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AMPLIFIERS WITH PRESCRIBED FREQUENCY CHARACTERISTICS
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Abstract

The amplifier chain, a cascade connection of amplifier tubes connected by two-

terminal or two-terminal-pair interstages, is the basic component of the amplifiers

designed. Shunt capacitance in the interstages imposes a limit on the amplification per

stage over a prescribed band of frequencies. The limit of amplification per stage is

inversely proportional to the bandwidth. The method of design of amplifier chains pre-

sented leads to simple interstages which are economically close to the maximum in

performance for the shunt capacitance present. The interstages used are simple-tuned

circuits or double-tuned circuits. The technique of design of the amplifier chains is

related to the stagger-tuning technique invented by Wallman. The characteristics of

individual stages are nonuniform but the stages in a chain complement each other to

provide an acceptably uniform characteristic. In the design procedure one chooses the
amplification function for the chain being designed, according to a flexible technique

presented in Technical Report No. 145, such that prescribed frequency characteristics

are approximated. The amplification functions so chosen are suitable to be identified

with realizable networks. This step is the key of the whole design process.

Single amplifier chains become ineffective as amplifiers when the bandwidth becomes

so broad that the amplification per stage approaches one. When amplifiers are to

amplify such broad bands of frequencies that this situation arises, more than one ampli-

fier chain is used. The chains amplify different sub-bands and are connected in parallel
at the input and output. The amplification functions of the individual chains are so

chosen that the chains, when connected in parallel, give a desired characteristic.

A summary of the pertinent characteristics of the distributed amplifier (invented by

Percival), which is capable of amplifying over bands greater than those for which single
amplifier chains are useful, permits a comparison with the parallel-chain amplifier.

The parallel-chain amplifier is more economical in tubes and the design is more flexible.

The frequency selectivity of the parallel-chain amplifier is affected by nonuniform
changes in the tube characteristics; a properly designed distributed amplifier has a
frequency selectivity not altered by changing transconductances of the tubes.
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AMPLIFIERS WITH PRESCRIBED FREQUENCY CHARACTERISTICS

AND ARBITRARY BANDWIDTH

1.00 Introduction

The design of vacuum tube amplifiers is a broad subject because of the diverse uses

of amplifiers and the widely different specifications on performance in different applica-

tions. The majority of design specifications include a prescription for the frequency

characteristics of the amplifier to be designed. Ordinarily the frequency character-

istics, the magnitude of amplification and the phase shift over the band of frequencies

amplified, are the primary specifications for the amplifier. Further specifications may

be viewed as added requirements or constraints. The technique of design of amplifiers

can logically be based around a procedure for realizing amplifiers with prescribed fre-

quency characteristics. This report presents such a procedure that is simple and

flexible. The basic building block in the design procedure is the amplifier chain - a

conventional cascade connection of amplifying tubes which are connected by simple two-

terminal or two-terminal-pair interstages. For very broad band amplifiers two or more

amplifier chains are connected in parallel; each amplifier chain amplifies a smaller,

suitably chosen sub-band of the total band of frequencies being amplified.

The basic limitation which restricts the level of amplification obtainable in a given

amplifier over a given band of frequencies is the shunt capacitance associated with the

tubes and interstages. Parasitic capacitance is inevitable. The designer is accordingly

obliged to furnish designs, with a minimum of parasitic capacitance, which give as

large amplification as is feasible with the amount of capacitance present. Simple inter-

stages are desirable in that the parasitic capacitance introduced is smaller than that

introduced in complicated circuits. Moreover, simple circuits are easy to build and

adjust. Circuits designed by the procedure presented here are simple and give very

good amplification for the amount of shunt capacitance present.

1. 10 Summary of Previous Contributions

Previous contributions in the field of amplifier design which have particular signifi-

cance for the method presented here are divided into two classes. One of these classes

includes contributions dealing with the nature of and a quantitative evaluation of the limit

imposed by shunt capacitance. The second class of contribution deals with design tech-

niques which have been developed earlier for various kinds of amplifiers.

1. 11 The Limitation Imposed by Shunt Capacitance

The most familiar example illustrating the limitation of shunt capacitance on ampli-

fier performance is the RC two-terminal interstage shown in Fig. la. The band of fre-

quencies over which a stage of amplifier using this interstage has less than half-power

variation in amplification is 1/RC rad/sec and the maximum impedance which the circuit

presents is R ohms. If one wishes to obtain a larger bandwidth with this circuit, he
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must lower R and hence the amplification. To design a better stage one should try to

find a circuit of the nature of Fig. lb in which the driving-point impedance can be main-

tained over a corresponding bandwidth at a larger value than is possible with the RC

circuit. A large number of circuits were proposed to do specifically this thing long

before an analysis was completed to show the fundamental nature of the limitation

imposed by shunt capacitance on the impedance level.

Several writers have suggested circuits, but Wheeler (1) made a comprehensive

study of the problem and suggested a number of filter circuits which, used as interstages,

would give a better amplification over a prescribed band of frequencies than could be

achieved with the simple RC circuit. Wheeler stated, on an empirical basis, that the

maximum uniform impedance which could be maintained over wo rad/sec in a network

with a shunt capacitance C is 2/C ° o ohms, which is twice the impedance level of an RC

network with an wo rad/sec bandwidth. This limit is obtained with filter circuits

requiring an infinite number of elements.

2 2

(a) (b)

Fig. 1 Simple two-terminal cir- Fig. 2 A two-terminal-pair network with
cuits with shunt capacitance. shunt capacitance at the terminal pairs.

Subsequent analytical work by Bode(2) verified the conclusion stated by Wheeler.

Bode's work was essentially to determine the maximum constant magnitude of a driving-

point impedance over wo rad/sec if this impedance must approach 1/XC (X is the complex

frequency variable) as X approaches infinity. The prescribed behavior of the function at

infinity in combination with the restriction to positive real character* limits the maxi-

mum uniform magnitude over wo rad/sec to 2/o C ohms and Wheeler's empirical result

was substantiated on analytical grounds.

The problem of evaluating the limits imposed by parasitic capacitance in the case of

two-terminal-pair networks was treated by both Wheeler and Bode. In Fig. 2 is shown

a two-terminal-pair network with equal shunt capacitances whose limiting behavior can

be compared with the limit obtainable with networks of the form Fig. lb. The analytical

problem solved by Bode was to determine the maximum uniform level of transfer imped-

ance over wo rad/sec for such a circuit. This he determined to be 2/2W C ohms. One

can say, on this basis, that splitting the shunt capacitance into two equal parts increases

the potential effectiveness of a stage by 2. 47 times.

The foregoing discussion applies specifically to single-stage amplifiers. Most

practical cases involve amplifiers of several cascaded stages. The results stated above

*A positive real function of X is a rational function of X whose real part is never nega-
tive for positive values of the real part of X. Positive real character is the necessary
and sufficient condition that a function be the driving-point impedance of a physically
realizable passive network.
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apply only to multi-stage amplifiers in which the amplification of every stage is uniform

over the pass band. Hansen (3) determined the limit of amplification in amplifiers with

a uniform over-all characteristic but with individual stages having nonuniform character-

istics (stagger-tuned amplifiers). He found that for two-terminal-pair interstages the

stagger-tuned case offers a slight advantage but that for two-terminal interstages the

limits are the same as for the case of identical stages each with uniform amplification

over the pass band.

1.12 Design Techniques

Most previous contributions in the techniques of design of amplifiers consisting of

a single chain were centered around improvement in the characteristics of the RC

amplifier. The use of inductance in shunt with the parasitic capacitance at the terminal

pairs of the interstage or in series between the ungrounded terminals of the input and

output (called respectively shunt and series compensation) is the most familiar artifice

for improving the amplification-bandwidth product of the RC amplifier. This method

results in a very simple circuit. The choice of parameter values is usually made either

empirically or analytically to suit the particular application. The filter interstages sug-

gested by Wheeler, which were mentioned in the last section, are theoretically more

effective but also much more complicated. In practical circuits these interstages are

seldom used. Experience establishes the principle that simplicity of a circuit is fre-

quently as necessary as it is practically convenient. A complicated circuit ordinarily

possesses more shunt capacitance because of its complication; consequently, its greater

effectiveness in approaching the limit imposed by shunt capacitance is largely cancelled.

In many amplifiers it is necessary to employ more than one stage to obtain the

desired level of amplification. The cascading of identical stages to achieve a higher

level of amplification is a method commonly used. It possesses two obvious flaws which

become more serious as the number of stages increases. In the first place, the pass

band shrinks in width. This is easily appreciated through observing that the half-power

frequencies of a stage are the quarter-power frequencies of two such identical stages

connected in cascade. The half-power frequencies of the two-stage amplifier are closer

together than these quarter-power frequencies. The second flaw is that irregularities

in the level of amplification in the pass band are accented as the number of stages

increases. For example, a ten-stage amplifier composed of identical stages which

gives an amplification uniform over the band to within 30 percent must possess individ-

ual stages which are uniform to within 2.7 percent. The requirement of such extreme

uniformity necessitates an undesirable complexity in the interstages or excessive

shrinking of the bandwidth. A novel and extremely practical alternate solution to the

problem of the design of a multi-stage amplifier is that of stagger tuning suggested by

Wallman (4). A simple form of stagger-tuned amplifier is shown in Fig. 3. Each stage

is tuned to a slightly different frequency and has a different damping. It turns out that

an appropriately chosen set of nonuniform characteristics leads to an acceptably uniform

-3-
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over-all characteristic. The interstages are remarkably simple and fortunately such an

amplifier provides an amplification level which is acceptably close to the limiting level

set by the shunt capacitance. Wallman (4) and Baum (5) have given methods whereby one

can select the tuned frequency and damping of the individual stages to give certain simple

desirable over-all characteristics.

Ei; i --------- I E,

Fig. 3 Equivalent circuit of stagger-tuned amplifier.

IN

Fig. 4 Circuit of Percival's amplifier.

By the methods just discussed one can design an amplifier consisting of a chain of

cascaded stages which will provide any amplification if the bandwidth is not so broad

that the amplification per stage is forced down to one by the shunt capacitance. As the

bandwidth required approaches this critical limit, the method of cascading to increase

the amplification becomes less effective and finally fails. The theoretical problem of

designing an amplifier which exceeds the bandwidth possible for conventional amplifiers

has been solved before in only one way. Percival's amplifier (6, 7, 8), in which the grids

and plates of vacuum tubes are distributed along two artificial lines, gives (theoretically,

at least) any amplification over any bandwidth. The Percival amplifier is so constructed

that the transconductances of its tubes are essentially summed without incurring an

added loss due to increase in parasitic capacitance. This fact frees it from the kind of

amplification-bandwidth limitation applying to single chains of cascaded amplifiers. Its

operation is explained through consideration of Fig. 4. A signal applied at the input is

propagated down the grid line, actuating the tubes in succession. Each of them injects a

current into the plate line, and the current wave is reinforced at each tube; its size at

the output is determined by the number of tubes along the line. The shunt capacitances

of the transmission lines are identified with the parasitic capacitances of the tubes. To

get amplification over a wide band, one designs the lines with a suitably high cut-off

frequency. Increasing the cut-off frequency always reduces the impedance level of the

transmission line and thereby reduces the amplification for a given number of tubes.

Hence in the Percival amplifier (called the distributed amplifier by Ginzton (7), parasitic

-4-
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capacitance still limits the amplification-bandwidth product though it does not put a theo-

retical limit on the breadth of the band of frequencies to be amplified. By choosing a

sufficient number of tubes for each stage (Fig. 4) and connecting a suitable number of

such stages in cascade, one can theoretically obtain any level of amplification over any

bandwidth. The disadvantages of the distributed amplifier are the inflexibility of the

design (all sections of the lines must be identical, and the lines must be properly termi-

nated) and the expense in the number of tubes required for a given performance. If there

is much parasitic coupling between the two lines, the resulting feedback will cause insta-

bility. The amplifier has the advantage that the frequency characteristics are not influ-

enced except in level by changes in the transconductances of the tubes.

The method, described later in this report, of paralleling simple amplifier chains,

each effective over a fraction of the bandwidth, has been suggested before (9, 10) but it

has never been made workable by a suitable design procedure.

1. 20 New Technique of Amplifier Design

The technique of amplifier design presented here is applicable both for narrow- and

broad-band cases which require respectively one chain and a number of paralleled

chains. In either case the single amplifier chain is the basic building block.

A typical amplifier chain is shown in Fig. 5. For such an amplifier chain the ampli-

fication function is

E
E ( - g m) Zil ZiZ Zin( n ( g Zo)n (1)
i

In Eq. 1 Zill Zi2 . . . Zin are the interstage impedances. They are driving-point imped-
ances if the interstages are two-terminal networks, transfer impedances if the inter-

stages are two-terminal-pair networks. In either case shunt capacitance always appears

at the pairs of terminals.

INPUT OUTPUT

TWO-TERMINAL INTERSTAGE TWO-TERMINAL- PAIR INTERSTAGE

Fig. 5 Amplifier chain and typical interstages.

E
Amplification function of the chain is o () .

Ei
1
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In a broad-band amplifier requiring more than one chain, one prescribes the individ-

ual amplification functions to be of such nature that the amplification function of the

complete amplifier (the sum of the amplification functions of the paralleled chains) has

the desired properties. Figure 6 shows typical amplification characteristics of a two-

chain amplifier.

The salient quantities upon which attention is centered throughout the design pro-

cedure are the amplification functions of the individual chains. The magnitude and

IAMPI " CHARACTERISTICS
/' /OF INDIVIDUAL CHAINS

FREQUENCY -

Fig. 6 Typical amplifier character-
istics of two-chain amplifier.

In either the single- or multiple-chain

choice of the amplification functions of the

be suitable to identify as the amplification

argument of the amplification function for

real frequencies are the frequency character-

istics of the amplifier chain. The interstage

impedances are factors of the amplification

function. For the interstage types used

(Fig. 5) these impedances are simple functions.

Element values of the interstages are easily

related to the amplification function. Design

constraints in the amplifier are readily trans-

lated into constraints on the amplification

function. For instance, in an n-stage ampli-

fier with two-terminal interstages each with

shunt capacitance C, the amplification function

is constrained to approach (- gm)n/(XC)n

as X approaches infinity.

cases the key to a successful design is the

individual chains. The functions chosen must

functions of the amplifier networks to be real-

ized, they must provide the frequency characteristics desired and the level of amplifica-

tion in the individual chains must be economically close to the limit set by the shunt

capacitance. This key problem in the design procedure, the choice of a function approxi-

mating prescribed magnitude and phase characteristics, is a familiar one which appears

in almost all network design problems and is called the approximation problem. In the

previously developed design methods for stagger-tuned amplifiers (4, 5) this problem was

solved implicitly despite the fact that the approach was from a different point of view.

A moment's reflection upon the approximation problem as viewed here in connection

with Eq. 1 indicates that what one is doing here is really closely related to stagger-tuning.

Through solving the approximation problem one selects Z both to ensure that Z 0 , the

desired frequency characteristics of the amplifier, will be obtained and to ensure that

ZO is factorable into realizable interstage impedances. The process automatically allo-

cates to the various stages characteristics which are complementary in a sense similar

to that in which the individual stage characteristics of Wallman's amplifiers are comple-

mentary. Here we find a desirable amplification characteristic which is factorable into

realizable stage characteristics while the view previously taken is to find realizable

-6-
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stage characteristics which combine to give a desired over-all amplification character-
istic. The approach taken here, the choice of the amplification functions of the individual
chains, is adapted to a solution of the approximation problem which is presented in a
companion report (11). This report gives a method whereby one can obtain rational func-
tions whose magnitude and argument approach desired characteristics over the range of
interest of the frequency variable. The procedure of solution is to start with a trial set
of positions of poles and zeros of ZO (Eq. 1). The trial set of pole and zero locations
are constrained to lead to the type of network of interest. The frequency characteristics
corresponding to this trial set of locations only roughly approximate the prescribed fre-
quency characteristic. The trial set is chosen from experience with related problems
or purely on the basis of a set of characteristic curves given in the report. Observing the
deviations of the characteristics of the trial set from the characteristics desired, one
shifts the location of poles and zeros from the first trial position to a second trial posi-
tion by a systematic procedure. The shift is such that the constraints imposed earlier
to lead to realizable networks are not violated, and the frequency characteristics are
improved. The whole process is a systematic fitting procedure of unusual flexibility
which one continues until the resulting deviations are tolerable. For most practical
problems the procedure is simple and brief. For precise approximations a more com-
plicated but more powerful algebraic fitting procedure is presented which gives results
obtainable by no other known method.

As is apparent later when the problem of paralleling chains of amplifiers is discussed
in detail, the practical constraints which must be imposed on the form of amplification
functions of the chains makes the flexible solution to the approximation problem the most
important key in the success of the design procedure presented.

2. 00 The Design of Amplifier Chains

The design of the basic building block of the amplifier, the amplifier chain, Fig. 5,
proceeds most effectively when the basic limitation to its performance, the shunt capaci-
tance, is precisely understood. The following development specifically defines the
amplification-bandwidth limitation imposed by parasitic capacitance on amplifier chains.
Following the development, a design procedure is presented for amplifier chains in
which shunt capacitances appear.

2. 10 The Limitation Imposed by Parasitic Capacitance for Two-Terminal Interstages

The presence of parasitic capacitance is always most directly apparent in the behav-
ior of the circuit at high frequencies. If the network is a two-terminal network, as
shown in Fig. 7, the driving-point impedance must approach 1/CX and become zero as
infinite frequency is reached, regardless of what other passive elements are connected
in the box. Moreover, the driving-point impedance Z must be a positive real rational
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function*. The pertinent question with regard to the amplification-bandwidth limitations

is: Does the behavior of Z at infinity along with its positive real character impose a

limit on the level of magnitude of Z over a prescribed frequency range ? The answer is

yes.

The relationship which makes the limitation most evident is an application of Cauchy's

theorem. Cauchy's theorem proves that the integral of a function around a closed con-

tour is zero if the contour encloses no singularities of the function. The positive real

character of Z insures that Z has no poles in the right half-plane. If one considers a

contour bounding a large semicircle in the right half of the X-plane (Fig. 8), Z is

analytic inside the semicircle. As the radius of the circle is permitted to approach

infinity, the value of Z on the circular part of the contour approaches 1/XC. Any analytic

function of Z integrated over the contour shown in Fig. 8 will give zero, the component

of that integral on the semicircle being dependent upon C. By choosing the proper func-

tions of Z to be integrated in this matter, illuminating results on the implications of

parasitic capacitance can be deduced. Bode has given a number of results arrived at on

this basis. One of them is that the largest uniform level of magnitude of Z (Fig. 7) over

Wo rad/sec is 2/Cco0 ohms.

Fig. 7 Two-terminal impedance
with parasitic capacitance.

IMAGINARY

X- PLANE

REAL

Fig. 8 Contour in X plane.

Attention will be turned back to Eq. 1 and

Fig. 5 for the case in which every interstage is

a two-terminal network. Stated in the most

convenient terms, the problem is: What is the

maximum constant magnitude of Z which can

be maintained fixed from zero to co rad/sec in

view of the fact that the factors of Z must be

positive real functions approaching 1/XC as 

approaches infinity ?

The answer is most conveniently obtained

through consideration of a relationship developed

by Bode (12) which applies to Zil, Zi2 . . . or

Zin in Eq. 1. For a typical one of the impedances,

one has Eq. 2.

a.
lp d __ +

o / o

o

ip 2 X r

1 I 0

2 
CWi ip

*A positive real function of X satisfies these qualifying conditions: ReZ > 0 if Re > 0,
Im Z = 0 if Im X = 0.

-8-

1

- l l



Equation 2 was developed by Bode through the integration of

in \ o

around the contour in the complex frequency plane shown in Fig. 9. Since IPip can

never exceed 1T/2 radians for X = jw (Zip being a positive real function), the second

integral of Eq. 2 must not be negative and can only be zero in the limiting case in which

pip =- T/2 for w > o0.

NE Fig. 9 Contour around which

l(IlZ + + X) CZ
in 2 2 is integrated to obtain Eq. 2.

J _o)

If one writes a set of relationships of the nature of Eq. 2 and sums them for all factors

of Zo, Eq. 3 results.

n I n i ip
Cp w W ip Pi+2 c irn 2LE 3 J d---- + d - in (3)

()2 0o 2 o 2 C 

The first integral of Eq. 3 is recognized to be

in IZo dX

o oj/

Clearly, this integral will be a maximum if the second integral of Eq. 3 is zero, as the

second integral cannot be negative. This fact means that beyond oo rad/sec every inter-

stage impedance should be a pure capacitive reactance if the magnitude of amplification

up to Wo rad/sec is to be maximized. The maximum constant level of IZo is given by

Eq. 4.

I d ' nmxd = in · Zo T In () n (4)

o 1 0 2oo

Equation 4 reveals that Zo I max is (2/C 0oo) n ohms.

-9-

__�_ii ^I II___ I I



Equations 2, 3, and 4 all apply to cases in which the amplifier involved is of the low-

pass type. That precisely the same limit applies to band-pass cases can be proved by

use of a different integrand evaluated around a contour similar to that shown in Fig. 9.

The integrand involves branch points at the edges of the band instead of at + j o and the

algebraic manipulations are more complicated.

The result expressed in Eq. 4 indicates that the limit of uniform amplification of

n stages is just the n t h power of the limit of uniform amplification of a one-stage ampli-

fier. In the proof just outlined the individual interstage impedances are not assumed to

have uniform levels of impedance to w0 rad/sec. The attainment of the limit requires

only that the stages acting together provide uniform amplification over the pass band

and have the maximum phase shift consistent with physical realizability beyond the pass

band. At this point, one first appreciates that the method of getting a wide-band ampli-

fier of cascaded stages through making every stage equally good and equally flat is

unnecessary. This erroneous idea seems to have been widely held before Wallman's

stagger-tuned amplifiers.

According to the results indicated in the foregoing discussion, the level of ampli-

fication over 0o rad/sec which cannot be exceeded by an n-stage amplifier with two-

terminal interstages is (2gm/C 0o)n.

2. 11 Simple Amplifier Chains With Two-Terminal Interstages

The analysis just given establishes the upper limit of amplification set by parasitic

capacitance, but gives little indication as to how close to that limit one can reach with

practical networks. A design method for a simple low-pass amplifier gives an indication

of the possibilities practically attainable. The two-terminal interstages of the design

presented include both single-tuned circuits and RC circuits. For this design method

the amplification is not exactly uniform; it exhibits equal maxima of deviation in the pass

band. For half-power variations, the level of amplification is 50 percent of the theo-

rectical limit. Accordingly, for 10 percent variations the amplification level over a

band w0 rad/sec wide is 0. 242 (gm2/Co 0 )n. For an n + 1 stage amplifier, the ampli-

fication level is 0. 242 (gm2/Cwo)n+l. This result is rather interesting, in that it
means that an n + 1 stage amplifier gives an amplification of an n-stage amplifier times

the theoretical limit for one stage. The effectiveness per stage for a given tolerance

on uniformity in the pass band increases with the number of stages.

The simple case presented also is used to illustrate the problems of design of an

amplifier chain. The design of an amplifier chain can be divided into two parts: the

approximation problem and the network realization. The approximation problem for

this simple case is discussed first, and the network realization is taken up last.

2.12 The Approximation Problem for a Simple Amplifier Chain

The approximation problem, the problem of choosing a rational function which can

be identified with Zo, is logically attacked in two steps. The first step is the selection
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of a class of rational functions which satisfy the conditions of physical realizability of

ZO and are adapted to identification with the product of simple driving-point impedances.

The conditions of physical realizability of ZO are that it be the ratio of Hurwitz poly-

nomials, that it approach 1/(Ck)n as X approaches infinity, and that

[Arg Zla n2

The second step is the selection from the chosen class of functions of a type which

exhibits a large approximately constant magnitude in the range of real frequency, zero

to Wo rad/sec, with an argument approaching - n ir/2 beyond oo .

To proceed with the first step of the approximation procedure, one should select

an appropriate class of functions. The function chosen as Z must clearly have n more

poles than zeros, to exhibit the appropriate behavior at infinity. A simple class of

functions which fulfills this requirement is the class of the form

Zo(k) = 1
Cn (n + an1 Xn +... ao)

(5)

Cn(-- Xpl ) ( - p2 )' ' ' ( - - kpn)

in which the denominator is a Hurwitz polynomial. The critical frequencies (poles) fall

in conjugate pairs in the left half of the X-plane, as shown in Fig. 10. For any point

X = Jwa on the imaginary axis, ZO is observed to be simply l/Cn divided by the product

of a set of vectors, each originating at one of the poles in the X-plane, and all terminating

at joa. This simple graphical picture verifies that Arg Zo0 | n r/2 for any real fre-

quency (X is purely imaginary for real frequencies).

In completing the solution of the approxi-
'LANE mation problem here, one needs to find a

'OLE OF Zo method of distributing the n poles so that

the magnitude of the corresponding rational

function will be large and uniform from

X = 0 to X = jO, and so that Arg Z is

nearly- n rr/2 bevond i .- At this nnint
-- --- y . -_ ... - -.. __ I _

Fig. 10 Critical frequencies of Z as in consideration of the potential analogy(ll)

is helpful. One recalls that the potential

problem which corresponds to this approximation problem is the determination of the

positions of n charged filaments (n = 5 for Fig. 10) to yield the highest potential along

the line identified with the imaginary axis from zero to j ° in Fig. 10. From the potential

analogy, one clearly sees that the poles should be brought as close to the imaginary axis

as is consistent with having tolerable variations in magnitude of the function in the pass

band. The distribution of poles should be such as to make the magnitude as uniform as

possible.

-11-
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One 's acquaintance with the use of Tschebyscheff polynomials in the design of low-

pass filters, along with the recollection that the poles of the transfer function were

placed on a semi-ellipse there (much as they apparently need to be placed here), sug-

gests the use of Tschebyscheff polynomials for this problem.

*The following summary presents the useful properties of Tschebyscheff polynomials

for their use in the example at hand. By definition, the Tschebyscheff polynomial of

order n is

Vn () = cos (ncos- 1 W) (6)

A change of variable makes clear that Vn(w) is a polynomial

cos= w = Re = =Re + j 1- _w ] (7)

Vn(w) =Re eji= Re [+j 1 2] n ,(8)

which is a simple polynomial in w. A recursion formula is found by use of the trigo-

nometric identity

2 cos n cos C = cos (n + 1) 4 + cos (n- 1) , (9)

which may be written

cos (n + 1) qP = 2 cos n4 cos- cos (n- 1) . (10)

The latter equation expressed in terms of w gives

Vn+ 1 (W) = 2 Vn (w) V- V( ( 11)

A few of the family of Tschebyscheff polynomials are: V () = W, V2 (w) = 2 2 - 1, V3(W)

= 4- 3, etc. Consideration of Eq. 6 reveals that the Tschebyscheff polynomials all

oscillate in value between + 1 and -1 in the range - 1 ~w 1, and that beyond this range

they become very large. The number of times the polynomial has the magnitude one in

the range - 1 < ow 1 is one greater than the order of the polynomial. The highest power
n- n

of w is always 2 W . In Fig. 1 1 sketches of the first four Tschebyscheff polynomials

are shown.

In order to apply Tschebyscheff polynomials to the problem of amplifier design

obtaining.functions of the form of Eq. 5, one defines IZo0 I2=j in terms of a particular

function involving Tschebyscheff polynomials. For a 1 rad/sec design, one sets

I j 2 (12)
The presentation here follows+ V(en by Professor Guillein in M. I.

* The presentation here follows that given by Professor Guillemin in M.I.T. Subject
6. 562. An alternate enlightening derivation of the proper pole distribution to yield
a Tschebyscheff approximation to constant magnitude in the pass band is given in a
report by Fano (13). The method used in interesting, in that it applies results from the
potential analogy after a conformal transformation has been used to make the potential
problem simple to solve.
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The general nature of IZo[ is indicated in Fig. 12. For Fig. 12,

1 _ [Alz-- A) '/21or = 1/2] (13)

In Eq. 19, E is chosen to yield the tolerance desired (indicated as AM in Fig. 12). M is
a constant chosen to make Z 1/(CX)n as X + . a function of , asa X o=j)
is apparent from Eq. 12.

The problem at this stage is to determine Z from a chosen Zo=jo as expressed
in Eq. 12. That the magnitude of a rational function is not an analytic function is well
known. However, Z(X) Z(-k) is equal to the magnitude squared of Z(X) for X = jo.
Naturally the analytic function Z(X) Z(-X) cannot be identified with 1Z(X)1 2 , for X / j,
but Z(X) Z(-X) is precisely IZI 2 if one restricts attention to the imaginary axis. Hence
it is clear that if Eq. 12 be written as a function of X, it must be the product of Zo(k)
and Z(-X). Z(X) is identified with the product of factors corresponding to poles and
zeros in the left half-plane. To identify the poles of Z(X), one must find the roots of

+ V () = 0 (14)

which fall in the left half of the X-plane. The roots of Eq. 14 may be most easily found
through considering the corresponding function of .

2 2
0= 1+ E cos n . (15)

The roots occur where

cos n Q = + j/ (16)

Expressing in terms of its real and imaginary components, one has

( Or + i (17)

and

cos n q = cos (nd r
+ j n qi)

= cos n r cos j n i - sin n r sin j nO i

= cosh n i cos n r - j sinh n i sin n r . (18)

By considering Eq. 16 and Eq. 18, one sees that the roots of Eq. 15 occur at

r = + (2k- 1) (19)r 2n

where k is any integer, and

-1 1n i = sinh - (20)
E
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Fig. 11

Sketches of Tschebyscheff polynomials,
cos (n cos - 1 w), through fourth order.

0

___ _ _1

1 + 2 v ( )

x

SURPLUS /
FACTORS x

Fig. 13

Poles of Z (X) for n = 5 (see Eq. 21).
Poles (crosses) lie on an ellipse.

X- PLANE

x- POLES
O-ZEROS

Fig. 14

Poles and zeros of Zo(X) including
surplus factors.

Finally, in the X-plane the roots of ZO (X) ZO(-k) are at

X = + ± (2k - 1) n _ (2k- 1) Tr
= j cosh ni cos- j sinh i sinj 3 2~~~~~~~~n 2n

(21)

where k is any integer. Figure 13 shows the location of poles of ZO (X) for n = 5.

The process of finding ZO of the form

Zo(x) =
1

(5)
Cn( n + an-I n- ... a0 )

Zo 12 M1
° =jw = +2 2V(

(12)

is completed when M is chosen. One recalls that the coefficient of the highest power of

V n (X) is n - 1. For Eq. 5 and Eq. 12 to correspond at high frequencies, one must have

1 M
Cn E2n-I

-14-
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This gives

X- PLANE n- , - n

M Cn · (23)
i C R OHMS (23)

(XA summary of the approximation problem

A summary of the approximation problem

is helpful at this point. The first step is the

Fig. 15 Zi ith single poleschoice of Zo1 = with a characteristic, as

shown in Fig. 12 for a one rad/sec case. In the selection of Zo1 one is guided by

the number of stages desired in the choice of n; the tolerance permitted in the characteris-

tic in the choice of E ; the fact that Z+ l/(XC)n as X - in the choice of M. From the

selected ZoQk=j ° one proceeds to Zo(X) by identifying the location of its poles. The

position of the poles is the most useful information in connection with the network

realization.

Before proceeding to the network realization, it is useful to assess how close one

has come to the theoretical limit imposed on Zo[ by the shunt capacitance. The theo-

retical maximum Zo1 for a one rad/sec case of n stages is (2/C)n. The ZoI attained

for the function chosen is indicated in Fig. 12 as M. Its value, specified in Eq. 23,

indicates that the fraction of the theoretical limit attained is E/2. If half-power variations

in the pass band are permitted, /2 is 0. 50. If 10 percent variations in ZoI are per-

mitted, E/2 is 0. 24. That the fractions indicated apply to the whole amplifier chain

must be borne in mind. The individual stages of a six-stage amplifier for which E/2

is 0.50 really come individually to the 6 0. 50 or 0.89 of the limit for a single stage.

This means that if a six-stage amplifier consisting of identical stages were to do as

well as the amplifier chain mentioned, each stage would have to attain 89/100 of the

limit for a single stage.

2. 13 Network Realization

With Z chosen and expressed in terms of the position of its poles, the remaining

problem is that of splitting ZO into factors and identifying each as the driving-point

impedance of an interstage.

Z 1 (5)
Cn(x- Xpl) (X- Xp 2) ... (- Xpn )

Zo = Zil Zi2 x ... Zin (24)

Each interstage impedance must approach 1/XC as X + c; hence, the Zi's must each

have one more pole than zeros. In considering Zo, one appreciates that the adding of

surplus factors in the numerator and denominator is entirely appropriate, since the

value of ZO is unchanged by this process. With addition of factors, Eq. 5 is of the

form

-15-
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1 (Xk- Xks) (X - Xs2) ... (X - Xsq )
Z . (5')

C cn( - Xpl ) (- p2) ... (- pn) (- Xsl ) (-- s2 ) ... ( -- xsq)

That all of the surplus poles and zeros should be on the negative real axis for the network

realization presented is seen presently as the method of choosing the superfluous factors

is described. Accordingly the map of poles and zeros in the complex plane is indicated

in Fig. 14.

At this point one should consider the simplest functions which could be associated

with the Zi's, bearing in mind that the function must have one more pole than zeros;

in particular, must approach /XC as X o. The first case is a function with only one

pole on the negative real axis of the X-plane, as illustrated in Fig. 15. This case leads

to the RC network shown, the element values of which are related to the pole position,

as shown in the figure. One observes that there is no restriction on the position of the

pole in Fig. 15 other than that it be on the negative real axis. In general, the position

merely determines the size of R, the nearer the pole to the origin the smaller the value

of R. The next case is that in which Z i has a conjugate pair of poles. Then it must

have a single zero on the negative real axis. For such a function to be positive real,

Ic Zll 2 a Ipl I, which means that the zero associated with a pair of poles in such an
interstage impedance can lie anywhere in the region indicated in Fig. 16. The validity

of this condition of positive real character is verified by considering the reciprocal of

Z i for Fig. 16. The consideration of that quantity also identifies the network realization.

1 _ C(X - pl - ijpl) (X - -pl + jipl)

Zi X 1 zl

C(k22pl X + pl + P)

p1 Xa zl

For the real part of 1/Z i is to be positive as X = jm- jo, zl - aZpl must be greater

than zero, and the condition o zl 1< 2 la pl I is proved necessary. The condition is

sufficient, since it leads to the possibility of identification of the network of Fig. 17 with

Z i. An examination of Fig. 17 reveals that the position of o' zl i n the range of possible

values regulates the sizes of R and RL. If zl = 2 p R = and is accordingly absent.

If zl = 0, RL = 0 and is absent. Any value of C zl between zero and 2a pl corresponds

to a network in which R and RL, both with finite values, are required.

The preceding discussion has shown two kinds of simple networks suitable to be

identified with factors of Zo, as shown in Eq. 24. The choice of superfluous factors

as indicated in Eq. 5' and the subsequent network realization will now be outlined.

-16-
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The first step is the grouping of conjugate pairs of poles. For each one of the pairs of

poles, one chooses a superfluous factor for the numerator of such form that its zero

(+ - zi ) fulfills the condition of physical realizability with the a pi of the poles, namely

Ir Zi l Zrpi' Each superfluous factor multiplied into the numerator is duplicated by

a similar factor multiplied into the denominator. Finally, networks are associated with

every pole on the negative real axis and with every conjugate pair of poles. Figure 18

illustrates the steps just outlined.
PI, PI X- PLANE

X

h- 2p l

RLOHMS

FARADS OHMS L HENRIES

,'zi IS RESTRICTED
TO THIS REGION
Fig. 16 Fig. 17

Z i with conjugate poles. Network identified with Z i of Fig. 16.

X-(r
zl Z. R =

1i C(k- Xpl ) (X - - C( 2a l ) = C(O-zl p )

R =kpl = -pl + JWpl la7zlJ < 216pl .

RL =- Czl L

2.14 Illustrative Example

The design of a five-stage low-pass amplifier using 6AC7's and having a cut-off

frequency of 16.5 megacycles is illustrated. In the design, which uses two-terminal

interstages, a Tschebyscheff characteristic will be applied, giving 10 percent vari-

ations of amplification in the pass band. As indicated earlier, such a design gives an

amplification which is 24 percent of the theoretical limit imposed by parasitic capacitance,

or 0.24 (gm2/Co)5 , which is (using 9000 mhos as gm and 25 p~Lf as C) 3920. Figure

19 shows a sketch of the amplification characteristic of the design. In the design, it is

convenient to work first with a 1 rad/sec case. The C's here are 25 x 10 1 2 x 16.5

x 106 x 2r, or 2.59 x 10 3 farads. The design will be transformed later to the 16.5-

megacycle basis by diminishing the size of all inductances and capacitances. The poles

of ZO for the 1 rad/sec case are found through Eq. 21 and are located at - 0. 300, - 0. 243

+ j 0. 614, and - 0. 093 + j 0. 994, as shown in Fig. 20. For the present example, Z is

(for 1 rad/sec case)
1

2.59 x 10 (X + 0. 300) (Xk + 0.486k + 0.243 + 0. 614) kX + 0. 186k +(0. 093)2+ 0. 9942 

(26)
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Zil
3(X-Xpl) (X-Xp2)(X-Xp3)/

X

SUPERFLUOUS
FACTORS

x

Zi C(- s)

Zi 2

X- Xs

c(X - XP2)( X- XP3)

X

-0--O

x Q

Zi3

T 1 Y I T
() EO = (-gm) Zo

E i

Fig. 18 Illustration of network
Zo = Zil Zi Zi3'

realization of Z of form of Eq. 5.

XI

X
|AMP

3920… 

0 _______________

165MC f -

x

jl X- PLANE

x - POLES

-jl

Fig. 19

Characteristic of five-stage, 16. 5-Mc
amplifier.

Fig. 20

Position of poles for illustrative
example.
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6AC7 TUBES gm = 9000 1LLmhos
Fig. 21 Network for five-stage amplifier.

L 1 (henries)

L2

1 rad/sec model

2.59 x 10

1287.0

1589.0

249.0

4150.0

36.5

1025.0

391.0

16.5 x 106 cps model

25.0 x 10

1287.0

1589.0

249.0

4150.0

36.5

9.89 x 106

3.75 x 10- 6

FOR BOTH CIRCUITS E F(X)
El

O- O

BAND PASS

JX k ( .'+ C- k \ae W)WC ._,· 

LOW PASS
jx X j

(W) FOR LOW
PASS CASE

S A C ~~~~~~~~~~~~~~I
X(W) FOR BAND
PASS CASE

|Eo

IEl

X -UC

Fig. 23 Illustration of principle of con-
servation of bandwidth. E /E = F(X).
Left, low-pass case, jX = j
Right, band-pass case, jX = j-jo2c//.

WaC

NETWORK CONFIGURATION IS THE SAME FOR BOTH CIRCUITS
IN THE SENSE THAT EVERY

IN THE LOW PASS CASE [ °--o
L HENRIES IS REPLACED BY kL h I f

Wc kwcL

IN THE LOW PASS CASE o-AI - o

C FARADS IS REPLACED BY

I/k acCh

I t
Fig. 22 Summary of low pass-
band pass transformation.

Fig. 24 Band-pass network corres-
ponding to Fig. 18.
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which is split into factors (using appropriate superfluous factors) giving

1 X + 0.243

2.59 x 10 3 (X + 0.300) 2.59 x 10 - (x 2 + 0.486X + 0.2432 + 0.6142)

1 x + 0. 093

2. 59 x 10 ( + 0. 243) 2.59 x 10 3 (X + 0. 186 + 0.093 + 0. 994

1
AV -3 (27)

2.59 x 10 (X+ 0.093)

According to the results of Fig. 16 and Fig. 17, this factoring leads to the equivalent

circuit of Fig. 21 with the table of element values shown.

2. 15 Extension of Design Method Presented to More General Specifications

The preceding development and examples have illustrated a compact design procedure

for low-pass amplifiers consisting of one chain with two-terminal interstages. Such a

design involving Tschebyscheff polynomials is very convenient and involves minor effort

on the part of the designer. It is illuminating, in that one recognizes easily how effec-

tively the resulting amplifier approaches the limit set by parasitic capacitance and the

tolerance on uniformity in the pass band can be set in the beginning. The solution to

the approximation problem is direct and explicit. The network so designed always has

a low-pass characteristic and a set form of phase characteristic accompanying the

choice of magnitude characteristic made. In the design process one does not directly

govern the phase characteristic, but does this implicitly when he specifies the magnitude

characteristic. The question to be raised at this point is: How can one design amplifiers

with specifications on the characteristics which are more general than those of the low-

pass amplifiers just discussed (an amplifier with band-pass characteristics or specified

phase characteristics, for example)? In answering the question, two different pro-

cedures will be discussed. The first procedure applies long-established methods of

transformation to yield networks with band-pass characteristics from a corresponding

network with low-pass characteristics. This method turns out to be rather special and

limited. The second procedure involves the use of the characteristics of a low-pass

design as presented to be a very rough guide from which one proceeds to designs having

much more complicated specifications to meet.

2.16 The Conventional Low-Pass to Band-Pass Transformation

In order to adapt a given low-pass design to a band-pass design, a method widely

used is the replacing of every capacitance by a parallel-tuned circuit, and every induc-

tance by a series-tuned circuit. Every tuned circuit is resonant at c which is the geo-

metric center of the pass band (14). The low-pass to band-pass transformation is really

a frequency-variable transformation applied to the system function. Every X in the low-

pass function is replaced by k (X/wcc + wc/X) to obtain the band-pass function. One recalls

that a system function is always equivalent to the ratio of determinants in which typical

-20-

-- 1 _111 1 �� _____ _�



elements or components of elements are of the nature Lk or 1/Ck. The variable trans-

formation applied to the elements of the determinants replace Lk by L k X/c + L k c/

and 1/CX by
1

Cko
CkX + c

c

which are, respectively, the impedance of a series-tuned circuit and the impedance of

a parallel-tuned circuit. The transformation represents a shift of the characteristics

of the low-pass circuit to higher frequencies. Figure 22 shows the relationship between

the behavior of the circuits and their elements. If k is equal to c', the result is that

every capacitance is replaced by the same capacitance in parallel with an inductance.

Moreover, the behavior of such low-pass and band-pass circuits has an interesting

feature called the conservation of bandwidth, which is illustrated in Fig. 23. The reason

for the behavior illustrated in Fig. 23 is quite simple. IEo/Eil is an even function of

X. For the band-pass case if wa leads to Xa,

2 2
o co

X = -- ; then =-.leads to -X . (28)
a a oa aa a a

2 2
co

oa - = X or - - o = _ x . (29)o o a aa

But the difference between the frequencies leading to X a and-X a is a - w2/a' which

is X
a
This case is an example of the fact that parasitic capacitance imposes the same

restriction on bandwidth regardless of the position of the band in the spectrum.

To illustrate a network using the low-pass to band-pass transformation, Fig. 24 is

shown. It represents the band-pass network corresponding to Fig. 18.

2.17 An Alternate View of the Low-Pass to Band-Pass Transformation

The discussion just completed illustrates the obtaining of band-pass networks from

low-pass networks. The generality of the method is limited to this one problem. A

second procedure will be introduced at this point which permits more general variations.

It is introduced through consideration of the same low-pass to band-pass transformation

considered from a different point of view. The discussion concerning the low-pass to

band-pass transformation has been conducted, up to this point, in terms of the changes

made in the network to get a band-pass from a low-pass network. The consideration

of a shift in poles and zeros of the amplification function brought about by the same

transformation is very illuminating. That poles and zeros of amplification occur for

similar values of X for both the low-pass and the band-pass designs is clear from Fig.

22. For example, if for Xz there is a zero of the amplification function, then in the

low-pass design there is a zero at

-21-
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X = jXz + . (30)

In the corresponding band-pass design (for which the frequency variable will be denoted

by primed quantities) a zero will occur at the place where

2

F X,+ ' X 'c (31)

Equation 31 is equivalent to :

2 2X' 2 _(a- + j ) + 02 0 (32)

Zeros for the band-pass case are at

Oz z + jZ) 2
z_ + z 2 (33)- 4 c

The last expression indicates that if wc is large in comparison to z and z, in the band-

pass case critical frequencies will be distributed around + jic with half the displacement

of the corresponding critical frequencies from = 0 in the low-pass case. If a- and
z

oz are not small compared to x c, the critical frequencies are displaced from

(0 + j z) 2_
+ z z)

4 c

In addition to the internal critical frequencies covered by Eq. 33, it is clear that for

any poles or zeros at zero in the low-pass case there will be poles or zeros at + JWc

in the band-pass case. For any poles or zeros at infinity in the low-pass case there

will be corresponding poles at both zero and infinity in the band-pass case. Figure 25

x

x
LOW- PASS MAP

A- PLANL

3 ZEROS AT co
(1

-_ __--

Fig. 25 Critical frequency maps for corresponding
low and band-pass amplification functions.

illustrates the shift occurring in critical frequencies for a low-pass to band-pass

transformation. Figure 25 and Eq. 33 indicate that if poles were placed on a semi-

ellipse centered at zero in the low-pass case, corresponding poles are placed on a

semi-ellipse centered at c in the band-pass case if c is sufficiently large. If, on the
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other hand, w0 is smaller, then an elliptical distribution is somewhat warped in the

shifting process, and poles are clustered toward the origin. If one views Fig. 25 in

terms of the potential analogy, considering the critical frequencies to be represented

by charged filaments, the warping is seen to be necessary to obtain a uniform potential

near wc (when wc is small), in that the oppositely charged filaments at the origin can be

counteracted by a clustering of the positively charged filaments toward the origin. For

this particular case, Eq. 33 indicates exactly the kind of clustering which is required.

(E, ( < tX2 7 E 5,

Fig. 26 Fig. 27

Band-pass network for configuration Two-terminal-pair network
of poles and zeros of Fig. 25. with parasitic capacitance.

An interesting result of the consideration of the pole and zero shifting procedure

for the low-pass to band-pass transformation is the fact that a band-pass network

corresponding to Fig. 25 is that of Fig. 26. This is arrived at by simply considering

Fig. 17. The circuit of Fig. 26 is exactly the equivalent of that of Fig. 24 and is

somewhat simpler. The reason for the simplicity in this case is that the transformation

has placed the right number of zeros at the origin, and the network realization can be

carried out without the adding of superfluous factors as was necessaryin Fig. 18. The

low-pass to band-pass transformation done in terms of the network (as in Fig. 24)

frequently leads to a more complicated network.

From the foregoing it is clear that the design of low-pass or band-pass amplifiers

with Tschebyscheff behavior of the magnitude of amplification in the pass band is con-

veniently carried out through the use of Tschebyscheff polynomials to give an explicit

solution. The preceding discussion has indicated that parasitic capacitance imposes

the same limitation on amplification regardless of value of the center frequency of the

band.

The design method just discussed is satisfactory as a final answer in a small fraction

of amplifier design problems. Two examples follow, illustrating cases wherein the

method discussed does not give a final answer.

If the coils used in an amplifier are appreciably lossy, the equivalent circuit of

Fig. 26 cannot accurately represent the circuit. If the circuit required by the design

needs lossless coils, and practical coils with loss are used in the physical circuit, then

it is impossible to realize zeros of amplification at zero as indicated in Fig. 25. One

would like to find an alternate solution to the approximation problem giving about the

same amplification characteristics but not requiring zeros on the imaginary axis. The

solution to the approximation problem, using Tschebyscheff polynomials, is fairly

close to what is required but is not exactly what is needed. A practical solution to the

problem is to place the zeros of amplification (Fig. 25) in the left half-plane and then

to shift the poles slightly to compensate for any bad effect resulting in the characteristic
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arising from the zero shift. In this case the Tschebyscheff approximation has served
as a first estimate, and the solution is subsequently fitted to the practical conditions.
The technique of shifting pole and zero positions to achieve desired changes in the
amplification function character is treated in the companion report (11). Through the

use of this technique, a very wide variety of problems can be solved in which design
conditions are accommodated which would be impossible in other approximation methods.

A second illustrative example in which the explicit approximation procedure using
Tschebyscheff polynomials is unsatisfactory is a case in which a band-pass amplifier
with approximately linear phase shift in the pass band is desired. The phase character-
istics accompanying Tschebyscheff behavior of the magnitude are notably nonlinear.

However, one can start with the pole and zero positions from a Tschebyscheff approxi-
mation, and make appropriate shifts of the poles and zeros to accomplish the desired
changes in the phase characteristic. The procedure for this adjustment process is

given in the companion report (11).

This section has presented to this point a rather complete account of the design
of amplifier chains with two-terminal interstages. The limitation imposed by parasitic
capacitance is very definite. It has been pointed out that the most convenient quantities
through which to define network behavior and to solve the approximation problem are
the pole and zero positions of the amplification function of the chain. Network reali-
zations have been presented in which network configuration and element values are
specified in terms of the pole and zero positions of the amplification function. The use
of Tschebyscheff polynomials in obtaining low- or band-pass designs has been discussed.
An introduction has been made of the method of altering a given first trial using such
an approximation as a first estimate, to be followed by better approximations to the
desired characteristics. The method described is applicable in the design of amplifiers

composed of a single chain, or of amplifiers comprising several chains which are
paralleled at the load. As will be seen later, the essence of a successful design pro-
cedure for a multi-chain amplifier is the ability to control the characteristics of the
individual chains, thereby shaping them to fit each other in an effective manner.

2.20 Two-Terminal-Pair Interstages

The results developed and stated to this point in the present section all apply to
amplifiers with two-terminal interstages. The remainder of the section is devoted to
two-terminal-pair interstages. First, the limitation imposed by parasitic capacitance
on the amplification bandwidth product is discussed. Unfortunately, the evaluation and
interpretation of the limitation is much more difficult for the two-terminal-pair case
than it is for the two-terminal case, and the results cannot be expressed in definite,
conclusive form for the most general situations. However, the information available
does provide a useful guide in the design of amplifiers with two-terminal-pair interstages.
The significant point is that the limitation on amplification imposed by parasitic capa-
citance is lessened if the parasitic capacitance can be split into two parts by a coupling
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network. It is difficult to put a limit on the advantage which is gained by splitting. A

set of simple, practical, double-tuned circuits are considered. Their configuration

and element values are associated with the position of poles and zeros of transfer

impedances in a manner consistent with the treatment of the two-terminal case already

discussed. The presentation, as a whole, is made to facilitate the application of the

approximation procedure developed in R.L.E. Report No. 145.

2. 21 Limitation Imposed by Parasitic Capacitance for Two-Terminal-Pair Interstages

The amplification of a chain of n amplifiers is

E
( g )n z zz (1)

E. ( - gm) Zil Zi"Z .... (1)i

When the amplifiers are connected by two-terminal-pair interstages, the Zi's of Eq. 1

are transfer impedances. Accordingly, the logical question to ask in connection with

Eq. 1 is: What limitation is imposed on the uniform level of magnitude of Zil Zi....

Zin by the fact that parasitic capacitance shunts both the input and output terminals of

each interstage? An exact answer is not available for a product of impedances. Bode

has answered the question for a single interstage. His solution will be discussed at

this point.

2.22 Bode's Result (15)

The maximum constant level of transfer impedance over w0 rad/sec of a passive

two-terminal-pair network is wr2 /2Cwo ohms. C is the sum of equal shunt capacitances

at the terminals of the network (Fig. 27). Further, the network which attains the limit

must be symmetrical. Though no comprehensive study will be made here of Bode's

attack on the problem, it is helpful to indicate wherein the limitation arises, to better

define its nature.

Gewertz has shown the necessary and sufficient conditions of physical realizability

for two-terminal-pair networks. Bode applies these results in the form which states

that for any real frequency (X = j) the product of real components of open-circuit imped-

ances from the two-terminal pairs is greater than, or at least equal to, the square of

the real part of the transfer impedance. These quantities are indicated in Fig. 28. The

condition mentioned indicates that if there is a limit on the driving-point impedances,

then there is implicitly a limit on the transfer impedance. The parasitic capacitances

do impose a limit on the impedances ZA and Z B. This limit is in the form of the

resistance integral theorem (16), which is:

o oRA d RB do0 = w (34)

0 0

It is improper to assign a level of ZA or ZB so high that Eq. 34 cannot be satisfied for

the capacitance present. But the level of magnitude of Z 12 is implicitly limited by the
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Fig. 28 Gewertz's condition of physical realizability
by Bode.
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(a)

I

3 E" I

(b)

Fig. 29 Circuit providing maximum uniform

Z 12 1 over o0 rad/sec

II
---I

(a) (b)

Fig. 30 Circuit fullfilling relation 36 with equality sign.

2

4 C1 C2 o

Co

Fig. 31 Multi-terminal-pair net-
work with parasitic capacitance.

I:1

Fig. 32 Two terminal-pair network
constructed from the network of Fig. 31.
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2condition on ZA and Zg, since RA RB 3>RI 2 In particular, the constant level of 1Z 1 21
over any frequency range is limited. Through a clever but complicated argument, Bode

used these ideas to deduce that

2
1Z1 2 K 2 (35)

0

over a frequency band o0 rad/sec wide.

2.23 Added Information Deduced from Bode's Result

The result indicated above is very definite and conclusive. However, it applies to
a very specific problem. When one generalizes the conditions, the problem becomes
much more difficult. For example, as was pointed out at the outset, the quantity in
which one is interested for an amplifier chain is the product of Z i's. The result given
by Bode indicates that a chain of n stages, each of which has uniformly flat character-
istics, could provide an amplification of (- g)n(12/2Cw0 )n. The question as to whether
it is necessary that all interstages have a flat magnitude of transfer impedance to attain
the limit is not answered. Later, an argument will be given to indicate that double-
tuned circuits with the same total parasitic capacitance per stage as a single-tuned
circuit yield an over-all amplification of more than twice as much. However, the
discussion in that connection is not at all an evaluation of the limit, but merely points
out that the staggering used earlier for single-tuned circuits is effective in double-
tuned circuits as well. At this point a few special cases will be discussed in which the
result of Bode gives a useful indication. The application of these special cases arises
at a later point in connection with the paralleling of amplifier chains and the analysis of
Percival's amplifier. However, this is the most convenient point for their introduction.

The first case is that of a two-terminal-pair network with different capacitances at
the two-terminal-pairs. Suppose the network in Fig. 29 (a) gives the maximum uniform
magnitude of transfer impedance over w0 rad/sec which is possible in view of its para-
sitic capacitance. The problem is to evaluate the maximum. Bode's result indicates
that the Z121 or E2 /I1 [ for (b) of Fig. 29 is I ir/4Clw0 . Accordingly, for (a),

2 T2

4[61 - 4CC (36)
i 1 4 C2 o

Circuit (a) can provide no larger magnitude, for if it did, an ideal transformer as in
(b) would give a circuit with equal terminal capacitances which exceed the limit proved
to exist by Bode. However, Eq. 36 can be fulfilled with the equality sign. Consider
Fig. 30, in which circuit (a) provides the maximum Z12 for equal capacitance. Circuit
(b) fulfills Eq. 36 with the equality sign.

The next case to be considered is illustrated in Fig. 31. For any given input, the
outputs of the terminal pairs at the output are all identical. The voltage which could
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be uniformly maintained at these n output terminal pairs (n = 3 for Fig. 31) over a range

of frequencies for a unit input current can be no greater than could be maintained at a

single pair of output terminals with n CO farads in shunt. That the limit indicated must

apply is seen by considering a two-terminal-pair network (Fig. 32) constructed from the

network of Fig. 31. The output capacitance of the network of Fig. 32 is n Co farads

(n = 3 for the example), and it is apparent that the voltage appearing at its terminals is

the same as appears at the individual output-terminal pairs of Fig. 31. Accordingly

the previous results indicate that the maximum uniform level of transfer impedance from

the input to any output of Fig. 31 is r2/4Jn C O C i ohms over o rad/sec.
A simple application of the result stated for Fig. 31 lies in the consideration of

transfer impedance from an internal terminal pair of a recurrent structure (Fig. 33)

in which capacitance shunts every terminal pair. The recurrent structure is properly

terminated. The result is useful in determining the amount of voltage which is provided

the output terminals by the current source shown inside the structure. The result given

above indicates that the transfer impedance cannot be maintained at a uniform level over

a frequency band oo rad/sec wide greater than r 2 /4C co ohms. * This quantity is

one which cannot be exceeded. The argument presented cannot insure that the limit

can be attained.

2.24 Simple Two-Terminal-Pair Networks Useful in Amplifier Chains

At this point one appreciates that two-terminal-pair interstages possess greater

potentialities than do two-terminal networks for the problem of designing amplifier chains.

However, the results just given do not supply, in themselves, a simple practical answer

to the design of two-terminal-pair interstages. One is led, however, to consider sym-

metrical networks when the capacitances are equal at the two pairs of terminals. The

use of single-tuned circuits and RC networks was successful in the case of two-terminal

interstages. One accordingly is led to use double-tuned circuits for the problem of two-

terminal-pair interstages. In the following, a presentation of the characteristics of

practical two-terminal-pair interstages is given. One finds that the success with double-

tuned circuits is just as the analysis of Bode indicates that it should be. There is a

significant improvement over what is possible with two-terminal interstages.

A basic structure which one can identify

with a number of double-tuned circuits is

shown in Fig. 34. On the basis of the analysis

---- [T... of it, results can be given directly for specific
-A1p . i1e s eps o__ evaIuation 01/
xu~rles * 1ne steps oI evaluation o ;/

Fig. 33 Properly terminated recurrent are shown in Fig. 34.
structure supplied by internal current
source.

* This kind of problem arises in connection with the amplifier of Percival, which is
discussed later.
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Figure 35 shows a single-tuned circuit and the impedance in factored form showing

the. relation between element values and the pole and zero positions of the impedance.

The relationships indicated there with the result of Fig. 34 lead directly to the ampli-

fication functions of the first three circuits of Fig. 36. The amplification function of

the fourth circuit of Fig. 36 is arrived at in a manner similar to that used in Fig. 34.

It is similarly straightforward and consequently will not be presented in detail here.

The results indicated in Fig. 36 are in a form which is convenient for the use of

a design technique for two-terminal-pair interstages similar to that applied for two-

terminal interstages. The design method has two steps. The first is to specify the

position of poles and zeros of the amplification function. The second is the identification

of networks from Fig. 36. The two steps are interrelated. In specifying the position

of poles and zeros, one must be aware of the relationships illustrated in Fig. 36. For

instance, (2) of Fig. 36 requires that the pairs of poles associated with the network

have the same displacement from the imaginary axis. In (3) of Fig. 36, the ratio of

displacement of the real-axis pole to the displacement from the imaginary axis of the

poles in the plane must be no more than two, or if a lossy inductor is used, it must be

less than two. Such restrictions, if they are accounted for, demand a very flexible

approximation procedure. An elliptical array of the nature resulting from a

Tschebyscheff approximation would frequently not be appropriate. However, small

shifts from an elliptical form can be made to cause conformity with the requirements

for realization, and at the same time to yield behavior of the phase and magnitude

characteristics which are within tolerable limits.

2.25 An Evaluation of the Effectiveness of Circuits of Fig. 36

With the results of Fig. 36 in mind, along with the discussion which has just been

given of the use of those results, the question which arises is: How effective are chains

of amplifiers using these interstages in approaching the limit set by parasitic capacitance ?

A useful and informative way of answering the question is to make a comparison between

the level of magnitude of amplification of an amplifier chain utilizing double-tuned circuits,

and the level of amplification of an amplifier chain using single-tuned circuits and having

the same total of shunt capacitance per stage. Such a comparison is useful, since the

discussion of amplifier chains using single-tuned circuits was given earlier in this chapter.

There an evaluation was made of approximately how closely they approach the limit set

by shunt capacitance. The following comparison indicates that two-terminal-pair networks

provide a level of amplification more than twice as large per stage as do the two-terminal

networks.

In the comparison to be made between single- and double-tuned circuits, attention will

be directed to (2) of Fig. 36 and to a band-pass design with which it will be associated.

Precisely the same kind of argument could be presented for (1) and (4), with a difference

only in the details of evaluation. All three provide the same advantage over single-tuned

circuits. In the discussion, the mean frequency of the band will be assumed to be several
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Fig. 34 Evaluation of Ez/E 1 for simple two-terminal pair network.
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(a) Two-terminal-pair interstage. (b) Application of Thevenin's theorem.

(c) For reasons of symmetry E 2 of (a) is E 2 of (c). (d) Circuit equivalent to(c).
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times the bandwidth. This condition is not a restriction on generality, in view of the
principle of conservation of bandwidth which indicates that shunt capacitance imposes
the same limit on amplification for a specified bandwidth regardless of the location of
the center of the band. However, use of this assumption simplifies the comparison to
be made. A comparison of (3) of Fig. 36 with a two-terminal interstage can be made
along the same kind of approach as for a low-pass case, with a demonstration of about

the same advantage as exhibited by (1), (2), and (4).

An evaluation of the level of magnitude of amplification for a chain of amplifiers

involves two elements of information about the amplification function: the constant

multiplier, the number and the manner of distribution of these critical frequencies.

The significance of this statement and its implication for the present problem is
clarified by a moment's reflection on the form of Eq. 5 when a Tschebyscheff character-
istic is obtained for a low-pass circuit. From Eq. 23 one sees that the peak value of

the amplification function of Eq. 5 is g E /C . The constant multiplier is gm/C
and it represents a constraint imposed by the tube transconductance and parasitic

2 n-1capacitance. The factor E 2 is determined by a combination of the number of critical

frequencies and their distribution. For instance, if one holds the number of critical
frequencies (poles here) fixed and changes their distribution by bringing them on an ellipse
of smaller minor axis he finds that E is increased and the level of the amplification
function is raised. Alternately, if one distributes a larger number of poles on the same
ellipse he finds E 2n - 1 or its equivalent (Eq. 20) 2n- /sinh n i goes to 2n/sinh (n +) i .

The amplification functions for the networks of Fig. 36 are shown in factored form,
bringing into evidence the constant multipliers and the positions of poles and zeros. To
estimate the level of amplification in an amplifier made up of a number of these stages
in cascade, one needs to consider the products of multiplying factors and the influence
of numbers and positions of poles. The influence of number and positions of poles on
the amplification function can be estimated by recalling the distribution of poles and
zeros for a band-pass case with Tschebyscheff behavior. If an nth-order case is con-

sidered, the critical frequencies are as shown in Fig. 37. The number of poles influences
the magnitude of the function over the pass band. For a function of the form indicated
in Fig. 37.

(k- Xz1 ) ( - z2) . . ( - zn )

n n(k- Xpl) (k- kpl)... (k- Xpn ) zl z2 zn
one recognizes that the magnitude near = jw0 is 2 - a/ , as is seen from Eq. 12 and
Eq. 23 and the discussion made in connection with those equations. Evidently the addition
of two poles and a zero (and a redistribution of the original ones to lie on a different ellipse
yielding the same tolerance in the pass band as the original) results in a function with its
magnitude being that of the original multiplied by 2/oWa. The functions associated with
amplifier chains with interstages of the forms considered in Fig. 36 will not have poles
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distributed exactly on ellipses. However, the poles will be reasonably close to this

situation, and accordingly it is very appropriate to estimate that the level of magnitude

varies with the number of poles and zeros, as with the Tschebyscheff case.

To compare the effectiveness of two-

xx T>(Half ellipse) terminal-pair networks with two-terminal

0aXX f networks, one will consider the factor by

--T xx 0o which the amplification function is multiplied

for the increase of one in the number of

stages for both kinds of network. If one com-

pares an n and n + 1-stage amplifier with

two-terminal interstages and with the same

tolerance on variation in magnitude over the

pass band, the magnitude of amplification of
Ad 1 IL l ~r : :?11 BU_ I ' , I As

an n + -stage amplllier will e ouna to oe
Fig. 37 Distribution of poles and zeros the amplification of an n-stage amplifierfo Tschebyscheff behavior in pass band, the amplification of an n-stage amplifier
for Tschebyscheff behavior in pass band. 

multiplied by ga/Cs 2/Wa where gm is the
tube transconductance and C s is the total shunt capacitance of the stage (see Eq. 23 and

accompanying discussion). The comparison of an n and an n + -stage amplifier using

two-terminal-pair interstages of the form of (2) in Fig. 36 is somewhat complicated and

involves a few approximations. The amplification function for the n + -stage amplifier

has two more pairs of poles and one more zero than the n-stage amplifier. The new

constant factor which is added is gm/C Lc C. The addition of the two pairs of poles and

the zero involves a multiplication of the level by (2/ca)2 I/w. The result just given is

easily verified in noting that the first factor would be appropriate for the addition of two

pairs of poles and two zeros. The second factor indicates the influence of cancelling

one zero. The remaining part of the evaluation consists of expressing the factor gm/LCC2

(2/oa)2 /wo in terms which lend themselves to comparison with gm/Cs 2/Wa .

T

I

x

x

1
IW

Fig. 38 Poles and zeros associated with one stage of
amplifier with interstages of form of (2) in Fig. 36.

R 1+R
w w

o a L a L LC

L+L1+l+C 1_S c 1 1 (1 +- )LL'C Lc C 2L

Figure 38 shows the position of the poles and zero added to get an n + 1-stage case along

with some simplifying approximations. Clearly one will want to obtain as large a multi-

plier gm/C L c C as is possible. Reference to Fig. 36 and to Fig. 38 indicates that Lc
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should be as small as possible. This means that the circuit should be as closely coupled

as possible if the multiplier is to be maximized. This also means that the pair of poles

near jwoo which are associated with one interstage must be as far apart as possible. The

problem of obtaining a large product of constant multiplying factors is one of doing the

appropriate kind of pairing of poles near jo 0 . Consider Fig. 39 which illustrates the

problem. Obviously, if one paired a and h, the smallest possible L c would result, and

the stage corresponding would have the largest possible factor gm/C Lc C. However,

such a pairing would accordingly greatly diminish the multiplying factors of other stages.

It is easy to see that the multiplying factors of each stage should be about the same if the

maximum product of them is to obtain. Accordingly the appropriate pairing for Fig. 39

is a - e, b - f, c - g, and d - h. Since the poles are clustered at the ends and are less

dense in the middle near jwo, the distance between poles in a pair is always greater than

ca/2. Referring to Fig. 38, one has

L 1 a
L-c (1+ )-- C 2 (38)

C

or
1 L a (39)

Since a < < w0 , one can write

1v - o (40)

LC aLC > a (41)

c

1 a
L C > 2 (42)

0 c

1 o a
L C > (43)

c

From Eq. 43 one sees that the factor by which the amplification level of an n-stage

amplification level of an n-stage amplifier is multiplied to obtain the amplification

level of an n + 1-stage amplifier is greater than

gm co Wa 4 2gm
C 2 C)(2 o (44)

W W ao a

But Cs = 2C if the two-terminal and the two-terminal-pair interstages are to have the

same shunt capacitance. Finally one has

2gm 4g gm
m -2 m (45)

a sa s a
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which indicates that the use of double-tuned circuits is more than twice as effective in

providing an amplification over a prescribed bandwidth as the use of corresponding

single-tuned circuits. The argument presented here has been roughly substantiated by

a numerical example given in Sect. 3.20. The level of amplification of the amplifier

chains approximate the expected values.

a x
b x
c x

d x

e x

f x
g x
h x

SECTION OF X- PLANE

POLES ARE CLUSTERED TOWARD
jWo THE ENDS OF THE RANGE

"OI

Fig. 39 An array of poles near X = j o to be paired for identification
with (2) of Fig. 36.

The material presented in this section has indicated the limitations imposed by

parasitic capacitance on the amplification of amplifier chains. The amplification func-

tions of simple practical networks have been given in terms of their pole and zero posi-

tions in the complex plane. The problem of design of amplifier chains involves two

interrelated steps: the choice of an amplification function in terms of poles and zeros

to yield desired frequency characteristics, and the identification of network configuration

and element values with the amplification function chosen. The design of amplifier chains

employing Tschebyscheff polynomials to solve the approximation problem has been dis-

cussed in detail. The procedure employed in the design for cases in which the approxi-

mation technique of R.L.E. Report 145 is used follows essentially the same lines and

one employs essentially the same technique in designing individual chains for a multi-

chain amplifier.

3. 00 Paralleled Chains of Amplifiers

It is possible to attain any desired level of amplification with a chain of amplifiers

by cascading a sufficient number of stages, provided the band of frequencies to be

amplified is narrow enough. (See Eq. 23 and the accompanying discussion, and Eq. 45

and the discussion accompanying it.) When one is faced with the problem of designing

an amplifier with a bandwidth so broad that the maximum level of amplification per stage

is less than one, clearly he must devise a circuit differing from the conventional ampli-

fier chain. The method of design discussed in the following applies paralleled chains

of amplifiers supplied from the same signal and paralleled at the load (Fig. 40). The

different chains amplify different ranges of frequencies, each range being made suffi-

ciently small that cascading of stages for the individual chain is effective in increasing

the amplification. The individual chains are designed to operate effectively together.
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This requires the control of their individual

frequency characteristics by methods discussed

in Sect. 2.00 and Report 145. The number of

Fig. 40 A two-chain amplifierchains and the number of tubes per chain areFig. 40 A two-chain amplifier.
chosen to minimize the number of tubes required.

The fact that one can control the frequency characteristics of the individual chains means

that an amplifier using paralleled chains has frequency characteristics which can be

flexibly controlled.

3.10 The Method of Paralleling Amplifier Chains

The amplifier shown in Fig. 40 has an amplification which is the sum of the ampli-

fications of the individual amplifier chains. The amplification of the individual chains

is simply

= (-gr)nZz Z (46)
E i0)I/ or h ( M)Zil Zi 2 . Z i n (46)

where the Zi's are the transfer impedances of the interstages. (They reduce to driving-

point impedances when the interstages are two-terminal networks. ) This expression

differs from those discussed earlier only in that Zin' the impedance corresponding to

the last interstage, is the transfer impedance from one pair of terminals to another in

a three-terminal-pair network. The only influence of the extra pair of terminals in

connection with the amplification of the chain is a decrease in level of amplification.

This is due simply to the fact that some current from the final tube in one chain is

diverted from the load to the final plate circuit of the other chain. The same sort of

situation applies where there are more than two chains. As will be appreciated later,

this diminished level is a loss which is easily compensated by an increase in the number

of stages.

The problem of specifying frequency characteristics for the individual chains of a

multi-chain amplifier is very similar to that of specifying the frequency characteristic

of a single-chain amplifier, as discussed in Sect. 2. 00. The reason is that each chain

amplifies a different frequency range, and except for the transition ranges of frequency

(where appreciable amplification comes from two chains simultaneously), the total ampli-

fication of the amplifier at any particular frequency is due essentially to only one of the

amplifier chains. Accordingly the only problem unique to the design of amplifier chains

for a multi-chain amplifier is that of insuring that the frequencies in the transition ranges

are amplified properly. This problem is solved by properly controlling the frequency

characteristics of the individual chains. One kind of frequency characteristics for

individual chains which would give a uniform characteristic over the transition range is

shown in Fig. 41. Clearly the characteristics indicated there are restricted far beyond

the point of necessity. Tolerable variations in the characteristic of the amplifier as a

whole permit the phase shift and magnitude of the lower frequency chain, for instance,

-36-

- I �_�



to depart rather violently from the straight lines near the upper edge of the transition

range, because of its small size and correspondingly slight influence on the sum there.

In fact, the straight line variation in the magnitude is not at all necessary; the kind of

variation indicated in Fig. 42 is equally appropriate. The phase characteristics indicated

in Fig. 41 are similarly restricted far beyond practical needs. The requirements on

phase shift for the two chains are simply that near the mid-point of the transition range

the phase shifts should be about equivalent [differ by about n (360) degrees], and that

in the remainder of the region the rate of phase shift should be about the same for the

two chains. Naturally, when the magnitude of amplification becomes small, the corre-

sponding phase shift is less important and needs less to be controlled accurately. One

needs simply to start with a first estimate of the amplification functions of the two chains

which have roughly the type of characteristics indicated in Fig. 41, and then to proceed

with the problem of adjusting them to complement each other properly. Precisely this

procedure is used in the illustrative example given later.

In connection with the network configuration, one appreciates that a problem unique

to paralleled chains is the design of the multi-terminal-pair load impedance shown in

Fig. 40. This network must "serve two or more masters". It must be designed to be

suitable as the load impedance of a number of different amplifier chains. One possibility

is that of designing a network which has equal transfer impedances from all terminal-

pairs to the load (Fig. 43). If one designs the network so that every Zin is uniform over

the frequency range of the complete amplifier, the limit imposed by parasitic capacitance

is the same as that discussed for Fig. 31 in Sect. 2.23. For such a case,

2
Z. in ohms (47)

Zin
max 4C/-m o

where the bandwidth of the amplifier is wo rad/sec.

An enlightening comparison which evaluates the expense of paralleling amplifier

chains is that between the two amplifier chains described as follows. The first is ter-

minated in an m + 1 terminal-pair network which exhibits a uniform magnitude of trans-

fer impedance over wo rad/sec, the bandwidth of the m chain amplifier. The second

amplifier chain is identical, except that it is terminated in a two-terminal-pair network

which exhibits a uniform magnitude of transfer impedance over the bandwidth of the

individual chain, wo/m rad/sec. A comparison between the levels of amplification of

the two chains is now made. This is essentially a comparison between the transfer

impedances of the last stages which can be made through Eq. 47. In the first place,

the l/Jm in Eq. 47 is used in the multi-terminal-pair case, because there are m

terminal-pairs feeding the load. In the second place, wo, applying to the bandwidth of

the whole amplifier, is m, times the bandwidth of a given chain. Hence the o in Eq. 47

for the multi-terminal-pair case is m times as large as the corresponding quantity for

the two-terminal-pair case. Accordingly, one sees that the individual chains of an
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Fig. 41 Idealized characteristics of chains
of amplifiers giving uniform amplification in
the transition region.

- lower frequency chain
- - higher frequency chain

Fig. 42 Alternate magnitude character-
istics serving the same purpose as
those in Fig. 41

II

LOAD

m

Fig. 43 Multi-terminal-pair network which might be applied in an m-chain amplifier.
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MAP OF POLE AND ZERO POSITIONS
FOR EITHER CASE
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Fig. 44 Simple symmetrical multi-terminal-pair networks corresponding to Fig. 36 (1).
Left, three-chain case

I II IIIin in inin in in

Right, two-chain case.

I = zII
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All arms of the networks are identical.
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m-chain amplifier are /m3/ 2 as effective as they would be if the final stage of the chain

fed into a two-terminal-pair network whose transfer impedance was held to the limit

over only w0/m rad/sec.

The limit presented in Eq. 47 applies only where IZinl is uniform over the whole

frequency range. However, in connection with a practical design such a restriction is

unnecessary. As has been observed before in similar situations, the simple tuned cir-

cuits are more practical than the complicated circuits which provide a uniform magni-

tude of transfer impedance over the band. Though the simple circuits are more practical,

one finds the problem of assessing the limit of amplification much more difficult when

they are used. In this case the limit of amplification set by parasitic capacitance for

the simple circuits will be estimated by comparison with Eq. 47. The illustrative

example presented later demonstrates that symmetrical multi-terminal-pair networks

corresponding to those in Fig. 36 are simple and effective. Typical multi-terminal-

pair networks corresponding to Fig. 36(1) with a map of pole and zero positions for two

cases are shown in Fig. 44. In comparing Zin for such a multi-terminal-pair network

with that of a corresponding two-terminal-pair network, one finds two distinctions ana-

logous to those pointed out in connection with Eq. 47. In the first place, the fact that

m terminal-pairs supply the load causes the transfer impedance from any one of the

terminal-pairs to the load to be 2/m + 1 of what it would be for the two-terminal-pair

case. This reduction in transfer impedance essentially comes about through the fact

that current from one of the driving pairs is diverted from the load into the other m - 1

driving circuits. There is a parallelism between this factor and the 1/[-which arises

in Eq. 47 for essentially the same reason. One observes, for instance, that for m = 2,

1//m = 0.707 and 2/m + 1 = 0.667, while for m = 3, 1//m= 0.577 and 2/m + 1 = 0.500.

The second point of comparison of the case illustrated in Fig. 44 with that of Fig. 43 and

Eq. 47 is observed in considering the poles of Zin as sketched in Fig. 44. Recall that

the poles of transfer impedance for single amplifier chains were distributed near the

imaginary axis in the range of where the amplification was to be large. In Fig. 44,

the poles serve all of the amplifier chains and consequently will not be placed in the

most favorable position for any one of the amplifier chains. Accordingly there is a

reduction in amplification for a multi-terminal-pair load below that possible with a

corresponding two-terminal-pair load. Observe that this situation arising in connection

with Fig. 44 is analogous to that arising in connection with Fig. 43 wherein the magni-

tude of transfer impedance was held fixed over the whole band of the amplifier rather

than the band of the individual chains. The reduction in amplification resulting because

one uses networks of the form shown in Fig. 44 rather than two-terminal pairs is diffi-

cult to assess exactly. This is particularly true, since the remainder of the amplifier

chains are designed to complement the initial choice of the multi-terminal-pair network

to be used at the load, and the adjustment procedure- in treating the amplifier design

from this point on -focuses attention on getting the best compromise possible rather

than evaluating the limitation caused by the multi-terminal-pair network at the load.
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CHAIN I

CHAIN 2

}CHAIN 3
}CHAIN 4

TWO-CHAIN CASE THREE-CHAIN CASE FOUR-CHAIN CASE

Fig. 45 Rough estimates of suitable pole positions for networks of
Fig. 44 for different numbers of chains.

Fig. 46 Multi-chain amplifier of the type to which Eq. 48 applies.

From a practical point of view, there are two needs in this connection. These needs
are a practical guide to the designing of the network in Fig. 44 (essentially a means of
deciding where the poles ought to be placed for a given number of chains) and a very
approximate relationship which indicates how much amplification can be expected in an
m-chain amplifier using n stages per chain where the transconductance of the tubes, the
parasitic capacitance per stage, and the bandwidth of the amplifier are all specified.
At this point these topics will be considered.

In connection with choosing pole positions for transfer impedance for multi-terminal-
pair symmetrical networks analogous to those shown in Fig. 36, there are two consider-
ations to bear in mind. First, the multi-terminal-pair network should not favor a
particular chain and its band of frequencies. Second, from the constant multipliers
shown in Fig. 36, one observes that as close coupling as possible should be used to
increase the constant multiplier. The close coupling is associated with as great sepa-
ration as possible of the adjacent poles (see Fig. 44, for instance). Rough estimates
at suitable pole positions for a number of cases based on the above remarks are shown
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in Fig. 45. In a particular problem, one adapts the starting point to the particular

problem, using estimates of the nature of those of Fig. 45 at the outset. A great amount

of freedom is permissible in that the design of the remainder of the chain complements

the previous choice of the multi-terminal-pair network.

An empirical relationship giving the approximate level of amplification of paralleled

chains of amplifiers is useful as a guide in the design. Such a relationship will be given

at this point. The relationship applies to amplifier chains using two-terminal-pair sym-

metrical interstages, as shown in Fig. 36, with analogous multi-terminal-pair interstages

at the output. Every terminal pair has associated with C farads (Fig. 46). The vacuum

tubes have transconductances of gm mhos. The result applies to a design in which the

variation of amplification over wo rad/sec is less than 30 percent. For an m-chain

amplifier with n stages per chain, the level of amplification is

0.2 (r2 gm m namp = 0.2 ( M) n (48)

The factors of Eq. 48 can be identified with results previously discussed in this thesis.

The quantity in parentheses is the theoretical limit of uniform amplification of an n-

stage amplifier chain providing uniform amplification of all frequencies in a band wo/m

rad/sec wide in which two-terminal-pair networks are used. The factor 1/m3/ 2 is

used to account for the fact that the final circuit is an m + 1 terminal-pair network and

the factor 0. 2 is associated with the fact that simple tuned circuits are used rather than

networks which have the maximum uniform level of transfer impedance over Wo/m

rad/sec (see Eq. 23 and the accompanying discussion). Equation 48 can be expected to

give results with an "order of magnitude" accuracy. The application of it to the numerical

examples considered indicates a reasonable accuracy. From Eq. 48, it is a simple

matter to determine how many chains and how many stages are required to provide a

specified amplification over a specified band (there are no restrictions on either).

Further, one can determine how to do a specific job with the least number of tubes.

An enlightening problem is the determination of the number of chains to be used for

a specified total number of tubes to give the maximum level of amplification, using

Eq. 48 as a basis. For this problem, define the total number of tubes

t = m x n (49)

and the normalized bandwidth

bn 2 *(50)
gm

4C

In terms of these, the level of amplification

Amp = (/ (51)
M 3/ n
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Clearly, if one chooses m such that In IAmpl is a maximum, IAmpl will be a maximum

also.

n Amp = n 0.2-3 n m + - in m-- in b (52)
2 m m n

Differentiating Eq. 52 with respect to m, one has

dln Amp[ _ 3 t t t
dm im m + In b (53)

m m m

Clearly, Eq. 53 will be zero when

2 =m (1 + In b - In m) = n(l + In b - in m) (54)

Using Eq. 54, one can find the appropriate values of m and n giving the maximum ampli-

fication over the normalized band bn for a fixed total number of tubes. Figure 47 shows

a plot of optimum values of m and n for several values of the normalized bandwidth.

Calculated values of amplification are shown for several points in the plot. The ampli-

fications shown correspond to the numbers of chains and stages per chain indicated by

the coordinates of the point, and to a bandwidth determined by interpolation between

the curves.

In connection with all of the foregoing development, it must be borne in mind that the

input voltage of the amplifier has been defined as the voltage which appears across all

of the input terminal-pairs. Frequently the source supplying the amplifier provides a

voltage at the grids determined by the amount of capacitance which it feeds into. If

such is the case, one obtains a smaller voltage at the grids of the first tubes in the

chains than would be obtained if the amplifier consists of only one chain. In any case

this loss associated with paralleling can be evaluated in precisely the same manner as

was done for the multi-terminal-pair circuit at the output. Further, one can take it

into account in choosing the number of chains and tubes per chain to provide a given

amplification and bandwidth most economically through a straight-forward extension of

the technique already presented.

The procedure to be followed in the design of broad band amplifiers is clear at this

point. First one determines the number of chains and the number of stages to be used,

through consideration of Eq. 48. Next a suitable multi-terminal-pair network for the

output is chosen and the position of its poles and zeros of transfer impedance are

selected. Once the multi-terminal-pair network is chosen, a preliminary choice of

pole and zero positions for the amplification functions for the amplifier chains is made.

The frequency characteristics corresponding to the initial choice are determined, and

one applies the adjustment procedure to improve the characteristics. Here the pro-

cedure differs from that used for a single-chain amplifier only in the fact that the phase

and magnitude of any chain must be adjusted to complement the characteristics of the
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adjacent chain in the transition region.

3.20 An Illustrative Example

To illustrate the method of designing

amplifier chains which may be paralleled

satisfactorily, the design of a two-chain

amplifier using seven tubes will be presented

at this point. (One observes that this problem

statement starts beyond the usual specification

which is the nature of amplification desired,

the level and bandwidth. Accordingly this
m NUMBER OF CHAINS

example does not illustrate the step involving

Fig. 47 Plot showing the optimum num- the choice of the number of chains and stages.)
ber of chains and stages per chain for The amplifier obtained, 
a series of different normalized band-
widths. gives an amplification of 32 over 100 mega-

cycles with substantially linear phase shift. In the design presented, practical details

- coupling condensers, by-pass condensers, and power supplies - are omitted, to

focus attention on the points of importance in the present discussion. Accordingly the

equivalent plate circuit is the only circuit representation used.

The low-pass chain is intended to pass the very low frequencies unattenuated except

by failure due to coupling and by-pass condensers (which are omitted from consideration).

The first step in the design of the low-pass chain is the selection of the type of inter-

stages to be used. One refers to Fig. 36. The multi-terminal-pair network at the

output will be one of the band-pass types (1), (2), or (4). Since very low frequencies

are to be passed, the amplification function of the chain should not have zeros near the

origin. This fact suggests the use of two interstages of the form of (2), Fig. 36, and

two of the form of (3), Fig. 36. Such a choice permits the poles of transfer impedance

of (3) on the real axis to cancel the zeros of transfer impedance of (2) on the real axis.

This choice means that the multi-terminal-pair network will be a three-terminal-pair

version of (2) of Fig. 36.

The preliminary choice of the amplification function of the low-pass chain (normalized

to 1 rad/sec cut-off) is:

K
( 1 ) (-) ( - . (- 6 ) = Amp low (55)

The 6AK5) (X - Xt) (X - 5) . .mhos and- s6)

The 6AK5 has a transductance of 5000 mhos and a shunt capacitance of 1 f.
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in which

X1 = .- 0.2 X4 =- 0.1 + j.8

2 =-0.2 + j.7 X5 =-0.1 + jl.55 (56)

X =- 0.15 + j.45 6 - .1+ j.9
3

K is a constant to be associated with the constant factors shown in Fig. 36. It is deter-

mined later when the networks are finally chosen. In Eq. 56, X1 and 2 are associated

with a double-tuned circuit which is inductance-coupled, and X4 and 5 are associated

with the multi-terminal-pair circuit at the output. X3 and 6 are associated with the

networks of Type (3) of Fig. 36. A preliminary calculation of the magnitude and phase

shift for the function indicated reveals that its magnitude is reasonably uniform in the

pass band, and that the phase shift is about - 720 degrees at the cut-off point, = 1.

Now one turns to the preliminary choice of the amplification function for the band-

pass chain. One component of the function, that due to the multi-terminal-pair circuit,

has already been chosen. The band-pass chain should, for w = 1, have a phase shift

equivalent to -720 degrees, and in the range w = 1 to = 2 should exhibit an added phase

shift of- 720 degrees. A very rough calculation indicates that one capacitance-coupled

interstage and one inductance-coupled interstage, in addition to the multi-terminal-pair

circuit already chosen, should yield approximately the result desired.

The preliminary choice of the amplification function for the band-pass chain (pass

band is from = 1 to approximately = 2) is

K' (X - a z1) (X a zZ) ( x- z 3) (X -Oz 4) X
Amp Iband pass (X 4 )( 4 )( 5 ) . (57)

ban ps (X ) (X -4Xq) (X (X),10 )

where

a = z = crz z =-0.15zl zZ z3 z4 '

4 = - 0.1 + j.85 )8 = - 0.05 + jl.2

5 =- 0.1 + jl.55 k9 =- 0.085 + jl.95 (58)

7 =- 0.12 + jl.85 )10 = - 0.085 + jl.05

(Observe that 4 is slightly different in Eq. 58 from the value given in Eq. 56. This is

so because the values are in the process of adjustment at this point. The value chosen

here leads to a more satisfactory characteristic for the band-pass chain. In the final

choice, both values are the same.) In Eq. 58, 7' X8, C z' z 2' all apply to the

capacitance-coupled interstage. The inductance-coupled interstage corresponds to

z3' )9, and 10'

From this point, successive adjustments are made on the critical frequency positions

of the amplification functions, according to the method of Report 145. In the adjustment
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procedure, one maintains the necessary conditions on the various positions; for instance,
the real parts of X9 and 10' X4 and X5 , X1 and )2 are kept the same for the individual
pairs. This is necessary, since the pairs of poles identified with inductance-coupled
circuits of the type shown in Fig. 36 (2) have the same real parts. Details of the
intermediate steps of adjustment are omitted for reasons of brevity. The final critical
frequency positions are shown in Fig. 48 for the low-pass chain, along with the corre-
sponding network configurations. The pole positions apply to the 1.95-rad/sec analog
of the 100-megacycle amplifier. The networks are those corresponding to the 100-mega-
cycle amplifier. The frequency characteristics for the low-pass chain are shown in
Fig. 49.

(Amp)low = K (59)

()'-)'1) ()`- X1)' · · () ̀-)6)

For the 1.95-rad/sec case,

X1 =- 0.2 + j. 133 4 =- 0.1 + j.85

X2 = - 0.2 + j. 70 X5
= - 0. 1 + j.55 (60)

X3 = - 0.179 + j.466 X6
= - 0. 050 + j. 98

Parameter values in Fig. 48 are determined through the requirement that every
C be 11 Bpf plus the relations on Fig. 36.

Two points in connection with the low-pass chain just discussed require further
clarification. The level of amplification indicated in Fig. 49 is the product of two
factors from an expression similar to Eq. 55. The influence of pole positions is deter-
mined by the calculation of

1

(x- 1
) (X- X 1 )' · · ()'- 6)

The constant K is determined through the data on Fig. 36 by knowledge of the parameter
values. The second point is the use of the delta connection in (d) of Fig. 48 in contrast
to the Y in Fig. 46. If a Y is used, the neutral connection has an inevitable parasitic
capacitance not accounted for in Fig. 46. On the other hand, any parasitic capacitance
at the terminals of the delta can be associated with the capacitances shown. The delta
shown in Fig. 48 is simply that network equivalent to a Y corresponding to Fig. 46.

Figure 50 shows the positions of critical frequencies for the band-pass chain and
the corresponding network configurations.

K' (- oZ - zZ) (- z3 ( O'z4 ) X
(AmP)band pass _ . (57)

In Eq. 57,) (the final choice of critical frequencies is) (for the 1.95-rad/sec case)X10)

In Eq. 57, the final choice of critical frequencies is (for the 1.95-rad/sec case)
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CRITICAL FREQUENCY MAPS
FOR 1.95 RAD/SEC CASE

-.05 x
j.98

x -.05
(a) -.05

-.20
j.70 x

(b) -.05

CORRESPONDING 100 Mc CIRCUITS

RwL

CT

Rwc Lc

Rwc = 120 OHMS
Lc = 7.46X 10-6h

RwL

C

-.18
j.47 X

- x
(c) -.15

-.10
j 1.55 x

-.10 
j.85

L = 2.40 X 10-6 h

Rwc = 157 OHMS

Lc =3.16 X 10-6h
-.15

Fig. 48 Critical frequency maps for 1. 95 rad/sec low-pass amplifier and
corresponding 100 Mc circuits (low-pass section).

(a) C = 5.5 xl0-12 f

G = 8.85 x 10 5 mho

R = 58.8 ohms

L = 3.54 X 10-6 h

(c) C = 5.5 x 10- 12 f

G = 2.66 x 10 - 4 mho

R = 1080.0 ohms
w

L = 1.61 X 10 - 5 h

(b) C = 5.5 x 10-12 f

G = 0.62 x 10- 3 mho

Rw = 705.0 ohms

-5L = 4.38 x 10 h

(d) C = 5.5 x 10- 12 f

G = 8.85 x 10- 5 mho

Rw = 120 ohms
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FREQUENCY IN MEGACYCLES

Fig. 49 Amplification characteristics of low-pass section of 100 Mc amplifier
using the interstages of Fig. 48 connecting 4 6AK5 tubes.

CRITICAL FREQUENCY MAPS
FOR 1.95 RAD/SEC CASE

-.09
i 1.83 X
-.081
j 1.21

-.15

(e) DOUBLE

- .085
j 1.9 5X

-.085
j 1.0415

(f) -.15

CORRESPONDING 100 Mc CIRCUITS

Cc
- It -

CR <",R C L G G R C
-12

Cc = 3.55 X10 12 f

RwcLc

Rwc 62.4 OHMS

RLc = 62.4 OHMS
LC = 1.29X 1 6h

Fig. 50 Critical frequency maps for 1.95 rad/sec low-pass amplifier and corre-
sponding 100 Mc circuits (band-pass section). The band-pass section feeds into
circuit (d) of Fig. 48. The network configuration of the two chains is given in Fig. 52.

(e) C = 5.5 x 10- 12 f

G = 5.67 x 10 5 mho

R = 26.1 ohms
w

L = 52.5 x 10 h

Critical frequency maps
for 1.95 rad/sec case

(f) C = 5.5 x 1 0- 1 2 f

-5
G = 3.54 x10 mho

R = 79.5 ohmsw

L = 1.62 x 10 h

Corresponding 100 Mc circuits

FREQUENCY IN MEGACYCLES

Fig. 51 Amplification characteristics of band-pass chain
of 100 Mc amplifier using the interstages of
Fig. 50 connecting 3 6AK5 tubes.
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Fig. 52 Network configuration of two chain amplifier.

IAMPI

-1440 -30

-96 0 20

-480- 10 

O 50 100
FREQUENCY IN MEGACYCLES

Fig. 53 Frequency characteristics of ampli-
fier of Fig. 52.

INPU

Fig. 54 Multi-terminal-pair
network.

OUTPUT (OR GRID
LINE OF

NEXT STAGE)

E0I1

Fig. 55 Circuit of Percival's amplifier (one stage).

R

i2= 4KTB
R

Fig. 56 Most frequently used line
section in distributed
amplifier. C is the tube
capacitance, grid-cathode
or plate-cathode.

Fig. 57 Equivalent representations of thermal
agitation noise associated with a resistor.
K-Boltzmann's constant -1.38 X 10 - 2 3 watt

sec per K.
T - Absolute temperature of resistor in K.

B - Bandwidth of the circuit affected by the
noise in cycles/sec.
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rzl z2 z3 z4 0. 15

X4 = .- 1 + j.85 t8 = - 0.081 + jl.21

X5
= - 0.1 + jl.55 X9 = - 0.085 + jl.95

X7 =- 0.09 + jl.83 X10 = - 0.085 +jl.04 . (61)

The band-pass amplification characteristics shown in Fig. 51 are those of the ampli-

fier chain the components of which are shown in Fig. 50.

The network configuration of the two-chain amplifier, the element values of which

have been given in Figs. 48 and 50, is shown in Fig. 52. The sum of amplifications

of the two chains, the characteristics of which are given in Figs. 49 and 51, corresponds

to the characteristics given in Fig. 53.

Through use of the method illustrated in the example just given, one can design an

amplifier providing any desired amplification over any desired bandwidth, in spite of

parasitic capacitance. The method permits the accommodation of numerous practical

conditions. For instance, if the amplifier stages operate at high enough frequency to

make transit-time loading at the inputs appreciable, this can be taken into account.

Transit-time loading essentially puts a resistance in parallel with the G's of the above

Figs. 48 and 50. If the loading is severe, one finds from Fig. 36 that a limit is placed

on the closeness to the imaginary axis of poles of transfer impedance of the interstages.

This fact simply means that in the approximation process one must restrict attention

to functions with poles sufficiently removed from the imaginary axis. This will mean

that to obtain a prescribed characteristic, one may need to use a more complicated

function (more poles and zeros) than would otherwise be required, but the adjustment

procedure is the same.

3. 30 The Cost of Paralleling Amplifier Chains

The freedom obtained from the limitation of parasitic capacitance in the design

method described, has incurred two costs not present in single-chain amplifiers. The

first cost is the loss in amplification of the chain due to the fact that the output network

is a multi-terminal-pair rather than a two-terminal-pair network. The second cost is

in the fact that the selectivity of the amplifier is a function of the transconductance of

the tubes, in the sense that a different deterioration of tubes in one chain from those in

the other chains results in a change in level of amplification of one range of frequency

from the level of other ranges.

3.31 Decrease in Level of Amplification Due to Paralleling

The decrease in level of amplification due to paralleling has been indicated to arise

because of the presence of multiple driving circuits at the load. This results in the

diversion of part of the plate current of any one of the driving terminal pairs from the

load to the other driving circuits. In connection with Fig. 54, the presence of B
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decreases the level of transfer impedance from A's input to the load where A, B, and

the load are identical. This fact, plus the fact that the load must serve all chains, is

responsible for the factor 1/m3/2 in Eq. 48.

In connection with the decrease in level of amplification mentioned, two statements

need consideration. In the first place, this cost of paralleling is finite and can always

be overcome by the use of more stages when the band of each chain is below that for

which the amplification is down to one per stage. In the second place, the paralleling

of chains as described minimizes the cost through the fact that there is only one point

of paralleling. It is pointed out in the next section that the distributed amplifier of

Percival parallels at every tube and suffers a loss in effectiveness thereby.

3. 32 Influence of Changing Transconductances of the Tubes

If, in the course of use of an amplifier of the form of Fig. 52, the products of

transconductances of the four tubes in the upper chain change by a different percentage

than the products of transconductances of the three tubes in the bottom chain, a change

in the frequency characteristic results. The nature of the change is essentially a

different change in levels of amplification in the high and low ranges.

The nature of the deterioration of a vacuum tube with life is ordinarily a slow drift.

Abrupt changes are usually accompanied by complete failure of the tube. One manufac-

turer of tubes consulted indicated that life tests bear out this fact in general. (There

are apparently no published data on large samples of tubes.) The RMA Standards on

vacuum tube testing classify a tube as acceptable which maintains 65 percent of its

rated transconductance over 500 hours of operation. The experience of the manufacturer

indicated that of the few tubes out of a hundred in a test to fail, the majority of failures

were complete (burn-out of a filament, shorting of elements, etc. ), and that the tubes

which pass maintain their transconductances essentially fixed over the 500-hour period.

The variation of their transconductance is far less than the limit permitted. It is only

in tubes used a very long time (several thousand hours) that the transconductance is

subject to erratic behavior in general.

There are two additional facts which diminish somewhat the importance of the

inherent dependence of characteristics on the tube transconductance. The first is the

fact that it is the geometric mean of transconductances of the tubes in a chain which is

significant. For several tubes, the geometric mean of transconductances ordinarily

varies less than do the individual transconductances. In addition, the variation of

performance between tubes is minimized by the fact that all tubes are supplied from the

same source, and any changes affecting one affect all. A second fact is that the trans-

conductances of tubes in a chain of amplifiers can be regulated by a single adjustment-

the screen voltage or cathode bias, for instance. This means that any periodic (or even

automatic) adjustment which proves to be necessary for a given application is simple

to make. For most applications, the variability of the characteristics due to the non-

uniform varying of transconductance would be corrected periodically, the frequency
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of adjustments depending upon the need for precision in the amplifier. The adjustment

involves one measurement of amplification for each chain and the adjustment of the

chains to a uniform level of amplification, the adjustment of any chain requiring only

one operation. If a particular application needs the characteristics to be accurately

controlled, and if a periodic manual adjustment is not convenient, an automatic device

could be built which aligns the levels of amplification each time the power is turned on

or at prescribed intervals of operation.

4. 00 The Distributed Amplifier

The distributed amplifier, which was invented by Percival (6) and has recently

been developed by Ginzton (7) and others, gives theoretically any amplification over

any bandwidth. A description of its properties and a comparison with the parallel-

chain amplifier, described in Sect. 3.00, is useful to indicate the advantages and

disadvantages of both types.

The circuit diagram of Fig. 55 represents one stage of the distributed amplifier.

The grids and plates of the vacuum tubes are distributed along two artificial lines.

Each of the lines consists of identical recurrent sections; the vacuum tubes are placed

between sections. The tube capacitances are identified with the shunt capacitance of

the line. The most commonly used line employs sections of the type shown in Fig. 56.

Changing the mutual inductance between the series arms of the T changes the kind of

characteristic obtained. In the 6AK5, a tube frequently used for such amplifiers, the

grid-cathode capacitance is larger than the plate-cathode capacitance and the impedance

level of the plate line is accordingly higher than that of the grid line. In all cases the

lines are designed so that the velocities of propagation of the two are the same. The

lines should be properly terminated. The amplification-bandwidth limitation applying

to the distributed amplifier is of a different form than that applying to a conventional

single-chain amplifier and there is no theoretical limit of bandwidth beyond which the

amplification is less than one provided one distributes a sufficient number of tubes

along each line. The method of connection of the distributed amplifier results in

summing the transconductances of the tubes in a stage essentially without increasing

the effect of their shunt capacitances.

The operation of a stage of the distributed amplifier is explained as follows. As a

signal is impressed on the input terminals of the grid line, a voltage wave propagates

down the grid line affecting the tubes in sequence. As the voltage wave in the grid line

encounters a tube, the response of the tube is to inject a corresponding current into the

plate line. The current injected into the plate line splits equally, half of it going in

each direction. Only that directed toward the load results in any output voltage, the

other half being absorbed in the termination at the left end of the plate line. As the

current wave in the plate line progresses toward the output, it is reinforced at every

tube. The amplification of a stage is determined by the number of tubes, their trans-

conductances, and the characteristic impedance of the line. A number of stages may
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be cascaded. To cascade two stages one simply couples the plate line of the first stage

into the grid line of the second stage.

Shunt capacitance in the recurrent structure imposes a limit on the amplification

due to a single tube in a stage. The limitation arises through the fact that the component

of the voltage wave in the plate line due to a tube is directly proportional to the character-

istic impedance of the line. The characteristic impedance for specified shunt capacitance

is inversely proportional to the cut-off frequency of the line. However, by using a

sufficient number of tubes in a stage one can (theoretically) build up the amplification

of the stage to any desired level over any prescribed frequency range. The most

economical arrangement of connection (in terms of the number of tubes) has been shown

(7) to be the use of a sufficient number of tubes in a stage to build up its amplification

over the prescribed range of frequencies to E , the base of the natural logarithms.

One cascades a sufficient number of stages to obtain the desired level of amplification.

An interesting and desirable feature of the distributed amplifier is that the frequency

characteristic is not influenced except in level by the transconductance of the tubes,

provided that the lines are properly terminated. This is true since the transconductance

of a tube comes into the amplification of its stage in an additive sense, and a decrease

of transconductance affects all frequency components uniformly.

The nature of the distributed amplifier imposes a severe inflexibility in its design.

One is restricted in the choice of the line characteristics since the individual sections

must be structurally simple to be practical. To insure adequate stability one must

minimize the coupling between the plate and grid lines. For this reason only pentodes,

with their small grid-plate capacitance, are used in distributed amplifiers. Attenuation

in the lines reduces the amplification. From the following one sees that the output

voltage due to the pth tube of r tubes in a stage has been attenuated by r-1 sections of

line. The grid voltage of the pth tube is attenuated through p-l sections before arriving

at the grid, and the output voltage wave started by the tube is attenuated through r-p

sections. At very high frequencies where grid loading becomes effective, this attenuation

is extremely severe. In fact, grid loading is neglected in arriving at the conclusion

that one can amplify over any bandwidth with a distributed amplifier. The conclusion

is not tenable if one considers the grid loading effects of the tubes used currently.

4. 10 Quantitative Evaluation of the Shunt-Capacitance Limitation for Distributed

Amplifiers

To make comparisons between distributed amplifiers and parallel-chain amplifiers

one must evaluate on the same basis the limits imposed by shunt capacitance in each

amplifier. To apply the same basis of evaluation to the distributed amplifier which

was applied to the parallel-chain amplifier, one should consider the voltage at the

p + 1th terminal pair of the circuit of Fig. 55 due to a current from the pth tube in a

stage of r tubes. This voltage is limited by the maximum transfer impedance from the

pth to the p + 1th terminal pair. The maximum magnitude of transfer impedance uniform

__ __



over wo rad/sec is (see Fig. 33 and the accompanying discussion).
2

Z | = w ohms . (62)Ip p+l max T 4Cwo

For simple circuits the transfer impedance cannot attain this limit of magnitude but

must be smaller. The transfer impedance will be called

B
Z - Brr2 ohms . (63)

p p+l F- 4Cw

B must be less than one. More will be said about its size at a later point. (Observe

that the 17 in the denominator is present since the current from the plate can go in

either direction in the plate line. ) The magnitude of voltage amplification at the output

due to the pth tube is

|Amp pAr 1 g IZp p+l . (64)

A is the attenuation per section of the lines. From Eq. 64, one easily sees that the

amplification of a distributed amplifier of s stages with r tubes per stage is

r- g B i'rl _ As(rl1) r gn r 2

Amp distributed = [rA 1 = BsA(rl) ( w (65)
FZ 4C, 0 U~2) s 40oC

The comparison between a distributed amplifier of s stages with r tubes per stage and

an m-chain amplifier with n stages per chain is made by comparing Eq. 65 and Eq. 48

Amp 0.2 gmm (48)
parallel-chain m3 4 (48)

In Eq. 65, one observes the cost of paralleling to be indicated by the factor /1S2. In

Eq. 48 it is indicated by the factor l/mr3/2 In the distributed amplifier the cost of

paralleling increases as the required amplification of the amplifier goes up, since

one cascades stages (each with an amplification of about 2. 7) to increase the amplification.

In the parallel-chain amplifier, however, the cost of paralleling does not increase

beyond a certain point with increasing level of amplification, as is indicated in Fig. 47.

Figure 47 shows that m (the number of chains) does not increase significantly for fixed

bandwidth as the amplification is increased. For the distributed amplifier one also

observes from Eq. 65 that the loss of amplification due to attenuation in the lines also

increases with the number of vacuum tubes used. The parallel-chain amplifier does

not suffer from this defect. The factor B of Eq. 65 results from the fact that the

simple two-terminal-pair networks used as sections of the line will not exhibit the
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theoretical limit of transfer impedance for networks with the same amount of shunt

capacitance. Further, if all of the stages are identical, one must use better and better

individual coupling networks as the number of stages is increased, if the magnitude of

amplification of the amplifier is restricted to a prescribed tolerance. The staggering

of characteristics of different stages of the distributed amplifier is probably possible,

but the author knows of no case in which that has been done.

In comparing the parallel-chain and distributed amplifiers on the basis of the fore-

going, one may conclude that the parallel-chain amplifier is more economical in the

number of tubes required, particularly if the amplification required is high. The

flexibility available in the design of amplifier chains is an advantage over the distributed

amplifier. The independence of the frequency selectivity characteristics of the distri-

buted amplifier from the changing transconductances of the tubes is an advantage of the

distributed amplifier.

5. 00 Noise Considerations in Amplifier Design

Shunt capacitance is the primary obstacle limiting the performance of a vacuum

tube as an amplifier over a specified band of frequencies. An independent and equally

basic limitation restricts the smallness of a signal which can be effectively amplified.

This limitation is the production of noise by an amplifier. The random variations of

current and voltage which constitute noise are combined with the signal and the combi-

nation is ordinarily irresolvable. The addition of noise to the signal renders it

impossible to distinguish the signal if the amount of noise added is of sufficient size.

Accordingly, the smallness of signal which an amplifier can successfully amplify

(referred to as the sensitivity of the amplifier) is determined by the amount of noise

which the amplifier generates and combines with the signal. Different amplifiers and

associated circuits have different properties as regards the generation of noise. The

evaluation of the noise characteristics of the amplifiers discussed in the foregoing

sections is essential if one is to design such amplifiers with the greatest possible

sensitivity.

5. 10 Summary of Pertinent Material on Noise

Thermal agitation noise in resistors is the most familiar kind of noise. It is well

understood and its characteristics form the standard to which other noise sources are

compared. In a resistor the free electrons are in random motion. At a given instant

of time the average velocity of the electrons is not ordinarily zero though the average

velocity of electrons in a resistor over an interval of time may be zero. The random

character of the velocities of free electrons gives rise to a varying voltage across the

terminals of an open resistor or to current if the terminals are short-circuited. Any

circuit connected to the resistor accordingly is affected by the noise source. The

distribution of harmonic content of the noise voltage (or current) is uniform. Hence

the mean-square current or voltage is dependent directly upon the bandwidth of the
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device receiving the noise. The summary of relations regarding thermal agitation

noise is presented in Fig. 57.

Vacuum tubes conduct current through the motion of electrons, the velocities of

which have random distribution. Consequently associated with the plate current of the

vacuum tube there are random components which have properties similar to those

described in connection with the thermal agitation noise of resistors. Actually the

mechanism of noise production in tubes depends upon several effects. The various

components of noise associated with the plate current have been studied and designated

by appropriate terms. For the present purpose, since all kinds of noise associated

with the plate current cause the same effect, it is appropriate to call all such noise

plate noise and to treat it as if it came from a single noise source. The harmonic

content of plate noise is uniformly distributed over the spectrum. Plate noise can,

for purposes of analysis, be represented by an additional current source in parallel

with the current source of the incremental equivalent circuit of a vacuum tube as

shown in Fig. 58. The amount of plate noise is frequently expressed in terms of a

fictional resistance, Req of such size that when connected to the grid its noise voltage

would provide the same amount of plate current as results from the plate noise. It is

significant to note that plate noise has no effect on the grid circuit so long as the plate

current does not influence the grid voltage.

A second type of noise is important in amplifiers operating at very high frequencies.

This is noise associated with transit-time loading of the grid and the effects of cathode

lead inductance and the grid-to-cathode interelectrode capacitance. The noise in this

case acts essentially as a current source in parallel with the grid terminals. The

harmonic content of the grid-loading noise is uniform over the spectrum, the mean-

square noise current per unit of bandwidth varying with the square of the frequency.

Figure 59 shows the current source representing grid noise. A point to observe in

connection with grid noise is that it affects both the grid and plate circuits. This fact

is of importance in connection with the paralleling of tubes in the distributed and

parallel-chain amplifiers.

The types of noise indicated in the preceding are the significant ones in determining

the sensitivity of an amplifier. The first stages of an amplifier are the most important

in determining the amplifier sensitivity if the amplification per stage is considerably

larger than one. This fact is readily appreciated through noting that noise introduced

at the output of the first stage must compete with an amplified signal while noise

introduced at the output of the second stage must compete with a still larger signal

and so on.

5.20 Noise Properties of Stagger-Tuned Amplifiers

Ordinarily the individual stages of a stagger-tuned amplifier possess a decidedly

nonuniform amplification characteristic. The use of properly chosen nonuniform

* characteristics which properly complement each other has been indicated earlier to
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yield a particularly simple and effective circuit as far as the amplification-bandwidth

product is concerned. However, the use of extremely nonuniform characteristics

in the early stages of an amplifier, where the noise introduced is important, lead to

very poor noise characteristics. This fact is easily appreciated through consideration

of Fig. 60 which shows the characteristic of a typical first stage. The level of the

signal at the output of the first stage is dependent upon the frequency of the signal. For

middle frequencies the level of the signal may be very high but for the lower and upper

parts of the pass band the signal may be even lower than it was at the input of the

amplifier. Hence high and low frequency components of the signal compete on an

unfavorable basis with new noise introduced into the amplifier. This fact may mean

that for certain frequency ranges the signal must compete with the aggregate of noise

from several stages and the sensitivity of the amplifier for signals in these ranges of

frequency will be much lower than in the ranges of frequency over which the ampli-

fication of the early stages is large. The effective method to avoid such a situation

is to use stages at the input of the amplifier which provide uniform amplification over

the bandwidth of the amplifier.

5. 30 Noise Properties of Broad-Band Amplifiers

The extreme bandwidth of the parallel-chain and distributed amplifiers restrict

the designers use of techniques which may be helpful in narrow-band amplifiers in

improving noise characteristics. For instance coupling circuits designed for very

broad bands encounter limitations imposed by the presence of shunt capacitance which

limitations are never encountered in narrow-band circuits. Consequently one must

usually view the noise specifications as secondary in such amplifiers and turn attention

to them only after the specifications on bandwidth have been met.

In describing the noise characteristics of any amplifier a significant measure is the

noise factor which is defined as the ratio of the total mean square noise voltage at the

output to the mean square component of that noise which is injected by the signal source.

Figure 61 represents an amplifier of three cascaded sections. The amplification of

each section is represented by A with the appropriate subscript. The mean-square

noise voltage of the source is represented by N i . Ngi is the grid noise associated with

the first stage. N2 is the combination of plate noise in the first stage, grid noise in the

second stage and the noise of any resistance in the associated circuit. N 3 is the same

kind of quantity for the next stage and N4 is different only in that it includes no grid

noise. The noise factor is obtained as indicated in Eq. 66.

(N+N 2 A 2 2 N 2 2+N 2
Total Noise Output (Ni + Nig) A1 A2 A3 + 2 2 A3 3 A 3 4

Noise Output from Source N A A2 A 3

Nig N 2 N 3 N4= 1+ igN 2 3± 4
+i + 2 f N 2 A 2 + 2z (66)

N A Ni A 1 N i A A 3
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From Eq. 66 one sees readily that if the amplification per stage is large the noise

introduced in the later stages has insignificant influence on the noise factor. If the

amplification per stage is low, noise introduced several stages from the input will

deteriorate the noise factor seriously.

Ginzton (7) and his colleagues have analyzed the noise properties of the distributed

amplifier. The results of their analysis will be explained without rigorous proof.

Noise arising in a single stage of a distributed amplifier (Fig. 55) can be readily

pointed out. The termination of the grid line necessitates an added resistance which

emits noise. The noise from this termination propagates down the grid line in the

backward sense and actuates the tubes in backward sequence. If is defined as the

phase shift per section of the line (a function of frequency) it is observed that the

output terminals of the plate line receive a set of termination-noise voltage components

from the various tubes which are multiples of 2 radians out of phase. As a conse-

quence the noise from this termination is somewhat less effective than is noise inserted

at the input terminals. A second kind of noise introduced is plate noise which is

injected in parallel with each tube in the plate line. At each tube the noise current

injected divides and half propagates in each direction. The noise currents emitted

from each tube are independent and consequently the mean-square component of noise

voltage at the output due to plate noise is merely r times the noise which appears from

a single tube. Noise (and also signals) at the amplifier input are magnified in proportion

to r, the mean-square values being proportional to r 2 . These facts imply that the

effect of plate noise is minimized in the distributed amplifier. In other words signal

and input noise from the r tubes in a stage are always added in phase, the mean-square

value of the sum behaving as r , while the plate noise components are added at random,

the total plate noise at the output behaving like r. The third kind of noise introduced

in the distributed amplifier is grid noise. The behavior of the distributed amplifier

in connection with grid noise is much less fortunate. Every tube in a stage amplifies

the grid noise from itself and from every other tube. The noise factor of the distri-

buted amplifier as evaluated by Ginzton (7) is given in Eq. 67 (using different symbols).

Noise Factor =1+sin r 21 + o a (67)1+[si rq1Req + r l
. (67)dist. amp. = r sin + r Zol RA 4

In Eq. 67 r is the number of tubes in a stage, is the phase shift per section of the

grid or plate lines, Zol is the characteristic impedance of the lines, Req is a

fictitious resistance which by introducing its noise voltage in the grid provides the same

noise current in the plate as is introduced by the plate noise of the tube, RA is the

equivalent shunt resistance of grid loading of a tube, and a is a constant empirically

determined to be about five. The second term in Eq. 67 is associated with noise from

the grid line termination. The third term is associated with the plate noise introduced.
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The deterioration of noise factor due to plate noise diminishes with the number of tubes

in the stage as would be expected from the statements previously made. The fourth term

is associated with the noise introduced by the grids. The severity of its effect on the

noise factor increases with the number of tubes per stage. However, in general, Zol

is much smaller than RA and this source of deterioration is not as serious as it might

otherwise appear. In connection with all of the preceding it must be remembered that

a signal source of the same impedance as the characteristic impedance of the line has

been assumed.

In the design of the parallel-chain amplifier a few points must be considered to

obtain good noise characteristics. In the first place the amplification of the first stages

of the individual chains must be reasonably uniform over the sub-bands of frequency

amplified by each chain. Figure 62 depicts an m-chain amplifier with noise sources.

The N's shown represent the mean-square noise voltage for a bandwidth equal to that

of each amplifier chain. For the individual chains the sub-band amplified is 1/m of

the total band. The boxes in the individual chains represent several stages. The

first boxes represent the earlier stages the noise from which significantly influence

the noise factor of the amplifier. The second boxes represent the later stages the

noise from which do not significantly influence the noise factor of the network. A 1

is the amplification of the former; A the amplification of the latter. N 1 represents

the grid noise from each of the input tubes. N 2 represents the equivalent remaining

noise for the tubes in the early stages of a chain. The influence of N1 and N 2 are

different in that N1 affects all of the chains and N2 affects only the chain in which it

is generated. The noise factor of the parallel-chain amplifier is readily evaluated to

be

22 2 22 2
m N i A A 1 A A2 +m N A1

2

Noise factor 1. 2 2 m2
Noise factor parallel-chain amp A2 AZ (68)

Increasing the number of paralleled chains decreases the number of stages at the input

of the chains which significantly deteriorate the noise factor. This is true since the

amplification per stage is inversely proportional to the width of the sub-band. More-

over, low-noise amplifier circuits (18) can be used to advantage in this type of ampli-

fier. However, a disadvantage of this connection, which has a close counterpart in

the distributed amplifier, is that the grid noise of the input stages of each chain is

amplified by the other chains. This disadvantage can be reduced at the expense of

circuit complication through use of an input circuit of the type indicated in Fig. 63.

The grid noise of the upper chain, for instance, is filtered such that the essential

frequency components arriving at the inputs of the other filters are sharply attenuated

by those filters.

A comparison between the noise characteristics of the distributed and parallel-chain

amplifiers is quite difficult without employing special examples. The type of source
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supplying the amplifier has an effect in both cases and the effects are different. The

distributed amplifier by its nature reduces the seriousness of plate noise but it must

use pentodes which generate more plate noise than do triodes. The parallel amplifier

can use low-noise input stages but the grid noise of every input stage is fed to every

other chain unless a rather complicated filter is employed. In a particular case one

can employ the known data of tubes used to determine which kind of amplifier should

be used to amplify the signals to a level above which noise causes no problem. The

remaining stages of the amplifier could be of either type which best suits the needs of

the problem.
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