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Abstract

Transducers are classified according to the manner in which they make use of

storage to control their output. The state of a transducer is specified by the position

of a point in multi-dimensional space. The system function of the transducer is then

determined by attaching to each state point a set of numbers or probabilities charac-

teristic of the output for the corresponding state. The technique of synthesizing non-

linear transducers is considered, and standard forms for synthesizing the various kinds

of transducers are obtained. It is shown that a necessary and sufficient condition for

an invariant finite state transducer to be capable of synthesis in terms of a finite number

of linear elements and rectifiers is that the state-defining regions be bounded by hyper-

plane surfaces. It is found that any nonlinear system function is determined by certain

higher-order autocorrelation functions of the input and crosscorrelations between the

input and output.

The problem of optimum design of nonlinear filters is discussed. It is shown that

if the probability distributions of noise and signal are gaussian, the optimumrhmean-

square filter is linear. For finite-state filters, the criterion of minimizing the proba-

bility of error is employed. The problem is to specify optimum boundaries for the

state-defining regions, and specific design equations are obtained. Several examples

of filter design are given, including an application to the radar search problem.
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THEORY OF NONLINEAR TRANSDUCERS

Introduction

With the publication of Wiener's work, "The Extrapolation, Interpolation, and

Smoothing of Stationary Time Series", network theory gained additional purpose and

direction, and achieved a new maturity (1). In this classical treatise Wiener applied

statistical methods to the problem of selecting optimum linear filter response charac-

teristics. But the book, originally published in 1942 as an N.D.R.C. report, had a

greater significance than is explicit in its treatment of linear filters. In its statement

of the concept that communication signals be regarded as stationary time series and

studied with the tools of mathematical statistics, it laid the groundwork for the develop-

ment of the science of information theory, and was itself a first example of the working

of this powerful new discipline.

Information theory has given precise meaning to the notion of quantity of information

(2, 3, 4), and has made it possible to devise ways of measuring the amount of information

carried by a signal. The statistical theory has also provided the foundation for studies

of the theoretical limitations on the rate of transmission of information in the presence

of noise (5, 6, 7). In the further development of communication systems, information

theory may be expected to assume the responsibility of judging how well the systems

do their jobs. The networks in the systems will be designed in accordance with the

demands of information theory to insure the most effective utilization of noisy or

limited media for the transmission of information (8).

The same decade that has seen the development of information theory has also

witnessed a more general introduction of communication systems which make use of

pulse modulation. The use of pulse techniques tends to draw network design emphasis

away from linearity and equalization, since by means of nonlinear devices the signal

can be reshaped or regenerated when required. Moreover, multi-channel pulse com-

munication systems make use of time division multiplex, mixing and separating channels

in the time domain, and avoiding the use of highly selective filters. It is no accident

that the development of information theory and the exploitation of pulse modulation

should occur together; for it has been shown that the performance of certain quantized

pulse communication systems can be made to approach the limiting ideal performance

specified by information theory (5, 9, 10).

The use of pulse regeneration in the repeaters and decoders of pulse communication

systems implies that the corresponding network theory should include an additional

element, namely the electronic switch. Although electronic switches and other nonlinear

circuit elements are in common use in transducers employed in pulse communication

systems, there has been very little study of such transducers from a general point of

view. There has been no published work at all on the optimum design of such trans-

ducers.

A principal purpose of the present paper is to develop methods of selecting optimum
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response characteristics for a certain class of nonlinear transducers. The function of

the transducers may be described as "information processing", and may include noise

discrimination, filtering, prediction, decoding, etc. Interest is centered chiefly on

transducers which are especially useful in the processing of pulse communication

signals. An additional purpose of the paper is to develop some of the properties of

such transducers, in particular those properties which are related to the statistical

behavior of the transducers. In this connection it should be mentioned that Wiener has

recently suggested a method for making use of the statistical response to random noise

of an unknown nonlinear transducer to obtain a complete mathematical characterization

of the device. This method will be described in a later section.

Wiener's filter theory provided the solution to the problem of selecting optimum

response characteristics for linear transducers operating on prescribed ensembles of

noise and signal. Beyond the requirement of invariance in time, the statistics of the

ensembles were not restricted, but the transducers were required to be linear. In the

present paper, on the other hand, the transducers will be allowed to become nonlinear,

while the statistics characterizing the signals will often be restricted. In most of the

illustrative examples it will be required that the signal statistics conform to those of

one of the quantized pulse communication systems. It is natural that such restrictions

be employed, since it is likely that pulse modulation systems will be the first to make

use of optimum nonlinear information processing devices. Furthermore, as has been

indicated, information theory has shown that certain quantized communication systems

are able to approach the limiting rate of ideal systems.

For the development of the optimum linear filter theory there was already available

a highly developed theory of linear networks themselves, including necessary and

sufficient conditions on transfer functions for physical realizability ( 1, 12), and a

number of synthesis procedures (11, 12, 13, 14). On the other hand, no nonlinear trans-

ducer theory corresponding to the theory of linear transducers is available to provide

a basis for the study of optimum nonlinear systems. A part of the present paper is

accordingly devoted to developing some of the properties of nonlinear transducers. In

general, the properties investigated are those which are pertinent to the selection of

optimum nonlinear systems, or which depend on or characterize the statistical behavior

of nonlinear systems. Principal emphasis of this part of the paper is also placed on

transducers which are especially suitable for processing quantized signals, but a few

properties of more general transducers are also discussed.

I. Classification of Transducers

1.1 General Remarks

By a transducer is meant a device which operates on one time series (the input) to

produce another time series (the output). Since we are interested in the way transducers

function as information processing devices, we shall restrict the inputs to be considered
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to those produced by information sources. The information produced by a source can

be measured in terms of a set of probability distribution functions (2), and so from the

point of view of information processing, a source is completely described by the set of

probability distribution functions which govern its operation. Thus any transducer is

always discussed with reference to the information source with which it is associated.

There is a certain contrast here with the linear theory, where h(t) affords a complete

description of the linear transducer. In the nonlinear theory, the system function which

specifies the behavior of the transducer may in general be different for different sources.

For example, if the input is quantized, it is convenient to make use of a system function

which is defined only for the possible inputs, since a more general description might

be unnecessarily complex. This is not a real limitation, because any given transducer

will usually be designed to work with a particular source, and its response to other

sources is not of interest.

The transducers to be studied are restricted to those which have a finite memory,

and which operate on a finite portion T of the immediate past of the input. If the input

is a continuous function of time, it might at first appear that complete description of a

long portion T of the past of the input could not be stored in a memory system having

a finite capacity. If our sources were completely general, this would in fact be the

case, but the sources considered are always restricted in some way. In particular,

if the source is band limited to the bandwidth W, the past of its input over the time

interval T may be specified by 2TW numbers (5). These numbers could be, for example,

the values of the function at 2TW epochs equally spaced on the time interval T. If

instead of a bandwidth limitation, the source is restricted to produce voltage pulses at

quantized time intervals, the past of the input is specified by the values of the pulses

produced during the interval T. Whatever the method chosen for specifying the past

of the input, it will always be done in terms of a finite set of numbers.

Since the transducer operates on a portion of the past of the input covering a time

interval T, the only information available to the transducer on which to base its output

is the finite set of numbers which characterize the past of its input. Let us assume

that there are s of the numbers. We may consider the state of the transducer as defined

by the values of these s numbers. If we think of the values over which the s numbers

can range as being measured along coordinate axes in an s-dimensional space, called

the transducer space, the coordinates of a point in the space can be used to specify

the state of the transducer. Since the s numbers which characterize the past of the

input to the transducer are functions of time, the state point will move about as time

progresses.

1. 2 Classification of Transducers

We are now in a position to give a more precise definition of various kinds of trans-

ducers:

Invariant transducers. If a definite number can be assigned to each point in
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transducer space, such that the output of the transducer equals this number when the

transducer is in the state defined by the point, the transducer is called time-invariant,

or simply invariant.

Stationary transducers. If a fixed probability distribution can be assigned to each

point in transducer space, such that the output of the transducer has this probability

distribution when the transducer is in the state defined by the point, the transducer

will be said to be stationary.

Finite state transducers. If the transducer can produce only a finite set of output

values, it is called finite state.

If a transducer is invariant, it is also stationary, but the converse is not generally

true. An invariant transducer will be finite state if the input to the transducer is

quantized, so that the state point can occupy only a finite number of different positions.

On the other hand, even if the input is not quantized and the state point varies over an

infinite set of points, an invariant transducer can still be finite state. This will occur

if the transducer space is broken up into a finite number of volume elements, and the

output of the transducer remains constant as long as the state point is in any one volume

element. Stationary transducers will be finite state under the same conditions as

invariant transducers, provided in addition that all the defining probability distributions

of the output are discrete.

1.3 Other Kinds of Transducers

It is of course possible to define many other classes of transducers. One important

class might be transducers whose output depends on certain characteristics of the past

of the input which are not restricted to have been determined in any particular time

interval. A number of dimensions in transducer space would thus be devoted to storing

certain types of information which might depend on portions of the past of the input

indefinitely remote, rather than on just the immediately preceding time interval T. In

the case of a discrete input, a typical datum of this type might be a record of the total

number of pulses received up to the present, or a record of the value of the largest

pulse so far received.

As has been pointed out, we are primarily interested in the application of nonlinear

transducers to the processing of pulse communication signals. The natural transducer

to use for this purpose is the invariant finite state transducer. Accordingly, we next

describe a standard form in which any invariant finite state transducer can be repre-

sented. We then go on to discuss some of the properties of such transducers.

II. Synthesis of Invariant Transducers

2. 1 Synthesis in Terms of Linear Elements and Rectifiers

Various standard forms for representing linear transducers have been known for

some time. These are embodied in the Wiener-Lee canonical form, the Darlington
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insertion loss theory, the Cauer canonical form, and the Gewertz theory. The Wiener-

Lee form (13, 14) is especially suitable for modification to allow the introduction of

nonlinearity. Ways in which this modification may be accomplished will next be dis-

cussed.

We shall prove the following theorem: any invariant transducer driven by a finite

quantized source can be synthesized by means of a finite number of resistors, capacitors,

inductors, rectifiers*, and direct-current sources.

We prove this first for the case where the input symbols to the transducer consist

of quantized voltage pulses of constant duration, uniformly spaced in time and having a

finite number of different amplitudes. An example is shown in Fig. 1. It is unimportant

whether the duration of the pulse

OUTPUT

TIME

Fig. 1 Typical output of a finite
quantized source.

The output of the transducer can

Since the function F describes the

can occur, it may be conveniently

The function F, and therefore the

schematically as shown in Fig. 2.

transducer will be finite state.

s equal the interval between pulses or not.

Let the quantized input pulses have N possible

different amplitudes, and let the transducer be cap-

able of storing at most s input symbols. Then the

transducer can have at most N s possible states.

Let the variable Si designate the various states,

where i ranges from 1 through NS. Corresponding

to each state there will be a specific output symbol.

be represented by a function of the state:

Output = F(Si)

behavior of the transducer under all conditions which

regarded as the system function of the transducer.

behavior of the transducer, can be represented

It is clear, since the input is quantized, that the

F(Si)

Fig. 2 Graphical representation of the system
function of an invariant finite state
transducer.

I 2 3 4 5 6 7 8 ---- N
s

Si STATE OF TRANSDUCER

The past input symbols which determine the output at any instant of time can be

stored in a delay line consisting of a ladder network of inductors and capacitors, ter-

minated in a resistor. The delay line is tapped at intervals equal to the time interval

between input symbols. Although in the present quantized case this implicitly limits

the transducer to one output symbol per input symbol, this limitation will be removed

when we consider continuous inputs.

*By a rectifier is meant an element which is open-circuited for one polarity of current,
and short-circuited for the other polarity.
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Fig. 3 An invariant finite state transducer driven by a finite quantized source.
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The arrangement for producing an arbitrary output as in Fig. 2 from an input such

as that of Fig. 1 is as shown in Fig. 3. For simplicity the transducer is shown as

having storage capacity for only one past symbol, so that its output at any time is a

function of the input symbol which is being produced and of the immediately preceding

symbol. Also for simplicity the source is assumed to produce only three different

symbols, say pulses having amplitudes of a, b, and c volts, where 0 < a < b < c and

A> 0 is chosen such that a > A, b- a >A, and c - b >A. Each stored symbol is applied

to a set of rectifiers which are biassed to voltages indicated on the diagram. Current

will flow in the load resistors when the input symbol is greater than the biassing voltage.

By means of a resistor-rectifier clipper which is biassed A volts higher than the corre-

sponding load resistors, the voltage taken from each load resistor is limited to exactly

A volts. The voltages obtained from adjacent load resistors are applied to opposite ends

of the center-tapped primary of an ideal transformer. It is evident that only one of the

secondaries of the three output transformers will be energized for each input pulse. The

resistor-rectifier clippers at the right-hand terminals of the center-tapped primaries

are to prevent coupling from one transformer to the next. The various possible com-

binations of secondary windings are connected to conventional coincidence circuits, only

one of which will be energized at a time. The required amount of voltage is taken from

each coincidence circuit by means of a resistive voltage divider, and the outputs of all

the voltage dividers are mixed by means of a set of diodes connected to a common load

resistor.

It is not necessary that the period and duration of the quantized pulses remain con-

stant, as has been assumed up to now. If the leading and trailing edges of the pulses

are quantized to discrete epochs kto, k = 1, 2, ... , the argument remains unchanged,

except to note that the taps on the delay line should be placed at intervals equal to to .

Each possible state of the transducer will therefore still produce a unique result.

Although the discussion has been carried through for a particular number of possible

symbols and for a specific amount of storage, these restrictions are in no way necessary.

This completes the proof of the theorem.

For the case of an unquantized source, we obtain the following result: a necessary

and sufficient condition that any finite state transducer be capable of synthesis by means

of a finite number of resistors, inductors, capacitors, rectifiers, and direct-current

sources, is that the regions defining the states of the transducer be bounded by plane

(or hyperplane) surfaces.

It makes little difference whether the source is discrete or continuous. If it is

discrete, the taps on the delay line are placed at intervals equal to the separation

between symbols. If the source is continuous, we assume that the bandwidth occupied

by its output is finite. Let W be the bandwidth of the source. Then the taps on the

delay line are placed at intervals equal to 1/2W. As is well known, the past of the input

is then specified in the range t = 0 to t = s/2W, where s is the number of taps on the

delay line.
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We first prove the sufficiency of the condition. To that end, we describe a trans-

ducer which will indicate in which of a set of sub-ranges a voltage varying over a con-

tinuous range lies. In Fig. 4 the ranges are defined by means of the voltages to which

Fig. 4 Transducer to indicate range in which a varying voltage lies.

the upper rectifiers are biassed. The ideal transformer across each of the rectifier

load resistors steps up the voltage by a very large factor. The resulting voltage is

clipped by a resistor-rectifier clipper biassed to a small positive voltage. By making

the voltage step-up of the ideal transformer sufficiently large, a standard voltage is

obtained at the output of the clipper, independent of how much greater than the bias

voltage the input voltage is. These resulting voltages are then applied in pairs to

opposite ends of the center-tapped primaries of ideal transformers, as in the earlier

figure. Only one of the transformer secondaries will be energized, in accordance with

the range in which the input voltage lies. An exception occurs when the input voltage

lies just above and very close to one of the biassing voltages. In this case, the voltage

across the secondary of the step-up transformer will not be large enough to be clipped,

so that a nonstandard output will be obtained from two range indicators, rather than a

standard output from one. The proportion of time during which such failures occur

can be made arbitrarily small by increasing the step-up ratio of the transformer and

decreasing the clipping bias voltage. It should be noted that this peculiarity is not

limited to the representation selected here, but is characteristic, in one form or

another, of any finite-state transducer driven by an unquantized continuous source.

That is, the peculiarity should be present in the representation.

We next note that any plane surface in the s-dimensional space of the transducer can

be represented by an equation of the form

a1 x1 + a 2 2 + ... + a s X =C (1)
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For all points[x]= (xl x2 , ... , xs) on one side of the plane,Za i x i > c, while for all

points [x] on the other side of the plane, Xai xi < c. This is true since Eq. 1 is con-

tinuous in the x i , and it is therefore impossible to pass continuously from a point where

ai x i > c to a point where Za i x i < c without passing through a point in the plane.

Now assume that the region Rk which defines the state Sk is bounded by a set of n

plane surfaces:

Z aji x i = cj, j = 1, ... , n . (2)
i=l

In general some of the planes represented by Eq. 2 will not only bound, but will also

pass through the region R k, breaking it up into a number of sub-regions. Each of these

sub-regions will be bounded by a subset of the planes represented by Eq. 2. The con-

dition that a point [x] lie within a particular one of sub-regions bounded by the planes

aji Xi = Cj, j = jl, 2 (3)
i=l

is that [x] satisfy simultaneously a set of inequalities of the form:

ajix i > c,=j, j lJ(4) 
i=l

since as long as the point [x] stays within a sub-region it cannot cross any of the bounding

planes. The condition that a point lie within the region Rk is then that it satisfy one of

the sets of inequalities of the form of Eq. 4, which correspond to the various sub-regions.

For each of the sub-regions of Rk, each of the linear combinations

s

+ Z aji Xi, = l' j2' ...
i=l

can be formed as shown in Fig. 5, by adding together the weighted output of the various

taps. By means of a transducer such as the one already described which indicates in

which set of ranges a given voltage lies, the comparison

5

+ aji xi > cj (5)
i=l

SOURCE

Fig. 5 Formation of weighted sum
of past samples.

Oli
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can be made. By doing this for each of the inequalities for which j = j l , j 2 ' .'.. a set
of outputs is obtained. A set of coincidence circuits is used to indicate whether all the

conditions are met, and if they all are, the coincidence circuit produces the output

which corresponds to the region R k. A similar process is carried out for the other

sub-regions of Rk, and the outputs of all the sub-regions are mixed. The other state

defining regions of the transducer are treated the same way as Rk.

This completes the proof of the sufficiency of the condition that an invariant finite

state transducer be capable of synthesis with linear elements, rectifiers, and direct-

current sources. The proof has been obtained by producing a transducer which meets

the condition and is composed of the stated elements. A typical two-dimensional

example is shown in Fig. 6.

Fig. 6 Schematic representation of a possible two-
dimensional finite state transducer.

To show that the condition is also necessary, we note that the systems we have been

discussing are essentially switched systems which are governed by linear laws between

transitions. If we choose any point [x] 0 continuous in [x] on a bounding surface, an expan-

sion of the surface about the point is linear if the bounding surface is planar. Hence if

we vary one of the x's, say xi , in such a way that x passes through the bounding surface

in the neighborhood of [x] 0 , the value of x i at which a transition of state occurs will be a
linear function of the other x's. On the other hand, if we assume that a certain portion

of a bounding surface in the neighborhood of [x] 0 is not planar, an expansion of the surface

about [x]0 must include terms higher than the first. If now we vary x i so that x] passes

through the bounding surface in the neighborhood of [x]0 , the value of x i at which a transi-
tion occurs will be a nonlinear function of the other x's. Even for infinitesimal changes

in the x's a continuous nonlinearity is obtained. Such behavior cannot be exhibited by an

ideal rectifier whose output is either linear or discontinuous. It follows that if ideal

rectifiers and linear elements are to be used, the surfaces must be planar.

Any invariant finite state transducer can of course be approximated by a transducer

composed of linear elements, rectifiers, and direct-current sources, since any surface

can be approximated by a set of planes. In fact, the standard form which has been

obtained is also applicable to time-invariant nonfinite state transducers, in the sense

that it will approximate the output of such a transducer arbitrarily closely. Consider

the s-dimensional space xl, ... , xs of the transducer. From the point of view of the
transducer, the relevant part of the past of the input to the transducer is described by
the position of a point in this space, as we have seen, and the point will move about as
time progresses. The transducer is completely specified by attaching a number (equal

-10-



to the output of the transducer for the corresponding state) to each point in the space.

If the input signal is bounded the space of the transducer is finite. If the numbers

representing the output of the transducer are continuous in the space coordinates, it is

possible to break the space up into a finite number of cells, and to assign a cell-number

to each cell such that the output for any point in the cell will be arbitrarily close to this

cell-number. A finite state transducer whose states are defined by the cells and whose

output for each state is equal to the corresponding cell-number, will thus approximate

arbitrarily closely to the output of the original transducer. The above argument may

be considered as a proof of the following theorem: any invariant transducer can be

approximated arbitrarily closely by means of a transducer composed of resistors,

capacitors, inductors, rectifiers, and direct-current sources.

2.2 Synthesis in Terms of Function Generators

We have completed the discussion of the synthesis of transducers whose only non-

linear elements are rectifiers, and now go on to consider the use of other nonlinear

elements. As long as we are dealing with finite state transducers, each state Si may

be associated with a region R i in[x] -space, where R i is bounded by a set of surfaces:

fj([x])= O, j= 1, ... , n . (6)

In a later section we shall see that an important practical case arises when none of the

surfaces f. = 0 passes through the region Ri. Under this restriction, the condition that

a point xlbe interior to Ri is that

+fj([x])> 0, j = 1, ... , n . (7)

If a function generator is available for producing each of the functions fj([x]), a set of

comparison circuits and a coincidence circuit is all that is required to find out whether

[x] belongs to R i or not. The transducer can be synthesized in the form shown in Fig. 7.

There will be as many coincidence circuits as there are states Si .

Fig. 7 Finite state transducer with regions having non-planar boundaries.
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As an example we write out the equations for the two-dimensional transducer of

Fig. 8.

The condition that the point belong to R i is

that

(x l -a) 2 + (x 2 -a) 2 < r .

For R 2 the conditions are:

xi

Fig. 8 Schematic representation of a
possible two-dimensional finite
state transducer.

O < x1 < a

X1 -X2 < 0

For R3:

(xl - a) 2 + (xZ - a) 2 > r

< 2 < a

X1- X2 > 

(x- a)2 + (x2 -a)2> r

x1 >a

x2 >a

2. 3 Expansion in Series

For future reference, we mention one other synthesis technique, a method especially

suitable for invariant continuous output transducers. Let the set of numbers [x] =

(x 1, . . ., Xs) specify the state S of the transducer. Then the output of the transducer

at time t is given by

y(t) = F(S) = F ([x(t)])

= F[xl (t), . . ., xs(t)] , (8)

and if y(t) is continuous in the x i and has continuous derivatives, y may be expanded in

a power series:

y(t) =xxi J h'j' ' 'h 1 "'...
i h

= Z A, Xa (t)
a.

(9)

(10)

where Xa (t)

ai'j' ''h'
containing M

i hcorrespondingrepresents one of the products x x2 ... xS and A is the corresponding

If we wish to approximate the infinite expansion by a finite expansion

terms, we may limit the range of values which the exponents i, j, ... , h

12-
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can assume to 0 to N - 1, and a may be identified as follows:

= i + j N +...+ h N s , (11)

so that a ranges from 0 to N s - 1 = M. The transducer in this case includes adding and

multiplying circuits; the form of the transducer would be as shown in Fig. 9.

Fig. 9 Series form of nonfinite state
transducer.

We shall also find it convenient in a later application to use, instead of a power

series representation, a series expansion in orthogonal functions, as employed by

Wiener (15).

III. Synthesis of Stationary Transducers

By making use of the finite state transducer synthesis technique which has been

developed in the preceding section, we are in a position to describe a standard form

for stationary transducers. Instead of a definite output voltage for each state, a voltage

which has a fixed probability distribution dependent on the state must be produced.

Although the optimum synthesis we later discuss is based on invariant rather than

stationary transducers, it is perhaps worth noting that stationary transducers have

possible value in the synthesis of secrecy systems, in studying the effects of noise in

transmission systems, and in the study of information sources. We shall show, for

example, that any information source whose output depends statistically on a fixed

finite portion of its past can be represented in terms of an appropriate stationary trans-

ducer whose output is its own input. In providing a building block for the synthesis of

information sources, it is possible that stationary transducers may also serve as useful

laboratory tools.

To provide a basis for the stationary transducer synthesis, we assume that we have

a certain invariant finite state transducer called a state evaluator. The state evaluator

provides an indication of the state the transducer is in. A schematic representation is

shown in Fig. 10.

INPUT

Fig. 10 Block diagram of state evaluator.

SI S2 S3 SM-I SM

-13-



Fig. 1 1 Distribution control circuit.

p(x)!

X -- C -4 -3 -2 -I

04

.3

0.2

DI 1(6) 5 J(I)

0 i 2 3 4

Fig. 12 Separation of gaussian distribution in ranges having assigned probabilities.

Fig. 13 Output probability distribution for separation according to Fig. 12.

Fig. 14 Stationary transducer used as a source.

-14-



A unit voltage appears on the output line corresponding to the state of the transducer.

As the state point moves in transducer space from one state-defining region to another,

the output line which is energized changes accordingly. The state evaluator is evidently

composed of sets of comparison circuits and coincidence circuits, as described in Sect.

II, and its design need not be discussed any further here.

In order to convert the state evaluator to a stationary transducer, it is sufficient

to connect each of the output lines S 1 , ... , S M of Fig. 10 to separate circuits which are

each adjusted to produce an output voltage which has an arbitrary prearranged proba-

bility distribution.
A method of producing a voltage having an arbitrary discrete probability distribution

will now be described. The elements are shown in block diagram form in Fig. 11. To

complete the stationary transducer, one of these arrangements is connected to each

state indicator line. A wide band noise source is sampled at the time the state indicator

line is energized, and the resulting sample is stored on a capacitor in the sampling

circuit. The stored voltage is applied to an amplitude distributor which produces a

standard voltage on one of a number of output lines, according to the voltage range in

which the stored sample lies. By means of the potentiometers shown at the output of

the amplitude distributor, any required proportion of the standard voltage is applied to

the output circuit. When the transducer again changes state, the capacitor is discharged.

The probability distribution of the noise source is gaussian. The biases in the

amplitude distributor are adjusted in such a way as to break the total area under the

gaussian curve into sub-areas having predetermined values. Figure 12 shows an

example of a possible distribution. The samples of noise are broken up into six ampli-

tude ranges, such that the probabilities of falling in ranges one through six are respec-

tively 1/6, 1/3, 1/10, 2/10, 1/10, and 1/10. Arbitrary output voltages of 4, - 2, 0,

- 1, 2, and 1 are then produced for sample voltages falling in these ranges, as shown

in Fig. 13.

In Fig. 14 is shown a diagram of a stationary transducer whose input is provided

by its own output. The blocks labelled "distribution control" are circuits such as those

of Fig. 11. Since the distribution control circuits may be set to have any desired dis-

crete distribution, and since the state evaluator may be connected in such a way as to

provide an arbitrary correspondence between distributions and states, it follows that

the arrangement is a model for any discrete statistical source whose output depends

on a finite portion of its past.

IV. Statistical Analysis of Transducers

4. 1 Correlation Analysis of Transducers

It has been shown (16, 17) that for a linear transducer
o00

io(T) h(t) ii (t-T) dt (12)

--o0
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For the discrete case this may be written

x(n) y (n + T) = a x(n) x(n+T) + a2 x(n) x(n +T - 1)

+... + a s x(n) x(n + T - S + 1) (13)

where the output of the transducer is given by

y(n) = al x(n) + a 2 x(n- 1) +.. + as x(n- s + 1) . (14)

If we know the value of ~ii(T) and io(T) for T = 0 to T = - 1, the averages in Eq. 13
are known. Letting T range over the values T = 0 to T = s - 1 in Eq. 13 provides a set

of s simultaneous equations in the s unknowns al, ... , a s . By solving the equations

for the ai, the system function is determined. Thus the crosscorrelation function of

the input with the output, and the autocorrelation of the input are together sufficient

to define a linear system. This rather striking result comes about because the form

of the equation defining the transducer is known. The problem of completely describing

a transducer mathematically is greatly simplified when the form of the equation relating

input and output is specified. The remainder of the problem of specifying the transducer

is that of finding the coefficients which must be fitted into the known form.

In the nonlinear case it may also happen that the form of the equation describing

the transducer is known. This will happen, for example, if the kind of nonlinear

elements available is restricted. In this case the coefficients which are required to

complete the characterization of the transducer can be found by making use of statistical

parameters similar to those employed in the linear analysis.

Let the transducer operate on a finite portion of the past of the input (t, t - T) where

T = s - 1/2W, and let the input be band limited to the band W. Then the equation of the

transducer can be written

y(t) = F [x(t), x(t-), . , x(t- ZW )

=Z' ai, j, . . , h [x(t)] i [x(t -2-)] j * [x(t--2 )]h
i h

=ZA X (t) (15)
a

where Xa (t) represents one of the products

[x(t)] i [x(t- ZI)] j... [x(t_- -)]h

and A is the corresponding value of ai j. h If to N - 1 is the range of values

which the exponents i, j, ... , h can assume, we may identify a as follows:

a = i + j N +. . .+ h Ns - 1 (16)
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so that a ranges from 0 to N s - 1 = M.

On the basis of the assumed form for the nonlinear transducer, a complete descrip-

tion is provided by specifying the coefficients A a . In order to determine the values of

Aa in terms of statistical parameters, we multiply Eq. 15 by Xp(t), and average over

all time:

XP(t) y(t) =-A a X3(t) Xa() (17)

a

xy() - A, xx(a, P) (18)
a

where the higher order correlation functions xy and xx are written in place of the

corresponding time averages. Eq. 18 must hold for all , and so provides a set of

M linear simultaneous equations in M unknowns which leads to the evaluation of the A a .

4. 2 Experimental Study of Unknown Transducers

An interesting technique for experimentally evaluating the defining coefficients of

an unknown transducer can be based on the above result. Let it be required to evaluate

the system function of a transducer having a prescribed form of nonlinearity for a

signal which is band limited to the band W. The experimental arrangement shown in

block diagram form in Fig. 15 could be used. We choose a noise source having a

bandwidth large compared to W. Successive samples of the noise are obtained by means

Fig. 15 Experimental study of unknown
nonlinear transducer.

of the sampler tube and a pulse generator having a period 1/2W. The amplitudes of the

samples are all independent of each other, since the autocorrelation function of the noise

becomes negligible in a time small compared to the sampling period. The values of the

correlation functions xx (a, ) are therefore all easily computed, and are in fact given

by
00o oo

xx(a'1) = * I Xa(Xl', ' x )x
s

(x,
) X( xl ) p(x. ) dx. .. d .9)

- -

It remains to evaluate xy (P). This is accomplished experimentally, as shown in Fig. 15,

by first computing XP(t) and then crosscorrelating the result with the output y(t) of the

unknown nonlinear transducer. This amounts to multiplying the two functions and
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averaging the product. By repeating this measurement for each value of P, the complete

set of simultaneous equations represented by Eq. 18 can be set up, and the coefficients

A evaluated.

The experimental procedure which has been described is based on a method origi-

nally suggested by Wiener (15). We now describe Wiener's method, which has the

virtue of not requiring the solution of any simultaneous equations. The idea is to use

normal and orthogonal functions in place of the products Xa (t) in the expansion of the

system function in Eq. 15. We first rewrite Eq. 15, replacing x(t), . .. , x(t - s - 1/2W)

by a set of variables ul(t), ... , u s (t) which characterize the past of the input. Thus

y(t) = F [u l (t), u 2 (t) .. .. , us (t)] . (20)

The system function F is next expanded in a series of Hermite functions (19), giving

y(t) = F(ul, .. , Us) =a.i, .. . .. r Hi (ul)... Hh(Us) exp[ +

i h

U2 u +...+u2
= Aa H(a) exp2 1s (21)

where H(a) represents the polynomial Hi(u 1).. .Hh(us), and a is defined as in Eq. 16.
If we now multiply by H(P) and average over all time we find

Ul2 +''+

y(t) H(A) =A a H(a) H(P) exp _ - (22)
a

In order to calculate the time averages in the summation, we make use of the ergodic

theorem to replace the time averages by phase averages. The phase averages can be

conveniently calculated if we choose an input whose parameters ul, ... , us have

independent gaussian distributions, and which have been normalized to have a standard

deviation of unity. Then the joint probability distribution of u .. , u s is

(21r)-s/2 exp [- 2+ u

and the sum of the phase averages becomes:

(21T) -s/ A l-*5 H(a) H(P) exp (u + ... + uS )du 1 ... du (23)
a -oo

Since the Hermite functions are orthogonal over(-oo, o ), expression 23 reduces to

(21r) - s / 2 K2 A[ and we obtain:

A = (2T) y(t) H(P) . (24)

P
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Here the constant KP is the product of the normalizing factors associated with the

Hermite polynomials whose product equals H(P). Thus (19)

K [s/2 2 i+j+. .+h (i! )(j! )... (h!l)] 1/2 (25)

Wiener's method lends itself readily to the experimental evaluation of unknown system

functions, but even if the representation requires the use of only a few Hermite functions,

the complexities involved in automatically computing H(P) become very great. Never-

theless, as electronic methods for multiplication continue to be improved and become

more available, Wiener's method of studying unknown nonlinear transducers may

receive considerable application.

In the equations which have been derived, we related the characteristic parameters

of a nonlinear transducer to the higher order correlation functions

xy(U 1, ... , Us) and xx(U1, ... , Us)

of the input and output signals. These correlation functions represent certain averages,

which can of course be computed from a knowledge of the joint probability distributions

P(ul, ..., us) and P (y: u 1 , ... , us)

It is perhaps worth noting that since we are dealing with invariant transducers, the

distribution P(y: ul, ... , us) is alone sufficient to specify the transducer; because for

each set of values ul, ... , u s there is only one possible output, so that

P(y: U 1 , ... , s) = 1 for y = F(ul, ... , us)

= 0 otherwise . (26)

Also, if the variables ul, ... , u s are quantized so that the transducer can have only

a finite number of states, and if a unique value of y corresponds to each state, then the

transducer is completely characterized by the set of distributions

P[yj: uki], k = 1, . . ., s .

where P [yj: uk ] is the probability that y has its jth value when uk has its ith value.

For we may wrie

P(ui: j) P(ukj) P(Yj : Uki)PP~uki ukY-) =_ )- (27)

P(uki) P(y ki) P( ki)

and since there is only one state for each yj, it follows that P(uki : yj) will be unity for

one value of i and zero for all others. Thus by holding j constant and ranging over all

k we can find the state S. which corresponds to yj. By carrying out the same procedure

for each value of j we completely specify the transducer. We need not actually know

P(uki) in order to carry out this process, since P(yj: uki) will differ from P(uki: yj)

only by the factor P(uki)/P(yj), which is a positive number for all i, j. Hence P(yj : ki )

will differ from zero for each combination of k and yj only for one uki.
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4. 3 Influence of Transducers on Probability Distributions

This section on the statistical analysis of transducers will be concluded with a few

remarks regarding the influence of a transducer on the statistics of the signal on which

it operates. The transducer and the statistics of the input are assumed to be known,

and it is required to calculate the statistics of output. In the corresponding linear

case it is usual to consider only the spectra, or correlation functions. Thus if we have

a linear transducer with a certain frequency response characteristic and the input is a

white noise, we say that the power spectrum of the output has the same form as the

frequency response. Such statistical assertions are of great value in judging the per-

formance of transducers, and have in fact provided the basis for much linear filter

design.

We shall consider a fairly general case, in which it is desired to calculate the con-

ditional probability distribution functions of the output when the transducer is specified

and the set of input probability distribution functions is known. Let the input time

series consist of a sequence of uniformly spaced quantized pulses x(n), where n is a

discrete time parameter, and x(n) is the nth pulse applied to the input of the transducer.

The sequence x(n) is assumed to be a Markoff process (20) of order r, so that it is

governed by the joint probability distribution function

p [x(n), x(n- 1), ... , x(n -r)]. (28)

Let each pulse have one of N different amplitudes. Since the transducer operates on s

input pulses, it can have a maximum of N s = M possible states Sm' where m = 1, ... , M.

If we designate by Xu(k) the value of x stored in the kth position in the transducer, where

u(k) is an index which ranges from 1 to N, the possible states Sm can be ordered

according to the equation

m = u() + [u(2)- 1] N +... + [u(s) - 1 N (29)

The probability of occurrence of the state S is thenm

P[Sm = P [Xu(l)) X( 2)' . Xu(s)] (30)

If s < r, p[Sm] is found by summing over the extra variables in expression 28. If s > r,

so that s - r = a, p [Sm] is found from

P [Sm] = P[Xu(a)' Xu(a+l) ... u(s)

P [xu(l) xu(). xxu(0 -L) xu(a)' ... Xu(s)] (31)

But

P u()' Xu(2) -. Xu(a-l) Xu(a)- p'. xu(s

=a- P[Xu(a-k)' Xu(a-k-l) ... , Xu(r+a-k)] (32)

k=l P[xu(a-k-l)' u(a-k-2)' ... ' u(r+a-k)]
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Similarly the conditional probability that state j follow state i, where

i = v(l) + [v(2)- 1] N . + [v(s)- 1] N 1

and j = w(l)+[w(2)-1 ] N+...+ [w(s)- 1] N - 1

is given by p [Sj(n+l): Si(n = P[Xw(l) Xv((), X( 2) Xv(s)],

p Sj(n+2) : Si(n] = p [Xw(2 ) Xw() v(1)' Xv( 2 ) Xv(s)]

etc. (33)

On the basis of the probability distributions determined for the states, we may now

find the probability distributions of the output. Let the equation of the transducer be

A m= F m, (34)

where A m is the output when the transducer is in state Sm . If the output time series

is represented by y(n), each value of y will equal one of the numbers Am. It follows

that the output probability distribution is

P(yt) = P [Sj] (35)

where the summation is over all j for which Aj = Yt.

Similarly

P[ynq(n ) : Yt(n)l = P[Sk(n + 1): Sj(n (36)
k j

where the summation is over all j and k such that Ak = yq and Aj = Yt.

If a transducer has a unique output corresponding to each state and s > r, the

probability distribution of the next output symbol is completely determined by the

present output symbol. It follows that the output in this case is a first order Markoff

process, i. e., r = 1, where r is the order of the output Markoff process.

On the other hand, if s < r, the probability distribution of the next input symbol,

and hence of the next output symbol, is dependent not only on the s stored symbols but

also on the r - s additional symbols which are no longer stored. These r - s input

symbols may be determined, however, if the preceding r - s output symbols are known.

The probability distribution of the next input symbol, and hence of the next output symbol,

is determined by these r - s output symbols plus the present output symbol. That is,

the order of the output Markoff process is r = r- s + 1.
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V. Synthesis of Optimum Nonlinear Filters

5.1 General Remarks

The problem to be considered in this section is that of separating two interfering

signals, one of which may be a noise. If the distribution of the energy in the signal

as a function of frequency is different from that of the noise, a partial separation can

be affected by means of a linear filter. It has been shown by Wiener (1) that if the

noise and signal are independent, the power density spectra of the signal and noise are

sufficient to prescribe the best possible linear filter in the mean square error sense.

In this incoherent case, the treatment given the filter problem by Lee (18) makes

it clear that essentially none of the noise energy which lies in a band where the signal

energy is relatively large will be effectively removed by the optimum linear filter. In

particular, if the noise and signal have the same spectrum, no separation can be accom-

plished, in spite of the fact that other statistical parameters of the noise and signal may

differ considerably. The ability of a linear device to separate noise and signal is thus

limited because direct use is not made of parameters which provide a more complete

statistical characterization.

The foregoing considerations indicate that in the general case, a nonlinear device

can be expected to do a better job of separating noise and signal than a linear filter

(Cf. Sect. 5, 6), and that the operation of the device should be governed by statistical

parameters of the noise and signal. It is possible to consider a noise separating device

as having for its function to make the information in a corrupted signal more readily

understandable to a user (receiver, decoder). Thus the noise discriminator is an

information processing device. The information carried by the signal is defined by sets

of amplitude probability distribution functions (2). It follows that the behavior of the

device should take into account the same sets of probability distributions. This is done,

of course, in the synthesis of optimum linear filters, since the power spectra may be

obtained from the probability functions. It may be noted that as many different time

series governed by different sets of probability distributions as desired can be constructed

which lead to the same power spectrum. All these time series would be processed by

the same linear filter: on the other hand, the optimum nonlinear filter would in general

be different for each of the series.

5.2 An Example

Before going on to formulate the filter problem on a general basis, it may be of

interest to illustrate some of the ideas involved by working out a simple example. The

example chosen is that of a signal and noise having identical spectra.

The signal consists of a sequence of uniformly spaced independent pulses which may

have amplitudes of +1, 0, and - 1, with the following probabilities:

*If the noise and signal are not independent, the cross-power spectrum must also be
known.
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(37)

The noise consists of a similar sequence of uniformly spaced independent pulses which

may have amplitudes of + 2, 0, and -2, with probabilities:

1 5
p(+2)= p(-2) = 12 ' (0) = . (38)

This situation corresponds to interference between two signals on the same channel,

with the signals having the same general form but different statistical characteristics.

The signal and noise have identical power spectra and equal power, so that no separation

can be carried out by means of a linear filter. A nonlinear filter is easily designed,

however, by taking into account the probability distributions.

The noise and signal are combined additively, so that the input to the transducer

consists of a sequence of pulses with amplitudes ranging from + 3 to -3. The possible

combinations and the corresponding probabilities are shown in Table I.

Table I

Possible Combinations
Signal Noise

+1

0

+1

-1

0

--1

+1

0

-1

+2

+2

0

+2

0

0

--2

-2

--2

Probability

1
3- 
1

36

10
16

1
3-

10
36

10
36

1
36

1
31 

I1
366

From the table the values which the signal and noise must have are evident for all

received pulses other than + 1 or - 1. One or the other of these two ambiguous pulses

is received 22/36 of the time. An ambiguous pulse can be caused by either of two

possible combinations, one of which is of high probability (10/36), and the other of low

probability (1/36). Since the magnitude of the error caused by a wrong selection is

independent of which of the two possible combinations is chosen, it follows that the com-

bination of high probability should always be selected to represent an ambiguous pulse.

The optimum transducer can thus be specified by the input-output relation given in
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+3

+2

+1

+1

0

-1

-
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Table II. Any number of graphs can be constructed which will pass through the points

given in Table II, and a suitable graph which can be conveniently synthesized is shown

in Fig. 16.

Table II

Input

+3

+2

+1

0

-1

-2

-3

Output

+1

0

+1

0

-1

0

-1

A block diagram which will produce the input-output relation of Fig. 16 is shown

in Fig. 17. The upper flipflop is arranged to trigger when the input exceeds + 1.5, and

when it triggers it adds -2 to the original input. The lower flipflop triggers when the

input is less than- 1. 5, and when it triggers it adds + 2 to the original input.

OUTPUT

Fig. 16 Response for minimum probability
of error.

The result is the input-output curve of

Fig. 16. A circuit realization of the

block diagram would require two double

triodes and a number of resistors, capa-

citors, and crystal diodes.

The effectiveness of the transducer

in this case is measured by its reduc-

tion of the mean square error from 6/9

to 2/9, and by its reduction of the pro-

bability of error from 3/18 to 1/18.

5. 3 Formulation of the Filter Problem

We consider a message fm(t) whose

past over the time interval (t, t - T)

can be described by the set of para-

meters u l (t), u2 (t), . . ., us (t). Such

Fig. 17 Nonlinear transducer with response a description will be possible, as we
of Fig. 16.

have seen, if for example the message

is band limited to the band W, and the values ul, ... , u s represent samples of the

message at the points t, t- 1/2W, ... , t- s- 1/2W = t-T, where s = 2TW + 1. The

description in terms of ul, ... , us is of course especially applicable to pulse communi-

cation signals.
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We assume that the message as received at some point is additively perturbed by a

noise fn(t) whose past over the same time interval (t, t - T) can be described by the set

of parameters v1 (t), v2 (t), ... , vs (t). The received combination of signal and noise

will then be represented by

ul(t) + vl(t), . . . us(t) + Vs(t) = Wl(t), ... Ws(t) ·

We denote the set of functions ul(t), ... , us(t) by [u(t)], the set of functions vl(t), ... ,

vS(t) by [v(t)], and the set of functions wl(t), ... , ws(t) by [w(t)]. We assume that[u]

and [v] are stationary random functions with given characteristic probability distributions,

so that the probability distributions p([u]) = p(ul, ... , us), p([v]) = p(v l , ... , vs), and

p([w]) = p(w1 , . .. , Ws) can be calculated.

The general filter problem may now be stated as follows: what operator F([w(t)] )

best approximates, in a prescribed statistical sense, a desired function f [fm(t)]

The problem as formulated includes prediction, detection, decoding, and ordinary

filtering as special cases. If, for example, the function f fm(t)] = f([u(t)]), we might

have a filter or a decoder. The transducer does not know the values of ul, ..., u s ,

but is nevertheless required to produce the best approximation to some function of them.

As another example, if f [fm(t)] = fm(t + a), a > 0, we would have a problem in prediction.

The answer to the problem as formulated will evidently have to be expressed in terms

of the probability distributions of [u], v], and [w] . As we have noted, Wiener obtained

the solution to the problem for the case in which f and F are linear operators on the

message and on the past of the message plus noise respectively. The result is expressed

in the Wiener-Hopf equation: oo

4id(+ a) =I h(t) ii(t- T) dt, T > 0 (39)

where h(t) is the linear operator on the past of the message plus noise which is required

to be found, and the correlation functions are determined by the probability distributions

and the desired operation on the message. The statistical sense in which h(t) is the best

linear operator is that it gives minimum average error power.

We now proceed to investigate some of the techniques which can be used to solve the

problem when the functions f and F are not restricted to be linear. We shall usually

require that F assumes a prescribed mathematical form. The form may of course be

very inclusive, as in the case of a power series or series of Hermite functions. Or

the form of F may be such that the space of [w] is broken up into a large number of

small cells, and F( [w] ) required to be constant in each cell. By making the number

of cells large enough, F can be made to approximate arbitrarily closely to the most

general invariant transducer (Cf. Sect. II).
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5.4 Determination of Series Representation for

Minimum Mean Square Error

As we saw in Sect. II and Sect. IV, we may represent F ([w]) by a series:

M

y(t) = F( [w]) = Aa Wa(t) (40)

a=l

where the W(t) are known functions, such as products of the functions w, ... , ws, or

products of Hermite functions of the wi. The filter problem becomes that of finding

the best values of Aa for approximating to f[fm(t)] = fd(t). The values of the A a for

minimum mean square error can be obtained as follows:

Let the error at time t be given by

E(t) = y(t)- fd(t) (41)

The mean square error is

T

E = [e(t)]2 = i 5 I [y(t)-fd(t)]2 dt

-T

-T a

T T
lim [fd]2 dt- T W(t) fd(t) dt

-T a -T

T

+ Ala Ap T-m 2T1 W ((t ) fWt) dt (43)

a, -T

The limits in this equation are higher order correlation functions, and they may be

evaluated in terms of the known probability distributions. Thus we have

T

(O ) = lim 1 5 [f (t)] 2 dtqdd (0 )=-T o 2T dt
-T

oo

- d[fd] P [fdfd (44)
_00

T
lim 1

iwd(a) = T- 2T Wa(t) fd(t) dt
-T
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= Wa fP [Wa, fd] d[w] dfd (45)
- 00oo - 00

T
lir 1 w

ww( 1) = Tmoo Z-- W cLa(t) Wp(t) dt
-T

03

WWp P[Wv. W] d [w] (46)
- 00

Substituting,

E = dd(0)-2ZAa dwd() + E AAp ww(, (47)

a a, ,

In order to make E a minimum, we must have

aE
0 for all . (48)

y
Thus

c E - Zw() + 2 A Pw,(,¥ 0 (49)

or

qwd( Y)= AcL ww,, (, . 1, ., M .(507
aC

This is a set of M simultaneous equations in M unknowns, and hence leads to an evaluation

of the A and of the system function F.
We now show that this necessary condition specified by Eq. 50 that E be a minimum

is also sufficient. That the values of A actually specify a minimum and not a maximum,

may be verified by observing that aE/aA > 0 for A Y greater than its optimum value,

and aE/ a A < 0 for A less than its optimum value, since b ww ( y, y) is positive. Hence

E is increased by any eparture of A from optimum. Furthermore, the error is

represented by a polynomial of the second degree in the A's so that there cannot be more

than one minimum. Hence condition 50 is sufficient.

If now the A's are obtained by solving Eq. 50, the mean square error becomes, by

substituting Eq. 50 in Eq. 47,

E O= dd(O) - 2- Aa wd(La) + Aa wd(a)
a a

a
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qdd (o)- AaAp qww ((, ) (51)
Ca, 

5.5 Example of Power Series Synthesis

As an illustration of the use of the results which have been developed, we apply them

to the design of a minimum mean square error transducer for the noisy transmission

system used in the previous example. This will enable us to compare the system func-

tions for minimum mean square error and for minimum probability of error.

Since all the pulses are independent of each other, the transducer will not make

use of storage. The output can accordingly be represented by

M

y(t) = Y, Ai [w(t) * (52)
i=O

The input can take on only seven different values: + 3, + 2, ... , -3, and the output must

take on a unique value for each input. Because the input-output relation must be skew-

symmetrical, and go through three prescribed points on each side of the origin, it is

clear that Eq. 52 must contain only odd powers of w, and need have no terms of degree

higher than the fifth; i. e., M = 5. The design equations are

M

wd ( Y) T Aa ww ( a Y), Y = 1, 2, ... , M (53)
a=l

Making use of Eqs. 45 and 46 we compute

bwd(Y) w¥ Yd; wd(o) = wd(2) = wd(4) =... =0,

2
owd(1) 3' ,wd ( 3 ) = 2, wd( 5 ) = 14

a1 ;-y 3Also Ww(ay) w w = w ... 0,

4 4 - 134 - 1138 10w -, w 6, w = 33383 w 3 

Substituting in Eq. 53, we obtain:

Ao = A 2 = A4 = 0

4 134 2
A1 3 A36 +A5 5 = 3

134 1138A1 6 +A 3- + A 3 2

134 1138A1 3 +A 3 +A 5 3338 = 14 (54)
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The solution is:

A1 = 1.20

A 3 = 0. 485

A5 = 0. 0424 (55)

so that the equation of the optimum mean square transducer is

y = 1.26 w - 0.495 w 3 + 0.0424 w5 (56)

A plot of Eq. 56 is given in Fig. 18. It is clear that the probability of error is increased

as compared with the earlier design, since for the ambiguous inputs + 1 and -1, the

correct output is never obtained. The probability of error is in fact raised from 1/18

for the earlier design to 11/18 for the present design. On the other hand, the mean

square error is reduced from 2/9 = 22/99 for the earlier design to 20/99 for the

present design.

Fig. 18 Response for minimum mean
square error.

A transducer having the system function of Eq. 56 is easily constructed if circuits
for raising voltages to the third and fifth powers are available. The result would be as

shown in Fig. 19. But inasmuch as the transducer is required to function only for

integer inputs ranging over (+ 3, -3), the form shown in Fig. 20 can be used. The pulse
amplitude distributor can be of the crystal diode type shown in Fig. 4, or a modification
of that circuit. Because amplitude distributors are usually easier to construct than

circuits for raising voltages to powers, the arrangement of Fig. 20 may be preferable.

Fig. 20 Nonlinear transducer with
response of circled points of Fig. 18.
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5.6 Optimum Mean Square Filter for Gaussian Signals

It seems appropriate at this point to examine the problem of optimum mean square

filter design from a slightly different point of view. We shall obtain equations which,

while not always convenient to apply physically, nevertheless throw additional light

on the relation of the filter to the probability distributions of the input time series.

In particular we shall show that if the given signal and noise have gaussian probability

distributions, the best mean square filter is linear, as has been pointed out by Wiener

(3).
The general multi-dimensional gaussian distribution of the set of variables wl, ...,

Ws may be written (21)

exp(~])kE-·-1·j (57)P5(2)s/2 -exp E Ajk wj wk (5)
j,k

where A is the determinant of the moment matrix[ :

A] . . . . . . . (58)

Ajk is the cofactor of the element Xjk of A, and

ii i ' Xik = iCri k (59)

In Eq. 59 o'i is the standard deviation of the random variable wi, and Pik is the corre-

lation coefficient between w i and wk. If all the variables wl, ... , ws belong to the same

time series f(t), all the i are equal; and if wi(t) is separated from wj(t) by the time
interval (i-j)T, where T is a constant, then [A] becomes the correlation matrix, i.e.,

(0) ( T) * . S )

[A] = (T) (0) . . (s - 2) T] (60)

'S - 1)T] (S - 2)T] o(0)
Eq. 57 shows the general gaussian distribution to be defined completely in terms of a

matrix [A] , which, in case Eq. 57 is the distribution of a single time series f(t), is
in turn completely specified by the autocorrelation function (k T), k = 0, 1, ... , s - 1.

It is thus clear that a knowledge of the autocorrelation function will permit the calculation
of any other statistical parameter of f(t).

In case two functions are involved, the only significant change in the character of
[A is that some of the elements become crosscorrelations. Since the only pertinent

statistical parameters in such cases are the correlation functions, and since the corre-

lation functions are sufficient to specify the optimum mean square linear filter, it might.
be expected that for gaussian signal and noise the optimum mean square filter would
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not contain any nonlinearity. That this is in fact true is verified below.

We first note that if the probability distribution p(x) of a random variable x is given,

the best mean square estimate of x is x; for the mean square error due to an estimate

y is

E = e = i (y-x) 2 p(x) dx

_- co

and minimizing with respect to y we find

2 (y-x) p(x) dx = 0 

Thus

y i p(x) dx = x p(x) dx

(61)

(62)

(63)

y =x (64)

We now consider the design of an optimum mean square filter for which the desired

output fd(t) is equal to the value of one of the members of[u], say ud. Let the joint

distribution of [w] and ud be gaussian, and let a new variable [z] be defined by

Zi = i i = 1,..., s

Zs+ = Ud (65)

Let [z] have a moment matrix [A] . Then

p( [z]) = s+s+l -

(2,) 2

s+l

1eexp -A 

j,k=l
Ajk j Zk'

According to Eq. 64, the best mean square estimate of ud = Zs+l at any time when [w]

= z 1, ... , z s takes on a particular value is given by the conditional mean of ud = Zs+l

under this condition. But the conditional mean of s+1 for a particular [w] is determined

from the conditional probability distribution p(Zs+l: Zl .. , Zs). Thus

s+l

P(Zs+ 1 : z' ... , z ) =

o0

exp

(67)

- 2 , Ak z zi dzs+[ jjk j k sl
j, k=l 
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2
exp [A(As+l,s+l Zs l + 2 zs 1 Aj, S+ l 

2j=1~ . ~(68)
2

exp - A s+5expF A (s+l, s+l s+l + 2 1 z j+ s1 z)dz

Eq. 68 also represents a gaussian distribution. It may be put in standard form by

multiplying both numerator and denominator by a constant which will complete the

square of the expression in the exponential. The numerator becomes

exp- Z A ( I + -. 2 (69)

The conditional mean of Zs+l is therefore given by

s A

:l_+ Z j, s+l Zj (70)jkl As+l, s+l

Or, writing fo(t) for the output of the filter

fo(t) = T sA ws+1 j(t) (71)
s+, s+l j j

j=1

This shows that in this case the optimum mean square filter is linear.

Although Eq. 71 was derived for gaussian distributions of signal and noise, it also

specifies the optimum linear filter for any distributions. This is because the optimum

linear filter depends directly on the correlation functions, so that combinations of

signal and noise which have different sets of probability distributions, but the same set

of correlation functions, result in the same optimum linear filter. Eq. 71 is in fact

the same result which is obtained by solving the Wiener-Hopf equation for the case we

are considering.

In the general case we have from Eq. 65 for the equation of the optimum mean

square filter

00

i Ud P(Ud , W1 -- I W) dud

fo (ud . (72dud

I P(Ud, W1' . e W) dud (
00
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5.7 Finite State Filters

If one assumes at the outset that a finite state transducer is to be used, as usually

seems best for pulse communication systems, two convenient methods for handling

the problem suggest themselves. One method is especially convenient for unquantized

signals, and the other appears to be more natural for quantized signals. In the first

method the space of the transducer is assumed to be broken up into regions in a pre-

determined way, for example into cells whose boundaries are perpendicular to coordinate

axes. The problem is then to determine a number to assign to each cell, such that if

the output of the transducer equals this number when the input lies in the corresponding

cell, the performance of the transducer is optimum in some prescribed statistical sense.

The advantage of this method is that the transducer is easily synthesized in the standard

form of Sect. II. The disadvantage is, of course, that while the transducer is the best

of all transducers having the prescribed call arrangement, some other transducer with

a different cell arrangement might be still better. Improvement of this kind will not be

important if the number of cells are sufficiently large.

In the second method the arrangement and location of the regions are not specified

in advance, but the numbers which are available for assignment to the various regions

are assumed to be known, since the signal is quantized. The problem is then to specify

the boundaries for each region in such a way as to give optimum performance in a pre-

scribed statistical sense. This method does not suffer from the disadvantage mentioned

for the first method.

We now outline briefly two procedures suitable for designing according to the first

method. Because our principal interest is in quantized signals, we will then go on to

discuss in detail a procedure for handling the second method.

Let the condition that a point [w] = (w 1 , . .. , ws) lie within the ith cell in w space be

that wll< w <w 1 ; w2 1 <w 2 < w2 2 ;...; Wsl <Ws< Ws. Let f[f(t)] = fd( u(t) ), and
let yi be the number assigned to the ith cell. A sketch of the arrangement is shown in

Fig. 21. The mean square error due to the labelling of the ith cell is

E. = [i-f d ( U ] )] 2 p ( [u ] [w])d[u] d[w] . (73)
celli allu

Fig. 21 Schematic representation of two dif-
ferent transmitted signals which are
received in the same cell of w space.
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Since the cells are fixed we may minimize the error due to each cell separately, and

the total error

E = Ei

i

will also be a minimum. In order for E. to be a minimum we must have1

aE.
1

Thus

aE.
1 -

(74)

(75)
e J 2[ i-fd([])] p(u], [w) d ] )d[u] d[wcell i all u

so that

j J yip([u], [w])d[u]d[w] =
cell i all u cell

5 fd([U]P( [U], [w])d [u]d [w] .

i allu

Hence

Yi P(Wi) = S fc([u]) p([u]) p([w]: [u]) d [u]d [w]
celli allu

d( [u]) p(w i :[u]) p([u])d [u]

all u

= fd([u) P(wi :[u]), (77)

where p(wi) is the probability that a received point lie in the ith cell, and p(w i : [u ])

is the probability that a transmitted point [u] be received in the ith cell. The result is

fd( Iu]) P(Wi [u])
Yi - P(Wi)

(78)

The other procedure mentioned for finding the optimum yi for predetermined cells

makes use of a general series expansion. Setting

M

y(t) = F([w])= 2 A. Wa,(t)

a=l
(79)
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we find the optimum A's by the method already developed. By averaging y(t) over each

cell i, the optimum average output for each cell is obtained. Thus

w1 w

Yi 1 - F([w]) p([w]) dw- dw (8O)

W11 Wsl

5.8 Selection of Optimum Boundaries

We next consider the problem of specifying the state defining regions in such a way

as to give an optimum result in some prescribed statistical sense, when the signal is

quantized. Let [u]i = [ul u 2 , ... , Us] i be the transmitted signal, where M is the
number of possible transmitted signals and i = 1, ... , M. The noise will in general not

be quantized, so the received noise plus signal will also be unquantized. Let the desired

output of the transducer for each transmitted [u]i = f([u]i). From the known probability
distribution for [u]i, [v], and [w], we can find the joint distribution p([w]: [u]i) d[w]is the
probability that a transmitted signal [u]i is received in the volume element d[w] of w
space centered at [w].

The problem is now to select M non-overlapping regions Ri, i = 1, ... , M, in w space
under the condition that the output f( [u] i) is produced for any point [w] received in the
region Ri, in such a way as to optimize some statistical criterion of performance, under
the constraint that Ri includes all of w space. We shall select the regions in such a

way as to minimize the probability of error.

The probability that a transmitted signal [u] i is received in R i is given by

Pp([w] :[U]i)d w] (81)
Ri.

1

so that the probability that [u]i is received in some other region is

-fJ p([w] :[u])d[w] (82)
R.1

This last expression is therefore the relative frequency with which the transmitted

[U]i are incorrectly evaluated at the receiver. Multiplying this by Pi, the relative rate
of transmission of [u]i, gives the relative frequency of errors due to transmitting [u]i.
By summing over all i we find the total probability of error,

p(E) = i 1 p( [w]:
i R i

= I- Pi p([w]: [u]) d[w] - (83)
i R.

1
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In this formulation, a region R i need not be continuous; that is, R i may consist of

several separate sub-regions. Our objective is not to obtain equations defining the

boundaries of each R i explicitly, but instead to obtain design equations which will enable

us to determine in which region a received signal plus noise falls. The design equations

will then permit the transducer to be constructed. With this end in view, we now show

that for p(E) to take on its minimum value, it is necessary and sufficient that a point

[w] belong to R i , i = 1, ... , M, if

Pi P([w] : [u]i)> pj p(L[w [u]j) for all j / i . (84)

To show the necessity of the condition, we assume that the probabilities are con-

tinuous in [w], that p(E) is a minimum, and that the neighborhood of a certain point

[w] belongs to R i. We now ask whether there is a j such that

Pi p([w] : [ui) < p p([w] : [ulj) . (85)

That there is no such j follows from the fact that Pi p( [w] : ]i) is the integrand of the

integral in Eq. 83; so that if such a j existed the value of the summation would be

increased by reassigning some neighborhood of [w] to Rj. This would contradict the

initial assumption, and shows the necessity of the condition.

To show the sufficiency of the condition we assume that each received point [w]

belongs to R i, i = 1, ... , M, if pi p([w] : [u]i) > pj p([w] : [uj) for all j / i. We now
divide the inequality by p([w]), obtaining

Pi p([w] []i) Pj P([w] [) for all j i (86)
p([w]) p([w]) for all j 

or

P([u]i : [w]) > p([u]j : [w]) for all j / i . (87)

That is, the probability that [u]i was transmitted if [w] was received is greater than or

equal to the probability that any other point [u]j was transmitted. Therefore, by assigning

[w] to Ri, we minimize the probability of error as far as this particular [w], is con-

cerned. The same procedure is followed for each received point [w], so that the total

error p(E) is also minimized.

The set of equations

Pi p([w] [u]i)- p p([w] : u]j) > O for all j / i (88)

and i = 1, ... , M are the design equations of the transducer. The process of designing

the optimum filter consists primarily of designing equipment which evaluates the

expressions

Pi p([w] : Lu]i) - p ([w :[j) (89)
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for all i and j(j / i) each time a point [w is received. This equipment can usually be

put in the form of amplitude discriminators, as will be shown. The results of the

evaluations are led to M coincidence circuits, one of which corresponds to each of the

regions R i . Any received point [w] will cause one of the coincidence circuits to produce

an output, according to the region in which [w] lies. The output of the ith coincidence

circuit, corresponding to the region Ri, is adjusted to equal f([uJi), i = 1, . . ., M.

Under suitably restrictive conditions on the noise, it may be shown that the proba-

bility of obtaining more than one output for an arbitrary value of [w] is zero. For

example, if the noise has a probability distribution

(v]) = (vl, ... , s) (90)

which is continuous in the v i , i = 1, ... , s, we have that the boundary of any region R i

consists of sections from a set of surfaces of the form

Pi P([w] : [u]i)- p([w] : [u]j) = 0 (91)

or

Pi C([W]-[u]i)-Pj ([w]-[]j) = 0 (92)

For each pair of values of i, j, Eq. 92 represents a surface in w space, and the ratio

of the measure of the set of points on a section of the surface to the measure of the set

of points in any finite volume of the same space is zero (21). The ratio of the proba-

bility that an arbitrary point [w] falls in the volume to the probability that it falls on the

surface is just the ratio of the integrals of the probability distribution over the two

corresponding sets of points. Because of the assumed continuity of the distributions,

the probability function cannot be concentrated on the surface, so that the ratio must

be zero. But more than one output can be obtained only if [w] falls on a surface. Hence

the probability of more than one output is zero.

5.9 Example: Optimum P.C.M. Decoder

As a first example we choose the case of a two-dimensional transducer, since the

result may conveniently be shown on a two-dimensional graph. A two-dimensional

transducer will generally be necessary for detecting or filtering code groups which

consist of two pulses per group. We assume therefore that our signal consists of a

sequence of pulses uniformly spaced by a time interval 1/2W which can take the values

+E or - E at the receiver, and that the signal is transmitted in code groups consisting

of pairs of pulses over a transmission channel having a bandwidth W. This would

correspond to a simple P.C.M. system. Let the code groups be governed by the

following set of probabilities:

p(+E, +E) = a p(+E, -E) = b

p(-E, -E) = a p(-E, +E) = b (93)
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where 2(a + b) = 1, and let each code group be independent of all the others.

The transmitted pulses are assumed to be additively perturbed by a white noise

which is also band-limited to the bandwidth W, so that samples of the noise which are

separated by the interval 1/2W are independent and have a gaussian distribution. Let

the power in the received noise equal N. Then the joint probability distribution of the

two noise voltages v 1 and v2 which add to the two signal pulses in a code group is given

by Z1
1 (V1 v2

According to Eq. 84 , the optimum N exprobability of error in(94)

According to Eq. 84, the optimum design for minimizing the probability of error in

the ith code group is found from the condition that

Pi p([w] : [x]i) > pj p([w] : [x]j) for all j / i

[x]l = (+E, +E)

[x] = (+ E, -E)

[x]3 = (-E, +E)

[x] 4 = (-E, -E)

p([w]: [X]1) = 2wN exp[ (w- ) 2 + (w 2 - E)]

p([w]: x]2) = - exp - ) (2 + E)

(w1 ± E)2 + (w - E)2

p([w] : x]3) exp- 2N) N

p([w] : [x] 4 ) = 2N exp[ (W1 + E) 2 +(w E) 2

From Eq. 95 the set of conditions under which a received point [w] =

to R1 is as follows:

(95)

(96)

(97)

(w 1 , w2 ) belongs

a - (wl - E) 2 + (w -E)
2,rN exp N 2 N

b
ZirN

exp -

exp[-

> exp [-2 rN

'\2
\w 1 T r D T kW 2 - r_ )

2N

(w 1 -E) 2 + ( + E)2

2N

(w 1 + E) 2 + (w + E)2

2N

(98)
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Simplifying, the conditions become:

w wZ w1 W2
log a +E E N -EN - + + logb

w w
> E- - E + logb

w1 w
>-E - E + loga (99)

or
W >- 1 (N) log a

W2 > - 1 () log a

W1 + W2 > 0 . (100)

In a similar way it is found that the conditions that [w] belong to R 2 are:

> E) log

WZ < 2- (E )log 

W1 W2 > 0 . (101)

For R3 the conditions are:

2<-(E) log a

Wz> 2() log a

W1 - 2 < 0 . (102)

And for R 4 the conditions are

w1 < N) log a

w 1 (N) log a
2 <2(E) log b

1 + W < 0 . (103)

All of the conditions 100 -103 can be conveniently presented in graphical form, as

shown in Fig. 22. The dashed lines divide w space into four regions, corresponding to

the case a/b > 1. In this case the conditions w - w 2 > 0 for R 2 and w - w2 < 0 for R 3

are included in the other two conditions on R Z and R 3. With reference to the transducer
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diagram of Fig. 22, we may say that the function of the transducer is to recognize in

which of the four regions a received signal plus noise falls, and to produce the correct

output corresponding to that region.

The transducer diagram corresponds to what
W2 one would intuitively expect to be best. If a/b > 1

is held fixed and N/E becomes very large, best

(-E,+E) !i (+E+E) results will be obtained by simply taking (+E, +E)

- _ _ ___- ____4,log when w + w > O and (-E, -E) when w + w2 > 0.

wG; On the other hand if N/E becomes very small, the

diagram reduces to the four quadrants. This result
(-E,-E) g (+E,-E) would be expected in the case of a small noise, since

the signal is then easily decoded without reference

to the probabilities.

Fig. 22 Two-dimensional A transducer for carrying out the operation
transducer diagram. indicated graphically in Fig. 22 would comprise a

number of comparison circuits for comparing the input signals with the prescribed

reference voltages, and a set of coincidence circuits for indicating the region in which

the voltage lies. There would be four such coincidence circuits, one for each region.

A block diagram of the arrangement is shown in Fig. 23. Successive pairs of samples

Fig. 23 Block diagram of two-dimensional
transducer.

OUTPUT

of signal plus noise are obtained by keying the gate tubes with synchronized timing

pulses which may be obtained from the input signal. The voltages wl, w 2, and w1 + w2

are then sent to separate comparison circuits. The comparison circuits produce output

voltages on appropriate lines, as shown, in accordance with the magnitude of the sample

voltages. Each coincidence circuit functions in such a way as to produce an output only

when all the lines leading to it are keyed, and this will happen in accordance with the

-40-



region in which a received signal plus noise lies. If the transducer is to function as a
decoder, each coincidence circuit can be adjusted to have an output representing the
particular code group to which it corresponds. If on the other hand it is desired to
reproduce the original signal, as at a repeater station, this can be accomplished by
keying suitable circuits with a trigger pulse derived from the coincidence circuits.

5. 10 Example: Radar Search Problem

As a final example we discuss the application of the methods which have been
developed to an important practical problem, namely that of detecting a target by radar
in the presence of interference. The interference may be due to ground clutter or sea
return, to jamming, or in the case of small or very distant targets, to random thermal
noise originating in the first stages of the receiver. In practice targets are usually
detected by an operator observing the pattern of received echos on a cathode ray tube
screen. Experiments have shown that many targets are missed by the operator, either
because he is observing some other part of the cathode ray tube screen when the target
appears, or because of fatigue (targets are missed during the latter part of a long watch
more often than during the early part).

In radar systems of the type we are considering, the behavior of the electrical part
of the system is essentially linear: small or distant targets give very weak indications
on the screen; larger targets give stronger indications. A nonlinearity is usually intro-
duced by the human operator: if the target echo is extremely weak he does not observe
the target at all, and takes no action. On the other hand, at least in the ideal case, if
the target response passes a threshold value, the operator does observe it; and takes a
decisive action. He may, for example, if the target is a submarine schnorkel, approach
the target and drop a depth bomb. From this point of view the human operator functions
as a nonlinear filter, with an all or nothing response, according as a target is or is not
present. The response of the eye is apparently fairly linear, so the nonlinear response
of the human observer is due to operations on the input signal which are carried on in the
brain. Furthermore, the response of the human operator takes into account the statistics
of the target return and of the interference. For even though the signal level is very
weak, the statistical character of the target echo may be very different from that of the
surrounding interference, and so permit the target to be identified by an experienced
observer.

In view of experiments showing a large number of targets missed due to human
failure, it is natural to inquire whether further electrical operation on the radar return
might not make the human observer's job easier. In particular, it has been suggested
that the necessary nonlinearity (which must exist in certain complete systems) be intro-
duced ahead of the indicating device by means of an optimum nonlinear filter, in such
a way that either an unmistakable signal is presented to the human operator, or no
signal whatsoever appears on the indicator screen. If the highly complex human link
is to be replaced in this way, it is to be expected that the nonlinear filter which takes
its place should also be complex, at least relative to more conventional filters. The
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advantage to be gained would be freedom from oversight and fatigue.

We consider the particular case of an airborne radar searching for a submarine

schnorkel. In order to carry through a design with the aid of relations 84, we shall

assume a certain probability distribution for the return in the absence of a target (the

so-called sea return), and another distribution for the return when a target is present.

The distribution assumed for a single echo in the absence of a target is of the form

p(w: exp + c exp - - . (104)

[~0n n I 2a i (104)If- an 2a n ° ara o

The first of the two normal distributions is due to thermal noise and has a relatively

small r n and m n , and takes account of the fact that waves sometimes mask sizeable

areas behind them. The second of the two normal distributions is due to reflections

from waves. If the sea were smooth, the sea return would be absent (c = o), and the

limitation on range would be due to thermal noise in the receiver. The parameters

c, ar 0, and mo are functions of the coordinates with respect to the aircraft, of the

elementary area under consideration, and will moreover vary with flight conditions

and weather. These influences on the statistics of the sea return are taken into con-

sideration by the human observer, and must be taken into consideration by the nonlinear

filter as well. It is probable that the parameters can be continuously evaluated, in an

approximate fashion, by an auxiliary computer associated with the filter, and the

results can be fed continuously to the filter, varying as flight altitude, weather conditions,

etc., change. This is, of course, the way a good human observer works. The auxili-

ary computer need not be located in the searching aircraft, but can be placed on land

or on a ship, according to requirements.

In the multi-dimensional case, assuming the echos on successive scans to be inde-

pendent of one another, which they clearly are for sea return, the joint distribution for

s echos becomes:

+ exp wmo2 (105)
1zv n- 2Cr

The distribution of a single echo when a target is present will be assumed to be

gaussian, with mean ml, and standard deviation C 1:

1 [ (w - i)
p(w )= exp _ 2 (106)p(w: 1) I 2o. 1

The parameters m and 1 will also depend on the coordinates of the schnorkel with
The parameters mi1 and o 1 will also depend on the coordinates of the schnorkel with
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respect to the aircraft, and on the flight conditions and weather. They cannot be con-

tinuously evaluated during flight, and would therefore have to be evaluated experi-

mentally for a wide range of conditions as part of the program of developing the non-

linear filter.

The joint distribution for s echos when a target is present becomes:

P(wl, ... , w s : 1)-07)1)W1· = e I,:l) (107)
(21r) exp 2d 1

1 1

In order to determine the optimum filter it is now necessary to adopt a criterion of

performance. It might at first appear that a suitable criterion would be that of mini-

mizing the probability of error. Equation 84 would be then be directly applicable, and

would give, on the basis of s scans of an elementary area,

P1 p(w , W,s: 1) > pO P(w 1' ***., w s : 0) (108)

as the design equation of the filter, where P1 is the relative frequency with which targets

appear in the elementary area under consideration, and po = 1 - p1 . That is, when the

inequality 108 is satisfied, a target is judged to be present. Since Po >> P1, it is clear

that 108 would almost never be satisfied, and the filter would indicate no target at almost

all times. This result is in keeping with the criterion mentioned, and shows that

another criterion should be chosen. The human observer has as his criterion to miss

as few submarines as possible while searching as much area as possible. The reduction

in area searched can be considered as coming about due to false alarms, which take

time to investigate. If the cost of missing a submarine which is present is taken as a,

and the cost of investigating a false alarm is taken as b, the criterion adopted by the

human observer would be to minimize e a + eob, where e is the relative frequency

at which targets are missed and e is the relative frequency at which false alarms are

called. From Eq. 83 we find

ela + eb = apl 1- R! pw: 1) dH
R1

+ bpo 1- p(w: 0) d[W . (109)

R

Since a and b are independent of R o and R 1 , the condition that a point belong to R 1 will

be found in the same way as before, from Eq. 84, giving

ap 1p(wl, ... , ws : 1) > bpop(wl, .. .s : ) . (110)
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Condition 110 can be met, as contrasted to condition 108, whenever the cost of missing

a submarine is sufficiently greater than the cost of investigating a false alarm.

In the same way that p([w] : 1) and p([w] : 0) depend on the coordinates of the area

under consideration, the values of a and b can vary with these coordinates. For if a

target is out on the fringe of a search path, and we incorrectly say that no target is

there, we have very little chance of rectifying the error. On the other hand, if the

target is dead ahead and we miss it, it may be picked up later.

Substituting Eqs. 105 and 107 in Eq. 110 gives

api exp (Wi-ml)2 - (Wi- m
ss 2 >b 1 - exp 2

(rleXPL-E 2cr2 2cr2 /1 1 n /

+ c exp ( - . (111)
0

The optimum nonlinear filter in this case is a computer. Its function is to evaluate the

two sides of the inequality 111, and compare the results to determine which side is

larger. If the left hand side is larger, a warning is given.

Condition 11 1 is based on statistics which define the coherence from pulse to pulse.

In the same way it would be possible to take into consideration the statistics relating

the returns produced by reflections of the same pulse when incident on different areas.

It seems most convenient to do this in the design of the linear filters associated with

the i-f and video amplifiers.

It may be expected that aC and C n will both be small compared to mn - m o . In this

case, one of the two terms on the right side of 111 will usually be much larger than the

other and the inequality may be written:

(wi- m)2 bPo 1 l-- c-z w, > slog + klog 2 ap n
2a2 1

+ (s - k) log c (112)
(k) n (s-k) o

where k is the number of returns for which

1-- exp [ (wi-mn)2 c (wi - mo)2
1r C exp [ n21 -c exp 2 (113)

n o

and Z indicates summation over those terms for which 113 holds. Simplifying 112
(k)
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gives

(Wi - ) l bpo - 1-c o

1 1

(wi -mn) 2 ( w i - mO) 2

2- ~~ zo-~2 ~(114)
(k) 2 n (s-k) 20-0o

The computer which carries out the computation 114 may be of any convenient

design, such as a modern high speed digital computer. It could be carried on a ship,

for example, and operate on signals [w] received from an aircraft.

It is worth noting that in case c = 1, which might correspond to the case of a fairly

smooth sea, 114 would become:

(wi- ml)2 s (Wi- 2 bpo 
>) > Z m--, + slog a p

0 (115)
1 2cr 1 1 2o' 1 a 0

If now in addition ' 1 = cr, we obtain

s w2 s 2
S Wi sm wim sm o bp o

iE 1 > _O - + slog . (116)
1 1 1 1 o 1 aP1

Or rewriting:

_ 1S i M + .2 bp.1 i > m I log (117)
1 1 o

As would be expected in this simple case, relation 117 simply requires (when

m 1 > mo) that the average value of the return exceed the average of the two means plus

an additional term which takes into account the probabilities p and P1 and the costs a
and b.

Conclusion

Principal emphasis in this study of nonlinear transducers has been placed on

information processing devices intended for use in receivers, or in equipment similar

to receivers. Thus the field of study parallels roughly the general area studied by

Wiener in his book on optimum linear filters, with the difference that the devices which

are optimized are allowed to be nonlinear. Within the limits of this field it has been

found possible to handle the problem of determining optimum invariant devices for pro-

cessing various kinds of signals of importance. Specific design equations are given

in these cases. It has not been found possible to summarize the results in a closed

form, as was done by Wiener for the linear case, but the methods which have been

developed should prove applicable, with minor modifications, to new problems
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which may arise in the general area selected for study.

The results which have been obtained lead to equipment which is physically realiz-

able in one or another of the standard forms which are proposed. It is possible that in

many cases simpler equipment which produces the same results can be designed, and

this possibility needs to be investigated. The problem involved is related to that of the

logical design of computers.

The examples which have been discussed indicate that optimum nonlinear equipment

tends to be relatively complex. Only in the case of gaussian signal and noise is the

optimum filter found to reduce to a linear device. The examples also emphasize that

a considerable body of statistical data must be obtained before optimum design can be

carried out. Because of the tendency toward complexity, and also because of the

requirement for large amounts of statistical data, it is not to be expected that optimum

nonlinear devices will generally replace linear networks in jobs which are normally

performed by linear networks. We may instead conclude that optimum nonlinear devices

will probably first receive extensive use in processing information which is normally

processed by a nonlinear device anyway. By making use of the nonlinear theory, an

optimum system replaces what might otherwise have to be designed on an intuitive or

a cut-and-try basis. Again, as has been discussed by Wiener in "Cybernetics",

optimum transducer theory may make possible the design of transducers which will

be good enough to release human beings from certain routine tasks. As illustrated by

our example of the radar search problem, some tasks are now performed by human

beings, not because the human being is especially suited to the job, but because other

equipment which would do it has not been available.

Closely related to the problem which has been studied is that of the design of

optimum coding equipment. The problem of optimum coding may in a sense be con-

sidered to include the problem of optimum reception; and in fact to constitute the

problem of optimum communication system design. It is hoped that some of the

techniques which have been employed in this thesis may prove useful in the study of

this more general problem.
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