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Abstract

Some simple constructive procedures are given for coding sequences of symbols to

be transmitted over noisy channels. A message encoded by such a process transmits

a positive amount of information over the channel, with an error probability which the

receiver may set to be as small as it pleases, without consulting the transmitter. The

amount of information transmitted is less than the channel capacity, so the procedures

are not ideal, but they are quite efficient for small error probabilities. It is shown that

there exist codes of the same error-free character which transmit information at rates

arbitrarily near the channel capacity.



I - - '-

l



INTRODUCTION

This report (1) describes constructive procedures for encoding messages to be sent

over noisy channels so that they may be decoded with an arbitrarily low error rate. The

procedures are a kind of iteration of simple error-correcting codes, such as those of

Hamming (2) and Golay (3); any additional systematic codes that may be discovered,

such as those discussed by Reed (4) and Muller (5), may be iterated in the same way.

The procedures are not ideal (1): the capacity of a noisy channel for the transmis-

sion of error-free information using such coding is smaller than information theory says

it should be. However, the procedures do permit the transmission of error-free infor-

mation at a positive rate. They also have these two properties:

(a) The codes are "systematic" in Hamming's sense: They are what Golay calls

"symbol codes" rather than "message codes." That is, the transmitted symbols are

divided into so-called "information symbols," and "check symbols." The customer who

has a message to send supplies the "information symbols," which are transmitted

unchanged. Periodically the coder at the transmitter computes some "check symbols,"

which are functions of past information symbols, and transmits them. The customer

with a short message does not have to wait for a long block of symbols to accumulate

before coding can proceed, as in the case of codebook coding, nor does the coder need

a codebook memory containing all possible symbol sequences. The coder needs only

a memory of the past information symbols it has transmitted and a quite simple com-

puter.

(b) The error probability of the received messages is as low as the receiver cares

to make it. If the coding process has been properly selected for a given noisy channel,

the customer at the receiver can set the probability of error per decoded symbol (or

the probability of error for the entire sequence of decoded symbols transmitted up to

the present, or the equivocation of part or all of the decoded symbol sequence) at as low

a value as he chooses. It will cost him more delay to get a more reliable message,

but it will not be necessary to alter the coding and decoding procedure when he raises

his standards, nor will it be necessary for less particular and more impatient customers

using the same channel to put up with the additional delay. This is again unlike code-

book processes, in which the codebook must be rewritten for all customers if any one

of them raises his standards.

Perhaps the simplest way to indicate the basic behavior of such codes is to describe

how one would work in a commercial telegraph system. A customer entering the

telegraph office presents a sequence of symbols that is sent out immediately over a

noisy channel to another office, which immediately reproduces the sequence, adds a

note "the probability of error per symbol is 101, but wait till tomorrow," and sends

it off to the recipient. Next day the recipient receives a note saying "For 'sex' read
-2

'six'. The probability of error per symbol is now 10 , but wait till next week." A week

later the recipient gets another note: "For 'lather' read 'gather'. The probability of
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error per symbol is now 10-4 , but wait till next April." This flow of notes continues,

the error probability dropping rapidly from note to note, until the recipient gets tired

of the whole business and tells the telegraph company to stop bothering him.

Since these coding procedures are derived by an iteration of simple error-correcting

and detecting codes, their performance depends on what kind of code is iterated. For

a binary channel with a small and symmetric error probability, the best choice among

the available procedures is the Hamming-Golay single-error-correction, double-error-

detection code developed by Hamming (2) for the binary case and extended by Golay (3)

to the case of symbols selected from an alphabet of M different symbols, where M is

any prime number. The analysis of the binary case will be presented in some detail

and will be followed by some notes on diverse modifications and generalizations.

ITERATED HAMMING CODES

First-Order Check

Consider a noisy binary channel that transmits each second either a zero or a one,

with a probability (1 - po ) that the symbol will be received as transmitted and a prob-

ability p0 that it will be received in error. Error probabilities for successive symbols

are assumed to be statistically independent.

Let the receiver divide the received symbol sequence into consecutive blocks, each

block consisting of N1 consecutive symbols. Because of the assumed independence of

successive transmission errors, the error distribution in the blocks will be binomial:

there will be a probability

N
P(O) = (1 - po )

that no errors have occurred in a block, and a probability P(i)

NN1' N -i
P(i) = il(N 1 i) p - ) (1)

that exactly i errors have occurred.

If the expected number of errors per received block, NP o , is small, then the use

of a Hamming error-correction code will produce an average number of errors per

block, Np 1 , after error correction, which is smaller still. Thus P1, the average prob-

ability of error per position after error correction, will be less than po. An exact com-

putation of the extent of this reduction is complicated, but some inequalities are easily

obtained.

The single-error-correction check digits of the Hamming code give the location of
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any single error within the block of N1 digits, permitting it to be corrected. If more

errors have occurred, the check digits give a location which is usually not that of an

incorrect digit, so that altering the digit in that location will usually cause one new

error, and cannot cause more than one. The double-error-detection check digit tells

the receiver whether an even or an odd number of errors has occurred. If an even

number has occurred and an error location is indicated, the receiver does not make the

indicated correction, and thus avoids what is very probably the addition of a new error.

The single-correction, double-detection code, therefore, will leave error-free blocks

alone, will correct single errors, will not alter the number of errors when it is even,

and may increase the number by at most one when it is odd and greater than one. This

gives for the expected number of errors per block after checking

,<N 1 <N 1

N 1PI E iP(i) + E (i+l) P(i)

even i>,2 odd i>,3

N1

< P(2) + X (i+l) P(i)
i=3

N

< 3 (i+1) P(i) - P(O) - 2P(1) - P(2)

i=O

< 1 + N1P - P(O) - 2P(1) - P(2). (2)

Substituting the binomial error probabilities from Eq. 1, expanding, and collecting

terms, gives, for N Po < 3,

Nlp1 N 1(N 1 - 1) po

P1 (N 1 - 1) po < N 1Po (3)

The error probability per position can therefore be reduced by making N1 suffi-

ciently small. The shortest code of this type requires N 1 = 4, and the inequality, Eq. 3,

suggests that a reduction will therefore not be possible if po > 1/3. The fault is in the

inequality, however, and not the code: for N1 = 4 it is a simple majority-rule code that

will always produce an improvement for any po < 1/2.

A Hamming single-correction, double-detection code uses C of the N positions in

a block for checking purposes and the remaining N - C positions for the customer's

symbols, where

C = [log2 (N-l) + 2] (4)

(Here and later, square brackets around a number denote the largest integer which is
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less than or equal to the number enclosed. Logarithms will be taken to the base 2 unless

otherwise specified. )

Higher Order Checks

After completing the first-order check, the receiver discards the C 1 check digits,

leaving only the N1 - C1 checked information digits, with the reduced error probability

P1 per position. (It can be shown that the error probability after checking is the same

for all N1 positions in the block, so that discarding the check digits does not alter the

error probability per position for the information digits. ) Now some of these checked

digits are made use of for further checking, again with a Hamming code. The receiver

divides the checked digits into blocks of N2; the C2 checked check digits in each block

enable, again, the correction of any single error in the block, although multiple errors

may be increased by one in number. In order for the checking to reduce the expected

number of errors per second-order block, however, it is necessary to select the loca-

tions of the N2 symbols in the block with some care.

The simplest choice would be to take several consecutive first-order blocks of

N1 - C1 adjacent checked information digits as a second-order block, but this is guaran-

teed not to work. For if there are any errors at all left in this group of digits after the

first-order checking, there are certainly two or more, and the second-order check can-

not correct them. In order for the error probability per place after the second-order

check to satisfy the analog of Eq. 3, namely,

2 2
pj.< (Nj - 1) pl < Njpl (5)

it is necessary for the N2 positions included in the second-order check to have statisti-

cally independent errors after the first check has been completed. This will be true if

and only if each position was in a different block of N 1 adjacent symbols for the first-

order check.

The simplest way to guarantee this independence is to put each group of N1 x N2

successive symbols in a rectangular array, checking each row of N 1 symbols by means

of C 1 check digits, and then checking each column of already checked symbols by means

of C2 check digits. The procedure is illustrated in Fig. 1. The transmitter sends the

N 1 - C 1 information digits in the first row, computes the C 1 check digits and sends

them, and proceeds to the next row. This process continues down through row N2 - C 2.

Then the transmitter computes the C 2 check digits for each column and writes them

down in the last C 2 rows. It transmits one row at a time, using the first N 1 - C 1 of the

positions in that row for the second-order check, and the last C 1 digits in the row for

a first-order check of the second-order check digits.

After the second-order check, then, the inequality, Eq. 5, applies as before, and

we have for P2, the probability of error per position,

P2 < N2P < p4 (6)
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and second-order check digits.

The N3 digits to be checked by the third-order check may be taken from corre-

sponding positions in each of N3 different N 1 x N2 rectangles, the N4 digits in a fourth-

order block from corresponding positions in N4 such collections of N1 x N 2 x N3 symbols

each, and so on ad infinitum. At the kth stage this gives (see ref. 5)

20 21 k-l2k<Nj k- 1
Pk < N Nk . Nk- ... Nk P0

(7)

It is now necessary to show that not all of the channel is occupied, in the limit, with

checking digits of one order or another so that some information can also get through.

The fraction of symbols used for information at the first stage is [1 - (C l /N 1)]. At the

k stage, it is

k = Cj\

Fk i - (8)
1 N.

It is now necessary to find a sequence of Nj for which Pk approaches zero and F k does

not, as k increases without bound. A convenient sequence is

N1 2 n

(9)

N. 2 j1- N1 = 2 j+n-1

This gives for Pk' from Eq. 7,

2° ( . k ) . (2 j - 1Pk < (N1 * 2k 1) ... (N1 * 2k-J )

2 k-1 k

2 . k+ 1)k
< (2N . z-(k+l)

N1 lp
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The right side of this expression approaches zero as k increases, for any

Nlpo < 1/2. Thus the error probability can be made to vanish in the limit. Note that

the inequality gives a much weaker kind of approach to zero for the threshold value

Nlpo = 1/2 than for any smaller value of errors per first-order block.

For the same sequence of Nj, a lower bound on F0C can be computed. From Eqs. 8

and 4 we have

= rI
02j0+n-

J v
i 00

T. = and =

J Nj 1

log2 Nj + 1)

N.
J

Then . is monotonic decreasing in j and is less than 1 for all constructible

Hamming codes, that is, for N 1 = 2 4. This makes it possible to write the following

inequalities:

C/C
-0

> 1 - (13)

Here the last term on the right is one of the Weierstrasse inequalities for an infinite

product; the other terms are useful when > 1, and show that Foo is strictly positive

for -1 < 1 and ar < oo.

Evaluating a in the present case gives

00 j + n n+2 2 log 4N1

j=l 2 j+n - 1 N1

At threshold, that is, at Nlp = 1/2, this gives

= 4p log < 4 log + (1 -log 1 _ p
0 p 0 P 00 y 0 P =

where E is the equivocation of the noisy channel. Thus for po small,

have

F > 1 - 4E
00

from Eq. 13 we

(16)

That is, under the specified conditions (N 1po = 1/2, N 1 = 2 n> 4) the number of

check digits required is never more than four times the number that would be required

for an ideal code, provided that an ideal code of the check-digit type exists, which is
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not obvious (1). When E is > 1/4, the interior inequality in Eq. 13 shows that F is

still positive.

Equivocation

Feinstein (4) has shown that it is possible to find ideal codes for which not only the

probability of error, but the total equivocation, vanishes in the limit as longer and longer

symbol sequences are used. This property is also true for the coding processes

described here. This is a very important result in the case of codebook codes, where

the message becomes infinite in the limit. For the codes under discussion here, it is

a less important property, since any finite message can be received without an infinite

lag, and its equivocation vanishes with the error probability per position.

The total number of binary digits checked by the k t h checking stage is

k
M k = I N. (17)
k J

Of these, FkMk are information digits and the remainder are checks. Using the values

of Eq. 9 for the Nj, we have

k(k- 1)

M k = N 2 (18)k 1

The bound of Eq. 10 limits the probability of error per position. Multiplying this

by Mk gives a bound on the mean number of errors per Mk digits, which is also a bound

on the fraction of sequences of Mk digits which are in error after checking - a gross

bound, since actually any such sequence which is in error must have many errors, and

not just one. Thus for Qk' the probability that a checked group of Mk digits is in error,

we have

N, k- k k(k- )
Q M (2N P )2 2 (19)

Q< pkk 4 ( (Np) 2 (19)

At threshold (NlpO = 1/2) this inequality does not guarantee convergence, but for

NlP < 1/2, Qk certainly approaches zero as k increases.

The equivocation Ek per sequence of Mk terms is bounded by the value it would have

if any error in a block made all possible symbol sequences equally likely at the receiver,

that is,

Ek < Qk log + - Qk Q (20)

Again, at threshold, convergence is not guaranteed, but for N 1P < 1/2, Ek, the

absolute equivocation of the block, will also vanish as k increases.
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Distance Properties

At the k t h stage of this coding process, a sequence of M k binary digits has been

selected as a message. Because the check-digit values are determined by the informa-
FkMk Mk

tion digit values, there are only 2 possible message sequences rather than 2

Any two of these possible messages will have a "distance" from one another, defined as

the number of positions in which they have different binary symbols; the smallest such

distance will be 4 k for the iterated single-correction, double-detection code. This

means that by using this set of codes with a codebook, any set of errors less than one-

half of the minimum distance in number can be corrected by choosing as the transmitted

message the message point nearest to the received sequence.

It is easy to see that for the coding procedure just described this error-correction

capability will not be realized. Any set of 2 k errors which are at the corners of a k-

dimensional cube in the k-dimensional rectangle of symbol positions will not be cor-

rected by this process, since each check will merely indicate a double error that it

cannot correct. By inspecting any two of the sets of check digits at once, these errors

could be located, but they will not have been corrected by the process described above.

The effective minimum of the maximum number of errors that will be corrected is

therefore 2 k - 1 rather than 2 2k- 1 _ 1.

This shows a loss of error-correction capability because of the strictly sequential

use of the checking information. Without going to the extreme memory requirement of

codebook techniques, a portion of this loss may be recouped by not throwing the low-

order check digits away but using them to recheck after higher order checking has been

done. This does not increase the maximum number of errors for which correction is

always guaranteed, but it does reduce the average error probability at each stage; the

exact amount of this reduction is, unfortunately, difficult to compute. This behavior,

however, points up a significant feature of the coding process. If the maximum number

of errors for which correction is always guaranteed were the maximum number of

errors for which correction was ever guaranteed, the procedure could not transmit

information at a nonzero rate; that is, the minimum distance properties of the code are

inadequate for the job. It is average error-correction capability that makes transmis-

sion at a nonzero rate possible.

The Poisson Limit

Much of this analysis has assumed that N = 2 ij N1 , and part of it has further

assumed that N1 2 . However, any series of Nj which increases rapidly enough so

that r is finite will lead to a coding process that is error-free for sufficiently small

values of NlP o . In particular, it is possible to use any other approximately geometric

series for which

N -; 1' b> (21)Nj b j - N 1 b> 1 (1

-8-
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The approximation is necessary if b is not an integer. The expression for Pk analogous

to Eq. 10 is then

k < (bN) b(kl) (22)Pk <N 

with a threshold at Nlp = /b. The value of a- can also be bounded for this series. At

threshold, the bound corresponding to Eq. 15 is

2

-'b-b _ I logy b-24) (23)

Again, for NP 0 below threshold, Qk and Ek approach zero as k increases.

For very small p, the value of b that minimizes is b = 2. This leads to the

maximum value of F given by Eq. 16. However, for very small p, N1 may be made

very large. The distribution of errors in the blocks then approaches the Poisson dis-

tribution, for which the probability that just i errors have occurred in a block is

-NIP o (NlP)i
P(i) = e Np (N ) (24)

This equation may be used to derive an iterative inequality on the mean number of

errors per block after single-detection, double-correction coding.

Np ±N -N p _1·Pjll + ~p (Njpj_1 ) (Njpj 1 )4

Njpj < 1 + Njpj - ejj-1 + 2Njpjl + ''
2! 4.

1 - Njpj Nj -1 - - e j-l) (25)

Keeping Njpj constant gives the geometric series (21) for Nj. A joint selection of NP 0

and b for the minimization of the bound on a- gives Nlpo 0. 75, b 1.75, and an effec-

tive channel capacity

F 0o0 1 - 3. liE (26)

where E is the equivocation of the binary channel. This is an improvement over Eq. 16.

ITERATION OF OTHER CODES

The analysis in the preceding sections has dealt only with iteration of the Hamming

single-error-correction, double-error-detection code. Other kinds of codes may also

be iterated; nor is it necessary to use the same type of code at each stage in the iterative

process. The only requirement is that each code except the first be of the check-digit,

or systematic, type, so that its check digits may be computed on the basis of the pre-

ceding information digits and added on to the message.

-9-
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First, the final parity check digit of a Hamming code may be omitted, destroying

the double-detection feature of the code. This leads to the inequality

(Nj - 1) pj_ <3 2 P (27)

in place of Eq. 5. Iterating this code alone gives a bound on oC that is only slightly

smaller than that given in Eq. 15, but the threshold becomes N 1 po = 1/3 rather than

Nlp = 1/2, and the effective channel capacity for small po is bounded by

Fo > 1 - 6E (28)

where E is the equivocation of the binary channel.

Second, the Golay (3) analogs to both kinds of Hamming code may be constructed,

for M-ary channels, where M is a prime number. If there is a probability (1 - po ) that

any symbol will be received correctly, and if the consecutive errors are statistically

independent, the results of the binary case carry over quite directly. The inequalities

of Eqs. 5 and 27 still hold for the two kinds of codes, since the errors as a whole are

still binomially distributed in blocks. At threshold, the inequalities of Eqs. 16 and 28

still hold for the effective channel capacity, where E is now the equivocation of a

symmetrical M-ary channel; that is, of a channel in which the probability of an error

taking any given symbol into any other different symbol is po/(M-1). The result, Eq. 26,

for the Poisson limit also applies, with the same interpretation of E.

Third, the Reed (5) -Muller (6) codes may be treated as check-digit codes, and may

be iterated to give an error-proof system. For these codes, the average error-

reduction capability is not known; only the minimum distance is known. Certain of the

codes, such as the triple-correction quadruple-detection code for blocks of 32 binary

symbols, might provide a good starting point for an iteration that proceeds by iteration

of Hamming codes. The Golay triple-correction, quadruple-detection code for blocks

of 24 symbols might be used in the same way. It will take considerable computation to

evaluate such mixed iteration schemes.

It is not, at present, profitable to use the Reed-Muller codes for later stages in the

iteration. The reason is that an efficient triple-correction, quadruple-detection code

should require about C = 2 log N check digits for a block of length N. The Reed-Muller

codes require about C = 1 + log N + (1/2) log N (log N-1) check digits for this purpose.

For large N, therefore, the effective channel capacity is reduced by the large number

of check digits required. There is a similar inefficiency in the Reed-Muller codes with

greater error-correction capabilities, which might be removed if the average error-

correction capabilities of these codes were known.

NONREC TANGULAR ITERATION

The problem of assuring statistical independence among the Nk digits checked by a

k t h order check, so that the inequality of Eq. 5 derived on the basis of statistical inde-

pendence can be used as an iterative inequality, was solved above by what might be called

-10-
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rectangular iteration. Each of the Nk digit positions in a check group are selected from

a different sequence of Mk 1 consecutive symbols. Thus until the k t h order checking

has been carried out, no two of them have been associated by lower order checking pro-

cedures in any way. This iteration solves the problem, but it makes M k a function that

grows very rapidly with k. When Nj is the geometric series of Eq. 21, then
J

k 2k(k- 1 )
Mk N1 b (29)

This means that Pk' Qk' and E k decrease quite rapidly as functions of k, but much more

slowly as functions of the length of the message Mk, or its information content FkMk.

Roughly speaking, if Hk = FkMk is the total number of information digits transmitted

at the k stage,

2a(log Hk ) 1 / 2

aAe(log H) , A> 0, a> 0 (30)
Pk "A

This is a much slower decrease of error probability than Feinstein's result (4) which

is

log Hk -bHk

Pk Be Be , B> 0, b> 0 (31)

A less stringent requirement on the choice of digits checked in a single group is that

no two of them have been together in any lower order check group. This requires that

there be at least Nk different groups of order k - 1 from which to select digit positions.

Thus

Mk > NkNk-l (32)

If it is possible to approximate equality in Eq. 32, and if the statistical dependence

so introduced does not seriously weaken the inequality, Eq. 5, it might be possible to

get the result

d log Hk

Pk z De , D> 0, d> 0 (33)

which is closer to Feinstein's result.

CONCLUSION

From a practical point of view, this coding procedure has much to recommend it.

A question of both theoretical and practical interest is the extent to which the convenience

associated with a computable and error-free code is compatible with ideal coding, or

the smallest price that must be paid for the convenience if the two are incompatible. One

point is clear: the existence of the error-free process, despite its lack of ideality, puts

the burden of efficient coding on the first stage of the coding process. For if a coding
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process succeeds in reducing the equivocation in a received message to some small but

positive value .E, the remaining errors may always be eliminated at a cost of 4E (or

3. 11 E) in channel capacity: an error-proof termination is available, at a price, to take

care of the residual errors left by any other error-correcting scheme.

This means that a restatement of the second coding theorem (3, 8) is possible.

Namely, it is possible to transmit information over a noisy binary channel at a rate

arbitrarily close to the channel capacity with an error probability per symbol which is

as low as the receiver cares to make it. This can be done, for example, by starting

with a Shannon or Feinstein code and terminating with an error-free code. Using check-

symbol coding at a rate arbitrarily close to the channel capacity as an initial step makes

this procedure somewhat more computable, but it is still much less so than the iterated

Hamming code. This and related points will be discussed in a future report (1).
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