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Abstract

The problem of measuring a probability concerning a random time function is shown

to reduce generally to that of measuring a time average. A study is made of the error

due to averaging over only a finite interval of time. A description is given of apparatus,

which, with pulse techniques, can measure certain probabilities concerning the instan-

taneous amplitude and the zero-crossing periods of any time function whose statistics

lie in the range of the voice wave statistics.

Measurements of the first probability distribution density of the speech-wave instan-

taneous amplitude for several speakers indicate that this distribution varies exponentially

for large values of amplitude. Small but definite increases in conditional probability

were noted for delay times of the order of magnitude of the pitch period. These measure-

ments were of the stationary, or "long time", speech statistics. Most of the measure-

ments were made on substantially undistorted speech; some were made to show

qualitatively the effect of reflections.
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A STUDY OF SPEECH PROBABILITY DISTRIBUTIONS

Introduction

Statistics and communication

In recent years, the methods and concepts of mathematical statistics have been

applied to the study of the basic principles of communication. This method of attack

is due primarily to Wiener (1, 2) and Shannon (3, 4). An application of statistical

methods to the study of communication systems enables the improvement of such systems

through bandwidth reduction, decreased average power requirements, better noise

suppression, and similar factors. In general, for a full achievement of the possible

improvements, systems radically different from present systems will have to be

developed, incorporating such features as message storage and coding. Such drastic

steps need not be taken in order to achieve some improvements in existing systems.

For example, under certain conditions, the average power requirements of present

day pulse code modulation systems may be reduced by basing the choice of the quanti-

zation levels and pulse codes on certain of the probability distributions of the ensemble

of messages to be transmitted.

The statistical theory of communication assumes that the messages to be transmitted

are stochastic (5, 6) phenomena; that is, all messages are random functions of time;

and all a priori knowledge about any particular message is to be found only in the

statistical properties of the set of messages from which that particular message was

drawn. Thus, one of the basic postulates of this theory is that neither the designer

of a new communication system, nor the receiver in any system, can have an a priori

knowledge of the exact structure of any message to be transmitted.

The mere knowledge that all a priori message information is contained in the

statistical properties of the message ensemble enables an extensive theoretical study

to be made of the general properties of communication systems. As soon as the problem

of the design of a specific system arises, a detailed knowledge must be obtained of the

statistical properties of the ensemble of messages to be transmitted over that system.

At the present time, there are two types of statistical data that are of particular

interest: the correlation functions (2), and the probability distributions (6, 7). The

probability distributions are more inclusive than the correlation functions in the sense

that the correlation functions may be derived analytically from the probability distri-

butions, but not vice versa (2). In many practical cases, it might be a more economical

use of time to determine the correlation functions experimentally and directly than it

would be to determine the probability distributions experimentally and then from this

data to derive the correlation functions analytically. Thus, on an experimental basis

at least, it is worthwhile to make experimental studies of both the correlation functions

and the probability distributions. The problem of experimentally obtaining the correlation

functions of various random phenomena has been studied by Cheatham (8), Singleton (24),
I'
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and others. One of the purposes of this thesis is to study the problem of the experimental

determination of certain probability distributions.

Purpose of this investigation

There were two main objectives for this study: the design and construction of

apparatus which could measure certain probability distributions of physical random

processes; and the application of this apparatus to a preliminary study of some parti-

cular random process appearing as a message function in some communication system.

Although it is possible to construct theoretical models of a large number of physical

random processes and from these models to obtain statistical characteristics through

analytic methods, there are many other physical random processes that are not amenable

to such an attack. For these latter phenomena it is necessary to determine the

statistics experimentally. Also, in the case of phenomena that are amenable to an

analytic study, a complete solution requires an experimental verification of the analytic

results in order to determine the validity of the model. Thus there is a definite need

for apparatus capable of measuring statistics.

The design of apparatus for the experimental determination of statistics may generally

proceed in one of two directions. The apparatus might be designed so that its capabilities

fit the characteristics of the phenomenon to be studied, or the apparatus might be designed

so that its capabilities are the most expansive obtainable with the then available equip-

ment techniques. The former method has the advantage of greater equipment economy;

the second has the advantage of greater equipment utility. It was felt that, for the

purposes of this investigation, it would be sufficient to design apparatus to fit the

characteristics of some specific random process.

In view of the importance of voice communication systems, it was decided to study

certain of the probability distributions of the voice. Unfortunately, the physiological

and psychological processes involved in the transmission of an idea from the brain of

one person to the brain of another person via the voice are by no means completely

known to man at the present time. It is thus impossible to state definitely which are

the most important voice characteristics but some judicious conjectures may be made.

Under certain conditions it is desirable to transmit the instantaneous amplitude of

the voice wave substantially undistorted. For such systems it would be important to

study the probability distributions of the instantaneous amplitude.

Studies by Licklider and others (9, 10) have shown that severe amplitude limiting

of the voice wave, so as to produce a constant-amplitude rectangular wave whose periods

are the zero-crossing periods of the voice wave, produces a comparatively small

reduction in word intelligibility. Thus it is of interest to study some of the probability

distributions concerning the zero-crossing periods of the voice wave.

It was decided to confine this investigation to a study of the first and second proba-

bility distributions and to study only the "long time", or time stationary, statistics of

the voice, rather than the "short time", or time variable, statistics. The first
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probability distribution of a random process provides a measure of the probability that

the process has a given value, independent of the time of measurement. The second

probability distribution gives a measure of the probability of occurence of two specified

values separated in time by a specified interval, and thus provides a measure of the

statistical correlation between two points separated in time.

Certain questions now arise. How long a sample of the voice wave must we observe

in order to be reasonably certain of obtaining stationary statistics? Which speech

characteristics (i. e. vowels, consonants, etc. ) produce significant effects in the proba-

bility distributions? Is there an appreciable difference between the probability distri-

butions of different speakers? Is there a significant effect on these types of measurement

due to the speaker's environment? One of the purposes of this investigation thus becomes

the obtaining of at least partial answers to these and similar questions.

Previous work

Studies of the first probability distribution of the voice wave instantaneous amplitude

have been made by various investigators. Among them are Sivian (1 1), Braunmiihl (12),

Thierbach and Jacoby (13), Dunn and White (14), Jacobsen (15), and Sacerdote (16). In

general, their results seem to be subject to considerable doubt in the region of small

amplitudes. This point will be discussed in sec. I.

To the writer's knowledge, there has been no prior publication concerning the second

probability distributions of the voice wave instantaneous amplitude.

The average density of zero-crossings has been studied by the Northeastern

University Visual Message Presentation group (17) but, as far as the writer knows,

there has been no prior publication concerning either the first or second probability

distributions of the voice wave zero-crossing periods.

I AMPLITUDE DISTRIBUTIONS

A. The First Probability Distribution Density - Theory

We will present the theoretical background for the measurement of the first proba-

bility distribution density of the voice wave instantaneous amplitude. In particular, we

will define the necessary statistical quantities, develop a method of measurement, and

make a statistical study of the measurement errors. The results that will be presented

are implicitly contained in the voluminous literature on mathematical statistics. However,

because of some misconceptions that have arisen in the past in similar studies, it was

felt worthwhile to develop explicitly those results that apply to our problem.

Postulates and definitions

For the sake of concreteness, all of the following discussions will relate to the study

of a specific random process: the sound wave associated with the human voice. However,

it should be kept in mind that the basic concepts and methods are equally applicable to
S.
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the study of other random physical processes; only equipment details need be changed.
Our first postulate is that the voice wave is the result of a random, or stochastic

(i. e. chance) process. By this we mean in essence, that no matter how much we know
of the past history of a voice wave we cannot predict exactly what its future will be.

Our second postulate is that we are dealing with a statistically stationary process;
that is, we assume that the statistical parameters concerning the process of voice wave
formation do not change with time. Whether we consider the process under study to
belong to a single person or to a large segment of the human race, a doubt arises as to
the logical justification of this stationarity postulate. For example, the person ages
and the race evolves. However, we can presumably confine our studies to some interval
of time during which sensibly stationary characteristics might be obtained. Even though
the logical foundation of this postulate is somewhat shaky, it is a desirable postulate in
that its use considerably simplifies the mathematics involved in our study. It is well
to mention that the same logical doubts apply to the postulation of the stationary char-
acter of almost any physical process.

With the acceptance of the above postulates, it is possible to define time invariant
statistics for the voice wave. One such statistic is the "first" probability P(x 1 < x(tl) < x2),
that the random variable, x(t), the instantaneous amplitude of the voice wave, lies in the
interval (X1 , x2 ) at the time t. The adjective "first" expresses the fact that we are con-
cerned with a single instant of time, t. Later we will define "second" probabilities
concerning the values of x(t) at two distinct times, t and t 2. Since we are dealing with
stationary random processes, such a probability is, by definition, independent of the
value of t; hence

P(x 1l x(t1 ) < x2 ) = P(xl x(t) < x2 ) (1)

where t may be any arbitrarily chosen instant of time.

It will frequently be desirable to define a "derived random variable!', (t), related
to the random variable x(t) and an associated interval (x1 , x2 ) by the relations

{1 if xl < x(t) < x2

otherwise

Such a pair of random variables is shown by Fig. 1. Thus we have that

P( = 1= 1) = P(xl x < x 2 ) . (3)

If we take the upper limit of the interval (x 1 , x2 ) to be

X2 = x1 + A X (4)

we may then define the "first probability distribution density", Wl(x), by the equation

W (Xl)- lim P(xl 1 <x< 1 + Axl)
AxI 1 0 Ax 1 (5)

a)
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X2
XI

or by the equation

X2

P(xI < x < x 2) 
= Wl(x) dx . (6)

X1

As P(xl < x < xl + Ax1) may not always

approach zero when xl approaches zero

(for example if x(t) assumes only discrete

values of x) we must include the possibility

that the first probability distribution density,

W 1 (x), might consist in part, or entirely,

of impulse functions (i.e. Dirac delta
fi1n 'inn q 

Fig. I The random variable, x(t), and Method of measurement
its derived random variable, (t).

The starting point for the measurement

of the first probability distribution density, Wl(x), lies in the definition of Wl(x) as

given by Eq. 5. If Wl(x) is a reasonably smoothly varying function of x, we may choose

Ax1 small enough so that

P(xl< x < X1 + AXl)
W 1 (x1 ) (A7)

to a high degree of approximation. Thus our problem becomes that of measuring the

probability of occurrence of the event (x1 < x < x1 + aX1 ).

Let us now define a derived random variable, (t), by the relations

( 1 if xl < x(t) < xl +ax 1 (8)

O otherwise

The statistical average, , of this new derived random variable is given by the equation

(Cramer, p. 170, ref. 7)

= S Wl( ) d . (9)
00

Now may assume only the discrete values zero and one; hence the distribution density,

Wl(, ) , consists of two impulses. The integral in Eq. 9 then becomes a summation and

the statistical average of the derived random variable is given by

1

=Lj P(t= j) (10)
j=0

Evaluating the summation gives

_e =: P(O = 1) . (11)
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Then, remembering the defining relations for the derived random function, we see that

P(xl< x< x1 +Axl) = P( = 1) = e . (12)

Thus the desired probability, P(xl < x < x1 + Axl), is equal to the statistical average

of the derived random variable related to the original random function, x(t), and the

interval (x 1 , x 1 + Axl).

The voice mechanism is capable of generating an infinitude of different voice waves,

x(t). To each of these different waves, there exists a corresponding derived random

variable, (t). The set of all of the different forms of (t) is called the ensemble of the

random functions (t). By definition, the statistical average of involves, in essence,

the simultaneous measurement of the values of all of the member functions of the ensemble

at a time t. Operationally, it is usually simpler to measure the time average of a single

member function of the infinite ensemble than it is to measure the statistical average of

the entire ensemble. A question then arises, What is the relation between the time

average and the desired statistical average?

The time average of (t) over the finite interval (O, T) is given by

T

< (t)>T = T (t) dt . (13)
O

We are dealing with a stationary random process, hence a shift in time origin is

immaterial, and we may define the time average of (t) over an infinite interval by

T
- lim 1

< ( t ) > - T T (t dt
O

T-li < (t) >T (14)

The ergodic theorem (Wiener, sec. 0.8 ref. 2) then tells us that

< ~(t) >a =e . (15)

That is, for a stationary random process, the ergodic theorem says that (except for a

subset of functions whose total probability of occurrence is zero) the time average over

an infinite interval of a single member of an ensemble of random functions is equal to

the statistical average taken over the entire ensemble. Thus P(xl < x < x + Axl) may

be measured by taking the time average of the derived random variable

P(x 1 < x < x1 + Ax 1 ) = < (t) >av (16)

or in terms of the time average over the finite interval

lim
P(x 1 x < x 1 + x 1 ) T= < (t) > (17)
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Experimentally then, we may measure the time average of (t) over a finite interval

(O, T). As the length of the interval is allowed to increase, the average should approach

a limiting value. We may then take this limiting value of the average as the desired

probability.

The time average of (t) over a finite time interval may be experimentally determined

either by a process of continuous time integration or by a process of sampling and

summation. If we were concerned only with the determination of W l (x), the continuous

integration method would be simpler. However, the choice of a sampling and summation

method considerably simplifies the equipment required for the studies of the conditional

probability distributions and the zero-crossing period distributions discussed in suc-

ceeding sections.

Let us now consider the problem of determining < (t) >T through sampling pro-

cedures. Suppose that at (n - 1) arbitrarily chosen instants of time within the interval

(O,T), and at the time T, we measure the value of (t). Then defining atk as the time

interval between the (k - 1) st and the kth sample, the time average of (t) over the

finite period (O, T) is given by

lim I Z
< (t) >T = At-o T E katk (18)

k=l

where t k is the value of t (t) at the kth instant of sampling, where At is the largest of

the values of Atk, and where n-co as At+0. The integral is thus defined in the usual

Riemann sense. A knowledge of the values of at the instants of sampling and of the

time intervals between samples thus gives < (t)>T through a limiting process.

If we take the simplest case of time periodic sampling, the values of atk all become

equal to the sampling period, TS, and are given by

T
Atk = TS n (19)

Thus in the case of periodic sampling we have

li n (20)
lim 

< ~(t) >T =n-co n k
k=l

Let us now define a quantity v as the number of occurrences of the event (5 = 1) in the

measurement of n samples. We then have that

n

ZE k = v. 1 + (n -v) .0 . (21)
k=l

Thus Eq. 20 becomes

<t(t)>T = nim v (22)

-7-
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where v/n is thus the relative frequency of occurrence of the event (5 = 1). Then from

Eqs. 17 and 22 we finally see that

urn urn V, (23)P(xl, x < x1 + AX) = T-im no (23)

Thus our desired probability is equal to the limiting value of the relative frequency of

occurrence of the event ( = 1), and hence of (x1 . x < x1 + AX1 ), as both the number of

samples and the time interval over which the samples are taken increase without limit.

The errors involved in not passing to the limit are discussed under Statistical Accuracy.

The result expressed by Eq. 23 is a seemingly obvious result in that it conforms with

our intuitive conception of a probability. However, a review of the derivation of this

result would show that such a simple result would not generally be obtained. In fact,

Eq. 23 is obtained only if the times of sampling are chosen at random, or are uniformly

spaced.

Fig. II Measurement of first probability distribution density, Wl(x).

A block diagram of the equipment used to measure the ratio v/n is given in Fig. II.

The detailed circuits of these units are discussed later. The output of the sampling

pulse generator consists of a repetitive chain of constant amplitude and constant duration

pulses. These pulses are applied to a pulse amplitude modulator simultaneously with

the voice wave, x(t). The output, X(t), of the modulator consists of a chain of pulses

whose duration and repetition period are determined by the sampling pulses, and whose

amplitudes are linearly related to the amplitudes of the voice wave at the times of

sampling. These varying amplitude pulses are then applied to a level selector. The

level selector generates an output pulse only when the amplitude of the input pulse lies

within a predetermined amplitude interval (X 1 < X(t) < X 1 + AX1 ), and hence only when

the voice wave (at the times of sampling) lies within a predetermined interval (xl .< x(t)

< x1 + Axl). The output of the level selector then consists of the samples, k' of the

derived random variable, (t).

To measure the relative frequency of occurrence of the event (xl x(t) < x1 + Axl),

the sampling pulse generator is switched on for a time interval T. The number of

sample pulses, n, generated in the interval is determined by counter number one. The

number of level selector output pulses, v, is determined by counter number two. The

ratio of the readings of these two counters is then v/n.

-8-



In order to measure a complete distribution density, Wl(x), the expected range of

variation of the amplitude-modulated pulses, Xk, is divided into approximately fifty

to one hundred adjacent amplitude intervals. A measurement is then made of the value

of the relative frequency, v/n, for each of these intervals. If the resulting data indicate

that v/n does not vary too rapidly from one amplitude interval to the next, a close

approximation to Wl(x) has been determined. If it is felt that the relative frequency

does vary too rapidly from one amplitude interval to the next, the width, AX, of the

amplitude interval is reduced and data are retaken until satisfactory results are

obtained.

Statistical accuracy

Let us now investigate the error to be expected as the result of not passing to the

infinite limits required by Eqs. 17 and 23. First, we will derive an expression for the

upper bound of the probability that the magnitude of the error (i. e. of the difference

between the measured relative frequency and the true probability) exceeds a specified

constant. We will find that this upper bound is a function of the variance, or mean

square fluctuation, of the relative frequency. An expression for this variance will then

be derived. Finally, we will evaluate this expression for several simple cases.

The value, 5 k' of the kth sample of the derived random variable, i (t), is obviously

itself a random variable. The sum, v, of these samples then is also a random variable,

as is the relative frequency of occurrence, v/n, of the event (x l .< x < xl + AX1 ).

The statistical average, or mean, of the relative frequency is given by

(n )(n k n £ Z k . (24)
k=l k=l

(In this paper, the word "mean" will always signify "statistical average" and never

"time average".) The operations of summation and statistical averaging may be inter-

changed as the mean of a sum of random variables is equal to the sum of the means

(Cramer p. 173, ref. 7). The statistical average of the kth sample of the derived

random variable is, by definition, the statistical average of the random variable itself.

Thus

k = P(= 1) (25)

We then see that the mean of the relative frequency is thus the mean of the derived

random variable

(· ) t * (26)

Direct application of the Bienayme-Tchebycheff inequality (Cramer, art. 15. 7, ref. 7)

then shows that

-9-

_I� _ _



Pc..< 2

That is, the probability that an arbitrary positive constant, E, is equal to or less than

the magnitude of the difference between the relative frequency of occurrence of the event

(x 1 x < x1 + Ax1 ) and the probability of occurrence of that event is equal to, or less

than, the variance of the relative frequency divided by the square of the constant. The

Bienayme-Tchebycheff inequality places an upper limit on the probability of the

difference magnitude exceeding an arbitrary constant, and thus might be expected to

provide a pessimistic estimation of the sampling accuracy obtained.

Let us now consider the evaluation of the mean square fluctuation, or variance of

the relative frequency. This quantity is important not only because of its appearance

in Inequality 27, but also because of its significance as the mean square value of the

measurement error. Direct expansion of the defining equation for variance shows

that

2
C(v) - (28)

As shown by Costas (25), the mean square of the relative frequency may be expressed

as
n-I

((_) _ - +Z Z (n-k) ( - ) (29)
n n

n k=l

where , (T) is the autocorrelation function of the derived random variable and is

defined by

q) (T) < (t) (t +T) >a= (t) (t+ T) (30)

as we are dealing with stationary random processes. The limit of the 'autocorrelation

function as T approaches zero is

(0) =2 2)_ 2 (31)

and the limit as T approaches infinity is

( ,)= 2 (32)

assuming no periodicities in the derived random variable.

Let us now define the alternating component of the derived random variable by

~A(t) -= t(t)-- , .(33)

Direct expansion of the autocorrelation function of this alternating component shows

that

A (T) (T) = (T-( ) * (34)

-10-
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A possible form for the autocorrelation function is shown in Fig. III.

Substitution of the autocorrelation of the alternating component in Eq. 29 then gives

n-l

2 (- () + n - (n-k) AI n)* (35)
oa- ()- =n k '

n k= 1

()

_z

Fig. III Autocorrelation function of
the derived random variable.

We have thus obtained a general expression

for the mean square expected error involved

in the measurement of a probability by the

method of taking a finite number of samples.

Further information may now be obtained by

the consideration of certain specific cases.

If our original speech wave, x(t), is a

truly stochastic process, then as we increase

T, the autocorrelation of the alternating com-

ponent of the derived random variable may be

made to approach arbitrarily closely to zero.

Let us then define a value Ti such that

(see Fig. III)

(36)
A~b (T) O, if Ti T

We may then say that any two samples separated in time by more than Ti are uncorre-

lated (i.e. they are statistically independent samples). Then if we make our sampling

period greater than Ti, the variance of the relative frequency becomes

2( o ')2) when Ti < T = T (37)

This is the well-known result concerning independent samples.

It is not always possible, however, nor is it always desirable, to use independent

samples. Let us first investigate the case where the number of samples in a measure-

ment period is allowed to increase without limit. We then have that

(38)

Allowing no in Eq. 35, gives us

(39)

T

(< (t) T) T - T Aqb(T) dT

Thus, in the case of an infinite number of samples (i.e. in the case of averaging by

integration), an error is still probable. For the random processes under discussion,

the autocorrelation function of the alternating component of the derived random variable

-11-l-
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becomes essentially zero for T > Ti . Thus the integral in Eq. 39 remains finite as T

approaches infinity and we see that

lim a (< (t) >T) = (40)

As an example of this case, let us assume a hypothetical autocorrelation function having

the form

2 ) fTi ) 0 <T- ifI0.<T

(41)Ab 5(T) = |i(1 ~0 ~ if Ti T

which is shown by Fig. IV-A. Substitution in Eq. 39, and evaluation of the integral

gives

r Z2 (< (t) >T) = (f)T (I ) (42)

If we now consider the case where the period of measurement is considerably larger

than the independent value of T(i. e. Ti), the variance becomes

2 ( < (t) >T) =2(t) Ti (43)

and is thus inversely proportioned to the time interval over which measurements are

made.

Of main interest is the case where neither
&lS

integration nor independent sampling is used. To

consider it, we must return to the expression for

the variance of the relative frequency given by

Eq. 35. Examination of this expression shows that

r we must know the particular form taken by the
ri

autocorrelation function of the derived random
FIG. IV-A

variable in order to obtain the variance of the

relative frequency for any specific problem. However.

an approximate idea of the behavior of the variance

may be obtained by arbitrarily assuming some

idealized form for the autocorrelation function.

For simplicity, let us assume that

T / ? It if <- T < T2ri ~~~~~~f (¢ if A ~ 7-L Tv / -V ' - i

FIG IV -B A () = ( 44)
0 otherwise

Fig. IV Hypothetical auto-
correlation functions. which is shown by Fig. IV-B. It should be realized,

of course, that this is not a physically realizable

autocorrelation function.

-12-
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If we assume that the period of measurement is very much larger than the independent

value of T, that is, if we assume

i < < T (45)

we then obtain from Eq. 35

wher2(v is the sampling (46)

where TS is the sampling period.

In essence, the choice of a different form for the atuocorrelation function has as its

main effect the variation of the constant multiplying Ti in Eq. 46, as may be seen by a

comparison of Eqs. 43 and 46. In conclusion, we may say that it is desirable to increase

the number of samples per measurement period until the sampling period is a small

fraction of the independent value of T (i. e. of Ti). Further increases in the number of

samples decrease the expected error, but at a diminishing rate.

B. The First Probability Distribution Density - Experimental Results

One of the purposes of this study was a preliminary investigation of certain of the

voice wave statistics. In view of the preliminary nature of the investigation, it was

decided to study only a restricted class of all of the possible voice waves, "conversational"

speech; that is, speech characterized by continuous speaking at a reasonably uniform

volume level. This was accomplished by having the speakers read aloud. Two forms

of reading material were used: a) the preface by Max Lerner to Adam Smith's "Wealth

of Nations, " and b) excerpts from the magazine "Time". No detectable differences were

noted in the results obtained from these two sources. Most of the measurements were

made on one male voice (WD). In order to provide an estimate of the effect of the

speaker on this type of measurement, certain of the distributions were repeated for

two other speakers, one female voice (KA) and one male voice (JC).

Approximately one working day per distribution was required for the taking of data.

Speaking continuously for such a long interval of time rather severely taxes a speaker

and thus causes the speech wave to correspond to a definitely non-stationary random

process. Accordingly, it was decided to make all measurements on recorded speech.

These recordings were made with a wide frequency range, low noise level, magnetic-

tape recording system. No significant deterioration of the recorded waves was noticed

throughout the numerous playbacks required by the data taking.

The physical environment of the speaker perturbs the reception of the speech wave

chiefly in two ways: through the presence of reflections, and through the presence of

external noise. The effect of the noise may be considerably reduced by appropriate

acoustical treatment of the room in which the speaker is located. The effect of reflec-

tions may either be substantially eliminated by placing the speaker in a practically

reflection-free room, or the reflection characteristics of the environment may be
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completely specified. In view of the difficulties involved in the latter choice, it was

decided to make most of the measurements on speech waves recorded in the M. I.T.

Acoustics Research Laboratory anechoic chamber. In order to provide an estimate
of the effect of reflections upon this type of measurement, certain of the distributions

were repeated on speech waves recorded in a rather live studio.

A review of the statistical accuracy study shows that the mean square expected

error is inversely proportional to the length of the time interval over which measure-

ments are taken. Thus an increase in probable accuracy is purchased only by the

expenditure of measurement time, and a compromise between the two must be reached.

From the practical aspect, this is an especially important point if, as was the case in
this study, the equipment used permitted the taking of data for only one point at a time

on a distribution curve.

In order to apply directly the theoretical error results discussed earlier, one must

have an a priori knowledge of the autocorrelation function of the derived random variable

corresponding to the measurement being made. Lacking such data, the probable error

must be investigated experimentally. Accordingly, measurements were made of the
probability that the instantaneous amplitude, x(t), of the speech wave lies on a given

amplitude interval (x 1 , x 1 +axl). Relative frequencies of the event (xl < x < xl + aXl)
were obtained for measurement intervals varying from one-half minute to ten minutes
with a sampling period of about 12 ~lsec. Thus it was assured that there would be at

least two and one-half million samples per measurement period. These measurements

were made for three different values of x1 , and the calculated values of root mean square
error vs. measurement time were plotted to form Fig. V. Also plotted in Fig. V are

matching curves having the theoretical inverse time variation for the mean square error.

A fair fit is obtained.

Subject to the aforementioned conditions and criteria, measurements were made of
the first probability density distribution of the speech wave instantaneous amplitude.

Three voices, one female (KA) and two male (JC and WD), were studied. One of the

male voices (WD) was recorded in both the anechoic chamber and the studio, but the

other voices were studied only in the anechoic chamber. Each speaker read the same
fifteen minute selection. The reading speeds for all three speakers were the same to
within a few percent. The results of these measurements are plotted in Figs. VI-IX.
Each distribution is plotted twice: once on linear graph paper to show better the character
of the distribution for small values of amplitude, and once on semi-log graph paper to
show better the character of the distribution for large values of amplitude. The inde-
pendent variable in each case is the speech wave amplitude normalized with respect to
its root mean square value.

The measurement time per point on these distributions was five minutes, or more,
for large values (4 or higher) of the normalized amplitude and also for values of
normalized amplitude in the interval (-1, + 1). The measurement time for the remaining
points was three minutes. Reference to the plots of root mean square expected error

-14-
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vs. measurement time, Fig. V, shows that

the probable error is thus about five percent

for the values of the probability density

w | | $ 0 0 $ r | 31 corresponding to amplitudes in the range

(-2, +2). For larger values of amplitude,

larger errors are to be expected. An esti-

mation of the precision, or repeatability, of

the data obtained may be made from the fact

that the data for the coarsely spaced points

and the data for the finely spaced points in the

amplitude interval (- 1, + 1) were always taken

on different days (usually on successive days).

il Mv i A comparison of the three distributions

-0 a - measured for voices in an anechoic chamber,

Figs. VI, VIII, and IX, shows a marked

similarity between the forms of the first

probability distribution densities for the

three different voices. In each case, the

distribution has the form of a large spike

centered at zero amplitude, superimposed upon an exponential distribution. The heights

of the peaks at zero amplitude are all nearly the same (1.62, 1.84, and 1.66) and the

semi-logarithmic slopes for large values of the normalized amplitude are all similar

( + 0. 43, -0. 56; + 0. 47, -0. 32; and + 0. 56, -0. 56). A comparison of the slopes for

large amplitudes shows that a comparatively small asymmetry was observed, and that

the three possible types of asymmetry (positive, negative, and zero) were observed.

This phenomenon cannot be ascribed to the measuring equipment as the equipment was

identical for each set of measurements.

If we examine a photograph of the instantaneous form of the speech amplitude wave,

Fig. X, we see that there is some justification for saying that the large values of ampli-

tude correspond to voiced sounds, (e.g. vowels, semi-vowels, etc.), and that the small

values of amplitude correspond to unvoiced sounds (e. g. fricatives) and system noise.

Thus we might say that the spike portion of the distribution corresponds to unvoiced

sounds and noise, while the exponential portion corresponds to the voiced sounds.

Let us now consider the distribution of a speech wave (WD) in a live studio, as shown

by Fig. VII. The process governing the formation of the wave received by a listener

now consists of the random process forming the original wave and, in addition, the

mechanism of reflections. The reflected waves, at the listening point, are attenuated

in magnitude and delayed in time as compared with the original wave. Thus, to the

listener, the significant portions of the reflected waves are those portions corresponding

to the large amplitude portions of the original waves, i.e. to the voiced sounds. Because

of the greater lengths of paths travelled by the reflected waves, the reflections will
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cause the received wave to persist after the original wave at the listener has ceased.

Thus the reflections should appear mainly as a filling up of the "dead" time of the

original wave with attenuated voiced sounds. This phenomenon is shown in Fig. X.

Thus we should expect that the effect of reflections would be to decrease the probability

occurrence of the very small sounds and to increase the probability of occurrence of

the not quite so small sounds. In terms of the distribution, then, we should expect that

the height of the spike would be reduced and that its width would be increased. In

addition, the voiced sound portion of the distribution should not have its exponential

character changed. A comparison of Figs. VI and VII verifies these conclusions.

Thus we have seen that a change in environment may produce a significant difference

in measured statistics. While it is relatively simple to explain, qualitatively, the

differences in the forms of the distributions for the same voice in different environments,

it would be exceedingly difficult to calculate the differences theoretically. Thus we

feel that studies supposedly concerned with the properties of the speech wave itself

should be made mainly in reflection-free environments.

The first probability distribution densities for the three voices studied in the anechoic

chamber were seen to be quite similar. It was accordingly felt worthwhile to construct

a model distribution having characteristics near the average of the measured distributions.

Such a distribution was constructed graphically, and is shown in Fig. XI. A comparison

of this distribution with the data of Dunn and White (14) is shown in Fig. XII.

or" /V,' L/VE 57s ,LOO

OF I A1VA'FCHOIC CM'Nb#'t£'

Fig. X Speech wave instantaneous amplitude.
Male voice (WD) and 500 cps timing wave.

While distributions in graphical form are useful, it would be desirable to obtain

simple analytic expressions for them. In our discussion of the measured distributions,

it was pointed out that they consisted of two main parts: a spike, corresponding to the

unvoiced sounds; and noise, superimposed upon an exponential distribution, corre-

sponding to the voiced sounds. Both the unvoiced sounds and the system noise are

essentially purely random in character. Accordingly it was decided to make an analytic

approximation consisting of a normal distribution for the spike. Such an analytic

approximation to the graphical model given by trial and error is

-20-



I

I.

r

I

. . . . I . . . . , . . .... ...... .... I . - -_

W !1 1 01ll! 21 lIN lE: 1§1!21 011l~l 1 ;{1l: 1 f:;!1l{;! 1 1 Il{:ll~lilfE llE~ . 1.~ffi~lil::lbl: [1t~if1!0110|01lE1{1ld0:lS 10} !1011! i4-H

,=~~~~~~~~~~~~--- --- t#

fi .+m 
_ __+ _ .: t : : : . : I 10 

;4 z zz z: 2 da I · 0

F -

p

1 I_ C _ _ ___ 11___ __ ___111_ --- -~

. ... ..... ..
4 A444�+ 4

#44�t---

Vt M:4#444#
+

....... ...... . ....... ...... I � I I I .-Hi+FH-H+H-f4444+FF

.............
4t -V4

at, ail
+f+F-17 77r --

44-4FT:1--� -H+H-f+44 !Ill! 1 14-+ -

T-

i Lo 4

F---- m
---- .
-_-- ; (4
--T : I--- .
F... :

---- .
---------------------------------... m

_lk



1 (x 2
(x) =36 0.36 118 + 0 316E1. 151x (47)
0. 118(2-w

This distribution is also plotted in Fig. XI. As may be seen, the analytic approximation

is quite good except for the juncture region of the two component distributions. The lack

of a complete fit may also be seen from the fact that the integral of the analytic approxi-

mation over the infinite amplitude interval (-o, +oo) is 0.91, rather than 1.00. It

should be noted that the ratio of the root mean square values of the two components is

about 10.4, or 20. 3 db. This is an appreciably smaller ratio than the measured signal-

to-noise ratio of the system under the same operating conditions (about 35 db). Thus

the spike cannot be ascribed to the system noise alone, but must be due, in a consider-

able part, to the characteristics of the speech wave itself.

The exponential character of the first probability distribution density for large

amplitudes has been observed by others, notably by Thierbach and Jacoby (13), and by

Jacobsen (15). Thierbach and Jacoby obtained the expression

x

Wl(x) : Cr(x) (48)

where a (x) is the root mean square value of the voice wave instantaneous amplitude.

Thus Thierbach and Jacoby seem to have forgotten the fact that the speech wave has

negative as well as positive amplitudes. Taking into account both negative and positive

swings, one obtains, for a purely exponential distribution, the expression

-22-

_ __�__� __ ��



WI(x) E 1 (x)x It (49)
wl(x) fo- (x)

which is the expression given by Jacobsen. Both of these results (and in fact most other

prior results) seem to nave ignored the presence of the spike at the center of the distri-

bution. An examination of the techniques used by previous investigators shows that, in

most cases, these techniques lead to rather poor accuracy for the results corresponding

to the very small values of the speech wave instantaneous amplitude. However, it

should also be stated that in many practical cases the large amplitude region, i. e. the

region of exponential variation, is the region of most importance.

C. Conditional Probability Distributions - Theory

We will now study the statistical relation between two points of the speech wave,

displaced in time by a given amount. Therefore we will be concerned with the statistics

of two random variables, namely the instantaneous amplitudes of the speech wave at

two different instants of time.

Definitions

The basic statistics of two random variables are the joint probabilities. For the

sake of simplicity, let us first consider the case of discrete random variables. In this

case, a random variable x(t) may assume only discrete values of x. The joint proba-

bility P[x(tl) = x1 ; x(t 2 ) = x2 ] is defined as the probability of the joint occurrence of the

event [x(t l ) = xl] and the event [x(t2) = x]. Again we postulate that we have a stationary
random process, hence the location of the time origin need not be considered. For a

stationary random process, then, the joint probability is given by the equation

P[x(t) = x; x(t 2 )= x2] = P[x(t) = x; x(t + T) = x2] (50)

where t may have any arbitrary value, and where T is the time difference (t 2 - t1 ).

Let us consider the case of continuous random variables in which the random vari-

able x(t) may assume any value of x. Generally, in this case, the probability that x(t)

has a discrete value xk is zero, and we will be concerned with the probability that the

value of x(t) falls in some interval (x1 , x 1 +Ax 1 ). The discrete case, Eq. 50, may
now be directly applied to the continuous case simply by replacing the discrete event

[x(tk) = Xk] by the continuous event [xk ,< x(tk) < xk + xk . Then, paralleling our
definition of the first probability distribution density, we may define the second proba-

bility distribution density by the equation

lim 0 P[x x(t) < xl + xl; x < x(t +T) < x z + Ax]
Wz2(X1; xz , ) ax 0 x z (51)1 AXe AtXAx 1 A A 22

or by the equation
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d b

P[a x(t)< b; c< x(t +T)< d]= W2(X1 ; X T) d x ldxl d (52)
c a

The joint probability in Eq. 51 may not tend to zero as Ax 1 and ax 2 tend to zero,

hence in the most general case, W 2(xl; x2 , T )may consist in part or entirely of impulse
functions.

The joint probability of occurrence of two events is related to the probability of

occurrence of one of those events by means of the conditional probability. In the

discrete case we have

P[x(t) = xl; x(t + T) = XZ] = P[x(t) = xl] P[x(t) = xll x(t + T)= x] (53)

where P[x(t) = lj x(t + T) = x2]is the conditional probability that x(t + T) equals x2 ,
subject to the hypothesis that x(t) equalled xl. If P[x(t) = Xl] is nonzero, we may rewrite
Eq. 53 as the defining equation for the conditional probability (Cramer, P- 157, ref. 7)

P x(t) = Xl; (t + T) x2
P[x(t) = x] x(t + T) = x2 P [(t) (54)

Similarly, in the case of continuous random variables, we may define a conditional

probability distribution density (Cramer, P. 269, ref. 7) by the equation

W z(Xl 2 T) -(X; ' (55)

W 2 (X1 )

which is identical in form with Eq. 54.

By their very definition, the conditional probabilities, and the conditional probability

distribution density, express the statistical relationship between two points on the voice

wave, spaced in time by a given amount. A statistical function having a similar character

is the autocorrelation function (2) defined by

T

x~(T) ~ = T T x(t) x(t + T) dt . (56)

O

Thus the autocorrelation function is the average product of the amplitudes of two points

on the voice wave spaced T seconds apart. By our assumption of the stationary statistical

character of the voice wave, we may replace the time average in the definition of the

autocorrelation function with the statistical average

+ 00 + 

Cx(T) = I x(t) x(t +T) W(X 1 ; X2 , T) dx 1 dx 2 (57)

However, by Eq. 55, we may also express the autocorrelation function in terms of the
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conditional probability distribution density

+ + 

x(T) = I| x(t) x(t + T) W2 (x X2 , T) W 1(x) dx d (58)

The autocorrelation function is thus related to the conditional probability distribution

density through a definite integral. We might therefore say that the conditional proba-

bility distribution density gives more detailed information about the statistical structure

of a random process than does the autocorrelation function. This may or may not be

an advantage. For example, in the problem of spectrum determination, the autocorre-

lation function contains all of the necessary information.

Let us now consider the limiting values of the conditional probabilities as functions

of T. If x(t) and x(t + T) are statistically independent, the conditional probability

becomes

P[x(t)= xl x(t + T)= x2 = P[x(t + T)= X2]

= P[x(t) = x2] (59)

by the definition of statistical independence. For this case, the joint probability is

given by

P[x(t) = l; x(t + T) = x2] P[x(t) = xlP[x(t) = x2 ] . (60)

That is, in the case of independent random variables, the joint probability is equal to the

product of the independent probabilities.

Most generally, x(t) and x(t + T) are not independent random variables. However, if

we are dealing with stationary random processes containing no periodicities, then as

T becomes larger and larger, the relation between x(t) and x(t + T) becomes more and

more tenuous (6). Thus generally we have the relation

lim P[x(t) = xll x(t + T) = X] = P[x(t) = X] . (61)

In the case of continuous random variables, the expression equivalent to Eq. 61 is

lim Wz(XlX 2, T) = Wl(x 2) (62)

where again we assume stationary random processes containing no periodicities.

On the other hand, as T approaches zero, the conditional probability should attain

a value corresponding to certainty if x2 equals xl, or improbability if x2 does not equal

x 1 . Thus in the case of discrete random variables

liT+ P [x(t) = X1 X(t +T)=2 1ifx2 x
if x2 xl (63)
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The equivalent expression for the case of the continuous random variable is

Tli WZ(Xx 2 , T) = 6(x 2 -- x l ) (64)

In this expression, 6(x 2 - xl) is the impulse function

6(X 2 - x1 ) = 6(xl) ifx 2 = x 1

if XZ x 1 (65)

such that

6(x) dx= 1 (66)

_00

Method of measurement

Before solving the problem of how to measure, we must decide what to measure.

The speech wave is a continuous random variable; therefore the pertinent statistic

is the conditional probability distribution density, W 2 (X1 x2 , T).

Let us consider the problem of measurement of W 2 (x 1 x2 , T ). Our equipment can

measure a probability directly, but can measure a probability density only indirectly

through a limiting process. Thus we must establish a limiting relation between the den-

sity W2 (x 1 x2 , T ) and some probability. For this purpose, let us introduce a conditional

probability, P(xl1 x2 , T ), defined by

P( | [x 1 ( ) + Axx2 < X(t + T) < X.2 + Ax (67)

From the definition of conditional probability we then obtain

P(xl; XZ T)
P( X X', T) P(X(68)

where P(xl; x2 , T) and P(xl) are defined by equations analogous to Eq. 67. If Ax l and

Ax 2 are sufficiently small, the definitions of WZ(Xl; x2 , T ) and W 1 (x1 ) show us that

WZ(Xl; X2, T) AX1 Ax Z
P(XXZ, T ) - 1 2 , 2 (69)

to a high degree of approximation. Therefore, from the definition of Wz(X 1 jx 2 , T),

Eq. 55, we obtain

P(x 1 xZ, T )
wz(x2x1Z T ) Ix (70)X2

an approximation that improves as Ax 1 and Ax 2 become smaller.

A complete study of W 2 (X1 lX 2 , T ) would require the measurement of P(x l x2 , T) for

sets of intervals xl 1 and Ax 2 covering the entire range of variation of x1 and x2 . Such

an undertaking would be quite formidable. In view of the preliminary nature of our
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investigation, it was decided to study only a few "cross-section" distributions derived

from the conditional probability distribution density, W2 (x 1 x2 , T ). One type of cross-

section distribution chosen was P(xllxl, T ), where x is fixed and T is varied. The
other type chosen was Wz(xlI x, - ), where x1 and T are fixed, and x is varied. The
combination of these distributions provides a picture of the three-dimensional solid

representing W2 (xllx2 , T ) as a function of x2 and T, with xl fixed. From such a
picture we may gain an insight into the statistical relation between two points, spaced

in time, on the speech wave.

Certain properties of P(x 1lX1 , T) and of W 2(xllx, T) can be determined analytically.
Under the assumption of a stationary random process having no periodicities, the

limiting values of P(xilxl, T) may be obtained directly from Eqs. 61 and 63, and are
given by

lim P(XlIx T) = (71)

and

lim P(x IXl, T ) =P(Xl) (72)

Similarly, under the assumption of a stationary random process having no periodicities,

the limiting values of W 2 (x 1 Ix, T ) are obtainable from Eqs. 62 and 64, and are given

by

lir+ WZ(Xx, T) = 6(X--X1 ) (73)

and

lim W(XX, T ) W(X) . (74)

As may be shown by a discussion paralleling that leading up to Eq. 70, the distri-

bution Wz(xilx, T ) may be determined by measuring the probability P(xl x2, T ). Thus

our problem becomes that of measuring P(x 1 Xl, T) and P(xlx 2 , T ). If we can show
that these probabilities are directly related to time averages, we may make extensions

of the measurement techniques developed in the preceding section to cover the present

problem, and we may apply the same statistical accuracy study. For this purpose let

us introduce the derived random variable, (t), defined by the equation

(t) = 1 if x 1 ,< x(t) < x I + Ax1

0 otherwise . (75)

The random variables x(t), a (t), and (t + T) are shown in Fig. XIII.

Let us consider the autocorrelation function of the derived random variable, (t).

Since it may assume only discrete values, the second probability distribution density
of (t) consists entirely of impulses, and the integral in Eq. 57 becomes a double
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summation

2 2

(T) X= Z Z ik PLe() i; (t , )k]
i-l k=l

(76)

where i and a k have the two possible values zero and one. Evaluation of the summation

then gives

(77)
(T) = P[a(t) = 1; (t + T ) 1]

However, we may express the joint probability in terms of the conditional probability,
hpn p

( T) = P (t) = I I(t
x

Thus the autocorrelation function of the

derived random variable is equal to the

conditional probability P(x 1 IXl, T ) times

the limiting value of P(xIllx, T) as T

approaches infinity.

The basic definition of the autocorrelation

function is in terms of a time average. If

we then define the average over a finite

interval, of duration T, of the product of

i(t) times (t + T) as
Fig. XIII Conditional probability derived

random variables.

< (t) (t +T)>T

+ T) I] P (t) ] (7

Then remembering the definition of the

derived random variable, we finally

obtain

(T) = P(XlX1 , T ) P(X1 ) .

8)

(79)

(80)

T

-= T i (t) (t + ) dt
0

the autocorrelation function of the derived random variable is given by

(81)(T) = Tm < (t) (t +T) >T

As was shown earlier the probability of occurrence of the event [ (t) = 1 is equal

to the time average of the derived random variable (t). That is

lim < >
P(x) = < (t)>av T < a(t)>T (82)

where we have defined
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T

< >(t)>T t f (t)dt (83)
0

From Eq. 79, the conditional probability is given by

4O(T)

P(X1l x1 , T ) = )(84)

Then from Eqs. 81 and 82 we see that

P(XX, T) = lim <(t) (t +) >T (85)
Pxx =T <5t) >T
TI~

Thus the problem of measuring the conditional probability P(xllx, T ) reduces to that of

measuring the two finite period time averages, and our problem is essentially similar

to that discussed in Method of Measurement.

Let us now consider the problem of determining the desired time averages by a

process of sampling and summation. Suppose that n samples are made of S(t), and of

the product ,(t) S(t + T), at a periodic rate throughout a measurement interval of duration

T. Then by defining a quantity v as the total number of occurrences of the'event

[(t) = 1] in the n samples in the interval T, we have

(t) > = lim v (86)
n--*c n (

as was proved earlier. In an entirely similar manner, we may define a quantity vp as

the total number of occurrences of the event [~(t) ,(t + T) = 1], and hence of the joint

event[a(t) = 1; ,(t + T) = 1], in the n samples in the interval T. We then have

< (t) (t +T) > =lim Vpn- (87)

Hence finally from Eqs. 85-87 we obtain

P(X Xli T) lim lim Vp (88)

Thus the desired conditional probability P(xll x1 , T ) may be obtained as the limiting ratio

of the number of occurrences of the joint event [a(t) = 1; J(t + T) = 1] to the number of

occurrences of the event [a(t) = 1] as both the duration of the measurement interval and

the number of samples taken in that measurement interval increase without limit.

A simplified block diagram of the equipment utilized to measure the conditional

probability P(x Ixl, T) is shown by Fig. XIV. Up to the output of the level selector, the

operation of this system is identical with the operation of the system used to measure

P(xl), which has been described. Thus at the output of the level selector, there is a
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pulse each time the voice wave amplitude (at the instant of sampling) lies within the

interval (xl, x 1 + A X). The output of the level selector is applied to a delay unit and

to a coincidence circuit. The delay unit generates an output pulse at a time (t) if a

pulse was applied to its input at a previous time (t - ). The output of the delay unit

is then applied to the coincidence circuit and to counter No. 2. The coincidence circuit

generates an output pulse whenever it receives a pulse from the delay unit simultaneously

with a pulse from the level selector. Thus the output of the coincidence circuit corre-

sponds to the joint occurrence of the events I[x1 x(t)< xl + A xl] and [x1 < x(t -r) <

X1 +AXI].

Fig. XIV Measurement of the conditional probability P(xl x1 , T).

Because of the stationary character of x(t), the location of the time origin may be

changed. Therefore

lim ( <(t) (t +-) >T (89)

n·_( v << (t) >T

Thus the limit of the ratio of the reading of counter No. 3 to that of counter No. 2, as

both the number of samples in a measurement interval and the duration of a measurement

interval are increased without limit, is the desired conditional probability, P(xll X, T).

The conditional probability P(xllx2 , T ) may be determined by a process of sampling

and summation in a way analogous to that used in the determination of P(xiIxl, T ). Let

us define a quantity, v 2 as the number of joint occurrences of the events [x 1 < x(t) < x 1

+A x1 ] and xz2 x(t + T) < X2 + ax2 ] in n samples obtained during a measurement interval

T. Then, a paraphrase of the derivation of Eq. 88 would show that

P( x2, -T) = n-im v (90)

A simplified block diagram of the equipment utilized in the measurement of the

conditional probability distribution density is shown by Fig. XV. A comparison of this

figure with that concerning P(xll X1 ,T ), Fig. XIV, shows that the only difference is the
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Fig. XV Measurement of the conditional probability distribution density, Wz2 (xllX1, T).

addition of a level selector to determine the occurrence of the event [x 2 ,< x(t) < x + xx2 ].

The output of the coincidence circuit then corresponds to the joint occurrence of the

events [xl < x(t- T)< xl + Axl] and [x 2 x(t) < x2 + Ax 2 ] Hence the ratio of counter

No. 3 reading (v2 ) to counter No. 2 reading (v), in the limit as both the number of
samples in a measurement interval increase without limit, is the desired conditional

probability P(x 1Ix2, T ).

D. Conditional Probability Distributions - Experimental Results

Measurements of the conditional probability P(xll xl, T ) were made for the voices
of three speakers: one female (KA) and two male (WD and JC). As in the study of the

first probability distribution density, the voice waves were recorded with a magnetic

tape recorder in an anechoic chamber and in a live studio. The measurement time per

data point varied from a minimum of five minutes for small values of T, to a maximum

of fifteen minutes for large values of T. The probable error varies from about five

percent, for small values of T, to about ten percent for large values of T. The results

of these measurements are plotted in Figs. XVII, XVIII, and XIX.

In the study of the first probability distribution density, Wl(x), it was postulated

that the exponential portion of that distribution was mainly representative of the voiced

sounds, while the spiked portion was due mainly to the unvoiced sounds. References to

the various plots of Wl(x) thus show that the form of the conditional probability P(xl] xl, T),

for the values of xl greater than the root mean square, should be determined principally

by the characteristics of the voiced sounds. On the other hand, as xl is decreased in

magnitude, the form of P(xll Xl, T ) should be successively modified by the characteristics

of the unvoiced sounds.

A study of the instantaneous waveform, Fig. XVI, of various voiced sounds shows

that these sounds possess a common characteristic: a complete sound usually consists

of a number of repetitions of a basic wave pattern. The amplitude of the wave envelope

may change throughout a voiced sound, but the pattern is rather well perserved.

The fact that a basic pattern is repeated in time means that there will be an increase
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in the conditional probability for values of T about an average voiced sound pattern

repetition period, Tvp This period is the reciprocal of the so-called pitch frequency.

If the voice wave conlsisted entirely of a basic pattern repeated exactly periodically,

then P(xl| x 1 , T ) would reach the value unity for values of T equal to integral multiples

of Tvp. By definition, random waves are not periodic; however it is possible for a

random wave to be "almost periodic". An example might be a wave having a slowly

varying, random change in Tvp, or a similar change in envelope amplitude. Many

voiced sounds have this type of behavior. Such a wave may have a well-defined average

pattern period, T vp' in this case there will be peaks of P(x 1 J x 1, T ) for values of

equal to kTvp, where k is an integer. Such peaks will be less than unity, and must

eventually decrease to the limiting value, P(xl), as T increases without limit. On the

other hand, if the wave is almost purely random, as is the case of fricatives, the concept

of an average repetition period loses meaning and P(xl I X, T ) decreases more or less

monotonically to its final value as T is increased.

The effect on the conditional probability P(x 1 xi, T ) of varying the magnitude of xl

is shown by Fig. XVII. Referring to the plots of the first probability distribution

density, Wl(x), for the same voice, (WD), Fig. VI, it may be seen that the three values

of x1 occurring in Fig. XVII correspond to three different regions of the Wl(x) distri-

bution: the spike (x 1 = 0. 33 X rms), the transition region (x 1 = 0.65 X rms), and the

exponential region (xl = 1.3 x rms). Viewing Fig. XVII in the light of the preceding

discussion, it would then seem that the increase in P(xll x1 , T ) around T equal to 7.3 msec

was due to the average voiced sound-pattern repetition period. In order to check this

point, a photograph was made of a five and one-half second sample of the voice wave

studied in Fig. XVII. In this sample, some thirty successive changes in pattern were

noted. The pattern periods ranged from about 4 msec to 9 msec with an average of

7.6 msec, thus confirming our conclusions.

Plots of P(xl[ x 1 , T ) for different speakers are shown in Fig. XVIII. The plot of the

conditional probability for the female voice, (KA), shows a smaller value of Tvp, and

hence a higher pitch, than do the plots for the male voices, as is to be expected. The

existence of a succession of peaks in the plot of P(xllxl, T ) for the female voice, rather

than a single peak, indicates that the voiced sounds of this speaker are more nearly

periodic than are those of either of the male speakers.

The measurements for the plots in Figs. XVII and XVIII were made on voices

recorded in an anechoic chamber. The effect of environment on this distribution is

indicated by Fig. XIX. The two plots in Fig. XIX are for the same voice recorded first

in an anechoic chamber and then in a live studio. The effect of reflections in the live

studio appears in the form of humps in the one to five millisecond region.

Measurements of the conditional probability distribution density, W 2 (X1I x, T ), were

made on only one voice, (WD), and on that voice only in the anechoic chamber. The

results of these measurements are shown in Fig. XX. It is of interest to relate these

plots to the plot of the conditional probability P(x 1 lx l , T ) for the same voice and same
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value of xl as given by Fig. XVII. For T = 12 rsec, P(xllX, T ) has a high value and

W 2 (x1 Ix, T ) has the form of an impulse function centered on xl. (Note the change in

scale for the W2 axis between the plot for this value of T and those for larger values

of T. ) These results are consistent with the limiting relations for these functions as

T approaches zero, as shown by Eqs. 71 and 73. As T increases, two points on the

voice wave separated in time by T become more independent statistically. Thus as T

increases, P(XllX 1, T ) decreases toward P(xl), and W2(xllx, T) changes from an impulse

centered on xl to a less peaked distribution centered on zero amplitude. A further

increase in T to about 7.4 msec brings us into the region of an increase in correlation

because of the almost periodic character of voiced sounds. Thus the value of P(X1IX1,T )

increases and the center of W2(xllx, T ) is shifted back toward xl. Finally as T is

increased beyond this value, we again approach statistical independence. Hence

P(x 1jx l , T) approaches P(xl), and W 2 (x l x, T ) tends toward a form similar to that of

the first probability distribution density, Wl(x). These results are thus consistent

with the limiting relations for these functions (as T increases without limit) expressed

by Eqs. 72 and 74.

II ZERO-CROSSING DISTRIBUTIONS

A. The First Probability Distributions

Studies have been made by Licklider (9) (10) and others of the psychoacoustic effects

of severe amplitude limiting, or clipping, on the speech wave. These studies show that

clipping produces no serious reduction in word intelligibility. This fact indicates that,

for certain types of communication systems, it may be desirable to transmit only the

speech-wave zero-crossing periods. Accordingly, the various distributions of these

periods are of interest.

Definitions

A clipped speech wave, or zero-crossing wave, is a rectangular wave whose value

changes when the speech wave passes through zero. An example would be the wave,

Z(t), defined by the relations

Z(t) - 1 if 0 x(t)

0 if x(t) < 0 (91)

where x(t) is the voice wave itself. Thus, the zero-crossing wave changes its state

whenever the original wave passes through zero, and the only characteristic of the

original wave preserved by such a transformation is the interval between two successive

zero crossings.

Let us now consider the distribution of the zero-crossing periods. Defining To(t)

as the duration of the zero-crossing period existing at time t, the probability P(T 1 ),

defined by the equation
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P(T 1) P[T1 T(t) < T 1 + AT1] (92)

is the probability that at a given instant of time, t, the duration of the corresponding

zero-crossing period lies between the limits (T 1 ) and (T 1 + AT1). It should be noted
that this is not the same as defining P(T 1 ) to be the limiting ratio of the number of
periods of duration (T 1, T 1 + AT1 ) to the total number of periods. The first probability
distribution density, WI(To), of the zero-crossing periods may then be defined in terms
of P(T 1 ) by the equation

- lim P(T 1)
W(T1 ) -AT o T(93)

or, alternatively, we may define Wi(To) by the equation

T2

P[T1 < To(t) < T2] = WI(To) dT (94)
T1

As before, the distribution density will consist of impulses if the duration of the zero-
crossing periods may assume only discrete values.

Method of measurement

If the first probability distribution density, WI(To), of the zero-crossing periods is
a reasonably slowly varying function of To, we may say that

P(T 1 )
W I(T1) T (95)

to a high degree of approximation. Thus our problem becomes essentially that of
measuring the probability P(T 1 ).

Let us see if we can now relate P(T 1 ) to a time average in order to utilize the
measurement techniques previously developed. For this purpose, let us define a
derived random variable, (t), by the relations

(t) if T 1 T(t ) < T +AT 1

O otherwise . (96)

Then, by analogy with the development of sec. II-B, it can be shown that

P(T 1) = = < (t) > . (97)

Hence, the desired probability is equal to the average (statistical or time) of the
derived random variable.

Apparently then, our problem is essentially the same as that considered in sec. II-B,
and experimentally we need only construct the derived random variable and measure
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its time average. Practically, however, a difficulty arises in the generation of the

derived random variable. The difficulty comes from the fact that (t) should equal one

throughout a zero-crossing period whose duration falls within the prescribed limits.

Our apparatus however cannot tell what the duration of a given zero-crossing period

is until that period is completed!

One way out of this difficulty is indicated by the scheme of Fig. XXI. The voice

wave, x(t), is clipped to form the zero-crossing wave, Z(t), which is applied to the

period pulse generator. This unit generates an output pulse, Zk(t), whenever the

voice wave crosses through zero, regardless of direction. The amplitude of the output

pulse is proportional to the time interval between that pulse and the preceding pulse, and

hence to the zero-crossing period. The level selector is then adjusted so that it

generates an output pulse whenever the amplitude of the input pulse corresponds to a

zero-crossing period whose duration falls in the interval (T 1 , T1 + AT 1 ). Counter No. 1

counts the total number, n, of period pulses, and counter No. 2 counts the number, v,

of period pulses corresponding to the event IT1 < To(t) < T1 + AT 1 ].

Suppose now that data are taken over a measurement period of duration T, and that

n zero-crossing periods occur. The average of the derived random variable, (t), over

the finite interval is then given by

n

< (t) >T = T > jk Tk (98)
k=l

where Tk is the duration of the kth zero-crossing period, and where

[k = I1 if T1 Tk< T + T1

0 otherwise . (99)

Now if AT 1 is small, Tk may be taken equal to T1, and we then obtain

T n vT

< (t) >T -T Z k T (100)
k=l

As the probability P(T 1 ) is equal to the infinite-interval time average of g(t), we have

P(T 1) -T - T (101)

Hence, the first probability distribution density, W 1 (To), of the zero-crossing period

is given approximately by
vT 1

W (T 1) aT (102)
1

and is given exactly by

lim lim T T1
W1(T1 ) =T-o AT 1 4-0 TAT 1 (103)

1 ~1
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as the approximate Eq. 101 becomes

an equality in the limit as A T

approaches zero.

An experimental determination of

W 1 (To) may then be made by dividing

the range of interest of T into a set

of adjacent intervals, Tk. In a

measurement period T, the number,

v, of zero-crossing periods satisfying
Fig. XXI Measurement of the first proba-nt t < T

bility distribution density, W(To). he event k k k may
then be determined. From the cali-

bration of the level selector, both T k and AT k are known, hence W 1 (To) may be calculated

approximately from Eq. 102. The degree of approximation improves as ATk is made

smaller and as T is made larger.

Experimental Results

Using the concepts and techniques discussed in the preceding sections, an attempt

was made to measure the first probability distribution density, W 1 (To) of the zero-

crossing periods of the speech wave. Immediately, however, a difficulty arose because

of the unavoidable presence of system noise. In essence, the better the system is in

transforming the speech wave into a rectangular wave, the smaller the noise amplitude

must be in order not to produce a measurable effect. Thus a measured distribution will

generally be due in part to the speech wave and in part to the system noise. For example,

measurements of the first probability distribution density of a speech wave plus system

noise, W (To)S+N, and of system noise alone, Wl(To)N, are plotted in Fig. XXII. A

comparison of these plots shows a close correspondence of form for values of To less

than a half millisecond. The question now arises: How much of the W 1 (To)s+N distri-

bution for T o less than a half millisecond is due to the speech wave alone ? The answering

of this question is not easy because of the basic similarity of the structures of the

unvoiced sounds and of the system noise.

If the unvoiced sounds have significantly larger amplitudes than the amplitude of the

system noise, then it should be possible to separate the noise from the speech wave

effectively. Such a separation could be accomplished by the addition of a periodic bias

signal whose amplitude is larger than that of the noise, but smaller than those of the

unvoiced sounds. The bias signal will then override the noise and the randomly varying

duration periods of the noise would be replaced by the essentially constant periods of

the bias signal. A peak in the resulting W 1 (To) distribution will occur about the value

of the bias period, but this peak will be isolated if the duration of the bias period is

chosen so as to occur outside of the range of variation of the zero-crossing periods of

the speech wave. There are then two choices: either the bias signal frequency must

be higher than the highest frequency component of the speech wave, or it must be lower
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than the lowest component. The choice of a supersonic bias signal is commonly made

by investigators of the phychoacousitc aspects of clipped speech as the supersonic signal

cannot be detected by the ear. However, reference to Fig. XXII shows that a very low

bias signal frequency (i.e. very long bias period) is more suitable in our problem.

Thus it was decided to use a 20-cps square-wave bias signal. The square waveform

for the bias wave was chosen so that the transition of the bias wave through zero ampli-

tude would be rapid. A plot is given in Fig. XXIII-A of the results of the measurement of

of the W 1 (To) distribution for a speech wave plus a 20-cps square wave bias. The peak-

to-peak amplitude of the bias signal was adjusted to be approximately twice that of the

system noise.

A partial check on the validity of the experimental results obtained through the use

of a bias signal was made as follows: Under the assumption that the unvoiced sounds

are significantly larger in amplitude than the system noise, we may say approximately

that we have either the speech wave or the noise present in the system at any given time.

We are therefore dealing with mutually exclusive events whose probabilities are additive.

Let us now define P(Tl)s+ N , P(T 1)s, and P(T1)N as the probabilities that the combined

speech and noise wave, the speech wave alone, and the noise wave alone, respectively,

have zero-crossing periods of duration [T1
< To < T1 + AT 1 ]. Then

P(T1 )s+N = dP(T1)N + (1 - d) P(T 1) S (104)

where d is the fractional dead time (i.e. the fraction of time in which there is no speech

in the combined wave). A study of a photograph of a five-second sample of the combined

speech and noise wave indicated that the dead time was about 21. 5 percent. This value

for dead time, the period distribution of noise alone (Fig. XXII-B), and the period

distribution of the combined speech and noise wave (Fig. XXII-A) were then substituted

in Eq. 115, which was solved for P(T 1)S . The resulting distribution is plotted as

Fig. XXIII-B. A comparison of Figs. XXIII-A and XXIII-B shows that the experimentally

obtained distribution is lower than the calculated distribution in the region below one

half millisecond, and is higher in the region from one half to five milliseconds. These

results indicate that the bias signal suppressed some of the unvoiced sounds as well as

the noise, but that a fairly valid distribution was obtained experimentally.

An examination of photographs of a speech wave and its corresponding zero-crossing

wave (Fig. XXIV) shows that for each voiced-sound pattern period there are several

zero-crossing periods. Thus the peak in the first probability distribution density,

Wi(To), of the zero-crossing periods corresponds to the semi-periods of the speech wave

within a voiced-sound pattern, rather than to the pattern period itself. If the pattern

of the voiced sound is relatively simple (i. e. if the harmonic content within the voiced

sound is not too high), the zero-crossing periods correspond to the fundamental frequency

within that voiced sound. This statement corresponds to that made by the Northeastern

University Visual Message Presentation group (ref. 17) that the short-time average
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Fig. XXIV

Instantaneous amplitudes of the voice and zero-crossing
waves. "The U.S. " Male voice (WD) in anechoic chamber.
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density of speech wave zero-crossings, for a voiced sound, closely corresponds to the

first formant of the sound spectrogram (i. e. plot of frequency spectrum vs. time).

The effect of environment, and speaker, on the first probability distribution density,

Wl(To), of the speech wave zero-crossing periods is shown in Fig. XXV. The data for

these plots were obtained with the use of a 20-cps square-wave bias signal.

As previously discussed, one main effect of environment is the presence, or absence,

of reflected waves. The significant portion of the reflected waves is that corresponding

to the voiced sounds in the original wave. Thus the presence of reflections should

show up as an increase in the probability of occurrence of zero-crossing periods of

the voiced sounds, and consequently as a decrease in the probability of occurrence of

the zero-crossing periods of the unvoiced sounds. A comparison of Figs. XXIIIA and

XXVA verifies this conclusion.

B. Conditional Probability Distributions

Definitions and methods of measurement

Paralleling the definition of the conditional probability P(x1 x 1, T) for the speech

wave instantaneous amplitude, as given in an earlier section, a conditional probability

P(T1 T 1 , m) for the voice wave zero-crossing periods may be defined by the equation

P(T 11T 1 , m) P[T1 T o (k) < T 1 T1 To(k+ m) <T 1 + AT1 ] (105)

That is, P(TllT1 , m) is the probability that the (k + m)th zero-crossing period of the

speech wave has a duration falling in the interval (T 1, T 1 + aT 1 ) conditional upon the

fact that the kth zero-crossing period had a duration falling in the same interval.

A simplified block diagram of the equipment utilized in the measurement of the

conditional probability P(T1 lT1, m) is given by Fig. XXVI. The operation of this

equipment, up to the output of the level selector, is the same as that used for the

measurement of the probability P(T1 ) described earlier. The delay unit is arranged

to generate an output pulse "m" zero-crossing periods after the occurrence of a zero-

crossing period whose duration falls in the interval (T 1, T 1 + AT1 ). The outputs of

the level selector and of the delay unit are applied to a coincidence circuit. The output

of the coincidence circuit, and hence the reading of counter No. 3, hence corresponds

to the joint occurrence of the event [T1 To(k) < T1 + AT 1 ] and of the event T 1< T(k - m)

< T 1 + AT 1]. Similarly, the output of the delay unit, and hence the reading of counter

No. 2, corresponds to the occurrence of the event[T1 l T(k - m)< T 1 +AT1] . The

ratio of the reading of counter No. 3, vp, to the reading of counter No. 2, v, then gives

the value of the conditional probability P(TllT 1 , m) in the limit as the duration of the

measurement period increases indefinitely.

Another conditional distribution of interest is the autocorrelation function of the

zero-crossing wave. As before, the zero-crossing wave Z(t), may be defined by the
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Fig. XXVI Measurement of the conditional probability P(T 1 T 1 , m).

relations

z(t) I if 0. x(t)
0 if x(t) < 0 (106)

where x(t) is the original voice wave. The autocorrelation function of the zero-crossing

wave may be expressed by:

(z(t) = Z(t) Z(t + T) (107)

as we are dealing with a stationary random phenomenon. Paralleling the development

of the autocorrelation function (T) given previously, it may be shown that

Z(T)= P[Z(t)= 1 Z(t +T) P[Z(t) ,=] (108)

Then, remembering the definition of the zero-crossing wave, Eq. 106, we see that the

autocorrelation function of the zero-crossing wave Z(t), may be expressed in terms of

probabilities of the original voice wave, x(t)

z( T) = P[ 0 _ (x(t0 x(t+T) P[ 4 x(t (109)

Thus the autocorrelation function of the zero-crossing wave may be determined by a

measurement of the conditional probability P[0 x(t)I0 < x(t + T ) and of its limiting value

as T approaches infinity, P0 < x(t)].

Reference to the discussion of the measurement of the conditional probabilityP(x1 xl, T )

given in an earlier section shows that the conditional probability P[0 < x(t)t 0 < x(t +T )]

may be measured directly with the apparatus shown in block diagram form by Fig. XIV

if the level selector is now adjusted so as to generate an output pulse whenever the event

[0O x(t)] occurs, rather than whenever the event Ix .1 x(t)< xl + axl] occurs. The

theoretical discussion of the measurement of the conditional probability P(x1 j Xl, T)

applies directly to the present problem. Hence we have

P0[ <X(t) X(t+)] lim (110)
P T -o n-*o' 1
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where v is the number of joint occurrences of the event [0 < x(t)] and of the event

[0 < x(t + T )], and where v is the number of occurrences of the event 10 < x(t)], both in
a measurement of n samples throughout a measurement period of duration T. The auto-
correlation function of the zero-crossing wave may thus be determined by measuring

the ratio vp/v for a number of values of the delay time, T.

Experimental result

A practical difficulty arose in the measurement of the conditional probability[P(Tl T1,
me)]because of the design of the delay unit. As will be discussed later, the delay unit
will permit only binary values of the number, m, of periods delay when used as shown

in Fig. XXVI. That is, m may have only the values 1, 2, 4, 8, 16, 32, 64, and 128.
Thus no data could be obtained as to the value of P(T 1 T 1, m) for nonbinary values of
m with the present equipment. Also an error is introduced into the measurement of

P(TLjT 1, m) because of a "lost-pulse" effect discussed later. For these reasons, the
experimental results are uncertain in their meaning and in their accuracy and no detailed
discussion will be made of them. The only significant results obtained so far seem to be

that the conditional probability P(TlI T 1 , m) is generally smaller for m = 1 than it is for
m = 2; and also that P(T 1 T 1, m) does not appear to reach its final value until the number
of periods of delay, m, has increased to about 64 or more. These results were obtained
from studies made of a male voice (WD) in an anechoic chamber and in a live studio, and
for a female voice (KA) in an anechoic chamber.

Measurements were made of the autocorrelation function, (.Z(T), of the zero-crossing
wave, Z(t), for two voices (one female, KA, and one male, WD) studied in an anechoic
chamber. The results of these measurements are plotted on both linear and semi-
logarithmic graph paper in Figs. XXVII and XXVIII. It is of interest to compare these
plots with the plots of the conditional probability, P(xl xl, T ), given earlier. Such
a comparison shows that Z(T) and P(x 1 lx, T ) have similar characters. However,

~z(T) shows much greater variation than does P(xl[xl, T ) for values of T greater than
one millisecond.

III EQUIPMENT

A. General Requirements

One of the objectives of this study was the design and construction of equipment
suitable for the determination of probabilities for random time functions. Although
the detailed characteristics of the various probabilities could not be known beforehand,
certain a priori equipment characteristics could be specified.

As was pointed out in sec. I, the decision was made at the start that it would be
sufficient for the purposes of this investigation to design and construct apparatus suitable
for the study of a specific random process, the voice wave. However, the resultant
apparatus may also be used to study any random time function whose statistics
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fall within the range of the voice statistics. The justification for the decision to tailor

the equipment characteristics to the study of a specific random process is purely eco-

nomical. For the same reason, it was decided to limit the apparatus to the making of

one measurement at a time rather than a number of measurements simultaneously.

The fact that the equipment is able to make only one measurement at a time requires

the data-taking time to be about one working day per distribution. As discussed earlier,

this requires practically that the measurements be made from a recorded voice wave.

A review of the Method of Measurement sections shows that two probabilities are

basic to our study: the first probability P [ l(t) = 1], and the conditional probability

P[al(t) = 11 2 (t + T)= 1], where 1l andS 2 are appropriate random variables derived
from the speech wave. For example, let us suppose that 1 is defined by the equation

0 otherwise ( 11 )

where x(t) is the speech wave. Then, as was shown in sec. I-A, the probability

P[ l(t) = 1], when divided by Ax 1 , gives the value of the first probability distribution

density W 1(Xl) for the speech wave instantaneous amplitude. Thus the basic requirements

upon our equipment are that it be able to generate the appropriate derived random vari-

ables 1 and ,' and that it be able to measure the probabilities P[ 1(t) = 1] and

P[Il(t) = 11 2(t + T) = 1 related to those random variables.
An estimation of the required equipment accuracy may be made as follows: Our

statistical accuracy discussion showed that a sampling error is to be expected, even

with perfect measuring equipment, if the measurements are made over a finite interval

of time. Assuming that the sampling errors due to the finite measurement time interval

and the errors due to nonperfect equipment are statistically independent, the mean-square

values of these errors are additive. A requirement may be established that the total

root-mean-square error shall not exceed the sampling error by more than ten percent.

Then assuming a minimum expected RMS sampling error of five percent, the above

requirement may be met by requiring that the expected RMS equipment error should not

exceed approximately 2.2 percent. The equipment accuracy must be maintained at least

over the time required to measure a single distribution (i. e. at least over one working

day).

B. Audio Equipment Characteristics

Since it was necessary to record the speech waves studied in this investigation, wide

range audio equipment had to be used to preserve the voice waveform. Rather than

design and construct the necessary audio equipment, it was decided to make use of

available apparatus. The pertinent characteristics of the audio equipment used in this

study are given as follows.

The microphone chosen was of the ribbon variety: the RCA velocity microphone,

type 44-BX. The curve of frequency response to an incident plane sound wave given
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by the manufacturer (18) for this microphone is flat to within + 2. 5 db over the range
of 40-12, 000 cps when the microphone is used with the "music" connection. Tests made
at the M. I.T. Acoustics Laboratory on various microphones of this type check these
results reasonably well. It is necessary to have a substantially plane wave at the
microphone in order to avoid the low-frequency boost phenomenon characteristic of a
ribbon microphone when responding to spherical waves. For this purpose, the micro-

phone was maintained at a distance of at least one meter from the speaker's lips. Under

these conditions, less than 3 db boost is obtained for frequencies above about 55 cps.
The recorder used in this study was a magnetic tape recorder, the Magnecorder,

type PT-6. Its measured overall frequency response was flat to within + 2. 5 db over

the range of 20-15, 500 cps. The maximum obtainable root-mean-square signal-to-noise

ratio was about 47 db.

In order to study voice waves in a substantially reflection-free environment, certain

of the speech waves were recorded with the above equipment in the anechoic chamber of
the M. I.T. Acoustics Laboratory. This chamber was designed in accordance with the

results given by Beranek and Sleeper (19). The measured lower cutoff frequency of

this chamber is 70 cps. This cutoff frequency is defined as the frequency above which

less than one percent of the energy incident upon the walls is reflected.

In order to study the effect of reflections on the voice wave, certain of the speech
waves studied in this investigation were recorded in the experimental studio at the

M.I.T. Acoustics Laboratory. This studio is rather "live". The reverberation time,
as measured with 50-cycle bands of random noise, rises from about a half-second at
100 cps to about one second at 4000 cps (20). The form of this reverberation time

characteristic is of relatively little significance to our studies as we were concerned

only qualitatively with the effect of reflections. The estimated average value over the

audio frequency range of the isolation of the studio from its surroundings is of the order
of 45 db.

The characteristics of the various items of audio equipment as described above were
considered adequate for the purposes of this investigation.

C. Amplitude-Distribution Equipment

Sections I and II discuss certain probability distributions, relating to the voice wave
instantaneous amplitude, which were investigated in this study: the first probability

distribution density W 1 (x), the conditional probability P(xll X1, T ), and the conditional

probability distribution density W2 (x 1l x, T ). These probability distributions can be
measured by the system shown in block diagram form by Fig. XXIX. The amplitude
distribution equipment is composed of five main units: a recorder, a pulse amplitude
modulator, the level selectors, a conditional probability delay unit, and the counters.
Of these units, the pulse amplitude modulator, the level selectors, and the conditional
probability delay unit had to be designed and constructed specifically for this study.
The recorder and the counters were chosen from available equipment.
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Fig. XXIX Amplitude distribution equipment.

Design requirements of the pulse amplitude modulator

The purpose of the pulse amplitude modulator is to convert the voice wave into a

sequence of constant-duration repetitive pulses whose amplitudes are linearly related

to the amplitudes of the voice wave at the instants of sampling. The requirements upon

the sampling pulse repetition period may be obtained as follows: It was shown in the

discussion of statistical accuracy that the greater the number of sampling pulses in a

given measurement interval, the smaller is the expected mean square error. Thus,

generally, the sampling pulse repetition period should be made as short as possible.

It should be emphasized, however, that there is no unique relation between the

sampling rate and the highest frequency component of the wave being studied in the

present problem of a measurement of a probability, as there is in the problem of pulse

communication systems. That is, while there is a constant minimum usable sampling

rate in a pulse communication system regardless of the total message.length (4), the

sampling rate for a probability measurement, with a specified accuracy, may be reduced

as the total duration of the measurement interval is increased.

A second criterion for the sampling repetition period is imposed by the requirements

of the conditional probability delay unit. As will be discussed later, the conditional

probability delay unit requires that the sampling repetition periods be as long as one

millisecond. Combining the above requirements, it was decided that the sampling

repetition period should be variable from about 5 tsec to 1 msec. The choice of 5 tsec

as a lower limit is a compromise choice resulting from the fact that, as the sampling

repetition period becomes shorter, the equipment becomes more complex.

The maximum sampling pulse duration is determined by the method of operation of

the level selector. The level selector generates an output pulse whenever the amplitude

of its input pulse, X(t), falls in a specified interval (X 1 , X1 + AX1 ). Then the maximum

sampling pulse duration should be such that the voice wave cannot cause the pulse instan-

taneous amplitude to change by more than AX1 , during the pulse. Let us assume that
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the voice wave has a maximum frequency, f max. An estimate of the most severe case
may then be made by assuming that the wave being studied is a sine wave, of frequency

fmax' and that the sine wave amplitude equals the maximum amplitude that can be
studied. That is, the input wave x(t) is given by

N Ax 1 sin wo t
x(t) = 2 (112)

where N is the number of adjacent amplitude intervals of width Ax1 that can be studied.

The maximum slope of this wave is (N Ax1 omax)/2. The requirement on pulse duration
then becomes

Na x 1 max 6N xmaxb Ax1 (113)

where 6 is the sampling pulse duration. Solving for 6, we obtain the inequality

6 1< N (114)

max

Choosing a sampling pulse duration of 0.5 sec, we then see that fmax may be 6.4 kcps
if N equals 100, or fmax may be 12.8 kcps if N equals 50. On this basis, it was decided
that a one-half microsecond sampling pulse duration would be suitable for the purposes
of this study.

The required amplitude range of variation of the amplitude modulated output pulse is
determined by the characteristics of the level selectors. As discussed later, the ampli-
tude interval of the level selectors is about one volt. If we then require that the system
be able to investigate up to one hundred adjacent amplitude intervals, the required range
of variation of the output pulses becomes 100 volts.

Design and operation details

The design of an equipment capable of meeting the above requirements is reasonably
straight-forward and use may be made of well known pulse-circuit design techniques (21).
The schematic circuit diagram of such an equipment is shown in Fig. XXX.

The operation of the pulse amplitude modulator is as follows: The sampling pulse
repetition period is determined by the free-running repetition period of the plate-coupled
multivibrator, V1. The repetition period of this multivibrator may be varied from 5 sec
to about 1. 3 msec by changing the grid-circuit time constants. The waveform at the plate
of VIA is inverted by the amplifier V2, and is peaked by a short-time constant RC coupling
network so as to form pulses suitable for triggering the sampling pulse generator, V3.
V3 is a cathode-coupled, "one-shot", multivibrator. It generates a constant-amplitude,
fixed-duration output pulse each time it is triggered. The duration of the output pulse
may be fixed at any value between 0.4 and 1.0 isec by appropriately setting the pulse
width control. The output pulses of the sampling pulse generator are applied, through
the cathode-follower V4, to the suppressor grid of the Sampler, V6, and also to the
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Fig. XXX Pulse amplitude modulator.

trigger pulse output jacks through the cathode follower, V5.

The voice wave is applied to the control grid of the Sampler, V6. The suppressor

grid of this tube is normally biased beyond cutoff, hence no plate current may flow

until the suppressor grid voltage is raised above cutoff by the sampling pulses. The

sampling pulses are constant amplitude pulses, hence the amplitude of the sampler

output pulses is determined by the amplitude of the voice wave during the sampling pulse.

The sampler output pulses are amplified and inverted by V7, and are applied to the

amplitude modulated pulse output jacks through the cathode follower V9. These output

pulses are thus positive pulses whose amplitude may be varied linearly (from about

+ 20 volts to + 140 volts) by the control grid voltage of the sampler. The quiescent

value of the control grid bias of the sampler is adjusted so that, with no voice wave

applied, the amplitude of the output pulse lies in the center of its linear range of variation.

Design requirements of the level selector

The purpose of the level selector, or amplitude interval discriminator, is to generate

an output pulse whenever the amplitude of its input pulse, X(t), falls within a specified

amplitude interval, (X 1 , X1 + AX 1 ). The basic form of the level selector, shown by

Fig. XXXI, consists of two amplitude discriminators and an anticoincidence circuit.

-55-

-I

-- Ml 
t' T At GZC|% _ =__h_

1.

a. I
.I.= -

me. -"-tYY~ns-I - = MTI-1 (1CU
W LUS~~ SeLMt~olft

·u·e
� ·L�N·



Fig. XXXI The level selector.

Ideally, an amplitude discriminator is a device whose output is identically zero for input

amplitudes less than a specified constant value, and nonzero for an input amplitude

greater than that discrimination amplitude. Thus if the event [X(t) < X1 ] occurs, neither

amplitude discriminator generates an output, and no level selector output is obtained.

If the event [X1 . X(t) < X1 + AX1 occurs, the X1 amplitude discriminator output is

nonzero, while the (X1 + AX1) amplitude discriminator output is zero. Hence a level

selector output is obtained. On the other hand, if the event jX1 + aX 1 < X(t)l occurs, then

both amplitude discriminators produce outputs which are mutually cancelled by the

anticoincidence circuit, hence no level selector output is obtained.

Amplitude discriminators have previously been designed for voice wave studies (14,

15), for radar systems (21), and for nuclear physics studies (22). Also, level selectors

have previously been designed for nuclear physics studies (22). Hence the basic design

of a level selector is more or less straight-forward. However, the particular require-

ments placed upon the level selector by this study required a new design.

The design of a level selector is determined principally by the given characteristics

of the input pulses, and by the specification of the amplitude interval width, A X 1 . The

principal characteristics of the input pulses that affect the operation of the level selector

are the shape and the repetition period. Ideally, the input pulses are rectangular pulses

whose height is determined by the amplitude of the voice wave at the time of sampling.

However, these pulses pass through various circuits and waveform distortion invariably

occurs. If the input pulse has sloping sides, any input pulse, whose peak amplitude is

greater than the upper limit of the amplitude interval being observed, will take a short,

but nonzero, interval of time to traverse the observation interval. The anticoincidence

circuit must then be designed so that no level selector output is obtained from this

sloping wavefront phenomenon.

The design of the level selector is affected by the repetition period of the input pulses,

as the resolution time of the level selector must be shorter than the shortest input

pulse repetition period used. That is, the level selector must be able to respond

accurately to every input pulse, regardless of the time intervals between pulses.

The specification of the amplitude interval width, AX 1 , is determined mainly by the

desired equipment accuracy. Equipment measurement errors are introduced because

of the fact that the discrimination amplitudes of physical devices cannot be maintained

absolutely constant. In order to reduce the errors due to this phenomenon, the amplitude
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interval width should be made large as compared to the range of variation of the dis-

crimination amplitude. However, the greater the width of the amplitude interval AX 1 ,

the greater must be the range of amplitude variation of the input pulses, and some com-

promise must be made.

Design and operation details

A level selector capable of meeting the aforementioned design requirements is shown

in schematic diagram form by Fig. XXXII. Idealized waveforms relating to this equip-

ment are given in Fig. XXXIII for the two cases of greatest interest: an input pulse

whose amplitude falls in the interval (X 1 + aX 1 ), and an input pulse whose amplitude

lies above that interval. The detailed operation of this unit is discussed below.

The amplitude discriminators used in the level selector developed for this investi-

gation are the lower amplitude discriminator composed of tubes V5, V7 and V9, and the

upper amplitude discriminator composed of tubes V6, V8, and V10. Basically these

amplitude discriminators are cathode-coupled, one-shot multivibrators, V7 and V8,

modified by the addition of compensation tubes, V9 and V10, and by the addition of level

set tubes, V5 and V6. The compensation and level set tubes are added to improve the

resolution time and the constancy of the discrimination amplitude. With such an

arrangement the resoltuion time is equal to the duration of the pulse generated by the

upper level multivibrator, V8, plus about one microsecond, and the range of variation

of discrimination amplitude is limited to about one-half volt. By setting the discrimi-

nation amplitude of the upper level multivibrator 10 volts higher than the discrimination

amplitude of the lower level multivibrator, the range of variation of discrimination

amplitude, at each end of the desired amplitude interval, is limited to about 5 percent

of the amplitude interval width.

With a 10-volt amplitude interval required by the amplitude discriminators and a

requirement of being able to study 100 adjacent intervals, the voice amplitude modulated

pulses would have to have a range of amplitude variation of 1000 volts if applied directly

to the amplitude discriminators discussed above. Such a difficulty is avoided by the

insertion of a two-stage slicer, V2 and V3, between the amplitude discriminators and

the input voice amplitude modulated pulses. A "slicer" is composed of a cathode

follower driving a grounded-grid triode amplifier. If the slicer input voltage is any

value below a certain voltage, E, the cathode follower is cutoff, and the output voltage

is constant at a value dependent upon the design of the grounded-grid amplifier. If the

slicer input voltage is any value above a certain other voltage, E 2 and E 1 , then the output

voltage of the cathode follower is sufficient to cutoff the grounded-grid amplifier. Hence

the slicer output voltage is constant at the value equal to the plate supply voltage. If

the slicer voltage is between the limits E 1 and E 2 , the slicer acts as a linear amplifier.

The advantages of a slicer over a conventional amplifier are the described limiting

action and the high inherent stability due to the large amount of degenerative feedback

on each tube. The two-stage slicer, V2 and V3, is adjusted so that the voltage gain
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Fig. XXXII The level selector.

of the combination (including the cathode follower, V4) is 10, and the peak-to-peak

amplitude swing at the output is about 30 volts. The amplitude discriminators are then

adjusted so that the required 10-volt amplitude interval corresponds to the center portion

of the region of the slicer output. Thus, the corresponding amplitude interval at the

input to the slicer has a width of one volt. The required range of variation of amplitude

of the input voice modulated pulses is hence 100 volts.

The amplitude discriminators are designed to give an indication of whether or not

the positive peak of the pulse occurring at the input to the first slicer lies between two

fixed voltage limits, set one volt apart. This fixed voltage interval may be adjusted to

correspond to any arbitrarily located input pulse amplitude interval by establishing

a suitable reference voltage level for the bases of the input pulses. This is accomplished

by means of the clamper, VI, and the level selector potentiometer. Thus the voltage

level of the base line of the pulses at the input to the slicer (Eref in Fig. XXXIII-A) is

established by the setting of the level selector potentiometer. Because of precision

requirements, the level selector potentiometer was composed of wire-wound elements.

It was also found necessary to supply this potentiometer from a set of batteries, as the
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EDU . available regulated power supplies did

EREF (A) SLICER INPUT-GRID (P5)-V2 not have adequate stability of output voltage

Ebb r I over the period of a working day.

2Ebo -2LS _ When the instantaneous amplitude of
(B) PLATE-LOWER LEVEL MULTIVIBRATOR -V7 the slicer input pulse exceeds the value

corresponding to the discrimination ampli-
Eco

tude of the lower level multivibrator (EDL

(C) GRID-2S DELLAY GEN -VIIA | in Fig. XXXIII-A), the lower level multi-
Iss l vibrator generates a rectangular output

pulse approximately 2 pLsec long (Fig.

XXXIII-B). The output of the lower level
(D) CONTROL GRID-ANTI-COINENCE TE-V12 multivibrator is then peaked and clipped by

Ico= = |v At the grid-coupling circuit of the two-micro-
Eco

second delay generator V11A. The wave-
(E) SUPPR. GRID-ANTI-COINCIDENCE TUBE-VI2 form at the grid of V 1A (Fig. XXXIII-C)

then consists of a small positive pulse

occurring at the start of the lower level

- ,t multivibrator output pulse, and a large
(F) LEVEL PULSE OUTPUT

negative pulse occurring at the end of the

Fig. XXXIII Level selector idealized lower level multivibrator output pulse.
waveforms.

The waveform at the plate of V1 1A thus

consists mainly of a positive pulse (about one microsecond long) occurring at the end

of the lower level multivibrator output pulse. The output of V11A is applied to the

control grid of the anticoincidence tube, V12. The control grid of V12 is normally

biased below cutoff, and is raised to about zero volts (Fig. XXXIII-D) by the output of

V 1 1A.

When the instantaneous amplitude of the slicer input pulse exceeds the value corre-

sponding to the discrimination amplitude of the upper level multivibrator (EDU in Fig.

XXXIII-A), the upper level multivibrator generates a rectangular output pulse approxi-

mately 4 [sec long. This pulse is inverted by V1 B and is applied to the suppressor

grid of the anticoincidence tube, V12. The suppressor grid of V12 is normally biased

to zero volts and if an upper level multivibrator output pulse occurs, the suppressor

grid of V12 is driven below cutoff (Fig. XXXIII-E) for about 4 [sec.

We then have three cases of interest: (a) If the slicer input pulse amplitude is less

than EDL' then neither level multivibrator is triggered and the control grid of the anti-

coincidence tube V12 is maintained below cutoff. (b) If the slicer input pulse amplitude

lies between EDL and EDU, both the control and suppressor grids of V12 are simul-

taneously above cutoff momentarily and a negative pulse appears at the output of V12.

(c) If the slicer input pulse amplitude is greater than EDU, the suppressor grid of V12

is driven below cutoff when its control grid is driven above cutoff and V12 is maintained

in a cutoff condition. The length of the output pulse of the upper level multivibrator is
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made long enough to cancel the positive pulse on the control grid completely, regardless

of the time required for the slicer input pulse to traverse the amplitude interval (EDL,

EDU). Thus only if case (b) occurs, does a pulse occur at the output of V12. The

output pulse of V12 is amplified and inverted by V12, and supplied to the level pulse

output jack through the cathode follower, V14, as a positive, 25-volt pulse about 1 Isec

long. (Fig. XXXIII-F).

Design requirements of the conditional probability delay unit

Reference to Fig. XXIX shows that the conditional probability delay unit is composed

of two main parts: a delay unit and a coincidence circuit. The purpose of the conditional

probability delay unit is to delay one of its two inputs by a time, T , and to determine the

coincidence, or lack of coincidence, between the delayed input and its other input.

The required range of variation of the delay time, T , is determined by the character-

istics of the random phenomenon being studied. From photographs of the instantaneous

waveforms of various voiced sounds, it was determined that the time duration of these

sounds was of the order of magnitude of 0. 1 sec. On this basis it was estimated that

significant variations in the various conditional probabilities might possibly be obtained

for values of T out to about 0. 1 second. The experimental results given earlier confirm

this estimate. The minimum required value of T is theoretically zero, but it was felt

that a practical lower limit would be between 5 usec and 10 1Jsec.

The extent of the required range of variation of T immediately makes it practically

impossible to use a transmission line type of delay unit. These units have been built

with some success for delays of the order of 1 msec, but become extremely unwieldy

for delays of the order of 0. 1 second. The longer delays may easily be obtained by

using some such system as a moving magnetic type with displaced pickup heads. However

this system becomes mechanically unwieldy for the very short values of T. Rather than

attempt to combine these methods, it was decided to use pulse counting techniques. The

method chosen involves the formation of delay by counting a specified number of sampling

pulse repetition periods. The magnitude of the delay time may then be varied by

changing the duration of the sampling pulse repetition period and by changing the number

of repetition periods counted. The system developed, and explained below, is believed

to be new and to be one of the simplest inherently accurate systems capable of covering

the desired range of variation of the time delay, T -

Design and operation

A conditional probability delay unit capable of meeting the aforementioned require-

ments is shown in schematic diagram form by Fig. XXXIV. Idealized waveforms

relating to this equipment are shown in Fig. XXXV. These waveforms are for the

particular case of four periods delay.

In order to describe the operation of this unit, let us suppose that the system has

been reset (i.e. there are no pulses in the counters). In this condition, the left half of

-60-



® a e e 

E e
ee e9

® 

0

9

Fig. XXXIV Conditional probability delay unit.

II II II II II II i
(A)'REP RATE PULSE" INPUT I

I IL IL
(B)"LEVEL*I PULSE INPUT" 

(C) SUPPRESSOR GRID- REPETITION RATE GATE -V4
I I

H
(D) PLATE-TRIGGER GENERATOR-V20

I _
I I
I 

(E) SUPPRESSOR GRID-COINCIDENCE TUBE-V23

II
_ R v * . t e I)LLVA .. P .U.L.E IU

(G) CONDmONAL PULSE OUTPUT'

Fig. XXXV Conditional probability delay unit idealized waveform, 4 periods delay.
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the enabling flip-flop, V3, is conducting, and the right half is cutoff. Thus the grid

voltage of the left half of V3 is slightly above zero volts, while the grid voltage of the

right half is below the cutoff voltage. Consequently, the suppressor grid voltage of the

input tube, V1, is slightly above zero volts and this tube is able to conduct plate current.

Also, the suppressor grid voltage of the repetition rate gate, V4, is below its cutoff

value, and the plate current of this tube is cutoff. Let us suppose now that a pulse occurs

at the output of level selector No. 1, and is shown by Fig. XXXV-B. This pulse will be

amplified and inverted by input tube V1. The negative pulse at the plate of VI will be

peaked and clipped by the grid coupling circuit of the one-microsecond delay tube V2.

The grid voltage at V2 will consist of a small negative pulse corresponding to the start

of the input pulse, and a large positive pulse appearing at the end of the input pulse.

Thus a large negative pulse will appear at the plate of V2 at a time corresponding to the

end of the input pulse.

The negative pulse at the plate of V2 will cause the enabling flip-flop to flip, thus

causing the suppressor grid of input tube V1 to be driven below cutoff, and causing the

suppressor grid of the repetition rate gate, V4, to be driven upwards to about zero

volts (Fig. XXXV-C). Thus the input tube will not respond further to level No. 1 pulses,

but the repetition rate gate will now respond to the sampling pulses.

When the suppressor grid of the repetition rate gate V4 is above cutoff, the inverted

sampling pulses will appear at the plate of V4. These negative pulses are amplified by

the two-stage amplifier V5. The amplified negative pulses are then applied to a seven-

stage binary counter, V7 through V19. The output waveform of the first counter, V7,

is driven negative by the second sampling pulse after the occurrence of the level No.

1 pulse occurring at the grid of the input tube. Similarly, the output waveform of the

second counter, V9, is driven negative by the fourth sampling pulse after the level No.

1 input pulse. Finally, the output waveform of the last counter, V19, is driven negative

by the 128th sampling pulse after the occurrence of the level No. 1 input pulse. Depending

upon the position of the periods delay switch, a negative pulse appears at the grid of

the trigger tube, V20, corresponding to the first, second, fourth, ... , or one hundred

and twenty-eighth sampling pulse after the occurrence of the level No. 1 input pulse.

The negative pulse appearing at the grid of the triggering tube, is also applied to

the right hand grid of the enabling flip-flop, V3, causing that tube to flop back to its

original state, turning on the input tube, V1, and turning off the repetition rate gate,

V4. In addition, the negative pulse at the grid of the triggering tube, V20, is inverted

and amplified by that tube (Fig. XXXV-D) and used to trigger the coincidence gate

generator, V21. The output of V21 is a positive pulse applied to the suppressor grid

of the coincidence tube, V23 (Fig. XXXVII-E). This pulse also is applied, through the

cathode follower, V26, to the level No. 1 pulse output jacks.

Normally, the suppressor grid voltage of the coincidence tube is maintained below

the cutoff value. Hence, even though the level selector No. 2 output pulses (Fig. XXXV-F)

are applied to the control grid of the coincidence tube, no output is obtained from the
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coincidence unless there is a simultaneous occurrence of a gate pulse at the suppressor

grid and a level No. 2 pulse at the control grid. If such a coincidence occurs, a negative
pulse appears at the plate of the coincidence tube, V23. This pulse is inverted and
amplified by V24, and is applied to the conditional pulse output jacks, through the cathode
follower, V25, as a positive rectangular pulse of about 25 volts amplitude and 1 Lsec

duration (Fig. XXXV-G).

The occurrence of a conditional pulse output at a time, t, thus corresponds to the
joint occurrence of a pulse at the output of level selector No. 2 at the time t, and a
pulse at the output of level selector No. 1 at the previous time, t - T. Thus, the ratio
of the number of pulses appearing at the conditional pulse output jacks to the number of
pulses appearing at the level No. 1 pulse output jacks, in a given measurement interval,
gives a measure of the probability that a pulse occurs in the amplitude interval of level
selector No. 2 conditional on the occurrence of a pulse in the amplitude interval of level
selector No. 1 at a time T previously. By varying the sampling repetition period from
5 ,usec to 1 msec, and by varying the number of periods delay from one to one hundred
and twenty eight, the delay time T may be varied from 5 sec to about 0. 13 seconds.

The main disadvantage of the conditional probability delay unit discussed above is
the so-called lost pulse effect. A review of the operation of this system discloses
that once a level No. 1 pulse initiates the delay counter chain, no further level No. 1
pulses can affect the unit until after the delay interval, T . Level No. 1 pulses that
occur during the delay interval are the lost pulses. The effect of these lost pulses
on the accuracy of measurement depends on whether or not the sampling wave and the
wave being studied are statistically independent. If these two waves are independent
statistically, as they are in the case of the amplitude distribution measurements
(including the measurement of the autocorrelation function of the clipped speech wave),
the lost pulse effect in essence converts the measurement process from the case of
periodic sampling to the case of random sampling with a reduction in te effective
number of samples. In order to maintain a given accuracy, measurements must then
be made over a longer measurement interval. If, on the other hand, the two waves

are not statistically independent, as is the case of the measurement of P(T T 1, m)
discussed previously, an undetermined error is introduced. The exact effects of this
error have not been studied. In any case, the lost pulse phenomenon does not occur,
of course, if only one period delay is used.

Overall characteristics

An overall view of the entire equipment used in this investigation is given in
Figs. XXXVI and XXXVII. This equipment is contained in three six-foot relay racks.
The left hand rack in Fig. XXXVI contains the zero-crossing distribution equipment,
the center rack contains the amplitude-distribution equipment, and the right hand rack
contains the counters.

The units of the amplitude distribution equipment contained in the center rack are,
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from top to bottom: the pulse amplitude modulator, level selector No. 1, level selector
No. 2, the conditional probability delay unit, a - 100 volt regulated power supply, and
two + 300 volt regulated power supplies. The units contained in the counter rack are
from top to bottom, three counters, a + 300 volt regulated power supply, a filament
transformer, and a + 300 volt regulated power supply. The unit on the floor by the center
rack is a voltage regulating transformer. In order to meet the stability requirements
placed on this equipment, it was found necessary to use a separate filament transformer

for each chassis of the amplitude-distribution equipment, and to supply the individual

filament transformers from a voltage regulating transformer.

The overall long time stability of the amplitude distribution equipment was determined
by making two types of measurement at specified times after the entire equipment was
turned on. With no modulating signal applied to the pulse amplitude modulator, the
height of the unmodulated output pulse of this unit was measured with each level selector.
This test provides a measurement of the stability of the pulse amplitude modulator and
of the level selector potentiometer circuits. A 1-kcps sine wave was then used to
modulate the pulse amplitude modulator. The amplitude of this sine wave was adjusted
until the range of variation of the amplitude modulated output pulses was about fifty volts.
The relative frequency of occurrence of the center one volt amplitude interval was then
measured. The first probability distribution density of the instantaneous amplitude for
a sine wave is quite flat at its center, hence slight shifts in the location of the interval
being studied will produce practically no changes in the measured relative frequency.
However, any change in the width of the amplitude interval produces an almost equal
change in the relative frequency. Thus this test mainly provides a measurement of
the stability of the complete level selector.

The results of the above tests are plotted in Fig. XXXVIII. It may be seen from
this figure that the accuracy requirements placed upon the amplitude distribution
equipment are met after the system has been in operation for a period of about six
hours. This period corresponds roughly to the time required for the system to reach
a temperature equilibrium. Once warmed up, the system will operate satisfactorily
unless the temperature rating of some component is exceeded, or some other failure
occurs. With forced air cooling, this equipment has been operated satisfactorily for
continuous periods up to three weeks (about five hundred hours). It should be mentioned
at this time, that the auxiliary equipment may also require a warmup time. For example,
significant tape speed changes may occur during the first hour of operation of the
magnetic tape recorder.

D. Zero-Crossing Distribution Equipment

Introduction

A review of sec. II-B would show that the autocorrelation function of the clipped
speech wave could be measured with the amplitude-distribution equipment discussed
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earlier. The only change that would have to be made would be to disable the upper level

multivibrator so that the level selectors would indicate whether or not the amplitudes

of their input pulses were above a specified amplitude (corresponding to zero amplitude

of the voice wave).

A review of secs. II-A and II-B would show that the first probability distribution

density W 1 (To) and the conditional probability P(T 1 T 1, m) could be measured with the

system shown in block diagram form by Fig. XXXIX. Examination of this figure shows

that the only items of equipment not previously discussed are the 20-cps square-wave

bias generator, the clipped wave generator, and the zero-crossing pulse generator.

An available square wave generator (Measurements Corporation- Model 71) was used,

but the clipped-wave generator and the zero-crossing pulse generator had to be designed

and constructed specifically for this investigation.

The clipped wave generator

The purpose of the clipped wave generator is to convert the voice wave into a zero-

crossing wave. That is, the output of the clipped wave generator should be constant

at one value when the voice wave is negative, and constant at a different value when the

voice wave is positive. For satisfactory operation of the succeeding apparatus, the

output pulses of the clipped wave generator should have a peak to peak amplitude of at
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at least twenty volts.

The design of an equipment capable of meeting the above requirements is straight

forward, and use may be made of well known pulse circuit design techniques. The

schematic diagram of such an equipment is shown by Fig. XL.

The design and operation of the clipped wave generator is as follows: The voice

wave is applied to one grid of the dual-triode mixer, or adding tube, V1. The square

wave bias signal is applied to the other grid of the mixer tube, V1. The plate waveform

of V1 thus is the sum of the voice and bias waves. The output of V1 is then amplified

and clipped by the five-stage slicer, V2 through V6. Each stage of the slicer is composed

of a cathode follower driving a grounded grid amplifier, and is of the same form as that

of the slicers used in the level selector. This form of clipper was chosen because of

its high inherent stability. The output of the last slicer stage, V6, is supplied to the

clipped wave output jacks through cathode follower, V7.

The measured output of the unit described above is a thirty volt, peak-to-peak,

essentially rectangular wave. The measured rise time from ten percent to ninety

percent amplitude is about 2 sec, and there is about a five percent droop of the

horizontal portions of the rectangular wave for a twenty cycle per second sinusoidal

input wave. The clipping level of this unit (i. e. the largest signal input which will not

be clipped) is about 1.1 mv peak to peak. Thus, if the applied voice wave has a peak

to peak amplitude of 1.1 volts, a sixty db clipping ratio is obtained. With no signals

applied, and a six hundred ohm shunt across the audio input terminals (as usually con-

nected for cable termination), the effective noise voltage referred to the input terminals

is about 0. 3 mv peak to peak. These characteristics are entirely adequate for the

purposes of this investigation.

Design requirements of the zero-crossing pulse generator

The purpose of the zero-crossing pulse generator is to generate sets of pulses which,

when supplied to the amplitude-distribution equipment, will enable the measurement of

the various zero-crossing period distributions. Two sets of pulses are required: the

zero-crossing pulses which are constant amplitude pulses occurring at the times of the

zero crossings, and the period pulses which are varying amplitude pulses occurring at

the times of the zero crossings. The amplitude of any given period pulse should be a

function only of the duration of the zero-crossing period occurring between that pulse

and the preceding period pulse. This restriction eliminates the possibility of using

previously designed equipments such as frequency meters or the like. These devices

have invariably been designed so as to involve an averaging effect over several zero-

crossing periods.

The main design criterion to be met is that the equipment be able to respond to the

entire zero-crossing period range of the speech wave. As shown by the various curves

given earlier, the required ratio of maximum to minimum period may well be of the

order of one thousand to one. In order to cover easily such a range, it was decided that
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Fig. XXXIX Zero-crossing distribution equipment.
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Fig. XL The clipped-wave generator.
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the relation between period pulse amplitude and zero-crossing period should be of the

form T

E = a1- )E (115)

where E is the amplitude of the period pulse, T 1 is the duration of the zero-crossing

period, and where a and b are appropriately chosen constants. The main advantage

of this particular functional relationship between E and T 1 is the ease with which it

may be obtained practically.

Design and operation details

A zero-crossing pulse generator capable of meeting the aforementioned design

requirements is shown in schematic diagram form by Fig. XLI. Idealized waveforms

relating to this equipment are given in Fig. XLII. The detailed operation of this unit

is discussed below.

The clipped speech wave input (Fig. XLII-A) is applied to a slicer, Vi. This slicer

differs from the previously discussed slicers in that positive feedback is used to

decrease the rise and fall time of the resultant output wave. The output wave of VI

is then peaked and applied to the polarity inverter, V2. The input grid waveform of

V2 then consists of a positive pulse whenever the clipped speech wave jumps positively,

and a negative pulse whenever the clipped speech wave jumps negatively. The cathode

output waveform from V2 has the same form as its grid waveform. The cathode wave-

form of V2 is further peaked and applied to the right hand grid of the common-cathode

impedance clipper mixer, V3 (Fig. XLII-B). The plate output waveform of V2 is the

polarity inverted counterpart of the cathode waveform. The plate waveform of V2 is

further peaked and applied to the left hand grid of the clipper-mixer V3 (Fig. XLII-C).

The negative peaks of the grid waveforms of V3 drive the respective halves of that tube

beyond cutoff and thus do not appear at the cathode. Therefore, the waveform at the

cathode of V3 consists of a positive pulse each time the clipped speech waveform changes

state regardless of the direction of change. These pulses are used to trigger the

1-Itsec pulse generator, V4. The plate waveform of V4 (Fig. XLII-D) thus consists of

a positive, l-Rsec, rectangular pulse eacn time the clipped speech wave changes state.

These pulses are supplied to the zero-crossing pulse output jacks through the cathode

follower, V9.

The positive pulses appearing at the plate of the 1-iRsec pulse generator are also

applied to the grid of the 1-pusec delay tube, V5A. The plate waveform of V5A consists

of negative, l-iusec pulses. These pulses are peaked and the negative peak is clipped

by the output coupling circuit of V5A. The resultant waveform thus consists of a

positive pulse appearing at the end of the 1 -sec input pulse, and is used to trigger the

5-[sec pulse generator, V6. The plate waveform of V6 thus consists of a 5-sec

rectangular pulse (Fig. XLII-E) starting at the end of the 1-,usec zero-crossing pulse.

This 5-isec pulse is then used to operate the zero-crossing period sawtooth generator
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composed of tubes V5B, V7, V10 through V15, and V20.

The zero-crossing period sawtooth generator consists basically of a feedback-type

sawtooth generator, V10, V14, and V15. The remaining tubes, V5B, V7, V11, V12,

V13, and V20 are added to adapt this basic sawtooth generator to fit the particular

requirements of our problem.

For convenience let us assume that a zero-crossing period has just ended. At the

end of the l-,isec zero-crossing pulse, the 5-iLsec pulse output of V6 is inverted and

applied to the suppressor grid of the sawtooth generator, V14, cutting off the plate

current of that tube. A positive 5- 1 zsec pulse is simultaneously applied to the normally

below cutoff grid of the sawtooth switch tube, V10. The cathode of V10 is maintained

at about -14 volts. The positive pulse on the grid of the switch tube, V10 then causes

plate current to flow through that tube. The plate current of V10 flows from ground

through the clamping diode, V11, hence, as the conducting impedance of the diode is

very low, the plate voltage of the switch tube, V10, tends to be driven to about zero

volts. The combination of cutting off the plate current of V14, and clamping of the

plate voltage of V10, causes the 1000-4p}farad sawtooth generating condenser (connected

from the control grid of V14 to the cathode of V15) to be rapidly charged. The charging

time constant is considerably smaller than 5 Lsec. Thus, by the end of the 5-4sec

pulse, the control grid voltage of V14 has reached a constant value of about zero volts.

A

Ebo

Ebb

Ebo

-I

A4'
ES

(A)"CLIPPEID WAVE INPUT"

(B)GRID(P6)-CLIPPER MIXER-V3

_ . .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(F) CONTROL GR

I

Kf _

(G)" PERIOD PULSE OUTPUT "

Fig. XLII Zero-crossing pulse generator idealized waveforms.

At the end of the 5- 1Lsec pulse, the switch tube, V10, is returned to its normally

cutoff condition, and the suppressor grid of the sawtooth generator, V14, is returned

to a value permitting the plate current of that tube to flow. Thus the 1000-puufarad

sawtooth condenser starts to discharge with a time constant equal to 1000-iLfarad times

the 620 kilohms of the discharge resistance (connected from the control grid of V14 to

-71-

Y(C) GRID (P5)- CLIPPER MIXER-V3

- I I

(D) PLATE- ISEC. PULSE GENERATOR-V4
_ 1 .

(E) PLATE- 5!.SEC. PULSE GENERATOR-V6

CI

D- SAMPLING TUBE-V16

Y
h-

i- I

1, i -- ' 

L

Lt

I 7-

I

I
_ r

T 1 t



the cathode of the charging voltage set tube, V13) times the effective voltage gain of the

sawtooth generator, V14. This process continues until the end of the next occurring

l- 1 ±sec zero-crossing pulse. The control grid waveform of V14 is thus an exponentially

rising voltage. The maximum value to which this grid voltage may rise is set by the

charging voltage set tube, V13, (and is about + 6 to + 8 volts). At the end of the next

occurring zero-crossing pulse, another 5-~psec pulse is generated by V6, and the process

repeats itself.

The sawtooth waveform appearing at the control grid of the sawtooth generator, V14,

is simultaneously applied to the control grid of the sampling tube, V16 (Fig. XLII-F).

The suppressor grid of the sampling tube is maintained below cutoff, thus cutting off

the flow of plate current, except during the l-psec zero-crossing pulse. During the

zero-crossing pulse, the suppressor grid of the sampling tube is driven positively

into the conduction region. Thus at this time, a l-pusec negative pulse appears at the

plate of the sampling tube, V16. The amplitude of this pulse is determined by the

amplitude of the control grid voltage of V 16, and hence by the peak amplitude of the

sawtooth waveform generated by the zero-crossing period sawtooth generator.

The negative pulse appearing at the plate of the sampling tube is inverted and

amplified by V 17. The resulting varying amplitude positive pulse is supplied to the

period pulse output jacks through the cathode follower, V19 (Fig. XLII-G). This

output pulse is thus a l-iLsec rectangular pulse occurring when the clipped speech wave

changes state, and whose amplitude is a function only of the duration of the zero-crossing

period occurring between that pulse and the preceding pulse. We have thus finally

obtained the desired period pulse output.

Overall characteristics

Views of the zero-crossing distribution equipment are given in Figs. XXXVI (front

view and XXXVII (rear view) given earlier. The units of the zero-crossing distribution

equipment contained in the left hand rack of Fig. XXXVI are, from top to bottom: the

clipped wave generator, the zero-crossing pulse generator, a vacuum tube voltmeter

(Ballantine Type 300) for monitoring and testing purposes, a 20-cps to 20-kcps sine

wave oscillator (Hewlett-Packard Model HP200 BR) for calibration and testing purposes,

a negative 150-volt regulated power supply, a positive 120-volt regulated power supply,

and a positive 300-volt regulated power supply.

The calibration of the zero-crossing pulse generator may be obtained by connecting

the sine wave oscillator to the input of the clipped wave generator. The output of the

clipped wave generator is in turn connected to the input of the zero-crossing pulse

generator, Finally the period pulse output of the zero-crossing pulse generator is

supplied to one of the level selectors of the amplitude distribution equipment. The

amplitude of the period pulses may then be measured with the level selector, and may

be plotted as a function of the duration of the zero-crossing period of the sine wave

input to form a calibration curve. A typical calibration curve obtained by this method
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is given by Fig. XLIII.

A lt

I'
4
k

'. 0,r~~~~~~~~~~

4'

14

'.464
44

VI

iLTno COS/A POO - MILSrCO#vDS

Conclusions and Suggestions for Further Work

There were two main objectives for this investigation: (1) the design and construc-

tion of apparatus which could measure certain probability distributions of random time

functions, and (2) the application of this apparatus to a preliminary study of the speech

wave.

The problem of measuring a probability of a random time function was shown to

reduce generally to the problem of measuring a time average. The time average may

be measured by a process of sampling and summation, or by continuous integration.

We used a sampling method as its choice simplified the design of the conditional

probability delay unit. However, if suitable continuous delay systems become available,

a simplification of the apparatus may be possible.

The apparatus developed during this study is flexible, reasonably accurate, and

relatively simple. This apparatus can be used in the study of any random process

whose statistics lie in the range of the voice wave statistics. These characteristics,

however, were purchased at the expense of making tedious the taking of data. For

example: for each measurement, the operator must record the pertinent apparatus

settings, start the tape-recorder, start the measurement interval, wait five minutes

or so, stop the measurement interval, stop the tape-recorder, read the counters, and

change the apparatus settings for the next measurement. Later, the probabilities must
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be computed from the counter readings. The total time required per point is the measure-

ment interval' plus about three minutes. If intensive experimental studies of probabilities

are to be made in the future, it is highly recommended that time and effort be devoted

to the development of apparatus which will take a number of data simultaneously, and

which will be automatic in operation.

The measurements made during this study were of the stationary, or long-time,

speech statistics. It was shown that, in order to obtain a reasonable accuracy, the

required measurement interval had to be of the order of three minutes, or more. These

measurements were made mainly for substantially undistorted speech. The results

obtained can, for the most part, be readily explained, and are of interest chiefly in

that they indicate possible directions for future studies. For example, it would now

be of interest to study the effect on the probability distributions of passing speech

through various systems, such as band-pass filters, pre-emphasis circuits.

A further field of interest would be the study of the short-time speech statistics.

This would include the study of the statistics of the individual sounds. Some measurements

of the short-time autocorrelation functions have been made by Stevens (23), and others,

but no published results are known for the short-time probabilities. Studies of this type

might provide useful alternatives to the representation of speech sounds by spectrograms.
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