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Abstract

A new role is suggested for the amplitude limiter in FM receivers. By spreading

out the spectrum which is necessary for the reproduction of the FM disturbance that

is caused by the interference, the limiter makes it possible for a filter to reject an

important portion of this spectrum without substantially affecting the spectrum that

carriesthe message modulation. The conditions for the success of this operation are

analyzed in terms of an ideal limiter followed by an idealized filter. The variation of

the required minimum extent of linearity in the discriminator characteristic with the

limiter bandwidth is determined. This is followed by a study of the effect upon the

interference of a repeated cycle of amplitude limiting and spectrum filtering. The cas-

cading of several narrow-band limiters is found to be an invaluable scheme for

enhancing the capture capabilities of an FM receiver.





I. LIMITER AND DISCRIMINATOR BANDWIDTH REQUIREMENTS

INTRODUCTION

Essential to the interference rejection ability of a frequency-modulation receiver

is the use of the proper bandwidths in its nonlinear sections. The weaker of two com-

peting signals (whose amplitude may approach the amplitude of the stronger signal

within arbitrary limits) can be suppressed by a frequency-modulation (FM) receiver if,

other requirements being met, the limiter and discriminator bandwidths exceed certain

minimum permissible values. A brief survey of the problem of interference rejection

and the FM receiver design requirements set by previous investigators (1, 2) is made.

This is followed by a study of the spectrum of the amplitude-limited resultant of two

carriers differing in amplitude as well as in frequency. The properties exhibited by the

spectral components lead to a simple criterion for interference suppression when only

certain portions of the spectrum are passed by an ideal filter that follows the limiter.

The criterion is tacitly based upon the assumption that it is the message carried by the

stronger signal that we desire to get through, although the conditions for reliable capture

of the weaker signal will be treated in a separate discussion. The interference rejection

criterion is then used to calculate the minimum bandwidths required after the limiter

in order to preserve the interference rejection ability of the receiver for capture ratios

up to 0.98.

A narrow-band filter after the limiter will, in general, distort the pattern of the

instantaneous-frequency perturbations caused by the interference. This distortion will

vary with the bandwidth of the filter and with the position of the stronger of the two

signals relative to the center frequency of the filter, as well as with the frequency of

the weaker signal relative to the stronger one. The configurations leading to the largest

instantaneous-frequency deviations (from the desired average frequency) with various

values of limiter bandwidth are studied to determine the corresponding minimum neces-

sary ranges over which the FM-to-AM detection characteristic of the receiver must be

linear. The results of this study will reveal how the first stage of bandpass limiting

will modify the character of the resultant signal passed. They will also show how the

minimum requirement in discriminator bandwidth will vary with the value of limiter

bandwidth. The effect upon other design considerations, such as the time-constant

requirements of the limiter and discriminator circuits is taken up in Section II.

In this report the investigation is carried out by the Fourier method on a steady-

state basis and in terms of an ideal limiter followed by an ideal bandpass filter. In a

future discussion of the nature of rejectable interferences and of the theory of capture

in frequency modulation, the results of the present study will be correlated with con-

clusions derived from a study of the dynamic steady-state response of a filter. This

alternative approach deals, in general, with physical filters as energy storing systems,

and stresses their inertia to fast frequency and amplitude changes rather than their
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frequency-selectivity properties. The Fourier approach, which utilizes idealized band-

pass filters, has been chosen because it enables us to reach many important theoretical

conclusions which are otherwise not so easily demonstrated.

Throughout our discussions the concept of instantaneous frequency is used frequently

and our understanding of it is fully exploited. A brief statement of the mathematical

description of this useful concept, together with a brief survey of the problem of inter-

ference rejection, the requirements imposed in receiver design, and the bearing

of "narrow-band limiting" upon these requirements are taken up first. The term

"frequency" is loosely used to mean "angular frequency." When cyclic frequency is

meant, it will be specifically stated.

1. 1 INSTANTANEOUS FREQUENCY AND THE PROBLEM OF

INTERFERENCE REJECTION

The mathematical operations leading to the unambiguous formulation of the

exceedingly useful concept of instantaneous frequency have been the subject of much

discussion. Elaborate mathematics, using, among other means, Fourier and Hilbert

integral transforms, has been harnessed for the purpose. But it is significant that in

almost all of the publications of those who have used it effectively in physics and

in electrical communication (such as Helmholtz, Rayleigh, Carson, Van der Pol,

Armstrong, and others) the characteristic features used in introducing and utilizing

the concept have almost invariably been simplicity and straightforwardness. This con-

cept is now so well appreciated that it needs no special clarification, but it seems

pertinent to start our discussion by a statement of how it is mathematically described

in most practical problems.

The two most significant (and useful) ways of introducing the concept of instanta-

neous frequency follow. The first is best stated in the form:

a. If the real time function f(t) that describes the signal or the vibration, is reduc-

ible to the forms A(t) cos +(t) or A(t) sin +(t), both of which are clearly included in the

complex function

F(t) = A(t) ej (t ) (1)

where A(t) and (t) are real functions of time (and f(t) is the real or imaginary part of

F(t)), and furthermore, if A(t) contains none of the zeros of f(t), then +(t) is by defini-

tion the "instantaneous phase angle" of f(t), and (d/dt) (t) is by definition the "instan-

taneous frequency." The amplitude function A(t) is the "instantaneous amplitude."

This definition is unique and unambiguous in almost all practical situations in

sinusoidal-carrier modulation. For, in most cases, A(t) is bounded and usually not

called upon to contribute to the zeros of the signal; the unmodulated carrier frequency

is usually much larger than the extent of the significant spectra of the modulating func-

tions in A(t) and +'(t); and the extent of the frequency swings about the mean unmodulated
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carrier frequency is usually a small fraction of that frequency.

The second definition essentially counts the density of zero crossings per unit inter-

val of time. In a period of 2r/o seconds, for instance, the sinusoidal signal cos w ot

has two zeros. Therefore, in every second, this sinusoid has o/Tr zeros, and the

(angular) frequency can be said to be equivalent to the number of zeros in a time interval

of Tr seconds. When these notions are extended to the case of a time function f(t), the

definition (3) becomes:

b. The instantaneous frequency of f(t) is defined at the time t as the ratio of the

number of zeros of f(t) in the interval of time between t - T/2 and t + T/2 to T/Tr, or as

the mean density of zero crossings averaged over T/F seconds.

The two definitions yield the same result for an ordinary sinusoidal-carrier

frequency-modulated signal, but the first one is the more common and it will be applied

in our computations. Stumpers found the second definition more suitable for use in the

analysis of frequency-modulation noise at arbitrary levels.

Most of the signals that will be analyzed in our study consist of a superposition of

several sinusoidally varying time functions that have different frequencies and ampli-

tudes. The quickest, as well as the most elegant, way of achieving the reduction of

the sum to the form indicated in the first statement of the definition of instantaneous

frequency follows.

1. Replace each sinusoidal component of amplitude An(t ) and phase angle n(t ) by

the corresponding complex function indicated in Eq. 1, with the understanding that only

the real or the imaginary part of this function is the quantity of physical significance.

2. Represent each complex function Fn(t) = An(t) exp[j4n(t)] thus obtained by a

directed rotating line (henceforth called "phasor") in an Argand diagram, using an arbi-

trary reference axis (labeled the "axis of reals") for the measurement of the phase

angle n(t). The rotation of the phasors is conventionally positive if it is counterclock-

wise.

3. Add the representative component phasors vectorially to obtain their resultant.

The amplitude and phase functions of this resultant will then be those of the resultant

signal.

Analytically, the addition indicated in step 3 leads to

k

F(t) = An(t) exp[jn(t)]

n=l

= A(t) exp[j1(t)]

where

A(t) =/[Re F(t)] + [Im F(t)]

,(t) = Im[ln F(t)]
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Let us now apply these concepts to the case of two-signal interference (1, 2). Con-

sider that two carriers of relative strengths 1 and a (where a < 1) and of frequencies

p and p + r rad/sec fall within the linear passband of a frequency-modulation receiver.

The signals are supposed to be unmodulated in amplitude or frequency or, at worst, to

have a frequency modulation that is so slow relative to the frequency difference r that

the signal frequencies are not appreciably changed during a period of 2rr/r sec.

At the input to the first limiter stage, the resultant signal will be, if time is counted

from the instant at which the two signals are momentarily in phase,

f(t) = cos pt + a cos(p+r)t

The corresponding complex function of time is

F(t) = ejpt + aej(p+r)t = ePt[l + aejrt]

Figure 1 is a phasor diagram representation of the linear superposition of the

carriers. The instantaneous phase of the resultant is = pt + 0, therefore the instanta-

neous frequency of the resultant signal is d/dt = p + d/dt. Clearly, dO/dt represents

the instantaneous deviation of the frequency of the resultant signal from that of the

stronger signal. In essence, the most important step toward achieving interference

rejection is to make the instantaneous-frequency deviation of the resultant signal from

the desired frequency p average out to zero, over one period of the frequency difference

r, at every point in the receiver prior to FM-to-AM conversion. This process must

then be such that the average direct voltage level at the output of the discriminator

corresponds to that dictated by the desired frequency p. If r is beyond the audible

range, then the preceding requirements are necessary and sufficient, since the inter-

ference will not pass through the de-emphasis circuit and audio filter. If, however, r

is audible, then those requirements (though necessary) will not ensure complete rejec-

tion of the interference, although it can be shown that by special design, and with the

help of the de-emphasis circuit and the audio filter, the disturbance that can get through

can be greatly reduced, if not effectively eliminated. This question will be taken up in

greater detail in Section II.

From Fig. 1 we have

dO/dt = d/dt Im[ln(1 + aeJrt)]

raejrt 
= Re

= Re + aeJrt

or

2
dO/dt a cos rt + a (2)

1 + 2a cos rt + a

A plot of dO/dt versus t is shown in Fig. 2 for a = 0. 8.
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Fig. 1. Two-carrier interference: (a) resultant spectrum within the idealized
i-f passband; (b) superposition of representative phasors.
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From Fig. 2 we find that the instantaneous-frequency deviation caused by the pres-

ence of the weaker signal is of such a value that the frequency of the resultant signal

lingers near the average of the two carrier frequencies, p + r/2, during a large fraction.

of the frequency-difference cycle, attaining a maximum of p + ar/(l+a), and then dips

to a sharp minimum of p - ar/(l-a) at t = 7r/r. This cycle of instantaneous variation

recurs r/2rr times per second. Over one complete cycle, the average phase angle of

the resultant signal is exactly the phase angle of the stronger signal, no net phase

change being acquired from the instantaneous deviations in frequency. This means that

the areas enclosed by the instantaneous-frequency deviation curve, above and below the

frequency p, are exactly equal. Thus the average frequency of the resultant signal,

over one period of the frequency difference r, is exactly the frequency of the stronger

signal.

In addition to the instantaneous deviations in frequency, the interference also causes

instantaneous-amplitude variations, with a ratio of maximum to minimum amplitude of

(l+a)/(l-a). The instantaneous-amplitude and -frequency variations of the resultant sig-

nal arise simultaneously, and, as long as no nonlinearities in response are encountered,

the resultant signal will still be the result of a linear superposition of two signals, and

the spectrum of the resultant will continue to be the sum of the spectra of the component

signals. This will be true throughout the linear stages of the receiver, up to the first-

limiter stage, and the passband need not exceed the frequency range in which the desired

signal may be expected to fall.

However, when the resultant is passed through the limiter, the amplitude varia-

tions are completely eliminated, leaving behind the large excursions in instantaneous

frequency. The spectrum, after limiting, is spread out with an "infinite" number of

components on both sides of the frequency p of the stronger signal (and of harmonics

of p). Thus, it becomes necessary to re-examine the bandwidth requirements after

limiting, so that the average frequency of the signal at the input of the discriminator

will still be the frequency of the stronger signal, as is required for the capture of this

signal. The specification of the discriminator bandwidth should also be studied in rela-

tion to its possible dependence upon the value of the limiter bandwidth. It is with these

questions that we are now chiefly concerned.

The work of Arguimbau and Granlund (1, 2) has indicated that interference, with

arbitrary values of a in the range 0 < a < 1, can be suppressed at the output if the

receiver is designed with the following characteristics:

(a) In the linear sections, the stages preceding the limiter-discriminator section,

the bandwidth should be sufficient to accommodate the desired stronger signal over the

whole range of its frequency variations. Furthermore, these linear stages must have

a constant gain over the whole passband to preserve the relative magnitudes of the sig-

nals that are passed; this gain should fall very steeply at the skirts to effect essentially

complete rejection outside the passband and secure excellent selectivity.

(b) Since a frequency-modulation receiver should be completely insensitive to
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amplitude changes, the linear stages should be followed by a perfect rapid-acting limiter

to cope with amplitude ratios of the order of (l+a)/(l-a), (or 39/1 for a = 0. 95) that may

recur at a maximum rate equivalent to the intermediate-frequency (i-f) bandwidth in

cycles/sec. If a capture ratio a (strength of weaker signal relative to the desired

stronger signal) is desired, it is clear that the linear stages must provide enough gain

to raise the value of the minimum amplitude (l-a)x (expected minimum signal strength)

to the level necessary to drive the limiter. The discriminator section should also be

sufficiently rapid-acting to handle the sharp changes in instantaneous frequency (that

may recur at a maximum rate equivalent to the i-f bandwidth in cycles/sec) and still

preserve the average output dc level at the value dictated by the frequency p.

(c) For the requirements in the bandwidths of the limiter and the discriminator sec-

tions, Arguimbau and Granlund indicated that interference rejection will be fully achieved

(with arbitrary values of a) if the interference frequency spikes are fully accommodated

within a passband in the nonlinear sections. If account is taken of the situation in which

the stronger signal will have the higher frequency, then, from Fig. 2, the bandwidth

required to accommodate the spikes is given by [(l+a)/(l-a)] (BW)if, when r is assigned

its maximum value of one i-f bandwidth, (BW)if. A plot of the required bandwidth as a

function of a, calculated from [(l+a)/(l-a)] (BW)if, is presented in Fig. 16.

Thus, it was thought that the key to interference rejection (1, 2) lay in the fast action

of limiter and discriminator (to avoid diagonal clipping), and in the full accommodation

of the instantaneous-frequency excursions within limiter and linear discriminator pass-

bands (to preserve the equality of the areas enclosed by the (do/dt)-curve above and

below the frequency p). The physical basis for this argument can be traced to the

behavior of networks that involve energy-storage elements when they are excited by

variable-frequency sources. The response of such networks will follow a variable-

frequency excitation, through essentially stationary states, provided the bandwidth is

much larger than the rate at which the excitation frequency is varied; still better, pro-

vided the static amplitude-response characteristic is essentially a constant, or a linear

function of frequency, over the whole range of the instantaneous-frequency excursions of

the excitation. Under such conditions, the dynamic response is readily evaluated from

the static characteristics on an instantaneous-frequency basis.

It was assumed, however, that if the limiter bandwidth was chosen equal to

[(l+a)/(l-a)] (BW)if, the quasi-static argument applied, and a linearity over the same

range would be necessary in the discriminator characteristic. (This assumption will

be shown to be invalid in section 1.6.) With a linear FM-to-AM conversion character-

istic for the discriminator over the range of the spikes (thus extending over a bandwidth

that is much larger than the spike repetition rate for values of a > 0. 8) and with suffi-

ciently low associated low-frequency circuit time constants, we can plot the instanta-

neous detected output as a function of the instantaneous frequency on a static basis (in

the same way in which we handle the static tube characteristics in low-frequency

electronic circuit problems). However, if we deal with a relatively narrow-band
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discriminator, we have no assurance that we can plot the instantaneous detected output

as a function of instantaneous frequency because the narrow -band detector is likely to

be too sluggish to follow the rapid spike variations and, thus, the quasi-static reasoning

is likely to break down.

It becomes important to determine whether or not the bandwidth given by

[(l+a)/(l-a)]r is a necessary requirement in the nonlinear sections. This is contingent

upon the over-all role played by the limiter bandwidth. Granlund (1) performed a

Fourier analysis of the resultant of two carriers after limiting with the intention of

"determining whether [or not the bandwidth specified by the extent of the spikes] is a

reasonable estimate of the extent of the spectrum after limiting. Thus the result was

to be used as a guide in determining limiter and discriminator bandwidths." A good

portion of our treatment in section 1. 2 will parallel Granlund's analysis, and some of

his results (particularly the tables of spectral amplitudes) will be repeated here for

the sake of completeness.

Finally, aside from being of theoretical interest, the question of whether or not

"wideband" limiting and detecting is necessary has important practical and economic

implications in communication by frequency modulation, and in frequency-modulation

receiver design. Some of the more obvious considerations are:

a. Wideband discriminators are more expensive to construct than the narrow-band

types. This is also true of limiters.

b. Wideband discriminators require critical adjustments that become more unrelia-

ble in time and with changes of ambient temperature and humidity.

c. Wideband discriminators are considerably less efficient FM-to-AM converters

than are the narrow-band types, and this can have detrimental effects upon the quality

of reception at the low-modulation levels.

d. A narrow-band limiter yields a stronger signal at its output than does a wideband

limiter. Furthermore, the fact that the audio-signal level is higher at the output of a

narrow-band discriminator than at the output of a wideband discriminator decreases

the demand on the number of audio stages that are necessary to bring the signal strength

up to the desired level at the loud-speaker.

e. In video applications of frequency modulation, widebanding demands prohibitive

bandwidths to effect a reasonable degree of interference rejection.

I. 2 THE TWO-PATH INTERFERENCE SPECTRUM AFTER LIMITING

Consider two frequency-modulated carriers of relative constant amplitudes 1 and

a, where a < 1, that have such frequencies that they fall simultaneously within the ideal

intermediate-frequency passband of the receiver. For simplicity, assume that the

modulation is so slow that the frequencies of the modulated carriers (henceforth called

signals) do not change appreciably during several cycles of the frequency difference.

Let the instantaneous frequencies be momentarily p and p + r rad/sec, the former
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being that of the stronger signal. Consider the resultant wave to be passed through an

ideal limiter that is followed by an ideal wideband filter. A simple analysis shows that

the structure of the unfiltered amplitude-limited resultant signal includes a fundamental

carrier frequency of p rad/sec with associated sidebands, plus other carriers at har-

monic frequencies of p (only odd harmonics with symmetrical limiting) with associated

sidebands. The wideband filter will thus be assumed to be sufficiently selective that

only the spectral components centered about the frequency p are of significance, with

r << p, and with the harmonics of p and their associated sidebands completely rejected

or negligible. Thus, with the input (to the ideal selective limiter) described by

A(t) cos +(t), the output signal will be

e(t) = cos (t) = cos(pt + 0) (3a)

where (t) and 0 are as shown in Fig. 1.

The assumptions strip the problem of unnecessary computational complexities and

make it easier to "see the forest for the trees." In the light of standard FM practice,

it is readily appreciated that the assumptions correspond rather well with most impor-

tant practical situations. Furthermore, the assumption of a modulation that is slow in

comparison with the frequency difference is realistic, since, with wideband FM, the

maximum allowable frequency deviation is often much larger than the audio frequencies

that are of importance, and so the frequency difference r rad/sec will be supersonic

most of the time. In a later discussion, the problem in which the frequency difference

is within the audio range will be given special attention and the assumption regarding

the relative frequencies of the modulation and the frequency difference will be recon-

sidered.

In Eq. 3a, we note that if we expand the cosine of the sum we get

e(t) = cos pt cos - sin pt sin 0 (3b)

From Fig. 1 we note that, with

g(t) = (1 + Za cos rt + a 21/2

cos 0 = g(t) · (1 + a cos rt) and sin 0 = g(t) · a sin rt

so that

e(t) = g(t) [cos pt + a(cos pt cos rt - sin pt sin rt)]

or

e(t) = g(t) [cos pt + a cos(p+r)t] (4)

Equation 4 could have been written directly by normalizing the instantaneous phasor-

amplitude scales in Fig. 1 by dividing by (1 + Za cos rt + a2) 1/ 2 . This shows that the

resultant constant-amplitude signal at the output of the ideal limiter can be expressed

as the sum of two amplitude-modulated waves with the same carrier frequencies and

the same instantaneous relative amplitudes as the two input signals. The resultant
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9( I) =I +2 a coso+a

a = 0.9

Fig. 3. The amplitude-modulation function g(t) introduced by amplitude
limiting the resultant of the two input signals.

amplitude at any instant remains, of course, constant. The amplitude-limiting process

can, therefore, be interpreted as amplitude modulation of the resultant signal by a

function that is given by the reciprocal of its instantaneous amplitude. Plots of the

amplitude-modulation function g(t) appear in Fig. 3.

Next, if we note that the amplitude-modulation function

g(t) = (1 + 2a cos rt + a2) 1 / 2

is an even periodic function of = rt, we can write

00

g(t) = an cos n1
n=O

where

a = 1/7r g(4/r) d = 1/r GO(a)

and

and
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a = 2/(+
an = /r &_

n t7 /-I
'-" /O (1

/r) cos n d)

cos n

+ 2a cos + a) 1 / 2

or

an = (r/) Gn(a)

where

cos n
Gn(a) = (

(1 + Za cos , + a2)1/2

Thus

g(t) = (1 + 2a cos rt + a2)- 1 / 2

00

= (1/Tr) Go(a) + (2/7r) Gn(a) cos nrt

n=l

Substitution in Eq. 4 yields, after some trigonometric manipulations,

e(t) = (1/Tr) [Go(a) + aGl(a)] cos pt

oo

+ (1/1T) Z [Gn(a) + aG

n=l

co

+ (/rr) 

n- l(a)] cos(p + nr)t

[Gn(a) + aGn+ 1 (a)] cos(p - nr)t

which can be expressed in the final form

00

e(t) = An

n=-oo

cos(p - nr)t

= Re LeiPt nZ

n=-oo

A e-jnrtn j

with the definitions

11
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Ao = (/wr) [Go(a) + aGl(a)]

An = (l/Tr) [Gn(a) + aGn-l(a)] (7)

An = (I/Tr) [Gn(a) + aGn+l(a)]

The auxiliary function Gn(a) is readily recognized as an elliptic integral. A fruitful

analysis of the function Gn(a), which is well known in celestial mechanics (4), has been

cited by Granlund (1). For completeness, some of the steps involved in this analysis

are outlined and the parts that are important for our purposes are presented and

expanded.

First, we note that Gn(a) can be expressed in the form

rr ~ ejn d<
Gn(a) = (1/2) Re 2_|

(1 + 2a cos c1 + a2)1/2

.ff e jn d,

(1/2) 1 
(1 + 2a cos + a2) 1 / 2

since the contribution from the odd imaginary part vanishes. With z = ej, G(a)

reduces to

n-1/2
Gn(a) = (1/2j) ()+Z- dz

[(1 + az)(a+z)]l/2

wherein the path of integration is a complete circuit of the unit circle in the z-plane.

By a straightforward contour integration, we get

a n-1/2
G (a) = (-)n x dx (8)

0 [(1 - ax)(a-x)]l/2

where x is a dummy variable of integration.

Finally, the substitution of x = a sin2 0 yields Gn(a) in the form

Gn(a) = Z(-a)n1 - a2 in /2 (9a)

or

G(a) = (a) 1 - a2 in2 1/ (9b)
The last integral on the right is given in referencesind 8 and can be expressed as)/

The last integral on the right is given in references 5 and 8 and can be expressed as
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Zn
sinn 8 dO

(1 - a2 sin o)1/2

(1; 2; n) 

(2; 2; n) k=O

(1; 2; k) ([Zn +

(2; 2; k) ([Zn +

1];2;k) 2k

2]; 2;k)

in which we have used the notation (7)

(m;d;v) = m[m+d][m + 2d]... [m + (v-l)d]

dvr(. + v)
d( ) v = 1,2, ...

When simplified, the expression for In becomes

r(k + 1/z) r(k + n + 1/2) 2k
In = X a

k=O r(k+l) r(k + n + 1)

Substitution in Eq. 9b yields

Gn(a) = (-a)n (lla)

oo

E Cl(k, n)a

k=O

Cl(k, n) =
r(k + 1/2) r(k + n + 1/2)

(1 lb)
r(k+) r(k + n + 1)

Similar expressions can be found for An(a) and A_n(a) by substituting from Eqs. 9

in Eqs. 7. This yields the equations

An(a) = (2/1T)(-a)n

An(a) = (2/rr)(-a)n {J:I

r/2

0o
sin2 n (1 - a2 sin2 e)1/2 dO

sin2n dO

fi/a(1 - a2 sin e)1 72

sin Z (n -1 )
(1 -a2 sin2 dO1. d

2 . 6 )1/Z(1 -a sin e

(13)An(a) = (1/rT)(-a)n [In - In_ I]

where In is defined in Eq. 10a. The integral

J=2n j sinZn (1 - a2 sinz 0)1/2 dO

13

I = f
2

a <1 (iOa)

(lOb)

(10c)

where

(12)



can be easily evaluated from another integral (8) and the result can be reduced to the

form

E 1 r(k - 1/2) r(k + n + 1/2) 2k Z

Jn = - 2 a a < 1
k=O r(k+l) r(k + n + 1)

Compare this expression with expression 10c for In. Substitution in Eq. 12 leads to

0oo

An(a) = (-1/2Z)(-a)n Z Cz(k,n)aZk (14a)

k=0

where

r(k - 1/2) r(k + n + 1/2)
CZ(k, n) - (14b)

r(k+l) r(k + n + 1)

The value of expressions 11, 13, and 14 in the numerical evaluation of Gn(a),

A_n(a), and An(a) is best brought out by studying the convergence properties of the

infinite series that are involved, and by safely estimating the necessary number of

terms that is required in each summation to meet a certain prescribed tolerance in

the computed values of the desired functions. The details of this study will not be pre-

sented here. Only steps and results are outlined. In this study, Stirling's asymptotic

formula for the gamma function is used to simplify the expressions for C l(k, n) and

C 2 (k, n) in Eqs. lb and 14b. It follows immediately that

Cl(k, n) < [k(k+n) ]1/2 . e < e/k (15a)

and

C 2 (k, n) < [k 3(k+n)]1 / 2 e2 < e /k 2 (15b)

for all positive integral n, e being the base of natural logarithms. The series in

Eq. 14 is thus seen to converge much more rapidly than that in Eq. 11, the latter con-

verging, in fact, only for a < 1, which is the only range of significance in our discus-

sions. The number of terms, N, (estimated conservatively by a rough estimate of the

remainder) that must be added to meet a prescribed tolerance, E, in the computed value

of the series, can be obtained from the formulas

2N+n 2
E = a a2 (for each sum in Eq. 13)

[N(N+n)]1/2 - a

2N+n 2

[N (N+n)'/2 a 2 (for Eq. 14)

In each case, the error E is about (1 - a)- 1 multiplied by the first neglected term in

the sum. Estimates for N, computed from these expressions for various prescribed

14
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Fig. 4. Conservative estimates of the number of terms N and N'
that is needed in series 11 and 14 to meet the prescribed
tolerance E on finite approximants.

tolerances E, are plotted against a in Fig. 4 for the worst possible situation, namely,

that with n = 0. The computation of the coefficients C 1 and C 2 is greatly facilitated by

the availability of excellent tables (9) for log r(x) with x ranging over large values.

Admittedly, some of the estimates shown in Fig. 4 are not encouraging, cognizant as

we are of the high degree of safety insured by these estimates.

For an alternative approach to the evaluation of Gn(a), An(a), and An(a), we go
2

back to Eq. 8, and with the substitution x = au we obtain

1 ~ u 2n du

Gn(a) = Z(-a)n J (16)(16)
[(1 - a2u2)(l - u2)]/ 2

The elliptic integral on the right is of the general type (6) represented by

k
u

Ik = | du

[R(u)] 1 / 2

for which a recursion formula can be found in the following way. First, the expression

for d/du [u k - 1 Ru)] is formed, and then both sides are integrated between the limits

0 and 1. The result for Gn(a) is given by (see also ref. 1)

15



Gn+l(a) + 2n + (1 a G (a) + n 1 G (a) O (17)n+l~a) + Zn + a n 1Gn-l

for n > 1/2.

The restriction on n is inconsequential, since, from Eq. 9a, we have

w' /2
dO

G(a) = 22 2 12
(1 -a sin O)

2 K(a) (18)

and

T/2 isr/2
Gl(a) = (2/a) j / (I - a(1 -a sin0)/ d - /

= (2/a) [E(a) - K(a)] (19)

where K(a) and E(a) are the complete elliptic integrals of the first and second kind.

Equations 17, 18, and 19, with the help of a table of complete elliptic integrals,

reduce the task of computing Gn(a), for any integer n, to a fairly systematic procedure.

Granlund (1) used ten-place tables of complete elliptic integrals to evaluate G(a) and

Gl(a), as given by Eqs. 18 and 19 for several values of a. These, then, together with

the recursion formula, Eq. 17, and the expressions for the spectral-component ampli-

tudes given by Eqs. 7, were used to calculate and tabulate these amplitudes up to

reasonably large values of n. Granlund's table, which has been expanded to include

the values for a = 0. 85, is presented as our Table I.

Equation 17 is readily recognized as a linear difference equation with variable coef-

ficients. The task of developing the general expression for Gn(a) by solving this

difference equation directly is not pleasant. However, for large values of n, the

coefficients become approximately constant, and the solution to the resulting constant-

coefficient difference equation shows that Gn(a) is asymptotically approximated by an
constant multiplied by a . It can also be shown (using recursion formulas for An and

An derived with the help of Eqs. 17 and 7) that A n(a) and A n(a) tend asymptotically to
-n n -~n

expressions of the form (constant) X an

It is convenient at this point to summarize the important properties displayed by

the side-frequency components with amplitudes An and A n. It is noted that the spectral

component that has the frequency of the stronger of the two input signals is A o . The

component A_ 1 has the frequency of the weaker signal. The amplitudes of the side-

frequency components are not symmetrically distributed about the center-frequency

component Ao . This lack of symmetry conforms to our physical expectations. For,

on an instantaneous-frequency basis, the instantaneous frequency of the resultant sig-

nal (as shown in Fig. 2) places this signal on one side of the center frequency much

longer than it does on the other. This means that the power in the composite signal

16
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will not be equally shared by the two sidebands. Since the instantaneous frequency of

the composite signal lingers in the neighborhood of the mean of the two carrier fre-

quencies (that is, p + (1/2) r rad/sec) during the major portion of the difference-

frequency cycle, more signal power should reside in each of the two components that

have frequencies closest to that frequency (namely Ao and A_ 1 ) than in any of the other

components. This is indeed confirmed by the computed values for the amplitudes. The

magnitude of Ao is larger than that of A_ 1, and this may be appreciated by noting that

the instantaneous frequency of the composite signal always puts it on the Ao side of the

mean frequency (p + (1/2) r) rad/sec.

From the choice of time reference (t = 0 when the two signals are in phase) we have

alternately positive and negative real values for the spectral amplitudes. The signs at

t = 0 or 2mTr/r, where m is any integer, are so distributed that the A 's alternate in

sign, starting with A+ 1 negative, A and A_1 positive. However, it is readily seen that

at t = q/r, where q is an odd integer, all the A+n's line up in the same positive direc-

tion as Ao , while all the A n's line up opposite in phase to Ao

Figure 5 shows the input and output spectra superimposed upon a plot of the

instantaneous-frequency deviation of the resultant signal from the frequency of the

stronger signal for a = 0. 8.

Thus, it is seen that the limiting process, by eliminating the amplitude variations

of the resultant, spreads out the resultant spectrum over an "infinite" band. The

instantaneous frequency of the resultant signal after limiting (but with essentially all of

the significant side-frequencies centered about p rad/sec passed unaltered) appears as

the spike trains of Figs. 2 and 5. However, it must be borne in mind that the amplitude

of the resultant will remain substantially constant, and the instantaneous-frequency

variations will follow, essentially, the spike pattern given by Eq. 2, only when most

FREQUENCY

Fig. 5. Instantaneous-frequency disturbance caused by the interference.
Input and computed output spectra are superimposed to clarify
the notations and locations of the spectral components.
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or all of the sideband components of significant strength (centered about the frequency

p) are passed by the filter that follows the limiter.

We shall next determine the effect of eliminating some or most of the significant

sideband components upon the possibility of rejecting the disturbance arising from the

simultaneous presence of the weaker signal. This will spotlight the means of providing

the proper bandwidths in the limiter-discriminator sections for the preservation of the

interference rejection ability of the FM receiver.

1.3 A USEFUL THEOREM

The mathematical formulation of the general criterion which we shall use in deter-

mining whether or not interference can be suppressed when an ideal bandpass filter

(that may reject major portions of the output spectrum) is inserted after the limiter,

will derive largely from the properties of the spectral amplitude components, An.

The most important consequence of these properties can be appreciated by examining

the behavior of the locus described during a period of 2/r seconds, by the end point

of the phasor that represents the resultant signal at the output of the filter. This

behavior is indicated by the following theorem.

THEOREM 1. If, at the output of the limiter, an ideal filter is inserted that will

pass: (a) an arbitrary number of components from both sidebands simultaneously or

(b) an aribtrary number of components from the upper sideband, along with A only,

then, over a period of 2ar/r seconds, the terminus of the resultant phasor that repre-

sents the signal at the output of the filter will cross a reference axis along which a

phasor representing Ao lies, only at rt = mr, when m is an integer or zero.

The ideal filter is characterized by a constant amplitude response within the pass-

band and sharp cutoffs at its edges and by a linear phase characteristic (or constant

time delay) over the passband.

Figure 6 is a phasor diagram illustrating the linear superposition of several spectral

components that fall within the passband of the ideal filter. The plane of the figure can

be imagined as rotating clockwise at an angular velocity of p rad/sec. A will be
stationary, and the nth-component phasor will rotate at nr radsec about its origin.stationary, and the n -component phasor will rotate at nr rad/sec about its origin.

Fig. 6. Linear superposition of phasors representing the spectral
components passed by the ideal-limiter filter.
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For the axis of reference we choose arbitrarily the line along which Ao lies and

call the origin of Ao "O". We want to show that the path traced by the point R during one

complete cycle of the frequency difference r will cross the reference axis only at

rt = 0 and rt = Tr. First, we shall demonstrate a few helpful lemmas.

Let us translate the assertion of the theorem into a more specific mathematical

statement. We note from Fig. 6 that the locus of R crosses the reference axis only

when Y, the instantaneous length of the vertical component of the resultant phasor,

vanishes. But

M

OR = An ejn 4

n=-N

M M

= An cos n - j An sin no (20)
n=-N n=-N

where - rt, N is the number of upper sideband components that is passed, and M is

the number of lower sideband components that is passed. Therefore, the locus traced

by R crosses the reference axis for values of that are the roots of

M

Y=- A n sinn4 (21)

n= -n

When components from both sidebands are passed, Eq. 21 can be reduced to the form

y A-2 - A 2 A_ 3 - A 3
= A 1_ A1 = sin + A A sin 2 + A_ 1 A sin 3 + .+..

the sum terminating with the term contributed by the last component (in either or both

sidebands) that is passed.

From Table I we find that the expression for y can be rewritten as

y = sin - b1 sin 2 + b sin 34 - b 3 sin 4 + ... + bq 1 sin q (22a)

where

b =1

IA_21 + IAzI
b =

1A_ 1 1 + A1 1 (22b)

IA_ n + IA n
b 
Simila(nrly,) we can show that + expressions of the form of Eq. 22a exist for the special

Similarly, we can show that expressions of the form of Eq. ZZa exist for the special
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cases in which only upper sideband components or only lower sideband components are

passed. For the former, b_(nl) = IA_ -n/A_ 1 1; for the latter, b+(nl) = IAnI/IA1 .
By direct substitution from Eqs. 7 the expression for bin takes the alternative use-

ful form

Gn - Gn+2
b nn ( - G (22c)

In terms of Eq. 22a, theorem 1 states, in effect, that, when the magnitude of the

coefficient of sin n is given by either (a) bn or (b) b_n, then, in the interval

O < r2 w, y will have zeros only at = 0 and = Tr.

Admittedly, the zeros of the finite sum in Eq. 22a would best be placed in evidence

by expressing this sum in a convenient closed form. However, any attempt to do this

would meet with discouragement in view of the formidable appearance of the expressions

for the coefficients of the sine terms. But the following lemmas are quite helpful.

LEMMA 1. If a finite sum of harmonically related sine terms (each weighted by an

appropriate coefficient, the nth term being given by a sin nq) is to vanish only at 4 = 0
n

or T = r, in the range 0 4 < 2Fw, then the zeros of the sum must not be produced by

mutual cancellation among the terms, but only by the vanishing of the individual terms

simultaneously and separately. This can only be ensured by special restrictions on the

magnitudes of the weighting coefficients (an's).

The truth of this statement is best illustrated by referring to Eq. 22a. If only the

first term in the sum is present, then y = sin with zeros only at = 0 and = . If

only the first two terms are present, then y = sin - b1 sin 2, whose zeros are those

of sin only if b1 < 1/2. If only the first three terms are present, then y = sin - b1

sin 2 + b 2 sin 3, and with b1 assigned its highest permissible value of 1/2, the zeros

of y will be those of sin only if b 2 < 0. 933. The illustration grows in complication as

more terms are dragged in, but the pattern is obvious. The coefficients b 1 , b2 , b3 ,

must obey certain restrictions on their magnitudes in order for the zeros of y to be

identical with those of sin ; that is, in order for the zeros of y not to be brought about

by the various component terms canceling one another, but only by the simultaneous

vanishing of the individual terms.

LEMMA 2. Given the two finite sums of harmonically related sine terms

q q

Y = X an sin n and Y2 = I bn sin n4
n=l n=l

in which a1 = bl; otherwise the terms of the first sum dominate those of the second sum

(that is, an >_ IbnI), and corresponding coefficients (e.g., an and bn) have the same

sign. If Yl has zeros only where sin has zeros, then the zeros of Y2 must likewise

be only those of sin .

Clearly, if the magnitudes of the various coefficients in the expression for Y1 are
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within the bounds imposed upon them by the condition that the zeros of Y1 be those of

sin , then with the same restrictions on the coefficients of y2 (since a = b1 and an

and b n have same signs) and with I anl > bn , n 1, the magnitudes of the coefficients

of YZ are certainly within the proper bounds to ensure that the zeros of y 2 be those of

sin .

LEMMA 3. In the finite sum of sine terms given by Eq. Z2a

y = sin -b in 2 + b2 sin 3 - b 3 sin 4 + ... + ( 1 )q- 1 bq- 1 sin q4

where

I A_n(a) + I An(a)
bn 1= (for case a of theorem 1)

n 1 | A_l(a)l + |Al(a)l

and

bn_ 1 = IA_n(a)I/1A_l(a)l (for case b of theorem 1)

the nth coefficient, bn(n0O), is dominated by the corresponding coefficient, (1/2)an, in

the similar sum,

S = sin - (1/Z)a sin 2 + (1/Z) a2 sin 3- (1/Z)a3 sin 4 + ...

+ (_ 1)q -1 (1/ 2 )a q- 1 sin qq (23)

That is to say,

I A_n(a)I + IAn(a) I
b±(nI = < (l/Z)a- (24a)A(nl) IA _(a) + AI(a)I

and

b_(n-l) = IA_n(a)l/IA_l(a)l < (1/Z)a n- l (24b)

where, as before, a lies between 0 and 1, and n is a positive integer different from 1.

From Eqs. ZZc and Ila, it is readily seen that

b = f(n, a) · an (25)

where f(n, a) is a complicated function with no factorable powers of a. That f(n,a) < 1/2

for all values of a and all values of n, is quite obvious from Figs. 7 and 8. An analyti-

cal demonstration is also possible, but it is too involved to be worthy of reproduction.

Similar statements may also be made for b n, but not for b+n, as is obvious from

Figs. 7 and 8.

LEMMA 4. The finite sum S, given by Eq. 23, has zeros only where sin has

zeros, for all values of a between 0 and 1, and for all q = 1, 2, 3, ....

23
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Fig. 7. Graphical demonstration of lemma 3.

I I I I I I I I I I
O 1 2 3 4 5 6 7 8 9 10

Fig. 8. Graphical demonstration of lemma 3.
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This is obviously true when S = sin . It is also true for S = sin 4 - (1/Z) a sin ,

since the necessary restriction is that (1/2)a be < 1/2; that is, for a < 1. When S is

made up of the first three terms, it can be readily shown to be true for all a < (7/4)1/,

which includes the range a < 1. Finally, Eq. 23 can be expressed in closed form as

follows. First, write

ZS = sin 4 + sin - a sin 2 + a sin 3 + ... + (-a) q -1 sin q

q

= sin + - (I/a) E (-a)n sin n4 (23a)

n=l

If sin n is replaced by its value in terms of complex exponentials, and the standard

formula for the sum of a finite geometric progression is used, it is readily established

that, with a < 1, we have

sin , - (-a)q [sin(q+ l), + a sin q]
2S = sin 4 + (23b)

1 + Za cos 4 + a2

As q is increased, a q approaches zero and the zeros of S become more and more

obviously those of sin b. Therefore, we may conclude that lemma 4 is true for all

a < 1, and all positive integers q. (Another argument based on Eq. 23b and making

use of phasors is also possible.)

The argument that proves theorem 1 is now obvious. The sum in Eq. 22a must

vanish only at the zeros of sin . But this sum is exactly similar to the sum in Eq. 23a,

in that they are both made up of the same number of harmonically related weighted sine

terms; the coefficient of the first term, sin , is the same in both, and the coefficient

of sin n4 has the same sign in both. Furthermore, by lemma 4, the finite sum in
th

Eq. 23a vanishes only when sin vanishes, and by lemma 3 the n coefficient, (1/Z)an,

in Eq. 23a, dominates the n t h coefficient, bn, in Eq. 22a (only when bn = bin or b n;

that is, for conditions a and b of theorem 1). Therefore, by lemma 2, the finite sum

in Eq. 22a can vanish only at the zeros of sin , and this proves theorem 1.

In Fig. 9 plots of typical y's are shown for arbitrarily chosen values of a, N, and

M in order to illustrate the demonstration given above. Perhaps they also provide an

independent demonstration which is per se satisfactory to engineers.

In conclusion, the theorem cannot be extended to include the situation in which Ao

is accompanied by lower sideband components only, for a greater than approximately

0. 69, and for all values of q. The quoted upper limit on a can be read directly off the

plot of b+! in Fig. 7, since, for a > 0. 69, b+l exceeds -the maximum permissible value

of 0. 5. Furthermore, the plots of Figs. 7 and 8 show that b+n cannot be said to be

bounded by (l/ 2 )an for all n and all a 1, and so the argument presented above does

not apply. Actually, the most serious violation of the conditions for this argument is

the fact that b1 does exceed 0.5 for a > 0. 69, for otherwise the remaining coefficients

25



0 0
+ 

q 

0O 

0 C
I C)

II II

dC
~oZ

,

0a w C

a)

'
T

(a) -

-+l
II I

o ID INW0 I I

0 4-fW~ ~ ~ ~~~~~~~~~~~~ 0 4

Q) 

4

o'~
O Q,

-4 a) 4-

Cd
o. m

4 V =

00

26

2,

t -



b+n are not large enough to exceed the more liberal bounds that apply to them when b

is within its own bounds. Indeed, for the range a < 0.69, for which b+l < 0. 5, the

corresponding finite sum, Eq. 22a, will have zeros at 0 or rr only. This is illustrated

in Fig. 9c and d. From these plots we may also conclude that the theorem holds for all

values of a when q is odd; it only breaks down for even values of q in the range

0.69 < a < 1.

The importance of theorem 1 will best be appreciated from the discussions of the

two following sections.

1.4 A CRITERION FOR INTERFERENCE REJECTION

If the limiter bandwidth is narrowed down to pass only a portion of the power in each

sideband, the interference will still be suppressed only if, over a period of Zn/r sec,

the average frequency of the resultant of the passed components is still equal to the

frequency of the stronger of the two carriers. It is clear that the minimum value that

the limiter bandwidth can have is equivalent to one intermediate-frequency bandwidth.

The conditions for this, or any other value of limiter bandwidth, to be permissible will

now be determined.

At the output of the limiter, the component that has the frequency of the stronger

signal is Ao . From Fig. 6 we find that the average frequency of the resultant, OR,

will be the frequency of Ao if and only if, over a period of 21Z/r sec, the net phase

deviation, 0, is zero. It is readily appreciated that, since the locus of the point R

traces a closed path during a complete period of r, the net value of the phase deviation

0 will be zero only if this closed path does not enclose the origin, O.

Now, the closed path traced by R will enclose the origin, O, if, at any instant of

time, the resultant of the passed sideband components opposes Ao in phase and exceeds

it in magnitude. Or, in terms of the resultant phasor OR, the locus of R will enclose

the origin O only if OR can assume a negative real value at any instant during the

frequency-difference cycle. Obviously, OR becomes real only when the path of the

terminal point R crosses the axis on which Ao lies (this axis being chosen as the axis

of reals). But theorem 1 states that this can occur only when rt = 0 or , and at no

other instant during the cycle. Conse-

quently, loci of R as shown in Fig. 10,

O<rt<

for instance, are ruled out completely.

Now, the nth upper and lower side-

band components are An exp(jnrt) and

An exp(-jnrt). Furthermore, Table I

reveals that the spectral terms in

each sideband alternate in sign, A n

and An being positive for n odd and
Fig. 10. Type of locus for the end point,

even, respectively. As a consequence,R, of the resultant phasor which
is ruled out by theorem 1. we find that, since (with rt = )
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r -1, for n odd
= e

+1, for n even

the signs are so distributed that, at rt = r, all the upper sideband components line up
in phase opposition to Ao , while all the lower sideband components line up in phase

aiding Ao .

Finally, at rt = 0, exp(±jnrt) = 1, for all n. Consequently, the components in each

sideband are so oriented that every other component aids or opposes A directly, A_n
and A n aiding Ao for n odd and even, respectively. In this mutual cancellation among

the terms, with A_ 1 heavily weighting the positively oriented components, it is very
unlikely that the passed components will subtract from the magnitude of A .

We conclude; therefore, that the only critical instant of time to consider, during a
frequency-difference cycle, is that corresponding to t = r/r. The following theorem

can therefore be stated as the criterion for the loss or preservation of the desired

average frequency (hence for the possibility of rejecting the interference) when the ideal
limiter is followed by an ideal narrow-band filter.

THEOREM 2. If arbitrary numbers N and M of upper and lower sideband compo-
nents fall within the passband of the ideal filter that follows the limiter, the average

frequency of the resultant of all the passed components, including the component Ao,

will be exactly the frequency of Ao if and only if

M M

An e j n = (-)nAn < A n 0
n=-N n=-N

This important inequality can also be expressed in the more convenient form

M N

E A IE Al> A-n (26)
n=0 n=l

PROOF. At the output of the ideal filter the resultant signal is given by

M

e(t) = An cos(p - nr)t

n=-N

The corresponding complex function of time is

M

E(t) = ejpt Z A e-jnrt

n=-N

which may be expressed as

E(t) = ejpt F(t) (27)
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Over a period of 2rr/r sec, the net phase shift of E(t) is 2Tp/r if and only if, over

2Zr/r sec, the complex function

M

F(t) > An e-jnrt

n=-N

introduces no net phase change.

For convenience, let us shift our time reference from the instant at which rt = 0 to

the instant at which rt = rr. For this purpose we substitute T + r/r for t to get

M

H(T) = F(T + r/r) = >3 ( - )n An ejnrT
n=-N

or

N M

H(T) = - IAI ejnrT+ > IAn ejnrT
n=l n=O

Now let z ejrT, in order to obtain

N M

h(z) = - IAn + 3 IAnI zn (28)

n=l n=O

As exp(jrT) covers one complete cycle of variation over a period of 2Tr/r sec, z

traverses the unit circle in the z-plane once counterclockwise, and h(z) traces some

closed path C' in the h(z)-plane, as shown in Fig. 11. In tracing C' counterclockwise

h(z) will sustain a net phase shift given by 2r(Z-P), where Z and P are the numbers

of zeros and poles of h(z), within the unit circle in the z-plane, each zero or pole being

counted in accordance with its multiplicity. But, from a well-known theorem in function

theory (10), if a function f(z) is analytic,

except for possible poles within and on a

given contour, the number of times that the

plot of f(z) encircles the origin of the h(z)-

plane counterclockwise while z itself trav-
r.ps a nrenrihPd enntnuir nnce niintfr-

clockwise is equal to the number of zeros,

Z, diminished by the number of poles, P,

of f(z) within the contour in the z-plane

(each pole or zero being counted according

to its multiDlicitv).

Fig. 1 1. Illustration for the proof of Therefore, if h(z) is to acquire no net
theorem 2. phase shift in tracing the path C' once, the
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quantity Z - P must be zero or, equivalently, the path C' must not encircle the origin

of the h(z)-plane. This condition is rather obvious from an examination of Fig. 11. It

is also readily appreciated that if, while z traverses the unit circle and h(z) describes

the path C', h(z) never assumes a negative real value, then C' will never encircle the

origin of the h(z)-plane.

Now, on the unit circle, Eq. 28 can be written in the form

N M

h(z) Iz 1=l -Z IAnl cos n + E IAnI cos n4
n=l n=0

N M

rn IA nl sin n + Z IAnI sin 
n=l n=0

and this is recognized to be equivalent to Eq. 20, with the reference axis shifted by 

radians. The roots of the imaginary component of h(I z = 1) are then exactly the roots

of Eq. 22a, 4 = 0 and = r in the range 0 < 2rr. Therefore, h(I z = 1) becomes real

only when z = 1 or -1, corresponding to 0 = 0 and T = rT, and its real values are given by

N M

h(-l) =-I (-1)n IAn + Z ()n IA n

n=l n=0

M

= I AnA n
n=-N

=A +(IA I - IAI - IA 1) + (A21 I JA31)

+(IA41 - IA I) + ... + (AM 1I - AM)

+ (IA 31 - IA 41) + (IA_51 - IA 61)+

+ (IAN-11 - IAN ) (29)

and

N M

h(l)=- Z IA nI+ Z lAni (30)
n=l n=

It is readily ascertained from Table I that all of the terms in parenthesis in the

expression for h(-l) are positive. Consequently, h(l) is the minimum real value that

h(z) can assume on the unit circle. If this minimum real value is positive, h(z) will

never become negative real for z = 1; hence the path C traced by h(z) in the

h(z)-plane (as z traces the unit circle in the z-plane) will never encircle the origin

of the h(z)-plane. From Eq. 30, the condition for the minimum real part, h(l),
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to be positive is

M N

Z An > IAnl
n=O n=l

This is recognized as the inequality stated in theorem 2, and thus it completes the for-

mal proof.

We shall next apply the criterion of theorem 2 to the determination of the minimum

permissible values of limiter bandwidth for the suppression of interference.

1.5 MINIMUM PERMISSIBLE LIMITER BANDWIDTHS

At the outset, we recognize that with a narrow-band filter whose bandwidth can at

best be equal to, but never less than, the i-f bandwidth, the possible configurations of

accomodated side-frequency components are resolved into three situations. First,

there is the limiting case in which only Ao and an arbitrary number of lower sideband

components are passed, to the complete exclusion of all of the upper sideband compo-

nents. Second, a limiting case arises when it is the lower sideband components that

are not passed by the ideal filter. Third, the general case occurs when some components

from both sidebands are simultaneously passed (with Ao , of course). It is needless to

point out that the remarkable simplification in the approach that the use of the concept

of ideal filters makes possible, will be best manifested by the following analysis. For

instance, with an ideal filter, we are able to draw sharp lines of demarcation between

the three possible situations, and thus reduce our problem to three simpler problems.

The results and experience are not only needed for the analysis of section 1. 6, but they

also serve as an invaluable guide to a clearer understanding of the nature of the prob-

lem, and to the selection of actual design figures.

Case A. Consider first the situation in which only an arbitrary number, M, of

lower sideband components is passed, along with Ao , while all of the upper sideband

components fall outside the passband. Although this situation is possible only when the

ideal filter has one i-f bandwidth that is not well centered about the intermediate fre-

quency, it will be treated for the sake of completeness.

At t = r/r, all of the lower sideband components line up in phase, aiding Ao. Thus

the resultant phasor can never be negative at this instant of time. At t = 0, we have

M

F(O) = Z An

n=O

= (IAn - IA11) + (IAzI- IA31) + (A4 - A51) + + (IAM_ I-IAMI)

All the terms in parenthesis on the right are positive numbers; thus F(O) is also always

positive real. This completes the check for odd values of M, since this case is covered
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by theorem 1. However, for even values of M, we must investigate the positive-

realness of F(t) at an additional instant in the cycle, given by rt = 1, where 0 < 1 < w.

Here

F(01/r) = AO | [1 - A1/Ao0 cos 4 + A2 /A01 cos 1

- A3 /Aol cos 31 + ... + AM/Ao cos M4 1 ]

It is a simple matter to show that the coefficients in the finite series in brackets are

dominated by the corresponding coefficients in the series

z(0) = 1 - a cos + a cos 24 - a3 cos 30

+ ... + (-a)n cos n + ... + aMcos M0

M

= Z (-a)n cos n,
n=0

If cos n is replaced by its value in terms of complex exponentials, and the resulting

finite geometric progressions are summed in the usual manner, z(0) can be expressed

in the closed form (with a < 1)

M

z(0) = , (-a)ncos n,

n=O

1 + a cos + aM+l cos(M+1) + aM+ cos M

1 + 2a cos + a2

Since a < 1, it is evident that as M becomes large

1 + a cos 4
z(O) -

1 + 2a cos 4 + a2

and this quantity can never go negative for any real value of 4. For the lower values

of M, a close examination of the numerator in the expression for z(40) reveals that z(4)

can never go negative. Actually, the preceding argument is independent of and of

whether M is even or odd. It can, therefore, be used to establish theorem 3 without

the help of theorem 1.

We conclude that at no instant of time will any arbitrary number of lower sideband

components produce a resultant that opposes Ao in phase and exceeds it in magnitude.

Furthermore, this holds for all a < 1.

THEOREM 3. If only Ao and an arbitrary number of lower sideband components

fall within the ideal-filter passband, the average frequency of the resultant signal at

the output of the filter is still the frequency of the stronger signal.
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Granlund (1) proved this theorem in the following way. Over a period of Trr/r sec,

the quantity

M

F(t) = An e - jnrt

n=0

must add no phase shift to the resultant signal. To show that it does not, let

z = exp(-jrt) and write

M

f(z) = An z n

n=0

As exp(-jrt) covers one cycle of variation over a period ZTr/r, z traverses the unit

circle in the z-plane clockwise. Since f(z) has no poles within the unit circle, the net

phase change that f(z) sustains while z traverses the unit circle is simply Zr multi-

plied by the number of zeros of f(z) within the unit circle, each zero being counted

in acco: dance with its multiplicity. But f(z) has as many zeros within the unit

circle as

M

f(-z) = E (- 1)n Anzn

n=0

M

ZIA AIzn
n=0

The zeros of a polynomial of this kind (characterized by positive real coefficients that

decrease with n), according to Hurwitz (11), lie within the annular ring

A[ [Anl

L An+ 1 min A n+ 1 max

where n = 0, 1, 2, .. .,M-1. Since IAnI decreases monotonically with n, this ring lies

outside the unit circle, and so f(-z) has no zeros within the unit circle. This completes

the proof of theorem 3.

Case B. Consider the situation in which only an arbitrary number, N, of upper

sideband components is passed, along with Ao, to the complete exclusion of

the lower sideband components. This is possible only with an ideal filter of one

i-f bandwidth, if filters whose passbands are not well centered about the intermedi-

ate frequency are excluded from consideration. Theorem 2 applies, and the ine-

quality
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N

A o > IA_ l (31)
n=l

must be satisfied. This conclusion can also be reached in the following interesting

manner. As before, we require that

N

F(t) = Aejnrt (32)

n=O

shall not introduce any net phase shift over a period of 2rr/r sec. If, for convenience,

we substitute T + Tr/r for t to shift the time reference from t = 0 to t = T/r, we can

write

H(T) = F(T + r/r)

N

A- I A n ejnrt
n=l

If we set z = exp(jrt), we obtain

N

h(z) = A - An Z n (33)

n=l

As before, h(z) will acquire a net phase shift, as z traverses the unit circle once, if

and only if h(z) has zeros within the unit circle (it has no poles there). Such zeros can

exist only if, for z < 1, the right-hand side of Eq. 33 vanishes. Since the summation

term is analytic within and on the unit circle in the z-plane, we have from the principle

of the maximum modulus (10) that this term assumes its maximum value of

N

E IA n
n=l

on the circle itself. Therefore, if

N

A o > (An
n=l

h(z) cannot have any zeros within the unit circle.

In view of the complexity of the expressions for the An's, the criterion is best

applied graphically. Figure 12a is a plot of the sum of all the tabulated An amplitudes

that are significant over the whole range of a taken from Table I. Superimposed on
M

this plot are plots of A(a) and of IAn(a)l for several values of M. Figure 12b
n=0
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shows an enlarged view of the region of intersections in Fig. 12a. From these plots it

is evident that the magnitude of Ao is greater than the sum of the magnitudes of (effec-

tively) all of the upper sideband components for a < 0. 863.

THEOREM 4. If only Ao and an arbitrary number of upper sideband components

fall within the ideal filter passband, then the average frequency of the resultant signal

at the output of the filter will still be the frequency, p, of the stronger signal for values

of a < 0.863.

For a 0. 863, the average frequency of the resultant signal is p + r, the frequency

of the weaker (interfering) signal, if more than a few upper sideband components are

passed. This is illustrated in Fig. 13 by a plot of the path traced by the end point of the

resultant phasor over a period of 21T/r sec, for a = 0. 95, when only Ao , A_1 and A_2

are passed. The encirclement of the origin, 0, by the traced path signifies a gain of

2rr radians, over the phase of Ao, by the resultant signal every Z/r sec. The resultant

has, therefore, an average frequency of p + r radians/second.
N

Figure 12b also shows plots of IA n(a)i for various values of N. The inter-
n=l

sections of these plots with the plot for A(a) determines the value of a up to which a

certain number, N, of upper sideband components can be passed (with Ao only) before

the desired average frequency, p, is lost.

We can conclude, therefore, that the bandwidth of the limiter need not exceed the

bandwidth of the i-f section (for interference rejection) for interference ratios up to

a = 0. 863. For values of a > 0. 863, bandwidths greater than that of the i-f section are

required.

The minimum permissible limiter bandwidths, for a > 0. 863, can be determined as

follows. As before, let N be the number of upper sideband components passed, and M

be the number of lower sideband components passed.

(a) Let the worst situation that must be handled satisfactorily by the filter be

one in which M = 0 and N = Nma x . Clearly, this implies that the situation in which

N = Nma x + 1 can arise only along with M = 1.

(b) Determine the minimum ideal-filter bandwidth, in units of one i-f bandwidth, for

which the situation in step (a) is the limiting situation. This can most conveniently be

done by first drawing a diagram like the one in Fig. 14 (drawn for Nma = 4). It is

evident from this diagram that for N = Nmax , M = 0 to arise, the frequency difference,

r, should be greater than some value, r, that is given by r = (BW)if/Nmax . For this

value of r, N = N + 1, M = 1 arises, and so the limiter bandwidth should be
max

(BW)lim = r(M+N) = r (2 + Nmax)

= (BW)if [1 + Z/Nmax] (34)

Clearly, this is the minimum limiter bandwidth required here, since smaller values

of bandwidth will allow situations to arise in which N > N ma x and M = 0, while largermax

36

I



=0.166

Fig. 13. Path traced by the end point of the resultant phasor over a period of
2Tr/r sec, for the case of a = 0. 95, when only A o, A_1 and A 2 are
passed.

a =0.8

p+r

(8W)F .

AO0 0.81

-A,10.29 A1,0.44

·A&-2~O"O A.30.04 -A_40.0 2 A. s0.01

Fig.

L (BpW)LI ,BiM(BW)LIM

14. The idealized passband of the limiter filter provides the largest avail-
able space for the upper sideband components when the stronger
signal falls infinitesimally to the right of the lower cutoff frequency of
the idealized i-f filter passband.
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values will have limiting configurations in which N < Nmax' and M = 0, the value

N = Nmax arising only along with some nonzero M.
(c) Determine from Fig. 12b up to what value of a the inequality

Nmax

A 0 > z IA-nI
n=l

is satisfied. Then up to this value of a, the minimum required limiter bandwidth is

the value that was found in step (b).

Table II

(BW)lim

M N Min Required a
M max (BW)if

0 2 2 0. 937

0 3 1 2/3 0.906(5)

0 4 1.5 0.891

0 5 1.4 0. 882

0 6 1 1/3 0.877

0 7 1 2/7 0. 873

0 8 1.25 0.870(5)

0 9 1 2/9 0. 868(6)

0 10 1.2 0. 867

0 11 1 2/11 0.865(6)

0 12 1 1/6 0. 865(2)

Table II summarizes the results of calculations that cover the requirements for the

range 0. 863 < a • 0. 937. These results are also plotted in Figs. 15 and 16. The tran-

sition in the requirements from one range of values of a to the next takes place in steps.

This can be justified in the following way. Let a = a mark the end of a range inmax
which the requirement is set by the configuration M = 0, N = Nma. This means that

immediately beyond a = amax the requirement is set by M = 0, N = Nma - 1. The ideal

filter response will either pass, or completely reject, a spectral component in the

neighborhood of its cutoff frequencies. Therefore, the transition from one region to the

next must occur in a step.

It is evident that for a > 0. 937 the bandwidth of the limiter must be so chosen that

at least one or more lower sideband components are passed at all instants of time,

regardless of the value of the frequency difference r, if interference is to be sup-

pressed.
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Case C. Consider, finally, the situation in which components from both sidebands

fall within the ideal-filter passband. Configurations falling in this category will evi-

dently decide the minimum limiter bandwidth requirements in the range a > 0. 937, and

here the criterion of theorem 2 applies directly.

A rough indication of the relative numbers of upper and lower sideband components

that must be accommodated in limiting situations, in order to preserve the possibility

of suppressing the interference, is indicated in Table III. From the criterion of

theorem 2, it is clear that the interference rejection ability is enhanced by the presence

(at all times) of some lower sideband components within the ideal-filter passband. The

ratios N/M, presented in Table III, suggest that for a • 0. 98, interference can always

be rejected if, in the worst possible situation, the ideal-filter bandwidth is sufficient to

accommodate about twice as many upper sideband components as lower sideband com-

ponents. This rule of thumb is helpful only in the range 0. 937 < a < 0. 98, where M

must never be zero to ensure interference rejection.

Table III

Capture Number of lower Maximum permissible N/M
ratio a sideband compo- number of upper side-

nents passed = M band components = N

0.98 1 3 3

2 5 2.5

3 9 3

4 14 3.5

0.95 1 6 6

2 N arbitrary --

For a more careful determination of the minimum requirements in limiter band-

width for the range a > 0. 937, we first extend the reasoning used in case B to the

present situation with M # 0. Thus, if the worst configuration of passed components is

to arise only with M = Mmin and N = Nmax , it is clear that the bandwidth employed must

be so chosen that N can assume the value Nma + 1 only if M = Mmin + 1 arises simul-

taneously with that value. As is evident from a diagram similar to the one in Fig. 14,

if for the worst situation to arise the frequency difference, r, must exceed a limiting

value of rm rad/sec, then the necessary bandwidth is given by

(BW)lim r m

2 (Mmi n + 1)+ 1
(BW)if (BW)if

But
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r m (M m i n + 1) + (BW)if
rm - N + 1

max

or

r
m

-N -M
(BW)i f max Mmin

Therefore,

(BW)lim N + M + 2
max min (35)
N -M

(BW)if max min

From Table III we find that the situations in which Min = 1, Nma x 3 and M = 2,

Nma x = 5, are both limiting situations that the limiter filter must handle. Both con-

figurations require that the limiter bandwidth be three times the i-f bandwidth, which

can be verified by direct substitution in Eq. 35. It is also readily appreciated that this

value of bandwidth is, in fact, the limiter bandwidth required to make it impossible for

the configuration M = 0, N = 2 to arise in the range a > 0. 937. We also notice from

Fig. 12b that the plot of

1

I
n=0

intersects the plot of

3

Z I AJn
n=l

at a = 0. 9807, while the intersection of

n=0

with

IAn=l n

occurs at a higher value for a. Thus, in the range 0. 937 < a - 0. 9807, the configura-

tion M = 1, N = 3 is the most critical one. The minimum limiter bandwidth required

in this range is set, by this situation, at three times the i-f bandwidth.

For values of a just exceeding a = 0. 9807, N = 3 should only arise with M = 2. This

corresponds to a limiting situation described by Mmin = 12, and thus requires

41



a minimum limiter bandwidth of five i-f bandwidths. However, a little check reveals

that with a limiter bandwidth of 5(BW)if, M = 2, N = 3 can arise only when the frequency

difference r = one i-f bandwidth, whereas M = 1, N = 2 cannot arise at all, since r would

have to be larger than one i-f bandwidth. But M = 2, N = 4 can arise here, and it is

even more serious than M = 2, N = 3. Consequently, the upper limit on a, for the pres-

ent range, is defined by M = 2, N = 4.

It should be borne in mind that Eq. 35 will give the correct answer only when the

values corresponding to the worst (or limiting) situation are substituted for Mmi n and

Nmax' On the basis of the argument leading to this equation, in the "worst situation"

Nma x + 1 must be accompanied by M min + 1; that is, it should be possible through an

infinitesimal change in the value of the frequency difference, r, to restore the situation

Mmin, Nmax . Thus, for the calculation of the required limiter bandwidth in the range

that is just above a = 0. 9807, substitution of Min = 2, Nax = 4 in Eq. 35 does not

yield the right answer, since this configuration does not satisfy the indicated criterion.

Up to this point, we have been carrying on the discussion in terms of the case in

which the weaker signal has the higher frequency, p + r. The results can be easily

carried over to the case in which the weaker signal has the lower frequency. There, r

is simply replaced by -r, and so the line spectra that appeared in the upper sideband

previously will now form the lower sideband, while those that appeared in the lower

sideband will now constitute the upper sideband. The steps in the previous analysis

may thus be retraced with the terms "upper" and "lower" interchanged throughout.

Therefore, the swapping of either relative signal strengths, or relative signal fre-

quencies, will not affect the conclusions reached in connection with the limiter bandwidth

requirements.

In fact, it is to take care of such an alternative situation that the limiter-filter and

the i-f amplifier amplitude-response characteristics have been centered about the same

frequency throughout the analysis (see Fig. 14) and no effort has been made to allow the

limiter selectivity to discriminate between the two sidebands.

In either situation, however, the effect that each of the two sidebands will have on

the loss or preservation of the desired average frequency, is easily distinguishable

The sideband that is on the same side as the weaker signal (relative to the stronger sig-

nal) will always contribute the components that will try to offset the average frequency

in favor of the frequency of the weaker signal. A physical feeling for this conclusion

may also be acquired through a better appreciation of the basic relationship between the

constituent spectral components and the characteristics of the resultant wave. The

degree of correlation that seems to exist between the amplitude distribution of the com-

ponents, on the frequency scale, and the instantaneous-frequency pattern of the resultant

wave, has already been pointed out in our discussion of the spectrum. Inasmuch as the

spectral components are basically the "building blocks" of the resultant signal, the com-

ponents that tend to pull the instantaneous frequency of the resultant signal toward the

frequency of the weaker signal must logically be those that lie on the same side relative
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to the frequency p (of the stronger signal) as the frequency of the weaker signal. The

components in the opposite sideband provide the balancing necessary (to aid the compo-

nent Ao) to preserve the desired average value, p, of the frequency of the resultant

signal.

The preceding study embodies the first step in a novel switch in the basic approach

to the limiter selectivity problem, and in the philosophy of the limiter's share of the

task of interference suppression in FM. The more impressive aspects of this new line

of thought will be covered by later discussions.

At this point, it suffices to say that the discussion of this section emphasizes the

minimum basic requirement that the limiter filter must satisfy; that is, no matter in

what way it alters the spectrum delivered to it by the limiter, it must always preserve

the desired average instantaneous frequency in the resultant signal that it delivers to

the succeeding stages by accommodating proper portions of each sideband. Thus the

reason that the large values of limiter bandwidth formerly prescribed and tested (1)

have enabled the achievement of high capture ratios (better than 0. 95), is primarily that

such bandwidths will allow a considerable number of components from the helpful side-

band to be present within the passband at all times. Consequently, the bandwidth values

specified by the formula

(BW)lim - (36)

although they are helpful, are not necessary for interference rejection. Equation 36 is

plotted in Fig. 16 for comparison with the results of our computations.

These computations also emphasize the fact that the desired average frequency of

the resultant signal can be preserved without necessarily providing the bandwidth value

dictated by the extent of the frequency spikes. In fact, as far as the limiter bandwidth

is concerned, it will become apparent, later on, that there is no special significance

to the bandwidth value specified by Eq. 36. This value will even be found to fall short

of satisfying the conditions for a physical filter to follow the instantaneous frequency of

the resultant signal through quasi-stationary states. The basic condition that the limiter

bandwidth must satisfy is merely to be able, in the worst situations possible, to pass

portions of the sidebands that will result in a signal whose average instantaneous-fre-

quency deviation from the frequency p of the stronger signal is zero, over a period of

the frequency difference r. Since, in general, only a finite number of significant com-

ponents will be passed, the resultant signal at the output of the limiter filter will exhibit

instantaneous variations in amplitude, as well as frequency. If an amplitude-insensitive

discriminator follows the filter, the conversion of the instantaneous-frequency pattern

(of the resultant signal delivered by the filter), into a variable direct-voltage level, is

then achieved. The discriminator characteristic must, therefore, be linear over a

frequency band that is sufficiently wide to accommodate the instantaneous variations in

frequency (above and below the level corresponding to the frequency p), in order to
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preserve the average direct-voltage level of the output at the value dictated by the fre-

quency of the stronger signal.

1.6 DISCRIMINATOR BANDWIDTH REQUIREMENTS

In general, the resultant signal at the output of the limiter narrow-band filter will

exhibit instantaneous variations of frequency and envelope. The resultant signal

will be of constant amplitude only if it is the sum of all the spectral components on both

sides of the central component A . When the limiter bandwidth always passes the bulk

of the components of significant amplitude, the instantaneous-amplitude variations will

usually be insignificant. However, in the narrow-band limiter case, situations in which

only a few significant components are passed are likely to occur at all times, and, in a

sense, the resultant signal will behave as it would in the presence of multisignal inter-

ference.

The narrow-band limiter case will thus, in general, call for a limiter stage to follow

the narrow-band filter, when amplitude-sensitive frequency detectors are employed.

Even if this second stage of limiting requires theoretically a very wide bandwidth in

order to deliver a constant-amplitude signal to the discriminator, it is significant to

note (in anticipation of our results) that the combination of one narrow-band limiter,

followed by a relatively wideband limiter, will still serve the desirable purpose of

reducing, by a sizable amount, the required minimum discriminator bandwidth, in addi-

tion to protecting an amplitude-sensitive discriminator from variations in the resultant

signal amplitude. If we then assume that an amplitude-insensitive discriminator is

used, such a device will only respond to the instantaneous-frequency variations of the

resultant signal at its input, and convert these variations into a variable direct-voltage

level. For the average value of this voltage level to correspond with that dictated by

the frequency of the stronger signal, the instantaneous-frequency swings must be-accom-

modated fully over a linear range of the FM-to-AM conversion characteristic. The

required discriminator bandwidth will, thus, be dictated by the expected maximum

swing in the instantaneous frequency.

At this point, the question may be raised as to why the discriminator FM-to-AM

conversion characteristic must be linear (over the range of the maximum instantaneous-

frequency variations) and not some other form of curve which might produce (in

response to the sharp and large instantaneous-frequency deviations caused by the inter-

ference) a conveniently distorted replica of the undesirable frequency variations that

will minimize the over-all effects of the disturbance. Such a curved characteristic

might be considerably less expensive to construct and maintain than a straight-line

characteristic, and, by smoothing out the sharper variations in the incoming instanta-

neous-frequency pattern, might even ease up the fast-action requirements on the

amplitude-detecting parts of the circuit. Such a question, although it sounds reasonable,

really overlooks some fundamental considerations that enter into the mechanism

of FM-to-AM conversion. Fundamentally, this conversion takes place when the
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amplitude-limited FM wave is impressed upon a filter whose amplitude-versus-

frequency steady-state characteristic varies with frequency. The type of variation

with frequency that this steady-state characteristic must exhibit is dictated by the basic

requirement that (at least over the range of. the frequency excursions caused by the

expected message) the resultant amplitude variations be linearly related to the instanta-

neous-frequency variations of the message-bearing signal for final undistorted repro-

duction of the message. Fortunately, the linear variation of the steady-state amplitude

characteristic with frequency also ensures that the filter will follow the impressed

variable-frequency excitation which carries the expected message through quasi-

stationary states over the entire extent of the linearity; thus no noticeable distortion

attributable to FM transients can arise. Under interference conditions, the same con-

siderations apply, and now the extent of the linearity in the steady-state amplitude-

versus-frequency characteristic must encompass the range of the maximum frequency

deviations that the circuit must handle. The necessity of this requirement can be

appreciated from the fact that it is not possible to produce an amplitude-response char-

acteristic which is linear within, and has nonlinearity outside the message modulation

band so that it will translate an arbitrarily situated (and perhaps arbitrarily distorted)

frequency-spike pattern into an amplitude variation that (despite the further distortion

in the nonlinear region, and lack of it in the linear region) will still average out to

zero (over one cycle of the frequency difference) about a value that corresponds to the

level dictated by the frequency of the stronger signal. Moreover, a nonlinear steady-

state amplitude characteristic always leads to deviations from the steady-state ampli-

tude response which are larger the greater the degree of nonlinearity and the higher

the repetition rate, rate of change, and extent of the instantaneous-frequency variations

of the excitation. The result is increased disturbance and no capture. The only char-

acteristic that will satisfy all of the fundamental performance requirements is, there-

fore, one which varies linearly with frequency over the entire range of instantaneous-

frequency excursions that must be handled successfully.

As a first step toward the determination of the variation of the minimum require-

ments in discriminator bandwidth as a function of the limiter bandwidth we shall study

the variation of the instantaneous-frequency pattern of the resultant signal with the num-

ber of significant components passed from each sideband. Note that with every pre-

scribed value of limiter bandwidth we may associate certain possible configurations of

passed components. For each configuration, the number of components passed (with

the desired component, Ao) from each sideband will, generally, depend upon the value

of the limiter bandwidth that is used, the frequency difference between the two signals,

and the positions of the signals relative to the center frequency of the i-f passband. In

view of the insight gained, thus far, about the effect of each sideband upon the character

of the resultant signal, it will be appreciated that, of all the different possible configu-

rations, a few can always be spotted by inspection and expected to produce instanta-

neous-frequency deviations (from the frequency of Ao ) of such magnitude that they
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require greater discriminator bandwidths than the remaining legion of possibilities.

Among those few cases, the one configuration that will impose the greatest requirement

in discriminator bandwidth can then be determined by direct computation. As a conse-

quence, our problem is thus reduced to one of spotting the most critical situation that

may arise with every value of limiter bandwidth that is proposed, and stating the value

of discriminator bandwidth dictated by this case as the one that is demanded by the par-

ticular limiter bandwidth that is assumed.

Accordingly, we now consider an arbitrary configuration of passed components, and

determine by direct computation how the magnitude of the greatest resultant instanta-

neous deviation (from the frequency of the stronger signal) is affected by the number of

components passed from each sideband. This can be done as follows.

As before, if N and M upper and lower sideband components are passed, then the

resultant phasor OR (in Fig. 6) will be given by

M

OR An ejnrt

n=-N

The instantaneous phase angle, 0, which OR makes with Ao , will be

M

=Imln An e jnrt(37)

n=-N

The time derivative of 0 will be, therefore, the instantaneous-frequency deviation,

from the frequency of the stronger signal, that the resultant signal will experience.

Plots of

dO
dt YM-N

for various values of M and N, and for values of a between 0. 8 and 0. 95, are shown

in Fig. 17a, b, and c.

It is clear, from the properties of the interference spectrum (and the discussion of

section 1. 5), that the situations in which only lower sideband components pass with Ao

present no serious discriminator-bandwidth problem, since the maximum deviations in

instantaneous frequency that they engender are comparatively small (see Fig. 17c). The

most serious situations arise when only upper sideband components are passed. The

simultaneous presence of lower sideband components and upper sideband components

within the ideal-filter passband results in reduced frequency-spike magnitudes. These

conclusions are clearly illustrated by Fig. 17, and will presently be reinforced by the

derived expression for the spike magnitude.

The frequency spikes occur at t = r/r sec or any odd multiple thereof. From

Eq. 37 we have
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Fig. 17. Variation of the instantaneous frequency of the resultant signal with
time when only a few important sideband components are passed by
the ideal-limiter filter.

47

� �__I�_

7

I-

Zi
8

I

i

+2Y--2

:iV-2



M
E (-jnr) 

n=-N

M
A

n=-N

M
-r nA

n=-N n

A e -jnrt
n

e-jnrt

e-jnrt
(
(38)

M
X A e -jnrt

n=-N n

whence, at t = rr/r, from the properties displayed by the An's, we can write

M N
E nAnf + E njAn

n=l n=l

dt t=Tr/r M N

Z JAnl- Z JA_nI
n=O n=l

where [o] is the magnitude of the frequency spike. This expression demonstrates

clearly the effect that the components from each sideband will have upon the magnitude

of the frequency spike. Finally, we have

M N
Z nlAn + Z njlA n

n=l
X - - (39)

M-N r M N
Z A n - An

n=O n=l

Table IV presents values of [AwVr for the more serious configurations that will be

encountered in the course of the present investigation. Given the magnitude of the fre-

quency spike that arises with a given configuration of components, the discriminator

bandwidth that is necessary to accommodate the whole spike pattern can be calculated

readily. Thus, with due consideration to the possibility of an interchange of the rela-

tive signal magnitudes or frequencies, the required discriminator bandwidth is given by

by

(BW)dis c = 2[A] + r

= r + 1 (40)
r

where r is the frequency difference between the two signals, in ad/sec. Equation 40
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Table IV

x
M-N

a
0-1

0.7

0.8

0.85

0. 9

0.95

a

0.77506

1.2051

1.6014

2.3357

1-3

0.7

0. 8

0. 85

0.9

0.95

a

0.7

0.8

0.85

0. 9

0.95

a

0. 7

0. 8

0.85

0. 9

1.3124

2.0573

2.8052

4.3935

10. 375

4-5

1.8146

2.6108

3.2594

4.3685

7. 1312

7-9

2.1231

3.2056

4.0753

5. 5239

0.95 9.0746

x
0-2

1.2512

2.3860

3. 8929

9. 3568

2-2

1. 2943

1.7472

2. 1024

2.6715

3.8704

4-6

1.8410

2. 6923

3.4136

4.7001

8. 1812

8-9

2.1726

3.3113

4. 2090

5. 6538

x
0-3

1.5349

3. 3855

6. 7234

58.44

x
2-3

1. 4325

2. 0435

2. 5715

3. 5127

5.9510

x
5-6

1. 9435

2. 8305

3.5413

4. 7333

7. 6419

x
8-10

2. 1770

3.3326

4. 2576

5.7766

8.9815 9.4093

X
0-4

1.7058

4. 1736

9.9066

2-4

1.5120

2.2460

2. 9265

4. 2437

8.3612

x
5-7

1.9597

2.8870

3.6525

4.9813

8. 4368

9-10

2.2148

3. 4252

4. 3836

5.9140

0-5

1.8106

4. 7738

13. 240

x
2-5

1.5600

2. 3886

3. 1990

4.8764

11. 1185

x
6-7

2. 0419

3.0176

3. 7909

5.0663

8. 1165

x
9-11

2.2176

3.4437

4. 4217

6. 0147

9.3795 9.7426

x
1-1

0. 8567

1. 1156

1.3099

1. 6009

2. 1305

x
3-4

1. 6469

2. 3509

2. 9392

3. 9654

6. 5735

x
6-8

Z.0521

3. 0577

3. 8736

5. 2578

8. 7457

x
10 -11

2.2461

3.5213

4. 5385

6. 1547

x
1-2

1. 1506

1.6730

2. 1395

2. 9883

5. 2270

3-5

1.6913

2.4751

3. 1637

4. 4347

8. 0629

7-8

2. 1165

3. 1765

4.0123

5.3721

8.5616

10-12

2. 2480

3.5332

4. 5688

6. 2380

9.7585 10.071

49

= [A]/r



Table V

p =2 X +1
M-N M-N

a p p p p p p p
0-1 0-2 0-3 0-4 0-5 1-1 1-2

0.7 2.5501 3. 5024 4. 0698 4.4116 4. 6212 2.7134 3. 3012
0.8 3.4102 5.7720 7.7710 9.3472 10.5476 3.2312 4.3460
0.85 4.2028 8.7858 14.4468 20.813 27.480 3.6198 5.2790
0.9 5.6714 19.7136 117.88 4.2018 6.9766
0.95 5.2610 11.454

a p p p p p p p
1-3 2-2 2 -3 2-4 2 -5 3 -4 3 -5

0.7 3.6248 3.5886 3.8650 4.0240 4.1200 4.2938 4.3826
0.8 5.1146 4.4944 5.0870 5.4920 5.7773 5.7018 5.9502
0.85 6.6104 5.2048 6.1430 6.8530 7.3980 6.8784 7.3274
0.9 9.7870 6.3430 8.0254 0.4874 10.7527 8.9308 9.8694
0.95 22.470 8.7408 12.902 17.7224 23.2370 14.147 17.126

a p p p p p p p
4-5 4-6 5-6 5-7 6-7 6-8 7-8

0.7 4.6292 4.6820 4.8870 4.9194 5.0838 5.1042 5.2330
0.8 6.2216 6.3846 6.6610 6.7740 7.0352 7.1154 7.3530
0.85 7.5188 7.8272 8.0826 8.3050 8.5818 8.7472 9.0246
0.9 9.7370 10.400 10.4666 10.9626 11.1326 11.5156 11.7442
0.95 15.262 17.362 16.284 17.874 17.233 18.491 18.123

a p p p p p p p
7-9 8-9 8-10 9-10 9-11 10-11 10-12

0.7 5.2462 5.3452 5.3540 5.4296 5.4352 5.4922 5.4960
0.8 7.4112 7.6226 7.6652 7.8504 7.8874 8.0426 8.0664
0.85 9.1506 9.4180 9.5152 9.7672 9.8434 10.0770 10.1376
0.9 12.0478 12.3076 12.5532 12.8280 13.0294 13.3094 13.476
0.95 19.149 18.963 19.819 19.759 20.485 20.517 21.142
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can be written in the more convenient form

(BW)disc r
- P = 6 p P (41)

(BW)if (BW)if M-N M-N

The use of Table IV in conjunction with the expression

p = 2 +1
M-N r

produces the values given in Table V.

In Table VI, we have given a set of possible values of (BW)lim/(BW)if, together

with the most serious situations that may arise with such limiter-bandwidth values, and

the corresponding maximum values m that the normalized frequency difference,

6 = r/(BW)i f , can assume and still make it possible for these situations to arise. The

tabulated values of m can be calculated in the following way. From Fig. 14 we find

that N upper sideband components can pass as long as

(BW)li m - (BW)if

Z + (BW)if
r<r =m N

whence

rm 11 (BW)im

(BW)if (BW)if

(BW)imf

N [ (BW) if 1 (42)

Clearly, the maximum value that sm may assume is unity.

In the determination of the more critical situations that may arise with the different

prescribed values of limiter bandwidth, we first allot the maximum space in the limiter

passband to the components from the upper sideband. Then we weigh a particular situa-

tion in the light of the maximum value of m beyond which the situation cannot arise,

and the value of p associated with it. The situation that requires the largest value

of M-N

(BW)disc
= p (43)

(BW)if m M-N

dictates the requirement in discriminator bandwidth.

Finally, values from Tables V and VI have been used in conjunction with Eq. 43 to

construct Table VII. The entries followed by double daggers in Table VII are taken as
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5 = 
m

M N 6m

Table VI

max rm/(BW)if

M N

0 5 0.24

0
0
1
1
1
1
1
1
1
1
2
2
2
2
3
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
9
9
9
9
10 12 0.916

4
3
3
3
3
3
3
3
3
3
4
4
4
4
5
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
9
9
9
9
10
10
10
10
11
11
11
11

0.3125
0. 444
0. 5
0. 5417
0. 583
0.633
0. 667
0.75
0. 833
0.9167
0.75
0. 8125
0. 875
0.9375
0. 8
0.85
0. 9
0. 9
0.95
0. 833
0. 875
0.9167
0. 958
0. 857
0. 893
0. 929
0. 964
0. 875
0. 906
0. 9375
0. 969
0. 889
0.917
0. 944
0. 972
0.9
0. 925
0. 95
0. 975
0. 909
0. 932
0. 954
0.977

0 3 0.4
4 0.3

0 3 0.417

2 4 0.5
2 4 0. 5625
2 4 0. 625
2 4 0. 6875
3 5 0.6
3 5 0.65
3 5 0.7
3 5 0.75
4 6 0. 667
4 6 0.708
4 6 0.75
4 6 0.75
4 6 0.791
5 7 0.714
5 7 0.75
5 7 0.7857
5 7 0.821
6 8 0.75
6 8 0.781
6 8 0.8125
6 8 0. 834
7 9 0.778
7 9 0. 806
7 9 0. 833
7 9 0.861
8 10 0.8
8 10 0. 825
8 10 0.85
8 10 0. 875
9 11 0.818
9 11 0. 841
9 11 0.864
9 11 0. 887
10 12 0.833
10 12 0. 854
10 12 0.875
10 12 0. 896
11 13 0. 846
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(BW)lim

(BW)if1.

0 1
0 2

6
m M N 5

n

1
1.4

1.5
1.667
2
2.25
2. 5
2. 8
3
3.5
4
4. 5
5
5.5
6
6. 5
7
7.5
8
8
8. 5
9
9. 5
10
10. 5
11
11.5
12
12.5
13
13.5
14
14. 5
15
15.5
16
16. 5
17
17.5
18
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Fig. 18. Calculated values of the required minimum discriminator bandwidth as a
function of the bandwidth of the ideal-limiter filter, when the discrimina-
tor is preceded by only one stage of ideal narrow-band limiting.
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Fig. 19. Variation of the required minimum discriminator bandwidth with the
number of upper sideband components passed by the ideal-limiter filter
when the filter bandwidth equals the i-f bandwidth.
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the minimum discriminator bandwidths that are required with the corresponding speci-

fied values of limiter bandwidth. The results, read from the daggered entries, have

been plotted in Fig. 18.

Next, before embarking on a study of the plots in Fig. 18, let us consider the case

in which the limiter bandwidth is just one i-f bandwidth, since this case deserves a

special treatment. It is clear that this case applies only for a < 0. 863. Here the situa-

tions in which only upper sideband components are passed with A will impose the

greatest requirements in discriminator bandwidth; so, only such cases need be con-

sidered. Accordingly, in order for N upper sideband components to pass, the frequency

difference r must have a maximum value of rm = (BW)if/N. Values of [w]/(BW)if

showing how the effective frequency spike magnitude changes with N are presented in

Table VIII. Also presented in Table VIII is a column showing which value of N requires

the greatest bandwidth in the discriminator. The values of (BW)disc/(BW)if for values

of a between a = 0. 8 and a = 0. 85, plotted against N, are also shown in Fig. 19.

As for a = 0. 85, Table VIII and Fig. 19 show that the required discriminator band-

width rises with N, until it peaks, for N = 7, at the value of 5. 76 (BW)if, and then starts

to decline. This ultimate decline is due to the fact that, beyond N = 7, the decrease in

the maximum r with N wrests control of the requirement from the increase of [Aw]

with N. It is also seen, from Table VIII and Fig. 19, that, for all a's up to a = 0. 84,

the case in which only one upper sideband component is passed imposes the required

value of the discriminator bandwidth.

The fact that, for all a's up to a = 0. 84, the bandwidth requirement is set by the

case in which only Ao and A- 1 are passed, calls forth some interesting observations.

The observation was first made by Granlund (1) that the table of spectral amplitudes

shows a ratio, A_ 1 /Ao , which is always less than the corresponding a. In fact, for

a < 0. 5, the plot of A_ 1/Ao versus a, shown in Fig. 20, shows that

A_1 (a)
Ao(a) (1/2)a

and for other values of a, A_ 1 /Ao is always less than a, and approaches a only as

a - 1. This observation can also be directly confirmed from an analysis in terms of

the expressions presented in section 1. 2. Thus, if the limiter bandwidth passes only

Ao and A_1 in the worst situation (i. e., the situation that dictates the required dis-

criminator bandwidth), then, under the most critical condition, the resultant output

will still be a superposition of two signals at the frequencies of the input signals, but

then the ratio of weaker-to-stronger signal will be lower than before. This means that

a reduction of the effective a has been achieved in the process. Consequently, if the

process of limiting and filtering (with one i-f bandwidth) is repeated often enough, it

should be possible to reduce the relative strength of the interfering signal to a negligible

value and, consequently, to reduce the required discriminator bandwidth to the value of

one intermediate-frequency bandwidth.
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The condition for the success of this cascading scheme is seen to hinge upon the

requirement that the configuration in which only Ao and A_ 1 are passed must be the

most serious one that can arise. From Fig. 19, we note that the configuration Ao , A_1

is the most critical one for all a's up to approximately a = 0. 84. Also, according to

the results of section 1. 5, with a limiter bandwidth value of one i-f bandwidth, the con-

figuration Ao , A_ will remain the most critical one for all values of a < 1 as long as

the frequency difference r is greater than one-half the i-f bandwidth. When r takes

values that are equal to or less than one-half the i-f bandwidth, more than one upper side-

band component will pass through. For a greater than 0.84, the argument breaks down

for one of two reasons. Either the average frequency of the resultant signal at the output

of the limiter filter will not always be equal to that of the stronger signal, or the most

unfavorable configuration will involve more upper sideband components than just A_1.

In accordance with the above scheme, Table IX shows how the required ratio

(BW)disc/(BW)if, for a = 0. 8, decreases with the number of cascaded limiter-filter

stages. These numbers are also plotted in Fig. 21, where a similar plot for a = 0. 7

is also shown.

Table IX

Number of limiter- 1 2 3 4 5 6 "Infinitely" wide-
filter stages band limiter

(BW)disc /(BW)if

for 3.41 1.9 1.38 1. 17 1.08 1.04 9
a = 0.8

Returning to the plots of Fig. 18, we note that two important observations are

clearly brought out. The first observation is that the minimum requirements on the

discriminator bandwidth are always less than, but approach asymptotically, the values

previously specified (1) by the formula

(BW)disc 1 + a (44)

(BW)if - a

It is, indeed, perfectly plausible that in the limit, as the limiter bandwidth becomes

very large, the required minimum discriminator bandwidth should approach the asymp-

totes (shown dotted in Fig. 18) specified by Eq. 44. For, as the limiter bandwidth

becomes very large, essentially all of the significant sideband components are passed,

and the resultant signal at the output of the limiter filter approaches the amplitude-

limited value of the resultant of the two signals delivered by the intermediate-frequency

amplifier to the ideal limiter. Since the ideal-limiter action per se does not affect the

instantaneous variations in the frequency of the resultant signal, the values specified

by Eq. 44 become the limiting values that are approached as the limiter bandwidth
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Fig. 20. Effect of the ideal amplitude-limiting process upon the amplitude,
A_l(a), of the component that has the frequency of the weaker signal

relative to the amplitude, A (a), of the component that has the fre-
quency of the stronger signal.
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MINIMUM REQUIRED DISCRIMINATOR
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Fig. Z1. Variation of the required minimum discriminator bandwidth with the
number of cascaded ideal narrow-band limiters that precede the dis-
criminator. The bandwidth of each limiter equals the i-f bandwidth.
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becomes very large. Moreover, the plots of Fig. 18 make it abundantly clear that a

limiter-filter bandwidth of [(l+a)/(l-a)](BW)if is by no means sufficient to pass all the

spectral components that are necessary for a close reproduction of the instantaneous-

frequency disturbance pattern shown in Fig. 2. The extent of the frequency spikes is

far from being an approximate estimate of the extent of the significant spectrum. Con-

sequently, with a limiter-filter bandwidth designed on the basis of the extent of the

spikes alone, the conditions for a quasi-stationary analysis are not satisfied and it

cannot be said that the discriminator bandwidth would have to be given by Eq. 44. This

important conclusion will also be reached from a direct study of the conditions for the

validity of a quasi-stationary approach which will appear in a future report. Indeed,

about two thirds of [(l+a)/(l-a)](BW)if would suffice for a > 0.7 if only one limiter stage

precedes the discriminator, and significantly less than 2/3 of this value if more

limiters are used.

Associated with each of the broken curves of Fig. 18 is a smooth curve that may be

passed through the values of (BW)disc/(BW)if that are required at the odd integral

values of (BW)lim/(BW)if . We shall call these smooth curves the "envelope" curves

of the broken-line plots in Fig. 18, since the plots tend to be bounded by these smooth

curves as the values of the limiter bandwidth grow large. Figure 22 shows the envelope

curves superimposed upon the curves of Fig. 18.

We can readily show that the envelope curves are rising exponentials. The exponen-

tial character of the curves is demonstrated very clearly by the semilogarithmic plots

of Fig. 23. In Fig. 23 the values of the deviation of each of the envelope curves from

the corresponding asymptotic value for the curve are plotted on a logarithmic scale

against the values of limiter bandwidth for which they occur, measured on a linear

scale. The accuracy with which the plotted points fall on straight lines is a curious

check on our calculations. This interesting coincidence enables us to develop a simple

analytical expression relating close estimates (which are accurate only for odd integral

values of (BW)lim/(BW)if ) of the minimum discriminator bandwidth that is required to

follow prescribed values of the limiter bandwidth.

The straight lines of Fig. 23 have equations of the form

In[--a y(a, x)] = -k(a)x + lnB(a) (45)

where
(BW)lim

x - (BW)if

y(a, x) = envelope value of (BW)disc/(BW)if

= value of (BW)disc/(BW)if at odd integral values of x

-k(a) = slope of the straight line

lnB(a) = vertical intercept of the straight line
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Equation 45 can take the more convenient form

y(a, x) = 1 + a B(a) exp(-k(a)x)- a

1 + a [1- 6(a) exp(-k(a)x)]
-1- aII

(46)

Equation 46 is the desired analytical expression for the envelope curves. Calculated

values of the functions k(a) and

(a) =_ 1 + aB(a)

are given in Table X and are plotted in Fig. 24a and b. For the values of a that are

of interest, k(a) appears to satisfy the approximate expression

k(a) = -0. 395 In a (47)

very closely (Table X and Fig. 24a). The values of ,(a) (Table X and Fig. 24b) are

based on k(a), as given by Eq. 47, with the reasonable assumption that the small

deviations in the computed values of k(a) from the values given by Eq. 47 may be

Table X

k(a)

0. 1401

0.0879

0.0630

0.0409

0.0210

0. 395 In a

0. 1409

0.0881

0.0642

0.0416

0.0203

0.6500

0.6791

0.6925

0.7093

0.7345

0. 30a + 0. 440

0. 650

0. 680

0. 695

0.710

0. 725

attributed to small cumulative

show that the plotted values of

(a) = 0. 30a + 0.44

errors in the computations. Figure 24b and Table X

((a) fall rather closely on a straight line given by

(48)

Equation 46 can be normalized into the form

q(a) - y(a, x)/[ a ]

= 1 - ,(a) exp(-k(a)x)

which is plotted in Fig. 25. The second term on the right-hand side of this equation

gives the fractional amount by which the required minimum discriminator bandwidth

has been reduced by passing the resultant two-path signal through an ideal limiter whose

bandwidth is an odd integral multiple, x, of the bandwidth of the intermediate-frequency

section. For each value of a covered by the plots, we observe that

63

a

0.7

0.8

0.85

0.9

0.95

�



l+a
( (a)- 2/3 at x 1a

This indicates that a limiter filter whose bandwidth is given by [(l+a)/(1-a)](BW)if

will compress the extent of the largest frequency spikes by an amount that

is sufficient to reduce the required minimum discriminator bandwidth to 2/3

of the value that would have been necessary had the limiter filter been able

to reproduce the instantaneous-frequency spikes of the amplitude-limited resultant

of the two signals.

In addition to the light it throws upon our results, Eq. 46 can be used to supplement

the plots of Fig. 18 in the extrapolation of the correct values of y(a, x) at odd integral

values of x which lie beyond the range covered by the plots, and approximations to y

at other values of x. It could also be safely used for the same purpose if it is desired

that a assume values between 0. 7 and 0. 95 that are not covered by the plots of Fig. 18.

Moreover, the degree of approximation with which Eqs. 47 and 48 seem to describe

k(a) and ,(a) in the range 0. 7 a 0. 95 seems to indicate that these expressions would

also be useful for lower values of a.

Now it is recalled that if [Aw] is the magnitude of the maximum instantaneous-

frequency deviation of the resultant signal (at the output of the ideal-limiter filter) from

the frequency of the stronger signal, then at the odd integral values of x, 6 m in Eq. 43

is unity and

(SW)Lux.s · USED
(SW),,

Fig. 25. Normalized plots of the "envelopes" of the broken curves of Fig. 18.
The quantity qj (a) equals the normalized minimum discriminator band-
widths at the odd integral values of x.
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(BW)disc [ ]
y = = + 1 (49)

(BW)if (BW)if

Therefore, an expression for the magnitude of the frequency spikes that dictate the

required minimum discriminator bandwidth at the odd integral values of x can be

obtained by combining Eqs. 46 and 49. The result is

[Al]
=2 (y-l)

(BW)if

1- a 2 -a (a) exp(-k(a)x) (50)

Further normalization yields

Ao I
[A]- =1 -a

(BW)if a

= 1- 1+ a ,(a) exp(-k(a)x) (51)

The second term on the right-hand side is the fractional amount by which the magnitude

of the maximum deviation in the instantaneous frequency has been reduced ("damped")

by passing the resultant two-path signal through an ideal limiter whose bandwidth is an

odd integer multiple, x, of the bandwidth of the intermediate frequency.

The second important observation brought to light by the plots of Fig. 18 is that

cascading alternate stages of limiting and filtering should reduce the requirement in

discriminator bandwidth to smaller and smaller values. The calculations have con-

sidered the action of one stage of ideal limiting and filtering upon the resultant of two

signals, but the results are indicative of the action of the same device when more than

two sinusoids are present at its input. Clearly, if it were possible to do without a stage

of amplitude limiting (e. g., when an amplitude-insensitive discriminator is used), the

requirements in discriminator bandwidth would be dictated by the ratio (l+a)/(1-a), and

the requirements would be the asymptotic values in the plots of Fig. 18. The reduction

achieved by the action of the first stage of limiting and filtering upon the resultant of

two sinusoids delivered to it by the intermediate-frequency amplifier might conceivably

be' duplicated (possibly, to a varying degree) by the action of the second stage of

limiting and filtering upon the resultant of more than two sinusoids delivered to it, in

turn, by the first stage, and so on. With enough cascaded stages, then, it should be

possible to reduce the necessary discriminator bandwidth to that of the intermediate-

frequency section. This important question will be pursued further in the next section.

Viewed in another way, the plots of Fig. 18 show that the effective magnitude of

the instantaneous-frequency spike has been reduced (or the spike train has been effec-

tively damped) by passing the resultant signal through the limiter-filter stage. This
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damping action could conceivably be duplicated (possibly, to a different extent) by fur-

ther stages of bandpass limiting on the spike train associated with the resultant signal

that appears at the output of the first stage. This gives justification for the cascading

scheme.

We can now conclude that the function of a bandpass limiter in frequency-modulation

receiver design may be viewed in a new light. For, in addition to eliminating inter-

ference and noise, which comes in as amplitude perturbations in the resultant signal,

a bandpass limiter is effective in relaxing the bandwidth requirements on the frequency

discriminator, in order to achieve rejection of frequency-modulation interference pro-

duced by signals that may approach the desired carrier in strength. Furthermore, a

sufficiently long chain of such limiters, each in turn reducing the effective interference

in the resultant signal delivered to it, would, theoretically, enable us to eliminate the

interference completely, as the detailed discussion of this scheme in Section II will show.
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II. THE EFFECT OF CASCADING NARROW-BAND LIMITERS

INTRODUCTION

We have established that a process of limiting followed by ideal filtering with a one

i-f bandwidth will, if repeated a sufficient number of times, reduce the relative inten-

sity of the interference to any desired degree, for all values of the initial ratio of

weaker-to-stronger signal amplitude (at the input of the first limiter) that are less than

0. 84. The theoretical demonstration of the success of this scheme hinges upon the fact

that the configuration which is composed of the spectral components at the frequencies

p and p + r rad/sec represents the most adverse condition of interference at the output

of each limiter filter under the specified conditions. Therefore, the results of the

spectral analysis at the output of the first limiter are directly applicable to the second

and other limiters. However, for higher ratios of weaker-to-stronger signal amplitude

at the input of the first limiter, the minimum permissible limiter bandwidths will

accomodate unfavorable configurations that involve more than just two spectral compo-

nents. For these situations, the results obtained from a study of the effect of ideal

narrow-band limiting on the resultant of two sinusoids cannot be used as direct evidence

of similar interference reduction when several sinusoids are present at the input of the

limiter. Nevertheless, the plots of Fig. 18 demonstrate qualitative evidence that a

second (third, and so on) narrow-band limiter would generally yield an additional

reduction of the interference for arbitrary values of the ratio of weaker-to-stronger

signal amplitude a delivered to the first limiter by the intermediate-frequency ampli-

fier, provided the proper value of first-limiter bandwidth is used in the range of

a > 0. 84. Before any quantitative evidence can be produced in the range a > 0. 84, an

analysis of the spectrum that results from amplitude-limiting the resultant of more

than two sinusoids must be carried out. This will be our starting point in the present

discussion.

To bring the present task to sharper focus, some obstacles relating to the specifi-

cation of the number and relative amplitude, frequency, and phase relationships of the

sinusoids which will be superimposed at the input of the limiter must be overcome. The

most general specifications would leave the amplitudes arbitrary, and the relative fre-

quency and phase relationships random. But such an approach unduly complicates the

problem by formulating it with unnecessary generality. Such specifications would be

appropriate in the more general problem of multipath interference in which signals

from more than two paths are accommodated simultaneously within the linear passband

of the receiver. The problem of whether or not the effect of one stage of ideal narrow-

band limiting on two-path interference will also be demonstrated under conditions of

several-path interference (in which capture of one of these paths is possible), although

it is worth while, is not really what we are after.

Basically, we are seeking to determine quantitatively what a scheme of cascaded
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narrow-band limiters will do to the interference arising from the simultaneous pres-

ence of only two carriers within the passband of the receiver. The most direct

approach would, therefore, shift the interest from the investigation of the effect of the

first narrow-band limiter upon the resultant of the two carriers to a study of the modi-

fications that a second stage of narrow-band limiting produces upon the resultant signal

delivered by the first stage. The sinusoidal components that make up the signal at the

input of the second limiter will, therefore, be considered as a selection made by the

first-limiter filter from the spectrum analyzed in section 1. 2. This decision fixes the

relative amplitudes, frequencies, and initial phases associated with the assumed

sinusoidal components, and disposes of a major hurdle in the formulation of the

problem.

To start with, we may reduce the number of possibilities drastically by considering

only the configuration of components which presents the most serious capture problem

associated with an assumed value of first-limiter filter bandwidth. This is readily

done by drawing upon the results of section 1. 6, wherein the most serious configura-

tions associated with various values of limiter-filter bandwidth were determined.

Thus the pursuit of our main objective involves another restriction upon the generality

of the approach; we must, for definiteness, specify the value of the bandwidth for the

first limiter, and then concentrate on the action of the second limiter upon the most

troublesome configuration that can arise with this specified value of the bandwidth.

It is recalled that the most serious configuration is the one that demands the largest

value of permissible minimum discriminator bandwidth if it is fed directly into an

amplitude-insensitive discriminator.

The only unfortunate part about restricting the choice of configuration is that the

same computational effort must be expended as many times as different values are

chosen for the first-limiter bandwidth. Furthermore, as the necessary number of

sinusoids for any specific configuration is increased, the computational task increases

quickly, and after the results of the simpler configurations have been determined, no

additional information of fundamental significance about the importance of the cascading

scheme will be gained from the consideration of the more complicated variations.

Therefore, we find it feasible to confine our interest to the simplest situations that

yield significant indications about the effectiveness of the cascading scheme in the sup-

pression of interference.

After a Fourier analysis of the output of the second limiter in response to an input

made up of a few interesting configurations, the questions investigated will relate to

the requirements in the second, third, and so on, limiter bandwidths, and the bearing

of the results upon the discriminator bandwidth requirements, the permissible maxi-

mum time constants in the grid circuit of a grid-bias limiter and in the output circuit

of the discriminator, and the effect of narrow-band limiting upon the harmonic-

component amplitudes in the structure of detected spike patterns that recur at an

audible rate.
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2. 1 CAPTURE CONDITIONS AT THE OUTPUT OF THE SECOND LIMITER

Our first objective is best summarized in terms of the scheme shown in Fig. 26.

The idealized i-f amplifier response accommodates two signal carriers whose proper-

ties have been described in section 1. 2. The assumptions and notations previously

FIRST IDEAL SECOND IDEAL o
e. NARROW-BAND LIMITER WITH er - B ALIMITER 2 WIDEBAND e0

FILTER

IF

AMPLIFIER

Fig. 26. Block diagram of the scheme whose output is Fourier analyzed
under two-signal interference conditions at the input.

made are carried over unaltered. The i-f amplifier delivers the resultant of the two

signals to the first limiter stage which has a specified bandwidth WL = [(BW)lim/(BW)if] 1 .

This limiter delivers a resultant signal ei2, the variation of whose composition and

properties with WL is now well understood. Our immediate task is to determine the

spectral properties of e 2 when the worst composition of ei2 that corresponds to any

assumed value of WL is impressed at the input of the second limiter.
1

In Table XI various configurations which have been found to represent the most

adverse capture conditions with the associated values of WL are presented. Appro-

priately, only values of a in the range exceeding 0. 84 are considered, since for values

of a < 0. 84 a workable cascading scheme has already been discussed quantitatively, in

which each of the limiters had only one i-f bandwidth.

The simplest pertinent configuration arises with a value of first-limiter bandwidth

whose use leads to the smallest required minimum discriminator bandwidth for a = 0. 9,

and the second smallest for a = 0. 85. This value of first-limiter bandwidth is W = 3

and the associated worst configuration is M = 1, N = 2. It is unfortunate that this con-

figuration does not also happen to represent the composition most unfavorable for

capture associated with W = 3 for a = 0. 95. The next simplest configuration that will
L

apply for all three listed values of a is M = 3, N = 4, which can arise with W L = 7.

Only these two configurations will be treated here to establish quantitative evidence for

the effectiveness of at least two cascading schemes (differing only in the bandwidth

value of the first limiter) in the minimization and suppression of the interference.

Other configurations arising with other assumed values for the first-limiter bandwidth

may, if desired, be handled in a similar manner but with increased labor and no gain
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Table XI

(BW)lim

a W =
(BW)if

0.85

0.9

0.95

3

5

7

3

5

7

3

5

7

Worst
Configuration

M N

1 2

2 3

3 4

1 2

2 3

3 4

1 3

2 4

3 4

r max
=

m (BW)if

1

1

1

1

1

1

2/3

3/4

1

Required Minimum

(BW)disc

(BW)if

5.2790

6. 1430

6.8784

6. 9766

8. 0254

8. 9308

15.0

13.292

14.147

in additional fundamental information beyond that which the chosen configurations will

lead to.

The linear superposition of the components corresponding to either of the two

chosen configurations can be best illustrated by a phasor diagram similar to that of

Fig. 6. For the configuration M = 1, N = 2, the resultant signal at the input of the

second limiter is

1

ei2(t ) = Re eip E An e jnrt
n=-A I

(52)= Re[A 0 e jp t {1 + be j O - ce -j - deJ 2i}]

where

( = rt, b = A_1 /Aol, = A 1/Ao, and d = IA_ 2 /Aol

Thus, we can write

ei 2 (t) = A(t) cos(pt + 0)

in which

A(t) = [R2 (~) + I () ]1/ 2 -1 I(+)
0 = tan

R()

R(O) = I + (b-c) cos - d cos 2(

I(+) = (b+c) sin - d sin 24
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We associate (see sec. 1. 2) sufficient selectivity with the second limiter to reject

all harmonics of p and their associated sidebands, so that the signal at the output of

this limiter (in the absence of narrow-band filtering) can be described by

eo 2 (t) = cos(pt + 0) (53)

where, again, the constant amplitude has been assumed to be unity for convenience.

If we write

00

cos = a + a cos np

n=l

o00

sin 0 = sin sin

n=l

we can express eo2(t) in the form

00

eoz(t) = Z Bn cos(p - nr)t (54)

n=-oo

where

B =a
0 0

Bn =2 (an n)

00 oo

eo 2 (O) = Z B= an

n=-oo n=O

we have a convenient check on the computation of the values of an

It is readily appreciated from the experience with the much simpler two-signal

problem that the task of deriving useful expressions for Bn and Bn is rather hopeless.

Moreover, such an attempt is not even justified, since we are chiefly interested in the

values for a = 0. 85 and a = 0. 9, and, therefore, much less effort is involved in evalu-

ating the Bn's by direct numerical analysis with the help of Fourier coefficient

schedules. This evaluation has been carried out, and the results are presented in

Table XII.

An examination of the spectral amplitudes, B n' reveals that they possess proper-

ties much like those exhibited by the A n's in Section I. In particular, their signs

alternate, beginning with B and B_1 positive, and B 1 negative. There is also a
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Table XII

a = 0.85

B -n

0.40959407
-0.03194519
0.02888303

-0.00704915
0.005063703

-0.00210167
0.00127244

-0.00065904
0.00038567

-0.00021817
0.00012894

-0.00007581
0.00004536

-0.00002737
0.00001640

-0. 00001009
0.00000573

-0.00000352
0.00000135

-0.00000047
-0. 00000124

0.00000205
-0. 00000432
0.00000309

a = 0.9

B n

0.83628988
0.322199283
0.13354183

-0.07886594
0.04463995

-0.02714325
0.01659053

-0.01034862
0.00650852
0.00412995
0.00263663

-0.00169202
0.00109045

-0.00070531
0.00045745

-0.00029769
0.00019385

-0.00012688
0.00008271

-0.00005454
0.00003539

-0.00002364
0.00001506

-0.00001028
0.00000309

B
-n

0.44654576
-0.05387307
0.03744357

-0.01303143
0.00854817

-0.00439994
0.00275334

-0.00164511
0.00104331

-0.00066189
0.00042899

-0.00027995
0.00018446

-0.00012194
0.00008022

-0.00005149
0.00003103

-0.00001588
0.00000394
0.00000662

-0.00001746
0.00003002

-0.00004554
0.00003266

B n

0.80822080
-0.32219420
0.15110632

-0.09664754
0.06077806

-0.04065850
0.02749133

-0.01893679
0.01316734

-0.00923613
0.00651987

-0.00462718
0.00329810

-0.00235914
0.00169248

-0.00121741
0.00087787

-0.00063445
0.00045928

-0.00033268
0.00024094

-0.00017448
0.00012634

-0.00009130
0.00003266

= 0.99999998
24

n=-24

B = 0.99999998n
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Table XIII. Relative Spectral Amplitudes.

At Output of
First Limiter

At Output of
Second Limiter

WLi 3Li WL1 7Li

I Cn/C I

0.489775
0. 038199
0.034537
0.008429
0. 385025
0. 159684
0. 094305

0. 552505
0. 0666564
0. 046464
0.016124
0.398646
0.186962
0. 119581

0.57199920
0.11063375
0.02494547
0.01190016
0.37102900
0.22470263
0.15455640

0.63646087
0.13354826
0.03751897
0.00339219
0.38228246
0.24232382
0.17520932

0.72493695
0.17215592
0.06440548
0.01900334
0.38686609
0.25398435
0.19170545

a n

0.85

|Bn/Bo I

0.9

-1
-2
-3
-4

1
2
3

-1
-2
-3
-4

1

3

-1
-2
-3
-4

1
2
3

I An/A I

0.615582
0.149476
0.068389
0.038120
0.361473
0.215906
0. 147533

0.700212
0.185342
0.091429
0.054664
0.366596
0.226881
0.161961

0. 811576
0.236194
0. 126338
0.081347
0.362808
0.228495
0. 168012

0.95
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qualitative correspondence between the distribution of relative amplitudes and the

instantaneous-frequency pattern of the resultant signal (shown in Fig. 27). It is a

simple matter to show that statements similar to those of theorems 1, 2, 3, and 4 apply

directly. Finally, from Table XIII we find that not only have the (troublesome) upper

sideband components shrunk in magnitude relative to the desired component Bo , but

also the (helpful) lower sideband components have increased in relative amplitude. In

the light of these facts, the insight gained in Section I leads us to expect significant

reductions in the effectiveness of the interference from subjecting the new spectral dis-

tribution to the action of a narrow-band filter.

The first question that presents itself, at this point, is whether or not it is per-

missible to use a second-limiter filter bandwidth that is smaller than the bandwidth

following the first limiter. To answer this question, we feel tempted to make use of

the spectral amplitudes, B n , at the output of the second limiter in the same way that

we used the A amplitudes delivered by the first, to determine the permissible mini-

mum limiter bandwidths. But if we remember that the B only represent the spectral

amplitudes at the output of the second limiter when the configuration M = 1, N = 2 is

delivered by the first-limiter filter, the limitations on the usefulness of the B±n become

immediately apparent. We now recall that the permissible minimum bandwidth after a

limiter is equivalent to one i-f bandwidth only if, theoretically, the situation in which

the desired component with the frequency of the stronger signal p, along with all the

sideband components on the same side as the weaker signal relative to p, can be accom-

modated to the complete exclusion of all the helpful sideband components on the opposite

side of the frequency p, and still retain an average frequency for the resultant signal

that is equal to p. For such a situation to arise, the stronger signal in our analysis

must lie infinitesimally to the right of the lower cutoff frequency, and r must be suf-

ficiently small to allow all of the significant upper sideband components to pass. But

if the two carriers delivered by the i-f amplifier take the necessary positions on the

frequency scale for this limiting situation (and r is sufficiently small), it may be argued

that the first limiter bandwidth of 3 (BW)if (or any other value greater than one (BW)if,

for that matter, since r can be assumed to be as small as is necessary) will be suf-

ficiently wide to accommodate all of the significant sideband components on both sides

of p, with the result that it will deliver to the second limiter, essentially, the

amplitude-limited version of the resultant of the two input carriers without any signifi-

cant instantaneous-phase and -frequency alterations. The spectrum at the output of the

second limiter will then be described by Eq. 6 and the criterion for the permissibility

of only one i-f bandwidth after the second limiter will be identical with that applying

after the first limiter. The obvious conclusion can therefore be stated as the following

theorem.

THEOREM 5. The minimum permissible limiter bandwidth is equal to one i-f

bandwidth for all values of a . 0. 863 delivered by the i-f amplifier, regardless of

whether this limiter is the first, an intermediate or the last in a chain of limiters.
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For a limiter which is preceded by other limiters, this conclusion holds provided the

bandwidth of each of these other limiters is greater than or equal to one i-f bandwidth.

This theorem states that the minimum requirements in limiter bandwidth are

unaffected by the action of any preceding narrow-band limiters upon the resultant signal

passing through these limiters. The reason for this is, of course, the fact that, under

the conditions of the situation which dictates the minimum bandwidth requirements, a

finite nonzero extent in the passband below and above the cutoff frequencies of the i-f

amplifier will, by reason of its being nonzero, admit a sufficiently smaller, but non-

zero, r for which the effect of this preceding limiter filter upon the amplitude-limited

resultant of the two input carriers will be insignificant. Although the argument is

carried out for a situation in which the preceding limiter (or limiters) has a bandwidth

greater than the i-f bandwidth, the use of one i-f bandwidth in a preceding stage

obviously imposes an a priori restriction upon the usefulness of the combined cascade

of limiters to capture ratios (at the input of the first limiter in the chain) of less than

0. 863 (since this preceding stage will either be the first in the chain or will be preceded

by another stage or stages of wider bandwidth). In other words, the chain is no

stronger than its first weakest link.

The determination of the variation of the minimum permissible value of second-

limiter bandwidth with a, for a > 0. 863, involves laborious computation, and the result

will vary with whichever bandwidth is used after the first limiter. Only when the first

limiter has a bandwidth that will always pass the entire significant spectrum centered

about p will the requirements in the bandwidth of the second limiter vary with a exactly

as the first-limiter bandwidth did, because only then will the spectral amplitude distri-

bution at the output of the second limiter be given by the A n's. Since the extent of the

significant (troublesome) A n(a) components is greater the closer a is to unity, the

narrow-band limiting effect upon the character of the resultant signal with any given

value of first-limiter bandwidth will increase in significance with increase in a. This

means that the effect of a narrow-band filter after the first limiter upon the minimum

requirements in the bandwidth of the second limiter should be more noticeable in the

range of a values that are closer to the maximum value of a which the first-limiter

filter can handle successfully. This maximum value of a will mark the limit for the

usefulness of the combination of the two limiters in cascade, since a loss of the desired

average frequency will be introduced by the first limiter for larger values of a. Again,

the failure of the first link in the chain marks the failure of the chain.

To illustrate these ideas, let us return to the original question of whether or not a

bandwidth can be used after the second limiter which is narrower than the 3(BW)i f of

the first limiter without jeopardizing the usefulness of the combination for all a up to

0. 9807. It is recalled that the a = 0. 9807 limit is set by the configuration M = 1, N = 3

upon the permissibility of 3(BW)if after the first limiter. The narrow-band limiter

action in the first stage will be in evidence at the output of the second stage as a general

decrease in the amplitudes of the upper sideband components relative to the desired
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component (at p rad/sec) and an increase in the relative amplitudes of the (helpful)

lower sideband components. Using a procedure similar to that illustrated in cases B

and C of section 1. 5, for a > 0. 863, we proceed to determine up to what value of

a < 0. 9807 a certain number Nma x , and Mmin of upper and lower sideband components,

specified as in section 1. 6, can be accommodated within the second-limiter filter pass-

band without upsetting the desired average frequency of the resultant. In the present

instance, this determination involves determining the value of the bandwidth for the

second limiter for which M = Mmin, N = Nma x is a permissible limiting situation, and

then determining the configuration of sideband components which the first-limiter filter

must pass in order for M = Mmin , N = N a x to appear at the output of the second-

limiter filter. The amplitude-limited resultant of the appropriate configuration

delivered by the first limiter is then Fourier analyzed to determine the amplitudes of

the M = Mmin, N = N ma x sideband components that make up the limiting configuration

of the second-limiter filter. From the results of the Fourier analysis we determine

the maximum value of a for which the sum of the magnitudes of the Mmin components

and the desired component exceeds the Sum of the magnitudes of the Nmax upper side-

band components. Up to this value of a, the second-limiter bandwidth that will accom-

modate the specified M = Mmin, N = Nma x as a limiting configuration, is the minimum

permissible value of bandwidth. Since the narrow-band limiter action in the first stage

will decrease the magnitudes of the upper sideband components and increase those of

the lower sideband components relative to the magnitude of the desired component,

the maximum value of a that results from the computation in terms of M = Mmin'

N = N max at the output of the second limiter will be higher than the corresponding value

at the output of the first limiter. Even though the computational task is somewhat

simplified by Mmin = 0 for most of the practically important values of a > 0. 863, the

importance of the numerical results does not outweigh the labor involved.

One consequence of the effect of narrow-band limiting in the first stage upon the

amplitudes of the upper sideband components at the output of the second limiter is that

when the bandwidth of the second limiter is made equal to the i-f bandwidth, the

configuration in which only the desired component at p and the component at

p + r (r = (BW)if) are passed becomes the one that dictates the discriminator bandwidth

requirement (i. e., the one that has the largest frequency-spike magnitude) not only for

all a's up to 0. 84, but also for a's that can be made to close the gap between 0. 84 and

0. 863. It may be argued that the first-limiter bandwidth need not exceed one i-f

bandwidth in order for this to be achieved, but more than just two stages of narrow-band

limiting may be needed to offset the importance of the upper sideband components, rela-

tive to the desired component, as a approaches 0. 863.

With the second-limiter bandwidth taken equal to one i-f bandwidth, however, it is

clear that when the first-limiter filter delivers its worst possible configuration, with

r = (BW)if, the corresponding configuration accommodated by the ideal filter following

the second limiter will also represent the worst possible condition of interference for

76

_____



the over-all two-limiter scheme. Fortunately, the latter configuration happens to be

the one in which only B0 (a) at p rad/sec (corresponding to the stronger of the two

carriers delivered by the i-f) and Bl(a) at p + r rad/sec (corresponding to the weaker

signal) are the only spectral components that are passed. Under the worst condition of

interference, therefore, a scheme made up of two limiters in cascade, in which the

first limiter has three times the i-f bandwidth and the second has only one i-f bandwidth,

will deliver at its output only two sinusoids corresponding to the two input sinusoids

with the ratio of weaker-to-stronger signal amplitude reduced from its input value of

a to the value B_l(a)/Bo(a). Reference to Table XIII will show that for a = 0. 85, this

represents a reduction to approximately 0. 49. Therefore, the indicated scheme will

demonstrate the same effect upon the interference in the range of a between about 0. 84

and 0. 863 as one stage of ideal narrow-band limiting with only one i-f bandwidth did in

the range a < 0. 84; that is, under the worst condition of two-signal interference at the

input (which arises with r = (BW)if), the worst condition of interference at the output

will also involve exactly two signals which will correspond to the input signals and will

be separated in frequency by one i-f bandwidth, but the ratio of weaker-to-stronger

signal amplitude at the output will be considerably smaller than that at the input.

Starting with this output ratio of weaker-to-stronger signal amplitude (which will now

be well within the range a < 0. 84 in which one ideal narrow-band limiter with only one

i-f bandwidth will be most effective in reducing the interference), we may retrace the

argument concerning the possibility of reducing the interference under its worst con-

dition to any desired low value by cascading the necessary number of ideal narrow-band

limiters each of which has a bandwidth equal to that of the intermediate-frequency

amplifier. We now summarize this result.

THEOREM 6. If a system of two or more cascaded ideal narrow-band limiters, in

which the first limiter has a bandwidth a few times greater than (perhaps three times)

or equal to one i-f bandwidth, and the others have just one i-f bandwidth each, is incor-

porated in an FM receiver, then the most adverse condition of two-signal interference

will arise at both the input and the output of the scheme when the frequency difference

r = (BW)if. Under this condition of interference, the scheme will deliver at its output

only two sinusoids, corresponding to the input carriers, with the ratio of weaker-to-

stronger signal amplitude reduced from its input value of a < 0. 863 to a value that can

be made as small as desired by cascading the necessary number of narrow-band

limiters.

Equivalently, this important theorem states that a scheme starting with an ideal

narrow-band limiter that has a bandwidth three times that of the i-f bandwidth, followed

by a sufficiently long chain of ideal narrow-band limiters each of one i-f bandwidth will

reduce the necessary minimum discriminator bandwidth to essentially that of the i-f

bandwidth for all input values of a less than about 0. 863. In Table XIV we present the

results of computations which show the speed with which the required minimum dis-

criminator bandwidth decreases with the number of limiters used in this scheme when
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Table XIV

Cascading Scheme: First-Limiter Bandwidth = 3(BW)if; Second and Later

Limiters Have Bandwidths of (BW) = (BW)if.

Number of Ideal Narrow-
band Limiters

1

2

3

4

Required Minimum Dis-
criminator Bandwidth

a = 0.85

5.2790

2.922

1.74

1.325

1. 15

Table XV

Cascading Scheme: Bandwidth of Each Ideal Narrow-band Limiter = 3(BW)if.

Frequency-Spike Magnitude

Output of
i-f Section

5. 667r

9r

Output of
First
Narrow-
band
Limiter

2. 1395r

2. 9883r

=3r

Output of
Second
Narrow -
band
Limiter

1. 1099r

1. 3913r

Required Minimum
(BW)disc/(BW)if after n

Identical Narrow-band Limiters

n=0

12.333

19

n=l

5.2790

6.9766

=7

n=2

3.220

3.7826

3(BW)i f is used in the first stage. These results are also plotted in Fig. 28. Plots

for a = 0. 8 and a = 0. 7 are also reproduced from Fig. 21 for comparison.

Let us consider next the situation in which the second limiter is given a bandwidth

three times that of the i-f bandwidth. It is clear that with this value of bandwidth, the

configuration that will dictate the required minimum discriminator bandwidth is again

M = 1, N = 2, as it was for the first limiter. The present case is best illustrated by

the plots of Fig. 27. In these plots, 2(t) is the instantaneous-frequency variation of

the resultant two-path signal delivered to the first limiter, over one period of the fre-

quency difference r between the two carriers. If an amplitude-insensitive discrimi-

nator is used immediately following the i-f amplifier, the FM-to-AM conversion

characteristic of the discriminator must be linear over the whole range of variation of
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W= 3
20

D I 2 3 4

NUMBER OF CASCADED IDEAL BANDPASS LIMITERS

Fig. 28. Variation of the required minimum discriminator bandwidth
with the number of cascaded narrow-band limiters.

2o(t ) . However, if one stage of ideal narrow-band limiting is inserted between the

i-f section and the amplitude-insensitive discriminator, the most serious variations

in the instantaneous frequency of the resultant signal delivered to the discriminator

will follow the curve denoted by 21(t) when the ideal-limiter bandwidth is three times

the i-f bandwidth. The effect of cascading two such identical stages of narrow-band

limiting between the i-f section and the discriminator is that the most serious varia-

tions in the resultant signal frequency will now follow the curve marked Q2(t).

Table XV shows the values of required minimum discriminator bandwidth under the

conditions of each of the plots of Fig. 27. These values are also plotted in Fig. 28.

It is clear that the same kind of action indicated by these results will also be exhibited

by further stages of ideal narrow-band limiting, in which each stage has a bandwidth

of 3(BW)if, until, after a sufficient number of them has been cascaded, the required

minimum discriminator bandwidth becomes essentially equal to that of the i-f bandwidth.

The choice of 3(BW)if for the bandwidth of each stage is inspired by the desire to inves-

tigate a scheme in which each limiter bandwidth meets the minimum requirement for

all a's up to 0. 9807. The choice of the permissible minimum value fr this range is

also in line with the basic aim of determining the greatest achievable reductions in the

required discriminator bandwidth. For, with a scheme in which only two limiters are

cascaded, the first of which has a bandwidth of 3(BW)i f , it is clear that as the band-

width of the second limiter is increased from its permissible minimum value to higher

and higher values, the minimum discriminator bandwidth that is required after this

second limiter increases from a small value toward a larger value which will be dic-

tated by the worst configuration delivered by the first limiter in the absence of the
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second. The latter value is achieved when the second-limiter bandwidth becomes suf-

ficiently large to accommodate all of the spectral components of significance in the

structure of eo 2 (t).

Strictly speaking, the effectiveness of the cascading scheme in which each limiter

has a bandwidth of 3(BW)if has thus far been demonstrated only for values of a for

which the configuration M = 1, N = 2 is the most critical one at the output of the first

stage. With the help of Table VII this may be closely estimated to be the case for all

a's up to about a = 0.91. Therefore, the results bear evidence that at least up to this

value of a, a quantitative account of this scheme has been provided. Although for

higher values of a the most adverse interference condition at the output of the first

limiter does not correspond to r = (BW)if (which holds for the worst condition at the
input), but to a smaller value of r, with M = 1, N = 3, up to 0. 9807, we now have little

doubt that the scheme will exhibit similar reductions in the over-all relative importance

of the interference without the need of a separate computation starting with M = 1, N = 3

at the input of the second limiter, for a in the range 0. 91 < a < 0. 98.

As a final illustration, let us associate with the first limiter a bandwidth seven

times that of the i-f bandwidth. From Table XI it is evident that for this value of band-

width, the worst configuration that will be delivered by the first limiter to the second

is given by M = 3, N = 4 for all three listed values of a. Therefore, the present

example will involve a = 0. 95 in a direct computation, and will also reinforce the con-

clusions reached in the discussion above, and illustrate others. It is observed from

Table XI that the worst condition of interference arises with r = (BW)if at the input, as

well as at the output of the limiter.

With reference to Fig. 26, and with an analysis entirely analogous to the one carried

out in deriving Eq. 54, it can be shown that when ei2 is the resultant of the configura-

tion M = 3, N = 4, eo 2 is expressible in the form

oo

eo 2 (t) = Z Cn cos(p - nr)t (55)

n=-oo

where the Cn's have been computed by numerical analysis. The values of the spectral

amplitudes, Cn, at the output of the second limiter are given in Table XVI for a = 0. 85,

0. 9, and 0. 95. This table shows general properties of the spectral amplitudes that

differ from those of Ain or B+n insofar as the new instantaneous-frequency pattern of

the resultant signal at the input of the second limiter requires a slight reshuffling in

the amplitudes of some of the components. This reshuffling can be shown not to affect

the validity of statements concerning conditions at the output of the second limiter that

are similar to those stated in theorems 1, 2, 3, and 4 of Section I. In Table XVI, as

in Table XII, peculiarities of the method of computation have affected some of the signs,

as well as the values, of the spectral amplitudes for values of n > -17, so that in some

instances they are quite unreliable. But this is not disturbing, because this range of
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Table XVI

a = 0.85 a = 0.9 a = 0.95

n C+n C_ Cn C C C

0 0.80017600 0.77188817 0.73523438
1 -0. 29688850 0. 4577003 -0. 29507931 0. 49127662 -0. 28443725 0. 53299857
2 0. 17980165 -0. 08852647 0. 18704689 -0. 10308432 0. 18673803 0. 12657495
3 -0.12336723 0.01996077 -0.13524200 0.2896045 -0.14094844 0.04735312
4 0.05582540 0.00953726 0.06953726 0.00261839 0.08551518 -0.01397191
5 -0.03844722 0.01258463 -0.05113540 0.01696557 -0.06744533 O.02464101
6 0.02680961 -0. 00589528 0.03810971 -0. 00873571 0.05406953 -0. 01477437
7 -0.01858683 0.00203819 -0.02833829 0.00390189 -0.04351496 0.00877105
8 0.01207127 -0. 00014574 0.02013156 -0. 00143672 0. 03424925 -0. 00537343
9 -0. 00828326 0. 00095336 -0. 1494002 0. 00197482 -0. 02778427 0. 00480514

10 0.00576595 -0. 00063900 0.01121969 -0. 00136341 0.02275956 -0.00351608
11 -0.00402425 0.00031986 -0.00845296 0.00082122 -0.01872353 0.00247015
12 0.00278912 -0.00013728 0.00635138 -0.00048925 0.01542139 -0.00173406
13 -0. 00194982 0.00012896 -0. 00480570 0.00039060 -0.01277079 0. 00128370
14 0.00137033 -0.00009157 0.00365223 -0.00027679 0.01061500 -0.00088292
15 -0. 00096552 0.00005484 -0. 00278268 0.00017940 -0. 00884549 0.00054239
16 0.00068065 -0. 00003042 0. 00212306 -0. 00010854 0.00738420 -0. 00025689
17 -0.00048101 0.00001987 -0.00162334 0.00006206 -0.00617525 0.00001288
18 0.00034066 -0.00001097 0.00124342 -0,00004154 0.00517067 0.00021461
19 -0. 00024160 0.00000291 -0. 00095349 -0. 00001602 -0. 00433220 -0. 00043566
20 0.00017145 0.0000428 0.00073147 0.00005245 0.00362936 0.00065852
21 -0.00012169 -0. 00001116 -0.00056099 -0.00009028 -0.00303767 -0.00089166
22 0.00008629 0. 00001914 0.00042954 0.00013322 0.00253691 0. 00114429
23 -0. 00006096 -0. 00002927 -0. 00032760 -0. 00018454 -0. 00211029 -0. 00142522
24 0.00004269 0.00004269 0.00024784 0.00024784 0.00174374 0.00174374

24 24 24

C 0.99999999 C= 1.00000001 Z C = 1.00000001

n=-24 n=-24 n=-24

n values has been included mainly to improve the accuracy of the computation of the

lower-order components that are of major significance in this study.

Table XIII shows that in the present instance, also, the amplitudes of the upper side-

band components relative to the amplitude of the desired component, CO, have been

decreased, while those of the lower sideband components have been increased. We now

accept this effect as characteristic of the action of the ideal narrow-band limiting

process upon the resultant of two or more sinusoids which differ in frequency by an

amount that is small compared with the frequency of either of them, but have such

amplitudes and initial phases that with their various frequency differences harmonically

related, the average frequency of the resultant over a period of the fundamental of the

frequency differences is always equal to the frequency of the strongest of the com-

ponent sinusoids. Those components which by virtue of their initial phases and fre-

quency specifications tend to help keep the average frequency value at the frequency of

the strongest component, will generally have their amplitudes increased relative to the

amplitude of the strongest component, while those that tend to upset the average value

will have their relative amplitudes diminished. At least, this is true when the various

sinusoids exhibit the properties of the spectral components centered about the frequency

p (or any of its harmonics, with the proper selectivity) in the structure of the amplitude-

limited resultant of two sinusoids of different amplitudes but slightly different fre-

quencies.

Suppose we now cascade two ideal narrow-band limiters, the first of which has

seven times the i-f bandwidth. For the bandwidth of the second limiter we first choose

3(BW)if and later we select 7(BW)if. In all cases, the worst condition of interference

will arise at the input of the scheme, as well as at the output of each stage and at the

output of the whole scheme, when r = (BW)if. Therefore, when WL 2 = 3, the minimum

discriminator bandwidth requirement will be dictated by the configuration M = 1, N = 2
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Table XVII

Cascading Scheme: First-Limiter Bandwidth = 7(BW)if .

Capture Ratio Required Minimum (BW)disc/(BW)if

a WL (very large) W = 3 W 7
2 L Z

0.85 6. 8784 4. 3826 5. 2681

0.9 8. 9308 5. 2002 5. 8989

0.95 14. 147 6. 9461 7.5921

at the output of the second limiter. The values dictated when a = 0. 85, 0. 9 or 0. 95 are

presented in Table XVII and plotted in Fig. 28. Table XVII presents also the minimum

values that are required when WL2 = 7, in which case M = 3, N = 4 dictates the require-

ments. The decrease in required discriminator bandwidth that is brought about by each

scheme suggests that if the first limiter with 7(BW)if is followed by a chain of limiters

in which every stage has 7(BW)i f or 3(BW)if, then a scheme capable of reducing the

minimum discriminator bandwidth value to essentially that of the i-f bandwidth is at

hand, provided the proper number of narrow-band limiters is used. It is also clear

that the minimum requirement in (BW)disc will converge faster toward one (BW)if when

the first limiter is followed by limiters with 3(BW)if rather than 7(BW)if; that is to say,

fewer stages each with 3(BW)if , after the first, would be needed to reduce the discrimi-

nator bandwidth requirement to a prescribed value than with higher values of limiter

bandwidth. These conclusions can now be summarized.

THEOREM 7. Under conditions of two-signal interference, the minimum discrimi-

nator bandwidth requirement for all values of the ratio of weaker-to-stronger signal

amplitude that are less than unity, delivered by the intermediate-frequency amplifier,

can be reduced to a value that is as close to one i-f bandwidth as is desired by cascading

the necessary number of ideal narrow-band limiters which have appropriately chosen

bandwidths.

2.2 UPPER BOUNDS ON THE LIMITER AND DISCRIMINATOR TIME CONSTANTS

A basic requirement in receiver design to suppress multipath and cochannel dis-

turbances is the use of the proper time constants in the limiter and discriminator

circuits. The limiter circuit must be capable of following the sharp changes in the

envelope of the resultant signal, which may recur at a rate that is equivalent (in cycles

per second) to the i-f bandwidth. At the input of the first limiter, the ratio of maximum-

to-minimum amplitude for a capture ratio a (ratio of peak value of interference to peak

value of signal) is readily seen to be (l+a)/(l-a). In the discriminator circuit, the out-

put circuit across which the voltage level (varying with the instantaneous-frequency

variations of the resultant signal impressed upon the discriminator) is taken must be
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capable of following the detected instantaneous-frequency pattern in order to avert the

possibility of diagonal clipping and leave the variational control of the operation of the

detecting diodes entirely in the hands of the amplitude of the hybrid signal (AM plus FM)

delivered by the FM-to-AM converter section of the discriminator circuit. Here, also,

the sharp changes in the detected voltage level may recur at a maximum rate of one

i-f bandwidth in cycles/sec, and so an examination of the time-constant requirement in

the output circuit is necessary.

We have demonstrated that the action of a stage of ideal bandpass-limiting upon the

disturbances arising from multipath and cochannel interference results in a substantial

reduction in the minimum bandwidth requirements (for interference rejection) in the

FM-to-AM conversion characteristic of the discriminator and in certain reductions of

limited significance in the limiter-bandwidth requirements. We have also demonstrated

that the same effect will be observed with additional stages of bandpass limiters and,

thus, that cascading a sufficient number of such limiters will successively reduce

the minimum requirement in discriminator bandwidth to the bandwidth of the inter-

mediate frequency. Since this effect may be looked upon as a reduction in the

effective peak strength of the weaker signal relative to the stronger one, it is also

reasonable to expect the successive reductions in the minimum required bandwidths

to be accompanied by successive increases in the maximum permissible values of

the time constants in the discriminator and limiter circuits, and successive decreases

in the effective amplitudes of the audible harmonics in the structure of the detected

instantaneous-frequency spike trains when the frequency difference between the two

paths is audible.

In view of these disturbance-reducing characteristics, such a chain of bandpass

limiters appears to be indispensable in any effective attempt to abate cochannel and

multipath disturbances. It turns out, however, that the cascading of narrow-band

limiters ahead of the discriminator is only one important means for achieving this

result. Other equally interesting but more elaborate methods have resulted from new

approaches to the solution of the problem.

A. Limiter time-constant requirements

Perhaps, the only important limiter circuit that presents a time-constant problem,

at present, is the grid-bias pentode limiter circuit shown in Fig. 29. A discussion of

the operation of this circuit has been presented by Arguimbau (2). It will suffice, for

our purposes, to recall that the operation of this limiter depends upon the control, by

the instantaneous amplitude of the input signal, of an automatic self-rectified grid bias,

which in turn controls the conduction angle and the height of the plate-current pulses,

increasing the height and decreasing the angle with increasing signal amplitude so that

the net charge delivered by each pulse to the plate tank condenser is kept approximately

constant. The condition that the dynamic self-bias must be exclusively controlled by

the instantaneous amplitude of the input signal imposes necessary restrictions on the
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largest value of the RC product for the

grid-leak-and-capacitor arrangement in

the grid circuit - restrictions that are

directly dictated by the reciprocal of the
_ __: . I_ i '. _ - - u - . : -1 TAg

maximum ratio oI tne time aerivative oi

instantaneous amplitude and the value of
Fig. 29. Grid-circuit limiter for time-

constant computation. instantaneous amplitude.

The mechanism of the operation in

the grid circuit of the grid-bias limiter lends itself to a treatment that is very much

like the usual analysis of the simple diode peak detector. In our problem, it is recog-

nized at the outset that if the time constant RgCg is too high, the grid-bias variations

will only follow the slowest variations in the envelope value of the amplitude of the

impressed signal; and if it is too low, the change in bias will not be great enough for

effective smoothing of the amplitude variations. There are three time-constant con-

siderations that must be taken into account, if this circuit is to be used in a receiver

designed to handle some specified capture ratio a.

(a) The product RgCg must be sufficiently small to enable the circuit to follow the

amplitude variations of a resultant two-path signal.

(b) Cg must be sufficiently large to by-pass Rg at radio frequencies and offer an

impedance at these frequencies that is much lower than the input impedance of the tube

when the grid potential is on the negative swing, in order for the intermediate-frequency

voltage to appear effectively between grid and cathode of the tube. If W0 is the i-f fre-

quency, and Cin is the input capacity of the stage, the present requirements can be

summarized as

CgRg >> /o and Cg >> Cin

(c) Rg must be sufficiently large for the development of the necessary bias on the

grid for effective smoothing of the envelope of the input wave. If the grid-to-cathode

conduction resistance is rg, then we want Rg >> rg.

For the determination of requirement a, we note that if A(t) denotes the instanta-

neous amplitude of the resultant signal impressed at the input to the grid circuit, then,

assuming that grid-to-cathode conduction occurs only when the grid goes positive, and

that the conduction resistance is negligible compared with Rg, we find that the grid

current, averaged over one radiofrequency cycle, is given by

dA(t) A(t)

av =Cg dt + (56)dt R
g

since, by assumption, current can flow only from the grid to the cathode and not in

reverse. It is readily appreciated that the input envelope and the bias voltage will

keep together, provided the grid draws current for a short interval during each
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radiofrequency cycle (which amounts to a process of sampling) and provided the frac-

tional change in the envelope value during any one radiofrequency cycle is small. The

latter proviso is comfortably met by the assumption p >> r (explicitly understood through-

out this study), whereas the conduction (or sampling) condition is met only if the average

value of grid current over one radiofrequency cycle is positive, as indicated in Eq. 56.

It is of interest to note that condition 56 can also be written in the form

A(t) dA(t)
- < - A'(t) (57)

RgCg dt

The quantity on the left-hand side is recognized as the negative of the magnitude of the

rate at which the capacitor tends to discharge at the instant of time, t, when the ampli-

tude of the input signal is given by A(t) and the rate at which the amplitude is changing

is A'(t). Condition 57 states, therefore, that the magnitude of the rate at which the

capacitor tends to discharge at any instant of time must always be greater than (or, at

worst, equal to) the magnitude of the rate at which the amplitude is changing at that

instant, in order for the self-rectified bias on the grid to follow the amplitude of the

input signal. The problem could have been approached from this alternative, but

entirely equivalent, point of view. Both views are needed for a thorough understanding

of the situation. Both points of view must be satisfied simultaneously on a purely

physical basis; and both imply exactly the same inequality. Thus, the condition on the

RC time constant of the grid circuit can be written

A(t)
RC <--

g g A'(t)

The quantity on the right-hand side will, of course, be positive, and it will vary with

time. Therefore, if the most unfavorable situation is to be met, the condition should

read

A(t)1

RgC·g L A'(t)j mi n

Under two-signal interference conditions, we find (see Fig. 1) that

A(t) = (1 + 2a cos rt + a2) 1/ 2

which, upon substitution in Eq. 56, and after a straightforward simplification, yields

a2 + a(4 + RZCZrZr2 cos(rt + ) > (59)

where = tan- 1 (1/2) (RgCgr). The worst condition arises when cos(rt + p) = -1; it

will be met if
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1+ a a (4 + R2C2r2)1/2

whence, we want

R C < - ar (60)g g ar

The frequency difference r can have a maximum value, rmax = 2fWif, where Wif

denotes the intermediate-frequency bandwidth in cycles/sec. Therefore, under the

worst conditions we must have

1 - a2

To = WifRgCg Zra (61)

The maximum permissible value of T o', as given by the equality sign in Eq. 61, is

shown in Fig. 30 plotted against a. The plotted values are also listed in Table XVIII.

Multiplication by a scale factor appropriate to the value of Wif will convert the normal-

ized values of time constant to microseconds.

For conditions at the input to the second-limiter stage, which immediately follows

the filter of the first limiter, the problem is greatly simplified if the filter is assumed

to have idealized amplitude and phase characteristics. Thus, if we consider the filter

in the plate circuit of the first grid-bias pentode limiter to be an ideal filter, then the

input signal to the next stage is described in terms of the worst configuration of side-

band components that this filter will pass. The amplitude of the resultant of these com-

ponents will not be constant, since, in general, the components will include only a

finite number with significant amplitudes at the output of the first limiter. If the limiter

performance is also assumed to be ideal, then the results of the spectral analysis of

Section I are directly applicable. Thus, if the first-limiter filter is assumed to

have a bandwidth equal to one i-f bandwidth (as is permissible for all a < 0. 863), then

we know (from section 1. 6) that the configuration Ao , A_ will be the worst possible

spectrum for all a's up to approximately 0. 84, and so, for all such cases, Eq. 60 is

directly applicable with a replaced by A_,/A o . Since (A_1 /Ao) < a, it is recognized

that the highest permissible value of the time constant R C is larger at the input of
gg

the second limiter than it was at the input of the first - a decided improvement in the

design conditions. The extent to which improvement has been achieved is readily seen

from the curve for 2 'T 1 shown in Fig. 30. Conditions at the input of the third-limiter

stage are similarly computed if the second stage is assumed to be identical with the

first one, and so on. Figure 30 also shows a curve for 3T 1 which applies to the time

constant at the input of the third limiter.

When the ideal filter following the first limiter has three times the i-f bandwidth,

values of a up to 0. 9807 may be considered. The critical configuration for this band-

width is M = 1, N = 2 and the spectral analysis of section 2. 1 (which is restricted to the

values a = 0. 85 and a = 0. 9) is useful for a further study of conditions at the input of a
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2T 

Fig. 30. Variation of the maximum permissible values of the grid-circuit
time constant with the interference ratio a.

Table XVIII

Maximum Permissible Values of Normalized Time Constants:

T = WifRgCg in the Grid Circuit.

First limiter

T o

0. 7639
0. 4828
0. 3342
0. 2387
0.1698
0. 1160
0.0716

0.0336

0. 0064

WL = (BW)lim/(BW)if

Second limiter
WL1 = 1

2 Tf 1

1.5514
1. 0001
0.7131
0. 5308
0. 3994
0.2950
0. 2042

Second limiter
WL1 = 3

2TI 3

4. 9694
2. 1361
1. 1548
0.7014
0. 4520
0. 2962
0. 1877
0. 1425
0. 1004
0. 0576
0.0280

Third limiter
WL1 =WL2 = 1

3 1

3.115
2.018
1.451
1.0936
0. 8386
0. 6380
0. 4652
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a

0. 2
0.3
0.4
0.5
0. 6
0. 7
0. 8
0. 85
0. 9
0. 95
0.98

Note.
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third-limiter stage that may follow. Higher values of first-limiter bandwidth can be

used, and the reasoning used before applies to the conditions at the input of the second

limiter. However, in the general case, in which the configuration M ¢ 0, N > 1 is to

be handled, the step that corresponds to the transition from Eq. 59 to Eq. 60 is not

obvious from inspection of the expression corresponding to Eq. 59, and it must be

carried out by a process of minimization of the quantity -A(t)/A'(t), as is indicated in

formula 58.

With reference to Fig. 6, we recall that the square of the amplitude function of the

resultant of the configuration M, N is given by

A(t) = |; An cos nrt + An sin nrt

=-N =-N

= F (rt) (62)
M-N

with A(t) - F/Z(rt), and 4 = rt, we can write

A(t) F(4)
= (/r) (63)

A'(t) Fl(f)

and condition 58 becomes

T = rR Cg -- m (64)

g g _F'(,) min

When the first-limiter bandwidth is three times the i-f bandwidth, the most unfavorable

situation arises when M = 1, N = 2, and r = 2ZrWif . In this case

1F_2() = A [
1 + a cos + cos Z + Y cos 3] (65)

1 1 1

where o1i al, 1' and Y1 are combinations of sums and products of the amplitudes,

A n. Thus, it is readily shown that when expression 65 is substituted in 64, and the

derivative of the resultant right-hand member is set equal to zero, the value of 4' that

gives a minimum is a root of a fifth-degree equation in cos 4'. The root was determined

graphically for various values of a, and the results were used to determine the maxi-

mum. permissible value of WifRgCg (in the grid circuit of the second limiter

when the first-limiter bandwidth is three times the i-f bandwidth) as a function of a.

The resultant maximum permissible values of 2 T1 3 are also plotted in Fig. 30, for

comparison with the other normalized time-constant curves. The numerical values are

also presented in Table XVIII.

With larger values of first-limiter bandwidth, the variations in the amplitude of the

most troublesome signal delivered to the second limiter become less and less severe,

and the upper bound on the permissible Rg C product at the input of the second stage
g g
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jN:3

4N=5

iN--4

iN2

Fig. 31. Variations in the instantaneous amplitude of the resultant signal
at the output of a narrow-band limiter compared with the corre-
sponding variations at the input of the limiter

becomes higher and higher. This is also brought out by the plots of A(t) for various

configurations shown in Fig. 31.

We may now conclude that, although the action of a narrow-band limiter upon the

character of the resultant signal effects only a partial reduction in the severity of the

amplitude variations of the signal (instead of a complete smoothing-out process), the

partial abatement of the amplitude variation is, nevertheless, sufficient to show a sig-

nificant increase in the upper bound on the permissible grid-circuit time constant.

Eventually, with a sufficient number of cascaded narrow-band limiters, the resultant

signal amplitude attains an essentially constant value, and the upper bound on the RC

product in the later stages is sufficiently high to be of no importance in their design.

It may seem unnecessary to recall, before leaving this topic, that at least two other

important considerations must be kept in mind in the choice of Rg and Cg values for the

grid-bias pentode limiter.

B. Discriminator time-constant requirements.

The time-constant requirements of two commonly encountered discriminator low-

frequency output circuits will now be discussed in the order of their simplicity.

The low-frequency output circuit of many discriminators can be reduced to the form

shown in Fig. 32. The detected voltage, which is proportional to the instantaneous-

90



TO DIODE I frequency variations of the signal at

the discriminator input, appears across

.3 C OUTPUT the equivalent RC combination. For

some circuits, this RC combination is

TO DIODE 2 a reduced form of a slightly more elab-

orate connection; in others C is the
Fig. 32. Discriminator-output circuit for capacitor across which the output vol-

time-constant computation.
tage of the discriminator is taken, and

R is the total equivalent resistance in

parallel with C and composed mainly of a low equivalent output resistance that C sees

when looking back into the rest of the detector circuit. In any case, the time constant

or the equivalent combination that is shown, must be sufficiently low to enable the vol-

tage across the capacitor C to follow the detected voltage. Failure of the voltage

across the capacitor to follow the voltage variations dictated by the instantaneous fre-

quency of the signal at the input of the discriminator, will cause the output low-frequency

voltage to have an average value (over one frequency-difference cycle) which does not

correspond with the value dictated by the frequency of the stronger signal at the input

of the receiver. This obviously defeats our purpose, and the restrictions that must be

imposed on the RC product to keep this loss of desired average-voltage level from

arising will now be determined.

Let us first consider the situation in which the discriminator is either amplitude-

insensitive, and hence is not preceded by any limiters, or amplitude-sensitive but pre-

ceded by an "infinitely" wideband ideal limiter. In either case, if the discriminator is

assumed to have a linear over-all detection characteristic of unit slope, over the whole

range of the instantaneous-frequency variations of the input signal, then, under the two-

path interference conditions described in Section I, the voltage waveform that the output

RC combination must handle is given by

e(t ) = a cos rt + a r (66)
1 + 2a cos rt + a

This waveform is superimposed upon a direct-voltage component that corresponds to

the level dictated by the frequency p of the stronger of the two signals. If the average

value of the output capacitor voltage (over a period of 2rr/r sec) is to be maintained at

the value dictated by the frequency p, the capacitor must, at every instant of time, tend

to charge or discharge at a rate that is faster than (or, at worst, just as fast as) the

rate at which the impressed waveform tends to change at that instant. Equivalently,

the ratio of the instantaneous value of the capacitor voltage and the RC product must

always exceed or, at worst, equal the time derivative of the impressed voltage evalu-

ated at the same instant of time. The total capacitor voltage cannot, therefore, be

allowed to go to zero at any time, except when it and the slope of the impressed wave-

form go to zero simultaneously. This will ensure sufficient rapidity of charging and
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discharging at all times to enable the capacitor voltage to remain in step with the

dictates of the instantaneous frequency of the resultant input signal, and thus will ensure

proper detector operation and lack of harmful diagonal clipping effects. Analogous to

the similar problem of the limiter time constant, the restriction to be imposed on the

RC product is, from condition 58,

e(t) d
RC [--] e (t) - t e(t) (67)

A direct attempt to substitute from Eq. 66 in Eq. 67, however, meets with frustration,

since el(t) in Eq. 66 goes to zero when rt = cos- (-a), while e'(t) is not zero at that

point. In order to avoid this difficulty, the voltage variations described by Eq. 66 must

be superimposed upon a steady capacitor voltage that is greater than ar/(l-a). In other

words, the expression that must be used for e(t) in condition 67 must be

e(t) = E + ar cosrt + a (68)
1 + 2a cos rt + a

where

Eo > a (69)

Since Eo is the voltage level that corresponds to the frequency p and, since p is likely

to lie on either side of the center frequency of the i-f passband, it is evident that con-

dition 67 will define a nonzero upper bound on the RC product only if the discriminator

output, as seen across the RC combination of Fig. 32, is not balanced to give zero

voltage at the center frequency. Furthermore, values of Eo that do not satisfy condi-

tion 69 will cause e(t)/e'(t) to have a zero minimum magnitude; hence they will require

that RC = 0. The equality sign is excluded in condition 69 for the same reason.

If the expression for e(t), given by Eq. 68, is used, we can show that the ratio

e(t) [Eo(l + a) + ar + a(2Eo + r) cos ] [1 + 2a cos 4 + a ]

e'(t) ar2(1 - a 2) sin +

has a minimum magnitude at the negative real root of

3 <b[5 Eo( + a 4 ) + a 4 r rEo ( + a ) + a r 1 2
Cos +r co LzE+ +2

2 +2a 2(z Eo a(E + r) 2a

which has a magnitude smaller than unity. An analytical expression for the resultant

upper bound on the RC product is available, but it is too cumbersome to be useful.

When the discriminator is preceded by one stage of narrow-band limiting, the

formulas of the preceding computation are directly applicable to the computation of the
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maximum permissible discriminator RC product when the limiter bandwidth is equal to

one i-f bandwidth. Here, since the most unfavorable conditions at the output of the

limiter filter arise when only Ao and A_1 pass and r = rWif, it is only necessary to

replace a in the formulas by (A_1 /Ao). We recall that the conditions of the present

situation apply only in the range a < 0. 84. A similar extension of the computation to

the situation in which more than two limiters, each of which has a bandwidth of one

(BW)if, precede the discriminator is fairly evident.

It is of interest to observe that with a discriminator whose output across the RC

combination which is shown in Fig. 32 is balanced, the upper bound on the RC product

will be nonzero as long as the two signals lie symmetrically on opposite sides of the

center frequency. For this situation, the upper bound can be shown to be specified by

2

rCR - a (70)

which is one-half the upper bound on the grid-circuit time constant of the limiter.

Frequently, the capture ratio of a receiver is measured by simulating an interference

situation in which the two signals lie at opposite ends of the i-f passband. It is clear

that, under this condition of measurement, a discriminator whose output is balanced

about the intermediate frequency when it is observed across the RC combination of

Fig. 32 will appear to meet the test if its RC product satisfies condition 70. Evidently,

under the more general (but milder) interference conditions, it will fail.

In order to illustrate the manner in which the cascading of narrow-band limiters

raises the upper bounds on the output-circuit time-constant requirements of the dis-

criminator, we shall choose a discriminator whose characteristic goes through zero at

a frequency that corresponds to a cutoff frequency of the i-f amplifier. In view of

condition 69, this situation is mainly of academic interest (unless the interference is

effectively suppressed before it reaches the discriminator). The weaker of the two

carriers will be assumed to fall at the frequency of balance. In the absence of narrow-

band limiting, the voltage waveform impressed across the output capacitor is

1 + a cos rt
e(t) = r

1 + 2a cos rt + a

Consequently, the maximum permissible values of Tdo = WifRC are those plotted in

Fig. 33. If one narrow-band limiter whose bandwidth equals the i-f bandwidth precedes

the discriminator, the upper bounds are specified by the plotted values of 1Tdl. The

curve marked "2 dl" applies when two limiters, each of one i-f bandwidth, precede

the discriminator.

Finally, consider the situation in which the discriminator is preceded by a

limiter of bandwidth three times that of the i-f bandwidth. Here, the instantaneous-

frequency pattern that accompanies the configuration M = 1, N = 2, with r = (BW)if,

dictates the critical requirements. Simple as this configuration may seem, the
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Fig. 33. Curves showing effect of cascading scheme upon the upper bounds
on the time constant of the circuit of Fig. 32, under the conditions
of the illustrative example.

computation in this case is extremely tedious. The value of rt that leads to the

minimum value of the right-hand member of condition 67 turns out to be a root of the

equation

11

Z k n cos n = 0

n=O

in which the coefficients, n , are extremely involved. Naturally, the desired root

was determined graphically. The maximum permissible values of 1Td3 are plotted in

Fig. 33. The vertical scale in Fig. 33 can be calibrated in microseconds by multi-

plying by a scale factor appropriate to the value of Wif that is used.

It is of interest to observe that comparison of the curves for lTd3 and Tdo reveals

that the percentage by which the upper bound on Td has been raised by the action of one

limiter of three times the i-f bandwidth is greatest for values of a in the vicinity of

a = 1, and decreases rapidly with decreasing values of a. This can be explained by

the fact that a limiter bandwidth of 3(BW)if approaches more closely the order of
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Fig. 34. Common form of balanced discriminator.

bandwidth needed to reproduce the input two-signal frequency-spike pattern, with

increasingly less distortion as the value of a is decreased. In terms of the spectrum,

the limiting configuration M = 1, N = 2 (i. e., the most unfavorable configuration for

(BW)lim = 3(BW)if) forms an increasingly important percentage of the significant spec-

tral components at the output of the limiter as the value of a is made smaller. In fact,

for a = 0. 1, the lowest value considered in the plot, this configuration includes essen-

tially all of the components of significant amplitude (see Table I), and so the resultant

instantaneous-frequency pattern (which dictates the curve lTd3 ) is a slightly distorted

version of the original input two-signal pattern (which dictates the curve Tdo).

The plots of Fig. 33 show clearly how the upper bound on the permissible time con-

stant in the output circuit of the discriminator is raised when the discriminator is pre-

ceded by a process of narrow-band limiting. The effect produced by one narrow-band

limiter will, clearly, be displayed by additional stages. After a sufficient number of

stages has been cascaded, the upper-bound on the maximum permissible time-constant

values becomes sufficiently high, so that it exercises no important restraint on the

design of the output circuit of the discriminator.

We shall next illustrate the computation of the maximum permissible time constant

for the common type of discriminator circuit shown in Fig. 34. Alternative forms of

this circuit (particularly, the one in which the FM-to-AM conversion is achieved

through a double-tuned transformer, in which the top of the primary is connected to

the center tap of the secondary) can be manipulated into the form of Fig. 34, and are,

therefore, included in this treatment. The output voltage, eout, is a superposition of

the envelope of one tank-circuit response upon that of the other tank circuit with

reversed polarity.

Assuming that the high-Q tank circuits have the same damping factor a, let one

circuit be tuned to a frequency that is ba rad/sec above the center frequency of opera-

tion 0 o , and the other to ba rad/sec below w0. Also, let the instantaneous frequency

of the excitation be deviated by a x(t) rad/sec from the center frequency of operation.

Then, if the conditions for a quasi-stationary analysis of the tuned-circuit responses

are satisfied, and if the RC combination of each peak detector is able to follow

the envelope of the corresponding tank-circuit response, the output voltage can be

95

�I �



normalized into the form

eout = ([1 + (x+b) 2 ]- 1/2 - [1 + (x-b)2 1/2 (71)

For optimum linearity (2), b must be 1. 225. Indeed, with this value of b,

eout = kx(t) for - 0.6 < x < 0.6

The extent of this almost perfect linearity is, therefore, 1. 2a rad/sec centered about

x = 0, while the peak-to-peak separation of the discriminator characteristic is

2. 45a rad/sec.

Under conditions of two-signal interference, the instantaneous frequency of the

amplitude-limited resultant of the two signals is

1 1- a2

o ( t ) oave r 2= Grave 2 r1 + 2a cos rt + a

where wave =p + r, the average of the two signal frequencies. Therefore,

2
x(t)= Xave - (72)

1 + 2a cos rt + a

1
where xae = 1( - W ). When the two signals are symmetrically disposed withavwhere a ave o
respect to the center frequency, xave = 0, and

2
(t) = a 2 (73)

1 + 2a cos rt + a

If r is given its maximum value of (BW)if, Eq. 73 will represent the most troublesome

instantaneous-frequency deviations' from coo , measured in units of a rad/sec.

Results that will be published in a later report indicate that if

r 1-a
2a 1 + a

then the conditions for quasi-stationary analysis, which justify the use of Eq. 71, are

satisfied if is bounded by the values plotted in Fig. 35. Substitution in Eq. 73 leads

to

-[5(1-a) 2

x(t) = (75)

1 + 2a cos rt + a

The upper bound on the RC product can now be found by requiring that the RC com-

bination follow the voltage waveform given by

-1/2
e(t) = {1 + [x(t) + 1. 225]2} (76)

x(t) being given by Eq. 75. In Fig. 36 we present the results of a computation in which
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Fig. 35. The upper bounds on the value of in Eq. 74.
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Fig. 36. Maximum permissible values of T = WifRC for each
half of the balanced discriminator.
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use was made of the values of = max that are plotted in Fig. 35. For all values of

a • 0. 84, the plot of Fig. 36 can be used in conjunction with the plot of Fig. 20 to deter-

mine the maximum permissible values of T = WifRC when any specified number of

narrow-band limiters, each of one i-f bandwidth, are cascaded ahead of the discrimi-

nator. Multiplication by a scale factor appropriate to the value of Wif that is used will

convert the dimensionless vertical scale in Fig. 36 into microseconds.

2.3 HARMONIC STRUCTURE OF DETECTED DISTURBANCE

In general, after the instantaneous-frequency variations are properly translated

into instantaneous-voltage variations (about the direct-voltage level dictated by the fre-

quency of the stronger signal), the voltage variations are modified by the action of the

de-emphasis and the audio filters that follow the discriminator circuit. If the frequency

difference between the two input carriers lies beyond the range of audibility (as it will

much of the time in long-distance communication, but less frequently in communication

over shorter distances), the Fourier components of the recurrent spike train will all

be filtered out by the two low-pass filters. This will, effectively, be the end of the

disturbance caused by the presence of the weaker signal within the i-f passband. How-

ever, if the frequency difference between the two paths is audible, the component with

the fundamental frequency of recurrence, plus a number of harmonics, depending upon

the position of this frequency in the audible spectrum, will pass through the low-pass

filters, and will, therefore, disturb the output signal.

Note that two factors play more or less obvious roles in minimizing the importance

of the disturbance that leaks through: the action of the two low-pass filters in rejecting

most of the harmonic components, and the fact that the magnitude of the interference

spikes (hence the amplitude of each constituent Fourier component of the detected spike

train) is directly proportional to the value of the frequency difference. Consequently,

even though more undesired harmonics of the frequency difference are likely to get

through the low-pass filters as this frequency difference assumes lower and lower

values in the audio range, the amplitudes of the passed components will also be lower

and lower.

A third factor that tends to minimize the importance of the audible disturbance is

brought about by the effect of narrow-band limiting upon the shape and magnitude of the

spike trains. This distortion of the extraneous modulation by the narrow-band filter

after the limiter generally produces the result that the Fourier components of the modi-

fied spike train have smaller amplitudes than their counterparts in the structure of

the undistorted waveform. The effect becomes increasingly more pronounced with

increasing values of the frequency difference r and the ratio of weaker-to-stronger

signal a. But the lower the value of the beat frequency r or the ratio a, the less sig-

nificant is this effect. The reason for the dependence of this effect upon the magnitude

of the frequency difference r is readily appreciated from the fact that as r gets lower,

the number of significant sideband components accommodated within the limiter-filter
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passband increases. With a given constant value of a, the instantaneous-frequency

variations of the resultant signal tend to become an increasingly less distorted copy of

the instantaneous-frequency pattern of the amplitude-limited resultant of the two signals

delivered by the i-f amplifier. When r is well within the audio range, the effect will

tend to be negligible, especially with the lower values of a, even when the smallest

permissible value of one (BW)if is used after the limiter. The instantaneous-frequency

variations introduced by the presence of the weaker signal will then tend to be indis-

tinguishable (hence less separable) in their characteristics (pertaining to spike magni-

tude, or maximum deviation, repetition rate, and maximum time rate of change during

a cycle of the fundamental) from the variations that represent the desired message

modulation. When r is held constant at some audible value, the distortion of the spike

train by the narrow-band filtering after the limiter will have an increasingly noticeable

effect with increasing values of a; therefore the effect of this distortion upon the ampli-

tudes of the harmonic components in the structure of the detected spikes (which will be

illustrated presently), becomes increasingly significant, and vice versa.

Consider the situation in which the two input carriers accommodated within the i-f

passband have constant amplitudes and frequencies, and are impressed directly upon

an amplitude-insensitive discriminator (or a discriminator which is preceded by an

ideal limiter that passes essentially all of the significant spectrum centered about the

frequency of the stronger signal). The detection of the instantaneous-frequency varia-

tions of the resultant signal results, at the output of the discriminator, in a voltage

proportional to

2
f(t) =r a + a cos rt

1 + Za cos rt + a

oo0

= -r X (-a)n cos nrt (77)

n=l

Equation 77 shows that the amplitude of each harmonic varies directly with r. As a

function of a, the amplitude of the fundamental component is directly proportional to a,

and the amplitude of the nth harmonic component relative to the amplitude of the funda-
n-I

mental component is given by a Plots of the relative amplitudes of the various har-

monics, as compared with the amplitude of the fundamental, are shown in Fig. 37a, b,

and c, in which each is marked "an-curve."

When an ideal limiter of some specified bandwidth WL = (BW)lim/(BW)if is inserted

in the path of the resultant signal before it gets to the discriminator, we have found that

the action of the narrow-band limiting process damps out the fast and large excursions

of the instantaneous frequency of the resultant signal that goes through. The effect of

the resultant modifications in the waveform of the instantaneous-frequency variations

upon the amplitudes of the harmonic components in the structure of this waveform is
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best studied quantitatively by direct Fourier analysis of a few typical, informative

cases. The general character of this effect may also be anticipated on the basis of the

concept of the equivalent interference ratio. This concept recognizes the importance of

the repetition frequency r and the spike magnitude of the instantaneous-frequency spike

train of the resultant signal at the output of a narrow-band limiter in providing a basis

for comparing the capture conditions at that point with conditions elsewhere in the

receiver. On this basis, the effect of narrow-band limiting upon the capture conditions

is equivalent to a reduction in the equivalent interference ratio. Consequently, this

reduction should generally result in a reduction of the relative amplitudes of the various

harmonics in the structure of the instantaneous-frequency waveform. This effect is

illustrated by the plots of Fig. 37a, b, and c. The examples chosen for illustration

correspond to resultant signals composed of a number of lower sideband components M,

and a number of upper-sideband components N, these numbers being indicated in paren-

thesis in the order (M, N). Each configuration (M, N) is associated with the proper set

of points by an arrow. The various configurations that are indicated give rise to most

troublesome resultants when they are associated with the limiter bandwidths WL, whose

values are indicated in the plots. When the indicated values of W L are used, the values

of r for which these configurations can arise may not be audible, depending upon the

i-f bandwidth that is used. If smaller values of WL are used, such as unity for a = 0. 8

or a = 0. 85, some of the indicated configurations may arise with audible values of r.

In any case, these configurations were chosen only because of the convenience of

illustration.

The computations leading to the plots of Fig. 37a, b, and c have shown that the abso-

lute values of the harmonic components are generally decreased by the narrow-band

limiting effect below the corresponding values given by an in the absence of narrow-band

limiting. Figure 37 illustrates the decrease in the relative amplitudes of the harmonics,

as compared with the corresponding fundamental component. These results illustrate

the effect of one stage of narrow-band limiting -_ the first one. A second or later stage

will usually have a less troublesome signal to cope with at its input than the first or

earlier intermediate stages. Nevertheless, these later stages will exhibit the same

effect as long as the instantaneous-frequency variations caused by the interference differ

from the kind of expected message modulation by virtue of characteristics that enable

a narrow-band filter to distinguish them.
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III. CONCLUDING REMARKS

In this report the interest has been centered on the effect of a process of ideal

amplitude limiting followed by ideal filtering (or frequency limiting) upon the instanta-

neous frequency of the resultant of two carriers that differ in frequency as well as in

amplitude. The main objective has been to determine the necessary changes in the basic

design requirements, in order to secure proper operation under the most adverse inter-

ference conditions, with the express purpose of enhancing the capture of the stronger

signal. Our philosophy has not been guided merely by a desire to specify the require-

ments that would lead to the realization of an ideal frequency demodulator which would

be insensitive to amplitude changes and would meet the bandwidth requirements dictated

by the extraneous instantaneous-frequency variations caused by the presence of the

interference.

We have also recognized certain fundamental features in the nature of serious inter-

ference, as it is usually constituted, and have chosen to take advantage of these features

in preparing the receiving circuits, so that by proper design the disturbance will be

minimized or completely eliminated. This attitude has led us to a basic change in the

approach to the question of limiter bandwidth requirement, and has brought to light a

new philosophy concerning the limiter's share of the task of interference suppression

in FM reception. We now ask the limiter stage to do more than just eliminate undesir-

able changes in the amplitude - we also require that it contribute to the abatement of

the FM disturbances wrought by the presence of the weaker signal, by decreasing the

range and intensity of the extraneous instantaneous-frequency variations of the resultant

signal through a process of instantaneous-frequency limiting or, perhaps, quasi-

limiting. Evidently, the undesirable frequency changes must differ in the degree of

their extent, rate of change, and rate of recurrence - any one of these or all of them

combined - from the changes that the usual message causes in the instantaneous fre-

quency of the carrier, in order that the narrow-band-limiting effect will not also distort

the desired message modulation. Granted these differences, the limiter proper (in this

new task) prepares the resultant signal for the (frequency-limiting) treatment by elimi-

nating the amplitude changes. This spreads out the significant spectrum, and the

sluggish (narrow-band) filter, immediately following, performs the (frequency-limiting)

operation on the instantaneous frequency of the resultant signal by refusing to follow the

more drastic frequency variations or, equivalently, by eliminating portions of the

spread-out spectrum that owe their existence to the interfering signal and which are

only necessary for the undistorted reproduction of the instantaneous-frequency spike

pattern of the amplitude-limited resultant of the two input sinusoids. The minimum

requirement of one i-f bandwidth for the limiter filter is calculated to meet the pre-

requisites of undistorted reproduction of the expected message modulation.

This situation is analogous in philosophy to the well-known procedures for elimi-

nating certain types of impulsive AM noise and interference. A clipper is introduced
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in the path of the input signal, whose threshold exceeds the maximum value of instanta-

neous amplitude that is expected with the desired message amplitude modulation, in

order to leave the desired message modulation unaffected. The impulsive interference

should, therefore, exceed the clipping threshold, and the duration of the individual

impulses should be short compared with the period of a desired modulating frequency

for the "noise-silencing" scheme to introduce noticeable improvement in the reception.

Here again we capitalize fundamental differences between the resultant waveforms in

the presence or absence of the interference. In other words, the modulation introduced

by the interference must differ in a manner that can be distinguished by the circuitry in

the path of the signal from the changes introduced by the desired message modulation to

gain abatement of the interference through special arrangement or design that does not

significantly affect the desired message.

Generally speaking, interference can be described as any extraneous modification

of the instantaneous variations of the message-modulated parameter of the carrier wave.

The suppression of interference may be tackled in the radiofrequency or in the low-

frequency sections of the receiver or in both. Wherever the extraneous effects of inter-

ference are to be minimized or eliminated, it is important to realize that what we may

call the "fundamental principle of interference rejection" forms the basis of any effective

interference-suppressing scheme. Interference can be suppressed if its disturbance

is in the form of modifications in the instantaneous variations of the message-bearing

parameter of the carrier wave that are fundamentally distinguishable from the variations

that an expected message modulation would inflict upon this parameter. If the extran-

eous variations cannot be distinguished from the variations caused by the message mod-

ulation, then the interference cannot be suppressed. A successful scheme for

interference suppression would have to be capable of discriminating against the

characteristic features of the disturbance which are not normally expected in proper

message modulation, without affecting significantly the message modulation itself.

Recognition and appreciation of these facts helps us in accounting for the pronounced

capture possibilities of an FM system, and the inherent vulnerability of an AM system,

which is particularly manifest with cochannel disturbances.

The most important distinguishable feature of an FM disturbance is the highest rate

of variation in the instantaneous frequency of the resultant signal which is caused by

the interference. This rate of instantaneous-frequency variation combines in one pack-

age the highest frequency deviation, as well as the repetition rate of this deviation.

Under conditions of high-level interference, this rate is sufficiently higher than the

highest rate of variation that can be expected in the message modulation so that it is

possible to insert filters, at appropriate places in the signal path, that would be too

sluggish to follow the disturbance, without noticeably distorting the message modulation.

The appropriate places for these filters in the high-frequency sections of the receiver

are not in the linear stages, because in these stages the desired carrier and the inter-

ference combine linearly and their resultant spectrum is fully accommodated within the
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i-f passband. The concentration of the spectrum of this resultant signal within the i-f

passband makes it impossible to separate the two signals, or to improve the predomi-

nance of the stronger one, purely by linear filtering. But a process of ideal amplitude

limiting will spread over several i-f bandwidths the significant spectrum that is neces-

sary for the reproduction of the original frequency disturbance of the interference. The

extent of this range increases with an increase in the gravity of the interference which,

in turn, results from a decrease in the amplitude difference and an increase in the fre-

quency difference between the two signals. Since the instantaneous frequency of the

desired signal will always place it within the extent of one i-f bandwidth, we recognize

immediately that we can filter after the limiting process to exclude sizeable portions

of the interference spectrum, without affecting the message-bearing spectrum.

One stage of limiting and filtering, however, will still retain at its output a spectrum

with a significant amount of the interference in the form of components that could not be

rejected without impairing some important phase of the operation. Therefore, sub-

jecting the resultant of this retained spectrum to a process of ideal limiting will spread

out the spectrum of the retained disturbance, again, over a sufficiently wider frequency

range to enable additional filtering to be effective. This cycle of spreading out of the

interference spectrum, followed by rejecting the outer portions of the significant spread-

out spectrum, may be repeated until so little is left of the disturbance that the signifi-

cant spectrum of the amplitude-limited resultant signal at the end of the chain becomes

essentially confined within the limits of the permissible minimum passband. At this

point, the maximum rate at which the disturbance will vary the instantaneous frequency

of the resultant signal becomes comparable, and almost indistinguishable, from the

variations that may arise with the expected message modulation. In other words, the

cascading scheme will continue to sap the energy in the spectrum of the disturbance

until the remaining energy gives rise to a spectrum that is not significantly distinguish-

able in extent from the spectrum that can arise with the usual message modulation.

Phrased differently, the cascading of limiters followed by sluggish filters will remain

effective in the abatement of the disturbance until the variations in the instantaneous

frequency caused by this disturbance begin to resemble the variations that the message

modulation may be expected to cause. Beyond this point, continuation of this scheme is

not profitable.

Thus a properly designed narrow-band limiter in the path of the resultant of two

signals that differ in strength by an arbitrarily small amount will modify the character

of this resultant signal in such a way that the effective disturbance caused by the pres-

ence of the weaker signal is reduced and the capture of the stronger signal is enhanced.

The amount of improvement in the favorable conditions for capture of the stronger sig-

nal, per stage of narrow-band limiting, is predictable in accordance with the techniques

and results of this report. The degree of improvement achieved per stage is greatest

under the most adverse interference conditions. In general, these conditions prevail

when the two carriers are farthest apart in frequency, while their individual frequency
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modulations are slow. As the frequency difference between the two carriers decreases,

the intensity of the disturbance will decrease, and so will the degree of improvement

in the capture conditions that are achievable with each stage of narrow-band limiting.

When the frequency difference decreases to a value rmin' which is specifiable as a

small fraction of the limiter-filter bandwidth, the extraneous modulation caused by the

interference becomes sufficiently slow for the filter to follow it through quasi-stationary

states, and the disturbance will pass through unabated. The closer the amplitude inter-

ference ratio approaches unity, the smaller will be the value of rmin that marks the

limit of noticeable improvement in the capture. An analytic expression for rmin has

been derived, and will be presented in a later report.
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