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Abstract

A new theorem for noisy channels, similar to Shannon's in its general

statement but giving sharper results, is formulated and proven. It is shown

that the equivocation of the channel defined by the present theorem vanishes

with increasing code length. A continuous channel is defined in a manner that

permits the application of these results. Detailed proof of the equivalence of

this definition and Shannon's is given in an appendix.





INTRODUCTION

Information theory, in the restricted sense used in this paper, originated

in the classical paper of C. E. Shannon, in which he gave a precise mathema-

tical definition for the intuitive notion of information. In terms of this defini-

nition it was possible to define precisely the notion of a communication channel

and its capacity. Like all definitions that purport to deal with intuitive concepts,

the reasonability and usefulness of these definitions depend for the most part

on theorems whose hypotheses are given in terms of the new definitions but

whose conclusions are in terms of previously defined concepts. The theorems

in question are called the fundamental theorems for noiseless and noisy

channels. We shall deal exclusively with noisy channels.

By a communication channel we mean, in simplest terms, an apparatus for

signaling from one point to another. The abstracted properties of a channel

that will concern us are: (a) a finite set of signals that may be transmitted;

(b) a set (not necessarily finite) of signals that may be received; (c) the prob-

ability (or probability density) of the reception of any particular signal when

the signal transmitted is specified. A simple telegraph system is a concrete

example. The transmitted signals are a long pulse, a short pulse, and a pause.

If there is no noise in the wire, the possible received signals are identical with

the transmitted signals. If there is noise in the wire, the received signals will

be mutilations of the transmitted signals, and the conditional probability will

depend on the statistical characteristics of the noise present.

We shall now sketch the definitions and theorems mentioned. Let X

be a finite abstract set of elements x, and let p( ) be a probability distri-

bution on X. We define the "information content" of X by the expression

-E p(x) log2 p(x), where the base 2 simply determines the fundamental unit of
X

information, called "bit". One intuitive way of looking at this definition is to

consider a machine that picks, in a purely random way but with the given prob-

abilities, one x per second from X. Then -log 2 p(x o ) may be considered as

the information or surprise associated with the event that xo actually came up.

If each event x consists of several events, that is, if x = {a, b, . . . }, we have

the following meaningful result: H(X) < H(A) + H(B) + ... with equality if, and

only if, the events a, b, ... are mutually independent.

We are now in a position to discuss the first fundamental theorem. We

set ourselves the following situation. We have the set X. Suppose, further,

that we have some "alphabet" of D "letters" which we may take as 0, . . ., D-1.
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We wish to associate to each x a sequence of integers 0, ... ,D-1 in such a

way that no sequence shall be an extension of some shorter sequence (for

otherwise they would be distinguishable by virtue of their length, which

amounts to introducing a D+l t h "variable"). Now it is easy to show that a set

of D elements has a maximum information content when each element has the

same probability, namely 1/D. Suppose now that with each x we associate a

sequence of length N x . The maximum amount of information obtainable by

"specifying" that sequence is N x log2 D bits. Suppose N x log2 D = -log2p(x);

then p(x) Nx = H(X)/logZ D is the average length of the sequence. The first
X

fundamental theorem now states that if we content ourselves with representing

sequences of x's by sequences of integers 0, .. ., D-l, then if we choose our

x-sequences sufficiently long, the sequences of integers representing them

will have an average length as little greater then H(X)/log 2 D as desired, but

that it is not possible to do any better than this.

To discuss the second fundamental theorem, we now take, as usual, X to

be the set of transmitted messages and Y the set of received signals. For

simplicity we take Y finite. The conditional probability mentioned above we

denote by p(y/x). Let p( ) be a probability distribution over X, whose meaning

is the probability of each x being transmitted. Then the average amount of

information being fed into the channel is H(X) = - p(x) log 2 p(x). Since in gen-
X

eral the reception of a y does not uniquely specify the x transmitted, we

inquire how much information was lost in transmission. To determine this,

we note that, inasmuch as the x was completely specified at the time of trans-

mission, the amount of information lost is simply the amount of information

necessary (on the average, of course) to specify the x. Having received y,

our knowledge of the respective probability of each x having been the one

transmitted is given by p(x/y). The average information needed to specify x

is now - p(x/y) log2 p(x/y). We must now average this expression over the
X

set of possible y's. We obtain finally

E (y) p(x/y) loZ = -p p(x, y) log2 p(x/y) H(X/Y)
Y X X

often called the equivocation of the channel. The rate at which information is

received through the channel is therefore R = H(X) - H(X/Y). A precise state-

ment of the fundamental theorem for noisy channels is given in section II.
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I. For the sake of definiteness we begin by stating a few definitions and sub-

sequent lemmas, more or less familiar.

Let X and Y be abstract sets consisting of a finite number, a and 3, of

points x and y. Let p( ) be a probability distribution over X, and for each

xEX let p( /x) denote a probability distribution over Y. The totality of objects

thus far defined will be called a communication channel.

The situation envisaged is that X represents a set of symbols to be trans-

mitted and Y represents the set of possible received signals. Then p(x) is the

a priori probability of the transmission of a given symbol x, and p(R/x) is the

probability of the received signal lying in a subset R of Y, given that x has

been transmitted. Clearly, p(x) p(R/x) represents the joint probability of
xEQ

R and a subset Q of X, and will be written as p(Q, R). Further, p(X, R) = p(R)

represents the absolute probability of the received signal lying in R. (The use

of p for various different probabilities should not cause any confusion.)

The "information rate" of the channel "source" X is defined by H(X) =

- Z p(x) logp(x), where here and in the future the base of the logarithm is 2.
X

The "reception rate" of the channel is defined by the expression

p(x, y)
£ p(x, y) log > 0
X Y p(x)p(y)

If we define the "equivocation" H(X/Y) = - Z p(x, y) logp(x/y) then the recep-
X Y

tion rate is given by H(X) - H(X/Y). The equivocation can be interpreted as

the average amount of information, per symbol, lost in transmission. Indeed

we see that H(X/Y) = 0 if and only if p(x/y) is either 0 or 1, for any x, y, that

is, if the reception of a y uniquely specifies the transmitted symbol. When

H(X/Y) = 0 the channel is called noiseless. If we interpret H(X) as the aver-

age amount of information, per symbol, required to specify a given symbol of

the ensemble X, with p( ) as the only initial knowledge about X, then

H(X) - H(X/Y) can be considered as the average amount, per symbol trans-

mitted, of the information obtained by the (in general) only partial specification

of the transmitted symbol by the received signal.

Let now u(v) represent a sequence of length n (where n is arbitrary but

fixed) of statistically independent symbols x(y), and let the space of all

sequences be denoted by U(V). In the usual manner we can define the various

"product" probabilities. The n will be suppressed throughout. It is now
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simple to verify the following relations:

n

logp(u) = logp(xi), where u = {x 1 , ... n} (1)
i=l

n
logp(u/v) I= logp(xi/Yi)' where v = Y.. yn} (2)

i=l

H(X) Z p(u) logp(u) (3)
n/

(X/Y) 1 . E p(u, v) logp(u/v) (4)
n U V

The weak law of large numbers at once gives us the following lemma, which

is fundamental for the proof of Shannon's theorem (see also section V).

LEMMA 1. For any E, 6 there is an n(E, 6) such that for any n > n(E, 6) the

set of u for which the inequality H(X) + (1/n) logp(u)[ < E does not hold has

p( ) probability less then 6. Similarly, but with a different n(E, 6), the set

of pairs (u, v) for which the inequality H(X/Y) + (/n) logp(u/v) < E does not

hold has p( , ) probability less than 6.

In what follows we shall need only the weaker inequalities p(u)< 2n(H(X)-E)

and p(u/v) > 2 -n(H(X/Y)+E). The probability of these inequalities failing will

be denoted by 6 and 6+, respectively.

The following lemma is required to patch up certain difficulties caused by

the inequalities of lemma 1 failing to hold everywhere.

LEMMA 2. Let Z be a (u, v) set of p( , ) probability greater than 1 - 1 and

U a set of u with p(Uo)> 1 - 62. For each u E U let Au be the set of v's such

that (u, Au) E Z. Let U 1 C U be the set of u E U for which p(Au/u ) >1 - a.

Then p(U 1 ) > 1 - 56 -(1/a).
PROOF. Let U 2 be the set of u for which p(Au/u) > a, where Ac is the com-

plement of Au. Then p(u A >ap(u)for u E U2, and (uA) is, by the

2definition of A u , outside Z. Hence 5

> p(u, AC) > ap(UZ), or p(U2) aTu U ad sg =U- va
2

Thus p(U · Uo) ~<51/a and, using U = U - U · U2, we have
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p(U 1 ) = p(U o ) - p(Uo · U 2 ) > 1 - 6 2 a

II. We have seen that, by our definitions, the average amount of information

received, per symbol transmitted, is H(X) - H(X/Y). However, in the process

of transmission an amount H(X/Y) is lost, on the average. An obvious question

is whether it is, in some way, possible to use the channel in such a manner that

the average amount of information received, per symbol transmitted, is as

near to H(X) - H(X/Y) as we please, while the information lost per symbol is,

on the average, as small as we please. Shannon's theorem asserts (1), essen-

tially, that this is possible. More precisely, let there be given a channel with

rate H(X) - H(X/Y). Then for any e > 0 and H < H(X) - H(X/Y) there is an

n(e,H) such that for each n > n(e,H) there is a family {ui} of message sequences

(of length n) of number at least 2 nH, and a probability distribution on the {ui}

such that, if only the sequences {ui} are transmitted, and with the given prob-

abilities, then they can be detected with average probability of error less than

e. The method of detection is that of maximum conditional probability, hence

the need for specifying the transmission probability of the {ui}. By average

probability of error less than e is meant that if e i is the fraction of the time

that when u i is sent it is misinterpreted, and Pi is ui's transmission probabil-

ity, then 2, eiPi < e.
i

A sufficient condition (2) for the above-mentioned possibility is the

following:

For any e > 0 and H < H(X) - H(X/Y) there is an n(e, H) of such value that

among all sequences u of length n > n(e, H) there is a set {ui}, of number at

least 2 nH, such that:

1. to each ui there is a v-set Bi with p(Bi/ui) > 1 - e

2. the B i are disjoint.

What this says is simply that if we agree to send only the set {ui} and always

assume that, when the received sequence lies in B i, ui was transmitted, then

we shall misidentify the transmitted sequence less than a fraction e of the
time. As it stands, however, the above is not quite complete; for, if C is the

largest number such that for H < C there is an n(e, H) and a set of at least 2 nH

sequences u i satisfying 1 and 2, C is well defined in terms of p(X/Y) alone.
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However, H(X) - H(X/Y) involves p(X) in addition to p(X/Y). One might guess

that C is equal to l.u.b. (H(X) - H(X/Y)) over all choices of p( ). This is

indeed so, as the theorem below shows. Note the important fact that we have

here a way of defining the channel capacity C without once mentioning infor-

mation contents or rates. (Strictly speaking we should now consider the chan-

nel as being defined simply by p(y/x). ) These remarks evidently apply equally

well to Shannon's theorem, as we have stated it. We go now to the main

theorem.

THEOREM. For any e > 0 and H < C there is an n(e, H) such that among all

sequences u of length n > n(e, H) there is a set {ui}, of number at least 2 nH

such that:

1. to each u i there is a v-set Bi, with P(Bi/ui)> 1 - e

2. the B. are disjoint.
1

This is not possible for any H > C.

PROOF. Let us note here that if we transmit the u i with equal probability and

use a result of section III (namely Pe < e) we immediately obtain the positive

assertion of Shannon's theorem. We shall first indicate only the proof that the

theorem cannot hold for H > C, which is well known. Indeed if one could take

H > C then, as shown in section III one would have, for n sufficiently large,

the result that the information rate per symbol would exceed C. But this

cannot be (3). Q. E. D. In the following we will take p( ) as that for which the

value C is actually attained (4). We shall see, however, that no use of this

fact is actually made in what follows, other than, of course, C = H(X) - H(X/Y).

For given 6 E2, 62, let n 1 ( 1
· ), n 2 2(E2 ,6 2 ) be as in lemma 1 for

-n(H(X/Y)+E 1 ) -n(H(X)-EZ)
p(u/v) > 2 and p(u) < 2 , respectively. Let us hence-

forth consider n as fixed and n max(nl(E 1 l 1) n 2 (E 6 2)). For Z and U

in lemma 2 we take, respectively, the sets on which the first two inequalities

stated above hold. Then for any u E U 1 (with a as any fixed number <e) and

v in the corresponding A u we have:

p(u/v) 2-n(H(X/Y)+E 1) n(C-E1 -E2 )

p(u) -n(H(X)-E2 ) 

p(u, v) n(C-E 1 -E 2 )
> 2 p(v)

p(u)

6
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Summing v over Au we have

p(u, Au)

p(u) >

n(C-E 1 -E 2 )

Since 1 > p (Au/u ) we have finally

-n(C-E -E Z )
p(Au) < 2

Let ul,.. .,uN be a set M of members of U such that:

a. to each u there is a v-set B. with p(Bi/ui) > 1 - e

-n(C-E 1-E2 ) 1
b. p(Bi) < 2 (See footnote 5.)

1c. the Bi are disjoint

d. the set M is maximal, that is, we cannot find a uN+l and a BN+ 1

such that the set u 1 , . . . UN+l satisfies (a) to (c).

Now for any u E U 1 there is by definition an A such that p(Au/u) >, 1 -a

, -- -1 --, m 1 --- -- h. -,- 1 .I-A n(C E1 _- E 
I 1 - e ano as we nave seen aove,

for any u E U 1, Au - Au

P(A - A
uu . B)

p kU ) .u

* B. is disjoint from the B.,
-(C1 1~ 1i1

-n(C-E -E Z )
<Z

r'urtnermore,

and certainly

If u is not in M, we must therefore have

p(A -AP u u

In other words, P(Au . Bi/u ) > e - a, or
1 

Bi/u) >e - a, for all u E U1 -M U1 -M U 1

p( ZBi)=> Bi/u) p (U) {1
1 - M.U 1

+ (1-e) p(M · U 1 ) > (e-a)

if e 1/2, since then 1 - e > e - a.

p(Au)

certainly

Now

> (e-a)

+
11 -13 - P(M' U1) I [1 - a

7
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-n(C-E )
On the other hand, p Bi < N2(C- Hence

-n(C-E -2 )c
N2 > (e-a) 1 - 62 

-n(H(X)-E 2 )
If e > 1/2 then, using p(M U 1) < N2 , we would obtain

-n(C-,E I- F2) + -n(H(X)-E2)
NZ > (e-a) - 6 - - N2

Since the treatment of both cases is identical, we will consider e < 1/2.

To complete the proof we must show that for any e and H < C it is possible

to choose E l , EZ 6 62' a < e, and n >max (n1 ( 1, 6 n()' 2 6Z )in such a

way that the above inequality requires N> 2 n Now it is clear that, if, having

chosen certain fixed values for the six quantities mentioned, the inequality

fails upon the insertion of a given value (say N*) for N, then the smallest N

for which the inequality holds must be greater than N . Let us point out that

N will in general depend upon the particular maximal set considered.

We take N = 2 and a = e/2. Then we can take 61, 62, and E2 so small

and n so large that

162 ] is > say.

-n(C-H-e Z-e 1)
We obtain finally e/3 < 2 Choosing E2 and E1 sufficiently small

so that C - H - E 2 - E 1 > 0 we see that for sufficiently large n the inequality

-n(C-H-E -E )
e/3 < 2 1 fails. Hence for a = e/2, for E 1, E2 , 61, 62 sufficiently

nH
small the insertion of N =2 for N causes the inequality to fail for all n

n nH
sufficiently large. Thus N > N =2 for such n. Q. E. D.

It is worthwhile to emphasize that the codes envisaged here, unlike those

of Shannon, are uniformly good, i. e., the probability of error for the elements

of a maximal set is uniformly <e. These codes are therefore error correcting,

which answers in the affirmative the question as to whether the channel

8
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capacity can be approached using such codes (6).

If we wish to determine how e decreases as a function of n, for fixed H,

we have (7):

A -n(C-H-E 1 -E2
e a + , where A = B = 1 - 6

To eliminate the "floating" variable a, we proceed as follows. For a > 0

+1/ +
A _ _ _ _u + 6 I

a + A achieves its minimum value at a = 1

1 1 2 +) 1/2 (A6 1) + {
and this value, namely, A + ) is greater tha Bis greater than B

- If we take

(1/2 + 1 . /
a = B and e = A + ~B ~B Lj

then a < e. Hence B [A1/2 + (6t1) is an upper bound for the minimum

value of e which is possible for a given H. This expression is still a function

of E1 and E2. The best possible upper bound which can be obtained in the pres-

ent framework is to minimize with respect to 1 and E2. This cannot be done

generally and in closed form.

Let us remark, however, that at this point we cannot say anything con-

cerning a lower bound for e. In particular, the relation a < e is a condition

that is required only if we wish to make use of the framework herein

considered.

III. Let us consider a channel (i. e., (S, s), (R, r), p( ) and p( /s) where s

is a transmitted and r a received symbol) such that to each s there is an

r-set A s such that p(As/s) 1 - e and the A s are disjoint. For each r let

Pe(r) = 1 - p(sr/r) where sr is such that p(sr/r) >_ p(s/r) for all s sr . (Then

Pe(r) is simply the probability that when r is received an error will be made

9
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in identifying the symbol transmitted, assuming that whenever r is received

S r will be assumed to have been sent.) Now the inequality a a - 1 can be

used to show that

H(S/R)< -Pe logPe -(1 - Pe) log(l - Pe + Pe log(N-l)

where P =
e

C p(r) pe(r) and N is the number of symbols in S.
R

We now make use of the special properties of the channel considered. We

have

p(r)(l - p(sr/r)) = 1 -
R

p(r) p(sr/r)

=1-Z 
S A

S A

p(r) p(sr/r)

S

p(r) p(s/r)

z. p(r) p(sr/r)
R-EA

S s

Z p(r) p(so/r)
R-ZA

S ss

=1- Z
S-s A

0 S

p(r) p(s/r) -

S-s
A

S

p(r) p(so/r)

0

p(s) p(As/S) - p(so)P

p(s)(l-e) - p(so)(1-e) = e
S-s

0

where so is any s (8).

Then H(S/R) -e loge - (l-e) log (l-e) + e log(N-l) since for e < 1/2 the left

side of the above inequality is an increasing function of e. (We assume of

course e < 1/2.)

Let us consider the elements ul, ... , u N of some maximal set as the funda-

mental symbols of a channel. Then regardless of what p(ui) is, i = 1, . .. , N,

the channel is of the type considered above. Hence Pe < e (where e is as in

II) and

H(U/V) $<-e loge - (l-e) log(l-e) + e log (N-l)

Here H(U/V) represents the average amount of information lost per sequence

10
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transmitted. The average amount lost per symbol is 1/n H(U/V). Now for
N = Zn H and H < C, e = e(n) - 0 as n-co. Thus 1/n H(U/V) - O as n-oo. In

particular if we take p(ui) = 2 -nH, then 1/n [H(U) - H(U/V)] - H as n - co.

(This is the proof mentioned in footnote 2.)

Actually, a much stronger result will be proven, namely, that for N = 2n

H < C (and H fixed, of course) the equivocation per sequence H(U/V), goes to

zero as n -co. Since log (N-1) n, a sufficient condition that H(U/V) - 0 as

n -o-co is that e(n) n -0 as n -oo.

We saw that eB [A1/2+( j + 6 where B= 1-6 and A=Z

Now if we take E1 , E2 sufficiently small so that C - H - E1 - E2 > 0 and

H(X)- H - E > 0, then the behavior of 6 as n - oo is the only unknown factor

in the behavior of e. If the original X consists of only x l, x2 , and Y consists

of only yl, Y2, and if p(xl/y 2 ) = p(xZ/yl), then log p(x/y) is only two-valued.

If we take E 1 = E(n) as vanishing, for n -co, faster than n- , then a theorem

on large deviations (9)is applicable and shows that 6 and hence e, approaches1'
zero considerably faster than 1/n.

We omit the details inasmuch as a proof of the general case will be given

in section V.

IV. Up till now we have considered the set Y of received signals as having

a finite number of elements y. One can, however, easily think of real situ-

ations where this is not the case, and where the set Y is indeed nondenumer-

able. Our terminology and notation will follow the supplement of (10).

We define a channel by:

1. the usual set X and a probability distribution p( ) over X

2. a set of points 

3. a Borel field F of subsets A of 2
4. for each x E X, a probability measure p( /x) on F.

We define the joint probability p(x, A) = p(x) p(A/x) and p(A) = p(X, A) =

z p(x, A). Since p(x, A) < p( ) for any x, A, we have by the Radon-Nikodym
X
theorem

4. 1 p(x, A) = f p(x/w) p(dw) where p(x/w) may be taken as 1 for all x, .
A

11
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As the notation implies, p(x/w) plays the role of a conditional probability.

We define H(X) = -Z p(x) logp(x), as before. In analogy with the finite
X

case we define

4. 2 H(X/Y) = - I logp(x/w) p(x, d)
X

To show that the integral is finite, we see first, by section 4. 1 that

p(. p(x/ ) = }) = O

Furthermore, putting

1
Ai = i+ < p(x/w) 1i}

we have, since P(Ai) p( () = 1, that

P(Ai) 1

I p(x/o) p(dw) -< 2i iAi 2 2

Hence

4. 3 p , < p(x/w) < i) <i

We therefore have

4. 4 -flogp(x/ (x,dw)< i+ < co
i=O 2 i

by the ratio test.

Everything we have done in sections I, II, and III can now be carried over

without change to the case defined above. A basic theorem in this connection

is that we can find a finite number of disjoint sets Aj, z Aj = 2 such that
j J

- Z p(x, A.j) logp(x/A.) approximates H(X/Y) as closely as desired. Since
Xj

we make no use of it, we shall not prove it, though it follows easily from the

results given above and from standard integral approximation theorems.

V. We shall now show that e = e(n) goes to. zero, as n -oo, faster than

l/n, which will complete the proof that the equivocation goes to zero

12



as the sequence length n -oo.

As previously mentioned, it is the behavior of 61' of lemma 1 that we

must determine. The mathematical framework briefly is as follows.

We have the space X ® 2 of all pairs (x, a) and a probability measure p( ,

on the measurable sets of X2 Q. We consider the infinite product space
00

II ® (X ® Q)i and the corresponding product measure
i=1

00

i ® Pi ( )-Poo( )
i=l

oo

Let us denote a "point" of II ® (X ) )i by (xo, W) {(X1, Ql)' (x 2,' w2)...
i=l

We define an infinite set of random variables {Zi}, i = 1, ... on

co

7I ® (x®)4i
i=l 1

by Zi(x m , X ) = -log p(xi/i), that is, Z i is a function only of the ith coordinate

of (x , OO). Clearly the Z i are independent and identically distributed; we

shall put E(Zi) for their mean value. From section 4. 4 we know that the Z i

have moments of the first order. (One can similarly show, using the fact that

oo (,+l)n
00 > (i+l) for any n> 0,

i=O 2

that they have moments of all positive orders.)
n

Let Sn = Z Zi Then the weak law of large numbers says that for
i=l

any E1 , 61, there is an n(E 1l, ) such that for n > n(E1 ,1 5) the set of
S

points (x , O) on which n E(Z1 ) > E has p(, )measure less than 1

Now, in the notation of section I, Sn(Xo0 c%) = -logp(u/v) where u = {x 1, ., xn}

and v = {1l ., wn}, while H(X/Y) = X f -logp(x/w) p(x, dw) = E(Z 1 ). What we

have stated, then, is simply lemma 1.

Now, we are interested in obtaining an upper bound for

Probfi -nE(Z 1 )> E}

More precisely we shall find sequences E1 (n) and 1 (n) such that, as n -o,

E 1 (n)--0, 6,(n)- -0 faster than l/n, and n(E (n), (n)) = n.

Let Z = Z. whenever Z < r, and Zr) = 0 otherwise. By section 4. 3,
1 1 1 1

13
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Z(r) and Z differ on a set of probability 1/2r.
1

Let S(r) = Z, Zi ;
n =li=l

and S ( r ) differ on a set of probability <I - (1 - 2 -r)n < n/2 r .
n

E(Z 1 )- E(Z r) < o
i=O

Furthermore

r+ +i

2 r+i

by the same argument which led to section 4. 4. We thus have:

Prob -n E(Z1 ) > El (nsnn
S(r)

< Prob {n
n

-E(Z 1 ) >~ E (n)}

(r)
< Prob n rn (Z (r1)) 1()}

rs(r) )since E(Z1 ) >_ E(Z ( r)) In order to estimate Prob { - E(Z (r)) > -E(n)} we

use a theorem of Feller (11) which, for our purposes, may be stated as follows:

THEOREM. Let {Xi}, i = 1, . .. , n be a set of independent, identically
n

buted, bounded random variables. Let S = Z X. and let
i=l 1

distri-

F(x) = Prob {S - n E(X 1 ) x}

Put o2 = E([X1 - E(X 1 )] 2 ) and take >

we have

sup IX1 - E(X 1 )I

1/2cn
Then if 0 < Xx < 1/12

1 - F(xo-n/2) = exp[-1/2x (x)] [{1 - (x)} + 0 exp(-1/2x2)]

where

< 9, IQ(x)I < (1 - 12x) and (x) (2ki - izx (z~r )1/

X

100
exp[-y2/2] dy

In order to apply this theorem, we take r = r(n). Now

((r) E(r) - E(Z(r))] )

Hence for suitably large n, 3 0(Z 1 ):0 2~~

-0-(Z 1 ) as r -oo

>0(Z ))>(Z 1)for n no

14
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now take X - X(n)= -(z) r(n).

We henceforth consider n > no. We now have:

(s(r)

Prob t n E(z(r )) E EI(n)} = Prob { S(r) - n E(Z(r))>n E(n)}1I

=- Prob S(r)
E1 ( n )

- n E(z(r)) (Zr)) n/21 _ (~

•< Prob { (r) _ n

n 1 /2

1/2 2E 3(zn) 3 3(Z 1) J

+ 9 exp(- + 9kex( rj

Using

- (x) ~ I exp(-
(2Tr) 1/2 x

or

1 - (x) S 2 exp (-

we may rewrite the above as

2

2 )

[ 6Xx 1 9x +E7(1 - 12Xx)-1, X+
2 

(?r ) x 2

Now X X(n) 
znl/Z

(Z 1 ) r(n)
a (I)

and x = 1/2 ZE l(n)
n 3 (Z l )

[ 6kx
exp~x2 [7(1 - 12\x) - 2 i, i~f.(n) + + z2 2 r(n)

15
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It is now clear that we can pick E (n) and r(n) so that X(n) --0, x - x(n) -oo,

Xx - 0 and (n) - 0 faster than /n.

Let us point out that by using the approximation theorem of section III and

thus having to deal with -log p(x/Aj), which is bounded, we can eliminate the

term n/2'(n. This makes it likely that Feller's theorem can be proven, in

our case, without the restriction that the random variables be bounded. There

is in fact a remark by Feller that the boundedness condition can be replaced by

the condition that Prob { XiI > n} is a sufficiently rapidly decreasing function

of n. But any further discussion would take us too far afield.

VI. We have, up to this point, insisted that the set X of messages be finite.

We wish to relax this condition now so that the preceding work can be applied

to the continuous channels considered by Shannon (1) and others. However,

any attempt to simply replace finite sums by denumerable sums or integrals

at once leads to serious difficulties. One can readily find simple examples

for which H(X), H(X/Y) and H(X) - H(X/Y) are all infinite.

On the other hand, we may well ask what point there is in trying to work

with infinite message ensembles. In any communication system there are

always only a finite number of message symbols to be sent, that is, the trans-

mitter intends to send only a finite variety of message symbols. It is quite

true that, for example, an atrociously bad telegrapher, despite his intention

of sending a dot, dash, or pause, will actually transmit any one of an infinite

variety of waveforms only a small number of which resemble intelligible sig-

nals. But we can account for this by saying that the "channel" between the

telegrapher's mind and hand is "noisy," and, what is more to the point, it is

a simple matter to determine all the statistical properties that are relevant

to the capacity of this "channel." The channel whose message ensemble con-

sists of the finite number of "intentions" of the telegrapher and whose received

signal ensemble is an infinite set of waveforms resulting from the telegrapher's

incompetence and noise in the wire is thus of the type considered in section IV.

The case in which one is led to the consideration of so-called continuous

channels is typified by the following example. In transmitting printed English

via some teletype system one could represent each letter by a waveform, or

each pair by a waveform, or every letter and certain pairs by a waveform, and

so on. We have here an arbitrariness both in the number of message symbols

and in the waveforms by which they are to be represented. It is now clear that

16



we should extend the definition of a channel and its capacity in order to include

the case given above.

DEFINITION. Let X be a set of points x and 2 a set of points w. Let F be

a Borel field of subsets A of 2, and let p( /x) be, for each x E X, a probabil-

ity measure on F. For each finite subset R of X the corresponding channel

and its capacity CR is well defined by section IV. The quantity C = 1. u.b. CR

over all finite subsets R of X will be called the capacity of the channel

{X, p( /x), }.

Now for any H < C there is a CR with H < CR C, so that all our previous

results are immediately applicable.

We shall now show that the channel capacity defined above is, under suit-

able restrictions, identical with that defined by Shannon (1).

Let X be the whole real line, and 2, w, F, and A as usual. Let p(x) be

a continuous probability density over X and for each A E F, let p(A/x) satisfy

a suitable continuity condition. (See the Appendix for this and subsequent

mathematical details.) Then p(A) - p(x)p(A/x) dx is a probability meas-
-o

ure. Since p(x, A) p(x)p(A/x) is, for each x, absolutely continuous with

respect to p(A) we can define the Radon-Nikodym derivative p(x/w) by

p(x, A) = f p(x/w)p(d). Then, with the x-integral taken as improper, we

can define

Cp - dx p(x, dw) log p- /) O
_o p (x)

If we put Cs = l.u.b. Cp over all continuous probability densities p(x), then

C s is Shannon's definition of the channel capacity. The demonstration of the

equivalence of C, as defined above, and C s is now essentially a matter of

approximating an integral by a finite sum, as follows:

If Cs is finite, then we can find a Cp arbitrarily close to C; if Cs = +oo we

can find Cp arbitrarily large. We can further require that p(x) shall vanish

outside a suitably large interval, say [-A, A]. We can now find step-functions

g(x) defined over [-A, A] that approximate p(x) uniformly to any desired degree

of accuracy, and whose integral is 1. For such a step-function, Cg is well

defined and approximates Cp as closely as desired by suitable choice of g(x).
n

Let g(x) have n steps, with area Pi, and of course , pi = 1. By suitably
1

17
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choosing positive numbers aij, integers N. and points xij, with x.. lying in
th 1the i step of g(x) and . = p, we can approximate

j=l 1J 

A n N.
p(A) - Wg(x) p(A/x) dx by Z Z a.. p(A/xij)

A i=l j=l a ij

and hence Cg by C R , where R = {xij } . Thus C > C s . On the other hand, let
R = {xi}, not as taken above. Let p(xi) be such that H(X) - H(X/Y) = CR. Then
the singular function Z p(xi) 6(x - xi), where 6( ) is the Dirac delta-function,

i
can be approximated by continuous probability densities p(x) such that C

P
approximates C R . Hence C s > C, or C = C s .

This can clearly be generalized to the case in which X is n-dimensional
Euclidean space.

VII. We now wish to relax the condition of independence between successive
transmitted symbols. Our definitions will be those of Shannon, as generalized
by McMillan, whose paper (1) we now follow.

By an alphabet we mean a finite abstract set. Let A be an alphabet and I
the set of all integers, positive, zero, and negative. Denote by A I the set of

all sequences x = (...,X_1 x o , 1 . . ) with xt E A, t E I.
A cylinder set in AI is a subset of A I defined by specifying an integer n 1,

a finite sequence a, . . , an_- of letters of A, and an integer t. The cylinder

set corresponding to these specifications is {x E AI/xt+k = ak, k = 0 . n-l}.
We denote by FA the Borel field generated by the cylinder sets.

An information source [A, 1 ] consists of an alphabet A and a probability
measure [i defined on FA. Let T be defined by T(. . ., x_, x x, 2 , . .) =

(. * *, x' x' )wherex = t+. Then [A, p.] will be called stationary if,

for S E FA, [.(S) = p.(TS) (clearly T preserves measurability) and will be called
ergodic if it is stationary and S = TS implies that [i(S) = 1 or 0.

By a channel we mean the system consisting of:
1. a finite alphabet A and an abstract space B.
2. a Borel field of subsets of B, designated by I, with B E j

I 0
3. the Borel field of subsets of B I- II X) B. (where B. = B) which we define

oo -00 1 1
in the usual way, II ) p, and designate F.

--04. a function I 4. a function v which is, for each x E A, a probability measure on F P

18



1 2
and which has the property that if xt = xt for t n, then v 1 (S)= v 2 (S)

x x
n

for any S E F of the form S S 1 ® S 2 , where S 1 E II® p and
00

S = (D B.
n+l

Consider a stationary channel whose input A is a stationary source [A, i].
I I I

Let C I = AI B I and F C = F A ) F. We can define a probability measure on

F C by p(R, S) p(R)S) = fR vx(S) dp(x) for R F A , S E F, assuming certain

measurability conditions for vx(S). It is then possible to define the information

rate of the channel source, the equivocation of the channel, and the channel

capacity in a manner analogous to that of section I. Assuming that i'( ) and

p( , ) are ergodic, McMillan proves lemma 1 of section I in this more gen-

eral framework. Hence the proof of section III remains completely valid,

except for the demonstration that the theorem cannot hold for H > C.

The difficulty that we wish to discuss arises in the interpretation of p( /u).

A glance at McMillan's definitions shows that p(B/u) no longer can be inter-

preted as "the probability of receiving a sequence lying in B, given that the

sequence u was sent." This direct causal interpretation is valid only for

vx( ). But the result of the theorem of section II is the existance of a set ui

and disjoint sets B i such that p(Bi/ui) > 1 - e. Under what conditions can we

derive from this an analogous statement for Vu. (Bi)?
1

Suppose that for a given integer N we are given, for each sequence

X 1 ... , XN+l of message symbols, a probability measure v( /x 1 , . . ., xN+l)

on the Borel field P of received signals (not sequences of signals). We envis-

age here the situation in which the received signal depends not only upon the

transmitted symbol N+1 but also upon the preceding N symbols which were

transmitted.

If u = l, Xn} then

P(X-N+I' ' ' Xn)

[X-N+1' '' Xo] P(X 1,..., n)

X[v( /Xn-N.. x)® . ®v( /XN+1 ** Xl)]

Let us write the bracket term, which is a probability measure on received

sequences of length n, as vn( /XN+l Xn). Now if P(Bi/ui)> 1 - e, then,

19

---



since

P(X-N+l,' . .Xn) 1

[XN+, .. , Xo] P(X1' * * Xn)

there must be at least one sequence {XN+1 ..., xn} for which

n (Bi/X-N+ 1 ' .. Xn)> 1 - e

A minor point still remains: we had 2 n H sequences u i and we now have the

same number of sequences, but of length n + N. In other words, we are trans-

mitting at a rate H' = (n/n+N) H. But since N is fixed we can make H' as near

as we choose to H by taking n sufficiently large; hence we can still transmit

at a rate as close as desired to the channel capacity.

It is evident that by imposing suitable restrictions on vx( ) we can do the

same sort of thing in a more general context. These restrictions would

amount to saying that the channel characteristics are sufficiently insensitive

to the remote past history of the channel.

In this connection some interesting mathematical questions arise. If we

define the capacity following McMillan for the v( /x 1 .. ., xN+l) as above, is

the capacity actually achieved? It seems reasonable that it is, and that the

channel source that attains the capacity will automatically be of the mixing

type (see ref. 12, p. 36, Def. 11. 1; also p. 57) and hence ergodic. Because

of the special form of vx( ) it easily follows that the joint probability measure

would likewise be of mixing type and hence ergodic.

The question of whether or not the equivocation vanishes in this more gen-

eral setup is also unsettled. Presumably one might be able to extend Feller's

theorem to the case of nonindependent random variables that approach indepen-

dence, or perhaps actually attain independence when far enough apart. To my

knowledge nothing of this sort appears in the literature.

Finally there is the question of whether or not, in the more general cases,

the assertion that for H > C the main theorem cannot hold is still true. While

this seems likely, at least in the case of a channel with finite memory, it is

to my knowledge unproven.

20
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APPENDIX

It is our purpose here to supply various proofs that were omitted in the

body of the work.

1. H(X) - H(X/Y) is a continuous function of the p(xi), i = 1, ... , a.
PROOF. H(X) is clearly continuous. To show the same for H(X/Y) we need

only show that for each i, -p(xi) f log p(xi/w) p(dw/xi) is a

tion of p(x 1 ), .. ., (xa).

p(x i , dw)
p (Xi/) = p (dw)

continuous func-

Now

p (d/x.)
= P(Xi) p(do)

But since p(A/xi) p(A), we have (see ref.
i

13, p. 133)

p (do/x i )

Z p(do/xi)
i

p(dw/x i )

p(dw)

p(dw/x i )

p (dw)

p(do)

Z p(dw/x )
i

Z p(Xi ) p(dw/x i )i
Z p(dc/xi)
i

almost everywhere with respect to p( /x.) and hence,
i

everywhere with respect to each p( /xi).

p (dw/x i ) p (dw/x i )

p (da) - Z p(dw/xi
i

certainly,

Thus

Z P(x i ) P(dw/xi )
i

i

almost everywhere with respect to p( ). The dependence on the p(xi) is now

explicitly continuous, so that each p(xi/w) is a continuous function of

p(x 1 ) . . ., P(X ) almost everywhere with respect to each p( /x i ).

to show that -p (xi) f
We now wish

log p(xi/o) p/dw(xi) is a continuous function of the p(xi).

To this end let {pj(xl), . . , p(x ), j = 1, . . . be a convergent sequence of

points in a-dimensional Euclidean space R a, with limit {Po(xl),...,po(Xa)}.

Then we have lim p(xi/w) = po(xi/w) almost everywhere with respect to each
, JjJ0oo

P( /x). We must now show that

-pj(xi) f log pj(xi/°) p(dw/xi) -Po(xi) log po(xi/w) p(do/xi).

21
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Suppose, first, that Po(xi) * 0. Now from section IV we have

p (dco/x i )

z p(do/x i )
i

Z P(Xi ) (dw/xi )
i L

Z p(dco/xi)
i

p(do/xi) < oo

whenever p(xi) 0.

JQ

42

Take p(xi) = p(x2 ) = .. p(xa) = 1/a.

P (dc/x. )
- log a p(d/xi) p(d)/xi) <

i

p (dc/x i)
- log z p(d/xi) p(dc/xi) < oo.

or clearly

But

p (d o/x i )

- log - p(dw/xi )
i

pj(xi)p (d/x i)
i i

Z p(dw/xi)
i

p(d /x )
i

Since the last term is also bounded below by log pj(xi),

p. 110, we have

, j= 1, 2,.

then by reference 14,

- log . p(do/xi)

i

- log p(dw/x)p( d w/x )

i
Pj (i ) P (d°/x i )

Z p (dw/X i )
i

Z pj(xi) p(d /x i )
i
Z p(d/x i )
i

p (d/xi)

} p(do/x i )

Since po(Xi) 0, -P (x )

- log Pj(Xi)

-log po (x i )

log p(xi/w) p(dw/xi) = Pj(xi)

p(dc/xi) /

Z p(dw/xi)

41p(dc/xi)
i p(di/x )

1 Pj(xi) p(dwc/xi) t
i p
Z p(dw/xi)
i

IZ Po(Xi)P(dw/xi))

i P (dco/x )

= -P 0 (Xi) f log P(Xi/w) p(dw/xi)

22
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If po(xi) = O, we can clearly assume pj(xi) O, since we have to show that

-P (xi) f log pj(xi/w) p(dw/xi) - O. As before we have

pj(xi/() p (dw/xi)

J 1 therefore

pj(xi) i

-lo(g) -lo P lgi/) p(d/xl) pj (xi -lo therefor P (dw/x.)

i

+ pj(xi) log pj(xi) - ° as pj(xi)- (i. e., as j--o).

2. We wish here to rigorize the discussion of section VI.

We assume that p( /x) satisfies the following continuity condition: For any

finite closed interval I and any E there is a (I, E) such that

I (A/x 2 ) -p(A/xz ) - 1 < E for I xl -x2 6 and, x lx2 e I,

whenever p(A/x2 ) 0. It follows that if, for x 1 E I, p(A/xl) = 0, then for

x 2 E I and xl - x2 I < 6, p(A/x 2 ) = 0. (Indeed, since {x/p(A/x) = 0} is evi-

dently both open and closed, for any A, p(A/x) either vanishes everywhere
00

or nowhere.) That p(A) -f p(x) p(A/x) dx is a probability measure is

a simple consequence of reference 14, p. 112, Theorem B. Since p(x) p(A/x)

is continuous, p(A) can vanish only if p(x) p(A/x) is zero for all x. Hence,

for all x, p(x) p(A/x) is absolutely continuous with respect to p(A).

We can sharpen this result as follows: Let I be a closed interval over

which p(x) # 0. Then for a given E we can find a 6 such that p(x 1 )> p(x 2 )/2

and p(A/xl) > (-E) p(A/x2), for xl, X2 E I and I x1 - x 21 < 6. We thus have

p(x) p(A/x) dx > 28 2 p(A/x2 )(1-E) = 6 p(x2 )(1-E) p(A/x2)

Thus for any x 2 E I,

1
P(X2) P(A/xz) _< (1-E)8 p(A) k(x2) p(A)

23
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which defines k(x 2 ) < oo. As in section IV, we can easily show that

-00 < - I
Q

log p(x/w) p(x, d@) < oo for all x.

f p(x, do) log - < f• p(x, dwo) p(x)

= p(x//) p(d ){ - I log e = 0,

the next to last equality being justified by reference 14, p.
p (x/w)

if f p(x, do) log -- is, say, continuous in x, then
p (x)

a
lim 
a-o a

133. Therefore,

p (x/w)
p(x, do) log dx

p (x)

is meaningful and is either positive or equal to +oo.
p (x/@)

We shall now show that p(x, dw) log is indeed continuous. 
p (x)

this end let xi be a convergent sequence of real numbers with limit xO .

shall show that p(xi/o) --p(xo/) almost everywhere with respect to p(x o ,

['0o

We

(Since for p(x0 ) = this assertion is trivially true, we assume that p(xo0 O ).)

Let A' = {P[(Xi/w) - p(xo/) > l/n} and A- =in in

p(xi) p(A/xi
) - p(xo) p(Atn/xo) =in in

ifAin

{p(xi/() - p(xo/w) < - /n - Now

(p(xi/w) - p (xo/w)) p(dw) > 1/n p(A ).in

There is clearly no loss in generality in assuming p(xi) 0.

p (Ai /xi) - p(A/xo)
p(xo )

k(xo) n p(xi) p (A/Xo) +
p(Xo) - p(Xi)

p(x i )
p (A+/Xo)

P(k o )
Now

k(xo) n (xi)
+
p(Xo)- P(Xi)

P(xi)
is positive and bounded away from zero for all

i sufficiently large. By the continuity condition on p( /x) we therefore have

p(A+n/xo)= 0 for i > i(n) suitably chosen. We get a similar result for

p(ATn/xo). Let A be the set of points which lie in infinitely many Ai, and
similarly for An in( ) 

similarly for An. Then p (A /x o = 0, and so,-
24
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P A++ An/X) = (xo (An n))

But for any w E - A + - A- ,P(i/w ) -- p(xo/w), which was to be shown.
n n

As before, let x i be a convergent sequence with limit x.

a. Let us assume first that p(xo) # 0. Now

fIU -logp(x/w) p(d°/x ) - f - log P(xi/C) p (dw/xii)

= f f lo [- (x 0 /w) + log P(xO/)] p(dw/x) f - log P(xi/) p(dw/xi)

+ f -log P(xi/C) p(dw/xo)j I f [-log p(xo/) + log p(xi/w)] p(dw/x) 

+ f I log p(x i/ c) p(dw/x) - I - log P(xi/w) p(d°/xi)>

To show that the first of the last two terms goes to zero, we remark, first,

that since p(xo) # 0 and p(A/xo) -< (l+a) p(A/xi) for any A, for i suitably large,

it follows, as in section IV, that

-log P(Xi/) R} - log P(Xi/) p(d/xo)

is uniformly bounded for all i, where we use the previously shown result that

p(x) p(A/x) < k(x) p(A) < M p(A) for M suitably chosen and x in a closed inter-

val containing x o . It is now a simple exercise, by using reference 14, p. 110,

to justify the interchange of limit and integration, so that the term in question

vanishes as i -oo. The relation p( /x) < (l+a) p( /xi) < (l+a) 2 p( /x ), with

a - 0 as i -coo, at once shows that the second trm likewise vanishes as i -oo.

b. Now suppose that p(xo) = 0. Then by definition we take

I - log p(xO/) p(x O , do) = 0

If p(x) is identically zero in some neighborhood of x there is nothing to be

proven. We can then assume that p(xi) 0. For a closed interval containing

x ° and the x i , we have, for Ixi - x sufficiently small (or equivalently, i and
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j sufficiently large) that p( /xi) (-E) p( /xj).

p (d/xj)
P(x./W) :3 P(Xi) -(l-E).

p (dw)

Thus

Hence

P (dc/xj)

- log p(xi/c) - log [p(xi)(l-E)] - log
1 ~~1 p(dc)

for fixed j and any i, both sufficiently large.

p(xj) p(A/xj) = M p(A) for suitable M. Hence

Further, since p(xj) O,

1 p(x.)
P(Xi) P(A/xi) < 1E p(x) M p(A)

Since p(x ) - 0, we have, for sufficiently large i, p(xi) p(A/xi) p(A), so that

P(xi/w) _< 1 or -log p(xi/w) > 0. Therefore

J12- log P(xi/C) p(x i , dw) < - p(xi) log [p(Xi)(l-E)]

+ P(xi) .
p (dw/xj)

- log p(dcw/xi)
p(dw) 1

As i approaches oo, the last integral approaches

p (dc/xj)

- log p(dw0/xo), which is <o,
p (dco)

using arguments as in section IV.

4Q
- log p(xi/W) P(xi, dw) - 0

Since p(x i ) - 0, we have, finally,

as i -oo.
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