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Abstract

The probabilistic theory of information is extended to processes involving the

most general probability distributions. A change of probability measure on an abstract

space serves as the appropriate mathematical model for the fundamental information

process. A unified definition for the amount of concomitant information, which takes

the form of a functional of the a priori and a posteriori measures, is introduced. This

definition is sufficiently general to be applied to a theory that includes both the discrete

and continuous theories as special cases.

The definition is applied in a study of the information associated with the realiza-

tions of a stochastic process. For the evaluation of mutual information rates between

stationarily correlated multivariate gaussian time series, the techniques of linear

prediction are employed. A brief investigation is made of the problems of communica-

tion in the presence of noise and through linear networks.
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INTRODUCTION

Our purpose is to provide a unified mathematical theory for the

treatment of the statistical processes by which information is conveyed

in communication systems. As Wiener 19 pointed out, the problems of the

communications engineer are closely related to the problems that have

occupied the statistician for many years. In many communication systems,

the messages that are of interest are analogous to the random functions of

time that are commonly known in statistics as time series. These time

series have two distinguishing features: (1) they may be defined either

for discrete instants of time or on a time continuum; and (2) they may

either take on a discrete set of values or be distributed over an amplitude

continuum.

Perhaps, then, we should say that four basic types of time series are

encountered in communication theory, although mixtures of these types are

sometimes found. A "unified" theory of information should be sufficiently

general to include the four basic types and their mixtures as special cases

of the most general information process. It is precisely this generaliza-

tion with which this report is concerned.

In order to handle the most general distribution in amplitude, it has

been necessary to use rather advanced mathematical concepts. Consequently,

the reader will find that this report is primarily a mathematical study.

An early attempt was made to treat the theory in the language of the

engineer, but it was found that much of its value as a unified theory was

lost. Hence, it was decided that the full mathematical flavor would be

retained - supplemented by a number of examples and physical interpreta-

tions that would make the results of more immediate use to the communica-

tions engineer.

A large part of this work is expository; and much work is included

which is not original with the author. Included, for example, are dis-

cussions of the probability measure space, stochastic processes, ergodic

theory, and the spectral theory of the discrete stochastic process. The

author's approach is sufficiently different to make these theories more

readily applicable to the communication problem. Our treatment of the

theories is designed not to repeat those of the literature but rather to

supplement them.
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For example, the concept of the probability measure space is well

known, but it is felt that the concept of the independence of spaces,

introduced herein, represents a divergence from customary treatments.

This concept was suggested by one of the thought-provoking problems in

Halmos' Measure Theory (Problem 3, section 36).

Similarly, in the section on ergodic theory, a slightly different but

equivalent definition of an ergodic process better illustrates the relation

between our physically intuitive notions concerning ergodicity and the

purely mathematical notion concerning the metric-transitivity of set

transformations in a measure space. Although there is a very extensive

bibliography on ergodic theory, the published works are, for the most part,

purely mathematical in nature, with little or no reference to applications

in the communication problem. The ergodic theorem is stated here in its

mathematical form, but we try to point out more clearly its application

to the interchange of statistical averages and time averages in a certain

class of time series.
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I. PROBABILITY MEASURE

In order to give a unified treatment of information theory that in-

cludes the continuous and discrete theories as special cases, the problem

becomes less formidable and the solution more general if an appeal is made

to the measure theoretic concepts of probability theory. The foundation

for such a theory has been presented by Kolmogorov,1 who was one of the

first to give to probability theory the firm mathematical foundation on

which it now stands. The methods, notations, and terminology of this

chapter follow rather closely those given by Halmos,2 although a thorough

comprehension of the material in a forthcoming report by Wernikoff3 consti-

tutes a sufficient background for the reading of this portion of the

report. Wernikoff, too, has employed the notation of Halmos. Although

Wernikoff devoted a very restricted portion of his report to probability

measure itself, his treatment of measure theory in general includes the

probability measure space as the special case of a space whose total mea-

sure is one.

We shall make free interchange of the terms "measure" and "probabil-

ity," and any statement with regard to measure will imply probability

measure unless stated otherwise. The occasional use of measure in the

sense of Lebesgue will be qualified by employing the term Lebesgue Measure.

1. The Probability Measure Space

Following Kolmogorov, we assume axiomatically the existence of the

following entities:

I. An abstract space X of elements x.

II. A r-algebra J of subsets E of X. If the space X is the

space of real values, e is assumed to include the intervals.

III. For every set E, a real valued, nonnegative, countably addi-

tive set function >(E) such that (O) = 0, and (X) = 1.

*

A a-algebra A is a nonempty class of sets with the following properties:
(a) if EE g and Fe , then (E - F)e¢ ,

(b) if EiE A (i = 1,2,...), then ( U Ei e ,

i=1

(c) if Ees, then (X - E)e i.

It is clear that a -algebra is simply a a-ring which includes, in addi-
tion, the entire space X.
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The elements x are called elementary events or contingencies; sets

of these contingencies are called events. The set function u(E) is the

probability of the event E.

Assumptions I, II, and III above are essentially equivalent to the

six axioms given by Kolmogorov, although they are slightly more restric-

tive in that he assumed only an algebra of sets rather than a -algebra.

However, these assumptions do indeed satisfy all six axioms and the re-

striction is for all practical applications a minor one. Most authors of

modern probability theory base their work on a set of postulates equiva-

lent to I, II, and III.

These three assumptions define what in measure theory is called a

measure space or more specifically, since (X) = 1, a probability measure

space. It is customary to denote a measure space by the triplet (X,,i)

which implies the existence of a space X and a a-algebra (or -ring) ~

of subsets of X on which is defined the measure . The sets of are

called the measurable sets; and, by definition, a set is measurable if

and only if it is an element of the a-algebra on which the measure is

defined.

In order to see how the concept of a measure space includes our in-

tuitive notions concerning probability, let us examine the relationships

of set theory from a purely probabilistic point of view. We note that if

the set A is regarded as the occurrence of an event A, the complementary

set X - A is its nonoccurrence. The set AUB represents the occurrence

of either the event A or B or both, while the set AB is the occurrence

of both A and B. The difference A - B represents the occurrence of A but

not B. The set inclusion ACB is interpreted to mean that the occurrence

of A implies that of B. The empty set 0 is the impossible event; the

space X is the certain event. It should be noted, however, that there

will exist, in general, sets of probability zero which are not empty as

well as sets of probability one which do not consist of the entire space.

Thus probability zero and probability one do not imply impossibility and

certainty, respectively, although the converse is indeed true.

Let us now consider two disjoint sets A and B. Since AB = O, it

is an impossible event that both A and B occur simultaneously. In proba-

bility language, the sets A and B are said to be incompatible or mutually

exclusive. From the countably additive property of the measure i, it

follows that is also finitely additive and, since AB = 0,

p(A' B) = >(A) + (B). (1.1)

This is the well-known axiom that the probability of occurrence of either

of two mutually exclusive events is the sum of the probabilities of the

2
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occurrence of each of the events. The countably additive property of 

is used to deduce the result that if Eij (i = 1,2,...) is a sequence

of mutually exclusive events, then

( UEi) = E (Ei). (1.2)
i=l i=l

One might conceivably ask a question of the form: What is the proba-

bility of occurrence of the event E when it is known already that the

event F has occurred? Clearly, if EF = O, this probability must be

zero. On the other hand, if EF, the occurrence of F implies that of E,

and the probability we have asked for must be one. This question intro-

duces the concept of the conditional probability F(E) of the event E

relative to the event F. Our intuitive notions suggest the definition

YF(E) = (EF) , (1.3)

provided the set F is not null. Certainly, should F be of measure zero,

our original question has doubtful meaning. It may be seen that if

EAF = O, then WF(E) = 0; and if EDF, then E F = F and 4F(E) = 1.

Interchanging the roles of E and F in (1.3) above, we obtain

E(F ) = (E ) AF)F(E) (1.4)

which contains the essence of Bayes' Theorem. The concept of conditional

probability may be regarded to be more general than that of absolute proba-

bility; in fact, by setting F = X in (1.3), we have

4x(E) = (E). (1.5)

Hence the probability of the event E is its conditional probability

relative to the space.

A case may well occur in which the conditional probability IF(E) is
independent of the set F. Then we have

4F(E) = (E). (1.6)

However, from (1.4), it is seen that E and F must be mutually independent

in that we also have

WE(F) = (F). (1.7)

The usual condition for independence can be obtained from (1.3), and we

can state that a necessary and sufficient condition for a pair of sets

E,F to be statistically independent is that



Repeated application of the countably additive property of p may

be employed to extend these results to countable intersections. We say

that the members E i (i = 1,2,...) of a sequence of events are statisti-

cally independent if and only if

n n

(fE ) p17(E1 ) (n = 2,3,..) (1.9)

k=l k k=l k

for every finite subset of the sequence.

It should be remarked that pairwise independence of the members of a

(finite or countable) sequence of sets is not a sufficient condition for

independence of the sequence except, of course, when the sequence consists

of only two sets. However, if a sequence is independent, all subsequences

are, by definition, also independent.

Let us now consider a random variable f which takes on, at random,

real values x in (- oo,oo). The space X is the infinite real line, and

our -algebra is assumed to include the intervals. The event E is

interpreted to mean that the value x of f falls in the set E. If the set

E is measurable (E e f ), then the measure (E) is simply the probability

that f E E. If we denote the semiclosed interval (- ,x] by Ix, then

>(Ix) = probability that f x (1.10)

defines a nondecreasing point function, continuous on the right, and

bounded by zero and one. This function is the well-known distribution

function of the random variable f. In order to emphasize the fact that

>(Ix) is a point function, we shall usually write the distribution func-

tion as i(x). This should cause no confusion as long as we adhere to the

convention of denoting arguments that are points by lower-case letters

and those that are sets of points by capital letters.

It is clear that the function (x) generates the measure of inter-

vals in that we may write

I x: a < x b = (b) - (a)

I tx: a <x < b = (b-) - (a)
(1.11)

x: a x ~ be = (b) - (a-)

j {x: a ( x < b} = (b-) - (a-).

In fact we can obtain from (x) the measure of any set consisting of a

finite or countable union of intervals or even countable intersections

and differences. In other words, the function (x) generates the measure

4
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. on the class of Borel sets of the real line.

If the function ;(x) is the integral of its derivative, then '(x)

is called the probability density distribution of the random variable f.

These considerations apply equally well to an n-dimensional random

variable whose range X of values is the n-dimensional Euclidean space.

The distribution function in such a case is, of course, an n-dimensional

point function u(xl,x 2,...,xn) nondecreasing in each variable, while the

density function, if it exists, is given by

On 1(Xl,X2,...,n )

9x1 ax2 9x n

Let us now consider functions of the random variable f. For example,

we might wish to investigate the statistical behavior of the square of the

random variable or its logarithm, its absolute magnitude, and so on. We

should require, naturally, that a function F(f) of a random variable f be

a random variable itself; that is, if f has a distribution (x), there

should exist a distribution ( ) for the values of F(f). Such a

distribution is defined in terms of the measure by

i( ) = Ix: F(x) t · (1.12)

It is seen that ( ) will exist for all if and only if F is a meas-

urable function of f. The expectation or mean value of a measurable

function F(f) is defined to be its integral with respect to the measure 

F(f) =/F d = F(x) d(x) = d (~ ) (1.13)

X -00 -0

The mean of f itself is given by

f = x dp, (1.14)

X

its mean square by

f2 Jx2d, (1.15)

X

and its variance by

2 = 2 2oC (f - () f (x - 2f Xd = 2 f2 2 _ f2

X X X
(1.16)
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A pair of functions F(f) and G(f) are said to be statistically indepen-

dent if

p( x: F(x)E M1n}L x: G(x)E M21)

= ( x: F(x)E M13 )( tx: G(x)c M2 ) (1.17)

for every pair of Borel sets M1 and M2. If F and G are integrable [] ,

a necessary and sufficient condition that they be independent is that

JFG dp F dp fG d = F d G d. (1.18)

X X X

The proof of this last result can be found in Halmos.2

2. Cartesian Products of Probability Spaces

In the preceding section we were concerned with the probability

theory of a single random variable f taking values x in a probability

measure space (X,,4,p). In this section, we extend that study to a pair

of random variables f and g taking values on measurable spaces (X, ) and

(Y, ~), respectively. The events of interest will be sets of ordered

pairs of values (x,y) (xcX, yEY) where (x,y) represents possible values

of the Joint random variable (f,g). The variables f and g may represent

the outcomes of two successive performances of a single experiment (such

as successive rolls of a die) in which case the range of values of f and

g are identical. On the other hand, we may consider the pair (f,g) to

represent the outcome of a single experiment in which the range of values

of f and g need not be the same. For example, if we draw a single card

from a standard deck of 52 cards the variable (f,g) may represent the rank

and suit of the card drawn. The range of f (the space X) contains thir-

teen contingencies; that of g (the space Y), contains only four.

Let the random variables f and g be defined on measure spaces (X, ,u)

and (Y,5, ). For almost every value g = y, let there exist a condi-

tional measure p. on ; and for almost every value f = x, a conditional

measure Ax on . The random variable f is said to be independent of the

random variable g if the measure y is independent of y; that is, if

=y p for almost every y. It will be shown later that independence of f

on g implies that of g on f. An example of independence is given by the

representation of the pair (f,g) by rank and suit of a playing card drawn

from a complete deck. Specification of the suit of the card drawn does

not affect the probability distribution of the rank nor does specification

of the rank change the distribution of the suit. However, let us remove

6



one known card from the deck and draw from the remainder. In this case,

the variables f and g are no longer independent. Certainly, the specifi-

cation of the suit of the card drawn in this case changes the weight of

probabilities over the rank.

We shall have a great deal to do with measure spaces (X, ,py,p) on

which more than one measure is defined. A concept that will be very impor-

tant to our study is that of absolute continuity. Since the set functions

with which we deal will usually be measures (hence nonnegative), it is of

value to state the definition of absolute continuity as it applies speci-

fically to measures.

DEFINITION 2.1. Given a measurable space and a pair of measures ,9

defined on that space, the measure is said to be absolutely con-

tinuous with respect to the measure pi (in symbols, v -- ~ ) if for

every E > 0 there exists a 8 > 0 such that whenever >(E) < 6 ,

V (E) < c.

In simpler terms, we may say that -- if and only if >(E) = 0

implies (E) = O. It should be noted that the symbol () is not, in

general, symmetric. When we have both .4 and -^ 9 , we write

9 rov . Absolute continuity is, however, both reflexive ( v r, ) and

transitive ( d- -- A implies -- a \). When we use the term "abso-

lutely continuous" to describe a point function, we imply (unless stated

otherwise) that the set function which it generates is absolutely continu-

ous with respect to Lebesgue measure.

We shall have need also for the theorem of Radon-Nikodym, which has

some important additional conclusions when applied specifically to proba-

bility measures. It is of value to state here a restricted form of that

theorem. The proof of a more general form of the theorem can be found

in Halmos 2

THEOREM 2.1. (Radon-Nikodym). Given a measurable space (X, ) and a

pair of probability measures V and p. defined on A with v '-- ,

there exists a nonnegative, finite-valued function 9, integrable

with respect to on X so that for every measurable set E

V(E) = d>L. (2.1)

E

The function V which is defined uniquely except on a set of i-measure

zero, is called the Radon-Nikodym derivative and is frequently written

7



dV /dpj. The nonnegativeness of follows from the fact that is a

measure; its integrability, from the fact that V is a probability measure

with (E) 1.

We turn our attention now to the pair of measurable spaces (X, )

and (Y,r). Let EEJ be a subset of X; and FE5, a subset of Y. The set

of all ordered pairs (x,y) with xcE and yF is called a rectangle and is

denoted by E x F.

E F (x,y): xEE, yEF }. (2.2)

A typical rectangle is shown in Fig. 1. Note that we do not assume the

sets E and F to be intervals but rather measurable sets in general.

Every such rectangle is a subset of the rectangle X x Y, which is given

the special name of the Cartesian product space. Even though and

are -algebras of subsets of X and Y, respectively, the class of all

rectangles E x F with E e d and F E does not form a ring. Although

the intersection of a pair of rectangles is always a rectangle , neither

the union nor the difference need be. However, let us consider the class

R of sets that are finite unions of disjoint rectangles. That is, if

A E R, then

n

A U Ei X Fi (Ei x Fi) \(Ek X Fk) = 0, k i (2.3)

i=l

where Ec : and Fie '. It can be shown without difficulty (see Halmos2,

P. 39) that the class R is closed under unions and differences and hence

forms a ring. Since the space X x Y is itself a rectangle belonging to

P, it follows that £A is an algebra. Now if we consider the extended

class of sets whose members are all those subsets of X x Y that can be

constructed by a countable set of operations of unions, differences, and

intersections applied to the class of rectangles, this extended class

forms a -algebra. We denote by A x the -algebra of subsets of

X x Y generated in this manner by the class of rectangles. Clearly

(X x Y, x ) is a measurable space.

Product measure on the Cartesian product of independent spaces. We

consider a pair of measure spaces (X,',~i) and (Y,9 ,V ) and the measur-

able space (X x Y, x ) formed by their Cartesian product. We say the

spaces X and Y are independent if and only if the conditional measures

We have, in fact, the identity

(E 1 X F 1 ) n ( E 2 X F 2 ) = (E1iE 2) x (F1 \F2).

8



Py and \x are independent of y and x, respectively.
Let us define the product measure on the Cartesian product of a pair

of independent spaces in terms of the measures on the component spaces.

A goad example of such a measure is Lebesgue measure on the plane; that

is, the measure of the "area" of sets in the Euclidean two-space. This

example is clearly one of independent spaces, since the Lebesgue measure

or "length" of sets on the X-axis is certainly independent of the values

y on the Y-axis.

v

F

Ex F

E

Fig. 1. The rectangle E F. Fig. 2. The sections of a set A.

Let us consider a subset A of X Y, which we assume, of course, to

be an element of the -algebra A x . In other words, we assume A to

be a measurable set. As is illustrated in Fig. 2, the sections of the

set A are defined as follows: For any fixed x, let the set

Ax = {Y: (x,y)EAI (2.4)

be called the x-section of A, while for a given y,

Ay = i x: (x,y)eA} (2.5)

is its y-section. Notice that AC Y and A CX. Let (A ) be the measure
x y x

of the x-section, and consider the set function p(A) on Xx defined by

p(A) = j (Ax) d (2.6)
X

It is a rather simple matter to show that p(A) is a nonnegative, count-

ably-additive set function such that p(O) = 0 and p(X Y) = (X) (Y).

In other words, p is a measure on the product -algebra ) x . If A is

the rectangle E x F, it follows that

9



F xEE
Ax= (2.7)

hence for every measurable rectangle E x F,

p(E x F) = / (F) d = (F) (E). (2.8)

E

From the definition of f X , every measurable set A of the pro-

duct space X x Y can be covered by the union of a countable sequence of

disjoint rectangles of finite p-measure. (See Halmos2 , Chaps. II and

III.) In other words, we may write

0o

A C U (Ei x Fi) (Ej x FJ)f(Ek X Fk) = 0, k / J. (2.9)

i=l

By the extension theorems, the p-measure of A is defined to be the

greatest lower bound of the measures of all possible coverings of A.

0oo

p(A) = inf p [ (Ei x Fi)]
i=l

oo

= inf Zp(E i Fi) (2.10)

i=l

0o

= inf Z (Ei) V2(Fi).

i=l

Here we have used the countable additivity of p and the fact that the

(Ei X Fi) are disjoint.

Now let (Ay) be the measure of the y-section and consider the set

function p'(A) on x 'f defined by

p'(A) = f/ (Ay) d . (2.11)
Y

Following an identical argument to that used above, we find that for

every A x ffT ,

p'(A) = inf > i(Ei) (Fi). (2.12)
i=l

10



Thus p(A) = p(A) for every measurable A. We define the product measure

x v by the relations

(p x 9)(A) = p(A) = ( (Ax) d =J (Ay) dV. (2.13)

X Y

For every measurable rectangle E x F,

(p X v )(E X F) = (E) (F). (2.14)

It might be noted that if i and are both Lebesgue measure on X

and Y, the relation p(A) = p'(A) reduces to the trivial conclusion that

"area equals area". However, since these results apply to more general

measures, the equivalence of the two definitions is not trivial. We note

also that if and p are probability measures (not necessarily the same)

we have

p(X x Y) = (X) M(Y) = 1 (2.15)

and the product measure is also a probability measure.

Cartesian products of nonindependent spaces. In the preceding sub-

section, we saw that a product measure can be defined on the Cartesian

product of a pair of spaces which are assumed to be independent. The

product measure of any measurable set was defined in terms of the measures

on the component spaces. The resulting measure had the property that the

product measure of a rectangle is simply the product of the component

measures of its sides. In this subsection, we shall extend those results

to the Cartesian product of nonindependent spaces. In this case, there

will exist in general, in addition to the measures and , conditional

measures y and Vx on the component spaces. It is clear, however, that

the conditional measures may not be defined independently of one another

but that there must exist some sort of Bayes relation between them and

the absolute measures p. and . It is well known that if a probability

density exists on the product space, we can obtain all absolute (or

marginal) densities as well as conditional densities on the component

spaces by simple operations on the Joint density.

From these considerations, then, we shall work the problem in the

reverse order from that of the previous subsection. We shall assume the

existence of a measure A on the measure space (X x Y, xr , ) which

need not have the product property posessed by p with regard to rectangles.

We shall then show how the component measures may be obtained in terms of

the general measure A. Restriction will be made in this development to

probability measures.

11
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For every measurable subset E of X, we call the set

SE = I(x,y): xEE } (2.16)

the strip over E; for every F, we call

SF = I(x,y): yEF1 (-.17)

the strip over F (see Fig. 3). Clearly both SE and SF are measurable

subsets of X x Y and, in fact, are rectangles. We can write the strips

as

SE = EX Y

(2.18)
SF = X F.

It can be seen from Fig. 3 that SEA SF = E x F.

Now for all sets of x let a measure A be so defined that

A(X X Y) = 1. We define the absolute measures j and on the component

spaces (X,A ) and (Y, O') by

4(E) = x(SE)

(2.19)
V(F) = (SF)

for every EEcXand FE ', respectively. Since the strips SX and Sy are

both simply X x Y, it follows that (X) = (Y) = 1.

Let Iy = (-oo,y] be a semiclosed interval on the space Y. For any

fixed y, define the nonnegative set function y(E) by

(Py(E) = (E Iy) (2.20)

for every measurable set ECX. If E is a null set, that is, if (E) = 0,

it follows that A(SE) = 0. Further, since (E x Iy) CSE it also follows

that (E x Iy), hence y(E), equals zero for all y. Thus Cy r i, and

by the Radon-Nikodym theorem there exists uniquely [] a nonnegative,

ExF

Fig. 3. The strips over E and F.

x
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finite-valued function 9(x,y) such that

(Py(E) = /9(x,y) d(x) (2.21)

E

for every measurable set E. We note that since Py(E) = (E X Iy) is a

nondecreasing function of y for any fixed E, (x,y) must also be nonde-

creasing with y for almost all x. Also, since

9X(E) = (E x ) = (SE) = (E),

we have

y(E) = /t9(x,oo) d>(x) (2.22)

E

for every E. Hence 9(x,oo) = 1 [4]. A similar argument shows that

-f (x, -oo) = 0 [Li]; hence, for almost every x, (x,y) is a distribution

function on the space Y.

We shall call z9 (x,y) the conditional distribution function Vx(y)

which generates, for almost every x, a conditional measure Vx(F) of

every Borel subset F of Y. By setting E = Ix = (- oo,x], (2.21) becomes

x

VPy(Ix) = (x,y) = (t(Y) d(t), (2.23)

-00

and we can write

d (x,y)
(y) ~= a39ix) (2.24)

The partial derivative is, of course, to be interpreted in the Radon-

Nikodym sense. We use the partial derivative notation simply to empha-

size the fact that y plays the rle of a parameter in the integrand (2.21)

which the derivative represents.

For every Borel set F, we can write (2.21) as

A(E F) = / ~x(F) di. (2.25)

E

If we set E = X, then (X x F) = A(SF) = 2(F), and the absolute measure

V can be expressed in terms of the conditional measure x as

2(F) = f 4(F) di. (2.26)

X

13



If we consider the semiclosed interval Ix = (-oo,x] and the nonnega-

tive set function

bx (F) = (Ix x F) (2.27)

defined on , the identical reasoning leads to the definition of the

conditional measure y

t y(x) = x =a__ [V] , (2.28)
y(X =a V d (Y)

where the Radon-Nikodym derivative is taken for a fixed x. We then have

for every Borel set EE and every measurable set F,

A(E F) = y(E) d (2.29)
F

and

r=(E) f (E) dv . (2.30)

X

If the sets E and F are both Borel sets, that is, if E X F is a

Borel rectangle, then (2.25) and (2.29) give equivalent definitions for

the measure of such a rectangle in terms of the absolute and conditional

measures on the component spaces. We must enlarge these expressions in

order to obtain a similar relation for arbitrary Borel sets in the product

space.

Let A be an arbitrary Borel set in X X Y. It follows that the

sections Ay and Ax will be Borel sets in X and Y, respectively. Consider

the expression

A'(A) = / x(Ax) dp . (2.31)

X

If A is a Borel rectangle E F, then

F xcE

Ax = { xE (2.32)
0 O x/E,

and in this case, we have, from (2.25),

A'(E X F) = A(E -, F). (2.33)

Now let us consider the measure

A"(A) = y(Ay) d .
Y (2.34)

14



As before, if A = E F,

E yEF
A = (2.35)
AY i 0 y/F

and, from (2.29),

A"(E x F) = (E X F). (2.36)

With the observation that every Borel set A may be covered by a countable

union of disjoint Borel rectangles of finite measure, it follows that we

can write

A(A) = / ;x(Ax) d(A dV (2.37)

X Y

for the measure of any arbitrary Borel set in X x Y.

We show now how the results of this section are related to the custom-

ary treatments of probability theory when the probability density functions

exist. If the measure is absolutely continuous with respect to the

Lebesgue product measure, the probability density function

c 2A(x,y) (2.38)

dxdy

exists. The distribution functions

(x) = (Ix Y) = (x,oo) (2.39)

2(y) = (X x Iy) = (oo,y) (2.40)

are also absolutely continuous with respect to Lebesgue measure; hence

t'(x) and '(y) exist and represent the absolute probability densities

on the component spaces. In the absolutely continuous case, the Radon-

Nikodym derivatives in the definitions of the conditional measures become

derivatives in the ordinary sense, and we have

d?(x,y) 1 da(x,y)
(y) = = (2.41)

x c9@.(x) 1 (x) .x

dA(x,y) 1 d (x,y)
Wv () = (2.42)

Y 8V(y) ' (Y) dy

Taking the partial derivative of both sides of these two expressions with

respect to y and x, respectively, we obtain

15



vx() 1 a2?(x,y)
~~x~~~~~~~~ = ~~(2.43)

='(y) dx(2.4)

If we let p(x,y) = 92h(x,y)/cgxa y denote the joint probability density

distribution of the values (x,y) of the pair of random variables f and g,

then p(x) = '(x) is the probability density of x and p(y) = 't(y) is

that of y. Similarly, PX(Y) = 9Q x(y)/ay corresponds to the conditional

density of x for a given value y, and py(x) = Cp y(X)/cax represents the

conditional density of y for a given x. If we make these substitutions

into (2.43) and (2.44), the familiar relations follow:

p(x,y) = Px(y) p(x) (2.45)

p(x,y) = y(x) p(y). (2.46)

3. Some Important Theorems

In this section we shall make more precise the concept of indepen-

dence and shall treat certain theorems concerning product spaces which

will be useful to our study of information theory. Some of these theorems

are so well known in integration theory that we shall simply state them

without proof.

THEOREM 3.1. Consider a measure space (X x Y, x ~ ,) with com-

ponent measures defined as in the preceding section. Let E x F

be a Borel rectangle in X . Then the following expressions

are equivalent in the sense that each implies the other two:

(a) py(E) = (E) ["]

(b) x(F) = (F) [4]

(c) A(E F) = >.(E) (F).

PROOF. Assuming py(E) = (E) [V], we can write

A(E X F) = /pty(E) d = p(E) (F).

F

Thus (a) implies (c). However, from (2.26),

16
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/ vx(F) d = (E X F) = I(E) (F) = (F) = , ().1)

E E

and since this must hold for every Borel set E, we have

Vx(F) = 2(F) M]. (35.2)

Thus (c) implies (b); and (a) implies (b). The proof that (b) implies

(c) which in turn implies (a), follows from a similar argument.

DEFINITION 3.1. The component spaces X and Y of the product space X X Y

are said to be independent if, for every Borel rectangle E F, the

relations (a),(b), and (c) hold (or, of course, if any one of them

holds).

COROLLARY. The component spaces X and Y are independent if and only if

the distribution functions satisfy

A(x,y) = (x) V(y). (3.3)

PROOF. Apply expression (c) to the rectangle Ix X Iy.

DEFINITION 3.2. The random variables f and g are said to be independent

random variables if and only if the component spaces on which they

are defined are independent.

It followS from the definition given in section 2 and from Theorem 3.1

that if f is independent of g, then g is also independent of f; and we say

simply that f and g are independent.

We turn now to an important theorem which relates the integral of a

function defined on a product space to the iterated integrals of the

function over the component spaces. This theorem is the well-known Fubini

theorem. We shall simply state it here, referring the reader to Halmos

or any other standard treatise on integration for proof.

THEOREM 3.2 (Fubini). Let (X,;, ) and (Y, , ) be independent measure

spaces, and let t9(x,y) be a function integrable on the measurable

rectangle (E X Y). Then

/f 9 d( x ) = / / d d = ffd d v. (3.4)
E X F E F F E

17



Before treating a similar theorem for nonindependent spaces, we shall

have need for the following lemmas that will also prove useful in our

study of information theory.

LEMMA 3.3. Let (X X Y, dx c ,A) be a Cartesian product space with com-

ponents (X,,., p.y) and (Y,, 9, x). Let the product measure

p = x v be so defined on x 9f that X and Y are independent

spaces. If either of the relations

(a) A p

(b) py 4 [V]

(c) Vx V [uP

holds, then the other two also hold, and

(d) [A]d - d - dp

PROOF. We shall show first that (b) implies (a), which in turn

implies (c). An identical argument shows that (c) implies (a), which

implies (b). Assuming that y ' p. [], then there exists uniquely [v]

by the Radon-Nikodym theorem a nonnegative, finite-valued function

7 (x,y), integrable [] on X such that, for every Borel set E,

Y(E) = S (x,y) d [V]. (3.5)

E

From the expression for X given in (2.38),

A(A) =y Sy(Ay) d = 9/ ~(x,y) d4 d, (3.6)

y~ Y Ay

where we have used (3.5). Letting OA (x) be the characteristic function

of the set Ay, we have

Let E be a subset of the space X. The characteristic function $.E(X) is
defined by

1 xEE

')E(x) =(X - B)
0 x¢(X - ).

18
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=(A) J= /- A (x) z9(x,y) d dV

Y X 

= f- A (x) 9(x, y) dp (3.7)
XxY

by Fubini's theorem. From the definition of the sections Ax and Ay, we

note that xEAy implies and is implied by (x,y)eA. Similarly, yeAx is

equivalent to (x,y)eA. Thus, for all (x,y),

cAy () = A(xy) = A (y). (3.8)

It follows that

A(A) = J 9(x,y) dp (3.9)

A

for every Borel set A C (X Y), and conclusion (a) A -. p is valid.

Let A = E x F be a Borel rectangle.

X(E X F)= f t(x,y) dp = SJ (x,y) d dHp. (3.10)

ExF E F

But from Equation (2.26), we have

?(E X F) = / 9x(F) d.

E

Since these expressions must hold for all Borel sets E, it follows that

Vx(F) = (x,y) d [M]. (3.11)

F

Therefore conclusion (c) is valid. From (3.9), z9 (x,y) is unique [p],

but since A -.p, it must also be unique [A]. From a comparison of (3.5),

(3.9), and (3.11) conclusion (d) follows at once.

The proof of the following lemma, which follows from the Radon-

Nikodym theorem, may be found in Halmos.2

LEMMA 3.4. Let Cr and C. be finite measures on a measure space with

C- 4 ti. If z- is a finite-valued function, integrable [] on a
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set E, then

f d a d d. (3.12)

E E

Note that if ac is a conditional measure, let us say y, and

P.y ma p [], the conclusion of this lemma may be written

J @(x) dy = / (x) ~ dCj [] (3.13)

E E

We repeat again that the partial derivative notation is employed simply

to emphasize the fact that y is only a parameter in the integrand which

d y/dP represents.

We now have the tools to prove a theorem similar to that of Fubini

but which applies in addition to the Cartesian product of nonindependent

spaces. In the case of independence, this theorem reduces to that of

Fubini.

THEOREM 3.5. Let (X X y, fxg ,A) be a product space with component

measures as defined in the preceding section. Further, if p = p x ,

let A ,.-p. If h(x,y) is a function integrable [A] on the Borel

rectangle (E X F)e J X , then

J h d = /h d d = //h dy dV . (3.14)
ExF E F F E

PROOF. From the absolute continuity condition on the product meas-

ures, d9, x/d) and 9 y/1d0 exist by Lemma 3.3 and we may write

J fh d )px d-i h d dp.

E F E F p

= f h dt d d

E F

(3.15)

dp
ExF

=J h d ,

ExF
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where we have made use of Lemmas 3.3 and 3.4 as well as Fubini's theorem.

From a similar argument, it follows that

//h dy d) = / h d. (3.16)

F E EXF

If the component spaces are independent, we have x = []'

y = Ci [], and = p. From the reflexive property of absolute conti-

nuity, Theorem 3.5 applies. Its conclusion is, in this case, identical

with that of Fubini's theorem.

4. Infinite-Dimensional Product Spaces

Before terminating our discussion of product spaces, let us remark

that the definitions and theorems given here may be extended by iteration

to an n-dimensional product space. It should be noted that the product

space (X x Y, x CT ,) is a measure space in much the same sense as is
the component space (X,,~ ). There is no inherent property of a measure

space which limits its dimension. It follows that if (Z,'Z1,a) is a

measure space, there exists by the methods of this chapter another measure

space of triplets (x,y,z) consisting of the Cartesian product of the

spaces X x Y and Z. Also, for probability measure spaces with measure

one, any n-dimensional product of such spaces will be another probability

space of measure one. This process may be continued indefinitely to an

infinite dimensional space whose total measure is still unity. If we let

Xi(i = 1,2,3...) be a sequence of measure spaces, the space formed by

00oo

X1iX x2x2 3 X.. = X Xi (4.1)
i=l

consists of the space of all infinite sequences of random variables

(Xl,X2,X3,. .).
Since the details and modifications necessary for this extension are

treated admirable by Halmos,2 we shall not be concerned further with this

development. Let us remark, however, that the results given in this

chapter for a product space X X Y are valid even though either or both

X and Y are themselves infinite-dimensional probability measure spaces.

21
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II. THE STOCHASTIC PROCESS

Let f(t) } be a family or ensemble of random functions of an

argument teA, where A is a subset of the real line. That is, for every

value of the parameter t, the function f(t) is a random variable taking

values from a probability measure space. Consider an arbitrary finite

subset (tl,t2,...,tn) of values of the set A and the corresponding

values of the n-tuple [f(tl),f(t2),...,f(tn)] taken on by the members

of the ensemble. Let z = (Zl,z 2 '...,n) be the value of a particular

n-tuple and Z the n-dimensional space of all possible values over the

ensemble. If there is defined a probability measure on a -algebra of

subsets of Z, the family { f(t)4 is called a stochastic process (see

Khintchine4). A specific member f(t) is called a realization of the

process.

If the set A of parameters t is a continuum or the entire real line,

the ensemble { f(t) is called a continuous-parameter process. If t

represents real time, the realizations f(t) may be regarded as random

time functions. When, on the other hand, the set A consists of the posi-

tive and negative integers only, the ensemble is called a discrete, or

integral-parameter process. Accordingly, the realizations of a discrete

process are sequences of (not necessarily independent) random variables,

and we denote by f = {fij (i = ...,-1,0,1,...) a specific realization

of such a process. In this paper we shall be concerned primarily with

discrete processes, although we shall obtain certain specific results in

the information theory of a continuous-parameter process.

5. Ergodic Theory

The ergodic theory had its origins in the classical studies of

statistical mechanics, wherein it was desirable to relate time averages

associated with a particular system to statistical averages associated

with a universe of realizations of the system. We shall not be concerned

with the mechanical systems themselves but rather with the mathematical

model of such systems, namely, the stochastic process. For our purposes,

then, the ergodic theory is concerned with the relationship between the

average (over the parameter) of some function of a particular realization

and its probability average over all possible realizations of the process.

The ergodic theorems themselves are primarily theorems concerning

point and set transformations on a measure space, hence are a part of the

Lebesgue theory. We shall be concerned only with that theorem of

Birkhoff-Hopf-Khintchine5'6'7, known as the Individual Ergodic Theorem,

22
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that deals in particular with one-to-one measure-preserving transforma-

tions on a space of finite measure. We shall state this theorem in its

measure-theoretic form and shall show how it applies to the relationship

between averages of a stochastic process.

Let (X, ,) be a probability measure space and T a one-to-one point

transformation of the space X onto itself. That is, if xX, then TxEX

and T- lxX. Since T is one-to-one, T(T-lx) = x. Iterations of the trans-

formation are represented by integral powers of T:

T(Tx) = T2x. (5.1)

It follows that

Tk(TJx) = Tk+j x = TJ(Tkx) (5.2)

Let E be a measurable subset of X. Then the set

TE = x: T 1xE E (5.13)

is well defined. We assume here that T is a measurable transformation;

that is, if E , then TkEecX for every integer k.

DEFINITION 5.1. A transformation T is called measure-preserving if it

is measurable and if (TE) = (E) for every E g.

It follows from the measurability of T that, if T is measure-preserving,

then

t(TkE) = (E) (5.4)

for every integer k.

DEFINITION 5.2. A set M is said to be invariant under the transformation

T if

(MUTM) = (MATM). (5.5)

More simply, we may state that a set M is invariant if it differs from

its image set by a set of measure zero; that is, if both sets (M - TM)

and (TM - M) are of measure zero. If, in particular, TM = M, then M is

invariant under T.

DEFINITION 5.3. A transformation T is said to be metrically-transitive

if it is measure-preserving and if, in addition, it leaves invariant

no set of measure other than zero or one.
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In simpler terms, if T is metrically-transitive and there exists a set M

such that (5.5) holds, then the measure of M must be either zero or one.

It is clear that a transformation is metrically-transitive only with

respect to some defined measure.

The ergodic theorem of interest to us can be stated as follows:

THEOREM 5.1. (Individual Ergodic Theorem). Let T be a one-to-one trans-

formation of the measure space (X, ,t) onto itself, and Wp(x) an

integrable function defined on X.

(A) If T is measure-preserving, then the function

N

P(x) = lim N + 1 E (Tx) (5.6)

k=O

exists almost everywhere [P] and

J (x) d = W(x) d. (5.7)

X X

(B) Furthermore, if T is metrically-transitive, then (x) is

constant [] and

lim 1 N (Tkx) = ' (x) d []. (5.8)tim N + I

k=O X

For a proof of the theorem as stated here, the reader is referred to

Wiener6 or Riesz7

Strictly-stationary discrete process. Let us consider a discrete

stochastic process whose realizations are random sequences

fi} (i = ...,-1,0,1,...). Let f = (f ifi ...'fi ) be an arbi-
1i 2 n

trary finite set of elements of a particular realization of the process

taking values z = (Zl,z 2,...,Zn) on an n-dimensional probability measure

space (Z,OU,A). For any integer k, the translated n-tuple

(fil+kfi+k.... , 'fi+ k) assumes values on a space (Z,U,?'). The

process is said to be strictly-stationary, or stationary in the strict

sense, if for every EV, '(E) = A(E) independently of the index k. In

other words, the sequence {fil is a realization of a strictly-stationary

discrete process if, for every integer k, the distribution functions

associated with Ifil are identical with those corresponding distributions

associated with the sequence {fi+kl.
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We now define a transformation T which transforms each element of

f fit into the next succeeding element. That is

T fk = fk+l' (5.9)

This transformation is clearly one-to-one, and successive iterations of

the transformation form a simple translation of the sequence

Tm fi = fi+m1- (5.10)

We can thus choose a particular element, say fo, from the sequence { fi
and represent the stochastic process by an ensemble of sequences of the

form ITifot (i =..,-1,0,1,...).

If z = (Z 1,Z2 ... ,Zn) represents the value of the n-tuple

f = ( fi 'f i ' fi ) , then Tkz is the value of the n-tuple

(f il+k' i2+k ' ''fi +k ) ' Let E be a subset of the space Z of1 n
values z and

A(E) = Probability that ( filf i ,...fi E. (5.11)
112 i n

Then

A(TE) = Probability that ( fi ''f i E TE (5.12)

= Probability that (fil -k'fi -k' * fi k) E.

If the process is strictly-stationary, it follows that these probabilities

are equal, therefore

X(TkE) = A(E) (5.13)

for every integer k. That is, the transformation T which performs a

translation of a strictly-stationary discrete process is a probability

measure-preserving transformation.

Let (Q(f) be a measurable function of the n-tuple f. By part (A) of

the ergodic theorem, the parametric average of (O for a particular reali-

zation exists for almost every value z of the n-tuple f. This is given

by

N

9(z) = lim N + 1 E p(Tkz) [ (5.14)

k=0

Ergodic processes. A case of particular interest is the process for

which (z) has the same value for almost every realization of the process.
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This is the so-called ergodic case.

DEFINITION 5.4. A discrete stochastic process is called ergodic if it is

strictly-stationary and if every measurable function CP(f) of an

arbitrary n-tuple of the process assumes the same parametric average

for almost all realizations of the process.

We have shown that a translation of a strictly-stationary process is

a measure-preserving transformation. We shall show later that, in the

ergodic case, this transformation is metrically-transitive.

We consider a discrete ergodic process whose realizations are

sequences fit of random variables. Let the elements fo of the reali-

zations take values x on the one-dimensional space (X,i,I). If F(x) is

any integrable function of x, then the sequence F(fi) = F(Tifo) is

a sequence of random variables itself. Since an ergodic process is also

strictly-stationary, the transformation T is measure-preserving. From

part (A) of the ergodic theorem follows the existence of the parametric

average

N

F(x) = lim N 1 1 F(T ) [IL] (5.15)

k=O

for almost every value x of the element fo. The statistical average of

F over the ensemble for any particular index k is

F= /F(x) d, (5.16)

X

since, from the stationarity condition, the element fk is defined also

on (X,id,>).

In order for the parametric average (5.15) to have any meaning as a

true average, it should be required that its value remain unchanged by

starting the summation at some element other than fo. In other words, we

require that F(Tnx) = F(x) for every integer n. To see that stationarity

guarantees this, we consider the function

N

F(Tx) = lim N 1 F(T 1x)
N 0N + 1

k=O
(5.17)

M

l M M+l F 1 F(TTX) - F(x)}
m= 0
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wherein we have set m = k + 1 and M = N + 1.

The integrability of F demands that it be finite-valued almost every-

where, hence the second term vanishes [] in the limit. The limit of the

first term is simply "(x) thus, by iteration,

F(Tnx) = F(x) [] (5.18)

for every n. In the stationary case, then, the parametric average

F(x) of a particular realization has the same value for almost all values

x of the elements fk of that realization. In the ergodic case, moreover,

its value remains the same for almost all realizations. Therefore, in

the ergodic case,

F(x) = c [,] (5.19)

where c is a constant independent of x. Applying (5.7) we have

c F(x) d = F (5.20)

X

and, equating (5.15) and (5.16), we have

N

limr 1 F(Tkx) = /F(x) d [] (5.21)

k=0 X

which is the assertion of part (B) of the ergodic theorem.

Now we can show that the translation transformation T of an ergodic

process is metrically-transitive. To do this, we choose a particular

function of x, namely, the characteristic function %cE(X) of some measure-

able set E. That is, we consider the random sequence I XE(fi)} whose

elements are 1 when ficE, and zero otherwise. This function is clearly

>-integrable and its integral over the space X is simply the measure

t(E) of the set E. From (5.21) above,

N

(E) = im N 1 E YE(Tkx) []- (5.22)
k=O

Remembering that x is the value taken on by a particular element, say fo,

we see that the expression

N

N 1 E E(T x)
k=0

represents simply the proportionate number of times the value of the
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elements fij falls in the set E in a succession of length (N + 1)

following the element f . It is quite reasonable that the limit of this

expression should represent, in the ergodic case, the probability that

any element fall in the set E.

In order to show the metric-transitivity of the transformation T, we

postulate the existence of a set M invariant under T. For almost every

xcM, xTM also. We may state invariance by writing for all k,

.M(x) = TkM(X) [R]' (5.25)

since the set of points x of X for which the equality fails to hold must

be of measure zero. From (5.22) it follows that

N

A(M) = lim N + 1 M( x) [] (5.24)

k=O

However, for almost every x, TkxEM implies xT-kM. Consequently,

%M(Tkx) = 3Y -k (x) = M(X) [R] (5.25)
TM

is independent of the index k. Equation (5.24) becomes

4(M) = % .M(x) [4]i (5.26)

and the measure of the invariant set M is either zero or one, depending

on whether or not the initial element f lies in M. Thus, in the ergodic

case, the translation transformation is metrically-transitive.

6. The Autocorrelation Coefficients of a Discrete Process

In this section, we show that the autocorrelation coefficients

associated with a discrete ergodic process can be expressed in two equiva-

lent forms. These forms are (a) in terms of a statistical average over

the ensemble and (b) in terms of a parametric average in a particular

realization.

We consider a discrete stochastic process whose realizations are

random sequences {fi} . Let the element k take values x from a measure

space (X,X,R) and f take values y from the space (Y, / ,). Since, in

general, the elements of the sequence {fi} will not be statistically

independent, the pair (fk, fj) will take values on the product space

(X x y, x ~ ,A) with component spaces X and Y. The measures and V

are then the absolute measures on the component spaces. The autocorrela-

tion coefficient Rkj is defined to be the statistical average of the
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product fkfj. Thus

Rk = fkfj = / xy d, (6.1)
XxY

when this integral exists. It follows from Fubinits theorem that

Rkk = kfk = x2 dX = x2d = fk 2 (6.2)

XxY X

If the elements k and f are statistically independent, then X = ? x v ,

and from Fubini's theorem,

RkJ = f xy d( x y) = dxy d d
XY X Y

Jd ify dV f (6.3)

X Y

Furthermore, if the process is strictly-stationary, the distributions

associated with the pair (f kfj) are identical to those associated with

the translate (fk+m fj+m )' for all integers m. Thus

RkJ fkfj fk+mfJ+m = fmfm+J-k (6.4)

wherein we have translated again by -k. From the strict stationarity, the

latter average is independent of m, hence Rkj is a function of the differ-

ence (j - k) only. If we denote by n the difference ( - k), the auto-

correlation coefficient of a stationary process becomes

Rn = fmfmn = fmnfm = Rn ' (6.5)

wherein we have translated again by -n. Accordingly, the autocorrelation

coefficient of a stationary discrete process is an even function of the

index n. Clearly, R is the mean-square fk which is, of course, inde-

pendent of k.

From the ergodic theorem, every realization of a stationary process

posesses a parametric average

N

lim N + 1 fkfk+n
k=O
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whose value is independent of the value of the initial element f. In

the ergodic case (that is, if the process is also ergodic), this average

is the same for almost all realizations and in fact is equal to Rn. Thus

we have

N

Rn= lim N + 1 fkfk+n xy d (6.6)

N- _0k=O XxY

where X x Y is the space of values of the pair (fk,fk+n) for any k.

This expression relates two equivalent definitions for the auto-

correlation coefficients of an ergodic process. We can obtain these

coefficients either by an average over the ensemble of the product of

any particular pair (fkfk+n), or by an average of that product over

the parameter k in a particular realization of the process. From a

practical point of view, this is a very important relation. While the

ensemble is a sort of fictional entity, the realization, or at least a

finite part of the realization, represents a finite sequence of numbers

which may have been obtained by experiment. The parametric average

represents a value which we might well obtain from a finite number of

measurements in the laboratory on a particular random sequence.

From the communication point of view, a particular realization of

the process may represent a message or, perhaps, some received signal

conveying information about that message. In such a situation, we shall

not, in general, have a knowledge of all the elements of a realization

but rather a knowledge of only those elements in a finite past history of

the sequence. From these considerations, it is of interest to show that

such a knowledge of a particular realization is sufficient for obtaining

any necessary statistical characteristics concerning the future of the

sequence.

Let us consider again a particular realization Tifo } of an ergodic

ensemble. Let f = 1fT 2fo ...,T nf o ) represent an arbitrary n-

tuple taking values z from the n-dimensional measure space (Z,4TZ,A).

Let $0(z) be an integrable [] function of the values z of the n-tuple f.

As was shown in section 5, the translation transformation Tk , when applied

to an ergodic process, is metrically-transitive as well as measure-

preserving for every integer k. It follows, in particular, that T 1 has

these properties. Applying the ergodic theorem to the function (P(z) and

to the inverse transformation T , we obtain

N

lim 1 EZ (T-kz) = f p(z) d. (6.7)
N N 1 k=OZ

k=O Z
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If EcEt is a subset of Z and )E(Z) is its characteristic function, the

expression above becomes, with W9(z) =)CE(Z),

N

A(E) = lirm 1 E (T-kz) (6.8)

k=O

We note that if z represents the present value of the n-tuple f in a

particular realization, then T-kz for k 0 represents all past values.

Thus we can always obtain all oint distribution functions connected with

the realizations of an ergodic process by making a sufficiently large

number of measurements on the past history of any one of its realizations.

If we set f = (fkfk-n), it follows from the even property of the

autocorrelation coefficients that Rn is given by the average of the pro-

duct xy of values (x,y) taken on by the pair (fkfk-n). Applying

Eq. (6.7), we obtain

N

N N + 1kfkn
k=O

-N

Nlim N + 1 E fkfk-n (6.9)
k=O

Since fo represents the present value of the sequence fi it is seen

that the autocorrelation coefficients also can be obtained from an obser-

vation of past values only of the elements of the sequence.

If we remember that in the strictly-stationary case the parametric

average is invariant under translations, i.e., y(Tkz) = P(z), it follows

that

-N

Rn lim N + 1 fk-m k-m-n (6.10)
k=O

is independent of m.

Now let us suppose that we have at our disposal a very large number

N of ordered random variables. That is, we know precisely the values of

the finite sequence (fNfN+l ff _lfo) If the two averages

-N+m
^ 1
f N - m+ 1 fk-m (6.11)

k=O

and

31



-N+m+n

Rn =N - m -n + 1 (6.k-mk-m-n12)
k=O

are independent of the index m for small (compared to N) values of m and

n, the sequence will be said to be stationary (in the wide sense) in the

past. It is clear that the class of all infinite sequences

fij (i = ...,-,0,1,...) with average f.and correlation coefficients

Rn equal to f and Rn, respectively, contains a subclass of such sequences

having the finite sequence above as the values of its past N elements.

The class of sequences, which is said to be ergodic in the wide-sense,

represents the ensemble from which our finite sequence was selected. The

statistics associated with the unknown future of the sequence whose finite

past we know are precisely those statistics associated with the future of

the realizations of the class .

7. Continuous Parameter Processes

In this section, we shall review the results of the preceding section

as they apply to the continuous-parameter process. The details of the

development will be omitted, since the arguments are, with minor modifi-

cations, similar to those encountered in the study of discrete processes.

The ergodic theorem concerns a measure space (X, ?,) and an Abelian

group of continuous-parameter one-to-one transformations T of the space

X onto itself. In this case, the parameter tY is any real number in

(-oo,oo). The transformations have the property that

T" (TY x) = T +' x (7.1)

for all Y and . The ergodic theorem in the continuous-parameter case

is slightly weaker than that in the discrete case in that hypotheses

concerning measurability, measure-preservation, and metric-transitivity

of a transformation T are made for almost all real values of the para-

meter , that is, with the exception of a set of values of Lebesgue

measure zero.

The ergodic theorem for continuous-parameter transformations may be

stated as follows:

THEOREM 7.1 (Individual Ergodic Theorem). Let T be an element of an

Abelian group of one-to-one transformations of the measure space

(X, , ) onto itself, and p(x) a function, integrable on X, so

defined that (p(Te x) is measurable in both x and .
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(A) If T is measure-preserving for almost all 'Y, then the

function

A

(x) = lim A ( q(T x) dY (7.2)
A- 00

exists almost everywhere [], and

((x)d = j((x) d- (x) d. (7.3)
X X

(B) Furthermore, if T~ is metrically-transitive for almost all

Y, then (x) is constant [], and

A

A 1 A li (T x)) d = (x) d []. (7.4)
X

Let the random time function f(t) be a realization of a continuous-

parameter stochastic process so that any arbitrary n-tuple

f = [f(tl),f(t2),... f(tn)] assumes values z = (Zl,z2,2, 'Zn) on the
product space (Z,6 ,L). For any real number r, the translation

[f(tl + ), f(t2 + r )...ff(tn + )] assumes values on (Z,U,t). In
a manner analogous to that for the discrete case, the process f(t) is

said to be strictly-stationary if, for every E, '(E) = (E), inde-

pendently of the value of 7-. In other words, f(t) is a realization of

a strictly-stationary process if every distribution function associated

with f(t) is identical with the corresponding distribution function

associated with f(t + r ).

It follows as before that, if we define the time translation trans-

formation Tr by

T2 f(t) = f(t + 7), (7.5)

such a transformation preserves measure in a strictly-stationary process.

From part (A) of the ergodic theorem, the time average (0 of any integrable

function of f exists for almost all realizations of the process and is

given by

A

Y(Z) = lim A ((T' z) d- [X], (7.6)
A- 0

where z is the value of the n-tuple f. Although this average will be

independent of time for a particular realization, its value may well be
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different for different realizations, hence may depend on the particular

value z of f.

In the ergodic case, however, the time average is the same for almost

all realizations, therefore is a constant for almost all z. Thus if the

process f(t) is ergodic,

A

= im Af (P(Tr z) d- = J 0(z) dX [A]. (7.7)
A- 0 Z

As in the discrete case, we can obtain all probability distribution

functions (as well as autocorrelation functions) from an observation of

the past history only of a particular realization of an ergodic continu-

ous-parameter process. For example, if we let to denote the present time,

the measure A(E) of any measurable set in the product space

(X x y, x ' ,A) of values (x,y) of the pair [f(to),f(t o - t )] is

obtained by the application of (7.7) to the characteristic function

'CE(Z) of the set E and the use of the metrically-transitive transfor-
mation T . Thus

A

A(E) = lim A j XE [TV(X,y) dY, (7.8)

where

if [f(t o -),f(t o - -"v)] cE

X' E []TY (x Y)] = (7.9)
O otherwise.

Similarly, the autocorrelation function becomes

R(T) =- / xy dA

XxY

t

limA- J f(t) f(t - T) dt, (7.10)
A- A to

which, in the stationary case, is independent of to.



III. A UNIFIED DEFINITION OF INFORMATION

The primary objective of a communication system is to obtain from a
source a certain amount of information and to convey it to a receiver at
the other end of the system. In order for the information conveyed to

have any value, it must in some manner add to the knowledge of the re-

ceiver. Should the receiver receive a statement which it already knew to

be true, certainly no information will have been conveyed. In order for

any statement to convey information, there must exist, a priori in the

receiver, an uncertainty concerning the subject of the statement. The
more uncertain the receiver is about the content of the statement, the

larger is the amount of information received.

It was Wiener, perhaps, who first recognized that communication is
in reality a statistical problem. His pioneering work,8 and that of

Shannon,9 first introduced statistical methods into the communication

problem. They extended the earlier work of Nyquist and Hartley concerning

information measures to include the probability concepts that are neces-

sary in handling more general classes of communication problems. From
this study, they evolved a statistical definition for the measure of the

information concept, placing information theory on a firmer mathematical

foundation.

A very general communication system is one in which ideas in some
form or other are conveyed from a source to a receiver in order to add to

the knowledge at the receiver. Such a general system does not lend itself

directly to treatment by mathematical methods because of the rather obscure

concepts of ideas and knowledge. One way to make the transition to a more
amenable system is to assume that the messages or ideas are coded in such
a way that they represent either a discrete sequence of values of a random

variable or a continuously varying random time function. Teletype, tele-

phone, television and many other forms of communication systems are examples

of this coding. If we assume the existence of one-to-one transducers

which transform these sequences and functions back to their original forms,

practically no loss of generality results from the transition.

In the design of a communication system, one does not optimize the
system in order to maximize the information conveyed about a particular

message but rather designs the system to handle a specific class of
messages. For example, a telephone system must be capable of handling

messages conveyed by a large variety of voices varying in their individual
characteristic. Thus a telephone system is optimized to convey the maxi-
mum information on the average about any message selected from an ensemble
of possible messages. In coding the particular messages in the form of

35



random sequences or random time functions, the appropriate mathematical

model for the study of information is the stochastic process. The a priori

knowledge of the receiver at any instant may be expressed in terms of a

set of probability distribution functions associated with the ensemble of

possible messages. On the reception of a certain amount of additional

information in a time interval, the a posteriori knowledge is character-

ized by a new set of these distributions. It is clear that the amount of

information conveyed in the interval should be expressed in terms of the

a priori and a posteriori distribution functions. We see, then, that the

fundamental process by which information is conveyed has as its mathe-

matical model a change of a set of distribution functions.

8. History of the Problem

In order to develop a general theory of the information associated

with a stochastic process, we shall start with rather simple problems and

gradually extend the results in a more general direction. At the same

time, we shall review the major fundamental contributions of the early

work of Wiener and Shannon and point out their connections with the

development given here.

Contributions of Wiener. We consider a random variable f which takes

on, at random, real values x from a probability measure space (X, a,>).

The measure (E) of any measurable set E is then the probability that the

value of f falls in the set E.

t(E) = probability that fE. (8.1)

Wiener 8 has considered the following problem: If we know a priori

that the value of the variable f lies in some set A and we are told, in

addition, that feB, how much information have we obtained? Clearly, our

a posteriori knowledge is that f belongs to both A and B, hence lies in

their intersection AAB. As introduced by Wiener, a reasonable measure

of the information received is

A(A)
I1 = log '(A nB) (8.2)

where the base of the logarithm determines the units of I. The logarithmic

measure is chosen in order to make the information from independent sources

additive. For example, if we receive further information to the effect

that fC, that is, an additional amount given by
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p(AnB)
12 = log , (8.3)

Fr(AA B n C)

the total information given us is

u (A)

I = I1 + I2 = log , (8.4)
4 [A t\(B )] 

which may be seen to represent the amount of information conveyed by the

equivalent statement fe BA C.

We note that if B A, the amount of information I1 is zero. On the

other hand, if AB is a set of small measure relative to A, the amount

of information obtained becomes quite large. If AB is a nonempty set

of zero measure, we see that the information obtained is infinite. This

is the value that our intuition would prefer. On the other hand, suppose

that the set AB is empty. Our expression gives an infinite value to

such information although it is doubtful in this case whether any infor-

mation at all has been obtained. Our a priori and a posteriori knowledge

become contradictory. If A and B are disjoint, the value of f cannot

possibly lie in both A and B; thus, either our a priori knowledge is false

or the information given us is false. Without further information, we do

not know which to discard.

We shall interpret (8.2) to have meaning only when AB is nonempty

and shall take the point of view that our a priori knowledge is unquestion-

ably correct. This assumption allows us to conclude that fAAB when we

have received only the information that feB. With this interpretation,

it follows that since ADAAB, then (A) T/ (AAB), and the information

obtained is always nonnegative.

The definition of information given by (8.2) treats only the special

case in which the information received serves to reduce the range of

values of f to some subset of its a priori range but does not provide a

measure for the more general information processes. Wiener has considered

also the following, more general problem:

If the random variable f is known a priori to be distributed accord-

ing to the probability distribution function p(x) and information is re-

ceived which permits the formulation of a new a posteriori distribution

v (x), how much information does this change of distribution represent?

Here, the information has not merely reduced the range of values of f to

a subset, but has changed the defining measure on the space. Later we

shall see that this is not a different situation from the first problem

considered but simply represents a more general process of which the

first is a special case.

37



Using a suggestion of von Neumann, Wiener proposed, as a solution to

this general problem, that the information received should measure the

change of our uncertainty about the random variable in question. He then

introduced an expression of the form

i1(x) log ui(x) dx
-00

to represent the uncertainty, or entropy, associated with the distribution

density function '(x) by which the random variable is distributed. For

the information resulting from a change of distribution of the variable,

he proposed that we take the difference of the entropies of the a priori

and a posteriori distributions. Such a definition looks promising at

first glance and, in fact, guarantees that the information given by each

of a sequence of distributions adds to give the total information. How-

ever, there are several shortcomings in the implications of this defi-

nition.

In the first place, the definition for entropy in terms of density

functions is capable of treating only the special case in which the

probability distribution functions are absolutely continuous. Furthermore,

it forces sequences of distributions to provide additive information with

no regard for the question of independence of the sources. It provides

information which may be either positive or negative, giving no answer to

the question of whether the a priori or a posteriori knowledge is more

correct. Finally, it does not necessarily give a higher information value

to less likely events.

This last statement becomes clear when we consider the information

processes of Fig. 4. Suppose that p(x) is an a priori distribution

function, and let Vl(x) and 2 (x) represent two possible a posteriori

distributions, differing only by their mean

1.0 values. Clearly, 22 (x) is less likely to

follow p(x) than is 1(x), because its most

probable value lies in a neighborhood of low
0

.O ~ a priori probability density. It follows

that )2 (x) should provide more information

than V 1(x). However, it is easily seen that
1.0o the definition of entropy gives a value in-

variant under translation of the distribution,

_ J x with the result that the entropies of both

a posteriori distributions are equal. Ac-

Fig. 4 cording to the difference-of-entropy
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definition, they both provide equal values of information even though one

is much less likely to occur than the other.

Contributions of Shannon. In his classical work9, Shannon did not

use the definition of information proposed by Wiener, nor did he provide

any definition at all for information itself. In spite of this omission,

Shannon's paper represents one of the most significant single contri-

butions to the modern theory of communication. He made use of the entropy

concept as a natural measure of information and derived expressions in

terms of entropies for the rate of transmission of information and the

information capacity of both noiseless and noisy channels. Shannon

treated in detail, however, the communication problem in only the two cases

represented by pure step and absolutely continuous distribution functions.

He proposed an attack for the general mixed case based on his expression

for information rate but presented few details of such an extension.

Shannon defined the entropy associated with a finite set of proba-

bilities i pi , with

Pi =1, (8.5)

by the expression

H = - L Pi log Pi' (8.6)
i

which may be considered to represent the average amount of information

required to single out any one element k, with probability Pk' from the

entire set of all possible x. It thus represents the average rate of

information (per symbol) generated by a source that produces a sequence

{xil of independent random variables according to a discrete probability

distribution. He extended this definition to include nonindependent

sequences by representing more general sources as Markov processes and

evolved a definition for the average rate of information generated by any

source of ergodic character.

A simple form of the communication problem considered by Shannon may

be stated as follows: Let X represent a finite set of n symbols xi with

each of which is associated a probability p(i). Let an ergodic source

generate an infinite sequence of symbols selected independently at random

from the set X, and let this source feed a channel whose output consists

of an independent sequence of elements yj from an m-element set Y. Let
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a set of nm joint probabilities p(i,j) be defined on the product space

X x Y. For every element xi, there exists a probability pi(J) for the

occurrence of the symbol y. Clearly, the set of probabilities pi(j)

characterize the properties of the channel, and

p(i,j) = i(J) p(i) (8.7)

is determined by the characteristics of both the channel and source.

From (8.6) the source entropy is given by

H(x) = - p(i) log p(i)

i

=- p(i,j) log p(i,j). (8.8)

i,J J

The entropy of the received symbols yj is given by

H(y) = - (J) log p(j)

= - Lp(i,) log Lp(ii). (8.9)

i,j i

Shannon defined a conditional entropy H (y) as the average of the entropy

of y for each value of x, weighted according to the probability associated

with that particular x.

Hx(y) = - p (i,J) log Pi(J). (8.10)

1,

He then defined the rate (per symbol) at which information is conveyed

through the channel to be

R = H(y) - H(Y)

p(i,j)
= 7 p(i,j) log p(i)p(J) ' (8.11)

i,j

It is clear that the quantity p(i,j)/p(i)p(J) is some sort of measure of

the dependence between the input and output of the channel; hence the

average value of its logarithm is a reasonable measure of the average

information conveyed per symbol. The channel capacity is then defined as
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the maximum value of R for all possible source distributions.

Shannon treated also the case of an infinite alphabet X consisting

of the entire real line (- oo ,oo) whose elements x are distributed by an

absolutely continuous distribution function L(x). By analogy with his

discrete theory, he defined the entropy of an absolutely continuous distri-

bution function by the expression

00

H = -(x) log 4i(x) dx, (8.12)

-00

which is the negative of the quantity used by Wiener. For the continuous

analogy of the discrete communication problem treated above, Shannon

considered a pair of such alphabets X and Y on whose Cartesian product

X x Y the oint distribution density p(x,y) is defined. If we denote by

p(x) the density '(x) and by p(y) the corresponding density on y, the

average rate (per symbol) conveyed through a continuous channel from an

infinite alphabet source generating independently a sequence of such

symbols becomes

R = p(x,y) log p(x)p(y) dxdy. (8.13)
-o0 -0

Contributions of Woodward. A slightly different interpretation of

Shannon's theory is represented in the work of Woodward, who developed the

entire theory from a pair of additivity axioms. Woodward introduced the

interpretation of the bi-variate random variable

p(x,y)
Ixy = log P(X)P(Y) (8.14)

xy p(x)p(y)

as a measure of the mutual information between the random variables x and

y. He then studied the properties of various averages of Ixy over the

various distribution functions involved. If x and y are considered to be

the transmitted message and received signal, respectively, the average

information about x provided by a particular y received is, from the

receiver's point of view,

Em =$yX) ogp(x,y)

Iy = py(X) log p(x)p(y) dx (8.15)
-00

if p(x,y) is a probability density, and



p(x,y)

Iy = py(x) log p(x)p(y) (8.16)
x

if p(x,y) is purely discrete.

It is clear that the average of Ixy over all possible (x,y) is

simply the rate of information given by Shannon.

9. The Information Process

Although the entropy concept is a very useful one and, as a measure

of uncertainty, has a rather illuminating physical interpretation, it is

a concept that does not lend itself to an abstract generalization. In

fact, the definitions given by Shannon for the entropy of discrete and

absolutely continuous distributions represent entirely different entities

that have similar but by no means identical properties. For example, if

we consider a sequence of step distribution functions that converges

uniformly to some absolutely continuous distribution (x), it will follow

that the entropy of the members of the sequence becomes unbounded in the

limit, even though the integral (8.12) is finite. This will be true, in

fact, if (x) has a positive derivative over any interval of continuity.

Similarly, the definition given in (8.12) has no meaning if the

distribution is not absolutely continuous, and it cannot be applied to a

general monotonic distribution. If our information process is one that

involves a distribution function containing a set of discontinuities with

total variation less than one, there exists no definition for the un-

certainty associated with such a distribution. Any attempt to treat such

a process from the entropy point of view would necessarily present a

formidable problem.

In order to circumvent these difficulties, we shall simply introduce

another "reasonable" definition for the information resulting from a

change of distribution. Our purpose in introducing a new definition is

to divorce the theory of information from a dependence on the entropy

concept. In order to justify this definition, we shall merely show that

it has the properties demanded by our intuition and that its application

to specific processes gives results in complete agreement with those

obtained by Wiener with the difference-of-entropy approach. The unified

theory given here will be shown, in fact, to be a true generalization of

the theory of Shannon and Woodward, and will include both their discrete

and continuous theories as special cases. Although the definition of

information given here will be essentially new in form, it will be shown

to be in complete harmony with an already well-established theory of
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communication. In the communication problem, it will become an abstract

generalization of the expression of Woodward for the information evaluated

from the viewpoint of the receiver.

In the case of pure step distributions, the entropy will exist and

will have the same physical interpretation as that given by Shannon,

although its expression in terms of probabilities will be a derived one

rather than a defining one.

We consider again the problem of the random variable f distributed

a priori by p(x) and a posteriori by (x). Let us suppose that the true

value of f is y. A "reasonable" measure for the information associated

with the fact that f = y is

V(Y + ) - Q(y - E)
I(y) = lim log p(y + ) - p(y - E (9.1)

in order to get the total information about f, we average I(y) over all

possible y with respect to the a posteriori distribution; that is, with

respect to our best knowledge concerning the value of f.

re w( + ) - a(y - E)
I = lim log p(y + ) p(Y-) d (y). (9.2)

-00

It is apparent that under certain conditions the integrand in (9.2)

will fail to exist. First, consider the case in which p(x) contains dis-

continuities not in common with those of (x). The integrand becomes

infinitely negative at such points. However, since p(x) is monotonic and

bounded, the set of all its discontinuities must be countable - hence

also the subset of those not in common with discontinuities of . Clearly,

this subset is of -measure zero and the value of the integral is unaf-

fected by the divergence of the integrand.

Next, consider the case in which (x) has discontinuities not in

common with those of p(x). The set of these discontinuities is of posi-

tive -measure and, since the integrand becomes positively infinite on

this set, the integral diverges. Thus a necessary condition for the

finiteness of I is that any point of discontinuity of (x) be a point of

discontinuity of p(x) also.

These considerations suggest that the integral in (9.2) can be finite

only if the measure is absolutely continuous with respect to the meas-

ure p, in which case there exists by the Radon-Nikodym theorem a deriva-

tive d/dp. The form of the integral in (9.2) can be made more compact

by interpreting



V(y + ) - (y - c)

El-- P(y + E) - p(y - )

as a derivative in the Radon-Nikodym sense, and our definition takes the

more general form

/0 df
I = log d . (9.3)

X dp

Let us now show that this definition is a valid generalization of

(8.2). Hence it reduces to the fundamental definition given by Wiener

when applied to an information process in which the range of a random

variable is reduced to a subset of its a priori range. We consider again

a random variable f taking values on a measure space (X,;,[1). If ;L(x)

is absolutely continuous, the fact that fA may be expressed by an

a priori density

p, 2'x) (x) (A) xEA

0 otherwise (9.4)

Or, more generally, we can relax the absolute continuity condition and

write

dpo 1 /(A) xEA
- =- (9.5)
d; 0 otherwise.

Similarly, the additional knowledge fAAB may be formulated in terms of

the a posteriori measure :

dV 5 1/i(A B) xcAnB
= (9.6)

di 0 otherwise.

Since we may write

dp
d- = A(x)/i(A), (9.7)
dCi

and

dV

- = A AAB(X)/A(A/ B), (9.8)
di

it follows that

p(E) = J )CA((X) d ) = (9.9)
A(A)E A (A)



and

3(E) = A (AnBng)
(E) = f AAB(X) d = (A E (9.10)

i(AnB) E (A B)

for every measurable set E. Hence i(E) = 0 implies both p(E) = 0 and

2(E) = 0 (provided, of course, that (AfnB) / 0). Thus p and - .

Also, if p(E) = 0, then (with (A) O) p.(EnA) = 0. But A\BC\E is a

subset of EA thus (A(\B(E), hence (E), is zero also. We have then

v. p .i, and the information for this case becomes

I flog dp d[ = d log d log-I d

X dp X d d

X A [log 1 log d

AAB (AAB) (A)

A(A)
= log , (9.11)

p, (An B)

in agreement with Equation (8.2). Thus (9.3) is a valid generalization

of the first definition of Wiener.

Before showing that our information is nonnegative, we shall have

need for the following logarithmic inequality:

LEMMA 9.1. Given a measure space (X,,P) and a nonnegative function f,

defined and integrable on a set E, it will follow that

ff log f d( ) f(f - 1) d.
E E

PROOF. Consider the following decomposition of the set E: Let

A = |x: f(x) l } .

/ f log f d = f if log f d - If log f d4

E A E-A

)I |f - l d - If - 11 dp (9.12)
A E-A

= f(f -1) d + (f 1) d = f(f - 1) dp.

A E-A E
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THEOREM 9.2. The information resulting from a change of defining measure

on a probability space is nonnegative.

PROOF. It suffices to consider only the case in which v - p.

/ gdV dV dV
I = log- d9 = - log- dp

dp X dp dp

> - - 1) dp = 9(X) - p(X) = 0.

X dp

Here we have made use of the fact that p and are probability

measures; hence from the Radon-Nikodym theorem that d /dp is nonnegative

and integrable. We used also Lemmas 3.7 and 9.1.

We shall employ the term information process to represent that physi-

cal process whose mathematical model may be regarded as a change of de-

fining measure on an abstract probability space. In other words, the

mathematical model of an information process is a probability measure

space (X, ,p,V ), where p and are the a priori and a posteriori meas-

ures associated with the process. We shall frequently speak of "the

information process (X,A,p,V )" wherein we imply the existence of an

actual physical process involving a change of probability distribution.

DEFINITION 9.1. The information resulting from an information process

(X, ,p, ) is defined by

r dL

I = log - dV , (9.13)

X dp
if v Ad p, and + oo otherwise.

This definition is sufficiently general to cover a very large number

of special cases. In the first place, the formulation in terms of an

abstract space does not in any way limit the dimensionality of the process.

In an n-dimensional process, the space X simply becomes an n-dimensional

product space. Furthermore, since the definition is independent of any

fixed coordinate system, the value of the information is invariant under

transformation of coordinates. It applies equally well to information

processes in which the distribution functions are either absolutely con-

tinuous, purely discrete step functions, or even functions with disconti-

nuities whose total variation is less than one.



It is perhaps of value to show by means of certain examples ust what

part is played by the Radon-Nikodym derivative in the evaluation of the

information resulting from specific processes.

EXAMPLE 9.1. Let p(x) and (x) represent a priori and a posteriori

distribution functions which are absolutely continuous with respect to

Lebesgue measure. Under these conditions, the densities p'(x) and '(x)

exist. Assuming, in addition, that 9 -- p, the Radon-Nikodym derivative

becomes a derivative in the ordinary sense, and is simply the ratio of

the a posteriori and a priori probability densities. The information is

then given by the improper Riemann integral

00 ~vI~·' t(x)
= (x) log dx. (9.14)

/' p,(x)

EXAMPLE 9.2. Let p(x) be a monotonic step-function with a countable

number of discontinuities of magnitude pk on a set S of elements xk. Let

V(x) be a similar function except that its discontinuities have magnitude

qk and occur on a subset M of S. Since every discontinuity of (x)

occurs in common with one of p(x), and since every subset of X disjoint

with S is of both p- and - measure zero, it follows that -- 4 p. The

Radon-Nikodym derivative is a function whose value is qk/Pk at every

xkeM and zero at every xkc(S - M). This function is left undefined at all

other points of X which form, of course, a set of p-measure zero. The

Stieltjes integral (9.13) becomes in this case the simple summation

qk
I = qk log - (9.15)

XkMxkEM

over all the points xk of M.

EXAMPLE 9.3. For this example, we treat a mixed process involving

the distributions p(x) and (x) of Fig. 5. For simplicity, we have

chosen a small number of discontinuities. It is seen that every dis-

continuity of (x) occurs in common with one of p(x). Also, the interval

(x3<x xx4), which is of p-measure zero, may be seen to be of -measure

zero also. We assume that, in the vicinity to the left of x3, the de-

rivative p'(x 3 - )> O for all E>O but that

lim p'(x - E) = 0.
e-O
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Under these assumptions, it is easy to verify that v -. p. Thus the

Radon-Nikodym derivative d /dp is defined [p]. This function, which we

call @(x), is plotted in Fig. 5. We note first of all that @5(x) must

be well defined at all points of disconti-

1.0 nuity of p(x) and must have the value

P5 Pk/qk at such points xk. These values are

indicated by the heavy dots in the figure.
Xo.5 P3 With the recognition that any monotonic

function can be expressed as the sum of a

continuous function and a step-function,

@9(x) is given at all other points by the

ratio Vc(x)/p'(x), where the subscript c

denotes the continuous part. In this

manner, we define 9(x) at all points with

the possible exception of a set of p-

measure zero. From Fig. 5, we see that
9(x) is left undefined in the interval

(x3< x x4), which is indeed of zero p-

measure. However, from the absolute conti-

nuity condition, any set of p-measure zero

must be also of -measure zero - hence

the integral in (9.13) with respect to 

is unaffected by any values we might
Fig. 5. A mixed information

process. assign to 9(x) in the undefined interval.
After determining the Radon-Nikodym de-

rivative, it is an easy matter to verify that the StieltJes integral

x

V(x) =/ l9() dp() (9.16)
-00

is valid.

For the mixed case, the information resulting from the process of

this example is given by the StieltJes integral

-00

q2 q5 / '(X)
q2 log P + q5 log p5+ (x) log o dx. (9.17)

Thus the information received in a mixed process is simply the sum of
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a discrete and a continuous part.

This example emphasizes the fact that the assertion of the Radon-

Nikodym theorem that the function 9(x) be finite-valued does not imply

its boundedness. In Fig. 5, it can be seen that 9(x) does become un-

bounded in the neighborhood to the left of the point x3. However, (x)

has the value zero at the point x3 and is indeed finite-valued everywhere.

We might also note from this example that, although the condition

v C p is a necessary one for the finiteness of the information I, it is

not a sufficient one. Since i9(x) is unbounded, the convergence of the

integral in (9.17) depends upon the behavior of log 9(x) in the neighbor-

hood to the left of x3 . It is an easy matter to draw examples for which

divergence results even though is assumed absolutely continuous with

respect to p.

10. The Communication Problem

Let us consider again the simple communication problem of section 8

in the light of the unified definition and show how the results agree

with those obtained by Shannon in both the discrete and absolutely con-

tinuous cases. We consider a source which generates a sequence Wfi of

independent random variables of values x selected from the measure space

(X,A ,). These values are transformed by the channel into an output

sequence gi of independent elements taking values y on the space

(Y, ,V ). The channel is defined in terms of the conditional measure

Vx on the Y space. We then consider the product space (X x Y, X ,A)

of pairs (x,y) representing the possible values of the pair (fk,gk). Here

A is the measure defined, for an arbitrary Borel set A Xjx , by

(A) = x(Ax) d, (10.1)

X

where Ax is the x-section of A as defined in section 2. By the methods

used in that section, the measure may be found from the relation

9(F) = f ~x(F) d. (10.2)

Having determined the distribution functions (x,y) and 9(y), we obtain

the conditional distribution y(x) from

x) (x,y)
y(x) =- (10.)

y ~ a(y)



Accordingly, from a knowledge of and Vx' which are defined by the

source and channel, we can determine all product and component measures

on the product space X x Y. It is clear that, for almost every value y

of the channel output, there is defined an information process

(X, j,~,y). The information resulting from such a process is (for

uy IV [v] )

Y

X d 

I(y) represents the amount of information about the value x from the

source provided by a particular value y in the channel output. The

average information (per element) provided by the sequence g about the

source sequence f is the average of I(y) over all possible y. Thus the

average rate of information becomes

R(f;g) = log dljY dV . (10.5)

However, from Lemma 3.3 and Theorem 3.5, this can be expressed in terms

of the measure A and the product measure p:

R(f;g) = f log d dA. (10.6)

xxY dp

If we apply this result to the special case wherein Ci(x) and Qx(y)

are absolutely continuous with respect to Lebesgue measure on X and Y,

respectively, it will follow that both A(x,y) and p(x,y) are absolutely

continuous with respect to the Lebesgue product measure on X x Y. The

Radon-Nikodym derivative becomes the ratio of the probability densities,

dA 9 2A(x,y) / 2p(x,y)

dp dx y dxc y

p(x,y)

p(x)p(y)

where p(x) = >'(x) and p(y) = 9'(y). In the absolutely continuous case,

the rate becomes

roe co p(xyy)

R(f;g) = Jp(xy) log dx dy, (10.8)
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in complete agreement with the result of Shannon for such a case.

In the discrete case, the functions (x) and x(Y) are step-

functions with discontinuities p(i) and pi(J) on a countable set of ele-

ments (xi,Yj). The oint distributions (x,y) and p(x,y) are step-

functions in both variables with discontinuities of magnitudes p(i,j) and

p(i)p(j), respectively, on the same set of values (xi,Yj). The Radon-

Nikodym derivative d/dp becomes the ratio

p(i,j)

p(i)p(J)

at the points (xi,Yj) and is left undefined elsewhere. "Elsewhere" is,

of course, a set of p-measure zero. For the discrete case, the Lebesgue-

StieltJes integral of (10.6) becomes the summation

p(i,j)
R(f;g) = E p(i,j) log (10.9)

p(i)p(J)

over the countable set of points (xi, yj). This is, of course, Shannon's

definition of the rate for discrete distributions.

It is easily seen that the integrand

log dA
dp

of (10.6), which is a function of the values (x,y) of the joint random

variable (f,g), is the abstract generalization of Woodward's mutual

information Ixy and extends his results to the more general information

processes.

11. Symmetry Relations

We consider a discrete stochastic process of the type studied by

Khintchine4; that is, a family or ensemble of sequences = Itil

(i = ...,- 1,0,1,...) such that for any finite subset x = (xl,x 2,...,xn)

of elements of there is defined a probability measure p. on an n-

dimensional product space X. Let x = (xl,x2,...,Xn) and y = (YlY2,- ,ym)

be two such subsequences, disjoint from each other, taking values on the

n- and m- dimensional spaces (X, A0,p) and (Y, , v ), respectively. Let

the space (X x y, x , ) represent the (m + n)-dimensional space of

all pairs (x,y). In addition to the absolute measures p. and V, there

will exist, for almost every y and x, conditional measures y and x) on
the component -algebras A and . It will be of interest to formulate

the information about the sequence x that is provided on the average by
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the specification of the value of the sequence y. From the discussion in

section 10 it is clear that, for almost every y, the measure space

(X,,, y) forms an information process resulting in an amount of infor-

mation given by

I(y) = Slog d- y [] (11.1)

provided, of course, that y -' [p]. That is, any particular value of

y (with the exception of a set of values of -measure zero) provides an

information of amount I(y) about the value of the sequence x. In order

to obtain the amount of the information about x given on the average by

the sequence y, we take the mean value of I(y) over all possible values

of y. Consequently,

I(x;y) = J log - d d ) (11.2)
Y X 19 d y

is the average information about x provided by y.

LEMMA 11.1. If x and y are a pair of disjoint subsequences of a particu-

lar realization of a discrete stochastic process, and I(x;y) is the

average information about x provided by y, then

I(x;y) = I(y;x) (11.3)

PROOF. From Lemma 3.3 and Theorem 3.5,

I(x;y) = log - dy d
Y X .91 

ox=f log d

J= f log a9 d x dp

X Y

= I(y;x). (11.4)

Let z = (Zl,z 2,...,z ) be another subsequence of i, disjoint with

both x and y and taking values on an /-dimensional space (Z,1, a ).
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We wish to formulate the expression for the average information about x

provided by y when the value of z is known a priori. Clearly, for almost

every z, there will exist a conditional measure A on the measurable spacez

(X x y, i X ). For almost every (y,z) and (x,z), there will exist con-

ditional measures yz and xz on the component spaces X and Y. The

information about x provided by a particular value y, given a priori a

fixed value z, becomes

a n yyz
log dtyz.

X z

The average of this expression over all y, but for a fixed z, becomes

fJ fJ·log - dp yz d z
Y X yz z

Taking the additional average over the Z-space, we obtain

I(x;ylz) = d/log - dyz d z d , (11.5)

Z Y X C z

which represents the information about x provided on the average by y

when the value of z is known.

LEMMA 11.2. If x,y, and z are disjoint subsequences of a particular

realization of a discrete stochastic process, and I(x;ylz) is the

average information about x provided by y when z is known, then

I(x;ylz) = I(y;xlz).

PROOF. From the application of Lemma 3.3 to the space

(X x , X ,\z), which exists for almost every z, it follows that for

almost every (x,y,z)

9 Lzy \ zx
(11.6)

Also, from Theorem 3.5, we have for almost every z

log zy d 
~log Ldp dL) JZ log yd ,zy dCiz. (11.7)

Y X CJz X Y z
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Thus

9 rIz d H y d r r zxf ffio J ' zy d r og d V d do,d (9z x dz do,
Z Y X a z X Y z

(11.8)

which is equivalent to the assertion of the lemma.

Lemma 11.2 is merely a restatement of Lemma 11.1 with the inclusion

of an a priori condition. It is not surprising that the symmetry relation

expressed in Lemma 11.1 is independent of the a priori knowledge, hence

that an auxilliary condition does not destroy this symmetry.

It should be noted that in the proofs of Lemmas 11.1 and 11.2, no

explicit use was made of the fact that the spaces X,Y, and Z are finite-

dimensional. In fact, from the extension of the product space theory to

a space of infinite dimensions, it follows that both of these lemmas are

valid, even though any of the three sequences x,y, and z are infinite

subsequences of . The requirement that they be disjoint, however, is

necessary for preserving the meaning of an ordered triplet (x,y,z).

12. Additivity of Information

One of the very important properties of the logarithmic measure of

information is that under suitable conditions the oint information

provided about a pair of independent events is the sum of the informations

given separately about the individual events. For example, it was shown

by Wiener and Shannon that the entropy associated with the oint random

variable with values (x,y) is, in the case of independence, the sum of

the entropies associated with each variable. It is of interest to de-

termine the conditions under which we can make similar statements con-

cerning the information defined in section 9.

Let us consider the pair (f,g) of random variables defined inde-

pendently on the spaces (X,,W 1l) and (Y,5, 1). The product measure

Pi = 1 x '1 is defined on the Cartesian product X - Y of the inde-
pendent spaces X and Y. Let us suppose that a certain amount of infor-

mation is received which allows the formulation of a new a posteriori

measure P2 = 2 X 2' which we assume to retain posession of the product

property with regard to rectangles. That is, we assume that the infor-

mation received has not destroyed the independence of the pair (f,g). The

information processes (X x , x ,P 1,P 2), (X$,,P 1 , 2),and (Y ,I, ,-'12)
are associated with the pair (f,g), the random variable f, and the random

variable g, respectively. We shall now prove the following theorem:
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THEOREM 12.1. Let (X x Y, X ,P 1lP 2) be an information process associ-

ated with the pair (f,g) of random variables which are both a priori

and a posteriori independent. If I(f,g) is the information resulting

from the above process, with I(f) and I(g) that resulting from the

processes (X,,,u 1, 2 ) and (Y,j, 1' 2) ' respectively, where

P1 = X 1 and P2 = KL2 X 22, it follows that

I(f,g) = I(f) + I(g). (12.1)

PROOF. Let E x F be an arbitrary rectangle in X X Y. Then

p 2 (E F) = 2 (F) 2 = ) d 1

E E

d J 2 d 2 d 1 di

E F d Q1 d 1

= 2 dl2 dpl (12.2)

ExF d 1 dil

must hold for all E X F. Since any measurable set A in X X Y can be

covered by a countable union of disjoint rectangles, it follows that

d 2 dp2
P2(A) = 2 dpl (123)

A d 1 d 1

for every AE ) X J. Thus

dp2 d dP2
dp2d 2 [P'P2] (12.4)

dpl d 1 dil1

The information becomes

I(f,g) = log d e l d l o dg
dP1 2d 1 dl 2

X x Y X Y 1 d

= flog l d 22 + og- d 2

= (f) + Y d(g), (12.5)

whichI(f) + I(g), (12be proven.)

which was to be proven.
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In order to show the necessity for the assumption that f and g are

both a priori and a posteriori independent, it is perhaps best to illus-

trate by means of the following examples:

EXAMPLE 12.1. Let f and g be independent random variables distributed

uniformly in the interval (0,1). The spaces (X, ,) and (Y,3, ) are

then the unit interval and the measures Ct and are both Lebesgue measure.

The Cartesian product space (X Y, x ' ,p) is then the unit square with

p = x v Lebesgue measure on the plane.

With the foregoing as a priori knowledge, let us assume that we are

told, in addition, that the value (x,y) of the pair (f,g) lies inside the

set E x F, which is shown in Fig. 6. From (9.11), the information pro-

vided by the pair (f,g) is given by

p(X x y)
I(f,g) = log = - log p(E) (F)

p(E F)

= - log 2 - 2 = 1 bit. (12.6)

In order to evaluate the information obtained about f and g, we note that

the a posteriori measure , which is defined on X %, is given by

X(A) = p F)] (12.7)
p(E X F)

for every measurable set A. If we let P2 and V2 be the absolute measures

on the components X and Y of the product space (X x Y, A x Y ,H), it

follows that for every Ee A

p [(E1l Y)^(E X F)]
2(E1) = A(E 1 Y) =

p(E X F)

p [(E1nE) X (F^Y)]

p(E X F)

(E1A E) V (FAY) I(E1 E)
= E(E1), (12.8)

A (E) \9(F) t(E)

which is the conditional measure of E1 relative to E. Similarly for every

F1E a,

%2(F1) = QVF(F1). (12.9)

Since
Since (E F1) = [(E X F1)(E X F)]

X(E 1 X Fl) = p(E X F)
P(g X F)
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(E X Fl) p [(Eln E) x (F l F)]

p(E x F)

i(E 1 E) 9 (F1A F)

j(E) v(F)

= IE(El) VF(F1), (12.10)

it is clear that is a product measure of independent spaces. Therefore

f and g are a posteriori, as well as a priori, independent.

We might note at this point that for every yF, the a posteriori

conditional distribution P2y(x) exists and is uniform on E but generates

zero probability on the set X - E. This, of course, is identical with

the absolute measure P12 = PE. For yF, no conditional measure is defined

on X, but the set Y - F is of zero V2 -measure. We have, then,

P-2y = 112 [V2 ]
The information provided about f is

-~r) dpE

I(f) J log - d`E. (12.11)

X dp

We note that, since for every E £,

dLE P(E 1 n E) _ I _

dC1(E) Ej E

E/Cg E(x ) d (12.12)
El u(E)

we have

dPE _ l/p(E) xcE
_ = [p]- (12.13)d4O xE.

Thus

I(f) = J E log dPE d

X d d

= 1 log d d4

E P(E) p(E)

58



I(f) = - log (E) = - log 2 = 2 bit. (12.14)

From a similar treatment,

I(g) = - log V(F) = -bit, (12.15)

and in this case

I(f,g) = I(f) + I(g). (12.16)

EXAMPLE 12.2. Let us assume the same a priori knowledge as in

Example 12.1, and suppose that we receive information which tells us

(x,y)e B,where B is the set shown in Fig. 7. It is seen that B is simply

the set E F of the previous example rotated by 45 degrees. In this case,

the a posteriori measure (A) of sets AE X , is given by

p(ArnB)
h(A) -. (12.17)

p(B)

The a posteriori absolute distribution functions on the component spaces

are given by

) ( Y) [(Ix X Y) B]

p(B)

V'2 (y) =(X X Iy) [(X Iy)NB] (12.19)
p(B)

In this example, however, for every value y, there exists a conditional

measure L2y on the space X which is not equal to 2. For every value y,

the conditional distribution for the value x is uniform on the section

By and generates zero probability on (X - By). Thus the information re-

ceived has effectively destroyed the statistical independence between f

and g. It is found from (12.18) above and from the fact that the a priori

distribution is given by (x) = x on (0,1) that the Radon-Nikodym deriva-

tive d2/d is the triangular-shaped function of Fig. 7. By the symmetry

of the problem in x and y, it follows that

dp 2 dpt2
I(g) = I(f) 2 log 2 d

X dL d~

1 1

4x log 4x dx + (-4x + 4) log (-4x + 4) dx

o J
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1
I(g) = I(f) = log 2 -2 log e

= 1 - log 2
1W bits. (12.20)

However, the information about the pair (f,g) is given by

p (X X Y)
I(f,g) = log = 1 bit, (12.21)

p(B)

which is the same as that of Example 12.1. Thus in this case,

I(f,g) > I(f) + (g), (12.22)

even though f and g were a priori independent.

It is desirable to develop a slightly more general additivity re-

lation which requires no condition concerning independence. Such a re-

lation does exist and we shall state it as a theorem concerning the infor-

mation associated with a stochastic process.

Let = i} (i = ...,-1,0,1,...) be a particular realization of
a stochastic process and let w, x, y, and z represent disjoint subsequences

of taking values on the spaces (W,V ,), (X, ,A), (Y,J,9 ), and

(Z,, a), respectively. The information about the pair (x,y) provided

on the average by the sequence z, when the sequence w is known a priori,

is given by

I(x,y;zlw) f log 'wz d wz d od (12.23)

W Z XxY Ow

where wz and Aw are conditional measures on the space (X x Y, X ,).

We can write (12.23) as

I(x,y;zlw) = //log wz d d d d w. (12.24)
W Z X Y dw

In order to decompose the integrand, we make use of the following lemma:

LEMMA 12.2. Let (X x Y x Z, X X ) be the Cartesian product of the

measure spaces (X x Y, x 5 ,A) and (Z, 0Z ,O ). Let Az represent

the conditional measure on X Y. Then

_z _ 9gzx 9z - dtzy a329 Vz, (12.25)

V)x C0 a y d

where Vzx' x and ' are conditional and absolute measures on Y,

while zy' 1y and are the corresponding measures on X.
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PROOF. Let E X F be an arbitrary rectangle in X X Y. Then

Z d? = ? (E X F) = d dp
z zx dv z

EF E F

=/ vzx azd

E F a9x 9 i

= 1 zx d\. (12.26)

ExF x 

Since this expression must hold for all rectangles E X F, and since

every measurable set in X X Y can be covered by a countable union of dis-

joint rectangles, the integrands must be equal [A]. A similar treatment

proves the second assertion.

We may thus write

L9 Xwzx cPwz
I(x,y;z=w) // / log d wzx d tz dw deu

W Z X Y £91)wx ZP 

fflog z dU w d O d O

= + Ioyzwx dw zdw

I(x;zlw) + I(y;zlw,x). (12.27)

The following theorem has been established:

THEOREM 12.3. Let w, x, y, and z be disjoint subsequences of a partictlar

realization = i} of a discrete stochastic process. Let

I(x,y;zlw) be the information about the pair (x,y) provided on the

average by z when w is known a priori. Then

I(x,y;zlw) = I(x;zlw) + I(y;zlw,x). (12.28)

This theorem allows a decomposition of the information provided about

a pair (x,y) of random variables with no restriction concerning their

independence. If these variables are both a priori and a posteriori
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independent, the second term will become

I(y;zlw,z) = I(y;zlw) (12.29)

and we shall have obtained a complete decomposition of the joint infor-

mation into individual informations.

From the symmetry property of the average information, we can write

(12.28) as

I(z;x,ylw) = I(z;xlw) + I(z;ylw,x).

Hence, the information from a pair (x,y) of sources may be decomposed

similarly into the sum of the individual informations from each source.

13. Communication in the Presence of Additive Gaussian Noise

We include in this section, for the sake of completeness, a result

of Shannon concerning a channel in which a gaussian noise signal is added

to the message. We assume the message and noise to be statistically inde-

pendent. Let x = (xl,x 2,...,Xn) be the value of a particular subsequence

of the message; and n = (nl,n 2 ,...,nn), the value of a corresponding

noise subsequence. It is clear that the channel output y will have the

value (x1 + nl,x 2 + n2,...,xn + nn). Let the values x be governed by the

probability density distribution p(x), while the noise has gaussian density

q(n). Since the message and noise are statistically independent, the

conditional distribution density of the values y for a given x becomes

simply

px(y) = q(y - x). (13.1)

The average rate (per symbol) at which the output y gives information

about the input x becomes

I(x;y) = lim 1 p(x,y) log dx dy
n-0 n x P(Y)

= im 1 '' p(x) - log q(y - x) dx dy

(13.2)

The first term is simply the negative of what Shannon calls the entropyThe first term is simply the negative of what Shannon calls the entropy
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of the noise; the second term is the entropy of the channel output. It

is of interest to determine the capacity of such a channel; that is, to

maximize I(x;y) with respect to the message distribution p(x). It is

clear that, since the entropy of the noise is independent of p(x), the

problem is simply one of maximizing

- X p(y) log p(y) dy

for any fixed n, where

p(y) p(x) q(y - x) dx. (13.3)

However, Shannon showed that the entropy of any n-dimensional absolutely

continuous distribution is a maximum when that distribution is gaussian.

Thus, since q(y - x) is gaussian, it follows that if p(y) is gaussian

then p(x) must also be gaussian. We have then

THEOREM 13.1. The information conveyed by a message in the presence of

an independent additive gaussian noise has its maximum value when

the message itself is gaussian.

Since gaussianly distributed noises occur quite commonly in communi-

cation systems, the study of gaussian stochastic processes is of profound

interest in the theory of information. We shall have more to say about

these processes in section 17, where we shall evaluate the average rate

at which any gaussian sequence conveys information about another similar

sequence correlated in some manner with it. This problem, of course, in-

cludes as a special case the problem of communication in the presence of

an independent, additive, gaussian noise.



IV. PREDICTION THEORY

14. Spectral Theory of a Discrete Stochastic Process

Let us consider a discrete stochastic process and let f = {fi~ be a

realization of that process. Let the element fk of r take on real values

x from a probability measure space (X,,> 1). The mean or expected value

of the element fk is then given by

fk= x d. (14.1)

X

Let fk+m be another element or r which assumes real values y on the space

(Y,9, v ). We then consider the product space (X x y, i x , ) of all

values (x,y) taken on by the ordered pair (fk,fk+m). Thus (x,y) repre-

sents the oint probability distribution function for the pair (fk,fk+m).

The mean value of the product fkfk+m is

fkfk+m = J xy d(x,y). (14.2)
XxY

If the means fk and fkk+m are independent of the index k, the process

is said to be stationary in the wide sense of Khintchine.

In the case of stationarity, the mean

Rm = fkfk+m (14.3)

is called the autocorrelation coefficient of the process. In the remainder

of this section, we shall be concerned with stationary sequences only.

It has been shown, originally by Wiener1 1 and later by Wold1 3, that

in the stationary case, there exists a bounded, nondecreasing, spectral

function W( 9) defined on (-rw,) with W(-7r) = 0 such that

Rm 21 e dW(9). (14.4)m 2
-o

This is the discrete analog of the Wiener-Khintchine theorem4 ' 1 2 for con-

tinuous parameter processes. By the Lebesgue decomposition theorem, the

function W(79) may be expressed as the sum

W(Z9) = w 1 (9) + w 2 ( ) (14.5)

of two nondecreasing functions, the first of which is absolutely continu-

ous, while the second has an almost everywhere vanishing derivative. This



decomposition is unique if we set W1(-7) = O. Wold has shown that this

spectral decomposition is accompanied by a corresponding decomposition of

the sequence Ifij by which each element fk is expressed as the sum

f f(l) + f(2) (14.6)

The sequences {f(l)j and ff(2)j have, as spectra, the functions W 1 ( O )

and W2(i ), respectively. Wold has shown that sequences posessing the

latter type of spectra are purely deterministic; that is, the entire

future of the sequence is completely specified by its values in the past.

In other words, if we know the past history of a sequence of this type,

we may predict its future perfectly (in the sense of zero mean-square

error) by an operation on that past history. It is clear that if the

spectrum is a pure step-function, the sequence is almost periodic, and

such a sequence is certainly predictable. Furthermore, the so-called
*

singular spectra are of the class represented by W 2 (9 ), hence correspond

to purely deterministic sequences.

Kolmogorov 1 4 made an extensive study of the class of stationary

sequences with absolutely continuous spectra and proved that a necessary

and sufficient condition for such a sequence to be nondeterministic is

that the integral

JI|log W1( )l d
-7T

be finite. He has thus shown that if the above integral diverges even a

sequence with an absolutely continuous spectrum is deterministic.

Sequences with absolutely continuous spectra for which this integral is

finite are termed regular by Kolmogorov, and it is only these sequences

which are useful as information carriers. For the remainder of this thesis,

we shall be concerned primarily with regular sequences.

We may express the autocorrelation coefficient of a regular sequence as

R = lJ W ( e)e' i d9 , (14.7)

-r

hence, the nonnegative spectral density Wt (z) is equivalent to the

A singular function is a continuous function with an almost everywhere
vanishing derivative having, in addition, the property that it has posi-
tive variation on a set of Lebesgue measure zero. The so-called Cantor

function is an example of a singular function. (See Munroe 2 6, p. 196.)
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Fourier series expansion of the autocorrelation coefficient:

W' (19) -~-' Z Rm eim . (14.8)

m=- oo

We note that in general we may write

fkfk+m = f(k+m)f(k+m)-m (14.9)

If the process is stationary, the value of this mean is independent of

k, hence of k + m. It follows that

Rm = R_ m (14.10)

and
00

W (9) y- Ro + 2 , Rm cos m (14.11)

m=l

is an even function of 29. That is, W (29) = W (-Z9 ).

The Fourier series on the right-hand side of (14.8) may be regarded

as the boundary values on the unit circle of a real function A(z) of the
complex variable z = re . It follows that

A(e i z9) W '( ) (14.12)

and, since W (9) is even, we have

A(z) = A( 1) (14.13)

The coefficients Rm may be obtained from A(z) by the contour integral

equivalent of (14.7):

Rm 2 i J A(z) dz (14.14)

where the integral is performed on the unit circle. From the Parseval

relation for Fourier series, it follows that

R = Ai 2 (z) z. (14.15)
m=- oo

Note that we might write A(z) as a Laurent series expansion of the

coefficients R

00(z) = R

-Z) = c Rm zm (14.16)

m=-0
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but the only assumption we need make concerning convergence is that this

series converge in mean-square on the unit circle. Accordingly, A (e )

is well defined on the unit circle; we define (z) elsewhere in the plane

to be simply the function A(ei 7 ) with ei replaced by z. A (z) is thus

the analytic continuation into the plane of the function A (ei ) on the

unit circle. It will follow that

A(e i )= l.i.m. A(rei). (14.17)
r- 1

EXAMPLE 14.1. As an example of this procedure, let us consider a

sequence whose autocorrelation coefficients are given by Rm = a- Im l with

a > 1 and real. From (14.16),

oo oo

A (Z) = 1 + E a- m zm+ a - mz (14.18)

m=l

The first series converges for (zl a, while the second converges for

Iz > 1/a. Since a > 1, the expansion converges absolutely in the

annular ring 1/a < zl < a, which includes the unit circle. Summing

these series, we obtain

z 1
a az

A (z) 1 - + az
z 1
a az

1- a) z
a

(z - a)(z 1 (14.19)

with the result that A(z) is defined throughout the extended plane with

the exception of its poles at z = a and z = 1/a.

From (14.13) and the reflection principle it follows that the poles

and zeros of A(z) have mirror symmetry about the unit circle. That is,

if a zero or pole occurs a z = , there will exist also a zero or pole,

respectively, at z = 1/7 for all complex .

EXAMPLE 14.2. As a second example, let us consider the set of auto-

correlation coefficients given by

l m= 0

Rm = (14.20)

The spectral function for the stationary sequence having thes21ml

The spectral function for the stationary sequence having these

67



coefficients becomes

m -m
A(z) = 1 - + zm (14.21)

m=l m=l

We note that the first series diverges, in particular, for z = 1; hence

also for zi > 1. Similarly, the second series diverges for Izl < 1.

Thus the Laurent series expansion of the correlation coefficients fails

to converge absolutely in any region. However, on the unit circle we can

write

00

A(e'i t) = 1 + cos m, (14.22)

m=l

where the Fourier series converges in mean-square. Summing this series,

we have

A(ei ) = 1 1 log (4 sin 2 ). (14.23)

If e is replaced by z, then

A(z) = 1 - 1 log ( - z)(l - ) (14.24)

defines the spectral function at all points in the plane where the right-

hand side exists.

Spectrum factorization. If A(z) is the spectrum of a regular
sequence, we can employ a theorem of Szegol5 to factor A(z) as follows:

A(z) =(z) =( ), (14.25)

where the function (z) is analytic and nonvanishing inside z < 1.

Since the theorem given by Szeg5 is somewhat more general than we shall

have need for, we shall express his results in a more restricted form.

The following theorem is a consequence of his theorem; we refer the reader

to Szego's paper1 5 for its proof.

THEOREM 14.1 (Szeg5). Let the real nonnegative function F( ) be even

and integrable on (-r,r). Then a necessary and sufficient condition

for the existence of a function (z), analytic in zl < 1, with

F(i) , |A(ei )12 (14.26)

is that A Ilog F(z9) d be finite.//71
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The expansion

00

i ak eik 9 (14.27)

k=O

converges in mean-square, and

Z Ia 12 = 1 J F(z9) d. (14.28)
k=O -_

The coefficients ak may be so chosen that A(z) is nonvanishing in zi < 1.

It is clear that, for a regular sequence, the spectral density

W (') may be identified with the function F(z9), and Szeg6's theorem

applies. We shall show how the function (z) may be obtained, in general,

from the spectral function A(z). Clearly, if _A(z) is a rational

function in z as in Example 14.1, we can factor A(z) by inspection simply

by associating with A(z) the poles and zeros of A(z) which lie outside

the unit circle. In that example, we have

(z) = a2 - 1 z a (14.29)

A simple computation verifies that (z) = (z)A(l/z) agrees with (14.19).

More generally, when A(z) is not rational we have, since

fj Ilog (ei 9 ) d < 00, (14.0)

-wr

that log A(ei9) may be expanded in a Fourier series in (-w,w):

00

log A (e ) Cke i k (14.31)

k=- o

from which

ck =c -k = 21 e- ik log A(e i 9 ) d9

-w

2i log (z) dk+l (14.32)

Let it be noted that since

Ckl ~ 1_ Ilog A(e i )1 d,21r
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the coefficients ck are bounded.

We now form the function

oo

[-(co + 2 E ckzk)

(=N~ e k=l

00oo

= ak zk. (14.33)
k=O

It follows directly that

o00

[Co + E7 Ck(zk + zk)J

A(z)l) = e k=l elog A(z) = A(z). (14.34)

Furthermore, from Parseval's relation, we have

1 2 I
a 12l 2Vi N (Z)A(z) z

k=O

1 A (z) dz < o. (14.35)
27Tii z

Since the expansion (14.33) for A(z) contains no negative powers of z,

and since the sum of the squares of its coefficients converges, A(z) is

analytic in zl 1. Similarly, the expansion

o00

g(z) = 2 log (z) = co + 2 > k zk (14.36)

k=l

contains no negative powers of z and, because the ck are bounded, it does

not diverge inside the unit circle. Therefore,

A(z) = exp g(z) (14.-37)

cannot vanish inside the unit circle. It follows from (14.32) and (14.33)

that

(O)= e2 c = exp i log Ai(z) dz (14.38)

Crosscorrelation. Let f = fit and g = git be a pair of real

stationary sequences posessing autocorrelation coefficients R f f ) and

Rmg g ). The sequences f and g are said to be stationarily correlatedm
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if the coefficient

R~f)= R(gf ) (14.39)Rm g) k gk+m -m

does not depend on k. Cramer 16 has shown that there exists a function

Wfg(19 ) of bounded variation in (-v,W), with Wfg(-T) = 0, such that

or

R(fg) 1 e-im dW (t9) (14.40)
m 2WT f g

-r

If the function Wfg(t9 ) is absolutely continuous, there exists a

function A fg(z) which on the unit circle is equivalent to Wfg ( 9 ). We

then have

R(fg) 1 Ag(( dz14
m 2 i fg(Z) m+l

and

CIo

Afg(Z) = R(fg) zm = Agf(l) (14.42)

m=-00

where the Laurent series is assumed to converge only in the mean-square

sense on the unit circle. The Parseval relation for this case becomes

(fg) = (Z) (1) dz

m=- oo

15. Simple Prediction

Let us review the pure prediction problem of a discrete sequence

which was treated first by Wold1 3 and later,in more detail, by Kolmogorovl8

and Wiener1 9.

Pure prediction. We consider a random sequence fil, which is one

realization of a stochastic process. Let the element k represent the

present value of f and the elements fk+p represent future values when

p > 0 and past values when p < 0.

The prediction problem may be formulated as follows: Let us assume

that we know precisely all values of f in the past and present; that is,

we have at our disposal the subsequence (...,fk -2,fk l k) On the basis

of this knowledge, we want to find the expected value of the element fk+p

which lies p-units ahead in the sequence. It is clear that there will

exist a conditional distribution function, let us say p(x), for the value
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of fk+p, given the past history of f. In order to obtain this distri-

bution function explicitly, it would be necessary to begin with the Joint

distribution function for the subsequence (...k fk lfk fk+p) defined

on an infinite-dimensional product space and obtain from this the con-

ditional measure on the component space on which the element fk+p is de-

fined, conditioned by the values (...fk_2,f klf k) on the remaining com-

ponent spaces. Having once determined the conditional distribution we

could find the expected value. It is evident that such an approach

represents a rather formidable problem. It is possible, however, to get

an approximation for the expected value without actually obtaining the

distribution function.

Under the assumption that the distribution p(x) exists, let us see

what value a we should predict for fk+p in order to minimize the mean-

square error resulting from our prediction. Letting the true value of

fk+p be x, we wish to minimize the function

= (x - 2 dp(x) (15.1)

X

with respect to a. Expanding the expression for 2 and setting its

derivative with respect to a equal to zero, we obtain

da 2 x dp + 2a =O (15.2)

X

or

a = x dp. (15.3)

X

It is a simple matter to verify that this value of a results in a true

minimum of 2.

Since x dp represents the expected value of fk+p' the expected

value is that prediction which gives the smallest mean-square error of

all possible predictions. Substituting the expected value for a in (15.1),

we find that the minimum value for the mean-square error is the variance

of the conditional distribution.

The preceding discussion indicates that we may obtain the expected

value of fk+p by performing that operation on the past of f which mini-

mizes the mean-square error between the true value of fk+p and the re-

sult of the operation. In other words, mean-square prediction is equiva-

lent to prediction of the expected value. If we want something other than

the expected value, however, mean-square prediction should not be used.
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For example, if the conditional distribution density has appreciable skew

and yet is unimodal, we might choose to predict the mode or most-probable

value which may differ appreciably from the mean. In such a case, some

prediction other than mean-square is called for. However, if the density

is unimodal and symmetric about the mode, then the mean and mode coincide,

and mean-square prediction also gives the most-probable value. To the

author's knowledge, little work has been done in other than mean-square

prediction.

Even if we restrict ourselves to the prediction of the expected value,

it is not quite clear Just what sort of operation we need make on the past

in order to minimize the mean-square error of prediction. The work of

Wold, Kolmogorov, and Wiener represents an approximation to the prediction

problem in all but the gaussian case. They treated only linear prediction;

that is, they obtained an approximation for the expected value of fk+p by

a linear operation on the past of f. It has been pointed out by Wiener1

and proved by Singleton 27 that, when the sequence f is multivariate

gaussian, the optimum operator to be applied to the past of f for obtain-

ing the expected value of the future element fk+p is a linear operator.

Also in the gaussian case, the mean and mode for the conditional distri-

bution coincide; hence the only reasonable prediction is mean-square

linear prediction. Consequently, mean-square linear prediction is opti-

mal in the gaussian case.

The linear mean-square prediction problem, in which the future of a

sequence is predicted by a linear operation on its past, has been treated

in detail by Kolmogorovl8 , Wiener1 9 , and Doob2 0. We shall treat in some

detail a slightly more general problem which includes pure prediction as

a special case. Also subsumed under this discussion is the problem of

filtering in the presence of noise. We shall show that the results ob-

tained apply to the pure prediction problem and agree with those given by

Kolmogorov.

The general prediction problem. Let fi~ and gi be a pair of real

regular sequences stationarily correlated in the wide sense of Khintchine..

That is, the correlation functions, R(ff ) ,R(gg ) R(fg), and their associ-

ated spectra Aff(z),Agg(), and fg(Z), exist. We formulate the pre-

diction problem as follows: Let us assume that the values of the past and

present of the sequence f are known precisely. On the basis of this

knowledge we would like to obtain the best mean-square approximation of

the element gk+p by a linear operation on the past and present of f. That

is, we want to find that set of coefficients ail (i = 0,1,2,...) which

minimizes the mean-square error



T aifp ai=O2 ki (15.4)k+p - ai f k-

Setting c&2/ a m = 0, we find that the optimum a's are those that satis-

fy the set of equations

00oo

a R(fi) = ( f g ) m >0. (15.5)

i=0

The minimum mean-square error for prediction of g p-units ahead becomes

1o

a 2 R (g g ) - ai Rfg) (15.6)
p oi-p

i=O

with the a's satisfying (15.5). In order to obtain the coefficients, we

write (15.5) in spectral form:

2 A(z) f(z) d 1 A (z) zmdp+l m > 0, (15.7)

where
00oo

A(z) = ai zi. (15.8)

i=0

Using methods analogous to the solution of the Wiener-Hopf integral

equation, we find the solution of (15.7) to be

1A(z) 1() fg(u) du 1
ff(z) k=O f

1 ) i [A r A (U) du]k1 (15.9)

z z ff(z) ~ ,Zff5 k=p ffU

where ff(z) is that factor of Aff(z) analytic and nonvanishing inside

the unit circle. In order to show that A(z) in (15.9) satisfies (15.7),

we write

z2 v i^(z) Aff(z) m+l

1 k=p ff) u p dz
2Wi kffz L F f (I) uk l +ml (
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00 00 p-1

If we replace the sum Z by the difference of sums F - Z , the
k= p k=- o k=-oo

right-hand side of (15.10) becomes

1 A (Z) dz
2vi i 21fg z m+P+l

-3 1 I dz 1 l du 1
k___ T L ff z m+p- k+l ff() kl
k=- oo ]

The first bracketed factor becomes, on setting z = 1/ ,

1 / A ) fm+p-k-1 d 

but since ff(z) is analytic in z I 1, this integral vanishes when the

exponent satisfies m + p - k - 1 > 0. Since the summation of k is over

(- oo,p - 1), we always have k p - 1; hence' the integral vanishes for

all m > O. Clearly, (15.7) is satisfied.

Expressing (15.6) in spectral form and using the expression for A(z)

given in (15.9) we obtain, for the minimum value of the mean-square error,

ap = R g g) i A() A (Z) zp+l

(gg Afg(z) k 1 Afg(u) du dz
Ro 2 i 2 zk 2i f() Uk+l Z

0 kfp )ff (z ) k=p f

Rgg )k~pg 1A Af A

In order to interpret this result for the pure prediction problem,

we simply set g = f; hence Jlgg(z) = /ff(z), and fg(Z) = /ff(z).
The operator A(z) for pure prediction may be expressed in the following

form:

2- 1k[y Aff(u) duA(z) 1 E Z 2 f ( ) ik+l

z ff(z) k=p

p-1 1
z p

- 7 zk 1 ff(u) du
ffk=f u u k j
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A (z) = Af -l ) u du
A(z) P [Z Aff(z) 2i1 Z 

= 1 21i X f(U) u (15.12)

ARff(z) P(f --z)

The minimum mean-square error for prediction of fk+p by a linear

operation on the past and present of f becomes

[= -- 2
- d R (ff) I% dz) (15.13)

p 0o Z 2i 2f(z) k+l
k=p

Since Aff(z) is analytic within the unit circle, the integral in the

bracket vanishes for k < 0. Hence, for p 0,

2

dRzffO - [ 1 f (z) 1 (15.14)- e-LiY ff(z) k1
k=0

But by the Parseval relation, the right-hand side becomes zero and, as we

would naturally expect, the past and present of f can be predicted perfect-

ly. For p >0, we replace in (15.13) the sum by the difference of sumsE p-l k=p0* P-1 k=p

k=- ,k=O and the minimum mean-square error for prediction of fk+p
which lies p-units ahead is

p- 2

p E[ i f ff(Z) zl v (15.15)
k=0

a result obtained by Kolmogorov1 7. It follows, in particular, that

al= A (C) = exp 2i log f(z) (15.16)1 ff zj 

Since _Aff(z) 0 on the unit circle, it follows from the inequality

between arithmetic and geometric means that

Let f be a nonnegative function, integrable [] on a set E of finite
measure. Then

exp 1 / log f d} f d ,
E i(E) B

where the equality holds if and only if f is constant []. For proof, see
22

Hardy, Littlewood, Polya
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1 = exp 2 log Aff(z) dz < 1 i dz (f )

(15.17)

where the equality holds when and only when Aff(z) = Rf f) almost every-

where on Izi = 1. Thus, if the sequence f has finite mean-square

(Roff)< o), the logarithmic integral can diverge only toward (- oo) if

it is to diverge at all. This divergence does occur if Aff(ei 9

vanishes on a set of values of z9 of positive measure.
2

It is seen that if the logarithmic integral should diverge, C1 = 0;

and by iteration we can predict any future element fk+p perfectly from a

knowledge of the past history of f. Accordingly, a necessary condition

for a sequence to be nondeterministic is that the logarithmic integral be

finite, hence that the sequence be regular.

We can conclude, then, that if a sequence posesses a spectrum that

vanishes on any set in (-7,w) of positive measure, it is deterministic.

We note from (15.15) that

p = E i (z) k+l] [2i X() k(z)
k=O k=O

R( f f ) ' (15.18)

The mean-square error for any p is, as we would expect, always bounded by

the mean-square of the sequence.

if Aff(z) = Rff) almost everywhere on z = 1, then

R(f) 2i (f ) dz R(ff) o- (15.19)

where is the Kroneker delta. We then have (z) = f f ) hence
m '

p-1

= Rff) = R(ff) > 0, (15.20)
p 0- o k o

k=0

and no prediction is possible for p > 0.

A sequence whose correlation coefficient is given by (15.19) is

called purely random or an orthogonal sequence.

The Wold-Kolmogorov decomposition. If we re-examine the pure predic-

tion problem with p = 1, the error term becomes
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oo

fk+l - ai fk-i' (15. 21)
i=O

with the a's obtained from

1 dz
ak = 2vi A(z) k+l (15.22)

For this case, however, (15.9) becomes

E 2vi ff(u) uk+
z Aff(z) k=l u

= - f , 1 (15.23)
Z Aff(Z)

00 o00 0

where we have replaced by [ - ] and used Parseval's theorem.
k=l k=O k=O

Let us re-write (15.21), replacing k by k - 1, and consider the error

00

k =fk - ai fk-l-i (15.24)
i=O

which forms the k-th element of a sequence {itE. Forming the cross-

correlation of & with f, we have

00

R( f) f Rff ' ak Rm k k+m m ) - m++k
k=O

dz2vi X < ff(Z) [1 - A() (15.25)

But from (15.23),

1A() = 1 - ff(; (15.26)

Aff(l)

and

R( )= 2Wi A Aff(z) zm+l (15.27)M 2ri m+

which, from the analyticity of ff(z), must vanish for m 4 O. We say
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that is orthogonal to the past of f in the sense that Sk fk+m = 0

when m < 0. However from (15.24), it is seen that the past of is a

linear combination of the past of f; hence must be orthogonal to its

own past. We thus obtain

k sk+m = ?ff(0) 0 ' (15.28)

and the sequence IEil is purely random. The fact that is also ortho-

gonal to its own future follows, of course, from the even property of the

autocorrelation coefficients.

If we write (15.24) as

oo

fk= Z aifkl i + k (15.29)
i=O

the sequence f has been decomposed into two parts, the first of which is

a linear combination of its own past, while the second is orthogonal to

that past. This expression is known as the Wold-Kolmogorov decomposition

of a sequence {fi}. The element ek represents the "innovation" or new

information carried by the element fk' In other words, {il represents

that part of tfij which cannot be predicted from a knowledge of the past

elements. Clearly, if the sequence tE i has zero variance, the sequence

Ifij is deterministic.

We might also write (15.24) in the form

oo

Ek = , i fk-i
i=O (15.30)

where

o = 1

Pk ak-l k > 0. (15.31)

Thus for k > 0,

-1 A~z ) dz -1 z Az) dz
= 2 k 2wi zk+

2114 /A~ dz - dz
_2_i [A (z ] - kl * (15.32)
ff(z) zk+

We note that for k O,

1 dz
2i z k+l = 0,
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and for k = 0,

21i ff(O) dz 1
z -= 1.

Aff(z) 

Therefore, we can write for all k,

k i X dz (15.33)
i f7 Af() k+1

Since Aff(z) is analytic and nonvanishing in z < 1, the integral on the

right vanishes for k < 0.

We might expect from the orthogonality property of the sequence

fIEi that the element fk can be expressed as a linear combination of the

values of the sequence E. That is,

0

fk Eai Ek-i' (15.34)
i =-00

in which mean-square convergence of the series is required. That such a

representation is possible, can be seen from the following considerations:

If we take the crosscorrelation of f and , (15.34) yields

o00

fk ek-m = a E k-i Ek-m
i=-00

= Af(O) am ' (15-35)

from which we obtain the coefficient

am A2 2i Aff() Z m+, (15.36)
ff(O)

where we have used (15.27). From the analyticity of Aff(z) in the unit

circle, the integral on the right vanishes for m < 0, and (15.34) becomes

oo

fk - , i Ek-i (15'37)
i=O

Let us consider the partial sum of n terms of the series and the follow-

ing limit:
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lira k k Z a k-i
n -- oo L i k0 in 1i=O

n n

lim R( - 2f) + f(O) Ci

) E = 2 () ' (15.38)
i=O f (

From Parseval's relation and (15.27),

] 2

2TiA ff() Aff(Z) Aff () z
i=O

Aff(O) 1 i- A (z) dz

=ff(O) Ro (ff ) ( 5.39)

The limit of Equation (15.38) is zero; hence the series in (15.37) con-

verges in mean-square. We see then that a regular sequence fi} may

always be expressed in terms of the past history of its innovation. This

representation is referred to in statistics as a one-sided moving average

of a purely random sequence.

The minimum mean-square error for prediction of fk+p which was given

in (15.15) can be expressed in terms of the coefficients a i as

p-1

a 2 = 2 f(0) a2

i=0

= A f(o) [1 + a + . + a21 (15.40)

In this form it is easily seen that if Aff(0) = 0, that is, if

2i log . ff(z) dz = - O, (15.41)

then the sequence f may be predicted perfectly for any finite p.

Uniqueness. To summarize the results of the Wold-Kolmogorov de-

composition: any regular sequence fi} is related to its innovation {ail
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by the pair of relations (15.30) and (15.37). If we employ the transform-

ation U which transforms each element of a sequence into the preceding

element, these relations can be expressed in the operational form,

k = B(U)fk (15.42)

fk - A(U) k = B-i(U) k (15.45)

where B(U) and A(U) are power series expansions in positive powers of U

of the coefficients Hi and a . These operations are represented in the

block diagram form of Fig. 8. In order that only positive powers of U

fi (z) IFi}

Fig. 8. The orthogonalization scheme.

occur (that is, in order for the operations to apply to past values only),i}

occur (that is, in order for the operations to apply to past values only),

the function B(z) must be analytic within the unit circle. Also, since

A(z) = B-1 (z) must satisfy the same analyticity condition, it follows

that B(z) must, moreover, be nonvanishing in z < 1.

The spectral conditions,

B(z) B(L) Fff(z) = F(z ) constant, (15.44)

along with the boundary condition B(0) = 1 [B(O) = o is the coefficient

of the element fk in (15.30)] guarantees uniquely the following relations:

B(z) ff() (15.45)

Aff(z)

e2 = f0 A= f(0). (15.46)

The Wold-Kolmogorov decomposition of a single random sequence is,

hence, unique.

16. Multiple Prediction

Rather than treat in detail the multiple prediction problem, we

shall simply discuss the Wold-Kolmogorov decomposition in its connection
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with multidimensional processes. Although there is only one such de-

composition of a single-dimensional process, we shall show that this

property of uniqueness is not shared with the multidimensional process.

It is for this reason that the multiple prediction problem has not yet

been completely solved in closed form. We include this section partly

for the sake of completeness, but primarily to point out the need for

additional study along these lines.

Kolmogorov's work was first extended to multidimensional processes

by Zasuhin2 1 , who demonstrated the nonuniqueness of the Wold-Kolmogorov

decomposition. More recent studies by Whittle 2 7 have formalized the

multiple prediction problem but only Wiener has provided a usable solution.

Employing the Gram-Schmidt orthogonalization procedure, Wiener and Rankin
2 3

obtained a scalar series solution which, although not in closed form, lends

itself to machine computation. In certain specific problems, Wiener's

method of undetermined coefficients1 9 can yield a satisfactory solution.

However, the important general closed-form solution is, to the knowledge

of this author, yet to be found.

Following Zasuhin, we consider an n-dimensional vector process

IFil = Iflif2i' ... fniI with correlation coefficients

Rm( i) fik f (16.1)
= ik j,k+m

and spectral functions

00

A ij(z) = R(iJ) z(16.2)

k=- oo

These spectral functions form the elements of an n x n Hermitian matrix

e/ (z), whose determinant

A(z) = l / (z) (16.3)

is real, nonnegative, and even on the unit circle. Zasuhin has shown

that a necessary and sufficient condition that the vector process be

regular and of rank n is that

log (ei ) d (16.4)

be finite.

Under the assumption that this latter condition is fulfilled, the

Wold-Kolmogorov decomposition consists in finding the set of coefficients

'lijk} and tyijki for which
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n oo

im ' E E ijk fj,m-k (16.5)
J=1 k=O

n 00

Eim = E E 7 iJk fJ,m-k' (16.6)
J=l k=O

subject to the constraints

k FJm km "ij Ca (16.7)

7 ijo = nijo = 6ij- (16.8)

These latter coefficients correspond to Po and a o in the single-dimensional
2

process. The variance aj is the mean-square error for prediction of the

sequence fJi one step ahead. Using the translation transformation U,

(16.5) and (16.6) can be expressed in vector form:

FM n- (U) Em (16.9)

Em = (U) Fm =-l(U) Fm, (16.10)

where Fm and Em are n-dimensional vectors representing the m-th elements

of the process, and /(U) is a matrix of operators with elements

00

Hij(z) = Z ijk Z (16.11)
k=0

In order for 3*( U) to contain only positive powers of U and at the

same time have an inverse with these properties, its determinant 1 (z)) 

must be analytic and nonvanishing inside the unit circle. The constraint

on the coefficient niko imposes the additional condition I () = 1.

A straightforward calculation from (16.1) and the orthogonality con-

straint yields

n

A/iJ(Z) H (z) Hr(Z ) ir (16.12)

r=l

where

7r 2= rk' (16.13)

In matrix form, (16.12) becomes

e4() = (1) X -() (16.14)
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where denotes the transpose of A, and the matrix I is a diagonal
2

matrix of elements T. r Setting

n

|~ .| =XF 2 C2 (1615)

r=l

we obtain the determinantal equation

|AI(z) | () C2 = (z) (16.16)

By the method of Szeg6, we let A(z) = b(z) b(l/z), with b(z) analytic

and nonvanishing in the unit circle. From the analyticity requirements

of I (z) , we obtain

5(Z) . (16.17)

But since I () 1,

IIq(z)l = 5(Z) (16.18)
0(0)

and

a 2 = 2() 2- j log A(e i ) d9. (16.19)
-7r

The determinant a 2 is often called the prediction variance or intrinsic

variance of the process.

Using the inverse (z) of the matrix ./(z), we can write (16.14) as

9(1) · /(z) · (z) = (16.20)

which illustrates another interpretation of the prediction problem. The

Wold-Kolmogorov decomposition consists of determining that matrix (z)

by which the spectral matrix is pre- and post-multiplied in accordance

with (16.20) in order to reduce it to a diagonal matrix with constants

along the diagonal. The components of the prediction variance are then.

those diagonal elements. Although a first impulse is to make '(z) the

matrix of the eigenvectors of the spectral matrix, this procedure gives a

9-matrix that does not satisfy the analyticity requirements; furthermore,

the eigenvalues are functions of z.

Before the preceding considerations convey to the reader the im-

pression that the decomposition is a straightforward procedure, let it be

remarked again that the solution is hampered by the nonuniqueness mentioned

earlier. In this regard, let us suppose that in a given case the optimum
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operators have been found, and that their operations applied to the set

Ifri} produce an innovation sequence 2{gkil. Let aij be a set of n2

numbers satisfying

n

a a 2 5 a 2 (16.21)

J=l

Consider the sequence f ikl formed by the operation

n

ik Z aim FSmk (16.22)
m=l

This operation is a unitary transformation of the present value only of

the innovation vector. Consider the correlation function:

n n

Eik m aip E aq pk qm
p=l q=l

n

_ aip ajp pk Epm
p=l

n

= bkm Z aip ajp op
p=l

5 6ij 2 (16.23)
= k ij j'

On comparing (16.23) with (16.7), we see that the sequence Veri~ is a

perfectly good innovation sequence having identical statistical character-

istics with F -ri}. If the matrix @(z) satisfies (16.20) so also does

the matrix c,4 * (z), where c 4 is a unitary matrix of elements aij.

Thus, for the multidimensional processes, the Wold-Kolmogorov decompo-

sition is unique only up to a unitary transformation. It is for this

reason that the solution of the multiple prediction problem is difficult.

In order to find the optimum prediction operator, we need to impose an

additional constraint to guarantee uniqueness. And this constraint must

be consistent with the constraints already imposed.
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V. INFORMATION RATES IN STOCHASTIC PROCESSES

17. Mutual Rate of a Pair of Gaussian Sequences

Let f = fi and g = git be a pair of stationarily correlated

sequences which we assume to be governed by a set of multivariate

gaussian distribution functions. It is of interest to determine the rate

(per element) at which the sequence f conveys information about the

sequence g. That is, given the past history of f up to the element fk-1'

how much additional information about the entire sequence g is provided

on the average by the next element fk? Denoting by p the subsequence

(...,fk-2fk1) of f, we wish to formulate

I(g;fklp), (17.1)

that is, the average information about g provided by the element fk when

the past of that element is known. It is not quite clear at this stage

whether or not the information (17.1) really represents the average rate

per element. By the average rate we mean a number R so defined that, from

a sufficiently large number N of successive elements of f, we obtain an

amount of information which is of the order of NR. To see that (17.1)

does satisfy this intuitional requirement for the average rate, let us

consider the pair of elements (fkfk+l). From Theorem 12.3, the average

information about g provided by the pair (fk,fk+l) when the past p is

known becomes

I(g;fkfk+llp) = I(g;fklp) + I(g;fk+1 lP,fk). (17.2)

However the pair (p,fk) in the last term is the subsequence

(...,fk_2'f k lf k), which is, simply, the past of the element fk+l' Since

the process is assumed stationary, the information (17.1) is independent

of the index k, hence the two terms in the right-hand side of (17.2) are

equal. By iteration, it follows that

I(g;fkfk+l '.fk+Nllp ) = N I(g;fklp) (17.3)

and I(g;fklp), which is independent of k, does indeed represent the

average rate R per element provided by f about the sequence g. We call

R(g;f) = I(g;fklfk-_lfk_-2,.) (17.4)

the average rate at which f conveys information about g.

In order to evaluate the information in (17.1), we need to determine

a priori and a posteriori distributions for the sequence g. The a priori
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distribution is that distribution of g conditioned by the subsequence p;

the a posteriori distribution is that of g conditioned by the pair (,fk).

Since the sequence g is composed of an infinite set of elements, both of

these distributions are infinite-dimensional. When we take into consider-

ation the correlation of the elements of g, it becomes apparent that the

evaluation of these distributions represents a rather formidable problem.

Here we can make use of Lemma 11.2 to great advantage. According to that

lemma, we can write

I(g;fklP) = I(fk;glp). (17.5)

The right-hand side may be interpreted as the information about the ele-

ment fk provided on the average by the specification of the value of every

element of g in the past, present, and future. In order to evaluate this

information, we need determine a priori and a posteriori distributions of

the single element fk alone. These distributions are clearly one-

dimensional. The effect of Lemma 11.2 and Theorem 12.1 is to reduce an

infinite-dimensional problem to one of a single dimension.

Some question may conceivably arise concerning a physical ustifi-

cation for the prediction of a known element k from the past, present,

and future of a completely unknown sequence {gi. Let us remember that

here we are using the mathematical artifice of solving a simple hypotheti-

cal problem whose solution is identical with that of a more difficult

physical one. The only ustification necessary for such a procedure is

the fact that if the solution to the physical problem exists, then by

Lemma 11.2 the solution to the hypothetical one exists also, and these

solutions are identical.

As the sequences f and g have been assumed to be multivariate

gaussian, the a priori and a posteriori distributions for the element fk

will be simple gaussian distributions. Thus, in order to completely

specify these distributions, we need determine only their means and vari-

ances. It is now quite clear that the evaluation of the average rate is

a problem of prediction. In the gaussian case, in fact, it becomes one

of linear prediction.

In order to find the a priori distribution function for k' we need

find the optimum linear operation to be applied to the past of f in order

to obtain the best mean-square approximation of the element fk The

result of that operation becomes the mean of the distribution; the minimum

value of the mean-square error becomes its variance. From the results

given in section 15 for pure prediction one-step ahead, the a priori

distribution of a particular element fk has a mean
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00

a = Z aifk-l-i
i=O

with

am = i Z' 1 - dz
Afr f (z) zm +l

and variance

2 2 (o).O 1 = ff(0)

Thus the a priori probability density for a particular fk is

p'(x) = 1 exp -
2

(x - k) 2

2 
2 r1

(17.9)

Similarly, to evaluate the a posteriori distribution for that same

element fk, we need determine the sets of coefficients Ibit (i = 0,1,...)

and {cil (i = ...,-1,0,1,...) for which

oo0

fk - bi fk-l-i
i=0

jCig k -i
-=_ ool 

is a minimum. Note that the index of the coefficient ci runs over all of

the positive and negative integers. Hence, although the function

00

B(z) =E b i zi (17.11)

i=0

will be analytic within the unit circle, the function

00

C(z) = E ci zi

i=-00

will not be, in general.

Setting

a 2 d 2
= = 0

c bm (cm

in (17.10), we obtain the pair of equations
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L bi Rm(f) +
i=O

bi m-l-i +
i=O

00 · i R(fg) = (ff)
,E ci Rn+l-i =m+l

i=-oo

- Ci R. g) = R(g f )

1 mi=-oo m
I=-oo

where the second equation must hold for all m. The minimum value of the

mean-square error becomes

00

2 - _ (ff) '(ff)
2 min = RO - bl Ri+f

02 +i=1i=O

OQ

i=- (gf
i=- oo

(17-15)

We can express (17.14) in spectral form

1 dz
27i [z B(z)Agf(Z) + C(z) lAgg(Z)] z'-i

(17.16)2i A gf(Z) dz

but since this expression must be valid for all integers m, we can equate

the integrands. Solving for C(z), we have

C() = Agf(Z) - z B(z) lAgf(Z) (17.17)=~z ( 17. iV
Agg(Z)

Equation (17.13), expressed in spectral form, becomes

1 1 [BZ Afg(Z)] dz
2Wi lB(z) -[ff(z) + C(z) g zATgmlif

1 A Y ff() dz27wi f zm+ 2

Substituting (17.17) in (17.18) to eliminate C(z), we have

Afg(Z) gf (Z) dz

Agg (z) ]zm+

Afg(Z) Agf(Z) d1 dz

Agg (z) zm+2

90

m 0 (17.13)

m > 0. (17.18)

281 / B(z)

= 2Vi f
Lf f (Z)

[Aff (Z)

y

\ - -- I

m >, . (17-19)



It follows that the function

Afg(Z) Agf(Z)

A(z) = Aff() (17.20)

is even and nonnegative on the unit circle, hence is a spectral function.

Comparing

(i B(z) -. -(z)dz 1 A (z dz
2Wi / B\z) '-(Z) m+l - 2i 'zm+2 m > (17.21)

with (15.7) of section 15, we see that the operator B(z) is the pure

prediction operator for prediction one-step ahead of a sequence having the

spectrum JA(z). From (15.23), it follows that the solution of (17.21) is

B(z) =¥ 1 ?(o)] (17.22)
B A()

where A(z) is that factor of A(z) analytic and nonvanishing inside the

unit circle. The minimum value of the mean-square error (17.15) is then

dz

2 = 2(0) = exp 2 log A(z) dz. (17.23)

The a posteriori distribution density for the particular element fk,

given its past and the entire sequence g, becomes

V1' (x ) (e 2 } (17.24)

? 2 22

with
oo oo

Pk = bi fk-l-i + ci gk-i (17.25)
i=O i=- oo

The coefficients bm and cm are given by

bm J Z (z) z- m+l (17.26)

and

1 f Agf(Z) (0) dz
cm -2-wi Agg(Z) (z) zm + l

The information about the sequence g provided by a particular element
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fk becomes, from (9.14),

Ik = '(x log (x)
-00 P'(x)

2 or2 2 (-r 2 )2

log 1 - 2 + k k k (17.28)
22 2 2

when natural units of information are employed.

To obtain the average information given by all the elements of f,

we take the average of Ik over all possible k:

2 2 2 2

1 i - (1 -l )R(g;f) = I = 2 log 1 1 + k k (17.29)

C 2 2a 2r 1

In order to evaluate the mean-square of the quantity (ak - Pk) we

note that

(ak k)2 2 akk (17.30)

From (17.6),

a2 = ai Z am Rmf)

i=O m=O

oo

a R(ff)-' ai "i+ l
i=O

R(ff) 2 (17.31)Ro - /2 (17.131)

where we have used (15.5) and (15.6) of section 15 in the special case of

pure prediction with p = 1.

Similarly, from (17.25),

2 00 00 00 0

Pk= bill bm R -i ) ci c m R M-i
i=0 m= i=- oo m=- oo

00 00 oo 00

+ 2 E b C c R(fg) - b R
(f f ) c R(gf)+ b cm i+1-m = ~ bi +m i+l-m i i(gf)

i=O m=-oo i=O i=-oo

R(ff) 2 (17.32)
0 2
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where we have used (17.15), (17.14), and (17.15). The cross-moment akk

becomes

ak k = Eai Z bm R (f) + ai E Cm Ri+fg)
i=O m=0 i=0 m=- oo

o00

=Zai 1+1
i=0

= R(f f) 2 (17335)o 1.

Combining (17.31), (17.32) and (17.33), with (17.30), we have

2 B22 2
(ak = O2 - C2, (17.34)

and the average rate becomes

2
R(g;f) = 2 log

2
O2

1 2 ff(0)
1 log ff
2 2()

1 Aff( dz
= 4 i log z

4i log Aff(z) Agg(Z) dz

Aff(z) /Agg(Z) - fg(Z ) gf(z) Z
(17.35)

From the symmetry of this expression with respect to f and g, it is

seen that the sequence g provides information about f at the same rate as

that provided by f about g.

It is of interest to note that the information rate is invariant

under linear operations on the past of the sequences involved. Let a

sequence {hij be derived from the sequence {fi} in the following manner:

If 7qi} is a set of coefficients for which

It has been pointed out to the author by Dr. R. A. Silverman that
Equation (17.35), as well as its extension to the continuous case
(section 18), has been given in a recent Russian publication by

M.S. Pinsker28.
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00

m fk-m (17.36)

m=0

converges in mean-square, let that sum be equivalent to the element hk.

Thus the sequence h is the result of an operation on the past of the

sequence f. Setting

00oo

H(z) = 1 m zm (17.37)

m=0

we obtain

Ahh(Z) = H(z) H(z1) ff(z), (17.38)

hg(Z) = H(z) Afg(Z). (17-39)

The average rate at which the sequence h provides information about g is

then

l r~L' Ahh(z) gg(z) dz1 dz
R(g;h) = log z

hh(z) Agg(z) -Ahg(Z) Agh(Z)

H(1) H(z) A ff(z) A (z)
=1 log z dz

H(z) H( ) [ ffz Agg (z) - A fg(Z) Agf(Z)]

= R(g;f). (17.40)

Thus the linear operation on the past of f has left the rate unchanged.

The expression (17.35) for the mutual rate of an arbitrary pair of

stationary gaussian sequences is sufficiently general to handle a large

variety of problems. For example, we can examine the problem treated by

Shannon2 5 concerning the capacity of a channel in which a gaussian noise

is added to a band-limited gaussian message.

Let the message be essentially limited to the low-frequency band

(O,W) and let gij= mij represent the values of the message at sample

points 1/2W seconds apart. Similarly, let nil represent the correspond-

ing noise samples. Ifjfi) is the sequence of elements

fk =mk + nk (17.41)

where message and noise are assumed uncorrelated, it follows that

A gg(Z) = Amm(Z)
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Af f(z) = Amm() + Ann(Z)

Afg(Z) = Am(z) (17.42)

and

R(m;f) l= / log [ + (Z (17.43)
Xnn(z)

which, in essence, is the result obtained by Shannon. In section 18,

where we treat functions of a continuous time, we shall obtain an

expression which resembles his more closely in notation.

To obtain the capacity of the channel subject to a message power

constraint, we simply maximize (17.43) with respect to Amm(ei subject

to the constraint

2i / mm(z) dz = C (17.44)

Such a maximization leads to the result that the sum Amm(z) + Ann(Z)

should be constant on the unit circle except when the total message power

is too low to permit such a choice while maintaining A mm(e i ) non-

negative. In such a case, the sum should be made constant whenever

Ann(e ) < m + an, and Ai (ei ) should be set near zero otherwise.

18. Extension to the Continuous Case

The results of the previous section can be effectively applied to the

study of random time functions which are realizations of a continuous-

parameter stochastic process. In order to make the transition from the

discrete to the continuous-parameter case, we utilize a technique of

sampling in the time domain. That is, the random functions, which are

defined continuously in time, are supposed to be sampled at equal inter-

vals T, providing a discrete sequence of random variables. We can then

employ our previous results to determine the mutual rate of information

between such sequences. We obtain the time rate for the random functions

by allowing the sampling interval T to approach zero.

Let us consider a pair of multivariate gaussian time functions f(t)

and g(t) which are assumed to be stationarily correlated in the wide-

sense of Khintchine. Thus the correlation functions

Cpff(--) = f(t) f(t + )

(Pgg( r) = g(t) g(t + ')
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fg( () = f(t) g(t + 7-) (18.1)

exist and are independent of t. The spectra are the Fourier transforms

of the correlation functions:

ifg() = fg( )e- i d?- (18.2)

-0

with a similar definition for ff(w) and Igg(w). If we sample both f(t)

and g(t) at equal time intervals T, the sequences {fij and giA with

fk = f(kT)
(18.3)

gk = g(kT)

are well defined and have correlation coefficients given by

Rm(ff) k k+m = f(kT) f(kT + mT)

= (ff(mT) (18.4)

R(gg) = Pgg(mT) (18.5)

Rm(fg) (Pfg(mT) (18.6)

The spectra of the sequences becomes

00

Afg(ei' ) = (9Pfg(mT)e im (187)

m= - oo

with similar expressions for Aff(e ) and A gg(ei).

Letting 9 = cT, we note that

TAg (e iwT) E= Z Pfg(mT)eimT T. (18.8)

m= -00

Passing to the limit as T - 0, the right-hand side becomes, formally, an

integral:

00

lim TAfg(eiwT) = fg ()e i d?

-00

= g(). (18.9)

The average rate (per element) at which the sequence fil conveys
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information about the sequence gij becomes

r
1

RT(g;f) 47r 
-wr

T

T
T

4v
-

T

Aff(ei ) A (ei t )
log d 

Aff(e ) Agg(eiS ) - Afg(e) Agf(e 1 9 )

Aff(e T ) A gg(e )

Aff(ei°T) gg (e iT)- IAfg(e )i |

d .

(18.10)

The time rate (per second) at which the time function f(t) conveys inform-

ation about the time function g(t) is then

R(g;f) = lim T RT(g;f)
T -O

1 % iff(w) I gg()
= 4 log f (W) i - () dw.

~~,() ~gg() _ Ig() 2'
(18.11)

If we treat the special case in which g(t) is a message m(t), and

f(t) is the sum of that message and a noise n(t), uncorrelated with m, the

rate at which f gives information about m becomes

R(m;f) = 1 /o
-00oo

log 1 + n(U1 do

{ nn( t )

log 1 + ( df,

0 L inn ( 21Tf)

(18.12)

which is seen to agree with the results obtained by Wiener and Shannon2 5.

Correlation between the message and noise offers no additional difficulty,

since more generally we have

R(m;f) = 7 /O

-00

log ~mm(W) [ mm(CD) + nn () + 2 Re (mn(O)]
logrm dn

Ymm( ° ) inn (O ) - |Imn()1 · _
(18.13)

where I mn() is the cross-spectrum of the message and noise.

19. Information Rates in Discrete Networks

In section 17, we obtained an expression for the average rate per

element at which a discrete gaussian sequence fil provides information
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about the past, present, and future of another gaussian sequence {gi}.

A good example for the application of this expression is provided by the

sampled-data filter. Let the sequence {gi) represent the input to a

linear sampled-data network whose output is the sequence fil. In effect,

the filter performs a linear operation on the past history of its input

in such a way that any element fk of the output is expressed by

oo0

fk = , 7m gk-m' (19.1)
m=O

where the coefficients 7ij define the filter characteristic. It is

well known that if gij is multivariate gaussian in its distribution, so

also will be the sequence Ifil, and the results of section 17 apply.

Letting
oo0

G(z) = 7 m zm, (19.2)

m=O

we note that

00 00

fk fk+n = E 7m E 7i gk-m gk+n-i
m=O i=

00 00
7m 11 2 i R(gg)

E, 7m 7i Rm+n-i

00 00 -m=O i=0

= 7m i 2 A gg(Z) zmni+

2 i G(z) G(z) gg(Z) zn+l '(19.3)

from which we conclude

Aff(Z) = G(z) G(.) Agg(z). (19.4)

A similar treatment yields

Afg(Z) = G(.) Agg(z). (19-5)

It is easily seen that

Aff(z) Agg (Z) = Afg(Z) Agf(Z), (19.6)
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with the result that R(g;f) becomes infinite. We thus conclude that the

output of a linear sampled-data filter provides information about the past,

present, and future of the input at an infinite rate.

This result becomes clear when we note from Lemma 11.2 that this

rate is identical to the rate of information about fk provided by the past,

present, and future of the input sequence tgi}. Since the past, present,

and future of g (or in fact, the past and present only of g) is sufficient

to completely specify the present value of the output, we must conclude

that the output of any linear discrete network provides information about

the past, present, and any portion of the future of the input at an infi-

nite rate.

On the other hand, we might conceivably want to know the rate at

which the output of such a network provides information about the past

history only of the input. Since that past history may not completely

specify the present value of the output, such a rate may well be finite.

This problem is one of multiple prediction. That is, the a posteriori

variance is the minimum mean-square error for prediction of the element

fk from a linear operation on the pasts of the sequences tfi and gi~.

However, from (19.6), the determinant of the spectral matrix of the vector

process vanishes; hence the process is of rank one. This should be

expected from the fact that a knowledge of the past history of the input

allows the complete specification of the past history of the output. Thus

we need determine only that mean-square error resulting from an optimum

prediction of k from a linear operation on the past history alone of the

input. The a priori variance is simply

o2 2 (o), (19.7)

and the a posteriori variance becomes

a2 = inf fk - E ai gk-l-i (19.8)
i=

Using the methods of section 15 for the solution of (15.4), we find

2 R -E 2vi' C Agf () dz122 0 h L7i 1 gg( zIJ

= R f) -E 2- $ G(z) gg(Z) zm+ 2
m=l Z

= 2(o) 2 (o), (19.9)gg
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where G(z) is the filter characteristic which is, of course, analytic in

the unit circle.

If we form the function G(z) G(1), such a function has the properties

of a spectrum, hence is nonnegative and even on the unit circle. By the

methods of Szeg3, we can then express

G(z) G() = r(z) r( ), (19.10)

with (z) analytic and nonvanishing within the unit circle. Let it be

noted that G(z) = r(z) if and only if G(z) does not vanish in zl < 1.

The class of discrete filters whose transfer functions have this latter

property corresponds to the class of "minimum-phase" networks in the

continuous network theory.

From (19.4),

Aff(z) = Fr() Agg(z); (19.11)

and (19.7) becomes

a = 2(o) A2 (0). (19.12)1 gg

Thus, from (19.9) and (19.12), the rate of information provided by the

output about the past only of the input is

CT2 [2(o)
1 1 1 P2(

R = 2 log 2 2 log

2 G2 (0)

G(z) G() dz
(19.13)_4_i /,log G-2 (C)

If G(z) is nonvanishing within the unit circle (hence has a physically

realizable inverse), the present value of the output provides no inform-

ation about the past history of the input. Certainly, in such a case, we

can perform the operation G-1 (z) on the past history of the output and

recover the past history of the input exactly and with no delay. However,

when the inverse is not realizable (except, of course, with delay) we

need the information provided by the present and, possibly, future values

of the output in order to reconstruct the past of the input. Thus (19.13)

is the sort of expression our intuition would expect.

20. The Rate of Information About Future Values

An interesting problem for the application of the foregoing ideas is
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the following: Given the past history of a gaussian sequence fi} up to

the element fk l' how much information about the future of the sequence

is given on the average by the next element fk? Clearly, if the sequence

is purely random, the element fk is statistically independent of the

future, hence can be expected to provide no information about it. On the

other hand, if the sequence f is deterministic, its past history completely

specifies its future, and again the information must be zero. It is quite

reasonable, then, to question whether or not there exists a class of

sequences which provide a maximum amount of information about the future.

Unfortunately, we shall see that no such class does exist. In fact we

shall provide an example of a sequence for which this information is

infinite.

This problem is one involving both prediction and interpolation.

Once again, we employ Lemma 11.2 and determine the average information

about the element fk provided by the future when the past is known. As

before, the a priori variance is given by the minimum mean-square error

for prediction of f one-step ahead:

2 = f f(O). (20.1)

The a posteriori variance is the minimum mean-square error for interpo-

lating the element fk by a linear operation on the elements

(... ' fk-2' fk-l' fk+l' fk+2' * ' * ) -

This latter problem has been treated in detail by Kolmogorov, 4 ' 1 7 '1 8 and

we shall simply make direct use of his results. He showed that the

minimum value of that mean-square error is given by

a2 . (20.2)

d z9

Aff,(ei )

The average information provided by fk about the future of the

sequence f when its past is known is thus

2

a 2

2 (0) l d ,
1 log ff

Aff(ei 9 )
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I f log -Aff(ei ) d + 1 log 1 i d@ (20.3)T 0 0f 2 V (20. 5
0 Aff (ei )

If the sequence fil is purely random, that is, if ff(e i ) is

constant in (0,w), this expression becomes zero. It is quite natural to

question whether or not there exists a spectral function that maximizes

the information in (20.3). However, let us consider a sequence whose

spectrum is given by

Aff (ei ) = 9 (20.4)

in (O,w). The first integral in (20.3) is finite for this case, whereas

the second integral diverges. Such a sequence thus provides information

about its future at an infinite rate.

It is interesting to note the existence of a class of sequences

which can be extrapolated only with error, but which can be interpolated

perfectly (in the sense of zero mean-square error).

The extension of prediction theory techniques to the evaluation of

information rates in many processes follows immediately the solution of

the more general prediction problem. For example, to obtain the rate at

which one gaussian time series gives information about the past history of

a similar series correlated with it is to solve the problem of multiple

linear prediction. If this solution can be achieved with uniqueness, our

study of information in a linear network extends directly to the evaluation

of the rate at which the output of the network provides information about

the past history of the input, up to any fixed time in the past.

Similarly, to obtain the mutual rate between nongaussian time series

is to solve the problem of multiple nonlinear prediction. It is also true

here that the mean value of the conditional distribution for a random

variable is given by the optimum mean-square prediction from an operation

on the condition. If the series are nongaussian, that operation is, of

course, nonlinear. When the distribution for the error of prediction can

be found, the conditional distribution for the random variable is simply

that error distribution translated by the value of the optimum prediction.

The solutions to the problems of sections 19 and 20 are not included

for the sake of their value as concrete results, but rather to illustrate

the relation between information theory and the theory of prediction.
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