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Abstract

Many Signal Processing problems may be posed as statistical parameter estimation
problems. A desired solution for the statistical problem is obtained by maximizing the
Likelihood (ML), the A - Posteriori probability (MAP) or by optimizing other criterion,
depending on the a - priori knowledge. However, in many practical situations, the original
signal processing problem may generate a complicated optimization problem e.g when the
observed signals are noisy and "incomplete".

A framework of iterative procedures for maximizing the likelihood, the EM algorithm, is
widely used in statistics. In the EM algorithm, the observations are considered "incomplete"
and the algorithm iterates between estimating the sufficient statistics of the "complete data"
given the observations and a current estimate of the parameters (the E step) and maximizing
the likelihood of the complete data, using the estimated sufficient statistics (the M step).
When this algorithm is applied to signal processing problems it yield, in many cases, an
intuitively appealing processing scheme.

In the first part of the thesis we investigate and extend the EM framework. By changing
the "complete data" in each step of the algorithm we achieve algorithms with better con-
vergence properties. We suggest EIM type algorithms to optimize other (non ML) criteria.
We also develop sequential and adaptive version of the EM algorithm.

In the second part of the thesis we discuss some applications of this extended framework
of algorithms. We consider,

* Parameter estimation of composite signals, i.e signals that can be represented as a
decomposition of simpler signals. This problem appear in e.g.

- Multiple source location (or bearing) estimation

- Multipath or multi-echo time delay estimation

v Noise canceling in multiple microphone environment, for a speech enhancement prob-
lera.

Thesis Supervisor: Alan V. Oppenheim
Title: Professor of Electrical Engineering, MIT.
Thesis Supervisor: Ehud Weinstein
Title: Adjunct Scientist, WHOI.
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Chapter 1

Introduction

1.1 Introductory remarks

Many signal processing problems may be posed as statistical estimation problems. A

celebrated example is the work of Wiener, who formulated the funda'nental problem of fil-

tering a signal from an additive noise as a statistical problem, whose solution is known now

as the "Wiener filter". Other common examples involve parameter estimation; e.g finding

the localization and the velocity of targets in radar/sonar environments, or synchronization

(i.e timing estimation) problems in communications systems. Many examples of the statis-

tical analysis of signals processing problems may be found in ill, especially in its second

and third parts.

In order to formulate the statistical problem, a model assumption is needed. A specific

model may generate a simple statistical problem. However, it may not represent the original

signal processing problem well. On the other hand, another model that tries to consider too

many aspects of the original problem, may generate not only a difficult statistical problem,

bl t also a non-robust, possibly ill-posed problem. The art of good modeling, which captures
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the important aspects of the real problem without complicating the resulting mathematical

or statistical problem, is probably the most important factor in a successfully implemented

statistical solution to the underlying real problem.

After the statistical problem is formulated, its desired solution often requires the op-

timization of some criterion, depending on the a-priori knowledge, and on the (possibly

subjective) "risk" criterion. Frequently used criteria are Maximum Likelihood (ML) and

Maximum A-Posteriori (MAP). Even with good modeling, these optimization problems may

be complicated, e.g when the observed signals are noisy and incomplete. These optimiza-

tion problems are rarely solved analytically. Instead, standard iterative search methods, e.g.

gradient methods, Newton-Raphson method, are often used. The standard methods have

some well known numerical problems. Furthermore, these methods may still be complicated

since they require the calculation of the gradient and sometimes the Hessian matrix. These

standard search methods rarely generate intuitive algorithms for the original real problem.

An interesting alternative to the straightforward gradient or Newton methods has been

introduced in 2}i. This technique, known as the Estimate-Maximize (EM) algorithm, sug-

gests an iterative algorithm that exploits the properties of the stochastic system under

consideration. The EM algorithm is actually a framework of iterative algorithms. To im-

plement an EM algorithm, one has to consider the observations as incomplete with respect

to more convenient choice of complete data. The algorithm then iterates between estimating

the sufficient statistics of the omplete data, given the observations and a current estimate

of the parameters (the E step), and maximizing the lik-lihood of the complete data using

the estimated sufficient statistics (the M step).

As will become evident in the course of this thesis, the EM method may yield intuitive
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processing schemes for the original signal processing problem, by innovatively choosing the

complete data. Therefore, it is not surprising that some previously proposed algorithms

for solving various signal processing problems can be interpreted in the EM algorithm

context. One example is the iterative peech enhancement method suggested by Lim and

Oppenheim 3]. We will return to this example later in the thesis. Other algorithms

that have been suggested intuitively to solve specific signal processing problems, e.g. the

iterative channel estimation algorithm of 4, the iterative reconstruction algorithm of 5',

the iterative resolution technique of :61 and more, can also be interpreted as examples of

the EM algorithm.

It is particularly important to note, at this point, the work of Musicus [71 and 81. In

this work, a general class of iterative algorithms has been suggested to minimize a special

form of the Relative Entropy. In some special cases, the minimum relative entropy criterion

reduces to the maximum likelihood criterion, and in those cases, the suggested iterative

algorithms reduce to the EM algorithm. This work was an important inspiration for this

thesis. We will discuss this approach later in the thesis in conjunction with our work on

general information criteria and the EM algorithm.

Our exposure to a variety of estimation problems in oceanography, specifically in under-

water acoustics, also had a major impact on this thesis. We have found that many of these

problems were approached suboptimally, probably since the standard mathematical models

of these problem sually generate statistical problems whose direct solution is complicated.

We have suggested the EM iterative algorithm as a better approach to solve these statistical

problems. Later in the thesis, we will describe how modeling considerations and EM algo-

rithms have applied to array processing and time delay estimation problems in underwater

10



acoustics, and have generated interesting solution procedures. The important experience

with oceanographic signal processing problems established and confirmed our approach for

solving statistical signal processing problems in general, and the other problems, presented

later in the thesis, in particular.

In summary, this thesis presents a class of iterative and adaptive algorithms, based

on the ideas that led to the EM algorithm, to optimize various statistical criteria. In

addition, the thesis will address several signal processing problems and show that by using

a reasonable model. an appropriate statistical criterion and an EM algorithm, an insightful

solution procedure may be achieved and implemented successfully.

1.2 Preview and organization of the thesis

The application of the EM algorithm to a real world problem first requires modeling the

problem statistically and then applying the EM algorithm to olve the resulting statistical

problem. However, the EM algorithm is not uniquely defined: it depends on the choice of

complete data. An unfortunate choice may yield a completely useless algorithm.

In this thesis we will consider the following signal processing problems:

* Parameter estimation of superimposed signals, i.e signals that can be represented as

a sum of simpler signals. We will consider specifically the problems of multiple source

location (or bearing) estimation, multipath or multi-echo time delay estimation and

spectral estimation.

* Noise canceling in a multiple microphone environment. The real world application is

a speech enhancement problem.
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* Signal reconstruction from partial information. For this problem, we will present ideas

and propose further research.

We will suggest statistical models for these signal processing problems and solve the resulting

statistical problems by the EM method. In all these problems we will use a natural choice

of complete data.

In the process of considering the applic tions mentioned above, we have modified and

extended the scope of the EM method and derived explicit forms for some important special

cases. Each of these results may be considered as a contribution to the EM algorithm at a

theoretical level. We have also developed and analyzed sequential and adaptive algorithms

based on the EM algorithm.

As a result of these contributions a general and flexible class of iterative and adaptive

estimation algorithms is established. Beyond the theoretical contributions and the spe-

cific applications, we believe that this thesis suggests a way of thinking and a philosophy

which may be used in a large variety f seemingly complex statist .al inference and signal

processing problems.

This thesis is organized as follows. Chapter 2 and 3 provide the theoretical background

and contributions. In Chapter 2, we start with a review of the EM algorithm as developed

in 2, and give its basic convergence properties following the considerations in 9 . We then

derive the EM algorithm for the linear Gaussian case, whose importance will be evident

later in the thesis. We also modify the basic EM algorithm and extend it, so that it may

be applied to general estimation criteria.

Any iterative algorithm implies an adaptive or sequential estimation procedure, in which

the new iteration takes into account new data points. A derivation of a class of sequential

12



algorithms based on the EM structure is presented in Chapter 3. This class of algorithms

may have the important tracking capabilities typical to an adaptive algorithms together

with desirable asymptotic convergence results, achieved from the EM theory.

The signal processing applications of this class of iterative and adaptive algorithms are

presented in Chapters 4 and . In Chapter 4 several problems that arise in radar/sonar

signal and array processing are presented. Those problem involve multiple targets and

multipath signals. A more general problem is the estimation of parameters of superimposed

signals. We will describe an EM solution to the general superimposed signals problem, and

appiv it to multiple target bearing estimation and to multipath time delay estimation.

Sequential algorithms to solve this problem will also be suggested.

The problem of multiple microphone noise cncellation is presented in Chapter 5. Using

models of the speech and the noise, a statistical problem is formulated and then solved using

the EM algorithm. This solution generates an intuitive processing scheme, that provides a

novel solution to this well-investigated problem. An adaptive scheme based on the above

algorithm, nrlay be an alternative to Widrow's algorithm 101.

Chapter 6 is entitled "Information, Relative Entropy and the EM algorithm". It presents

several interesting results that give an alternate interpretation to the EM algorithm and to

information criteria mentioned in the EM algorithm context.

Chapter 7 will conclude and summarize the thesis. We will also suggest in this chapter

topics for further research. As one of these topics, we will present specific ideas for solving

problems of signal reconstruction from partial information. A statistical framework for these

problems is developed and EM algorithms for solving this statistical problem, by optimizing

the likelihood, the a-posteriori probability or other appropriate criteria are derived.

13



Chapter 2

The EM method: Review and new

developments

In this Chapter we review the Estimate-Maximize (EM) algorithm for solving maximum

likelihood (ML) and maximum-a-posteriori (MAP) estimation problems, and present new

developments that extend the scope of the algorithm, and make it more accessible for solving

signal processing problems.

The chapter is organized as follows. In section 2.1, the basic EM algorithm is presented,

following the considerations in [21. In section 2.2. we analyze and discuss the convergence

properties of the EM algorithm. The results presented here clarify and simplify the conver-

gence analysis presented in 2] and 91.

In section 2.3, the EM algorithm is explicitly derived for the special but important

case where the observed (incomplete) data and complete data are jointly Gaussian. related

by a linear non-invertible transformation. In perspective, the linear-Gaussian case was an

important step towards the application of the EM algorithm to signal processing problems.

14



In sections 2.4 and 2.5, we present new ideas and results that extend the scope of the

EM method. The results in these sections generate a more general, yet more flexible, class

of iterative algorithms.

Section 2.6 concludes this chapter, by discussing the possible signal processing applica-

tions of the EM framework.

2.1 Basic theory of the EM algorithm

Let Y denote a data vector with tile associated probability density fy (y; -), indexed

by the parameter vector - e, where e is a subset of the k-dimensionai Euclidean space.

Given an observed y, the maximum likelihood (ML) estimate, -ML, is the value of _ that

maximizes the log-likelihood, that is,

_ML = arg max log fy (y; 0) (2.1)

Finding the ML estimator is often desirable since it is, in most cases, asymptotically con-

sistent and efficient. However, in many cases, the maximization problem of (2.1) is compli-

cated.

Suppose that the data vector Y can be viewed as being incomplete, and we can specify

some data X related to Y by

T(,Y) = _ (2.2)

where T(-) is a non-invertible (many to one) transformation. If an observation z of X is

given, an observation y of Y is available too, but not vice versa. X will be referred to as

the complete data. The probability density of the complete data, denoted fx(X; ), is also

indexed by the parameter vector 9. Assume that H is specified so that if z is available,

15



finding the maximum likelihood estimate of _ is easy, i.e. solving

= arg max log fx(X; ) (2.3)
e9e

is straightforward. The EM algorithm, presented below, will use the simple procedure for

ML estimation in the complete data model, as a part of an iterative algorithm for ML

estimation in the observations' model.

Given a sample of the incomplete data y, the complete data x must be a member of the

set X (y) where,

X y) = {zT(x) = y} (2.4)

Since Y is a many to one function of the complete data X, the probability density

functions of the complete and incomplete data satisfy,

f(Y; )= f x fx(z: )dz (2.5)

The conditional density of X, given Y = y, is defined over the set X (y). This probability

density function is given by,

fx(; ) fIx(z; ) (2.6)
- ) f,Lx(; )d = (; 0)()

Taking the logarithm on both sides of (2.6) and rearranging, we obtain

log fy (y;) = log x(; 9) - log f/y =(z; ), V E X(y) (2.7)

We can now take the conditional expectation over X, of both sides of ( 2.7), given Y = y

and an arbitrary parameter value A'. The left hand side remains unchanged, and we get,

logfy(; ) = E logfx(z-;# I= ;}- E{logfEogy (y; ) YL= ;} (28)

Define, for convenience,

L() = log fy(y; _) (2.9)

16



=e £) { log fx(:;O) Y ; } fX log fx(; 0)- f/y_(=,; ')dz (2.10)

H(, ) = E {log fx!y=,(; ) I y; = J| log fxy=y(; ) fxLy;_,(; 8')d

(2.11)

With tese definitions, equation (2.8) reads

L(0) = Q(e, e) - H(0, ') (2.12)

Equations (2.7) and (2.8) are interesting identities for L(R), the log-likelihood of the

observations. Equation (2.7) is true for any z E X (y) Equation (2.8), or equivalently

equation (2.12) is true for any pair 0, 8. e

Consider now Jensen's inequality (see e.g. equations le.5.6 and le.6.6 in 111) which

states that for any two p.d.f.'s f and 9 defined over the same sample space,

Ef{logg} < E{logf} (2.13)

where equality holds if and only if f = almost everywhere. Ef denotes the expectation,

using the p.d.f. f. Let f = fy(zx;') and g = fx/y(x; 0), both defined over the sample

space X (y). Substituting in (2.13), and using the definition of H(-, ), we get,

H(_,') < H(,_') (2.14)

Suppose we can find such that,

Q(O;') > Q(V;) (2.15)

In this case, using (2.14) and (2.12), we conclude that,

L(0) > L(') (2.16)
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A procedure for iteratively increasing the likelihood may be suggested based on (2.15)

and (2.16) as follows. Given a value of the parameter 0(' ) , we will find a new value 0(n+ l)

that satisfies (2.15), and thus increases the likelihood, by maximizing Q(O;(n)). This

procedure is the EM algorithm, which we now formally present.

* Start, n = 0: guess 0°)

* Iterate (until some convergence criterion is achieved)

- The E step: calculate

Q(; ( )) E= {log x(; ) Y = Y () } (l)

- The M step: solve

0( n+1) = argmaxQ(; ( n)) (2.18)

- n- = 

The E" sands for the conditional Expectation, or Estimation performed in the E step,

and the "M" stands for the Maximization performed in the M step.

An EM iteration may be summarized by the updating equation.

0( " '
1) = arg max E {log fx(; ) Y;8(n) } (2.19)

This iteration is justified intuitively as follows. We would like to choose that maximizes

log fx(x; 6), the log-likelibood of the complete data. However, since log fx(; _) is not avail-

able to us (because the complete data is not available), we maximize instead its expectation,

given the observed data y, and the current value of the parameters (" )

An iterative procedure that increases the likelihood is also achieved, if instead of max-

irmizing Q(e; 0(")), we just increase it. Thus, we may replace the M step by the following

18



step:

(2.20)

where M(O) is any mapping that satisfies

(2.21)

This variation oi the algorithm was named the Generalized EM algorithm (GEM) by Demp-

ster et. al [21. A special case, of course, is the EM algorithm.

The motivation of the GEM algorithm, which also applies to the EM algorithm, is

summarized in the following theorem, (theorem 1 of [21). This theorem carefully states the

basic monotonicity property of the GEM algorithm. The proof of this theorem will follow

immediately from the considerations above.

Theorem 2.1 For every GEM algorithm,

L(O
(
n+

l ) )
L(0

( n ))

where equality holds if and only if both

Q(Rtn+); 6(n ) )
= Q(("n); (In))

and
fx(Z;( + ')) = x_ / f( ;y; (n) a.e in X(y)

Proof: By the definition of the GEM algonthm

Q(n(. 1); 6(n)) > Q(("); (" ) )

Thus, since H((*'l);( " )) < H (on); (_)),

L((+')) > L((n))

Now by (2.12), equality holds if and only if

Q(e("nL); On)) = Q(_(n1); (")) and H(e("+'); e(n)) = R(B((); n))

19
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The latter holds if and only if

If/xy(;: ( l ) ) = fx/l(xl;(")), a.e in X(y)

This theorem leads to the following corollaries:

Corollary 2.1 If for some 8' _ , L(O) > L(O), V E 8 , then, for every GEM algorithmrr

M(R') = 

Corollary 2.2 Suppose or some O' e 8, L(O') > L(), V E 8. Then, for every GEM
algorithm

L(M(O-)) = L(')

Q(M('); ') = Q(';_ ')

Sfry(:; M(O9)) = f/y(/; O') a.e in ( (y)

In other words, if a unique global maximum of the likelihood exists, it is a fixed point

of any GEM algorithm. If we have a set of global maxima, the GEM algorithm may move

inside this set. However, each new value must satisfy the conditions of corollary 2.2.

We note that the EM algorithm is actually a class of algorithms. There are many

complete data specifications X, that will generate the observed data Y. The choice of

complete data may critically affect the complexity and the convergence properties of the

algorithm. An unfortunate choice of complete data will yield a completely useless algorithm.

Thus, it takes creativity to apply the EM algorithm to a given problem. This will be

demonstrated later in the thesis when we solve specific signal processing problems.

To complete the basic theory of the FM algorithm, we will present in section 2.2 the

convergence properties of the algorithm. This presentation, which clarifies and simplifies

previous results, may be used as a future reference on these topics.
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The EM algorithm for exponential families

Examining the expressions for the EM algorithm, (2.17) and (2.18), we note that, in general,

the EM algorithm may be complicated. The calculation of Q(, 0( )'! in the E step may

require multiple integration, and the maximization in the M step is, in general. a non-linear

optimization problem. However, in the case of exponential families of distributions, which

is now described, the E step has an explicit simple form and the maximization performed

in the M step is as complicated as solving a maximum likelihood problem for the complete

data, which is assumed to be easy.

Suppose that the p.d.f. of the complete data, x, belongs to the exponential family of

probabilities, i.e.

fx(x;0) = (z' exp{, (&)T (x) (2.25)
a() exp{ I(e)()}

The set of statistics {t(z)} is the sufficient statistics. This set is denoted T(z). Note that

the exponential family of distributions includes almost all common p.d.f.'s e.g. Gaussian,

binomial, exponential etc.

The log-likelihood of the complete data for exponential families has the form

log fx(_; ) = - log ()+ E + log b(z) (2.26)

independent of i

Due to this special form of the log-likelihood, we need only to calculate, in the E step,

the conditional expectation of the sufficient statistics. We then substitute the estimated

sufficient statistics in the likelihood of the complete data, and maximize the resulting ex-

pression in the M steo. The E and M of the EM algorithm steps, for exponential families,

reduce thus to
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* The E step: Calculate

7 i-(n) = E T(x) 'y; O(}

or, Yi, calculate

" = E{t(_)y; 8(" ) } (2.27)

* The M step: solve

("+') = arg max - log a(0) + p ()Tt(z) (2.28)

The sufficient statistics are usually simple functions of the data, , and therefore explicit

formulas usually exist for the E step above. The expression to be maximized in the NI step

has the functional form (w.r.t /) of the log-likelihood of the complete data. Since maximizing

the likelihood of the complete data is assumed to be easy, the implementation of the M step

above is easy too.

Gaussian distribution belongs to the exponential family of distributions. In section 2.3

we will derive a closed form analytical expression for Q(9, '), i.e. the E step, for the case

where X and Y are jointly Gaussian related by linear transformation. The maximization

problem in the M step, for this linear-Gaussian case, will be as complicated as solving a

maximum likelihood problem in the complete data model.

2.2 Convergence results

The EM (or the GEM) algorithm generates a sequence of parameters, {n(")}, and

an associated sequence of log-likelihoods, {L(n)}, where L(n) = L((n)"). We have shown

that each iteration increases the likelihood, i.e. the likelihood sequence is a monotonic
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nondecreasing sequence (L( n -') > L(")). However, the EM theory should also answer the

following important questions:

* Do the likelihood and the parameter sequences converge?

* To where will they converge?

* How fast will they converge?

These convergence issues will be addressed as follows. The convergence of the likelihood

sequence will be considered first. The issue of its convergence to a global maximum, local

maximum or a stationary point will be discussed. Then, the convergence of the parameter

estimate sequence will be considered, noting that even if the likelihood sequence converges

(say to L'), the associated parameter sequence may not converge, i.e. it may have a set of

limit points, each of which corresponds to this likelihood value L'. For the cases in which

the sequences do converge, the rate of convergence in the neighborhood of the convergence

point will be calculated.

Our discussion in this section follows the considerations in Wu, 91, and the original

paper of Dempster et. al. ,21. Another important reference is il2]. The rate of convergence

and the computation of the Fisher information matrix associated with the EM parameter

estimate sequence are also discussed in 1131, 141 and elsewhere.

The following notation and assumptions are used in this section. Let be the set of

possible parameter values, which is assumed to be a subset of the k-dimensional Euclidean

space. 80 is the set

e = e elL(_) L(o (°))}

and it is assumed to be compact for any L( (°0)) > -oo.
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34 will denote the set of local maxima of L(-) while S will denote the set of stationary

points of L(-), in the interior of e.

An EM (GEM) iteration may be denoted by

n) - (n+ 1) M(("n))

where M(-) is a point to set mapping such that M(9(ne) is the set of maximizers of Q(_; 98_( ))

over c e for an EM algorithm, and such that

Q(; )) Qel 8)), BE eM(())

for a GEM algorithm.

2.2.1 Convergence of the likelihood sequence

As shown in theorem 2.1, the likelihood sequence, {L(n ) , is a monotonic nondecreasing

sequence. Thus, if this sequence is also bounded, it converges to some value L'. Onl in

rare and singular cases can we find a non bounded likelihood sequence. Furthermore, if

the likelihood function L(-) is continuous in e, the compactness of 80 guarantees that the

likelihood sequence, L(n)}, is bounded for any starting point ( °) E e. Thus, the likelihood

sequence can be expected to converge in most cases to some L'.

We want to know whether L is a global maximum, a local maximum or at least a sta-

tionary value of L(#) over 8. Unfortunately, as for any general hill climbing" optimization

algorithm, there is no guarantee that the EM algorithm will converge to a global or even

a local maximum. It has been reported, in j151 and 116] that, if the log-likelihood, L, has

several maxima and stationary points, then convergence of the EM algorithm to either type

of point depends on the choice of the starting point. Note that this phenomenon occurs

despite the fact that we may perform a global maximization (of Q) in the M step.
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In Appendix A we consider the convergence issue more precisely, where, as in many

numerical analysis algorithms, the convergence analysis is based on the Global Convergence

Theorem which may be found in [171 page 91, and 181 page 187. This theorem provides

sufficient conditions that guarantee the convergence of a general iterative procedure

9(n+ 'l ) = M(O(n))

to a sclution set.

For the EM algorithm, where M((n1 )) is the set of maximizers of Q(O;_O(')), it is shown

in Appendix A, that the simple condition,

Q(0 1; 02 ) is continuous in both 0 l and 02 (2.29)

in addition to the compactness of E0 , guarantees the convergence to the solution set S,

i.e. this condition implies that the likelihood sequence of the EM algorithm converges to a

stationary value.

A stronger sufficient condition is needed to guarantee convergence to a local maxima.

Again, in Appendix A, it is shown that, if in addition to the continuity condition (2.29) Q

satisfies

sup Q(9'; ) > Q(_;_ ) VO (S - M) (2.30)

where (S - M) is the difference set ({ S .M}, then the likelihood sequence converges

to a local maxima, i.e. to the solution set M.

Since condition (2.30) is hard to verify, we may have to be satisfied with a proof of

convergence to a stationary point, even when the EM algorithm does converge to a local

maximum. Condition (2.30) is not met in general, and the EM algorithm converges to a

stationary value, local maximum or global maximum depending on the choice of starting

point.
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2.2.2 Convergence of the parameter estimate sequence

The convergence of the likelihood sequence does not imply the convergence of the pa-

rameter estimate sequence. Suppose that the likelihood sequence converges to L- and that

the conditions, that guarantee the convergence to a stationary point, are satisfied. Define

S(L') = { E SL() = L')}

The sequence of estimates, {i(n)}, may not converge, i.e. it may have a (possibly infinite)

set of limit points. We may only say that all limit points of {_t()} are in S(L').

The convergence of the parameter sequence may be guaranteed (trivially), if the solution

set, i.e. S(L) in the example above, has a single point. An important special case, in which

the solution set is a singleton, is when the likelihood function is unirnodal in 8.

The requirement that the solution space has a single point may be relaxed, and it may

be shown, see Appendix A. that if the solution set is discrete and

lim li(n+l) - (")fl = O (2.31)

the parameter estimates sequence will converge.

Condition (2.31) may be easily verified in many applications. For the EM estimate

sequence, since Li(" - L', and since

L(n" " ) - L(n) > Q(6("n'1); o(n)) - Q("(n). ("n)) (2_32)

a sufficient condition for (2.31) is that there exist a forcing function (-), such that

Q(e(n"- ')O (n )) - Q(O(n); ( n)) > (o(n- " 1) -_(")) n (2.33)

where a forcing function is a function such that for any sequence, {zx},

lim a(,) = 0 lim x, = 0 (2.34)
n-ow n-oo
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Taking o(z) = Axt, A > 0 as the forcing function, we get the sufficient condition

Q(O(n+)'; 0(n)) - Q(0(n); (n)) > Al0t.(*+l) - i(n)l2, n (2.35)

which may be verified easily in several applications.

One may argue, that the convergence of the parameter sequence is not as important

as the convergence of the likelihood sequence to the desired location on the log-likelihod

surface. However, one should be aware of the possibility of a non-convergent estimate

sequence, e.g. if L(@) has a ridge of stationary points in which L() = L', then the set S(L)

is not discrete and the EM algorithm may move indefinitely on that ridge.

2.2.3 Rate of convergence

When the EM (or GEM) algorithm converges, an interesting and important problem

is the determination of its rate of convergence. In this section, after defining the rate

of convergence and other terms, that are commonly used in association with it, we will

calculate the rate of convergence of the EM algorithm.

Let us denote the differentiation operator D. A differentiation operator with respect to

two variable will be denoted D/i as

D" f (a, b)= ,

The following identities will be needed later when the rate of convergence of the EM algo-

rithm is explicitly developed,

DL() - Dl°Q(_; ) (2.36)

D2 L(8) = D:°Q(O; 6) - D20H(8; ) = DQ(8; ) + Do H(; 0) (2.37)

DllQ(; ) = D l H (; 9) (2.38)
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These identities have already been recognized by Fisher [191, and are redeveloped in 2,j 4131

and in Appendix A.

Definitions and background

Consider a sequence, {x,}, converging to a limit. x'. Each element, x,, belongs to X,

which is a subset of some norm-space (say the k-dimensional Euclidean space). We define

the order of convergence as follows:

Definition 2.1 The order of convergence of a sequence, {Iz,}, that converges to z', denoted
p, is the supremum of the ncnnegative nurber., p', for uwhich . e follow.ing ratio is finite,
i.e. for which

a = im - - ' < o
n-oo !!X - -'tPl'

Loosely speaking, the order of convergence describes the asymptotic behavior of the

error sequence, {en}, where e = z, - X', i.e. as n - oo we have

'len+lt = o1ienI p

So, the larger p is, the faster the sequence, {n}, converges.

Most iterative algorithm generate sequences, whose order of convergence is unity. In

this case, the important number is the convergence rate defined by,

Definition 2.2 The convergence rate of a sequence, {xn}, that converges to x', denoted a,

here < a 1. The sequences said to onrge linerl 1, ad sperlnerl
where 0 a < 1. The seqence is said to converge linearl iO z a 1, ad sperliaearly
if a = 0.

The convergence rate of any sequence, whose order is greater then unity, will be zero.

These sequences have superlinear convergence. We note, however, that a sequence with
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unity order of convergence may also have a superlinear convergence. Linear convergence

is sometimes referred to as geometric convergence or exponential convergence, since in this

case the error sequence, {e,}, is a geometric sequence.

In many iterative algorithms, the iteration is defined via a mapping, that successively

approximates the solution, i.e.

Xnel = M(z,)

In this case, we may find the rate of convergence by investigating the Jacobian matrix (or

the matrix of derivatives) of this mapping, defined by,

DM(x-')Ij = aM(x)i = -linm i x, -Mx)t, (2.39)

where Iei denotes the ith component of a vector.

Since

a i! l- _i a 'iM)-M (( )X ta= lim im)- (2.40).- °o !!Xn- X"'i 1:'Xn -

the largest eigenvalue of the matrix DM(z-), will provide us with the convergence rate of

the iterative algorithm.

Rate of convergence of the EM algorithm

The rate of convergence of the EM algorithm can be calculated by deriving the Jacobian

matrix of the mapping, _( t l' ) = M((")), associated with the EM algorithm. We recall

that this mapping is defined by

n( " * ' ) = M( (" n) ) = arg mx Q( ; (n) ) (2.41)

Using the fact that DioQ(0("'l); (n)) = 0, this Jacobian matrix can be easily calculated as

follows. Since the vector DlOQ((f'+l)};e()) = D'OQ(M(()); n )) = 0, its derivative with
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respect to the vector 0(" ) is the zero matrix, i.e.

0= .0 DOQ(M(O(n); O(n)) = DM(O(n)). D20 Q(M(O(n)) e()) Di1 Q(M(O(,)); (.))

(2.42)

Let 0' denote the limit of the estimate sequence. Since ( "n l) = (0 (" )) and 0'

M(0'), in the limit as i(") -- ', equation (2.42) becomes

0= DM(O')D2 0 Q(6 ;O ) + D 1 Q(O'; O) (2.43)

Using (2.38) and then (2.37) will give us the Jacobian matrix,

DM(a0) = D20 H( _0'-) [D2Q(-;; _)] (2.44)

This result appears in theorem 4 of [21, which is repeated in Appendix A.

The rate of convergence of the EM algorithm (2.44) has the following interesting in-

terpretation. The term D2°H(O'; ') is the Fisher Information matrix Ixy of X given Y

about O', i.e. for exponential families it is the variance of the sufficient statistics t(X) given

y and 9'. The term D20Q(O'; 0') is, for regular exponential families, the Fisher Information

matrix Ix of X about 0', i.e. it is the variance of the sufficient statistics t(z) in the X

model without any measurements. From (2.37), the Fisher information Iy of Y about ',

for regular exponential families, is given by,

ly = IX - Ix/y (2.45)

Thus, in the scalar case, the rate of convergence is given by,

IXIY I ly
XY =1-Ix- (2.46)
Ix Ix

If the complete data is such that it can be predicted well given the observations, i.e.

IX/Y is small, then a is small and the EM algorithm converges rapidly On the other hand,
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if we choose the complete data to be much larger than the observations, then the complete

data will carry much more (Fisher) information then te observations: ly / Ix will be close

to zero, ca will be close to unity and the EM algorithm will converge slowly. Indeed, if the

complete data is identical to the observations, the EM algorithm converges in one step:

however this step is as complicated as solving the original ML problem in the Y model.

On the other hand, choosing a complete data that is much larger than the observations, in

order to get simple EM steps, will require performing more iterations because the algorithm

converges slower.

2.3 The Linear Gaussian case

This section has two objectives. The first objective is to provide an explicit example

of the application of the general EM theory developed above. The second and more im-

portant goal is to develop results that are referred to later in the thesis in a wide range of

applications.

Suppose that the complete data, X, and the observed (incomplete) data ¥Y are related

by the linear transformation

Y = HX (2.47)

where H is a non invertible matrix. The complete data X possesses the following multi-

variate Gaussian probability density:

fx(x;9) = det(iA(0))] exp -( m())tA1(q)(x - m(8))] (2.48)

where A = 1 if X is real valued, A = 2 if X is complex valued, and + denotes he conjugate

transpose operation. The observations Y, also possess a Gaussian distribution, and thus
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the likelihood is given by

A 2 ( - _ -(y; = jdet(2 -(0))] exp-y- )) t - )(y - m,(_))] (2.49)

where my and Av are respectively the mean and the covariance of tl-e observations, given

by

mY(8O) = H-m(O) (2.50)

i(8) = H. A(0) Ht (2.51)

We note that our parametric model is such that the parameters define the mean and the

covariance of a Gaussian density in a possibly non-linear way. Thus, maximizing the like-

lihood in this linear Gaussian case may require solving a non-linear optimization problem.

Nevertheless, we will be able to invoke results from linear estimation theory and explicitly

derive the EM algorithm for this case.

We start developing the EM algorithm for maximizing the likelihood of the observation,

Y_, using the complete data, X, by examining the log-likelihood of X. By taking the

logarithm of (2.48), we get,

A 2x X
log fx(; ) = C - log det(-A()) - (z - nm()) t A'()( - n(8))

- 2 A 2

= C - l ogdet(- A()) - mt ()A-'()m(9)

A A
- t-l((e)m() - m (o)A-'(?)_ -;tr(A(0)xt) (2.52)

where C is a constant independent of 0 and tr(.) denotes the trace of a matrix. Maximizing

this expression with respect to 0 is assumed to be easy.

Taking the conditional expectation of (2.52), given Y = y, at a parameter value 0(),

we get,

Q(9;(n") = E{logfx(; 0)/y;_(i}
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= -C log det( - A(@)) - Amt ()A-'()m(O) t-("(n)t)A-'()m(O O)

-4-m'(O)A-'(_()z - tr(A I()j(n)) (2.53)
2- 

where X(n) = E Zl Y-y; (n) and (n)-E {zt Y =y; (n) 

Maximizing expression (2.53) with respect to must be easy, since it has the same

functional form. with respect to , as (2.52).

Since X and Y are joi-ttl gaussian, and related by a linear transformation, the condi-

tional expectations required for (2.53) can be computed by straight-forward modifications

of known results from linear estimation theory. We obtvin,

(nJ = _(el ( " ) + r(e?() [ - m (9(n")] (2.54)

() = [I - r(o(n)). H] A(8(n)) + ((n))(?r(n))t (2.55)

where I is the identity matrix and r(e) is the "Kalman gain" defined by

r(g) = (9)SHI H(O)t]H (:.56)

Note that if we set (n ) = , equations (2.54) and (2.55) are the well known formulae for

the conditional expectation in the Gaussian case, e.g. 20!.

The E and M steps of the EM algorithm for the linear Gaussian case may now be stated

explicitly as follows. Having a current estimate, (), the algorithm iterates between,

* The E step

Calculate (") and +("), by (2.54) and (2.55). Note that the sufficient statistics of

Gaussian distribution are composed of linear and quadratic functions of the data.

* The M step

Update by maximizing the expression in (2.53). The explicit solution is some func-

tional of the statistics calculated in the E step.
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2.4 The EM algorithm with varying complete data

In this section, we present a variation of the EM algorithm, where the complete data

may vary from iteration to iteration. This variation is referred to as the Extended EM

(EEM) algorithm.

As mentioned above, the choice of complete data is the critical factor in designing an

EM algorithm for a given problem. This choice determines the complexity of the algorithm

and its convergence rate; it may also affect the convergence point, leading to a different

stationary point for a different choice of complete data. An alternative to choosing a fixed

complete data, is to let the complete data vary from iteration to iteration. The choice of

complete data may vary according to a fixed rule or may depend on the current value of

the estimate. By allowing the complete data to vary, we can achieve the following useful

properties:

* Additional iterative algorithms are incorporated in the EM framework.

* Simpler algorithms may emerge.

* The algorithm may converge faster.

* Varying the complete data may enable the algorithm to escape from unwanted sta-

tionary points.

We start by presenting the algorithm formally, and giving its properties. Then, we will

motivate the EEM algorithm and suggest strategies for varying the complete data.
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2.4.1 General theory

Suppose we observe y E Y, where Y denotes the sample space of the observations, and

the probability of y is fy (y; ) indexed by E e. The observed sequence may be viewed as

being incomplete with respect to a family of complete data X0, indexed by ,f E A, where 

is an arbitrary index set. Each XB is a sample space with an associated p.d.f., fx ( ;t ),

also indexed by E . For any , a sample of the complete data, , is related to the

observations by,

y = (T( ) (2.57)

where y denote the observations and Ta is a non-invertible transformation.

In complete analogy to (2.8), we may write for all ,

log fy (y; ) = E {l fog x, (a;) y;} E { log x,( / yr (;) y ;} (.j8)

or, using the notation in sectic-i 2.1,

L(#) = QB(, A) - He(G,6) (2.59)

Using this relation and invoking Jensen's inequality we may prove the following lemma.

Lemma 2.1 For a given parameter value 81, if for any 8, another value 82 satisfies

Q6(0, 81) > Q0(81, 1)

then,

(0) > L(l )

Note that this lemma states that we have a procedure for strictly increasing the likeli-

hood, if we can find any complete data, for which the function Qs may be strictly increased.
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The Extended EM algorithm is now presented formally. We note that the choice of

complete data in each iteration may depend on the current and previous estimates and on

the iteration index.

* Start, n = 0: guess O(0

* Until some convergence criterion is met,

- Choose a complete data Xg,) where,

/() = f(n, (0), - (n)) (2.60)

- The E step: calculate

Qf (e; #(n)) = E log f (X ;6 ) !Y; 0(n) (2.61)

- The M step: solve

_(n+ ' ) = arg max Q~,, (_; si")) (2.62)

-n=n+

The proposed EEM algorithm preserves the basic monotonicity property of the EM algo-

rithm. Since the convergence properties of the EM algorithm were proved using the Global

Convergence theorem, they will follow through to the EEM algorithm, if the conditions

developed in section 2.2 holds for every E . These properties of the EEM algorithm hold

regardless of the rule f we use for changing the complete data. A carefully designed rule

may provide an algorithm with better properties, however. Such rules will be suggested in

the following section.
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2.4.2 Motivation and rules for changing the complete data

The fo.lowing simple situation may motivate the usage of the EEM algorithm. Suppose

that, in a specific problem, two complete data definitions may he considered. Each choice

of complete data generates a different algorithm for maximizing the likelihood of the ob-

servations with different convergence properties. Following the EEM idea, we may switch

between these algorithms. If one specification of complete data generates a simpler but

slower algorithm, we will start using the simpler algorithm and then, near the convergence

point, switch to the other algorithm to converge to the solution faster. If one algorithm

converges to an unwanted stationary point of the likelihood, which is not a fixed point of

the other algorithm, we will switch to the other algorithm to avoid it.

In general, the family of complete data specifications is indexed by d; E , where 3

is an arbitrary index set, say, a subset of the k-dimensional Euclidean space. The choice

of complete data may depend on the current estimate of the parameters. In the general

case, the following strategies may be used to obtain algorithms with better convergence

properties.

Accelerating the convergence rate

Loosely speaking, the rate of convergence is faster, when the complete data can be better

predicted from the observations. Thus, changing the complete data in each iteration, de-

pending on the current parameter model, ( n ) , in such a way that it may be better predicted

from the observations, will improve the rate of convergence.

More specifically, an EEM iteration is given by ( + ) = M(8(n)). It satisfies

D'OQo(,(n-+); _;On)) = 
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Since the vector D'oQs(_tnl'); (")) = DlOQ,(M (6(ni); (" )) = 0, its derivative with re-

spect to the vector in) is the zero matrix, i.e.

0= (DI°Q0(M9(0("));~(n ") ) D s(n) D2 Q.(M(8()), ())+DIQ (M(8("));_(n))

(2.63)

Now, in the limit as n - , _(n), (n+ l) _ O' and we get

DM((n ) = -"DllQ(9(n l';e()) )[D20Q,(('+l; ))] -DllQ((); 9(n)')) [D2Q((); _e)n))] -1

(2.64)

The largest eigenvalue of DM(9((n )) will define the rate of convergence. To accelerate

the convergence, we want to choose a complete data (i.e. ), that will minimize this largest

eigenvalue.

Depending on the set B, it may be possible to find 3 5, in terms of e("), that solves

the following equation

D"Q(0"n); O8()) = f(3, (n) ) = (2.65)

In this case, the convergence rate of the EEM algorithm will be superlinear.

Avoiding unwanted convergence points

We wish to find a global maximizer of the likelihood function. However. under the conditions

of section 2.2, an EM algorithm with a fixed complete data specification is only guaranteed

to convergence to a stationary point of the likelihood. Nevertheless, not every stationary

point of the likelihood is a fixed point of an EM algorithm. If a family of complete data

is given and a specific stationary point is not a fixed point of all the EM iterations that

correspond to the members of this family, then following lemma 2.1. we may find a complete

data specification, that will take us away from this unwanted stationary point. Once we
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have avoided a stationary point and we find a parameter value, for which the likelihood is

higher, then due to the monotonicity property, we will never return to this stationary point.

When the given set of possible complete data is indexed by , the following rules for

choosing 3 in each iteration, in order to avoid unwanted convergence points are suggested:

* Choose a random , in its domain.

* Search for B that give the largest increase in the likelihood. If searching the entire

domain of c3 is complicated, search in a sub-domain, which may be picked randomly.

One may argue that these rules are heuristic and ad-hoc. However, the whole area of

global optimization of non-convex functions is heuristic, and depends on the specific goal

function. Our approach potentially provides an improvement, within the framework of the

EM algorithm, in the sense that, even when it fails to find the global maximizer, it finds a

better local maximizer.

2.5 The EM algorithm for general estimation criteria

The EM idea may be applied to general inference problems, other than parameter

estimation problems, and a variety of estimation methods, other than the ML method.

We will start by suggesting a formal structure of the EM algorithm for general estimation

methods. Then, using the general Minimum Information criterion, we will show that a wide

class of estimation methods reduce to optimizing a criterion composed of the log-likelihood

and an additive penalty term. An EM method for optimizing these criteria, analogous to

the EM method for ML, will be suggested.
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2.5.1 Formal structure

As before, let Y be the sample space of the observations, and X the sample space of the

complete data.

Suppose we observe xz X. We want to find a model or a structure. r, that will "ex-

plain" . Since we consider statistical inference methods, a model will denne a probability

distribution or a p.d.f., fx(x; r), over the set X. The model may be as simple as a paran,-

eter specification or as complicated as a full, unconstrained description of the underlying

probability measure.

The a-priori knowledge, the model complexity and a cost function for measuring goodness-

of-fit of the model to the observation, will determine the procedure for estimating this model.

There are many ways to incorporate knowledge, complexity and goodness-of-fit measures,

which explains the variety of criteria for statistical inference. However, in any inference

procedure we may find the following two characteristics:

* Extraction of sufficient statistics: Not all the observed data is relevant to the model

estimation goal. Extracting only T(Z) from the data, where 7 (-) is many to one

function, is sufficient.

* Optimization: The possible models are compared and a model estimate is generated

by a procedure T{7T(x)) = , which is usually a result of solving an optimization

problem:

= arg in F( (); )

We assume that given z C X, i.e. given the complete data, we have a satisfactory solution

for the model estimation problem. In other words, there exists a way to incorporate the
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a-priori knowledge, to measure the complexity and goodness-of-fit of a candidate model,

to calculate the required statistics and to solve any optimization problem, that is implied

from the above. A satisfactory solution consists of a set of formulas, a detailed algorithm

or a program. Thus, we may imagine the existence of a "black box", whose input is a

measurement E X and whose output is a model estimation, r.

Suppose now that we observe the incomplete data, y c Y, where y = T(z) and T(-)

is non-invertible (many to one) transformation. Any candidate model will define a p.d.f.,

fy (y; ), over the set Y where

fY(Y; - fX; )d (2.66)

and the set X(y) is given by (2.4).

We assume that we do not have a satisfactory direct way to determine the model or the

structure, given the incomplete observations, either because we cannot specify the procedure

for determining the model, or, when the procedure is specified, simply because implementing

that procedure (e.g. solving the implied optimization problem) is difficult.

The EM algorithm, which we now formally present, is a possible method for determining

the model, given the incomplete observations, by making an essential use of the availability

of a satisfactory estimation procedure for complete data observations.

* Start, n = 0, initial model xr()

* Iterate (until some convergence criterion is met)

- The E step: calculate

7(E { T(T) Y; } = (x)fx/y(x/y; r())d (2.67)
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- The M step: solve

(ntl) = r { (n =a FargminF(t'n;) (2.68)

2.5.2 The EM algorithm for the Minimum Information criterion

Minimum Information (MI) is a general method for solving inference problems, suggested

originally by Solomonoff 1211 and recently by Hart 22. This method generalizes the ML

and MAP methods. This method may be applied to situations, where a general structure

or model x should be estimated. This method also enables to incorporate a more general

a-priori information.

Given data, y E Y, the MI method estimates the model r by,

t= arg min I(y, ,) (2.69)

where I(-) denotes the (self) information. The joint information i(y, x) may be written as,

I(y,) = I(y/,) + Ix) (2.70)

where I(y/r) is the conditional (self) information.

The MI criterion implies many estimation procedures, since there are many notions and

definitions of information. We will usually use the more quantitative ones:

* Combinatorial information, due to Hartley 231.

* Probabilistic (Shannon) information, due to Shannon 241 and Wiener 251.

· Algorithmic (Kolmogorov) information, due to Solomonoff 21], Kolmogorov [26J and

Chaitin 271.
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These three notions of information are summarized in i261.

Shannon information is the most adequate for I(y/!), since a given model provides a

probabilistic description of the observations. Thus, i(y; ) = - log fy (y; ir), and the MI

criterion reduces to the minimization of likelihood-like criterion,

G(x-) = - log fy (y; x-) + I(x) (2.71)

Shannon information may be adequate to describe the information, given by specifying

a model x, if we know that all possible models belong to a well defined set II, and an a-priori

p.d.f., fn(x), defined over n, is given. In this case I(r) = - log fn(x) and the MI criterion

reduces to the MAP criterion, i.e. we estimate the model by,

r = arg max [logfy(y; ) + logfn(x)] (2.72)

Other examples will involve the algorithmic notion of information, which measures the

information of an observed data by the number of bits needed to describe it. As shown, e.g.

1281, the algorithmic (Kolmogorov) information cannot be computed when no constraints

on the "language" used to describe the data are specified. However, given a constrained

framework, this information nay be specified quantitatively.

A special case, that uses the algorithmic information, in a constrained framework, as a

criterion to weight a given model, is known as the Minimum Description Length (MDL).

This criterion was suggested by Rissanen 29,30,311. The description length needed to

describe the model was given explicitly by Rissanen for the problem of determining the

parameters 1,- -. ,, together wit!. their number n. The conditional information of the

data, given the model, is interpreted as the code length needed to describe the observation,

given the model. This term is, as above, the log-likelihood, or the Shannon information, of
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the data, given the model. Thus, in this case the MDL criterion requires solving,

, b = arg mini - log fy (y; ) n log NI (2.73)

where N is the length of thye observation sequence.

For all these cases, where the conditional information of the data with respect to the

model is the probabilistic (Shannon) information, the MI criterion has the form of (2.71),

and the EM algorithm of (2.67),(2.68) becomes,

* Start, n = 0, initial model O( °)

o Iterate (until some convergence criterion is met)

- The E step: calculate

Q(; '(n) = E{log fx(; r) y (n) (2.74)

Note that this step corresponds to the E step of the regular EM algorithm, (2.17).

- The M step: minimize

r(nl_ a=rgmin [-Q(X;xr()) 1(r)] (2.75)

-n=n--l

This algorithm was suggested in 21 for the MAP criterion.

It is easy to show that each iteration improves (decreases) the likelihood-like goal func-

tion of the observation (2.71). The goal function may be written as

G(x) = -L()+ 1() = - Q(x; r') - H(x;x')j + I(T) (2.76)

where Q(; ) and H(- -) are defined in (2.11). Thus by a simple extension of theorem 2.1,

we conclude that

G( (n" + l )) < G(x(n)) (2.77)
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where equality holds if and only if both

_ Q(r(n+l), (n)) + z(n(+) ) l (2.78)

and

fXIy(Z; (Xn+l)) = fxy(z/y; )), a.e in X(y) (2.79)

Due to the monotonicity property, if the goal function is bounded, the sequence, {C() },

where G(n) = G((")), must converge to a limit G'. Also, a global optimizer of the goal

function must be a fixed point of the algorithm.

For proving other convergence properties, such as convergence to a stationary point,

convergence of the model estimate sequence and the rate of convergence, we need that the

set of models will be a subset of a metric space. Otherwise, the notions of distance,

convergence, continuity etc. are undefined. When n is a subset of a metric space, those

convergence properties are readily available. We will use the results developed in section 2.2,

where Q(O; 0) is is replaced by -Q(r; x') - I(X). Thus, convergence to a stationary point

is guaranteed if

- Q(r, ') I(X) is continuous in both r and a' (2.80)

The rate of convergence near the convergence point is the largest eigenvalue of

-D'0H(x ;) [-D2Q(x-; r)t D21(-')] (2.81)

where D2°Q('; ' ) in equation (2.44) is replaced by -D20Q(x'; Xr) D2 I(x).

2.6 Possible signal processing applications

The EM algorithm and its extensions developed in this chapter, will be applied later in

this thesis to solve a variety of signal processing problems. We will conclude this chapter
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by trying to characterize the problems that are naturally solved using the EM method.

In many cases, we will describe the possible applications of the EM algorithm, as having

noisy and incomplete observations. As an example, we became interested in the EM algo-

rithm, while considering the problem of power spectrum estimation from a short record of

observations. The modern spectral estimation techniques, e.g. Burg's Maximum Entropy

technique 32], achieve high resolution by artificially extending the observation period or

the autocorrelation support. This solution requires the exact knowledge of the autocorre-

lation values. However, the sample autocorrelation values are only noisy estimates of the

real correlation values. In our opinion, a better approach for high resolution spectrum esti-

mation is to consider the short observations record as noisy and incomplete and to model

the spectrum estimation problem as a statistical ML problem. Following these considera-

tions, we have presented in i331, a parametric spectrum estimation method based on the

EM algorithm. This method, suggested originally in 1331, was later investigated by various

authors 341, 351.

In general we can define two classes of possible signal processing applications. The

first class contains signal processing problems having partial or distorted observations. The

problems of this class are characterized as follows: We may be interested in estimating

unknown parameters or even reconstructing a whole waveform, For this task, it is desired

to measure some signals. However, we observe only a mapping of the desired signals, such

as,

* the magnitude of the signal(s) or

* the sign or the hard limited version of the signal(s) or

* the quantized signal(s) or
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* the aliased signal(s)

or any other partial information. Since the observations are distorted and incomplete the

statistical problem associated with the signal processing problem is complicated. The EM

algorithm provides a natural solution to these problems, where the complete data is defined

as the undistorted signals. The algorithm iterates between estimating these undistorted

signals and updating the desired parameters.

The second class of applications contains signal processing problems for which the ob-

servations are described as a combination of simpler signals. We are interested in estimating

signal parameters or reconstructing a signal waveform; however, instead of observing the

desired signals, we observe a combination such as,

· sum of signals or

* multiplication of signals or

* convolution of signals

or any other combination. We use a probabilistic modeling of the various signals. With

the observations above, the signal processing problem is modeled as doubly (or multiply)

stochastic phenomena. The statistical problems generated by doubly stochastic models are

usually complicated. The EM algorithm provides a natural solution to these problems,

where the complete data is the set consisting of all the separate signal components. In the

doubly stochastic case this complete data is equivalent to the set consisting of ne of the

"hidden" signal components and the combined observations.

Many applications that belong to this class may be considered, since combined signals

are common in many practical situations. In chapters 4 and 5, we will consider examples
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that belong to this class of applications and solve them via the EM algorithm.

We conclude this chapter by briefly presenting two previously suggested applications,

which fall naturally within of the EM framework. The first application is the problem of

estimating the parameters of a stationary signal in a stationary noise. The EM solution

to this problem is referred to as the iterative Wiener filter. The second application is the

estimation of the parameters of a Hidden Markov Model (HMM). The EM solution to this

problem is widely known as Baum's algorithm. We point out that both these previous

applications belong to the class presented above and are thus analogous. We believe that

an additional insight to the HMM analysis can be gained by presenting it in terms of an

iterative filtering technique.

The iterative Wiener filter

Let s(t; ) be a stationary (discrete) random process, and suppose that this process is

observed in additive noise, i.e. we observe

y(t) = s(t; 6) + n(t) (2.82)

where n(t) is also a stationary process. We are interested in estimating the signal parame-

ters. and, in some cases, in filtering the signal.

This model was suggested in 3] to represent a speech enhancement problem arising

from single microphone measurements. In this case, the speech signal is modeled as a

stationary autoregressive (AR) process with unknown coefficients, referred to in the speech

context as Linear Prediction Coefficients (LPC). Speech signals are frequently modeled as

AR processes, since this model captures the important features of the speech signal, at least

for a short enough observation window. We may be interested in finding the speech LPC
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parameters, say for vocoding or for use in a speech recognition system, or in enhancing the

speech signal. If the speech signal is observed without the noise, the LPC parameters are

easily estimated by solving the appropriate normal linear equations. However, estimating

the parameters from noisy observations is complicated.

The iterative Wiener filter suggested in 3] can be interpreted as an EM algorithm as

follows. Let the complete data be defined as the speech signal, s(t; 0), and the noise signal,

n(t), separately. An equivalent definition is to let the complete data be the speech signal,

s(t; 9) in addition to the observed signal, y(t). From the discussion above, if we observe the

signal without the noise, the task of estimating the parameters will be easy. In addition,

having the signal parameters, we may estimate the signal, i.e. filter it from the noise, using

a Wiener filter. This suggests an EM algorithm, that iterates between Wiener filtering,

applied to the observed signal, using the current spectral (or LPC) parameters of the signal

(the E step) and updating the spectral parameters using the filtered signal (the M step).

We note that the filtered speech signal, .(t), is achieved as a by-product, while vnple-

menting the E step of the algorithm.

Hidden Markov Models and Banm's algorithm

Hidden Markov Models (HMM) are interesting and rich statistical models, that have been

used frequently to model complex real problems. The iterative Baum's algorithm, suggested

in 361, which is now recognized as an instance of the EM algorithm, was suggested for the

statistical analysis of HMM. These models are extensively used for modeling the mechanism

that generates the speech signal, and are applied in speech recognition systems. A review of

HMM may be found in i37, and a review of their application to automatic speech recognition

may be found in 381. We will now briefly present the Hidden Markov Models and Baum's
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algorithm, from a different perspective.

Suppose we observe the sequence y, y,' . ,YN-1. A hidden Markov model assumes

that the observations are probabilistic functions of a finite alphabet Markov chain. In other

words, there exists a hidden Markov sequence, so,s l , ,,SN-1, such that the observed

sequence is a result of combining the Markov sequence with another stochastic contribution,

i.e. the model assumes that for each i, there is a conditional probability distribution

p(yj/s = ak) k = 1,-.-, M (2.83)

where {i, CaM) is the alphabet of the Markov chain.

Using this point of view, the observations, {yi }, in a hidden Markov model are the result

of a "signal" - the markov chain {s,}, combined with "noise".

The unknown "signal" parameters in ihis case are the transition probabilities repre-

sented by the matrix , and in a non-stationary case, the initial probability vector X.

Sometimes, the "noise" parameters, i.e. the parameters that define the conditional proba-

bilities of (2.83), are also unavailable. The ML problem for estimating these parameters is

usually too complicated to solve directly.

The complete data will be the hidden "signal' in addition to the observations, which

is equivalent to observing the signal" and the "noise" separately. This complete data is

analogous to the complete data used in the iterative Wiener algorithm. Suppose we observe

the hidden Markov chain. If the unknown parameters are all entries of the transition

matrix, the ML estimate of say Wk,! is achieved by counting the number of transitions from

the symbol at to the symbol a*, divided by the number of occurrences of the symbol act.

The "noise" parameters may also be estimated easily, given the "noise" realization, which is

determined, when the observations and the underlying hidden Markov chain are available.
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The specific procedure is defined depending on the specific parameterization.

In the iterative Wiener algorithm where a stationary signal in a stationary noise have

been considered, the E step was implemented in the frequency domain using a Wiener

Filter. In the HMM case, where the signal is a Markov chain, Bellman's sequential dynamic

programming algorithm 391, can be used. Bellman's algorithm is sometimes referred to as

the Viterbi algorithm. The E step, which estimates the required statistics of the hidden

Markov chain, needed for updating the parameters. is thus implemented by an efficient

sequential algorithm.

The detailed Baum's algorithm is presented explicitly in 371, page 11 and elsewhere.

The interpretation of this algorithm as an iterative filtering algorithm gives an additional

insight, that may help suggest enhancements to this algorithm.
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Chapter 3

Sequential and Adaptive

algorithms

In this chapter, we will suggest and investigate sequential and adaptive algorithms,

that are based on the EM concept. Sequential and adaptive algorithms correspond to the

case where the data is processed sequentially and an output is expected, whenever each new

block of data is processed. We denote the n 1It data block by Y,+l, and suppose that

the desired output is an estimate of a parameter vector, . The general structure of any

sequential (or adaptive) algorithm is.

8(" + ) = G.,(1 ()(; Y+l) (3.1)

The desired output of a sequential algorithm is either identical to or at least asymptoti-

cally identical to the result achieved by processing the whole data at once. The advantage of

the sequential algorithm over the batch algorithm is not in the final result, but in computa-

tional and storage efficiency and in the fact that an output may be provided without having

to wait for all data to be processed. Adaptive algorithms correspond to the case where the
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underlying system features are time varying, and the algorithm is expected to track the

varying parameters. In this case, processing all the available data jointly is not desired,

even if we can accommodate the computational and storage load of the batch algorithm

and can afford to wait to the end of the data, since different data segments correspond to

different parameters values.

Sequential and adaptive algorithms may be suggested based on an iterative algorithm

in the following way. Given the current estimate, _(n, the next iteration takes into ac-

count the new data block, Yml for generating the updated value, _(
n

+ ). A well known

example is the stochastic gradient algorithm, which is an adaptive version of the itera-

tive gradient algorithm. As another example, the recursive least-squares (RLS) algorithm

and the (extended) Kalman algorithm are sequential algorithms based on the iterative

Newton-Raphson method. Similarly, the iterative EM algorithm may suggest sequential

and adaptive algorithms. These algorithms will be developed in this chapter.

The chapter is organized as follows. In section 3.1 we will develop sequential algorithms

based on the EM method, that may be applied only when the underlying estimation problem

has a special structure. In section 3.2 we will use approximations and develop sequential

and adaptive algorithms, based on the EM method, that may be applied in general. The

sequential algorithms, presented in this chapter, will be analyzed in section 3.3.

3.1 Sequential EM algorithms based on problem structure

In this section, we will identify the cases where the underlying estimation problem has a

special structure, and suggest sequential EM algorithms that exploit this special structure.

The next section will demonstrate that, in general, a sequential algorithm cannot be derived



as a direct consequence of the EM method. Only using approximations will we be able to

suggest sequential and adaptive algorithms for the general case.

3.1.1 Sequential EM with exact EM mapping

Throughout this chapter, we will consider the observed data as blocks, yl,, Y " -Y , ,

to be processed sequentially. The complete data is denoted z1,, T2_ n,. ., and is chosen

so that each block of observed data y, corresponds to a block of complete data, x, by

!Y, = Tn(X n) (3.2)

where Tn() is a non-invertible transformation.

In this environment the log-likelihood of the observations, after n - 1 data blocks have

been observed, is given by,

Lnl(_) = log fy.+,,(Yl,- ,y --, , y1 ) (3.3)

Using the complete data, ,-- -, , and following the identity (2.12), the log-likelihood

of the observations may be written as,

L,,+(8)= Qnl(_I;_ )- Hn,, (8; ) (3.4)

where

Q,.,(0, ) -E logfx,.+, sx,(_ne,,l'''X 1. ,. .. , ; M, (3.5)

H_ (, )E 109 fX.+1 -x1i/E .t4 ( ftl - z ;8)i I Y zY; e (3.6)

An EM algorithm for solving the maximum likelihood problem, given these n - 1 blocks

of data. using the above definition of complete data, is given by the following iteration,

8(tI) = argmax Qn+, (; (k)) = arg max E {logfx.+, .x , (nI,--x z-,;t) ,,,y(k) }

(3.7)
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where k denotes the iteration index and n the data index.

A sequential EM algorithm with exact EM mapping is a method that recalculates in each

iteration, as more data is processed, the exact steps of the EM algorithm for maximizing

the new likelihood function. For convenience, suppose we perform a single EM iteration for

each new observed data block, i.e. the iteration and the data indices are equivalent. This

mapping is given by (3.7) where k is replaced by n. This EM mapping is, in general, a

function of all given observed data blocks; thus, it may written abstractly as,

_n+ 1) Mn+((n); yn,+,...,l) (3.8)

The exact EM iteration may be implemented recursively, when the effect of the past

data blocks, yn, - -, yl, can be summarized into a small number of simple quantities. We

may algebraically manipulate the given expression for the EM iteration and achieve an

equivalent expression, that may be written abstractly as the mapping.

:n-i)-= - 't ((").y Y, g(y, .'.Y)) (3.9)

where g indicates easily stored and updated functions of the past observations.

We will assume that the structure of (3.9) may be achieved for all n. In this case, we

suggest the following sequential EM algorithm:

* Start, n = 0 : Guess 8(0) Initialize g(, -- ) = 

. For each new data block. yn+l.

- Exact EM mapping: Update parameters,

_ 1) = NI 1 (( );Y l 9(Y.. I Y1 )) (3.10)

- Update and record 9_(Ynl' , Yl) for the next step
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- n = n- 1

In each step, this algorithm implements the exact EM mapping for maximizing the new

likelihood L,+ 1(8), and thus, Ln,l((+ )) > Ll(( ')).

This algorithm has been presented abstractly so far. To fix ideas, we now present a

simple example, in which a linear least squares problem is solved recursively using this

algorithm.

Example: Sequential Least Squares EM algorithm

It is well known that the linear least-squares problem may be posed as a statistical maximum

likelihood problem, in the following way. Suppose we observe a vector, y = (l, ,)

given by,

y = A - t n (3.11)

where 8 = (81,--, 0)T is the unknown parameter vector, n = (n l ,.. ,n,)T is the noise

vector, where {n,} are i.i.d random variables distributed normally with zero mean and

variance oa, and A is a given (n x k) matrix, which may be vritten by columns as A

al, , atj or by rows as AT- = 'al,--, , J. In this casc maxii.zing the likelihood of the

observation yield a least-squares problem as,

-MLV = argmaxlog fy(y;6) = argmin (3.12)

We start to aevelop an EM algorithm to this problem by choosing the complete data.

Suppose that the vectors {_z3 =1 are defined as.

= a - n (3.13)

where nj is (n x 1) noise vector, whose components ni are zero mean Gaussian i.i.d random
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variables with variance 3a2
2. Assuming that {nj} are uncorrelated and that - I, = 1,

we have
k

VY = E, i(3.14)

3=1

The complete data is defined as the set ({x}= I. Writing the complete data as a long vector,

T = (T,. .. , x), the relation between complete and incomplete data is given by y = H x,

where H is the non-invertible (n x n - k) matrix

H = [t-!II

k times

This is a (simple) Linear-Gaussian case situation; using the results of section 2.3, the E

and M steps of an EM algorithm for solving the least-squares problem of (3.12) are given

by,

* E step:

n+ 3( -_(y -A .(n)), j =1,- , k (3.15)

* M step

T (n)
) _ arg (") . t 9- -= 

Combining these two steps we get the iteration,

(n+l) = n) + diag ( j . ) .AT (y- A () (3.17)

where diag(-, -,-) is a diagonal matrix.

A sequential algorithm, based on the iteration (3.17), according to the exact EM map-

ping method, may now be easily developed. Define a "correlation matrix", A,, and a

across-correlation vector", p_, for the least squares problem of order n in the following way,

An = -ATrA E 
n n

s=l
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- = -A E- (3.18)

Given a new measurement. Yn+l, we can update An and p recursively, as,

n I T
-ni- = r n + 1 1 cn+

n 1
P t (3.19)P.+l = n:l -+ n + -l' Yntl

The exact EM iteration (3.17) may be written as,

o( " *+ = ("n) + dag( 1 (,1)'An+l () (3.20)

which can be calculated recursively, since all required quantities are calculated recursively.

The sequential least squares EM algorithm (SLSEM) is completely specified by (3.19) and

(3.20).

As a final comment, we may compare this SLSEM algorithm to the well known LMS

and RLS algorithms, which also solve this linear least squares problem ecursively. The

LMS algorithm is specified by the following recursion,

8("+1 = (") fa_~+ l~+l - T 0(n)
) - = _n+_ (+1 (3.21)

where 0
k is the ith component of the vector 0.

The RLS algorithm, which exactly solves in any step the nth order least-squares problem

is specified by,

(nl) = -(n+l) 1 ( - (2)

where J-4,I1 may be calculated recursively as,

1-Ink = -T . 4 -1
R-!- n T -2

Ir "+,+4 n -tn+l
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We notice immediately that the complexity of the LMS algorithm in each iteration is

linear in the number of unknowns k, while the complexity of the SLSEM algorithm and the

RLS algorithm is quadratic. of order k2. The SLSEM algorithm requires less computation,

however.

A fw xperiments with these algorithms indicate that the convergence of the SLSEM

is faster than that of the LMS algorithm. The convergence of the SLSEM algorithm is,

of course, slower than that of the RLS algorithm since the RLS algorithm exactly solves

the least-squares problem in each step. However, the convergence rates of the RLS and

SLSEM algorithms to the true value of the parameters, as a function of the data index, are

comparable.

3.1.2 Sequential EM algorithm based on recursive E and M steps

The sequential EM algorithm presented now is applicable to the following situation.

Suppose that, given the complete data, there is a sequential (or adaptive) algorithm for

estimating the parameters Also, suppose that the required statistics of the complete data

may be estimated recursively from the observations. In this case, as each new block is

observed, the necessary new complete data statistics are estimated recursively, given the

current value of the parameters - the E step. Then, the parameters values are updated

sequentially, given the new estimated block of complete data statistics - the M step.

To be more speci5c, suppose that, if the complete data, x1, x2 .- , .- , iF observed,

there is a sequential (or adaptive) algorithm for estimating the parameters, i.e.

#(noel = G (t(,,l), r(_,-- ,), )0n) ) (3.24)

where t(x,+l) are the statistics to be extracted from the new data n,,l. The statistics
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r(x,,-,Xl) are extracted from the past data. Since (3.24) represents a sequential proce-

dure, these statistics are easily stored and updated.

Unfortunately, the complete data is not available. We only observe the incomplete data,

y, Y, '-,y , , so we cannot estimate the parameters via (3.24). Following the EM idea.

we should estimate the complete data statistics, needed for the sequential algorithin of

(3.24), by taking their conditional expectation, given ,. ,, y'-,1 and tne current value,

6(), of the parameters. These conditional expectations may be calculated sequentially too.

Consider, for example, the case where the complete data is composed of two Gaussian

signals, say s(n) and w(n), and the observed data is the sum of these signal, i.e. y(n)

s(n) + w(n). The conditional expectation of the complete data, given the observation, in a

non-sequential EM algorithm requires a Wiener filter. However, this conditional expectation

may be achieved sequentially, using a causal Wiener filter or a Kalman filter.

A sequential procedure for estimating the required complete data statistics may be

described abstractly, e.g.,

!Y(o+ |Y } (M,= gyy,+lt(yBY)) (3.25)

where the functions g, summarizing the contribution of past observations, are easily stored

and calculated.

A sequential (adaptive) EM algorithm, based on recursive E and M steps is presented

formally as follows.

Start, n = 0 : Guess (0). Initial g(.,--)= O

* For each new data block Yn.l'
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- Sequential E-step: calculate

i =1 /Y, +l , Y-1 - e(n }

{ = E ...... -e ) ; ON~_= £ (z,,'"r,_) l _, ,_l;BI")I 

= (Y,,+,St(y,, ,y,); n))

= (9r,(Yn,, . ,y); ()) (3.26)

- Sequential M-step: Update parameters

o(n+) = G(i, i, ("n)) (3.27)

- Update and record t(Yn+l,- -,Y ),_r(Yn+,- -- ,yl) for the next step

- n = n-- 1

Suppose that the recursive procedure (3.24), suggested when the complete data is given,

increases the likelihood of the complete data L c,+ 1(), i.e. it satisfies,

(3.28)

In this case, it is easy to show that the recursive algorithm suggested by (3.26) and (3.27)

increases the current likelihood of the observations, as follows. This is true because the

function Q,,+ (; ( )) has the same functional form as L+ 1(), where the estimated statis-

tics, t and , are substituted in place of the statistics. t and r. Thus, if (3.28) is true, then

(3.27) implies

(3.29)

Using (3.4), (3.29) and Jensen's inequality we get,

L,,( ( " n+ )) > L,,n(("n))
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3.2 Sequential EM based on stochastic approximation

The sequential algorithms presented so far were suggested by assuming that the under-

lying problem had a special structure. In this ection, we will address the general situation.

Unfortunately, sequential algorithms may not be derived directly from the EM algorithm in

the gneral case. We will therefore suggest algorithms, that approximate the EM iteration,

in order to get a recursive implementation. We will be able to show that these algorithms

belong to the class of stochastic approximation algorithms, for which a general theory is

readily available.

3.2.1 The EM algorithm: General sequential considerations

The log-likelihood of the observations, given n + 1 data blocks, is given by (3.3). Define,

Ln,x/n( =)- logfy,, y,, y l(ynln,. -, yl; ) (3.31)

The og-likelihood of the observations may be written recursively as.

L,.,(() = L,,() Ln.In.(o) (3.32)

or as,

L.+I() = L +,( ) L., 1,(0) (3.33)
s1

In order to develop a recursive algorithm, we refer to the recursive formula for the

log-likelihood (3.32). Analogous to (3.4), the term L,, may be written as,

L(0) = Q(6; )- H(; ') (3.34)

where the complete data is defined to be x, ,z . For the term L.l/, the complete

data is ,,,.l and following the same considerations which lead to (3.34), we may write,

Ln.l/n(O = Qnl/n(e; ; M) - H I+,/.(6; 2) (3.35)
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where

QH +/n(0,t1) = E {log fx"._,ii. ,( +l/... .__ ; Y } (3.36)

H.1/.(_, ) = Elog]X.,iy.+, ¥,(z _+l/y+ -Yl') ,,- ', ;1 (3.3 )

Therefore,

Ln+,1() = Ln(0) + L.+/.(( ) = Qn(; ') + Q+/n(e; i)- [Hn(; ) + Hn+,/.n(; ')]

(3.38)

and we have,

H.($;_e) < H.(g';_) and Hnl/n(;K) < Hn+1/.('; ) (3.39)

One could try to achieve a recursive algorithm by maximizing either,

Qn(; (n)) + Qn+l/n( ; (")) (3.40)

or,

Q(!; _(")) + Q2/1(_; 8(n)) -- -Qn.ln(; (" ) (3.41)

since maximizing either (3.40) or (3.41) will generate a new value ( "n l1) that increases the

likelihood L 1tl(8). However, despite their seemingly recursive structure, these maximiza-

tions cannot be performed sequentially in general, because:

* Calculating Q,,+l/ involves the past data y, .. , Y

* For each new parameter value, the conditional expectations needed for the term Q,,

or the terms Q1,Q2/l, ,Qn/ -l, should be recalculated. This requires using the

past data samples.



An approximate sequential algorithm

From the discussion above we conclude that a general sequential algorithm, that will imple-

ment the desired maximizations of (3.40) or (3.41), cannot be specified. However, consider

the following sequential algorithm,

* Start, n = 0: Initialize lo(9) = 0. Guess (0 )

* For each new data n+ l

- E-step: calculate

Qa+ /n(, _(n)) = E{logfx(+ ) + l'n -,;) } (3.42)

- M-step: solve

0( l) = arg mrnax [Q /n(t , ( ) ) - n -n(8)] (3.43)

- Record for next step

n+(O) - Qn+l/n(> O(n)) t lin (19)=n~ + .(0

n-n=fl

This algorithm approximates the desired procedures as follows. First, the term Qn+l/n(8; (n))

is approximated by Qa+ I/"( ; on)), given by (3.42). We will use in this approximation s".le

past data values, Yn,---, Yn,_,, as long as Q, 1, , is calculated recursively. We note that, if

the different observation blocks are independent, Qnll/n = QaAln. In general, the weaker

the successive observations blocks are orrelated, the better this approximation becomes.

Second, the previous terms are not recalculated. We calculate each Q 1+/ , using the cor-

responding parameter value, ('), and we simply accumulate these functions and generate

64



*',,(l) recursively. Also using this algorithm, the previous terms may be weighted, according

to the choice of f3,. By an appropriate choice, we may reduce the contribution of the past

data and track varying parameters in the adaptive situation, or we may weight the past

data more heavily, to guarantee convergence and consistency, for a sequential algorithm.

Although it seems that this algorithm is based on ad-hoc approximations, we will be

able to show that this algorithm belongs to the class of stochastic apprcximation algorithms.

Later in the chapter, we will use results developed for stochastic approximation algorithms

to calculate the asymptotic distribution of the estimator and prove its consistency. However,

before that, we will briefly present the stochastic approximation idea.

3.2.2 Stochastic approximation

In a typical problem for stochastic approximation, a sequence of random variables (vectors),

{y}), is oserved. We assume that the sequence is stationary. in the sense that each has

the same marginal distribution, and that it is ergodic. At each instance, a function of the

observed data and the desired parameters, L(; y), is given. We want either to optimize

the unavailable ensemble avera.ge of L, i.e. to find

maxE, {L(; y)} =max L() (3.44)

or to solve an equation, that involves this unavailable expected value, e.g.

E, {L(!;)} = 0 or L() = 0 (3.45)

The first problem is sometimes referred to as the Kiefer-Wolfowitz (K-W) problem 401.

The second problem is referred to as the Robbins-Monro (R-M) problem 41]. By defining

L'(9; A) ) e jL(0; Y_) (3.46)
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a K-W problem for L may be reduced to a R-M problem for L'.

Suppose we have an iterative algorithm for optimizing L(#) of (3.44) or for solving the

(non-linear) equation (3.45). For example, the gradient iterative algorithm for maximizing

(3.44) will be,

( "+ l ) = _(" ) +- L(E(" ) ) ( 7 + l E L( ( ) ) (347)

We cannot implement this iterative algorithm, since the expected value of L and its

derivatives are not available. The stochastic approximation idea is to approximate the

expected value by the sample value. Since we have an ergodic sequence of realizations,

{y , the next iteration is performed using the next realization. This achieves time-average

that approximates the unavailable ensemble average values.

Specifically, the stochastic approximation of the. gradient algorithm, referred to as the

stochastic gradient algorithm, is given by,

(nl) += _(n) +n i_ L(("; ) (3.48)

In 421 and 431 it is shown that, if the observations sequence is ergodic and if {3,} is a

sequence of positive numbers such that limn,, - 0 and it satisfies,

00oo 0o0

En = 00 and 6 < co (3.49)
n=O n=O

e.g. , = B/n, then the stochastic gradient algorithm converges, in probability 1 and in

the mean-square sense, to the right solution of (3.44).

We note that, if the observed data is not stationary and we are looking for an adaptive

algorithm, then we usually choose constant gain , in some range, instead of {$}) as in

(3.49). This way, we reduce the weight of past observations and use the nea input to track

varying parameter values.
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3.2.3 The EM stochastic approximation algorithm

The best statistical parameter estimation method, which we can hope to find, is a method

that solves the following optimization problem:

8 = argmax E.t {logfy"+l(ynpO8)) argmaxJ() (3.50)

This is because the solution to this problem is the true parameter value. To prove this

claim, we note that using Jensen's inequality, we get

J(R) Slog f (,,,; f)yir., (yn,,; , L.dN Y < J(0t) (3.51)

i.e. Ba,, maximizes J(_). We note that the equality in (3.50) is achieved, if and only if

f/¥, (y,,; ) = fy,, (y+; , ) almost everywhere.

The maximization of J(8) can be accomplished using Newton-Raphson method or any

other optimization method. Instead, we will use an iterative algorithm for maximizing J(),

based on the considerations leading to the EM algorithm, as follows.

Using z, 1i as the complete data with respect to y,+l and following the method used

for deriving (2.12), we may write J(8) as,

J() = Q(e; ) - (; ) (3.52)

where

Q(P; a)= E, E log fx (+l;. 19) yn+;6 (3.53)

Considering the function (; (n)), it is easy to show, using Jensen's inequality for the

expression inside the expectations, that,

(e; ) )< Hy; 7 ) (3.55)
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Analogous to the EM algorithm, an iterative algorithm for maximizing J() is given by,

) =argmaxQargmax E, ,(;()}} (3.5 6)

where from (3.54) and (3.55), each iteration of (3.56) increases J(8).

Unfortunately, it is impossible to implement (3.56), since the expected value with respect

to Y,l is not available. Using the stochastic approximation idea, a stochastic realization

of (3.56) is performed as the (n - 1) t data block is observed. Thus, we get the following

stochastic approximation algorithm:

0(" ' ) arg max E {logX.,(z . y_ ;(") (3.57)

Following the notation used in the beginning of this section we will define

Qal,(O-(n))' - E)logx...(;,-l;9)i 1;@ }0 (3.58)

In a sequential algorithm, the new data block together with the past data blocks should

provide a time-average approximation to the ensemble average of (3.56). This may require

weighting the past data more heavily. Thus, we define recursively a function n+l((0) as,

in,+l() = Q+in( )) , () (3.59

and the general stochastic EM step will be

_(+l) = arg max ntl(() (3.60)

which is the algorithm suggested in (3.43).

We note that this algonrithm was also suggested in [441, during the investigation of

approximations to the stochastic Newton algorithm.
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3.3 Some properties of the sequential EM algorithms

Analysis of sequential and adaptive procedures, especially in a statistical or stochastic

context, has been the subject of extensive research efforts. The properties of the stochas-

tic approximation method, being the simplest, may be found in various references, e.g.

[43,45,46,47] and elsewhere. This topic is probably one of the most difficult subjects in math-

ematical statistics; investigating convergence of complicated stochastic structures, proving

convergence in probability, in probability 1 or in the mean-squares sense and finding the

rate of convergence requires using advanced probabilistic tools from Martingale theory and

stochastic calculus theory. Thus, a typical assumption made in most of the references above,

in order to simplify the analysis, is that he observed data blocks are independent.

The analysis of the sequential EM algorithms for the stationary case, presented below,

is far from complete. Nevertheless, the following results were achieved:

m General asymptotic consistency: We will show that the estimator, generated by a

sequential EM algorithm. is asymptotically consistent, when the ML estimator is

consistent and the sequential EM iteration converges to a stationary point.

* Limit distribution: The limit distribution of the estimator will be given for some

sequential EM algorithms. These results are for independent observations, however.

The properties of the sequential EM algorithms should be investigated further. Detailed

analysis may require the use of more advanced mathematical tools. It is an interesting

research topic in mathematical statistics. The book by Kushner 47', together with the

EM ideas and the preliminary analysis of the sequential EM algorithms, presented in this

chapter, should provide the starting point for this research.
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3.3.1 General asymptotic consistency

The analysis of sequential algorithms when the observations are not independent may, in

general, be quite complicated. However. some sequential EM algorithms have the property

that in the limit the convergence point is a stationary point of the corresponding likelihood

limit. Using this property we will prove the asymptotic consistency of these algorithms

as follows. The sequence of normalized log-likelihood functions at each instance, Ln(8),

are shown to converge in probability 1 to a limit, 1(_), whose unique maximum is the true

parameter value, dr . Under regularity conditions, the derivative of the likelihood also

converges. Since the sequence of sequential EM estimates converges to a stationary point

of the likelihood, i.e. to zero derivative point, it converges to a zero derivative point of 1(O)

which is its maximum, i.e. the true parameter value.

Specifically. as discussed in Appendix B, for a class of ergodic sources. which include,

for example, all finite Markov sources, the sequence L(O) where L,(O) is given in (3.3),

converges uniformly in probability 1 to,

1(0) =] ¥ (Y., Y- ;Ot,.)logf. Y,, (yn/yn-,,- ;6)dydy._1 - -dy,

(3.61)

Intuitively. the sources that belong to this class are ergodic sources, whose memory fades

fast enough. This result is also discussed in 4.

The function l(9) achieves its maximum at 8 = ,. Under regularity conditions and

the convexity of (3.61), ,, is tbe unique solution to the equation Di(8) = 0. Now, using

this fact and some well known results from analysis, the following theorem may be proved,

Theorem 3.1 Let the observatios yl, Y- - - be generated by an ergodic source for wich
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(3.61) holds. Let {(n)} be an instance of a sequential EM algorithm such that for any
realization of the observations,

(i) the sequence of estimates {(n))} converges to a limit 8'

(ii) lin,,.oo D°OQn+l((f("f+); ( n )) = 0

Then, in probability 1, as n - O, (n) - true

The proof of this theorem is also given in appendix B.

The conditions of theorem 3.1 may be verified for many specific sequentica' EM algo-

rithms. For example the sequential EM algorithm with exact EM mapping satisfy '..e

condition (ii) above, for all n; thus, if the observation sequence is ergodic and satisfies

(3.61), whenever the algorithm converges, it generates a consistent estimator.

3.3.2 Limit distribution

The asymptotic distribution of several sequential EM algorithms can be calculated using

the following technique. The recursion defined by these algorithms will be approximated by

a recursion that resembles stochastic approximation algorithms, especially the stochastic

Newton method. Having this similarity, we will be able to invoke results developed in the

stochastic approximation context and show, in some cases, that in the limit the estimator

is distributed Normally around the true parameters value and has V/n consistency, i.e. its

variance tends to zero as l/V/n. We note that the possible connection between the sequential

EM algorithm and the stochastic Newton method was pointed out in 44!.

Consider, for example, the stochastic EM algorithm defined by the recursion (3.60),

repeated here,

(n" +' ) = arg max *n1 ()

where q*,+1 is defined recursively by

,(e9=) Ql.(+11 -,( O) .n(e)
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and

Qa+P,/, + g ,)= E- {log/x(Itl; =_)/nu); Q(_, ;(n) tl)

Note that by the construction of the stochastic EM algorithm, 0(") maximizes *,(e).

We will assume regularity conditions, that allow certain operations, e.g. differentiation

under the integral sign.

An approximation to the stochastic EM recursion may be achieved if, instead of solving

the maximization problem of (3.60), a Newton-Raphson step, starting in ("'), is performed.

The resulting recursion is

0(n41) = 7(n) _ D D,+,(1))l-l- D,,,(0_("1 )) (3.62)

The gradient vector, D*,+1, and the Hessian matrix, D2 ,, 1, are also given recursively,

D,,+ (
( ) )

= D°'Q( ();( ( ) 3, D. ((n)) (3.63)

D 2)+l(e ( ) ) = DQ(9(n);(); n+ ) + an D2(e_ ( ) ) (3.64)

However, D,(t)(n)) = 0 since n(") maximizes i,. Also, from (2.36)

D'°Q(("); 8(); Yn+l) D log fy(y, ;(n)) = S(Y ;("))

For exponential families, the second derivative of Q is such that -DQ is the Fisher

information matrix of the complete data, Ix, calculated at ( n). Thus,

DZ +, ((")) = -Ix(("))+.:wD2')*n )= -Ix(("))~, (-Ix(_(n)) 3_, . n,-l(#o)))

(3.65)

and so on. If 3, - I then D*.Il(_e("(t)) = -(n - )Ix((")). In this case, from (3.62), the

stochastic EM iteration is approximated by,

e(n+l) = (n) I Ixl(#(n)). S(Y ;(n) (3.66)
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Recursions like (3.66) are typical in stochastic approximation algorithms. For example,

replacing Ix((n")) by Iy(8(' )) = D2 L( ( "')) in (3.66), yields the stochastic Newton method.

It has been shown, e.g. in 491 and 461 that the recursion (3.66) generates an estimator,

9( }. which satisfies, under regularity conditions and provided that 2Iy(u,,,) > Ix(O,),

- (_ tru ) N , (0, I I (2y I1 ' - I)-) (3.67)

in distribution, as n - oo. The Fisher information matrices Ix, Iy in (3.67) are evaluated

at -tru 

When 2Iy(,..,) • Ix(,), (3.67) above does not hold, (although the stochastic EM

algorithm may still yield a consistent estimator). However, if we choose the coeffic¢ents ,

in such a way that the stochastic EM algorithm is approximated by

(+1) = (n) + (i)/ 2 xl(e(,)) S(y,l; ) (3.68)

and 0 < a < 2Iy(4,)I}'(,~, ) < 1, then according to 461,

nO/2((n) .) -. N (0, Ix 2fy(2IyI' - )-') (3.69)

in distribution, as n - oo, and the asymptotic Normality and /fi consistency hold.

A similar derivation using a Newton-Raphson approximation can be performed for the

sequential EM algorithm with exact EM mapping. This algorithm generates estimates

according to the mapping (37), that is

8( "n ' ) = argmaxQ+ 1(9, e(); 8 y+().. Y1 )

which may be approximated, using a step of Newton-Raphson algorithm by,

_( n" l ) = _(") -!D2 Q i,(_( )I 8(")_()- l..-)- . DQ+.(I"), 8("3); ...) (3.70)
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Using the fact that DQ,(n ), *(n); yn"', ) = 0 we may write

DQ 1((n) , (n) Y,,. -)= DLn+lin((9- )
- S(yn+ll/Yn.; ( ) (3.71)

For exponential families, the second derivative of Q will provide the Fisher information, i.e.

D2Q, (("n) (n); Y,. X.)-Ilx,,.x (9(n)) (3.72)

Thus the approximation (3.70) may be written as

(n1) = (n) + xI ...X ( ).S(y + 1 /y.- (")) (3.73)

For the case where the observations are coming from a finite markov source, the Fisher

information is written recursively as a sum of identical conditional information matrices. We

may again use the results of Sacks 491 and Fabian 461 to get Normality and ¥v consistency 

of the estimator, as in (3.67), where the conditional information matrices Ix,,/X,,. and

Iy., y. replace the matrices Ix and Iy.
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Chapter 4

Parameter Estimation of

Superimposed Signals

In this chapter, we will consider the problem of estimating parameters of superimposed

signals observed in noise, which occurs in a wide range of signal processing applications.

This problem will be approached in this chapter using the iterative EM method, presented

in the previous chapters. I the next chapter, we will apply the proposed iterative method

to another important signal processing problem, namely, the multiple microphone noise

cancellation problem.

A specific example of the applications, that are considered in this chapter, is the multiple

source location estimation problem, using an ar:ay of sensors. In this problem, we have K

sources radiating signals towards an array of M sensors, as illustrated in Figure 4.1. The

location of the sensors is known, and we want to use the relative time delay between the

observed signals from the different sensors to estimate the location of the sources. The

signals, received by the array sensors due to the Lk source, may be represented as the
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Figure 4.1: Array-Source Geometry

vector signal, t), where the mth component of this vector is the signal received by the

m th sensor. The vector signal, s*(t), is dependent upon a vector of unknown parameters,

0 k, associated with the kt h source and is denoted s(t; 0). In our problem, is the vector

of unknown source location parameters. We will denote by the vector y(t) the total signals

observed by the array sensors. This observed signal vector is a result of superimposing the

various (t; ) and an additive noise vector, i.e.

K

y(t) = (t; _) + n) (4.1)
k-1

Our problem is to estimate the location parameters, given the observations, y(t).

The general problem of interest in this chapter is characterized by the model (4.1).

The basic structure of (4.1) applies to a wide range of signal signal processing problems,

in addition to the multiple source location estimation problem. Consider, for example,

the problem of multi-echo time delay estimation. In this case each signal component is

the scalar s(t;), representing the k echo signal, and the parameters are the time
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delay and attenuation of the kth echo. Another example is frequency estimation of multiple

sinusoids in noise, where the unknown parameters, 8, are the amplitude and the frequency

of the kth sinusoid.

Using the mathematical model of (4.1) together with a stochastic model for the various

signals, one can formulate a statistical maximum likelihood problem for the underlying real

problem. In many cases, the direct solution of this ML problem is complicated. Using the

EM algorithm, we will develop in this chapter computationally efficient schemes for the

joint estimation of 81, 2-, K . The idea is to decompose the observed signal, y(t), into

its components, and then to estimate the parameters of each signal component separately.

Stating this idea in the terminology of the EM algorithm, we choose the complete data

to be the contribution of each signal component separately. Thus the algorithm iterates

between decomposing the observed data, i.e. estimating the complete data using the cur-

rent parameter estimates, (the E step), and updating the parameter estimates. having the

decomposed signals, (the M step).

So far the superimposed signals problem has been stated in its most general form.

In different applications, additional specific modeling assumptions are needed. In a large

variety of problems, we may assume that the noise signals, n(t), are sample functions

from a stationary Gaussian process with a given spectrum. However, the modeling of the

signal components in (4.1) varies according to our a-priori knowledge and the nature of the

underlying real problem. Generally, these signals may be deterministic or stochastic, and

various constraints may be applied on their waveforms or on their power spectra.

The problem of parameter estimation of superimposed signals in noise and its solution

via the EM algorithm is presented in this chapter, in a variety of situations, as follows. In

77



section 4.1, we will present the statistical ML problem and its EM solution procedures in the

deterministic signals case. In section 4.2, a similar presentation is given for the stochastic

(Gaussian) signals case. These procedures are then used, in sections 4.3 and 4.4, to solve the

multipath time delay estimation problem and the passive multiple source location estimation

problem. We will conclude this chapter, in section 4.5, by presenting sequential and adaptive

algorithms, and applying these algorithms to the problem of estimating the frequencies of

multiple sinusoids in noise.

4.1 Parameter estimation of superimposed signals: The de-

terministic case

The signal components, s (t; 0), are naturally modeled as deterministic signals in a

variety of applications. Consider for example an active radar or sonar environment, where

a known waveform pulse is transmitted. We observe the echoes of this pulse returning

from several targets. Assuming perfect propagation conditions, the observed signal is a

result of superimposing deterministic signals (the pulse echoes), which are known up to

some parameters (e.g. the time delay). A statistical problem for estimating the unknown

parameters of the superimposed signals is achieved in this case, when a stochastic model

for the noise components of (4.1) is assumed.

in this section, we will present this statistical maximum likelihood problem and show

that its direct solution is complicated, even in the simplest case, when we assume that the

noise is white. Thus. we will develop methods based on the EM algorithm to solve this

problem.
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4.1.1 The ML problem

Consider the model of (4.1) under the following assumptions:

* The signal vectors, sk(t; it) k = 1, -, K , are conditionally known up to a vector

of parameters, t.

* The n(t) are vector zero-mean white Gaussian processes whose covariance matrix is

E{n(t)n(a)} = Q 6(t - a)

where Q is a positive definite constant matrix and 6(-) is the impulse function.

* The signals are observed over a finite duration, say T t < Tf.

Under these asumptions, the log-likelihood function is given by,

) rT[ K K
log y C- [(t) - (t; ) Q [(t)- * (t; ) dt (4.2)

k=l

where t denotes the conjugate transpose operator. A = 1, if n(t) is real valued, A = 2, if

n(t) is complex valued. C is a normalization constant independent of _. This result is just a

straightfi ward multi-channel extension of the known (deterministic) signal in white noise

problem (i, chap. 4). If the observed signal is discrete i.e. we observe y(t), = 1,... -, N

the log-likelihood is still given by (4.2), where the integral over t is replaced by the sum

over the ti's.

Thus, the joint ML estimation of the G's is obtained by solving

r 1r jK 1 t [ Km f ty(t) (t;) Q-1 -E s (t- 9k) dt

Or for discrete observations,

rmin [Y() t E (t,; ) Q- l /(t,)- E (ti; )
_,1 ,,-,K i [ Lt~- K] '= k = 1 k=1
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In either case, we have a complicated multi-parameter optimization problem. Of course,

standard techniques, such as GaLss-Newton or some other iterative gradient search algo-

rithm, can always be used to solve the problem. However, when applied to the problem at

hand, these methods tend to be computationally complex and time consuming.

We note that the more general problem, where the noise vector, n(t), has an arbitrarily

given power spectrum matrix, N(w), may be reduced to the problem presented above,

where the noise vector is white, by using an appropriate whitening fJlter. Let Zk(t; 6,) be

the output of the whitening filter to the input st(t; ). In this case the !ikelihood of the

observations is still given by (4.2), where we use (t; 0k) instead of k't; ik )

4.1.2 Solution using the EM method

Having in mind the EM algorithm and the class of iterative algorithms, developed in

the first part of the thesis, we want to simplify the optimizationr problemi. assqciated with

the direct ML approach.

In order to apply an EM algorithm to the problem at hand, we need to specify the

complete data. A natural choice of a complete data, (t), is obtained by decomposing y(t)

into its signal components, that is

z(t) =

12(t) 

X2(t)

OK (t)

(45)

where

t) = .(t; ) + (t) 4,6e)
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and the !k(t) are obtained by arbitrarily decomposing the total noise signal, n(t), into K

components, so that

, n,(t) = n(t) (4.7)
=1

From (4.1), (4.6) and (4.7). the relation between the complete data x(t) and the incom-

plete data y(t) is given by
K

y(t) =- t(t) = H * :(t) (4.8)
k=1

where
K terms

We will nd it most convenient to choose the n(t) to be statisticaly indepeden eo-

We will find it most convenient t.o choose the n(t) to be statistically independent zero-

mean and Gaussian with a covarir.ance matrix

E _i t)nk ) = Qt - 6(t -)

where Qj, = ,kQ and the 3 k's are arbitrary real valued scalars satisfying

v_ , - 1, , 3 > O (4.9)
k=1

We will discuss methods for choosing specific t3's later.

In this case the log-likelihood of the coniplete data (t) is given by

Lc(9) = iog fx(j 6) = C - x(tz) - s(t; )tA -tiz(t - st: ) d (4.10)

where C contains all the terms tld' ars' ;ndependent of 9. The vector st; 6) is given by,

st; ) =

sp(t; 6.:)

SlK(t; OK)

(4.I1)
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and it is the mean of r(t). The matrix A is the covariance matrix of x(t),

r 1

A =

Q1

Q QK

QK

(4.12)

The notation in (4.12) indicates that A is a block-diagonal matrix. Thus, the log-likelihood

of the complete data may be written as

Lc(8) = C (t) -C-k (t; _)Qi QIk(t)- (t; )!dt (4.13)
k-It '

From this expression, we notice that, if the complete data was available, then maximizing

its likelihood with respect to 0 is equivalent to the minimization of each of the terms in the

sum above separately, which is simpler than solving a multi-variable optimization problem

with respect to all k's at once. We also notice that the sufficient statistics of the complete

data contain only linear terrs, since the quadratic terms in (4.10) are independent of the

unknown parameters.

Of course. we do not observe the complete ata. However, we take advantage of the

special structure of the likelihood of the complete data by using an EM algorithm with this

specification of complete data. This EM algorithm will iterate between estimating x(t) and

using the estimated value in (4.13) to updating the parameters by a separate optimization

with respect to each 2.

More specifically, from (2.19), an EM iteration is summarized by

(+ ) argmax Q(0; (') arg max E {log fx(2; ) t) } (4.14)a a~~~~~~lgf 4 )IY
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However, in this case

argmax Q(; (n)) = arg a[C- a f T() s A (t) _ s(t;) )ldt (4.15)
8 L 21

where

l t )(=(t(t)/, (n) } - s(t;(n)) + AH HAHtl-y(t) - H s(t;(N)) (4.16)

Substituting (4.11) and (4.12) in (4.15) and following straight forward matrix manip-

ulations, we see that the maximization of (4.15) is equivalent to the minimization cf the

sum,

mrin ' ()(t)- Q(t; (t) - S t (4.17)
-I'.-,K '= T

where (nt) is the kth component of i(n). This minimization of the sum is equivalent to the

minimization of each of its components separately, with respect to e.

Also, substituting (4.12) in (4.15), the gain matrix becomes

AH[HAHt 1H = diag(1,$2 ,- -, K) (4.18)

where diag(...) indicates a diagonal matrix.

Summarizing all these relations, we may now write the E and M steps of the EM

algorithm for this problem as follows:

*The E step: For k = 1, 2, , K compute

z_?(t) - sk (t;_d) $_y(t) - Z (t; a))1 (4.19)

where the 1k's are any real-valued positive scalars satisfying

K

fk= 1
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Figure 4.2: The EM algorithm for Deterministic (known) signals

. The M step: For k = i,, -, K

( - - = arg min [,' - (t: )] Q [It' - ( -ok)] dt (4.20)

We observe that ) is in fact the ML estimate of 0- based on . This algorithm

is illustrated schematically in Figure 4.2. We note that in the case of discrete observations,

the integral of (4.20) is replaced by the sum over the points t,).

The most striking feature of this algorithm is that it decouples the complicated multi-

parameter optimization into k separate ML optimizations. Hence, the complexity of the

algorithm is essentially unaffected by the assumed number of signal components. As K

increases. we have to increase the number of ML processors in parallel: however, each ML

processor is maximized separately. Since the algorithm is based on the EM method, each

iteration cycle increases the likelihood until convergence is accomplished.
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Unknown signal waveforms

The algorithm developed above assumes that the signal waveforms, sk(t), are known a-

priori. In practice. one is unlikely to have a detailed prior knowledge of these waveforms,

in which case they must be estimated jointly with the parameters, 8k. We will consider

the samples of the unknown waveforms as additional parameters; using the same statistical

formulation as above, we will get an ML problem for estimating the waveforms. Following

the same considerations as above, we can specify the E and M steps of an EM algorithm

for estimating the waveforms and the parameters, as,

* The E step: For k = 1, 2, -- , K compute

( ) (t) = s(t; 8) - 3k (y(t) - (t; )1 (4.21)

* The M step: Minimize

LT- 1- (t;)Qk Sk(t; i)] d (4.29)

with respect to 81, '-,K and sl(t), , sK(t).

The E step is identical to (4.19), where instead of using the a-priori given waveforms, we

use the current estimated waveforms, s(n)(t). The M step requires a more complicated

maximization. However, we will oe able to give an explicit example for this M step iate in

the chapter.

We note that the ML problem for estimating the waveforms in addition to the unknown

parameters is ill-posed, since there may be too many unknowns. To make the problem well-

posed, we have to incorporate some constraints on the possible signal waveforms. However,

we have to make sure that these constraints will correspond to the real, physical situation.
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4.1.3 The extended EM algorithm and the choice of the 3,'s

The EM algorithm presented above corresponds to a family of complete data definitions.

Each choice of the 3 k's implies a different choice of complete data, (t); the probability

sample space and the corresponding p.d.f. of x(t) depend on the choice of the 3Bk's. The

convenient feature of this family of complete data definitions is that each member of the

family satisfies the same relation between complete and incomplete data given by (4.8).

This feature allowed the presentation of the EM algorithm for the entire family at once.

This family of complete data definitions may be further extended, while keeping the

simple structure of the algorithm steps (4.19) and (4.20), in the following way. We could

model the complete data, x(t), as a Gaussian process, whose mean is s(t; ) as in (4.11),

but whose variance is time dependent and given by,

1
Ql(t)

Q2(t)

I ., (Ax
. ICet'I J

0l(t)Q

2 (t)Q

I K (t)Q

where 3k(t) are arbitrary real values, satisfying for all t

K

E ,(t) 1, 3 k(t) > 0 vt 7T, t T (4.24)
=l

Any member of this extended family of complete data definitions corresponds to decom-

posing the observation noise, n(t), into statistically independent zero-mean Gaussian non-

stationary components, nk(t), whose covariance matrix is

E ({(t)t(a)) = Qk(t) 6t - a) = 2k(t)QS(t - )
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The E step of the EM algorithm for each member of this extended family is similar to

(4.19), except that Bk(t)'s replace the time invariant 3 k's. The M step is similar to (4.20),

where again the time varying Qj(t)'s replace the time invariant matrices Qk's

From the discussion above, we see that the suggested class of EM algorithms has many

degrees of freedom. We may look for a choice of 3k(t)'o that give the simplest and fastest

algorithm. Furthermore, tollowing the discussion in section 2.4, instead of fixing this choice,

the 3k(t)'s may vary from iteration to iteration, according to some a-priori rule or depending

on the current parameter values, (n). The EM algorithm. where the complete data defi-

nition varies from iteration to iteration, has been referred to as the extended EM (EEM)

algorithm. Examples for applying extended EM algorithms to our problem are now given.

Suppose that in some iteration one of the 3 k's, say 3t, is chosen to be unity; the remaining

B3 ks must be zero. In the next iteration, we will choose At+l to be unity and so on (in a

cyclic way so that after K is unity, 31 will be unity). Substituting these 3 k's in (4.19)

and (4.20), we notice that the resulting algorithm is equivalent to a coordinate search or

alternate maximization algorithm of (4.2). In each iteration, O(n" ' l = _(n) for all k's that

correspond to a zero 3k, and & is updated by,

(n- 1) = arg min ];'t tn)
- a AmfT _(t) - Z,(t; r) - ~At; ,) Q- _9(t) - , s(t 9(n)) - t C)

(4.25)

where corresponds to the unity S1.

While in the previous example, we have shown how, by varying the complete data,

the EM algorithm has been reduced to a simple (but not necessarily efficient) algorithm,

we will now show how an algorithm with a superlinear convergence rate may be achieved.

To simplify the exposition, we will discuss a degenerate scalar case, where the unknown
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parameters are given by the scalar 0.

From (2.65), in order to achieve a superlinear convergence rate, we have to choose, in

each iteration, ,k's (or complete data) that are the solution to the equation,

DI'Q(O(') : ini ) = Q(9,; 02)1 = 0 (4.26)

Following (4.15),(4.16) and (4.17), the expression for Q(O1; 02) in this case is given by,

?(e -) c ef [4)(t;:9) - sk(t;6l1)]Q Q-(t)[ ( t;u: )- sI(t: )jdtj (4.27)

where :t)(t; 02) is given by,

It~l (t; 2) -( 3(t) t) - (t;02) (4.28)

Thus, a possible solution of (4.26) is to choose

z 3k(t) = K a5s(t;G l (4.29)

If this choice of c(t) is allowed, the convergence rate of the resulting EM algorithm will be

superlinear.

Another desired feature of an E algorithm with varying complete data is that it may

avoid convergence to ur.nwanted statioinary points. Following the discussion in section 2.4,

the simplest procedure is to randomly choose AF(t) in each iteration. These randomly chosen

,3,(t) have to satisfy the constraints of (4.24), however. A more complicated procedure is

co search for the choice of Aij(t) in the domain, defined by the constraints of (4.24). that

will give the largest increase in the likelihood. Since searching the entire domain of possible

3 .(t) may be too complicated, we will search only in a sub-domain, which is randomly

chosen, in each iteration.
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4.2 Parameter estimation of superimposed signals: The stochas-

tic Gaussian case

In the previous section. the signal components, s(t;: 0), were deterministic. In this

section, we will present the statistical maximum likelihood problem and its solutions using

the EM algorithm for the case where the signal components, sk(t; O), of the observed

composite signal are modeled as sample functions from a Gaussian stochastic processes.

This modeling is natural in a variety of applications. Consider, for example. a passive

sonar environment, where the targets generate noise-like acoustic signals. The signals from

several targets are superimposed and measured by cur array sensors with an additional

background noise. We may or may not know the spectral characteristics of the targets'

signals. However, we are usually iterested in finding the geometrical parameters, i.e. the

location or the bearing of the targets.

By assuming that the signal components and the background noise are Gaussian pro-

cesses, we get a statistical maximum likelihood problem for estimating the unknown pa-

rameters (which are the geometrical parameters and maybe some spectral parameters of

the signals in the example above). It is difficult to solve this statistical problem directly;

indeed, in many applications, suboptimal procedures were suggested. We, however, will

present in this section procedures, based on the EM algorithm and its extensions, whose

goal is to be optimal, i.e. to solve this maximum likelihood problem.

4.2.1 The NML problem

Consider the model of (4.1) under the following assumptions:
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* The signals sk(t; t k) k = 1, -, K are mutually uncorrelated, wide sense station-

ary (WSS), zero-mean, vector Gaussian stochastic processes, whose power spectrum

matrices are Sk(w;: ). k = 1,2,-- ,K.

* The noise, n(t), is a WSS, zero-mean, vector Gaussian processes with a given power

spectrum matrix, N(w).

* The observation interval, T = Tf - T,, is long compared with the correlation time

(inverse bandwidth) of the signals and the noise, i.e. WT/'2x >> 1.

Under the above assumptions, the observed signals, y(t), are also WSS, zero-mean and

Gaussian. WSS processes with a long observation time are conveniently analyzed in the

frequency domain. Fourier transforming y(t) we obtain

Y(We) IT y(t)e-3w'dt, 'e =T (4.30)

For WT,'2 >> 1, the Y(we)'s are asymptotically uncorrelated. zero-mean and Gaussian

with the covariance matrix P(wt; 9), where P(w; 0) is the spectral density matrix of y(t)

given by,
K

P(W; 0_= E st(; ik) V(w) (4.31)
k=1

The log-likelihood function observing the Y (c)'s is therefore given by.

L(8) = - [log det r P(L; ) - f(wtP ) P' (wu; ) -Y(we)] (4.32)

where the summation in (4.32) is carried over all wt in the signal frequency band. In the

case of discrete observations, the log-likelihood is still given by (4.32), where the Y(we)'s

are the discrete Fourier transform (DFT) of the observed signals.
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In either case, to obtain the ML estimate of the various Okt's we must solve the following

joint optimization problem

min Z [log det P(we; ) t(,w) p l(weL; ) Y(wt)] (4.33)
-.- &' '-K t

This is usually a complicated joint optimization problem. Standard search techniques,

such as gradient or Newton-Raphson methods, tend to be complex, when applied to this

problem. Thus. we will propose using the EM method to by-pass this complicated multi-

parameter optimization.

4.2.2 Solution using the EM method

Following the same considerations as in the deterrinistic signal case, a natural choice

of complete data, (t), will be obtained by decomposing the observed signal, y(t), into its

signal components. Thus, repeating equations (4.5) and (4.3), the complete data. (t), is

given by,

zrl(t) ]
i" 

2(t)

LIK(t)

(4.34)

where

(t) = s(t; ) nt(t) (4.35)

Again. the nk(t) are chosen to be mutually uncorrelated, zero-mean and Gaussian, whose

spectral density matrices are N,(w) = 3 . N(w), where the 3 k's are arbitrary real-valued

constants subject to (4.9). Thus the relation between complete and incomplete data is given

again by y(t) = H. z(t) as in (4.8).
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The log-likelihood of the complete data z(t) is given by

L() =log fx(;) - [iodeta (we;) ;- x'(wc) n-(wc; 9). x()] (4.36)

- z [logtetxA(wt;O) -- tr {A1(we;) ]

where XY(w) is obtained by Fourier transforming z(t), i.e. any

is given by,

Xk(t) T= IT _k(t)e-1 ' dt,
X"(t)= '=

of its components, Xk(wt),

2:'
:.t= -- 

T

The matrix A(.we; O) is the power spectrum density matrix of

block diagonal matrix given by

A(.;: 0) =

(4.37)

the complete data. It is a

(4.38)

where

A,(w; ) = Sk(w; ) + &, .N(w) (4.39)

Exploiting the block diagonal form of A(w; 8), the likelihood of the complete data may

be written as,

K

L(O) = - E E [logdet htA(J; Oj,) --tr j1A_ (-t; .- ) X,(w)Xt (we)} 440)
k=1 t

From this expression, we notice that, if the complete data was available, maximizing its

likelihood with respect to is equivalent to minimizing each of the terms in the sum above

with respect to ei separately. This is much simpler than solving a multi-variable optimiza-
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tion problem with respect to all Wk's at once. The sufficient statistics of the ccmplete data

is composed of the quadratic terms {Xk(wt)X~(wt)}.

In the suggested EM algorithm, we take advantage of this simple form of the likelihood

of the complete data. The E step will estimate the required quadratic statistics and the M

step will use the estimated statistics in (4.40) and update the parameters via the simple

maximization, associated with the likelihood of the complete data.

The required statistics are the diagonal blocks of the matrix X (e)X t(wt). The relation

between complete and incomplete data is linear (i.e. Y(wt) = H · X(we)) and the data is

Gaussian. Thus, using the results developed for the linear Gaussian case ( (2.55)), the

conditional expectation of the matrix X(wc)Xt(we), given the observations, Y(wt), and an

assignment, ', to the parameters, is given by

P(wt) = E {X(wE)Xt(we)/Y(;t a}

: [- I(w;8') H '.(t;' ¢) + r((; ¢)y(wt) Y· t(()r((w:) (4.41)

where F(t; 't) is the "Kaiman gain'

r(; G') = A(w; )IHt [HA(e; )Ht]-i

Using straight forward algebraic manipulations the (k, k) block of I(we) is given by

I't(we) = Ak(we ; - t;LC9 )P-(t;-f), A(Wt i

Ak(e; ¢,)P-1(we; )Y(t) Yt(wt)P-l(wt; _)A(w; I) (4.42)

where P(wt; ) is defined by (4.31).

These estimated statistics are used instead of the unavailable statistics of the complete

data. The maximization in the M step will be equivalent to K separate mninimizations with

93



respect to each O. The E and M steps of the EM algorithm for the Gaussian superimposed

signal problem may be summarized as follows:

, The E step: For k = 1,2, -, K compute

)Ak(w n) ) - AkWt (n)P)p- (t; (n))Ak(w; )- (4.43)

-A,(w ; (-)p;(wt q(n))Y(w,) y (w,)P- (Wt; ))h ( (n))

* The M step: For k = 1,2,- -,K

'(n I) argMin [iogdet Ak(wt; ik) tr At(w ; ) (nJ)} (4.44)

We observe that n ) i the ML estimate of is replaced by itsWe observe that O6 is the ML estimate of O, where Xk(wt)XI (wt) is replaced by its

current estimate. (n")(wt)- The algorithm is illustrated in Figure 4.3. The most attractive

feature of the algorithm is that it decouples the full multi-dimensional optimization of

equation (4.33) into optimizations in smaller dimensional parameter subspaces. As in the

deterministic signal case, the complexity of the algorithm is essentially unaffected by the

assumed number of signal components. As K increases, we have to increase the number

of parallel ML processors: however, each ML processor operates independently. Since the

algorithm is based on the EM method, each iteration cycle increases the likelihood until

convergence is accomplished.

.ks in the deterministic case, this EM algorithm corresponds to a family of complete

data definitions. A specific member of the family is associated with a specific choice of

the d3's. This family of complete data definitions can be extended by allowing a different

choice of 1, 's in each frequency. The EM algorithm for any member of this extended family

will keep the structure of the algorithm steps (4.43) and (4.44), where ik(we) is used in the

definition of A(.), (4.39).
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Figure 4.3: The E algorithm for stochastic Gaussian signals

We may choose a fixed complete data defirition throughout the algorithm iterations, or

we may vary the complete data definition from iteration to iteration. Varying the complete

data within this family of complete data definitions will correspond to choosing different

3 ,(wtf)'s in each iteration, but otherwise the algorithm steps remain the same Possible

strategies for choosing the complete data and varying it from iteration to iteration were

discussed in Chapter 2 and previously in this chapter. for the deterministic signal case.

These discussions are relevant in this case too.

4.3 Application to multipath time-delay estimation

Time delay estimation is a comrron problem in underwater acoustics as well as in radar.

Geometrical parameters (such as range and location of targets' and physical parameters
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(such as velocity and temperature profiles of the ocean) are typically found via time delay

analysis. Consider, for example, the ocean tomography experiment, described in 50 and

i51i. An acoustic transducer. located at a given point in the ocean. transmits a signal which

is received time-delaved by known location sensors. The estimated delay times between the

transmitted signal and the received signals are used as an input to an inverse problem that

finds the ocean profile in the experiment area.

Multipath may occur due to reflections and propagation modes. The received signal in

this case contains several echoes of the transmitted signal having different time-delays and

attenuations. i.e. it may be written as

K

y(t) = ) c as(t - r) -- n(t) (4.45)
k=i

The existence of more than one path is undesired in some cases: in the ocean tomography

experiment, the additional echoes interfere with and corrupt the interesting direct path

signal. However, in other cases. additional important infcrmation may be obtained from

finding the time delay of the other paths. A single sensor may determine the range and the

depth of a target. if we can find the delay times of the direct path and of the paths that

result from a single bottom or surface reflection.

We will be interested in this section in estimating the delay times of the multipath signal

(4.45). In a variety of applications, we may model the components of the multipath signal as

deterministic or stochastic. In applications such as ocean tomography. active sonar/radar

and many more. a deterministic known waveform signal (pulse) is transmitted. In a passive

determination of range and depth of a target by a single sensor, the target may generate a

noise-like acoustic signal, naturally modeled as a sample signal from a stochastic Gaussian

process. n both cases, we will be able to apply the results of the previous sections to obtain
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an estimate of the delay times via the EM algorithm.

We will present, in this section, the detailed algorithm and experimental results for the

deterministic signal case. In 521, we have presented the EM algorithm for multipath time

deiay estimation in the Gaussian signal case.

4.3.1 The deterministic case

Suppose that the observed signal is given by (4.45), where s(t) is a known signal wave-

form, the noise n(t) is Gaussian with a fiat spectrum over the receiver frequency band,

and the observation time is T, <; t Tf. The problem is to estimate the paurs (al, r,) for

k =1,2,--,K.

In this case, the direct ML approach given by (4.3), reduces to,

TI K i2

rmn ] y(t) - Z ak:s(t - k)j dt (4.46)

This optimization problem is addressed in 531, where it is shown that the optimal ok's

may be expressed explicitly in terms of the optimal r's. Thus, the 2K-dimensional search

can be reduced into a K-dimensional search. However, as pointed out in 53!, for K > 3 the

required computations become too intensive. Consequently, ad-hoc approaches and sub-

optimal solutions have been proposed. The most common solution consists of correlating

y(t) with a replica of s(t) and searching for the K highest peaks of the correlation function.

If the v'arious paths are resolvable, i.e. the difference between r and t is long compared with

the temporal correlation of the signal for all combinations of k and t, this approach yields

near optimal estimates. However, in situations where the signal paths are unresolvable. this

approach is distinctly sub-optimal.
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We identify he model in (4.45) as a special case of (4.1). Therefore, in correspondence

with equations (4.19) and (4.20), we obtain the following algorithm:

(0) (0) ,
* Start, n = . initialize ak ' and r , k 1, - K

* Iterate (until some convergence criterion is met)

- The E step: For k = 1,2, -- ,K compute

:(n)(t)= ()s(t rn)) B[y(t) - a ()s(t - n) (4.47)

where the dr's are any real-valued positive scalars satisfying

K

k=1

- The M step: For k =1,2 -- , K

(n+l) (n+I) (n)
t (n+l, =argmin X - CS(t - r)I dt (4.48)

-n=nl

Assuming that the observation interval, T, is long compared to the duration of the signal

and to the maximum expected delay, the two parameter maximization required in (4.48)

may be simplified, and can be carried out explicitly as follows:

(nr k) - (4.49)r~~l) - argmax g(n)()(I (4.49)

(n+l) = gl()((n)) (4.50)
Ck E

where E = fT/ s(t)!2 d t is the signal energy, and

g()(r) = If (n) (t)s(t - r)dt (4.51)
1, i(
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Figure 4.4: The EM algorithm for multipath time delay estimation

Note that g)(r) can be generated by passing (n)(t) through a filter matched to s(t). The

algorithm is illustrated in Figure 4.4. This computationally attractive algorithm iteratively

decreases the cbjective function in (4.46) without ever going through the indicated multi-

parameter optimization. The complexity of the algorithm is essentially unaffected by the

assumed number of signal paths. As ,, increases we increase the number of matched filters

in parallel; however, each matched filter output is maximized separately.

We note that the algorithm can be extended to the case where the signal waveform, s(t),

is unknown. The general EM algorithm steps for the case where the signal waveforms are

unknown, are given by equations (4.21) and (4.22). For our problem, the E step is similar

to (-i.47) where we use the current estimated waveform, s(n)(t), instead of the a-priori given

s(t). The M step requires a more complicated maximization with respect to the unknown
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signal waveform values and the unknown parameters. Using an alternate maximization

procedure for the M step, the M step of (4.22) will reduce to,

a( -t- ) (,n,-- T Iet ?- argmin iA ? as (n ) ( t - )I dt, k= 1,-,K (4.52)

*K I }) (n l)(t -n+ )
(n-t- 1) Ot (e 'k )

Sl ....) . ..* 1 > _ me (4.53)S~ 'l)(t)- Z ~-_ , ' / \'I,, I

We have discussed the unknown signal waveform case in [541, following the considerations

above.

For the case in which the number of signals, K, is unknown, several criteria for its deter-

mination have been developed in 55i and elsewhere. Usually, these criteria arc composed

of the likelihood function above and an additional penalty term. Thus, as discussed in sec-

tion 2.5. these criteria can be incorporated into an EM algorithm, similar to the algorithm

above.

4.3.2 Simulation results

To demonstrate the performance of the algorithm, we have considered the following

example: The observed signal, y(t), consists of three signal paths in additive noise.

3

y(t) = a S(t - rk) - n(t)
k=l

where s(t) is a trapezoidal pulse

0<t<5

s(t) - 1 5 t < 15

t-10 15 < t < 20

The observed data consists of 100 time samples, indexed -40 < t < 60. The additive noise

is spectrally flat with a spectral level of 2 = 0.025, so that the post-integration signal to

noise ratio (SNR) is approximately 16 dB.
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Figure 4.5: The observed data

The actual delays are

rT =0, r = 5, r3 =10

and the amplitude scales are

ak = 1, k = 1,2,3.

In Figure 4.5, we have plotted the observed data. In Figure 4.6, we have plotted the

matched filter output as a function of the delay. As we can see, the conventional method

cannot resolve the various signal paths and estimate their parameters.

First, as a reference, we computed the ML estimates by a direct rinimization of the

objective function (4.46), using exhaustive search. We obtained,

f = 0.0117

&! = 1.1511

The value of the objective fruction

r = 5.0031

&2 = 0.7799

at the minimum
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Figure 4.6: The conventional matched filter response

log-likelihood function at the maximum) is,

J = 0.45879

We also computed lower bounds on the root mean square (r.m.s) error of each parameter,

using the Cramer-Rao inequality. We obtained,

a() 0.0=28 o 2s ) = 0.030 O(f3) = 0.028

o({,) = 0.076 a(6 2) =0.079 (a&3 ) = 0.07908

6) denotes the attainable r.m.s error in the estimate of Tr, and o(&t) denotes the

attainable rm.s error in the estimate of ac.

We have applied our algorithm. In Figure 4.7, we have plotted the matched filter

response to the various signal paths, as they evolve during the iterations. In addition

to this experiment, we have tried this algorithm using several arbitrarily selected starting

points: the algorithm has converge, within the Cramer-Rao lower bound, to the ML estimate

of all the unknown parameters, after 10 to 15 iterations, regardless of the initial guess.
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Figure 4.7: The matched filter response to each signal path
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Using the asymptotic efficiency and lack of bias of the ML estimates, we can claim

with some confidence that the r.m.s error performance of the algorithm is the minimum

attainable, characterized by the Cramer-Rao lower bound.

Additional simulation results, which present additional examples of the deterministic

multipath time delay estimation, may be found in 521].

4.4 Application to multiple source Direction Of Arrival (DOA)

estimation

Passive direction of arrival estimation (DOA) using an array of sensors is a common

problem in underwater acoustics. radar and geophysical seismic environments. Using an

array of M spatially distributed sensors, the bearing of a source, radiating toward the

array, can be determined by estimating the phase differences or the time delays among the

signals received in the array sensors.

The standard technique for DOA analysis is known as beamforming. For any given

direction, the array signals are delayed and added accordingly, and an output signal is

generated. The energy of the output signal is recorded as a function of the direction, and

the DOA's estimates correspond to "peaks" of this function. This is an intuitively appealing

approach, and indeed, when only a single source exists, the maximum likelihood method, in

a variety of modeling assumptions, reduces to maximizing the beamformer output. When

several sources exist, this approach is nearly optimal, if the various signal sources are widely

separated. However, if the sources are closely spaced this approach is distinctly suboptimal.

The radiating sources generate signals, that may be modeled as deterministic or stochas-

tic. In some radar environments, the targets transmit known waveform pulses which are
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received by the antenna array of the receiver. Similarly, a seismic pulse received by a sensor

array is natu ally modeled as a deterministic signal. On the other hand, the acoustic signal,

generated by a target and received by a passive sonar array, is a noise-like signal, which is

typically modeled as a WSS Gaussian stochastic process.

We will concentrate in this section on the stochastic signal case. We note, however, that

methods for multiple source DOA estimation of deterministic signals via the EM algorithm

were presented in 56i,1571. We will start by presenting the general mathematical model

of the multiple source DOA estimation problem. We will then assume that the signals are

Gaussian processes and present the resulting statistical maximum likelihood problem. The

solution of this ML problem, using the EM algorithm, will then be presented in detail, and

we will describe the simulation results of a specific example.

4.4.1 The passive multiple source DOA estimation problem

We will assume that K spatially distributed sources are radiating signals towards an

array of AM spatially distributed sensors. Assuming perfect propagation conditions in the

medium and ignoring amplitude attenuations of the signal wavefront across the array, the

actual waveform observed at the m'h sensor output is

K

y(t)s= St(t - r) n,(t) m = 1,2,. .,M (4.54)
k-=1

where sk(t) is the k h source signal, n,,(t) is the additive noise at the m th sensor output,

and t,, is the travel time of the signal wavefront from the k th source to the mth sensor.

Information concerning the various source location parameters can be extracted by

measuring the various r. In the passive case, one can only measure the travel time

differences. Let the Mh sensor be the reference sensor, and set rkM = 0, then r, measures
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the travel time difference of the kth signal wavefront between the (m, M) sensor pair.

We assume that the various signal sources are relatively far-field. so that the observed

signal wavefronts are essentially planar across the array. In this case, the unknown source

location parameters are their bearings or directions of arrival. To simplify the exposition,

we suppose further that the array sensors are co-linear. Then,

d,,
rkm sin Ok (4.55)

where d, is the spacing between the sensor m and the reference sensor M, c is the velocity

of propagation in the medium, and a0 is the angle of arrival of the k th signal wavefront

relative to the boresight.

Substituting (4.55) into (4.54) and concatenating the various equations, we obtain

y(t) = s(t;' j) n(t) (4.56)
k=l1

where

s(t ,) =

s (t - I sin 6 k)

si(t - 2 sin 8k)

s( - 1M -1 sin eO)

Si('O

(4.57)

and = dm/c. We note that this is a special case of the superimposed signal problem of

(4.1).

A statistical ML problem for estimating the unknown directions of arrival is achieved

by a further statistical modeling of the various signals in (4.56). We will now present the
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ML problem and its solution using the EM algorithm, where we model the signals, {sk(t)},

and the noise as Gaussian processes.

4.4.2 The Gaussian case

Suppose that the various sk(t) and the various n,(t) are mutually independent, WSS,

zero-mean Gaussian processes with spectral densities Sk(w) and N,(w) respectively. We will

also assume that the observation time, T = T - Ti, is long compared with the correlation

time (inverse bandwidth) of the signals and the noises. Under these assumptions we may

write the likelihood of the observations, (t), in the frequency domain; the ML estimates of

01, 2,- -,Ok will be achieved by, (see Eq. (4.33)),

in E [og det P(wt; ) + Y'(w) - P (wt; ) - Y(we)] (4.58)

where Y(w,) are the Fourier transform coefficients (or the DFT coefficients in the discrete

case) of y(t) and
K

P(w; 0) Si(w)V(w; Bk)K (w; Ok) + N(w) (4.59)
=1where

where

V(W; ) 

,- w M- sin Ok

L 1

(4.60)
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and N(w) is the diagonal matrix

N(w;0) =

Ni(w)

N 2(w)

I~~~~~fWI Nw~~~~~~~w)~A

(4.61)

L - ~ I i

Aga;n as in the previous examples, the resulting ML problem requires the solution of

a complicated multi-parameter optimization problem in several unknowns. Consequently,

numerous ad-hoc solutions and sub-optimal approaches have been proposed in the recent

literature, e.g. 58,59,60,61,62], to by-pass this ML problem. Still, the most common

approach consists of beamforming and searching for the K highest peaks. As noted above,

if the various sources are widely separated, this approach is nearly optimal. However, when

the sources are closely spaced we are likely to obtain poor estimates of the various DOA's.

Identifying the model in (4.56) as a special case of the superimposed signal in noise case,

the algorithm specified by (4.43) and (4.44) is directly applicable, where

A&(w; 8_) = St(w)V(w; G)V (w; Ok) + /5N(w) (4.62)

This special form of the matrix Ak allows the following simplifications. We may write

det A,(w;,k)= [+ - S,()V'(w )N-l(w)V(; )]- [+ (det N(w) (4.63)

and

k 3ktJ; {N(G ;- i) - fk +( Sk t(w)vt(w; )N -l(w)(w; tO) NI()V(; O)Vt(; ,,)N(w)}

(4.64)

Substituting (4.63) and (4.64) into (4.44) and ignoring the terms that are independent of

e, the M step of the algorithm will be simplified. The resulting EM algorithm is:
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* Start, n = 0 initialize 0°J) k=1, , K.

* Iterate (until some convergence criterion is met)

- The E step: For k = 1, 2, -- , K compute

* (we) ( w; ) At(w; Ai)P(w0)) A(we; ; ())A(wt; e )) + (4.65)

,A (n) l) )p l(we; 0(n))Y(w) Y t (wc)P (wn; O())Ak( (nW; )

- The M step: For k = 1,2,--, K

ki -a0rgmaxZ Fk(we) -V_(we;;O)V-l(w) n)(wte) N' (w)V(w; i) (4.66)

where Fk(W) is a shaping filter, given by,

F S/(w) = (4.67)-
1

5k SC(W) M

- n= nl

We note that the objective function in (4.66) is the array beamformer, where the product

Xk(wt)IXt (weo is substituted by its current estimate, 4()((wf). The algorithm is illustrated

in Figure 4.8. This computationally attractive algorithm iteratively decreases the objective

function in (4.58) without ever going through the indicated multi-parameter optimization.

Again, the complexity of the algorithm is essentially unaffected by the assumed number of

signals sources. As K increases, we have to increase the number of beamformers in parallel;

however, each beamformer output is maximized separately.

4.4.3 Simulation results

To demonstrate the performance of the algorithm, we have considered the following

example. Our array of sensors consists of five, co-linear, evenly-spaced sensors. There are
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Figure 4.8: The EM algorithm for multiple source DOA estimation

two far-field signal sources at the bearings

81 = 0 ° 0 = 10°

relative to the boresight. The array-source geometry is shown in Figure 4.9. The signals

and the noises are spectrally flat with Sk(w) = S and N,(w) N, over the frequency

band [-W/2, W/2 . We assume that S/N = 1, and that WT/2 = 20 (so that the post

integration SNR per channel is approximately 23dB). The array length is taken to be L = 6A

where A is the wavelength associated with the highest frequency in the signal band.

In Figure 4.10, we have plotted the array beamformer response as a function of the

bearing angle, As we may see, the conventional beamformer cannot resolve the signal

sources and thus cannot estimate their bearings.

The ML estimates, obtained by direct minimization using exhaustive search of the ob-
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Figure 4.9: Array-Source geometry

Figure 4.10: The conventional Beamformer
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jective function in (4.58), are

01 = -0.0563 t2 = 10.4556

The value of the objective function at the minimum (corresponding to the value of the

log-likelihood function at the maximum) is

J = 159.0137

We have also computed the Cramer-Rao bound on the r.m.s error of each parameter

estiolate. We obtain

d(~) = 0.2680 J(02) = 0.2722

We now apply our algorithm. In Figure 4.11, we have plotted the beamformer response

to the various signal sources as they evolve with iterations. In Figure 4.12, we have tabulated

the results using several arbitrarily selected initial guesses. We see that in all cases, after 5

to 10 iterations, the algorithm essentially converges, within the Cramer-Rao lower bound, to

the NIML estimates of all unknown bearing parameters simultaneously; therefore the various

signal sources are correctly resolved.

4.5 Sequential and adaptive algorithms

Sequential and adaptive algorithms for estimating the parameters of superimposed

signals in noise, based on the EM algorithm, may be suggested following the consideration of

chapter 3. As discussed in chapter 3, in general, any given iterative batch EM algorithm may

be transformed into a sequential algorithm u,lg the stochastic approximation idea. The EM

algorithms suggested in this chapter for both the deterministic case and the stochastic case

have a structure that may support recursive E and M steps. However, we will concentrate
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Figure 4.11: The Beamformer response to each signal source
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n I DOA 1 DOA 2 J

0 2.000 8.000 269.66

1 I 77 : A r, i')4 1)

1.122 8.974 210.30

0.693 9.457 1184.13

0.372 9.859 168.36

0.157 10 127 161.74

0.050 10.288 159.72

-0.003 10.368 159.19

-0.030 10.421 159.04

DOA 1 DOA 2 J! ! -
4.000 7.000 378.57

3.641 i 7.259 1 351.24

3.293 7.527 328.51

2.918 7.822 306.11

2.489 8.144 281.83

2.033 8.519 254.93

1.524 8.948 i 224.28

1.015 i 9.403 194.46

0.586 9.805 173.51

0.291 10.100 163.52

0.131 1 10.261 160.36

0.050 10.368 159.36

-0.003 10.421 159.07

-0.030 , 10.449 i 159.02
I

n I DOA 1 DOA J

0 i -5,000 13.000 520.29

1 1 -2.469

2 -1.263

3 1 -0.674

4 -0.379

5 1 -0.245

6 i -0.164

I? i n% -I

r8

n

0

1

-u. 11 1

-0.084

DOA 1

7.000

6.053

2 i 4.954

3 ! 3.829

4 1 2.783

5 1 1.953

6 1.363

7 0.934

8 0.639

9 0.452

10 0.318

1 0.211

12 0.130

13 0.077

11.949 294.71

11.145 196.55

10.716 1167.77

10.529 i 161.05

10.429 159.61

10.421 159.21

10.421 159.07

10.421 159.04

DOA 2 J

13.000

12.699

12.378

12.083

11.842

11.627

11.413

11.225

11.038

10.904

10.797

10.716

10.637

10.582

497.05

448.01

385.83

318.25

256.99

214.14

189.18

175.12

167.40

163.66

161.58 '

160.39

15966 1

159.33
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in this section on the deterministic superimposed signals problem, for which we were able

to develop sequential EM algorithms based on exact EM mapping. These algorithms will

be presented explicitly, and their application to solving the problem of multiple sinusoids

in noise will be described.

4.5.1 Sequential algorithms based on exact EM mapping for the Deter-

ministic case

Sequential EM algorithms, based on exact EM mapping, are achieved by examining the

expression of the EM iteration, which depends, in general, on the entire past observations,

and recognizing the terms that depend on the current data and the terms that depend only

on past data. Hopefully, the terms that depend on past data may be summarized into a

compact form, that will be subsequently updated and recorded. Based on these recorded

quantities and the new measurements, the parameters will be updated using an exact EM

iteration.

Thus, let us consider the EM iteration for the deterministic signal case, given by equa-

tions (4.19) and (4.20). We will assume that the signals are discrete so that the integral in

(4.20) is replaced by a sum. Assume that we observe y(1), -- ,y(n) . i.e. the observation

index is t = 1,- -, n. The E and M steps of this EM algorithm are given by,

* The E step: For k- =1,2,---, K and t= 1,--,n compute

l'(t) = .(t; (e ) ±A. D (t) t; ) (4.68)

* The M step: For k = 1,2, -, K

= argmin [) -a(t; ) (t; Q [] (4.69)
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We will assume that Qj = HI. Combining the E and M steps, and ignoring the terms that

are independent of 0, we may write the EM iteration as follows. For k -- 1, 2,, K

n n K

_(n) ) a rgmin Zs k(t;.-)I + Z -'2Re t(t; tn))tk(t Ok) -
_k t-Sl t9l tI-'l

n n
- E ,k(t; o(n))ts(t; gk) - OA: Z .9Rey(t)t sk(t; Qk) (4. 70)

t=I tzzl

We notice that he term that depends on the observations, y(t), is the cross-correlation

between y(t) and the various signals, s(t; _}). We will denote this term by,

p.(0_) = y~ t (t; ) (4.71)
t=l

Suppose we record p,~(k). At time n 1, when a new measurement, y(n + 1), arrives, this

term may be updated recursively as,

Pnt-l(.) = pn(k) - y(n + l)ts(n 1; :k) (4.72)

The other terms depend only on the a-priori given waveforms, {s(t; kl)}. In many cases

the expressions

t-1

may be given for each n by an a-priori analytic formula. However, even if the algorithm needs

to calculate these terms explicitly, they may be calculated recursively using the following

formula,

R.+I(t, 8i) = R(t,8)- (n + 1;I )lt (n + l;_k) (4.74)

The term

'Et()-E .h(t; t)i2 (4.75)
t=l
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which represent he total energy of the signals sk(t) may also be calculated recursively or

may be iven by an analytic formula. In many cases this energy term takes the form of

E(gk) = n- akl2 (4.76)

i.e. it depends only on the amplitude parameter a, and it is independent of the other

parameters,

Thus, the sequential EM algorithm for superimposed, deterministic signals is given by:

* Start, n = 0: Guess (). Initial po = Ro Eo = 0.

* While data is observed

- Update the p,,l's by (4.72), the R,+,l's by (4.74) and the En+l's by (4.75).

- Update the parameters: For k = 1.2, - , K ,

(n argn En,l(f) + St 2ReZ R6+ 1( ',( ) - l(- (n

(4.77)

- Store pn.l r R1t, E.nl.

-n=n 1.

We note that, as in any exact mapping sequential EM algorithm, we can perform few

iterations for each observed data point. The advantage is that we have to update the

quantities p, R, and E, only once for each new measurement. Sometimes it will be more

efficient to perform few more iterations before moving to the new data. However, in other

cases, exhausting the previous data cannot improve the parameters; it is more efficient to

proceed and add the new data points.
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4.5.2 Application to sum of sinusoids in noise

The sequential EM algorithm above has been applied to the following problem. Let the

observed signal be the sum of -omplex exponential in noise, i.e.

K

y(t) - a ±e " -- n(t) (4.78)
k=1

where n(t) is a white Gaussian noise with variance a2. The unknown parameters are the

frequencies of the complex exponentials, (w}, and the complex amplitudes, {ak}. We note

that this problem is essentially the problem of sinusoids in noise, and in this case, we write

at = re' ~ , where the {')k's are the unknown phases of the sinusoids. We will assume

that the observations are given at time points t = 0, ,-, n,

The complete data for this deterministic superimposed signal example is the set of

signals, {zk(t)}ja, where

xz(t) = ae-' t + n(t) (4.79)

and ({n(t)}K=l are independent white noise signals whose sum is n(t). Each n(t) has a

variance Jra2

In this application the sequential EM algorithm presented above is further simplified.

We first note that the M step of an EM itrration in this case requires solving the following

maximization problems, for k = ,- -- , K

ft

w(x 1 = arg (max X(n) (t) - t 12 X(n)(5 (4.80)
t=O

where X~)(w) is the Fourier Transform of the signal, ()(t), estimated in the E step. The

amplitude coefficients may be found either as implied by the EM iteration,

aO +_ _ (te i (4.81)
t=O

118



or by solving a linear least squares problem, noticing that, given {wk}, determining {ak} is

the solution to:

(n+i) (n-1)
a, ',a =k arg

n r
min N' [Y(t)

a1, ,ak d [O
t=O

- E a ke'. -w{n) t|

k=1

Another simplification comes from the fact that &R(01, -2) may be written analytically

as,

Rn(al, ;w1 , a2, 2 ) a= jae-jt a2e w2t a;a 2 sinc+l(wl - 2)
t=O

(4.83)

where

(4.84)

Thus, a step of the sequential EM algorithm for this problem, observing a new measure-

ment, y(n), is given as follows:

* Update the Fourier Transform of the observations, i.e.

Ynl(w) = Yn(w) + y(n)e-wfn (4.85)

* Update the estimates of the frequencies: For k 1,, K

argmax )n -l(n)= arg max a )sin+I ( ? )

K

-w) - 3k-E a sinc4 1 (w(n)
t=1

2i

i
- W) W- Y+l(w)

- argmax X (w)j2

* Update the amplitudes

- either by an EM iteration,

(n-t ) I X(n) (n+l)) 2
- n+ 1 k k
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- or by a solving the least squares problem of 4.82), i.e.

a ( n+ l) S-Y (4.88)

where a is the vector of the amplitudes, S is the matrix whose (k. £) element is

given by

Sjt = sinc+l,(W(nl) - w tn+)) (4.89)

and Y-1+ is a vector whose k
: h component is .y l* (n 1)).

Numerical simulation example

This algorithm has been tested using the following example. The sequentially arriving

observed signal, y(t), is complex and discrete; it consists of three complex exponentials in

additive white noise, i.e.

3

y(t) = a 4- n(t), t = 0, 1... (4.90)

The additive noise is spectrally flat with spectral level or = 0.1. The normalized fre-

quencies of the complex exponentials were chosen to be.

wl = 0.025, 42 = 0.03, w3- = 0.04

The magnitude of the complex amplitudes were chosen to be uniformly 1, and their

phases chosen as.

= 0, 4 = 4 /6, 43 = /4

We have tested the algorithm given by (4.86) and (4.88), sequentially using 500 data

points. A single EM iteration has been performed for each new data point. In Figure 4.13

we have tabulated the estimates of the frequencies as a function of time. We notice that
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Time Source'Soure Source ime Source Source Source 3

S 1 Souce Source3:

10 0.016 0.047 0.048 I 70 0.023

20 0.023 0.047 j 0.048 80 0.024

30 0.023

40 1 0.022

50 ! 0.022

0.046 ' 0.048

0.047 0.048

0.046 0.048
;- .I

0 04

90 i 0.024

100 0.024

110 0.024

120 i 0.025

0.043 0.046 I

0.042 0.045

0.042 0.045

N nA9 I nnA 
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0.041
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---- "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I

Figure 4.13: Frequency estin -tes as a function of time

this efficient sequential algorithm correctly estimates the various frequencies after observing

120 data points. This data record is shorter than the record needed to correctly resolve

these sinusoids, using the standard spectral estimation methods.
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Chapter 5

Maximum likelihood noise

cancellation

The problem of noise cancellation in single and multiple microphone environments has

been extensively studied 63]. The performance of the various techniques in the single

microphone case seems to be limited. However, enhancement systems with two or more

microphones have been more successful due to the availability of reference signals.

In this chapter, noise cancellation, based on a two sensor scenario as indicated in Fig-

ure 5.1, is considered. One sensor (the primary microphone) measures a signal that consists

of speech with noise. The second sensor (the reference microphone), located away from the

speaker, measures a signal that consists mainly of the noise. The signal measured in the

reference microphone is used to cancel the noise in the primary microphone. A reasonably

general model for this scenario is shown in Figure 5.2.

The most widely used approach to noise cancellation, based on two microphones, was

suggested by Widrow et al. [10. In this approach, it is assumed that the system B is
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Figure 5.1: The acoustic environment
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Figure 5.2: The noise cancellation problem
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Figure 5.3: "Classical" noise canceling scheme

zero and that C and D are identity, so that the output of the reference microphone is

due only to the noise, and that the noise component in the primary microphone is the

output of an unknown linear system with transfer function A(z), whose input is the signal

measured in the reference microphone. The coefficients of the impulse response of this

system are estimated by a least-squares fitting of the reference microphone signal to the

primary microphone signal. This method will be referred to later in this chapter as the

least-squares method.

Widrow et. al proposed an adaptive solution to this least-squares problem, based on

the LMS algorithm. This approach, illustrated in Figure 5.3, has been applied in a speech

enhancement context, e.g. 641 and ,651. Adaptive algorithms based on the RLS algorithm

also exist, e.g. 661 and 67'.

A major limitation of the least-squares method, especially when the reference signal is

correlated with the desired (speech) signal, is that a portion of the desired signal may be

canceled together with the noise. Since the desired signal may be canceled with some time
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delay, the resulting effect is to introduce a reverberant distortiorn in ne output.

Our approach consists of formulating the problem as a statistical maximum likelihood

problem. This approach will allow us to consider a more general model, that includes the

effect of "cross talk", i.e. the coupling of the desired signal into the reference microphone.

As in many examples throughout this thesis, solving the resulting ML problem directly

is difficult, and so it is solved using the EM method. The proposed algorithm iterates

between estimating the speech and the noise source signals (E step) and solving a set of

linear equations for the coefficients of the acoustic impulse response (M step).

It is interesting to note that the proposed algorithm is similar to the iterative speech

enhancement method for single microphone suggested in 3l. As already noted, the iterative

Wiener filter used in 3! is an instance of the EM algorithm. In that respect. the procedures

developed in this chapter, may be considered as extensions of the method in 3] to two

microphones.

The methods presented in this chapter, can be used as an alternative to the least-

squares method of 10i and its derivatives, e.g. 68, and 69i. Simulation results indicate

that the proposed schemes tend to eliminate the reverberant distortion encountered in the

least-squares method. Adaptive versions of the proposed algorithms are also possible. We

finally note that the proposed scheme can easily be extended to the more general, multiple

microphone case.

This chapter is organized as follows. In section 5.1, we develop the general maximum

likelihood formulation of the noise cancellation problem. In section 5.2. we apply an EM

algorithm to solve the ML problem in a simplified scenario, that basically makes the same

assumptions as in j101. We then describe, in section 5.3, the EM algorithm for a more
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general scenario that includes "cross talk". We conclude this chapter, in section 5.4, by

presenting several simulation results including some that use a simulated realistic room

impulse response.

5.1 Maximum likelihood formulation of the two-sensor noise

cancellation problem

The mathematical ML formulation, encountered in a two-microphone noise cancellation

problem, is based on the following scenario. A desired (speech) signal source and a noise

source both exist in some acoustic environment, say a living room or an office. We have

two microphones used in such a way that one microphone is intended to measure mainly

the speech source, while the other is intended to measure mainly the noise source.

The desired signal and the noise are both coupled into each microphone by the acoustic

field in this environment. This situation is illustrated in Figure 5.2, and is represented by

the equations 1

$q(t) = C{s(t)} + A{w(t)} + el(t) (5.1)

y.(t) = B{s(t)} t- D{w(t)}- e(t) (5.2)

where s(t) denotes the desired (speech) signal and w(t) denotes the noise source signal. The

systems A, B, C and D are assumed to be linear systems, representing the acoustic transfer

functions between the sources and the microphones. Ve will assume that these systems

are time invariant in our analysis window. The additional noise sources el (t) and e(t) are

included to represent modeling errors, microphone and measurements noise etc.

'The mathematics and the algorithms will be formflated in terms of discrete time signals with the

independent variable t representing normalized sample time
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Under these assumptions we may write the observed signals in the frequency domain as,

Y (w) = C(w)S(w)+A(w)W(w)+ E(w) (5.:)

)Y(w) = B(w)S(w) + D(w)W(w) + E2(w) (5.4)

where YI(w) and Y 2(w) are the Fourier transforms of the the observed signals yl(t) and

y2(t), i.e.

~(W= 7 Z (t)e-3" (5.5)
N t=O

In the more general case of M microphones and K noise sources, the observed signal

may be written (in the frequency domain) as,

Y(w) = A(w)S(w) + B(w)W(w) -t (w) (5.6)

where Y(w), A(w) and E(w) are 1 x M vectors, W_(w) is 1 x K vector and B(w) is K x M

matrix.

To formulate a statistical maximum likelihood problem, we make the following assump-

tions. The noise source signal, w(t), is assumed to be a sample from a Gaussian random

process. The desired speech signal, s(t), is modeled in mary cases as an AR Gaussian

random process, whose parameters (the LPC parameters) are slowly time varying. For our

purposes, in a short analysis window, we assume that those parameters are constant, and

thus, in the mathematical formulation, the desired signal is also assumed to be a sample

from a stationary AR Gaussian process. The error signals el(t) and e2(t), are modeled as

white Gaussian noise processes. The signals s(t), w(t),el(t) and e2 (t) are assumed to be

uncorrelated.

The unknown parameters are the coefficients of the various syitems and some spectral

parameters of the signals. We denote the power spectra of s(t) and w(t) by P,(w) and
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P,(w) respectively. oau and a2 will denote the error signals variances. A(w), B(w),C(w)

and D(w) are the frequency responses of the four linear systems in Figure 5.2.

We formulate the problem in terms of short-time processing so that the signals and the

system parameters can be slowly time varying consequently, a sliding window is applied.

As already noted, the window length, T, must be short enough so that the parameters

are constant over its duration. However, we will also assume that it is long enough so

that the short-time DFT coefficients of s(t), w(t), el(t) and e2 (t) at different frequencies are

uncorrelated. Under this assumption, the likelihood of the observations (yl (t) and y2(t))

with respect to the parameters above is easily expressed in the frequency domain, and is

written as, (see e.g. 1i, chapter 4),

logp(yl(t), y(t);:8) - (logdetA(we;O) + =Y(wttA-1(w:6)(wj)) t = i e (5.7)

where Y(w) is a vector whose components are Yl(w) and Y(.). The matrix A(w; ) is the

power spectrum matrix, i.e.

A(w; ) E {y(w)Y(w)t} 

C(w)P,(w)C-(w) + A(w)P,(w)A(w) - a 2 C(w)P,(w)B%(a - A(w)AP,(w)D-(w)

B(w)P,(w)C'(w) + D({)P,(w)A-(w) B(c)P 3(w)B(w) D(w)P()D(w) .

(5.8)

For the M microphone case, the likelihood function is again (5.7) where the matrix A

is now the M x M power spectrum matrix E{Y(w)Y(w)}.

The general maximum likelihood problem, represented by eqs. (5.7) and (5.8), is not

only complicated but may also be ill-posed. The likelihood function depends on the pa-

rameters only through the matrix A(w; ), and all possible solutions that generate the same

A(; 8) have the sarne likelihood. If indeed all the associated systems and the power spectra
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are unknown and their structure is allowed to be arbitrary, then we expect a non-unique

solution, since any value of A(w; ~) may correspond to many different values for the param-

eters. Therefore, some constraints must be imposed on the parameters. For example, we

may assume that some of the parameters are known, or that there is a simple structure

to the systems. Of course, the more constraints there are, the more this ML problem be-

comes well-posed mathematically. However, we must limit ourselves to constraints hat are

consistent with the noise cancellation problem under consideration.

We will constrain the systems that represent the room acoustics to be causal, and to

have a finite impulse response. Thus. for example, A(w) is a frequency response of an FIR

filter, i.e.
q

A(w) = Ea-lw (5.9)
=O

As mentioned earlier, we will usually assume that s(t), the desired signal, is a sample

from an AR process of order p, so that its power spectrum, P,(w), is of the form

P'(t) '1 - v'P hie-3~,i2 (5.10)

In the next two sections, more specific situations will be considered, and additional con-

straints and assumptions, based on the additional knowledge about the underlying scenario,

will be made. In both sections, the resulting ML problem is constrained enough so that it

is not ill-posed.

We note that even with these assumptions and constraints, the required maximization

of the likelihood function (5.5) with respect to the signal and system parameters is still

complicated. Therefore the EM algorithm will be proposed for its solution. In the cases

considered in the next sections, the unavailable desired signal, s(t), wili be a component

of the chosen complete data. Thus, as a by product of the use of the EM algorithm, an
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estimate of the desired signal will become explicitly available while. implementing the E

step.

Relation to array processing and the previous chapter

The system model, presented above and illustrated in Figure 5.2, may also model the

array processing situatior ant the DOA estimation problem considered in the previous

chapter. In the array processing case, the various systems A, B, C and D are simple

delays, e.g. A(za) el 3 " . The additional noise sources, e(t), will represent in this

case the background noise. Maximizing the likelihood function (5.7) will be equivalent to

maximizing the likelihood function developed for the Gaussian DOA estimation problem,

i.e. solving (4.58).

The EM algorithms suggested in this chapter are different and do not reduce to the

algorithms presented in the previous chapter. We simply choose a different complete data

for solving the same ML problem. The choice of complete data in this chapter is adequate

for the noise cancellation problem, since the resulting EM algorithm generates an estimate

of the desired signal in the E step and since in the case where an estimate of a complete

impulse response and not just time delay is desired, updating the parameters using this

choice of complete data is easier. On the other hand, for the DOA estimation problem,

where the systems are simple delays, the choice of complete data used in the previous

chapter has generated an EM algorithm with attractive properties, such as the simple

parallel structure.
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Figure 5.4: The observations; simplified scenario

5.2 A simplified scenario

In this section, a simplified version of the problem is assumed, corresponding to the

restriction of B(z) to be zero and both C(z) and D(z) to be unity in Figure 5.2, so that

Figure 5.2 reduces to Figure 5.4. This scenario is assumed (at least implicitly) by Widrow

et al. in i10i. In this scenario, one microphone measures the desired (speech) signal with

additive noise, while the second microphone measures a reference noise signal, which is

correlated with the noise component of the signal measured in the first microphone, but

has no signal component present.

We will start by presenting the ML problem for this scenario. This ML problem is a

special case of (5.7). However, as we shall see, the availability of a reference signal, which

contains only noise, makes this likelihood function particularly simple. We will then present

an EM algorithm for maximizing this likelihood. The complete data will be composed of

the signal part and the noise part of the primary microphone signal separated in addition
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to the reference microphone signal.

5.2.1 The ML problem

As indicated in Figure 5.4, the observed signals are yl(t) and Y2(t), A(z) is an FIR filter,

e(t) is Gaussian white noise, and s(t) is the desired signal.

Specifically, then

y1(t) = s(t) + n(t) (5.11)

where the noise component in the primary microphone is

q

n(t)-= , aky(t - k) + e(t) (5.12)
k=O

Equivalently, equations (5.11) and (5.12) may be written as,

q

yl(t) = s(t) + £ akw(t - k) - e(t) (5.13)
k=O

y2t)= wu(t) (5.14)

and the connection to the general scenario is now clear.

As before, we assume that the desired signal, s(t), can be represented as a sample func-

tion from a stationary Gaussian process, whose spectrum is known up to some parameters.

The unknown parameters, , are the system coefficients, {ak), the spectral parameters of

s(t) (which will be denoted ), and ao, the variance of e(t).

The likelihood of the observation is again expressed in the frequency domain. This case

is simpler than the general case, discussed in the previous section. The likelihood may be

obtained without referring to the general formula of (5.7).

Specifically, under the assumptions made in the previous chapter, the likelihood of the
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observations may be written in the frequency domain as,

L(B) = log f, ,(yl(t), y2 (t); ) log fy,Y 2 (Yi(wC), Y2(w); Y ) (5.15)

Now, at each frequency we

log fy,y 2 (Yi(weI), Y(we); ) = log fyl / Y2(YI(w)/Y2(we); O) i log f:(Y:(C)) (5.16)

where log fy 2 (Y2 (wt)) is independent of 0. The conditional density of Yl(wt) given Y2 (wC) is

given by

log fy, y.(YI(wt)/Y 2 (w); ) = - [log (P (wt) ) Y ( )- A( ) + (w

(5.17)

Thus maximizing the likelihood (5.15) in this case is equivalent to minimizing,

Z [ (P3 (wt) + 2) + Y(w - A(t)- Y(S) (5.18)

with respect to a2 and the coefficients of P,(w) and A(w).

We will assume that A(w) is the frequency response of an FIR filter of a given order q,

i.e. it is of the form of (5.9). Also, we will assume that s(t) is an AR process of order p

with coefficients {h,},= and gain G. so that its power spectrum P,(w) is given by (5.10).

In some applications, like LPC vocoding and speech recognition of noisy data, we will

be interested mainly in the spectral parameters of the speech signal. In this case, solving

this ML problem explicitly provides these desired parameters. In other applications, we will

be interested in the speech signal itself. So, using the estimated signal parameters, {ak},

we will cancel the noise in the primary microphone and obtain an enhanced speech signal.

As mention above, this speech signal estimate will be available as a by product of the EM

algorithm suggested below, while implementing the E step.
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5.2.2 Slution via the EM algorithm

Direct minimization of (5.18) is complicated; therefore we consider the use of the

EM algorithm. In this approach. the complete data is chosen to be the set of signals

{s(t), n(t), y2 (t)). This choice of complete data is motivated by the simple maximum like-

lihood solution available if indeed s(t), n(t) and y?(t) are observed separately.

Loosely speaking, if this complete data is available, the maximum likelihood estimate of

{ak)} and a2 is achieved by least squares fitting of y2 (t) to n(t). The spectral parameters of

s(t) are also easily estimated by solving, for example, the normal equation using the sample

correlation of s(t), for LPC parameters.

More specifically, the likelihood of the complete data, L(), satisfy

Lc(_) log f, (s(t), n(t),y(t); )

= 1og f,,n (s(t), n(t)'y 2 (t); 0) + log f. (Y(t)) (5.19)

where log fv,(y 2 (t)) is independent of . Also, given y(t), the signals s(t) and n(t) are

statistically independent, and thus

og ,n/l.(s(t), n(t)/y 2(t); ) log J/(s(t)/y 2 (t); ) log f,/, (n(t)/ly(t);8) (5.20)

Now, log fn,,,(n(t)/y(t);) depends only on {a,) and a2 , and it is defined by the p.d.f

of e(t), i.e.

logf,nv(n(t)/2(t);) = - E log a2 . - -ak,((t - k) (5.21)
t=0 t k=O

In general, the signal y 2(t) may be related to s(t). However, this relation is arbitrary

and unknown. Therefore, we will assume that the probability distribution of s(t) given

y2(t) is the a-priori distribution of s(t). This probability distribution is the distribution of a
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stationary random process with power spectrum P,(w) and it depends only on the spectral

parameters. e, of s(t), thus,

log f, ,i (st)./(t);_) - log f,(s(t); _) - E logP P(y;) + p,(') I (522)

where S(w) is the Fourier transform of s(t), i.e.

1 N-1
S(w) \ A ete

Thus, estimating by maximizing the likelihood of the complete data is equivalent to

estimating a2 and {ak} by minimizing

NI I q ' 2

E2 ( n(t) - aky2(t -k) + N.log 2 (5.23)
t 0 k'-O

and estimating the spectral parameters S by minimizing

log P,(.t; ) ' P ,(W,, x) (5.24)

Note that when s(t) is assumed to be an AR process, minimizing (5.24) is equivalent to

solving the Yule-Walker equation, using the sample autocorrelation of s(t).

From eqs. (5.23) and (5.24) we note that the sufficient statistics of the complete data is

n(t) and :S() 2. The sufficient statistics is linear for the noise part and quadratic for the

signal part. Thus, the E step of the algorithm requires the following expectations:

=,(t)= E{n(t)/yl(t), y(t);e(")} (5.25)

and

Ms(we) = E {S(,,) /Y(u),Y( ();)} (5.26)

where (n) denotes the parameters {ak)},a and 0 in the nt h iteration. These conditional

expectations are immediately available using the results developed for the linear Gaussian

case.
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The E and the M steps of the EM algorithm for minimizing (5.18) may now be stated

explicitly. We will denote by (n) (or by {a?7)}, (o.2)( n) and Pn)(w)) the current estimate

of the parameters.

* The E step, the nth iteration:

- Generate a signal x(t)

:(t) y 1(t) - E , ) (t - k) (5.27)
tk=O

Note, that if the true coefficients {ak} were known, then x(t) = s(t) + e(t)

- Apply a Wiener filter to x(t) to obtain the conditional expectation or the rmin-

imum mean square error estimate of s(t) (or S(we)) and S(we)12. Specifically,

for all wt, generate an estimate of S(wt), E(wt) and S(wt)t2 as

Pf) ( )
.~S() () (: X(w)) (5.28)

E(wt) = X(w,) - S( ) (5.29)

Ms(wt) = iS(Jw)i: () (5.30)

where X(w) is the Fourier transform of x(t) and (w) is the Fourier transform

of the signal (t).

- The conditional expectation (estimate) of n(t) is

q

i(t) = j a,(, 1"(t - k) + .(t) (5.31)

* The M step, the nth iteration

Substitute the conditional expectations of (5.30) and (5.31) into equations (5.23) and

(5.24). Specifically,
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- Update {ak} by solving the least-squares problem of (5.23) with (5.31) substi-

tuted for n(t), i.e.

{an-tl ) } arg min (a - a)yz(t - k) + e(t) (5.32)
{an n=O =O

Update the spectral parameters by solving (5.24) with Ms(we) substituted for

'S(we)i 2. For LPC parameters, solve the Yule-Walker equation using the esti-

mated correlation values, obtained by inverse Fourier transforTming Ms(w).

The EM algorithm above iterates, until some convergence criterion is met. This algo-

rithm is summarized in Figure 5.5.

137



5.3 A more general scenario

The modeling of the two-microphone noise cancellation situation in the previous section

ignores the possible coupling of the desired signal, s(t), into the reference rmicrophone. In

the classical least-squares approach. this coupling results in a reverberant quality to the

output, because the desired signal is partially canceled together with the noise. Since

the ML problem of the previous section also ignores this coupling, the resulting EM noise

canceling algorithm has a similar problem.

In the ML approach considered in this section, this coupling is taken into account.

Specifically, we now include the presence of the system B in Figure 5.2, but still assume

that C - 1 and D 1, corresponding to the assumption that the first sensor is close to the

signal source and that the second sensor is close to the noise source. The resulting model

is shown in Figure 5.6. We also assume that A(z) and B(z) are both FIR systems. These

assumptions are important, because without them the problem is ill-posed. For example, if

A, B, C and D are arbitrary, intuitively one can see that there is a symmetry to the problem,

that precludes the algorithm distinguishing between the signal and the noise components

in each sensor. With the stated assumptions this symmetry is removed.

We will start by explicitly presenting the ML problem for this scenario. We will then

present an EM algorithm for maximizing this likelihood, where the complete data will be

composed of the desired speech signal, s(t), and the noise source signal, w(t), in addition

to the observed signals y(t) and y(t).
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5.3.1 The ML problem

The situation assumed in this section is indicated in Figure 5.6. The mathematical

model that corresponds to this situation is given by,

yl(t) = s(t) + A{w(t)} - e(t) (5.33)

y.(t) = B{s(t)} - w(t) + e2(t) (5.34)

where, as before, s(t) is the desired signal, w(t) is the noise source signal, and el(t) and

e2(t) are the measurement and modeling error signals in the two microphones. As in the

general problem. s(t) and w(t) are assumed to be sample signals from Gaussian random

processes. The error signals el(t) and e2(t) are white Gaussian noise processes. The un-

known parameters, , are the impulse response coefficients {at} and {b,} of the systems A

and B, the spectral parameters of the signals s(t) and w(t) denoteJ o and 6d respectively,

and the variances al and a, of the noises el(t) and e2 (t).

With these assumptions, the likelihood of the observations is given again by (5.7). How-

139



ever, with C(w) -D(w) - 1, the power spectrum matrix, A(w), is simplified to

(w;O) =E (wfE ly(w)r }

(5.35)

B(.)P,(w) Pw(w)AP'(w) B(w)PP(w)B( .) P r) + sat

We will assume again that A(w) and B(w) are frequency responses of FIR filters, i.e.

their structure is given by (5.9). The orders of those FIR filters are assumed to be known,

and are denoted q and qb respectively. The desired signal is assumed to be a sample

from an AR process of a given order p. so that P,(w) will have the structure of (5.10).

We further assume that w(t) is a white noise signal, i.e. P,o(w) is constant. Even with

these assumptions. the underlying ML problem is complicated, so again we will use the EM

algorithm for its solution.

For applications, such as LPC vocoding, where only the spectral parameters of the

speech signals are required, solving this ML problem will explicitly provide these desired

parameters. For applications where the speech signal is required, the MMSE estimate

of the speech signal using the ML estimate of the parameters will be suggested. This

MMSE estimate will be available for each current parameter value, as a by product, while

implementing the E step of the suggested EM algorithm.

5.3.2 Solution via the EM algorithm

The complete data suggested fr defining the EM algorithm in the current context is the

set of signals {s(t), w(t), y(t), y2 (t). The complete data is chosen this way, since, if indeed

the signals s(t) and w(t), the input to the two channel system of Figure 5.6, are observed,

in addition to the signals yl(t) and y(t), the output of this system, then there will be a
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simple procedure for ML estimation of the parameters of this two channel system.

Specifically, suppose that this complete data is available. To estimate the parameters

we will maximize its likelihood given by

L() = log (y()y2(t), s(t), (t); )

log fvl, vYs,v(yl(t), y2(t)/s(t),w(t);O)+log f ,,.,s(t),w(t); ) (5.36)

The signals yl(t) and In(t) are uncorrelated. given s(t) and w(t). The signals s(t) and w(t)

are uncorrelated by assumption, thus.

Lc() = log fv,,.,,(yl(t)/s(t), w(t); ) + log f,/..,(y(t)S/s(/, t(t);6)

I II

log f (s(t); O) + log f,u(w(t); O) (5.37)

Term I depends only on {a,}) and a 2 and is the log probability of the sequence el(t).

Similarly, term II depends only on {b} and r, and is the log probability of the sequence

e2 (t). Term III is the log probability of the stationary signal s(t) and depends only on its

spectral parameters 6d. Similarly term TV is the log probability of the stationary signal w(t)

and depends only on its spectral parameters _,q Maximizing the likelihood of the complete

data with respect to is equivalent to maximizing each of the terms I - TV separately with

respect to the parameters they depend on.

Thus, given the complete data. , are estimated by,

O arg max log f(s(t); )= arg min E log P(we; S (, ) +1 (5.38)

and d' are estimated by,

b =arg max log f,(w(t); ,) =arg min log P., (W;(t)- 2 (5.39)
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where S(w) and W(w) are the Fourier transforms of s(t) and w(t) respectively, i.e.

S(w) = ... (t) -
VN t=o

N-1

W()= 1- E (t)C- 'l '
vN t=O

The maximization in (5.38) is sometimes simpler, e.g. when s(t) is assumed to be an AR

process, in which case maximizing (5.38) is equivalent to solving the Yule-Walker equation,

using the sample autocorrelation of s(t). Similarly, solving (5.39) is sometimes simpler. If

w(t), the noise source signal. is a white noise signal, then solving (5.39) is equivalent to

finding the (constant) spectrum level, P,, by,

N-I
P, = Z w(t)= (w) 2 (5.40)

t=O ~

Estimating the impulse response coefficients, {ak}, and the variance, a,, given the

complete data, requires solving a least-squares problem, since

a(;,{ak} = arg max l1ogf,,/,;,(y(t)/s(t)w(t);ao,.---%,a 2 ) (5.41)
OF ,{a}

ar g m -2 yl(t)- s(t) - , ajw(t - k) + N - logai
O Ct, i t=O k=O

Similarly, estimating ({b;} and a2, given the complete data requires solving the following

least squares problem,

0r' {g = axg max log /,,( (t)s(t), w(t);bo , - - ba.) (5.42)

e2 t=O 1 qs g- arg mm 2j ((t) - w(t) - b.s(t - k)) - N- logo;,

The explicit solution of the least-squares problems, implied by equations (5.41) and

(5.42), is achieved by solving the following "normal" linear equations:

Ra = , - r, (5.43)
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where = the correlation matrix of w(t) - rder i.e.

where , is the correlation matrix of wit) of order q i.e.

r-(qa)

r.(1)

l rt.(qa)

R, is the order qb correlation matrix of s(t)

r,() r,(1) r,(2)

r-,() r.(O)

where r,(k) - E s(t)s(t - k)
t=O

The vectors rvI, r, , and r, represent the appropriate cross correlation between the

signals, e.g.

ru, =

r..(q.)

I N-I
where rt,,() = N =

t=O

s(t)w(t - k) (5.47)
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(5.44)

where r, (k) =
1 N-I

t0 E (t)w(t-k)Nt=O

(5.45)

r,,(qb)

r, ()

r,(qb)

(5.46)

r. (0) r.(I) r.(2)

r,,, (1) rw,(O)

r,(2) r,,,() rw (0)

r(2) r,() r, (0)



and the vectors a and b are the unknown impulse response coefficients of the systems A and

B.

By observing the required procedures for maximizing the likelihood of the complete

data, i.e. equations (5.38),(5.39) and (5.43),(5.44), we see that the sufficient statistics

of the complete data contains quadratic terms, which are the sample autocorrelation (or

the sample spectrum) and the sample cross correlation (or cross spectrum) of the various

signals, in addition to the linear terms (i.e. the signals themselves). Thus, the E step of

the algorithm (with the above choice of complete data) requires the expectations:

§(t) = E s(t)!/y(t), 2(t); () (5.48)

th(t) = E t(t)/1Y(t), Y2(t); ( ) } (5.49)

and the quadratic terms:

i (k) = E { r(k)/yl(t), y2(t); ) } (5.50)

i,(k) E r(k) y t),y2(t)6t"') (S.51

,,(k) = E {r,(k)/y(t), 2(t);_in) }- =i (-k) (5.j2)

We will implement the E step in the frequency domain, since for stationary processes

with large observation time, the DFT coefficients at each frequency are statistically inde-

pendent and can be processed separately. In each frequency we the observation may be

written as

iY(we) ] 1_ I A(we) [ S (We) 1 (5.53)

LY: (we) B(wt) 1 W ()

The E step requires the conditional expectation of S(we), W(wt), S(we)i2, W(we)j and

S(w)w (we)-
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At each step of the algorithm, the current values of the parameters are used. We

will denote by A(")(w) and B(n)(w) the current estimate of the frequency responses of the

unknown systems A and B, and by P (w) and P(l(w) the current estimate of the power

spectra of s(t) and w(t). Let H(wt) denote the matrix

H(t) = (5.54)

B(")(we) 1

and let 4 (we) and ?. denote the power spectra matrices

)(, ~l))( t) °) 1- a Ii 1 (5-55)

The required conditional expectations are reay available, since again this is a linearThe required conditional expectations ae readily available, since again this is a linear

Gaussian case. These conditional estimates may be interpreted as performing a two-channel

Wiener filter (see 20!) and calculating its error covariance matrix. Thus, the estimate of

the linear terms is given by

S(we) Y,(()
= K(wt) j (5.56)

W(@t) Y:(-t)

where K(we) is the matrix

K(wt) = (Wt) H(Wt)T (H(w) - 9(t) H(Wt)t - ) (5.57)

For the quadratic terms, we have to calculate the error covariance matrix of this Wiener

filter, i.e.

-() = (-'() + H(w) S-1 H(we)t)

= 4i(w) - 4(wt)H(we)' (H(wt) - 4(we) - H(we)t + ) H(we),(wt) (5.58)

145



and the quadratic terms are obtained by,

Ms(wt)= E {,S(we)l2/Yi(wt),Y2(t)} - IS(w)2 Pll(we) (5.59)

Mw(we) E {lW()ll/Y(wI), Y2 (w)} = IW(Ww)l + (W) (5.60)

Msw(wf) = E {S(wt)W'(we)/Yl(wt),Y 2 (t)) = S(wt)W(wt) + P12(wt) (5.61)

The E and M steps of the EM algorithm for maximizing the likelihood of the observations

(given by (5.7) and (5.35)) for this more general case may now be stated explicitly.

* The E step, the nth iteration:

- Calculate the conditional expectations S(wf) and WI(wt) by (5.56).

- Calculate Ms(we), Mw(wl) and Msw(wJ) by (5.59)-(5.61).

- The signal estimates s(t) and tb(t), and the correlation estimates i,(k), ;(k) and-

,,,(k) are achieved by inverse Fourier transforming S(w), lW(w), Ms(w), Mw(w)

and Msw(w) respectively.

* The M step, the nth iteration:

Solve the linear equations of (5.43) and (5.44) for a and b, using the estimates

i,(k),r,(k) and i,,(k) from the E step, and with

vN-I
i,(k)= , (t)y (t - k)

N-i

in,2(t) v E (t)y2( - k) (5.62)
t=O

The result is the updated coefficients caT ' l ) and b("'+ ) of the systems A and B.

- Update the spectral parameter estimate, by solving (5.38) and (5.39), using

Ms(wc) and Mw(wt) instead of S(wt)I2 and W(we) 2. For LPC parameters of

the speech signal s(t), solve the Yule-Walker equations, using f,(k).
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Figure 5.7: The EM algorithm; more general scenario

The EM algorithm above iterates, until some convergence criterion is met. This algo-

rithm is summarized in Figure 5.7.

The procedures, suggested in this section and also in the previous section, are imple-

mented in each iteration on the entire data. Adaptive and sequential procedures, based

on the discussion in chapter 3, are also possible. These algorithms may process new data

in each new iteration. The parameters will be updated according to one of the suggested

strategies in chapter 3, and a new segment of enhanced signal will be produced.
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Examining the suggested procedure illustrated in Figure 5.7, a sequential EM algorithm

based on recursive E and M steps, comes in mind. The Wiener filter of the E step will

be replaced by the sequential Kalman filter, and the linear least-squares problems of the

M step will be solved via a sequential RLS type algorithm. The details, the analysis and

experiments with this adaptive version are now under investigation and are the subject of

further research.

5.4 Experimental results

The algorithms developed in this chapter for both the simplified scenario and the

more general scenario have been applied and tested in a simulated environment. A realistic

acoustic environment has been created by generating the impulse response coefficients of the

systems, representing the room acoustics, using a well tested acoustic simulation program

:701. In this section we will discuss the results of our simulation experiments.

5.4.1 The simplified scenario

The simplified scenario of Figure .4 has been implemented with s(t), a speech signal,

and y2 (t), a band limited noise signal with a flat spectrum from zero to 3 KHz. The FIR

filter. A(z), was of order 10. yl(t) was generated according to Figure 5.4. The SNR in

yl(t) was approximately -20 db. The results were compared with a batch" version of the

least-squares algorithm, corresponding to estimating the {ak}'s via the least-square problem

min E Y ( t) A aj, y2 ( t - k)
(ak) t k=l
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Figure 5.8: Correlation between the reference and desired signals. C(z) = 0.z - 5

and then canceling the noise and estimating the signal as

q

s(t) Y(t) - y( - k)

Both algorithms produced good enhancement of the speech signal, and although there

were perceptible differences, the overall quality of both was similar.

The direct least-square approach assumes that y2 (t) and s(t) are uncorrelated. This

assumption is critical. Our algorithm, on the other hand, does not require this assumption.

In a second experiment, y(t) included a delayed version of the speech signal, as illustrated

in Figure 5.8. (Note, that this scheme is different then the scheme considered in the more

general scenario. since we have a direct measurement of the input to the system A(z)).

In this experiment, the SNR in y](t) was again -20 db. The direct least squares approach

canceled part of the signal together with the noise, resulting in poor quality. In comparison,

the performance of our algorithm was still good.
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Figure 5.9: The living room acoustic environment

5.4.2 The more general scenario

The more general scenario assumed in Figure 5.6 was simulated, where again s(t) was a

speech signal and w(t) was a white noise signal. In order to simulate a realistic scenario, we

assumed a living room environment with the signal and noise sources located as illustrated

in Figure 5.9. We used a simulation program developed by Peterson (701), and we generated

FIR impulse responses having 2000 coefficients for each of the systems A and B. The first

500 coefficients of these impulse responses are plotted in Figure 5.10. By monitoring the

level of the noise source, we have generated examples in which the SNR of l (t) was +20dB,

OdB and -20dB.

We implemented the EM algorithm described in Figure 5.7 and compared the results

to the least-squares method, by informal listening. Both algorithms estimated up to 500
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coefficients of the impulse response. In all SNR levels our algorithm performed better, and

its output, unlike the least square output, was reverberation free.

At high SNR (-t-20dB), the output of the least squares method output sounded worse

than the unprocessed measurement signal, due to the signal canceling effect. The output of

our method sounded better than the original measurement signal.

At OdB, the least squares output sounded better than the measurement signal. However,

it sounded much worse than the output of our algorithm, which at this SNR level generated

an almost clean signal.

At -20dB SNR, the output of the ML method sounded better then the least-squares

method. However, the distinction between the two was not as significant as in the case of

OdB SNR. This is perhaps a result of the fact that, in order to generate a low SNR, we

increased the level of the noise source. This resulted in a high Noise to Signal Ratio in the

reference microphone, which in turn resulted in lower signal cancellation, since the situation

became closer to that assumed by the least squares method.
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Chapter 6

Information, Relative Entropy

and the EM algorithm

At this point in the thesis, we have already presented the main results and contributions.

The class of iterative and sequential algorithms has been presented and motivated. We have

also demonstrated several applications of these algorithm to real world signal processing

problems. In the course of the thesis, several subjects, related '- information and the

philosophical essence of the inference process, have been mentioned briefly. We want to

use the opportunity of this chapter to discuss these issues further. We will consider in this

chapter some interesting topics, in the context of information theory, that are related to

the EM method and to the notion of complete and incomplete data relations.

Information measures and statistical inference criteria are closely related. The books by

Kullback 71' and Pinsker 72I are devoted to information theory and statistics. The Mini-

mum Description Length (MDL) and the Minimum Information (I) criteria, mentioned in

Chapter 2, provide examples of the application of information measures to inference prob-
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lems. Another criterion, based on information theory, the Maximum Entropy (ME) or its

generalization the Minimum Relative Entropy (MRE), is the main tool used in 711 to relate

information theory to statistics. It will be interesting to show that the ME/MRE criterion

is a special case of the MDL criterion in a special complete-incomplete data context.

Another topic, discussed in this chapter, is the alternative derivation of the EM algo-

rithm using the MRE criterion, which has been suggested by Musicus in 71 and 1[8, and by

Csiszar et. al. [731. This derivation is presented with our interpretation and comments. In

the context of this chapter, where general information criteria are analyzed, this derivation

may be viewed in the right perspective.

This chapter is not organized as coherent theory, rather as "variations on the themes"

above. The common 'motive' is the relation to the EM method. We start our presentation

with the ME or the MRE criterion, point out that its philosophy is distinct from the phi-

losophy of the ML and other statistical criteria and give its common justifications. We then

show that the MRE criterion sometimes reduces to the ML criterion, and, in these cases,

its minimization using the alternate minimization algorithm, reduces to the EM algorithm.

However, we will raise some doubt concerning the rationale behind using the Minimum Rel-

ative Entropy in some contexts, including the context that led to the alternative derivation

of the EM algo:thm. The chapter ends with an important result; we prove that the ME or

NRE criterion can be viewed as an interesting implementation of the NMI/MDL ideas in a

special complete/incomplete data situation_
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6.1 Maximum Entropy and Minimum Relative Entropy

So far in the thesis we have presented several methods and criteria for statistical in-

ference. Maximum Entropy and Minimum Relative Entropy methods flow from a different

philosophy, however. This philosophy will be presented and compared to the philosophy of

other statistical inference criteria.

6.1.1 ME and MRE in comparison to other statistical criteria

The "output" of every statistical inference method is a choice of probability function,

which we believe, according to the specific criterion we use, represents best the behavior of

the phenomena that we observe. However, ME or MRE methods consider the observations

in a unique manner and accept only certain forms of data.

To be more specltic, let us describe the common situation that leads to the application

of ME or MRE methods. As mentioned above, the goal of any inference process is to find

a p.d.f., p(z), defined-over the sample space, X, of the observed phenomena. Suppose we

know that p() belong to a set P, where this set is usually defined by the knowledge of some

averages,

P = {p(x) Epg(x)]= } (6.1)

The given averages are the only information observed from the underlying phenomena in

the ME framework. The choice of probability function is then made by,

i = argmax (p) = argmax [-fp(z) logp(xd (6.2)
PEP pEP

In the MRE framework, an a-priori probability, q(-), for the observed phenomena is also
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given, and thus the choice of probability function is made by,

arg min .V(p;q) = arg min p() log () (6.3)
PEP pE P f q- ~)

We immediately note that the MRE criterion reduces to the ME criterion if q(.) is the

uniform prior. Therefore, in the rest of the chapter, we will discuss only the MRE method;

all the results will also apply to the ME method.

The basic limitation of the MRE method is that one cannot incorporate the information

provided by a specific observation sequence. The only information that can be incorporated

is in the form of given averages or other constraints on the probability function. Neverthe-

less, the MRE method is sometimes used when a specific observation sequence is given. In

this case, one usually calculates some sample averages and uses them as constraints on the

relative entropy minimization. This approach is certainly not an optimal one, since not all

available information about the phenomena is incorporated and since errors are introduced

in the inference process, because the sample averages differ from the statistical averages.

The other statistical inference methods consider the observed data directly. For example,

in the Maximum Likelihood framework, we have an observation z e X and we assume that

the probability distribution that describes x is characterized by some unknown parameter

vector, 0 E e. The ML criterion will choose p by choosing _ E e according to,

0 = arg max log p(z; ) (6.4)

The basic limitation of the NML is the need for modeling assumptions. Without those re-

strictions the method will break down; for example, if we allow the any probability function,

maxirmizing the likelihood will lead to the trivial (but unacceptable) result p(ca) = (a- x),

where 6(.) is the Dirac delta function. On the other hand, in the ME/MRE framenwork, we
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do not assume any model; the method will work even if the set P in (6.2) and (6.3) contains

all possible probability functions. The constraints on the probability functions are derived

from the data.

To summarize, the weakness of the MRE method is the unique and restricted manner

in which it can accept input. The MRE method can consider the data only in the form of

averages. Its strength, on the other hand, lies in the facts that no modeling assumptions

are needed and that a full probability function is estimated. There are situations in which

giving the input in form of averages is natural; for example, in statistical mechanics, the

observations at the macroscopic level are indeed some averages of a stochastic phenomena,

that occurs at the microscopic level. In these cases, following the rationale of the MRE

method given below, the usage of the MRE method is justified.

6.1.2 The rationale of the MRE method

The commonly used rationale for justifying the Maximum Entropy method is advocated

mainly by Jaynes 741 and [75j. Here, we briefly repeat this rationale.

Suppose that the sample space of the underlying phenomena is discrete and finite,

i.e. the random variable, X, whose instances, x, we may observe, takes its values over

the finite set {(,---,n}. This random variable has an a-priori probability assignment,

{q1. - -, ,}- Suppose we observe an infinite i.i.d. sequence, {xl z , - -.}, of realizations

of X. A question we might ask is what will the sample frequencies (or histogram) of this

sequence typically be ? Naturally, by the strong law of large numbers, the answer is the

a-priori probability, {q}=1. However, suppose we have additional information in the form

of constraints on the possible histograms, maybe a knowledge of some averages, that rules

out the a-priori assignment. In this case, we will compare the probabilities of all possible
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histograms; the typical histogram will be the one with the highest probability.

Specifically, consider first the case of a finite sequence, {= 1{ - ZN), of i.i.d.

realization of X. With the given probability assignment, {q1)m l, on X, the probability of

getting a specific sequence, whose sample frequencies are {PI},, where pi = k/N and ki

is the number of times the outcome i appeared in x, is

m

p(I) - flqkt - .IIqNiP. (6.5)
1=l i=}

There are, however, N1 ! t, . sequences with these sample frequencies. Thus, the probability

of the event the sample frequencies of z are {pi Ml . denoted Prob{p/q}, is given by,

i=1

It is easy to prove, using Stirling's formula for factorial, that

k! km! e ° (6.7)

where t(p) = - , p log p, is the entropy associated with the frequencies pi = k/NV.

Thus, as N - equation (6.6) becomes

P ob{p/q1} e PaI. J q - pi N.2 .
p , log (6.8)Prob~p/q} - ] =) e - ,, (68)

i=l

or equivalently.

log Prob{p/q}= -N i log i -N- ;(p;q) (6.9)
qi

where (p; q) is the relative entropy between {p,}~ and {qi},l

From equation (6.9) wa see that the relative entropy is directly proportional to - log Probp/q}).

Thus the histogram with the highest probability is the one that minimizes the relative en-

tropy. This histogram is also the typical histogram in the following sense. Consider the

histogram p that minimizes the relative entropy and any other histogram p' with higher
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relative entropy. We claim that the probability of p is overwhelmingly larger than the prob-

ability of p', since, as N - oo, the ratio between these probabilities goes exponentially fast

to infinity,

Prob{pi/q) =-N (;- ( q)] = N > o (6.10)
Prob{p'/q)

This concludes the justification of the minimum relative entropy criterion.

(The argument above, the probability calculations and the term typical sequence" are

frequently used in Shannon's development of information theory [241, especially for his

source coding theorem.)

6.2 MRE by alternate minimization and the EM algorithm

In this section, an interesting interpretation of the EM algorithm is provided, using the

MRE criterion. This interpretation is based on the fact that the MRE criterion, used in

a special way, reduces to the ML or the MAP criterion. Minimizing the MRE criterion is

usually difficult; thus, the iterative alternate minimization (or coordinate search) algorithm

may be suggested. In the special case where the MRE criterion reduces to the ML criterion,

this alternate minimization algorithm reduces to the EM algorithm, where minimizing with

respect to one density is equivalent to the E step, and minimizing with respect to the other

density is equivalent to the M step.

As already mentioned, the minimization of the relative entropy by alternate minimiza-

tion and its relation to the maximum likelihood criterion were originally suggested in [7!

and 8i. The alternative minimization method and its properties were also developed in

[731, where an explicit relation to the EM algorithm was established.

159



6.2.1 MRE by alternate minimization

As discussed above, the goal of any statistical inference process is to find a probability

distribution. that explains the observed phenomenon under some a-priori knowledge and

constraints. Suppose that the observations and the a-priori knowledge may be summarized

into constraints on the desired probability density functions, i.e. that p(z) E P and q(x) E C

where , Q are sets of p.d.f. A version of the MRE criterion will solve our inference problem

via the following functional minimization:

p(x),4(z) = arg min (p(z); q(z))= arg mip n p (z)logP d (6.11)
PMZ)EP. q(X)2 P(:)EP, q(:) E2 x q(z)

The minimization of the relative entropy in (6.11) is complicated in general. It is also a

functional optimization problem; thus, numerical methods cannot be easily applied either.

To solve this problem, an alternate minimization method (or coordinate search algorithm) is

suggested. In this method, we generate a sequence of solutions p(n) (z), q(n)(X)} as follows:

* Start: guess p()(x),q(0)(Z)

* Iterate, until some convergence criterion is achieved,

p("nl)(,) = arg mink (p(z);qP)1(2)) (6.12)

q(n+l( ) = arg mi nl (p('+ (x3; <()) (613)

Any alternate minimization algorithm has the desired monotonicity property. Thus,

each iteration improves (in our case decreases) the goal function. Specifically,

k (pi- 1)( ); q( (n)(z)) < ;4 ( (pllr(); q(n)(x)) <• (p )(n); q(l)(I)) (6.14)

The monotonicity property implies that, if the goal function is bounded, then it also

converges to some value H'. A continuous function, like the minimum relative entropy, will
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be bounded when it is defined over a compact set. For our iterative algorithm, in order to

show that /(p(n); q(1)) )U, it is sufficient to show that the set Po x Q0, where

P0 x o {(p E P,q Q I .(p;q) (p(°);q(°))} (6.15)

is compact.

Differentiability of the goal function will imply that H' is a stationary value. If the sets

P and Q are convex, then the convergence point H' is a global minimizer. Unfortunately,

in the special case where the desired density functions are defined parameterically, these

sets are rarely convex, even when the possible set in the parameter space is convex.

A comprehensive discussion on the properties of this algorithm, especially the conver-

gence issues, may be found in 81 pp. 107-133 and in 1731.

6.2.2 ML as a special case of the MRE criterion

Let X be a sample space, referred to as the complete data sample space, and suppose

that a parametric family of probability distributions is defined over it. This parametric

family is indexed by the vector 0 e e, where e is a subset of the k-dimensional Euclidean

space. Thus, the set of possible complete data densities is

e = {q(z;O_) i E }) (6.16)

Suppose that we do not observe xz X, but instead we observe an incomplete data y =

T(g), where T(-) is a many-to-one mapping. The new sample space, given the incomplete

data observations, is X (y) as in (2.4). The possible p.d.f., given y, are therefore constrained

to the set

P={pA ) p( ) =O Vx(y), p(X)d l (6.17)
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Note that a sample space, Y, for the observation also exists, and each 0 defines a p.d.f. over

this space, given by

fy (y; t) = Q(x; (6.18)

The probability densities, q(-) E 2e and p(-) E ,, are estimated via the minimum

relative entropy criterion. Thus, we have to solve

(_), 4(_) = arg in p((z) log -() d(6.19)

Note that estimating q(-) E Qe is equivalent to estimating _ E e, i.e. we have to solve

(-), MRE = ag frn p(z) log ) d (6.20)
p(=E?,, vo fx q(x; ) -

where MRE denotes the minimum relative entropy estimator of the parameters.

The ML criterion determines the estimate E e( by maximizing the likelihood of the

observation, i.e.

BML = arg max fy(y; ) = arg max q(z;8 )d: (6.21)

We will now show that estimating by the minimum relative entropy (i.e. by 6.20) is

equivalent to estimating by maximum likelihood (i.e. by 6.21).

For any fixed we will minimize (6.20) with respect to p(_). This minimization problem

may be solved explicitly using the following lemma, which is a direct result of the convexity

of the relative entropy function.

Lemma 6.1 For any measurable set A

|p() > P(A)log (A) (6.22)

where P(A) = fA p(r)dx and Q(A) = fA q(z)d. Equality holds if and oly if

p(:) q(r)
-l) a.e in A (6.23)

P(A) Q(A)'
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The proof of this lemma may be found in 81 page 373.

Let A be the set X(y). In this case, P(X(y)) = 1 and Q(X(y)) = f(y;0). By the

lemma above, a probability density function that, will satisfy (6.23), will minimize the

relative entropy. Thus the p(Z) that minimizes (6.20) for any fixed is

q(X:) _q(;_)
(Z)= P(X()) Q(X(y)) = fy( y;) r (6.24)Q(Z (y)) f (y; )

which is the conditional probability of x given y. The value of the relative entropy at this

point is given again by the lemma above (6.22), i.e.

P(X(y))
P(X(y)) log -)) = log fy(y; ) (6.25)

Q(X (y))

The relations above and the equivalence of the minimum relative entropy estimator,

-MRE, and the maximum likelihood estimator, SML, are summarized in the following equa-

tion:

RE = arg m in f p() log d(z) do arg min [- log f (y; )] = ML (6.26)
-6E '9 P(9)E , r X(v) q(x; ) 4

6.2.3 The EM as an alternate minimization algorithm

Since the MRE criterion reduces to the ML criterion in the special case summarized

above, applying the alternate minimization algorithm of (6.12) and (6.13), will provide an

iterative algorithm for maximum likelihood. This iterative algorithm is the EM algorithm,

as shown below.

In each step of the alternate minimization algorithm, we have the current estimates,

p()(I) and q(')() = q(x; (")), of the p.d.f.'s. Applying first (6.12), we get

p("n+') =arg min Xi (p(z); q(X; ()))= f x/Y(_/; 8")) (6.27)
p(:r)E P(y)
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where this explicit solution is based, again, on lemma 6.1. Now applying the second step,

i.e. (6.13), we get

0{(" l) = arg min X (p("t)(x); q(x; 6)) = arg min fx/r (x/y; (
,

)) log f(z/; Y ))

(6.28)

Using the notations of (2.11), we may write

8+ ) = arg mi H 0(")(n)) - Q(; ( "n)) arg maxQ(; (n" )) (6.29)

Equation (6.29) is exactly an iteration of the EM algorithm'

6.2.4 Remark: how not to use the MRE criterion

The relative entropy is sometimes interpreted as a distance measure between two prob-

ability distributions: the Kullback-Leiber" measure. However, it lacks one of the desired

features of a distance measure, namely, it is not symmetric,

A (; q) W (q; p) (6.30)

Furthermore, following the common rationale of the MRE method, the relative entropy has

meaning only for comparing possible probability measures. p, gven an a-priori assignment,

q. Thus, we prefer to interpret the relative entropy as representing the conditional likelihood

of an assignment p, given the assignment q, as summarized in equation (6.9), i.e.

]/(p;q) = - log Prob{p/q) (6.31)

Having this interpretation, it makes sense to minimize the relative entropy with respect

to the first argument, p, only. Unfortunately, the alternative derivation of the EM algorithm

is based on minimizing the relative entropy with respect to both p and [. Thus, with
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respect to this derivation, we agree that for any given probability assignment, fx(z), for

the complete data X, the best assignment over the set X (y) is the conditional density,

fx;y(;/y)- However, minimizing then the relative entropy with respect to fx(z), in this

case. is not justified.

This remark does not detract from the mathematical elegance and the additional insight

that may be gained by the alternative derivation of the EM algorithm, but it does suggest

that justifying the maximum likelihood criterion via this relation is a poor use of the MRE

criterion.

6.3 Minimum Description Length interpretation of the MRE

criterion

Despite the criticism, the MRE criterion is used and justified in several statistical prob-

lems. It can estimate an entire probability distribution function. It is also the basis of the

alternative derivation of the EM algorithm. Thus an additional interpretation of the MRE

method is desirable.

After a bnrief review of the philosophical idea of the Minimum Description Length (MDL)

and the Minimum Information (MI) criteria, we will prove the main result of this chapter,

namely, that the MRE criterion is a special case of the MDL criterion. in a certain context.

On one hand, this result clarifies the appropriate context in which the MRE should be used.

On the other hand it motivates and supports the MDL criterion by showing that, in the

appropriate special case, it reduces to -mnother proven criterion.

The idea of complete and incomplete data specifications that is so important in the

development of the EM algorithm, also plays an important role in the definition and the
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proof of this relationship between the MDL and MRE criteria. For showing the relation

between the MDL and the MRE criteria, the MDL criterion is used in a mode where it

considers a set of possible observation. An immediate example for such situation is the

set X (y) of the possible complete data, given an observation y, which is used in the EM

algorithm context.

6.3.1 The Minimum Description Length idea

We have already mentioned, in Chapter 2, the Minimum Description Length criterion,

suggested by Rissanen 29,30,311 and the more general Minimum Information criterion, sug-

gested originally by Solomonoff 211 and recently by Hart 221. The philosophical foundation

of the MDL/MI methods is the claim that the most compact description of the observa-

tion provides the best explanation of the phenomena we observe. In other words, if we

have the best method to encode or compress the observation, we have actually estimated

the probability distribution that "explains" the data best. This philosophy is intuitively

reasonable and is consistent with universal philosophical principles, such as the Ockkam

Razor principle. We strongly believe in these "principles of parsimony", and, since these

principles can be made precise by the quantitative measures of information and complexity,

we strongly advocate their use.

Using these criteria, we may overcome some of the limitations of the ML method and

generate methods that can accept less restrictive modeling assumptions. For example, the

ML method fails, when the number of parameters is unknown, since the more parameters

we choose, the larger the likelihood can be. In this case, a specific application of the MDL

criterion tries to estimate the parameters together with their number by, (see also (2.73)
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and 311)

1
ih, = arg mini- log p(z; ) + -n log N (6.32)

n,t 1 2

where N is the length of the observation sequence.

In the MDL method, the abstract principle of shortest description is translated into

a mathematical criterion in the following way. The description (or code) length above

is influenced by two factors. If we knew the probability distribution, the "ideal" code

length '761, that is required to represent the specific observation, is the (self) information

of the observation, i.e. - log p(z). The second factor, tn log N, is the code length needed

to represent the model or the parameters, considering the precision required for encoding

continuous parameters.

To show that the ME and MRE methods are special cases of the MDL criterion, we have

to extend the MDL method somewhat. Suppose that the information given about the un-

derlying phenomena is not a single observation sequence, but rather a set of such sequences.

This type of information is available either by having several independent observation se-

quences or by having constraints, that define a possible set of observation sequences. The

MDL criterion for this type of information will suggest that we choose the probability dis-

tribution that minimizes the weighted combination of all code lengths, by some a-priori

weight q(x), where all members of this set of possible observation sequences are encoded

using the proposed distribution.

We can now adapt the MDL criterion to the MRE framework, in which the given

information about the underlying phenomena is in terms of constraints on the probability

distribution. We claim that if we try to represent all possible observation sequences, whose

"histogram" or sample frequencies satisfy those constraints, the minimum weighted code
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length is achieved by the MRE probability distribution.

6.3.2 Minimum Relative Entropy as Minimum Description Length

In the MRE framework, the given information is the knowledge of some averages. Now

recall that the strong law of large numbers implies,

E9g(x)I lim - j g(xi) 4 a-s, (6.33)
where , are i.i.d. observations, distributed as So this Rtype information is

where x, are i.i.d. observations, distributed as . So. this MRE-type information is

equivalent to the information that the observations lie in the set of all infinitely long se-

quences whose sample averages equals the given averages.

Considering the above argument, we will show that minimizing the relative entropy,

subject to some constraints on the probability distribution, is asymptotically equivalent to

minimizing the weighted combined code length needed to represent all the sequences, whose

"histogram" or sample frequencies satisfy the given constraints.

To clarify our argument, let us start with a simple example. Suppose we want to estimate

the probability of "1" (success) in a simple binary (Bernoulli) trial. We denote p("l")= 

and p("O") 1 - . Suppose we do not have any observations, so we only know that for

any N trials, that we will perform, we may observe any of the 2 N possible sequences of "l"s

and "O's.

Equipped with the Minimum Description Length philosophy, and applying a uniform

weight to all code lengths, we will choose 0 so that all 2 N sequences can be represented by

the shortest possible code. Now, for each sequence z we need about

- log p(x; 0) =- logik(1 - ) N - t ] (6.34)
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bits, where k in the number of "l"s in z. We will denote by X the set of all such sequences

and by L(X) the combined code length required to represent all members of the set. Now

for any k we have sequences with k 1"s, so that

N Nkk=O
L(X) = --log 9k(1 - )N - ' ]_

N NIN
log - (N k) log(l - ) (6.35)

Noting that

E1 j ( k = E (N - k) N2N- '

k=o k t=o k

We see that

L(X) = -a log - a log(1 - 0) (6.36)

which is minimized, as expected, by 8 = 1/2. Observe that this probability function is the

same as that given by the Maximum Entropy principle (or the MRE principle with uniform

prior) with no constraints, on the binary random variable.

Notice that here we have ignored the term 1/2 log N, required to represent the code

length for describing the single parameter , because it has no effect on the minimizing

value.

We are ready now to prove the general daim, stated as the following theorem.

Theorem 61 Let X be a random variable that takes its values over the finte set { 1, m}.
Let z = X jlz:S -X be a sample of N idependent trials of X. Let f,(z) = ki(z)/N be the
freqweacies of each outcome i this sample. The vector f(z) = f,(z),. ,f,(j)jT will be
called the khstogram of the sample. Let 7 be any fixed set of histograms. Let XZ be the set

X = = 1 -' - N f(Z) ( 1}.
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Let the weighted code length, with the weights q = ql , q,,], that results when the whole set
XN is encoded by a code book designed according to p =iPl, ,Pmj, be denoted L(XN,p, q)
where

L(XN,p,q) - q(lZ)-!og- Ip()i

Then the probability assignment p = iPl, ,p,i that minimizes L(XN, p, q) is,

ql km . N
T qm .1 !f_'fE; kikr ne~~ 'no t (6.37)

4-fE7 k'k'

Furthermore, as N - oo

i= im P-N argmin H (p; q) = arg min , log (6.38)
N--o~ p_ l qi

Proof. The code length required to represent a sample, x = Nzl .zn, in a code book

designed by p (within the term m/2 log N required to encode the probabilities p,) is,

L(x) -log p(x) -log pi ) -= k- ilog pi (6.39)

where k, is the number of occurrences of the ith outcome in z. The weighted code length is

given by

L(XN, p, q)- q - q - log p (6.40)

Now, there are ! N'! possible sequences having the same frequencies or the sanme

number of occurrences, k kl, - -, kT. Since the constraints are only on the frequencies

(or on k), we can write the weighted code length as,

______q)- q1 ik; :) logq 1 'p

(6.41)

We will denote

qr qd' · N"'! A(6.42)
fE l'
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The weighted code length is thus

L( XN, p, q) = - log pi (6,43)
1=1

which is minimized (using Jensen's inequality) by

N l (6.44)
A ew=, 61

Substituting (6.42) in (6.44) and recalling that ki/ ;l l k= fi, yields (6.37).

In general, we will get the MRE distribution only in the limit as N -- o0 as follows.

Following the derivation of (6.7) and (6.8), we get

k*! .. qV. N _zt;)+( (6.45)

where (f; q) = f log L is the relative entropy between the frequencies f, /N

and q,. Substituting (6.45) in (6.37) and taking the limit as N - oo yields

-j,= i N f ;) (6.46)
N-ao 7fEier C- -

Let us assume that the function /(f; q) has in a single global minima, at f. Now

as N - oo

lim C-Ni (Jq}-n(L,~ ·Il | Oif Jn(6.47)
N--oo - ; = if f f,

so, we can write (6.46)

vIE l-fr- N (f Nt(;)- ,,)
lim - -Nrnl- . = f1 (6.48)

N-i.e. i s the MREf; N-distribution. 

i.e. p is the MRE distributmim. 
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Note that in general, if A/ (; q) has several global minima, f- f then the result in

(6.46) will be

P - f
-1

However, since H(.; q) is convex, whenever the constraint set is convex, there is only a single

minimum.

We claim that the above theorem can be extended, following the same lines of proof,

to the case where the random variable takes its values over an infinite set. The relation

between the MDL and the MRE criteria is thus fully established.
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Chapter 7

Conclusions and further research

In this final chapter, we will summarize and discuss the results and the contributions of

the thesis and try to convey a general philosophy for solving signal processing problems that

may be established from this thesis. Before that, we will suggest further research directions.

A particularly interesting suggestion for further research, for which we have specific ideas, is

the application of the EM method to the the problem of signal reconstruction from partial

information.

7.1 Further research

Many research directions may be suggested to complete and extend the work presented

in this thesis. Interesting theoretical problems as well as interesting signal processing ap-

plications may be explored further. In this section, we will indicate a few of these research

projects. We will start by discussing an important subject, that has not been explored

enough in the thesis, namely, the analysis and the applications of the sequential and adap-

tive EM algorithms.
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We have developed specific ideas and mathematical formulations for solving problems

of signal reconstruction from partial information, in the EM context. These ideas should be

investigated further and should be applied to real reconstruction problems. We will present

these ideas and the further proposed research in the next section.

7.1.1 The sequential and adaptive algorithms

Considering the theory of the sequential EM algorithm, we suggest the following research

directions:

. Non asymptotic statistical analysis

We have considered only limit distribution and consistency. However, interesting

questions arise in the non-asymptotic case. A complete analysis of, say, the variance

of the estimator as the iteration proceeds is desirable.

*Rate of convergence and tracking

A topic that is close, but not identical, to the previous topic, is the convergence rate of

the sequential and adaptive algorithms. For the adaptive algorithms we are interested

in the tracking capabilities, which improve if the algorithm converge faster.

v Limit distribution for non i.i.d. case

This research topic will complete the results presented in Chapter 3.

. Other approximations

We have suggested, in Chapter 3, sequential EM algorithms, based on a specific

approximation of the batch EM algorithm. However, there may also be other possible

approximations that should be investigated.
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The sequential and adaptive algorithms developed in the thesis have not been applied

yet, in a serious way, to signal processing problems. As a first step, we suggest that these

algorithms be applied extensively to the problems that have been solved in Chapters 4 and 5

of the thesis, via the batch EM algorithm. However, other signal processing problems also

call for adaptive solutions.

We may want to start with a simpler example. Consider the problem of a stationary

signal in a stationary noise, where the suggested batch EM algorithm is the iterative Wiener

filter algorithm. Assume that, given the signal without the noise, the parameters may be

estimated sequentially, say, by the RLS algorithm. It will be interesting to try a recursive

algorithm that uses a Kalman filter (instead of a Wiener filter) to get the signal, and then

use this signal recursively, to estimate the parameters.

Other examples, that come to mind, are parameter estimation of dynamic systems, the

problem of tracking the trajectories of multiple targets using tracking radar, analysis of

sequences of images and so on.

7.1.2 Other research directions

Here, we will briefly present other research directions that come to mind, both at the

theoretical level and the signal processing application level. We will start with the theoret-

ical research directions:

* Global Optimization:

The EM algorithm can guarantee convergence only to a stationary point of the like-

lihood. One might investigate the combination of the EM algorithm with standard

methods, summarized in the book [771. Recently, a new technique, the simulated
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annealing 781, has become increasingly popular. The EM algorithm ideas may be

combined with this technique to achieve an algorithm for global optimization.

The EEM algorithm:

The idea of changing the complete data, presented in Chapter 2, should be investigated

further. The rules suggested for varying the complete data could be stated more

concisely and their properties should be analyzed. This research direction may be

combined with the previous one, since one of the motivations for varying the complete

data is to escape from unwanted stationary points.

· EFI algorithms for general estimation criteria:

We have presented in the thesis the EM method for a class of estimation criteria.

Further research may extend this class. The properties of this method for general

estimation criteria, should be further explored.

v Other iterative algorithms for M:

Recently, other iterative algorithms for ML estimation, given incomplete data, have

been suggested by statisticians, based on some ideas from the EM theory, e.g. [141.

These algorithms should be explored further; their sequential versions could be devel-

oped and applied to signal processing problems.

Applications

Many further signal processing applications of the EM method can be considered. We will

briefly present here some examples.

* Separating a narrow band signal from a wide band signal
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This problem occurs in many practical situations, such as the problem of enhancing

the periodic acoustical signal of an helicopter in a wide band noise of a jet plane. This

problem is analogous to the problem of filtering a stationary signal from a stationary

noise, solved using the iterative Wiener filter. However, in this problem, we cannot

model the narrow band signal as a stationary Gaussian signal. Modeling this problem

correctly, maybe with the EM algorithm in mind, and solving the resulting statistical

problem, is an interesting topic for further research.

. Separating two speakers: The Cocktail Party' problem:

This problem is analogous to the previous problem. However, we do not expect to

gain much by modeling the speech signal as a Gaussian stationary signal, since the

spectral distribution of both speakers is identical. We suggest that by modeling the

speech signals using their periodic nature, we may be able to distinguish the speakers

based on their different periodicities and phases. The resulting statistical problem

may be complicated. However, it might be solved using the EM method.

Joint estimation of pitch and spectral parameters of speech:

Usually the pitch and the LPC parameters of the speech signal are estimated indepen-

dently. Furthermore the LPC parameters are estimated by modeling the speech signal

as a stationary AR process, a model that is clearly not adequate for voiced speech.

We suggest using the pulse excitation model. We will choose the complete data to

be the pulse train, modeled as a stochastic point process, in addition to the observed

speech signal. An EM algorithm for estimating the pitch and LPC parameters might

be suggested, using this complete data.
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Following the guidelines presented in section 2.6 and these examples, many more signal

processing application could be suggested.

7.2 Signal reconstruction from partial information: Ideas

and proposed research

In this seztion, we will present specific ideas and the mathematical formulation for

solving problems of signal l econstruction from partial information, using statistical modeling

and t*he EM algorithm.

7.2.1 General discussion

The problem of signal reconstruction from partial information has been investigated

by many researchers, e.g. .79,80.81,821 to mention a few. Traditionally, a deterministic

formulation of this problem has been adoptc. where the given partial information provided

(non-linear) deterministic equations and constraints for the unknown signal samples. A

major research effort was allocated to answer te questions of existence and uniqueness

of a solution, and, as a result, statements such as Phase retrieval is impossible for one

dimensional signal however it is possible for a two dimensional signai". wer declared. Other

research efforts led to algorithms whih rform the reconstruction. task by fi_.ding soiutions

that satisfy the constraints and the equations, either directly, e.g. 831, or via iterative

,rocedures, e.g. 5,184!, 85;.

Thir deterministic approach assumes, at least implicitly. noiseless measurements. The

effects of the noise, which may result from measurement and computation errors, were

considered only by investigating the robustness of the algorithms designed for the noiseless
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case. It has been observed that some reconstruction problems, for which a solution exist,.

have shown poor noise immunity, and thus are probably ill-posed and practically unsolvable

in this deterministic framework. For example, the reconstruction of a two dimensional

signal from its Fourier transform magnitude is an open problem, despite the fact that a

unique solution to this problem exists. In general, one can calculate condition numbers

for deterministic reconstruction algorithms and predict his chances of solving a specific

reconstruction problem in a real situation.

We will suggest a statistical formulation of the reconstruction problem. In this for-

mulation, we model the noise, measurement or computation noise, naturally. The signal

reconstruction problem becomes a statistical estimation problem, for which well known per-

formance bounds, like the Cranmer-Rao bound, exist. These performance bounds play the

role of the condition numbers in the deterministic formulation. However, the statistical

performance bounds provide more !.mformation and insight.

The performance of a reconstruction problem can be improved by incorporating a-priori

information about the signal. An important advantage of the statistical formulation is that

a wide class of a-priori information may be easily incorporated. We note that in the deter-

ministic formulation. regularization methods were suggested in an attempt to improve the

performance. Some of the methods to regularize ill-posed deterministic problems are equiv-

alent to assigning simple a-priori probabilities to the signal in the stochastic formulation.

The statistical problems, in the proposed formulation, require maximizing the likeli-

hood, the a-posteriori probability or other statistical criterion depending on the a-priori

information. These problems are naturally solved using the EM method. Since the obser-

vations are partial and distorted, the complete data is the undistorted signals. For some ML
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problems, where no special a-priori information is incorporated, the resulting EM algorithm

is equivalent to standard iterative algorithms such as Gerchberg-Saxton algorithm 5j, and

thus, unfortunately, has a similar poor performance in ill-posed reconstruction problems.

However, we believe that open reconstruction problems may become well behaved by us-

ing statistical models that incorporate enough realistic information. The EM method will

suggest a practical solution to the resulting statistical problems.

7.2.2 Statistical formulation of signal reconstruction problems

The first element in the suggested statistical formulation, is a definition of the quantities

that should be estimated and inferred. These quantities may be the signal samples, the

samples of some underlying "hidden" process or some unknown parameters. We will denote

these quantities by the vector s.

The next element in the suggested framework is the definition of a stochastic process,

denoted x, that depends on the desired quantities in a simple way, i.e.

z= X (s) (7.1)

where 7 is a stochastic function, which defines a (simple) conditional probability, fXs(x/s).

If x is observed, s may be estimated easily. We admit that the statistical formulation is

defined having the EM idea in mind; this stochastic process will be used as the complete

data or as part of the complete data in the suggested EM algorithm.

Another element is the measurement procedure. In defining this element, we will model

the partial information aspect and the measurement noise aspect of the real reconstruction

problem. Denote the observation by y. We may write,

= H(z) + v (7.2)
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where H(-) is a non-invertible transformation representing the fact that only partial infor-

mation is available. The vector. v, represents the measurements errors. With a probabilistic

description of v, we achieve a stochastic description of the observations in terms of the de-

sired quantities, via the conditional probability, y!(y/s).

Using the stochastic description of the observations and an appropriate statistical cri-

terion, determining the desired quantities reduces to solving a mathematical optimization

problem. If this problem is ill-posed, then additional information or assumptions and maybe

a different statistical criterion should be considered. In the statistical framework, the a-

priori knowledge about the desired quantities can be easily incorporated, in a quantitative

manner. The a-priori knowledge will also define the statistical criterion which will be used.

This element of the statistical formulation is important, since, by incorporating additional

information, it is possible to solve real reconstruction problems, which are ill-posed other-

wise.

We will now present three examples of different statistical models, that follow the de-

scriptions above. All three models may be used for solving reconstruction problems. In the

first example, the desired quantities, s, are the samples of the signal or the pixels of the

image to be reconstructed. Assuming a simple stochastic model, x is distributed normally

with mean F - s and variance 2 I, where F is an invertible linear transformation, say the

Fourier transform. Thus, we may write

z= Fs + n (7.3)

where n is a discrete white noise signal. Suppose, for example, that we want to reconstruct

the signal from the magnitude of its Fourier transform. The measurements in this case will
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be modeled as,

Yii =- ] (7.4)

where r, denotes the ;th component of a vector.

The second modeling example comes from Radioactive and Positron Emission Tomogra-

phy medical imaging problems. At each point i in (the discrete) space, there is a radiating

Peisson source, with parameter A,. The desired quantities in this model, denoted A, will be

these parameters. With a perfect imaging system, we may observe the vector , where its

i th component is the number of photons or particles emitted by the source in the ith point,

i.e. we may write,

f (X/ A) ]-I e A, (7.5)
Xi!

Our imaging system is not perfect, however. In tomography, for example, we measure noisy

projections of z, which may be modeled as,

y =-- H (7.6)

where H, the projection operator, is a non-invertible linear transformation. We note that, in

this case, the relation between complete and incomplete data is linear. However, we cannot

use the result of the Linear Gaussian case here, since z has Poisson distribution. Statistical

models similar to the model above were suggested in medical tomography context in 86],

'35 and elsewhere.

The third example is as follows. Modeling images using Markov Random Fields (MRF)

has recently become increasingly popular. Using interesting simulation algorithms (e.g.

871,88i,89i),,90`), realizations of MRF with various parameters were generated. These

samples resembled realistic images surprisingly well. We strongly suggest reading {88 i to

see how realistic images with different characteristics can emerge by the innovative choice
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of the parameters of the MRF. Consider now the following statistical framework of the

signal reconstruction problem. Let the desired quantities be the parameters of the MRF.

denoted 0. The process will be the image, i.e. it depends stochastically on , via the

Gibbs distribution, see e.g. 89.

where Z is the normalization factor and is called the function, where the(77)

where Z is the normalization factor. and U is called the "energy function", where the

neighborhood structure and the characteristic of the image is defined. The observations, y,

will be a noisy and incomplete function of z, as in (7.2). The EM algorithm suggested in

this formulation is directed at finding . However, as a possible by-product in the E step,

an estimate of z, the image itself, will be available.

7.2.3 Solution using the EM method

Solving the mathematical problems, generated by the statistical formulation, directly

is generally complicated. However, since the statistical framework was suggested with the

EM ideas in mind. EM iterative algorithms can be naturally applied. The complete data

will be the set of signals {Z. y}, i.e. it will include the undistorted signal z in addition to the

observations y. For the cases where the measurement noise v does not exist, the complete

data will be the undistorted signal _.

Itn the E step of the suggested algorithms, the conditional expectation of the sufficient

statistics of x is calculated, given y and the current value of s. For example, in the first

statistical formulation above, if z is Gaussian with mean s, the sufficient statistics is linear;

thus. this conditional expectation may be easily derived. For problems such as reconstruc-

tion from Short Time Fourier Transforms, band limited extrapolation, reconstruction from

183

�_i_�l� __



projection and others, the observations, y, are related to z by a non-invertible linear trans-

formation, so we may use the results developed for the Linear G ussian case.

The MI step will be simple, since the process depends on the unknown quantities in

a direct way. For example, in the second statistical formulation of (7.5) and (7.6). we may

estimate the desired quantities A,, having the complete data {x:}, as

A, -arg max -A, - , log A,i = i (7.8)

To fix ideas, we will present explicitly the EM iterative algorithm for maximum likelihood

signal reconstruction from the magnitude of its Fourier transform, in the first statistical

framework of (7.3) and (.4). We note that a similar algorithm may be found in 81', pp 344-

346.

We assume that the signal is real and has a given finite support. This a-priori knowledge

is incorporated in the form of deterministic constraints. We will denote the signal to e

reconstructed by s(n) and its Fourier transform by S(,). The complete data is given in the

frequency domain by,

X() = S(w)- N(w) (7.9)

where N(w) is complex Gaussian random variable with variance a2 . The observations are

Y(w) =X(-):

The E and M steps of the EM algorithm in the kh iteration are given by.,

The E step: Given s)(n) or S(*)(w) = S()() e -* ' (w) find,

.r(*>4) - E Y(Y)I '( )W) y (,) S (k))

a (kj ,, efT (Y.)Il"'(. ')/ac2)cos dO

Y(W)e J ~' ,) (.10)
"1(Y.)S(k)()lio2)

184



where Ic') is the zero order modified Bessel function and I(') is the first order

modified Bessel function.

* The M step: Let t(k)(n) be the inverse Fourier tansform of X(k)(w), the updated

estimates s(k+l)(n) are,

Reix(k)(n)i if n is in the signal support
s k1(n) (7.11)

0 otherwise

We note that since

lim () = 1

as the variance a tends to zero, the E step becomes

X(t)(w)-=Y( )e ljie ,, (7.12)

i.e. the complete data is estimated by combining the given magnitude with the current

estimate of the phase. This algorithm was suggested in 791 and 82'.

From this discussion, we gain a new interpretation of previously suggested algorithms.

However, we also conclude that ret nstructing the signal from the magnitude of its Fourier

transform cannot be solved by maximizing the likelihood in this framework, since this leads

us back to previous algorithms, which perform poorly.

As we repeatedly mentioned, for ill-posed problems more information should be incorpo-

rated. In the statistical framework, the information can be easily incorporated. Depending

on this information, the adequate statistical criterion will be used. The resulting statistical

problem for, say the reconstruction from magnitude problem, will be similar to (7.10) and

(7.11), where the E step will be the same; however, in the M step, a different criterion will

be invoked.
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7.3 Summary and discussion

The thesis may be summarized as follows. We have solved signal processing problems

using a class of iterative estimation algorithms. This class of algorithm is based on the

EM method suggested in 2i. We. however, have extended this class and developed several

general theoretical results. We will discuss the contributions made in this thesis in these

two levels, the signal processing applications level and the theoretical contributions level.

7.3.1 The signal processing applications

When we discuss the application of the EM algorithm to a real world problem, we

first have to model the problem statistically and then apply the EM algorithm to solve

the resulting statistical problem. However, the EM algorithm is not uniquely defined it

depends on the choice of complete data, and, as we have seen, an unfortunate choice yields

a completely useless algorithm. The choice of complete data or equivalently the choice of a

specific EM algorithm requires creativity, in order to get a practically useful algorithm.

As a general philosophy, we will have the EM algorithm in mind, while suggesting

a statistical model to the real signal processing problem. Using this philosophy, we will

identify what the desired measurements are, model them statistically, and find their relation

to the given observations. The statistical problem, generated this way, can then be solved

using the EM algorithm, the desired measurements will be chosen, naturally, to be the

complete data.

The main contribution of this thesis is the explicit solution of the important signal

processing problems presented in Chapters 4 and 5. As we recall, these real problems are:

* Parameter estimation of superimposed signals. Applications of this model, that have
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been addressed, are.

- Multiple source location (or bearing) estimation

- Multipath or multi-echo time delay estimation

* Noise cancellation in a multiple microphone environment. T application considered

is a speech enhancement problem.

In both cases, we have suggested solutions that improve upon the existing state of the

art. In the superimposed signals application, the ML approach has been formulated before.

However, since its solution is complicated, others have avoided it and suggested suboptimal

or ad-hoc solutions. We have tackled this ML problem and succeeded in presenting a practi-

cal solution to it. In the noise canceling problem, our contributions include the formulation

of the statistical ML problem to model different physical situations. Using the EM method,

we were able to suggest practical solutions to the underlying real problem.

We may consider Chapters 4 and as a demonstration of our suggested philosophy for

solving signal processing problems. In these chapters. we have demonstrated this philosophy

through all stages of the solution, from modeling, through the suggestion of an algorithm, to

the numerical solution. Thus, these chapters will serve as a reference for further applications.

7.3.2 The theoretical contributions

The basic EM method has been suggested in 2!. However, in the process of considering

the applications mentioned above, we have extended and modified the original EM algo-

rithm. We have also derived explicit forms for some special cases. These extensions and

derivations made the method more suitable for signal processing applications. We will now

present and discuss these contributions.
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* The Linear Gaussian case

We derived closed form analytical expressions for the EM algorithm for the case

where the complete and incomplete data are jointly Gaussian, related by a linear

transformation. We note that, in general, a closed form analytical expression cannot

be obtained and that the EM algorithm may require complex operations like multiple

integration. In retrospect. this derivation appears to be d significant contribution,

since it covers a wide range of applications

EM algorithms for general estimations criteria

Originally, the EM algorithm was developed and suggested as a technique for maximiz-

ing the likelihood. However, other criteria are more appropriate for some problems.

We have developed EM algorithms for optimizing other criteria, specifically the Mini-

mum Information criterion. We note that, in Chapters 2 and 6 of the thesis, a general

discussion on the Minimum Information criterion. its properties and its relations to

other statistical methods, is presented.

* Extended EM: varying the complete data in each iteration

As mentioned above, the choice of the complete data may critically affect the complex-

ity and the rate of convergence of the algorithm. It may also affect the convergence

point, leading to a different stationary point for different choices of complete data. We

have suggested. in the thesis, an interesting alternative to a fixed choice of complete

data: we suggest varying the definition of the complete data in each step of the algo-

rithm. This way, we may get simpler schemes, we may get algorithms that converge

faster or algorithms that may escape from unwanted stationary points.

188



* Sequential and Adaptive versions

Sequential and adaptive versions of the EM algorithm have been developed in Chap-

ter 3 and some of their properties have been derived. We have identified sequential

algorithms, that are based on problem structures and we have used tlie stochastic

approximation idea to derive sequential EM algorithms in the general case. We have

applied these sequential algorithms in few exampies. However, important topics for

further research are the applications of these sequential algorithms to a variety of

signal processing problems and a further theoretical analysis of these algorithms.

As a result of these contributions, a general and flexible class of iterative estimation

algorithms has been established. Beyond the theoretical contributions and the specific ap-

plications, we believe that this thesis suggests a way of thinking and a philosophy, which may

be used in a large variety of seemingly complex statistical inference and signal processing

problems.
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Appendix A

Convergence theorems of the EM

algorithm

The convergence theorem of the EM algorithm are given in this Appendix. The theorems

will be presented in parallel to the discussion of Chapter 2, i.e. we will start with the

convergence properties of the likelihood sequence, then the convergence properties of the

parameter estimates sequence and we will end by discussing the rate of convergence.

A.1 Convergence of the likelihood sequence

We start by quoting the Global Convergence Theorem from 171 and 181. This theorem

is frequently used to prove convergence of iterative algorithms in numerical analysis. Recall

that a point to set map M(x), where z E X, is called closed at z if

zX -- z, x X and k* - yt y M(zk) y E M(2)

For a point to point map, continuity implies closedness.
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Theorem A.1 (Global ConvergentL Theorem) Let the sequence {zt} be generated by
zk --' zXl - M(zk), where M is a point to set ,-irnp. Let a solution set r be given, and
suppose that:

(i) all points xk are contained in a compac: set C

(ii) M is closed over the complement of r

(iii) there is a continuous function L such that

(a) if Ax. r, L(y) > L(x) y e M(X)

(b) if x F r, L(y) > L(z) y e M(Z)

Then, all the limit points of {zx} are in the solution set r and L(zk) converges mono-
tonically to L(z) for some z e r

The proof may be found in i171 page 91 and 18] page 187.

We are irnterestcd in app!ying the theorem above to the case where L(.) is the log-

likelihood function defined over 8. the solution set is either the set of local maxima 4

or the set of stationary points S, and M(-) is the point to set map implied by the EM

(GEM) algorithm. In this case, condition (i) is met by the assumption that 8O is compact.

condition (iii)(b) is true by theorem 2.1, see eq. (2.22); thus, we have the following corollary

of theorem A. 1:

Corollary A.1 Let { ( ' )} be a GEM sequence generated by

?(") -, (n') , M( ( "

and suppose that

(i) M is a closed point to set map over the complement of S ()

(ii) L(-) is continuots and L(O("'l)) > L(O(n)) for all ('n) S (M)

Then all limit points of {("})) are stationary points (local maxima) of L, and L (" )

converges monotonically to L' = L(O') for some 9' e S (.).

For the EM algorithm, where M(#( n )) is the set of maximizers of Q(g; 6(n)), the following

continuity condition

Q( 1;Q.) is continuous in both 98 and 02 (A.I)
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implies the closedness of iM, i.e. it implies condition (i) in the corollary above. Now, if

we are interested only in convergence to a stationary point, where the solution set is S,

then the continuity condition also implies condition (ii) above; thus we have the following

theorem:

Theorem A.2 Sppose Q satisfy the continuity condition (A.i). Then all the limit points
of any instance {( i n)} of an EM algorithm are stationary points of L and L(O(n) converges
mnonotonically to L' = L(O') for some stationary point 0'.

Proof: Suppose that for some 0(n) S condition (ii) above is not met, i.e.

L((")) (A.2)

where 8( :'l) E M(O()), i.e. it is a global maximizer of Q(.; e(n"). Since 6
( n) is the global

maximizer of H(-: )) (by Jensen's inequality, eq. (2.14)). the equality in (A.2) implies

Q(nl-I; p(n)) Q(qfn);.fn)) 9n )(.qf)and 0HOnn+l H) (A. )

or in particular. that i") is also a global maximizer of Q(-: N). Now

L (8i n ) =- Q(0n) (n _ H(( n in_ - h(0(n) (A.4)

and 0") is a global maximizer of q(,) and h(-), thus, B( "' must be a stationary point of L(.)

The convergence to the set of local maxima, M, is not guaranteed by conditions above.

since we may find 0('" outside M4, but inside S. or whidl inaeed condition (ii) of corollary

A. 1 is not met. The following theoreml imposes an additional condition, and thus provides

sufficient conditions for convergence to the set of local maxima M.
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Theorem A.3 Suppose that in addition to the continuity condition (A.1), Q satisfies

sup Q(W; 6) > Q(9; ) Oe c (S - M (A. )

where ( - M) is the difference set IB O S'_ M}
Then all the limit points of any instance {9in)} of an EM algorithm are local maxima of

L and L(BO')) converges monotonically to L' = L(O') for some local maximum '.

Proof: Condition (A.5) excludes the possibility that condition (ii) of corollary A.1 is

not met by some ( n) _ s - . Theorem A.2 proved that this condition is met for all

(in) S. and thus it is met for all (n) e .a. Thus, using corollary A.1, this theorem follows

immediately. 

A.2 Convergence of the parameter estimate sequence

The convergence of the likelihood sequence does not imply the convergence of the pa-

rameter estimate sequence. However, if the ikeihood sequence converges to a solution

set that contains a single point, te convergence of the parameter sequence is guaranteed

(trivially), as stated in the foilowing theorem:

Tbeorem A.4 Let {8(n)} be an instance of a GEM algorithm, wtrth a corresponding likeli-
hood sequence {L ("))} that converges to some L and satisfy conditions (i), (ii) of corollary
A.I. Let the solution set (S(L') or .M(L-) ) be the singleton {0-). Then, 8' ) - 0'.

An important special case of this theorem is when the likelihood function is unimodal

in 9. This case is stated in the following corollary of the theorem above:

Corollary A.2 Suppose that L(O) is unimodal in 9 with O' being the only stationary point
and that Q(;8) is continuous in both ' and . Then any EM sequence {6(n ) } converges
to the unique maximizer _' of L(8).
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The requirement that the solution space is singleton may be relaxed, if the sequence of

estirnates is such that it'( "' -_ d(): - 0 as n - oc. In this case, {0( }) ) will converge, if

the soiution set s discrete. as shown in the following theorem. We note that a discrete set

is a set whose only connected components are sigletons.

Theorem A.5 Let {(n)} be an instance of a GEM algorithm, with a corresponding likeli-
hood sequence {L n )) that converges to some L' and satisfies conditions (i), (ii) of corollary
A.1 If ,ij ( 't l) - ( ' )i -- Cr as n - c, then all the limit points of {(n)} are in a connected
and compact subset of S(L') (or M(L')). In particular, if S(L-) (or M(L')) is discrete,
then G¢'} converges to some O' in S(L) (or M(L)).

Proof: The sequence {v',)) is bounded (by our assumptions). The set 3f limit points

of a bounded sequence with ('' +l ) - ( i n) - 0 as n - co is connected and compact (see,

e.g. theorem 28.1 of 91). Since all the limit points of {0(n ) ) are in S(L') (or M(L')), the

theorem follows. 

A.3 Rate of convergence

We start by presenting identities for the derivatives of the tog-likelihood function, i.e.

DL(O) and DL(O). which are needed for calculating the expression for the rate of con-

vergence of the EM algorithm. To prove those identities, the following well known results

concerning the score function are needed.

Let be a sample space and f(w; ) be a p.d.f. defined over this space, parameterized

by . Let the score function be defined as,

a log f (; )

Then,

(.(w; ¢)d,. = o (A.6)
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Var,{S(w;¢)} = / [a logf(w; 0)} {f o ]) 1( "' ¢)&"d = - E0,

Suppose now that the sample space is X(y) and that fx,y(z/ly; ) is defined over it.

Equations (A.6) and (A.7) become

(A.8)

Var a log fxl y(/y; ) iy , = DH(;O) = - 20 H(; q)

Differentiating both sides of (2.12) and using (A.8) and (A.9) above. we get the following

identities

DL(G) = D'0 Q(0; ) = S(y; O) (A.10)

D2ii() _ D 2 Q(_;q) - D20H(O;9) = D2 0 Q(;G ) + D1 1H( &0)

ODLQ(9;9) = D" H(0; )

(A.1)

(A. 12)

The rate of convergence of a class of GEM algorithms is now given in the following

theorem.

Theorem A.6 Let {0('")} be a sequence o a GEM algorithm such that

(i) o(rt) - o

(ii) DI'Q( "(n ):n" ) )= 0

(iii) D2 0Q(("*'); 9(") is negative definite with eigenvalues bounded away from zero

i.e. 9('nt) is a loali maximizer of Q(; ("}n) Then, DL( ') = 0, D2 Q(;_ ' ) is negative
definite, and

DM(7) = DH(9- .') [D2Q(:-; O)j - (A. 13)

Proof: Differentiating (2.12) we get

DL(_("' 1)) = DO1 Q(('l); i(")) DH(O(n-"l); (")) (A. 14)
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and

92 log f(w; O)
O2

(A.7)

(A.9)

E I' lgfx~yx iy;0 / yB = D OH (6q) = 



where the first term of (A.14) is zero by the assumptions, the second term is zero in the

limit as n - oc by (A.8) and DL(O') = O. Similarly, D20Q(8'; O') is negative definite. since

it is the limit of D20 Q(O ( ' tl) 0(n )) whose eigenvalues are bounded away from zero.

The last part of the theorem, i.e. showing (A.13), was proved in Chapter 2 using the

identities above, see (2.42)-(2.44).
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Appendix B

Consistency of sequential EM

algorithms

We will start by presenting the following theorem, which is also used for showing con-

sistency of the ML estimator:

Theorem B.I Let yl, -, yn, be the output of a stationary Markov source _ith a finite
tmremory p, e.

fYriY,' , YI(YYn-ii' Il) - f/Y,, -Y.-,(YnYn Yn_)

Let L,(q) be the log-likelihood fnction rtvent l, -,yn, as in (3.3). The sequence of func-

tions 1,() Ln(g) converges uniformly in probability 1 to a limit 1(_) here under regular-
ity conditions, the global maximum of l(q) and the unique solution to the equation Dl() = 0
is the true parameter value true.

Proof: The likelihood L(O) may be written as,

L,.() = logfy,, yr(Y,,-,y;_ ) (B.1)

: logfy, , (/y /y, *.-,y 1 ;) - -gfy,/_, -, Y(/Yn-I/yn-,2' -
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For n >> p,

l(O@) L!(f)y=-, -,Y.-*(1Y,/- YY- (B.2)

Using the strong law of large numbers, we get

lim l,(O) = E logflyi,_, . y ,_,(/L_1 '-,,_p) 0) (B.3)

in probability 1.

The function 1(O) may be written explicitly as,

1(-) = log fry.,_. .Y_,(Y y_, - Of-,yp;)ly,, -,_(y, . _p;8r)dy-dy

(B.4)

or,

() = fd d [fy -YpY y, Y. PI ( .5)

t10 _ ,f-,- O Y,_ ,-- Y,_ ( Yi_ Y ;stuc)dY |

Invoking Jensen's inequality on the ir.ner integral, we conclude that

t(2) < (~,,,/ (B 6)

where equality is achieved if and only if,

fy/y_,. . Yr,(i,' -_p; ) = fYly_, -1(Y. ,_l'Y_ ip; yt,,,) a.e (B.7)

Under the identifiability condition, the equality in (8.7) is achieved only if 0 = t,,,,

i.e. 0r,,,e is the unique global maximum of 1(O). Using the differentiability condition. and

the convexity of l(8) we also conclude that O,ue is the unique solution to the equation

D() = 0. 
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This theorem may be extended to rnore general ergodic sources, whose memory is fading

fast enough. The more general conditions may be found in [48], appendix A.

Using this theorem, we may now state the main consistency result:

Theorem B.2 Let the observations yl,. 'y-' be generated by an ergqdic source for

which theorem B.1 holds. Let {{ (
ni

) } be an instance of a sequential EM algorithm sch that
for any realization of the observations,

(i) the sequence of estimates (0(")) converges to a limit 

(ii) lim,, , D°aQ,,l( ( l); n) )= -

Then, in probability , as n- oo, _(n )-ruc

Proof: From the assumption (i), and using the identity (A.8), we may write,

lim DH,. ((" I); (n)) lim D'OH,+l(9';0 ) = 0 (B.8)
n-0o n--c,

From theorem (B.1) the sequence 1,(0) = !Ln,() converges uniformly in probability 1

to some l(0). The sequence of derivatives D ,l((n'' l )) may be written as,

Dn D'OQ,nl((nl); 0(n,)) _ - DlOH,( 8,t'0)(n)) (B.9)

Thus, from the assumption (ii), and from (B.8) above.

lirn D,_lI( (" t )) = 0 (B. 10)

Since I,.l(0) converges uniformly to (6), and using (B.10) we conclude that

lim D(( n -' )) 0 (B.11)

From theorem B.1 and from (B.11). our desired result follows. i.e.

im i0(") = btr,

in probability 1.
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