some previous 
approximate-cost arcs will now become exact-cost arcs. For example, if we set the flow on arc (i, j1) equal 
to 1, we know that that weapon i is the first weapon striking target j, and hence we need to update the 
costs of the arcs (l, jk) for all l = 1, 2, …, m and for all k  ≥ 2. Also observe that the arcs (l, j2) for all l = 1, 
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2, …, m now become exact cost arcs. We next solve another minimum cost flow problem and again fix 
the flow on the exact-cost arcs. We recompute arc costs, make some additional arcs exact-cost, and solve 
another minimum flow problem. We repeat this process until all weapons are assigned to the targets. 

 We tried another modification in the minimum cost flow formulation which gave better 
computational results. The formulation we described determines the costs of approximate-cost arcs 
assuming that the worst weapons (with the largest survival probabilities) are assigned to targets. However, 
we observed that in any near-optimal solution, the best weapons are assigned to the targets. Keeping this 
observation in mind, we determine the costs of valid arcs assuming that the best weapons (with the 
smallest survival probabilities) are assigned to targets. Hence, the cost of the arc (i, jk), which is c(i ,jk) = 

 is approximated by c(i, j
1 2 1kj i j i j i j ij−

... (1 )V q q q q− k) = Vj [qmin(j)]k-1(1-qij). Our experimental investigation 

shows that this formulation generates better solutions compared to the previous formulation. We present 
computational results of this formulation in Section 5. 

4.2. The VLSN Neighborhood Structure 

 The WTA problem can be conceived of as a partition problem defined as follows. Let S = {a1, a2, 

a3, …. , an} be a set of n elements. The partition problem is to partition the set S into the subsets S1, S2, S3, 

…, SK such that the cost of the partition is minimum, where the cost of the partition is the sum of the cost 
of each part. The WTA problem is a special case of the partition problem where the set of all weapons is 
partitioned into n subsets S1, S2,…, Sn, and subset j is assigned to target j, 1 ≤ j ≤ n. Thompson and Orlin 
[1989] and Thompson and Psaraftis [1993] proposed a VLSN search approach for partitioning problems 
which proceeds by performing cyclic exchanges. Ahuja et al. [2001, 2003] proposed further refinements 
of this approach and applied it to the capacitated minimum spanning tree problem. We will present a brief 
overview of this approach when applied to the WTA problem. 

 Let S = (S1, S2,…, Sn) denote a feasible solution of the WTA problem where the subset Sj, 1 ≤ j ≤ 
n, denotes the set of weapons assigned to target j. Our neighborhood search algorithm defines neighbors 
of the solution S as those solutions that can be obtained from S by performing multi-exchanges. A cyclic 
multi-exchange is defined by a sequence of weapons i1- i2- i3-…- ir- i1 where the weapons i1, i2, i3, …, ir 
belong to different subsets Sj’s. Let t(i1), t(i2), t(i3), …, t(ir), respectively, denote the targets to which 
weapons i1, i2, i3,…, ir, are assigned. The cyclic multi-exchange i1- i2- i3-…- ir- i1 represents that weapon i1 
is reassigned from target t(i1) to target t(i2), weapon i2 is reassigned from target t(i2) to target t(i3), and so 
on, and finally weapon tr is reassigned from target t(ir) to target t(i1). We can similarly define a path 
multi-exchange by a sequence of weapons i1- i2- i3-…- ir which differs from the cyclic multi-exchange in 
the sense that the last weapon ir is not reassigned and remains assigned to target t(ir). 

 The number of neighbors in the multi-exchange neighborhood is too large to be enumerated 
explicitly. However, using the concept of improvement graph, a profitable multi-exchange can be 
identified using network algorithms. The improvement graph G(S) for a given feasible solution S of the 
WTA problem contains a node r corresponding to each weapon r and contains an arc (r, l) between every 
pair of nodes r and l with t(r) ≠ t(l). The arc (r, l) signifies the fact that weapon r is reassigned to target 
(say j) to which weapon l is currently assigned and weapon l is unassigned from its current target; the cost 
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of this arc, crl, is set equal to the change in the survival value of the target. Let ′jV  denote the survival 

value of the target j in the current solution. Then, the cost of the arc (r, l) is crl = V q( )( / ) 1j rj ljq′ − . We 

say that a directed cycle W = i1- i2- i3-…- ik- i1 in G(S) is subset-disjoint if each of the weapons i1, i2, i3, 
…, ik is assigned to a different target. Thompson and Orlin [1989] showed the following result: 

Lemma 1. There is a one-to-one correspondence between multi-exchanges with respect to S and directed 
subset-disjoint cycles in G(S) and both have the same cost. 

 This lemma allows us to solve the WTA problem using the following neighborhood search 
algorithm:  
 

algorithm WTA-VLSN search; 
begin 
 obtain a feasible solution S of the WTA problem; 
 construct the improvement graph G(S); 
 while G(S) contains a negative cost subset-disjoint cycle do 
 begin 
  obtain a negative cost subset-disjoint cycle W in G(S); 
  perform the multi-exchange corresponding to W; 
   update S and G(S); 
 end; 

 end; 

 Figure 4. The VLSN search algorithm for the WTA problem. 

 We now give some details of the VLSN search algorithm. We obtain the starting feasible solution 
S by using the minimum cost flow based heuristic described in Section 4.1. The improvement graph G(S) 
contains W nodes and O(W2) arcs and the cost of all arcs can be computed in O(W2) time. We use a 
dynamic programming based algorithm (as described by Ahuja et al. [2003]) to obtain subset-disjoint 
cycles. This algorithm first looks for profitable two-exchanges involving two targets only; if no profitable 
two-exchange is found, it looks for profitable three-exchanges involving three targets; and so on. The 
algorithm either finds a profitable multi-exchange or terminates when it is unable to find a multi-
exchange involving k targets (we set k = 8). In the former case, we improve the current solution, and in 
the latter case we declare the current solution to be locally optimal and stop.  The running time of the 
dynamic programming algorithm is O(W2 2k) per iteration, and is typically much faster since most cyclic 
exchanges found by the algorithm are swaps. 

5.  Computational Results 

 We implemented each of the algorithm described in the previous section and extensively tested 
them. We tested our algorithms on randomly generated instances as data for the real-life instances is 
classified. We generated the data in the following manner. We generated the target survival values Vj’s as 
uniformly distributed random numbers in the range 25-100. We generated the kill probabilities for 
weapons engaging with the targets as uniformly distributed random numbers in the range 0.60-0.90. We 
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performed all our tests on a 2.8 GHz Pentium 4 processor computer with 1 GB RAM PC. In this section, 
we present the results of these investigations.  

5.1  Comparison of the lower bounding schemes  

 In our first investigation, we compared the tightness of the lower bounds generated by the lower 
bounding algorithms developed by us. We tested the three lower bounding schemes described in Section 
2: (i) LP based lower bounding scheme; (ii) MIP based lower bounding scheme; (iii) the minimum cost 
based lower bounding scheme; and (iv) the maximum marginal return based lower bounding scheme. We 
tested an additional lower bounding scheme which is a variant of the LP based scheme.  
 

The table shown in Figure 5 gives the computational results of these four lower bounding 
schemes. For each of these schemes, the first column gives the % gap from the optimal objective function 
value and the second column gives the time taken to obtain bound. The following observations can be 
derived from this table: (i) the MIP lower bounding scheme gives the tightest lower bounds but also takes 
the maximum computational time; (ii) the minimum cost flow based bounding scheme gives fairly tight 
lower bounds when the number of weapons is less than or equal to the number of targets; and (iii) the 
maximum marginal return algorithm takes the least amount of time to obtain lower bounds.  

 

LP Scheme MIP Scheme 
Min Cost Flow 

Scheme 

Maximum 
Marginal Return 

Scheme 
# of 

Weapons 
# of 

Targets 
% Gap 

Time  
(in secs) 

% Gap 
Time 

(in secs) 
% Gap 

Time 
(in secs) 

% Gap 
Time 

(in secs) 
5 5 8.03 0.015 0.21 0.016 1.66 <0.001 10.61 <0.001 

10 10 3.63 0.015 0.12 0.031 0.00 <0.001 11.01 <0.001 
10 20 19.70 0.015 0.04 0.062 0.00 <0.001 1.45 <0.001 
20 10 11.88 0.015 0.53 0.156 21.32 <0.001 19.00 <0.001 
20 20 7.28 0.031 0.25 0.109 1.32 <0.001 6.40 <0.001 
20 40 23.35 0.046 0.04 0.296 0.00 <0.001 1.57 <0.001 
40 10 14.79 0.015 2.12 0.609 42.41 <0.001 46.89 <0.001 
40 20 7.06 0.031 0.45 0.359 25.52 0.015 13.53 <0.001 
40 40 6.83 0.078 0.11 0.703 1.63 0.015 3.05 <0.001 
40 80 21.69 0.14 0.03 1.812 0.00 0.046 0.88 <0.001 

 
Figure 5.  Comparison of four lower bounding schemes. 

 
5.2  Comparison of Branch and Bound Algorithms 

 We developed branch and bound algorithms using the preceding lower bounding schemes. Figure 
6 gives the results of these algorithms. The branch and bound algorithm using the LP based lower 
bounding scheme did not perform well at all and we do not present its results. We replaced this algorithm 
by another algorithm which we call the hybrid algorithm. The hybrid algorithm computes lower bounds 
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using both the minimum cost flow based and the maximum marginal return based lower bounding 
schemes and uses the better of these two bounds. We find that the branch and bound algorithm using the 
MIP based lower bounding gives the most consistent results and is able to solve the highest size problems 
(containing 80 weapons and 80 targets). We also find that the hybrid algorithm also gives excellent results 
for those instances where the number of weapons is less than or equal to the number of targets.  
 

MIP Based B&B 
Algorithm 

Min Cost Flow 
Based B&B 
Algorithm 

Maximum 
Marginal. Return 

Based B&B 
Algorithm 

Hybrid Algorithm 

# of 
Weapons 

# of 
Targets 

Nodes 
Visited 

Time  
(in secs) 

Nodes 
Visited 

Time  
(in secs) 

Nodes 
Visited 

Time  
(in secs) 

Nodes 
Visited 

Time  
(in secs) 

5 5 15 0.14 11 <0.001 23 <0.001 11 <0.001
10 10 29 0.56 1 <0.001 181 <0.001 1 <0.001
10 20 23 0.83 1 <0.001 83 <0.001 1 0.015
20 10 101 7.27 - - 2,8611 1.34 20,251 2.52
20 20 109 6.56 2,383 4.39 15936 0.94 1,705 2.50
20 40 105 16.58 1 <0.001 111,603 10.14 1 0.015
40 10 1,285 327.27 - - - - - -
40 20 205 35.19 - - ~108 13,651.9 ~107 25,868.9
40 40 211 50.96 ~106 10,583.62 ~106 943.03 38,3275 1,891.83
40 80 385 235.41 1 0.031 - - 1 0.031
80 40 117,227 43,079.55 - - - - - -
80 80 44905 58,477.31 - - - - - -
80 160 1055 3,670.49 1 0.062 - - 1 0.062

 
Figure 6. Comparison of branch and bound algorithms. 

 
5.3  Performance of the VLSN Search Algorithm 

 We now present computational results of the minimum cost flow based construction heuristic and 
the VLSN search algorithm. The table shown in Figure 7 gives the objective function values of the 
solutions obtained by the construction heuristic and the improved values when VLSN search algorithm is 
applied to these solutions. We observe that the construction heuristic obtained optimal solutions for over 
50% of the instances and for the remaining instances the VLSN search algorithm converted them into 
optimal or almost optimal solutions. The computational times taken by these algorithms are also very 
small and even fairly large instances are solved within 3 seconds. 
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Construction Heuristic VLSN Algorithm 
# of 

Weapons 
# of 

Targets Optimality 
Gap 

Time (in 
seconds) 

Optimality 
Gap 

Time (in 
seconds) 

10 5 0% <0.001 0% <0.001 
10 10 0% <0.001 0% <0.001 
10 20 0% <0.001 0% <0.001 
20 10 0% <0.001 0% <0.001 
20 20 0% <0.001 0% <0.001 
20 40 0% 0.015 0% 0.015 
20 80 0% 0.015 0% 0.031 
40 10 1.79% 0.015 0% 0.031 
40 20 0.33% 0.015 0% 0.015 
40 40 0% 0.015 0% 0.015 
40 80 0% 0.031 0% 0.078 
40 120 0% 0.062 0% 0.109 
80 20 2.33% 0.109 0% 0.156 
80 40 0.10% 0.062 0% 0.109 
80 80 0.0003% 0.093 0.0003% 0.156 
80 160 0% 0.172 0% 0.219 
80 320 0% 0.390 0% 0.625 

100 50 0.79% 0.120 0.0015% 0.437 
100 100 0.001% 0.187 0.0009% 0.250 
100 200 0% 0.375 0% 0.609 
200 100 0.01% 0.656 0.0059% 0.828 
200 200 0.001% 0.921 0.0008% 1.109 
200 400 0% 1.953 0% 2.516 

 
Figure 7.  Results of the construction heuristic and the VLSN search algorithm. 

 

6.  Conclusions 

 In this paper, we consider the weapon target assignment problem which is considered to be one of 
the classical operations research problems that has been extensively studied in the literature but still has 
remained unsolved. Indeed, this problem is considered to be the holy grail of defense-related operations 
research. Though weapon target assignment problem is a nonlinear integer programming problem, we use 
its special structure to develop LP, MIP, network flow, and combinatorial lower bounding schemes. 
Using these lower bounding schemes in branch and bound algorithms gives us effective exact algorithms 
to solve the WTA problem. Our VLSN search algorithm also gives highly impressive results and gives 
either optimal or almost optimal solutions for all instances it is applied to. To summarize, we can now 
state that the WTA problem is a well-solved problem and its large-scale instances can also be solved in 
real-time.  
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