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Abstract

Some simple constructive procedures are given for coding sequences of symbols to
be transmitted over noisy channels. A message encoded by such a process transmits
a positive amount of information over the channel, with an error probability which the
receiver may set to be as small as it pleases, without consulting the transmitter. The
amount of information transmitted is less than the channel capacity, so the procedures
are not ideal, but they are quite efficient for small error probabilities. It is shown that
there exist codes of the same error-free character which transmit information at rates
arbitrarily near the channel capacity.







INTRODUCTION

This report (1) describes constructive procedures for encoding messages to be sent
over noisy channels so that they may be decoded with an arbitrarily low error rate. The
procedures are a kind of iteration of simple error-correcting codes, such as those of
Hamming (2) and Golay (3); any additional systematic codes that may be discovered,
such as those discussed by Reed (4) and Muller (5), may be iterated in the same way.

The procedures are not ideal (1): the capacity of a noisy channel for the transmis-
sion of error-free information using such coding is smaller than information theory says
it should be. However, the procedures do permit the transmission of error-free infor-
mation at a positive rate. They also have these two properties:

(a) The codes are "systematic" in Hamming's sense: They are what Golay calls

"symbol codes" rather than "message codes."

That is, the transmitted symbols are
divided into so-called "information symbols," and "check symbols." The customer who
has a message to send supplies the "information symbols," which are transmitted
unchanged. Periodically the coder at the transmitter computes some "check symbols,"
which are functions of past information symbols, and transmits them. The customer
with a short message does not have to wait for a long block of symbols to accumulate
before coding can proceed, as in the case of codebook coding, nor does the coder need
a codebook memory containing all possible symbol sequences. The coder needs only
a memory of the past information symbols it has transmitted and a quite simple com-
puter.

(b) The error probability of the received messages is as low as the receiver cares
to make it. If the coding process has been properly selected for a given noisy channel,
the customer at the receiver can set the probability of error per decoded symbol (or
the probability of error for the entire sequence of decoded symbols transmitted up to
the present, or the equivocation of part or all of the decoded symbol sequence) at as low
a value as he chooses. It will cost him more delay to get a more reliable message,
but it will not be necessary to alter the coding and decoding procedure when he raises
his standards, nor will it be necessary for less particular and more impatient customers
using the same channel to put up with the additional delay. This is again unlike code-
book processes, in which the codebook must be rewritten for all customers if any one
of them raises his standards.

Perhaps the simplest way to indicate the basic behavior of such codes is to describe
how one would work in a commercial telegraph system. A customer entering the
telegraph office presents a sequence of symbols that is sent out immediately over a
noisy channel to another office, which immediately reproduces the sequence, adds a

t

note "the probability of error per symbol is 10"}, but wait till tomorrow," and sends

it off to the recipient. Next day the recipient receives a note saying "For 'sex' read
'six'. The probability of error per symbol is now 10-2, but wait till next week." A week

later the recipient gets another note: "For 'lather' read 'gather'. The probability of




error per symbol is now 10_4, but wait till next April." This flow of notes continues,
the error probability dropping rapidly from note to note, until the recipient gets tired
of the whole business and tells the telegraph company to stop bothering him.

Since these coding procedures are derived by an iteration of simple error-correcting
and detecting codes, their performance depends on what kind of code is iterated. For
a binary channel with a small and symmetric error probability, the best choice among
the available procedures is the Hamming-Golay single-error-correction, double-error-
detection code developed by Hamming (2) for the binary case and extended by Golay (3) .
to the case of symbols selected from an alphabet of M different symbols, where M is
any prime number. The analysis of the binary case will be presented in some detail

and will be followed by some notes on diverse modifications and generalizations.

ITERATED HAMMING CODES

First-Order Check

Consider a noisy binary channel that transmits each second either a zero or a one,
with a probability (1 - po) that the symbol will be received as transmitted and a prob-
ability P, that it will be received in error. Error probabilities for successive symbols
are assumed to be statistically independent.

Let the receiver divide the received symbol sequence into consecutive blocks, each
block consisting of N1 consecutive symbols. Because of the assumed independence of
successive transmission errors, the error distribution in the blocks will be binomial:

there will be a probability

Nl
P(0) = (1 - p)

that no errors have occurred in a block, and a probability P(i)

PO = g P - p) 1
YERN, - ) Pe T T Po (1)

that exactly i errors have occurred.

If the expected number of errors per received block, Nlpo’ is small, then the use
of a Hamming error-correction code will produce an average number of errors per
block, Nlpl’ after error correction, which is smaller still. Thus P the average prob-
ability of error per position after error correction, will be less than Py An exact com-
putation of the extent of this reduction is complicated, but some inequalities are easily
obtained.

The single-error-correction check digits of the Hamming code give the location of




any single error within the block of N, digits, permitting it to be corrected. If more
errors have occurred, the check digits give a location which is usually not that of an
incorrect digit, so that altering the digit in that location will usually cause one new
error, and cannot cause more than one. The double-error-detection check digit tells
the receiver whether an even or an odd number of errors has occurred. If an even
number has occurred and an error location is indicated, the receiver does not make the
indicated correction, and thus avoids what is very probably the addition of a new error.
The single-correction, double-detection code, therefore, will leave error-free blocks
alone, will correct single errors, will not alter the number of errors when it is even,
and may increase the number by at most one when it is odd and greater than one. This

gives for the expected number of errors per block after checking

<N, <Ny
Np < p iP@F (1) P()
even i22 odd i>3

Nl
<P+ ) (+1) P()
i=3

N
< Z (i+1) P(i) - P(0) - 2P(1) - P(2)
i=0

<1+ Np - P(0) - 2P(1) - P(2). (2)

Substituting the binomial error probabilities from Eq. 1, expanding, and collecting

terms, gives, for Nlpos 3,
N.p, < N.(N, - 1) p°
1P1 S Tt Po

2 2
p; < (N, - 1) p; <N;p_ (3)

The error probability per position can therefore be reduced by making N1 suffi~
ciently small. The shortest code of this type requires N1 = 4, and the inequality, Eq. 3,
suggests that a reduction will therefore not be possible if Py > 1/3. The fault is in the
inequality, however, and not the code: for N1 = 4 it is a simple majority-rule code that
will always produce an improvgment for any Py < 1/2.

A Hamming single-correction, double-detection code uses C of the N positions in
a block for checking purposes and the remaining N - C positions for the customer's
symbols, where

C = [log,y(N-1) + 2] (4)

(Here and later, square brackets around a number denote the largest integer which is




less than or equal to the number enclosed. Logarithms will be taken to the base 2 unless

otherwise specified.)

Higher Order Checks

After completing the first-order check, the receiver discards the Cl check digits,
leaving only the Nl - C1 checked information digits, with the reduced error probability
p, per position. (It can be shown that the error probability after checking is the same
for all N1 positions in the block, so that discarding the check digits does not alter the
error probability per position for the information digits.) Now some of these checked
digits are made use of for further checking, again with a Hamming code. The receiver
divides the checked digits into blocks of NZ; the C2 checked check digits in each block
enable, again, the correction of any single error in the block, although multiple errors
may be increased by one in number. In order for the checking to reduce the expected
number of errors per second-order block, however, it is necessary to select the loca-
tions of the N2 symbols in the block with some care.

The simplest choice would be to take several consecutive first-order blocks of
N1 - C1 adjacent checked information digits as a second-order block, but this is guaran-
teed not to work. For if there are any errors at all left in this group of digits after the
first-order checking, there are certainly two or more, and the second-order check can-
not correct them. In order for the error probability per place after the second-order
check to satisfy the analog of Eq. 3, namely,

2

2

it is necessary for the N, positions included in the second-order check to have statisti-
cally independent errors after the first check has been completed. This will be true if
and only if each position was in a different block of N1 adjacent symbols for the first-
order check.

The simplest way to guarantee this independence is to put each group of N1 X N2
successive symbols in a rectangular array, checking each row of Nl symbols by means
of C1 check digits, and then checking each column of already checked symbols by means
of C2 check digits. The procedure is illustrated in Fig. 1. The transmitter sends the
N1 - Cl information digits in the first row, computes the Cl check digits and sends
them, and proceeds to the next row. This process continues down through row N2 - CZ‘
Then the transmitter computes the C2 check digits for each column and writes them
down in the last C2 rows. It transmits one row at a time, using the first N1 - Cl of the
positions in that row for the second-order check, and the last C1 digits in the row for
a first-order check of the second-order check digits.

After the second-order check, then, the inequality, Eq. 5, applies as before, and
we have for p,, the probability of error per position,

2 2 4
P, < NZpl < NZNlpo (6)
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Fig. 1
Organization of first- and second-order check digits.

The N3 digits to be checked by the third-order check may be taken from corre-
sponding positions in each of N3 different N1 X N2 rectangles, the N4 digits in a fourth-
order block from corresponding positions in N4 such collections of Nl X N2 X N3 symbols
each, and so on ad infinitum. At the kth stage this gives (see ref. 5)

0 1 i
2 2 2 2 2
Py < Nk . Nk-l Nk-j o Ny “p (7)

It is now necessary to show that not all of the channel is occupied, in the limit, with
checking digits of one order or another so that some information can also get through.

The fraction of symbols used for information at the first stage is [1 - (Cl/Nl)]. At the
th

k™ stage, itis
k <,
F, = Imir-— (8)
1 Nj

It is now necessary to find a sequence of N. for which Py approaches zero and Fk does

not, as k increases without bound. A convenient sequence is

S
Nl—Z

) . (9)
N, =231 N, = 2itn-1
j

This gives for Py’ from Eq. 7,

27 . (k1) (10)




The right side of this expression approaches zero as k increases, for any
Nlpo £ 1/2. Thus the error probability can be made to vanish in the limit. Note that
the inequality gives a much weaker kind of approach to zero for the threshold value
Nlpo = 1/2 than for any smaller value of errors per first-order block.

For the same sequence of Nj’ a lower bound on Foo can be computed. From Eqgs. 8

and 4 we have

© C;i o Iog2 Nj+1
F = H ] - — = H 1 -
© N 1 N
J J
(11)
0 j-l-n
=1l -
1 jtn-1
Let
C. 00
J
o.=— and U:ZU. (12)
I . J
h] 1

Then o, is monotonic decreasing in j and is less than 1 for all constructible
Hamming codes, that is, for N1 =20 > 4. This makes it possible to write the following
inequalities:

o/o

-0 1
e >F,>(1-0,) >1-¢ (13)

Here the last term on the right is one of the Weierstrasse inequalities for an infinite
product; the other terms are useful when o > 1, and show that F__ is strictly positive
for o, <1 and o < .

1
Evaluating ¢ in the present case gives

0

Z _n+ Z 2 lOg 4N1 (14)
- 0" 1~ N
2_]+n 1 1
At threshold, that is, at N;p_ = 1/2, this gives
o =4p 10g£<4 p logl+(1-p ) log L = 4E (15)
o P, o P, o] 1 - P,

where E is the equivocation of the noisy channel. Thus for P, small, from Eq. 13 we

have
F_>1-4E (16)

That is, under the specified conditions (Nlpo =1/2, N1 = Zn>4> the number of
check digits required is never more than four times the number that would be required
for an ideal code, provided that an ideal code of the check-digit type exists, which is




not obvious (1). When E is > 1/4, the interior inequality in Eq. 13 shows that F is
still positive.

Equivocation

Feinstein (4) has shown that it is possible to find ideal codes for which not only the
probability of error, but the total equivocation, vanishes in the limit as longer and longer
symbol sequences are used. This property is also true for the coding processes
described here. This is a very important result in the case of codebook codes, where
the message becomes infinite in the limit. For the codes under discussion here, it is
a less important property, since any finite message can be received without an infinite
lag, and its equivocation vanishes with the error probability per position.

The total number of binary digits checked by the kth checking stage is

k
M, = I;INJ. (17)

Of these, FkMk are information digits and the remainder are checks. Using the values
of Eq. 9 for the Nj’ we have

k(k-1)

M, = N7 2 (18)

The bound of Eq. 10 limits the probability of error per position. Multiplying this
by Mk gives a bound on the mean number of errors per Mk digits, which is also a bound
on the fraction of sequences of Mk digits which are in error after checking — a gross
bound, since actually any such sequence which is in error must have many errors, and
not just one. Thus for Qk’ the probability that a checked group of l\/Ik digits is in error,
we have
k-1 k(k-1)

Ny 2k =%

Q< P M <3 <T> (2Nypy)~ 2 (19)

At threshold (NlpO = 1/2) this inequality does not guarantee convergence, but for
N,p, < 1/2, Q, certainly approaches zero as k increases.

The equivocation Ek per sequence of Mk terms is bounded by the value it would have
if any error in a block made all possible symbol sequences equally likely at the receiver,
that is,

1 1
Ek < Qk logQ; +(1 - Qk) log —F&— Qk + QkMk (20)

Again, at threshold, convergence is not guaranteed, but for N1p0< 1/2, Ek’ the

absolute equivocation of the block, will also vanish as k increases.




Distance Properties

At the kth stage of this coding process, a sequence of Mk binary digits has been

selected as a message. Because the check-digit values are determined by the informa-
F M M
tion digit values, there are only 2 possible message sequences rather than 2 k.

Any two of these possible messages will have a "distance" from one another, defined as
the number of positions in which they have different binary symbols; the smallest such
distance will be 4k for the iterated single-correction, double-detection code. This
means that by using this set of codes with a codebook, any set of errors less than one-
half of the minimum distance in number can be corrected by choosing as the transmitted
message the message point nearest to the received sequence.

It is easy to see that for the coding procedure just described this error-correction
capability will not be realized. Any set of 2K errors which are at the corners of a k-
dimensional cube in the k-dimensional rectangle of symbol positions will not be cor-
rected by this pfocess, since each check will merely indicate a double error that it
cannot correct. By inspecting any two of the sets of check digits at once, these errors
could be located, but they will not have been corrected by the process described above.
The effective minimum of the maximum number of errors that will be corrected is
therefore 2 - 1 rather than 22571 - 1.

This shows a loss of error-correction capability because of the strictly sequential
use of the checking information. Without going to the extreme memory requirement of
codebook techniques, a portion of this loss may be recouped by not throwing the low-
order check digits away but using them to recheck after higher order checking has been
done. This does not increase the maximum number of errors for which correction is
always guaranteed, but it does reduce the average error probability at each stage; the
exact amount of this reduction is, unfortunately, difficult to compute. This behavior,
however, points up a significant feature of the coding process. If the maximum number
of errors for which correction is always guaranteed were the maximum number of
errors for which correction was ever guaranteed, the procedure could not transmit
information at a nonzero rate; that is, the minimum distance properties of the code are
inadequate for the job. It is average error-correction capability that makes transmis-

sion at a nonzero rate possible.

The Poisson Limit

Much of this analysis has assumed that N, = 2171 N, and part of it has further

assumed that N1 = 2",

However, any series of Nj which increases rapidly enough so
that o is finite will lead to a coding process that is error-free for sufficiently small
values of Nlpo' In particular, it is possible to use any other approximately geometric

series for which

N. ~pi ! N

i p b>1 (21)




The approximation is necessary if b is not an integer. The expression for Py analogous
to Eq. 10 is then

k
2% | -(k+1)

<5 (bNp ) (22)

p
k 1

with a threshold at Nlpo = 1/b. The value of ¢ can also be bounded for this series. At
threshold, the bound corresponding to Eq. 15 is
pr

(0]
CspTleg

4
b-2
Py b b-1

(23)

Again, for Nlp0 below threshold, Qk and Ek approach zero as k increases.

For very small Py the value of b that minimizes o is b = 2. This leads to the
maximum value of F, given by Eq. 16. However, for very small Py N1 may be made
very large. The distribution of errors in the blocks then approaches the Poisson dis-
tribution, for which the probability that just i errors have occurred in a block is

-N,p,  (N;p )’
o . L "0

P(i) = e — (24)

This equation may be used to derive an iterative inequality on the mean number of

errors per block after single-detection, double-correction coding.

2 4
N.p. N.p.
Np. | (Np; )" (Nypy )
Np.<1+Np., ,-e 37 1+2N.p, ,+ + +oL.
e URR R 4!
-N.p. -2N.p.
- R e SR R O S -1
$1-Np; | <2e 1) > <1 e (25)

Keeping N.p. constant gives the geometric series (21) for Nj' A joint selection of Nlpo
and b for the minimization of the bound on ¢ gives Nlp0 = 0.75, b ®1.75, and an effec-

tive channel capacity

F,=1-3.11E (26)
where E is the equivocation of the binary channel. This is an improvement over Eq. 16.
ITERATION OF OTHER CODES

The analysis in the preceding sections has dealt only with iteration of the Hamming
single-error-correction, double-error-detection code. Other kinds of codes may also
be iterated; nor is it necessary to use the same type of code at each stage in the iterative
process. The only requirement is that each code except the first be of the check-digit,
or systematic, type, so that its check digits may be computed on the basis of the pre-

ceding information digits and added on to the message.




First, the final parity check digit of a Hamming code may be omitted, destroying
the double-detection feature of the code. This leads to the inequality

(27)

3 2 3
p-SE(N~‘1)Pj_1<'2'N-P 1

2
J J 37i-
in place of Eq. 5. Iterating this code alone gives a bound on o that is only slightly
smaller than that given in Eq. 15, but the threshold becomes Nlpo = 1/3 rather than

NlpO = 1/2, and the effective channel capacity for small P, is bounded by
F,>1-6E (28)

where E is the equivocation of the binary channel.

Second, the Golay (3) analogs to both kinds of Hamming code may be constructed,
for M-ary channels, where M is a prime number. If there is a probability (1 - po) that
any symbol will be received correctly, and if the consecutive errors are statistically
independent, the results of the binary case carry over quite directly. The inequalities
of Eqgs. 5 and 27 still hold for the two kinds of codes, since the errors as a whole are
still binomially distributed in blocks. At threshold, the inequalities of Eqs. 16 and 28
still hold for the effective channel capacity, where E is now the equivocation of a
symmetrical M-ary channel; that is, of a channel in which the probability of an error
taking any given symbol into any other different symbol is po/(M-l). The result, Eq. 26,
for the Poisson limit also applies, with the same interpretation of E.

Third, the Reed (5) -Muller (6) codes may be treated as check-digit codes, and may
be iterated to give an error-proof system. For these codes, the average error-
reduction capability is not known; only the minimum distance is known. Certain of the
codes, such as the triple-correction quadruple-detection code for blocks of 32 binary
symbols, might provide a good starting point for an iteration that proceeds by iteration
of Hamming codes. The Golay triple-correction, quadruple-detection code for blocks
of 24 symbols might be used in the same way. It will take considerable computation to
evaluate such mixed iteration schemes.

It is not, at present, profitable to use the Reed-Muller codes for later stages in the
iteration. The reason is that an efficient triple-correction, quadruple-detection code
should require about C = 2 log N check digits for a block of length N. The Reed-Muller
codes require about C = 1 + log N + (1/2) log N (log N-1) check digits for this purpose.
For large N, therefore, the effective channel capacity is reduced by the large number
of check digits required. There is a similar inefficiency in the Reed-Muller codes with
greater error-correction capabilities, which might be removed if the average error-

correction capabilities of these codes were known.

NONRECTANGULAR ITERATION

The problem of assuring statistical independence among the Nk digits checked by a
kth order check, so that the inequality of Eq. 5 derived on the basis of statistical inde-

pendence can be used as an iterative inequality, was solved above by what might be called

-10-




rectangular iteration. Each of the Nk digit positions in a check group are selected from
a different sequence of Mk~l consecutive symbols. Thus until the kth order checking

has been carried out, no two of them have been associated by lower order checking pro-
cedures in any way. This iteration solves the problem, but it makes Mk a function that

grows very rapidly with k. When Nj is the geometric series of Eq. 21, then

1
k. >k(k-1)

M, ¥ N, b (29)

This means that Py Qk’ and Ek decrease quite rapidly as functions of k, but much more
slowly as functions of the length of the message Mk’ or its information content FkMk'
Roughly speaking, if Hk = FkMk is the total number of information digits transmitted

at the kth stage,

1/2
_Za(log Hk)

psze , A>0, a>0 (30)

This is a much slower decrease of error probability than Feinstein's result (4) which
is

log H
b2 k- K
psze = Be , B>0, b>0 . (31)

A less stringent requirement on the choice of digits checked in a single group is that
no two of them have been together in any lower order check group. This requires that
there be at least N
Thus

Kk different groups of order k - 1 from which to select digit positions.

M, >N (32)

kNk-1

If it is possible to approximate equality in Eq. 32, and if the statistical dependence
so introduced does not seriously weaken the inequality, Eq. 5, it might be possible to
get the result

dlong
pkzDe'Z , D>0, d>0 (33)

which is closer to Feinstein's result.

CONCLUSION

From a practical point of view, this coding procedure has much to recommend it.
A question of both theoretical and practical interest is the extent to which the convenience
associated with a computable and error-free code is compatible with ideal coding, or
the smallest price that must be paid for the convenience if the two are incompatible. One
point is clear: the existence of the error-free process, despite its lack of ideality, puts

the burden of efficient coding on the first stage of the coding process. For if a coding

-11-




process succeeds in reducing the equivocation in a received message to some small but
positive value .E, the remaining errors may always be eliminated at a cost of 4E (or
3.11 E) in channel capacity: an error-proof termination is available, at a price, to take
care of the residual errors left by any other error-correcting scheme.

This means that a restatement of the second coding theorem (3, 8) is possible.
Namely, it is possible to transmit information over a noisy binary channel at a rate
arbitrarily close to the channel capacity with an error probability per symbol which is
as low as the receiver cares to make it. This can be done, for example, by starting
with a Shannon or Feinstein code and terminating with an error-free code. Using check-
symbol coding at a rate arbitrarily close to the channel capacity as an initial step makes
this procedure somewhat more computable, but it is still much less so than the iterated

Hamming code. This and related points will be discussed in a future report (1).
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