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Abstract

The synthesis of voltage transfer functions (E 2 /E 1 ), in the form of linear, lumped, finite,
passive, bilateral networks containing no ideal transformers or mutual coupling, is considered.
The basic realizability conditions are derived and realization procedures are developed based on
these conditions, showing them to be both necessary and sufficient.

This particular class of networks places constraints on the allowable values of the constant
multiplier in the voltage transfer function and on the positions of the transmission zeros in the
case of grounded networks. In order to study these constraints, a new concept - the concept of
the one - is introduced. This concept gives a certain physical significance to the constant multi-
plier, which allows the basic realizability conditions to be derived in a simple fashion.
These conditions are:

1. The maximum gain obtainable from a given pole-zero plot independent of configuration.
2. The maximum gain obtainable from a given pole-zero plot for a given complexity of the

network configuration.
3. The maximum gain obtainable from a given pole-zero plot for a realization in terms of a

symmetrical network.
4. The general conditions under which a grounded (three-terminal) realization of any transfer

function is possible.
Various synthesis procedures are developed based on these realizability conditions:
1. A general lattice synthesis in the two-element and three-element cases.
2. A general method of realizing grounded symmetrical networks, by first realizing a lattice

and then unbalancing it.
3. A general realization procedure yielding any allowable gain in both the two-element and

the three-element cases.
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INTRODUCTION

1. THE SYNTHESIS APPROACH

At one time, among engineers, the word synthesis meant the opposite of the word analysis.

Analysis referred to finding the response of a system to a given excitation, while synthesis

referred to finding the system that corresponds to a given input and response. In a restricted

sense, these definitions are still valid, but in recent years the scope of the synthesis field has

broadened and the methods of reasoning and the philosophy of network synthesis have come to

be used in other branches of engineering, and a new approach to engineering problems has

evolved.

One of the main attributes of the synthesis approach to engineering problems is the separa-

tion of the approximation part of the problem from the realization part. Every practical engineering

problem is first stated in ideal form: we should like a filter that would be perfectly flat out to one

megacycle and exactly zero thereafter; we should like a filter that would perfectly separate signal

from noise; we should like an antenna that would radiate exactly in one direction only; we should

like a guided missile that would be one hundred per cent accurate. The man who states the prob-

lems knows that these ideal specifications cannot be met, but he would like to know how close

he can come to them and for what price.

In order to answer this question some sort of approximation or compromise must be made.

But before the approximation problem can be solved, the engineer must have at his disposal

detailed knowledge of the exact types of behavior that are possible for the physical systems

involved and he must also know which mathematical functions characterize this behavior. The

establishment of these realizability conditions belongs properly, not to the approximation part of

the problem at all, but to the realization part. However, the conditions themselves are needed to

perform the approximations.

By using these realizability conditions, a suitable approximation can then be made to the

ideal specifications for the system. Very often, as an aid to the approximation, certain error

criteria are applied, such as maximally flat, equiripple, minimum mean-square, and so forth; in

other cases a cut-and-try procedure is employed. The approximation problem is solved when a

mathematical function is found that is both a close enough approximation to the desired specifi-

cations and also a representation of the behavior of a physically realizable system. The physical

system represented by this function is then realized exactly, using the methods pertinent to the

realization part of the problem. This approach to engineering problems is a significant departure

from conventional engineering methods, which attempt to lump the approximation and realization

parts of the problem under the one category-design.

That which we have called the realization part of the problem is really the portion of synthesis

that is the opposite of analysis. However, it is common practice not to make this distinction;

indeed the words "realization" and "synthesis" are very often used synonymously and the

approximation is considered to be a separate entity. In the subsequent parts of this report, we

1
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shall not be concerned with the approximation problem; therefore we shall use the common term,

"synthesis", for the realization part of the problem.

Over the years, a classic approach to the synthesis problem has been developed. This

approach is patterned after the work of Foster (1) on lossless driving-point impedance synthesis.

It consists of the following steps.

1. A class of systems is defined.

2. A study of this class of systems is made to determine exactly what types of behavior are

possible and impossible for such a system. Mathematicians refer to this step as finding necessary

conditions for the realizability of the class.

3. Realization methods are developed that depend on some of the conditions derived in

step 2, thus showing these conditions to be sufficient as well as necessary.

2. VOLTAGE TRANSFER FUNCTIONS

The class of systems considered in this report consists of linear, lumped, finite, passive,

bilateral, electrical networks containing no ideal transformers or mutual reactance. (An addi-

tional restriction will be added, namely, that RLC networks have no axis poles. This case is

considered in detail by Fialkow and Gerst (15, 16); it appears to add little but complication to

the discussion.) The type of input-output relation that will be studied is the voltage transfer

function, E 2/E 1 . These particular physical constraints were chosen, even though a voltage

transfer function may be impracticable to realize and use unless a series resistor is available,

because they appear to be the only set of conditions that allow a simple physical interpretation

to be given to the constant multiplier. Such an interpretation will be developed in Section I,

after which it will be possible (in Section II) to derive some theorems concerning the ultimate

limits of performance that can be obtained when a particular configuration (of the class considered)

is used to realize a given voltage transfer function and to develop some realization methods

based on these theorems (Section III-VI).

3. HISTORICAL BACKGROUND

The problem of the design of a network with prescribed input and output functions is probably

as old as the field of Electrical Engineering, but the set of procedures called "Network Synthesis"

has only been developed in the past twenty-five or thirty years. The basic procedures for driving-

point synthesis were published between 1924 and 1939 by Foster (1), Cauer (2), Brune (3),

Darlington (4), and later by Bott and Duffin (5). he first work on transfer synthesis was done

by Gewertz (6) in 1932. He derived some basic theorems on transfer impedance synthesis and gave

some synthesis procedures that were, in many cases, unwieldy and difficult to use.

In 1939, Darlington (4) proposed a method of transfer synthesis in terms of a lossless network,

loaded at one or both ends with a resistor. Also in 1939, Cauer (7) showed an alternative pro-

cedure for the design of lossless networks terminated in a resistor. These methods are still among

the basic procedures for transfer synthesis, although their use, in practice, is usually limited to

the synthesis of functions that have all their zeros on the j-axis.
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In the years after 1939, many papers were written on various aspects of the problem. In 1944,

Guillemin (8) showed that any RC transfer function can be realized as a lattice. Bower and Ordung

(9), in 1950, gave other RC synthesis procedures in terms of lattices; they mention a maximum

level of transmission which is related to the maximum gain of a lattice. In 1949 Guillemin (10)

showed that any RC transfer function with positive coefficients can be realized as the parallel

combination of ladders. Weinberg (11), in 1951, derived various synthesis procedures for RC and

RLC networks. Also in 1951, Dasher (12) proposed a method of RC synthesis in terms of zero

sections; this method was recently improved by Guillemin (13) and extended to the LC case.

Prior to 1952, much of the work on voltage transfer functions consisted of the realization of

transfer impedance or admittance terminated at one or both ends with resistors. In 1952, Fialkow

and Gerst (14) published a paper that dealt with voltage transfer synthesis as a separate entity,

and derived some conditions for maximum gain of RC networks, as well as procedures for their

realization. About a year later, the work which led to this report was begun and, since then, many

of the basic realizability theorems have been derived almost simultaneously (14-20), although

independently and in slightly different forms. In addition, realization methods based on these

theorems have also been derived almost simultaneously, although here the duplication is not so

apparent, because, since the realizability theorems were obtained in slightly different forms, the

realizations that were attempted were also different. However, the realization methods derived by

Fialkow and Gerst have been included, whenever they are necessary for the sake of continuity.

In several places, their methods are presented in slightly different forms that simplify the realiza-

tion or require less elements.

It is not the intention of this work to claim credit or dispute about any of the material that

was also derived by Failkow and Gerst. Here a new approach to the problem is presented, which

has a certain physical significance and yields the basic theorems and realizations in a simplified

form.
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I. THE CONCEPT OF THE ONE

1. INTRODUCTION

The voltage transfer function of a two terminal-pair network is defined as the ratio of the

output voltage that appears across terminal pair two to the input voltage applied at terminal pair

one. If the network is linear and the input is of the form

e l = Eles t

the output voltage will be of the form

e2 = E2 est

and the voltage transfer function is defined as the ratio of the vector E2 to the vector E 1. If, in

addition, the network is lumped, finite, and bilateral, the voltage transfer ratio is a rational func-

tion of the complex frequency s:

E2 s n + an _ lsn - + _ - al s + ao
A - = K

E1 sm+bm_ ISm-l + b ls + bo

KN (s - s 1) (s - s 2 ) - -(s - sn)
= K

D (s - I ) ( - siI) - - (s - sm)

Such a rational function is described completely by three sets of quantities, its poles, its

zeros, and its constant multiplier K. If additional constraints are placed on the network, then

restrictions appear on the allowable values for these poles, zeros, and constant multiplier. If,

for instance, the network is passive, certain restrictions (described below) appear on the allowable

positions of the poles.

These conditions-that the network be linear, lumped, finite, passive, and bilateral-define

the class of networks usually studied in network theory. For such networks, the voltage transfer

function can be expressed in terms of the impedance and admittance functions:

Y12 12
A= =

Y2 2 Zll

and the properties of the voltage transfer function can be derived from the known properties of

impedances and admittances. These voltage transfer properties are well known and are repeated

here for convenience and reference.
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2. PROPERTIES OF VOLTAGE TRANSFER FUNCTIONS

a. RC and RL Networks:

1. All poles are simple and on the negative real axis.

2. All residues are real but can be positive or negative.

3. Zeros can be anywhere in the s-plane, but complex zeros must be in conjugate pairs.

4. Zero and infinite frequency cannot be poles.

b. LC Networks:

1. All poles are simple and on the j-axis.

2. Residues are pure imaginary but can be positive or negative. The proof of this last

condition follows from the fact that A is the ratio of an LC transfer impedance to an LC driving-

point impedance and is, therefore, an even polynomial over an even polynomial or an odd polynomial

over an odd polynomial.

3. Zeros can be anywhere in the s-plane, but complex zeros off the j-axis must occur in

quadruplets, and real zeros must occur in left-right half-plane pairs.

4. Zero and infinite frequency cannot be poles.

c. RLC Networks:

1. All the poles are in the left half-plane.

2. J-axis poles must be simple with pure imaginary residues. The fact that the residues

must be imaginary can be seen from the following reasoning. Since A = z1 2 /Z 1 1 , it can only have

a j-axis pole when Z1 1 has a j-axis zero. However, the realizability conditions for the impedance

functions state that on the j-axis, RllR 2 2 - R1 2
2 > 0. Thus when Zll has a j-axis zero, the real

part of z 1 2 must be zero, or z 1 2 must be imaginary; the above statement follows directly. However,

we are not interested here in RLC functions with j-axis poles, so that this condition will not be

used in the following discussion.

3. Zeros can be anywhere in the plane, but complex zeros must be in conjugate pairs.

4. Zero and infinite frequency cannot be poles.

If these restrictions-that the network be linear, lumped, finite, passive, and bilateral-are

the only ones applied to the problem of voltage transfer functions, then nothing more can be said

about the allowable values of the zeros and the constant multiplier. In fact, the constant multiplier

can be adjusted to any value with an ideal transformer and the transmission zeros can lie anywhere

in the s-plane. If, however, an additional constraint is placed on the problem-that the networks

have no ideal transformers or mutual coupling-then the network places additional constraints on

the values of the constant multiplier and on the positions of the transmission zeros in the s-plane.

3. DEFINITION OF THE ONE

In order to study these constraints in more detail, it is convenient to introduce the concept

of the "one". A function is said to have a one at some particular value of the complex frequency

if it equals exactly one at angle zero. (A function can also have a minus one if it equals one at

an angle of 1800.) To solve for the ones of a particular function it is only necessary to find the

zeros of the expression

5
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1 -A = 0

KN
1 - =0

D

D - KN =0

This equation can be solved analytically or by using the methods of root locus. The latter methods

are particularly helpful in obtaining general properties of the solution.

Since the degree of N cannot be greater than the degree of D, this equation has a number of

roots just equal to the degree of the polynomial D. Thus the number of ones of a function is just

equal to the number of its poles. The positions of these ones in the s-plane are a function of the

parameter K. As K is increased from zero, the ones move from the poles toward the zeros along

lines of zero phase angle (since the above equation can only have a root when A is pure real).

Similar reasoning shows that as K is increased from zero, the minus ones move from the poles

toward the zeros along lines of 1800 phase angle, and their positions for any particular value of K

are given by the equations,

1+A=0

KN
1+ = 0

D

D + KN = 0

EXAMPLE.

KN Ks Ks
A= = =

D (s+ 1) (s + 3) s 2 + 4 s + 3

The ones of this function are the roots of the equation

D - KN = 0

s2 +(4-K) s+3=0

while the minus ones are the roots of the equation

D +KN =0

s2 + (4 + K) s + 3 = 0

Since these polynomials are quadratic, the loci of the roots can be drawn by inspection; they are

plotted in Fig. 1. The dashed line is the locus of ones and the dot-and-dash line is the locus

6
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Fig. 1. Root locus for ones and minus ones.

of minus ones. The appropriate values of K are added in several places to the locus of ones.

4. ADDITIONAL PROPERTIES OF THE ROOT LOCUS

Some additional properties of the locus of the ones and minus ones are given below. Many of

these properties are already apparent from the preceding example.

a. As K is increased from zero, the ones leave the (simple) poles at an angle (measured from

a line parallel to the positive real axis) just equal to the angle of the residue of A in that pole,

while the minus ones leave at 1800 plus that angle.

COROLLARY 1. Since the residue in any simple, negative real axis pole must be pure real,

the one leaving that pole (as K is increased from zero) will stay on the axis and move around until

it meets another one, after which the two ones will leave the axis and become a pair of complex

ones. Thus, in the case of RC and RL networks, which have all their poles on the negative real

axis, there is a value of K below which all the ones and minus ones are on the negative real axis

and above which some of the ones or minus ones are off the axis.

Corollaries 1 and 2 are stated for the ones of the function, but the same results apply to the

the minus ones.

COROLLARY 2. A similar statement can be made concerning the ones of LC networks.

(If A has any j-axis poles this statement may still be true under certain conditions, if the residues

are pure imaginary. These conditions are given in (15, 16) and will not be needed in the present

7



discussion.) Since these networks have all simple zeros on the j-axis with all imaginary residues,

an exactly analogous situation exists. As K is increased from zero, each one stays on the j-axis

until it meets another one, then they separate and move into the left and right half-plane as a quad-

ruplet (together with the conjugate pair). Thus, for LC networks, there is a value of K below which

all the ones and minus ones are on the j-axis and above which some of the ones or minus ones are

off the axis.

COROLLARY 3. A somewhat similar statement can also be made concerning RLC networks

that contain no j-axis poles. (See Corollary 2.) There is a value of K below which all the ones

and minus ones are in the left half-plane and above which some of the ones or minus ones are in

the right half-plane. The ones or minus ones can cross into the right half-plane in three ways: by

passing through zero frequency; by passing through infinite frequency; and by crossing over the

j-axis at some finite nonzero frequency.

b. Since A is pure real on the whole positive real axis of the s-plane, the following statements

can be made concerning the behavior of the locus near this axis.
1. The whole positive real axis is part of the one or the minus one locus.
2. There is some value of K below which no ones or minus ones are on the axis and above

which some of the ones or minus ones are on the axis.

3. As K is increased, the ones (or minus ones) can approach the positive real axis in three
ways: by passing through zero frequency; by passing through infinite frequency; and by a pair of

conjugate ones or minus ones crossing into the right half-plane at some finite nonzero j-axis point,
and later (at some higher value of K) approaching the positive real axis.

5. METHODS OF PRODUCING ONES

In general, then, these loci extend over the entire s-plane. However, if we apply the restric-

tion that the given function is the voltage transfer ratio of a network that contains no ideal trans-

formers or mutual coupling, then certain constraints exist on the allowable positions of the ones.

In order to study these constraints, we must study the mechanisms by which ones can be produced

in such networks. There are only two ways in which ones can be produced: if a certain circuit

element or combination of circuit elements has a pole or a zero that effectively connects the cor-

responding input and output terminals or, if there is cancellation, that is, if the transmission just

happens to be one, without any circuit elements that have poles or zeros. (The word "cancellation"

is used to describe the condition in which ones or minus ones are not produced by elements that

have poles or zeros in order to bring out the analogy between ones and transmission zeros, which

is discussed in a later section.) Examples will now be given of networks that have both types of
one.

EXAMPLE 1. Consider the ELL-network of Fig. 2. The voltage transfer function of this

network can have a one only if Za is a short circuit (has a zero) or Zb is an open circuit (has a

pole). Thus all the ones of this network arise from elements having zeros or poles, and these

ones must therefore be in the left half-plane for RLC networks, on the j-axis for LC networks and

on the negative real axis for RC or RL networks. This determines the maximum value of K for
this type of network.

8



E, I Zb

0 ~ 0 

Fig. 2. ELL-network.

EXAMPLE 2. In the lattice network of Fig. 3, all the ones and minus ones are caused by

elements that have zeros or poles. The ones can occur only when Za has a zero or Zb has a

pole, and the minus ones can occur only when Za has a pole or Zb has a zero. This time, all the

ones and minus ones must be in the left half-plane for RLC networks, on the j-axis for LC net-

works and on the negative real axis for RC or RL networks; again this determines the maximum

gain for the lattice (and incidentally for all symmetrical networks).

Fig. 3. A lattice.

EXAMPLE 3. Consider the ladder network of Fig. 4, which has the voltage transfer function

5/2s
A=

(s + 1) (s + 3)

Since the denominator is quadratic, there are two ones, and these are just the roots of the poly-

nomial

D - KN = 0

s2 +(4 - 2.5) s + 3 = 0

(s + 0.75 - 22.9) (s + 0.75 + 22.9) = 0

9
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Since these ones are complex, they plainly are not caused by RC circuit elements that have poles

or zeros and are, therefore, (by definition) caused by cancellation.

It is not obvious at this point that the network puts any constraints on the positions of ones

caused by cancellation; however, these restrictions do exist and are derived in Section II.

2/25 5/4

EI / -
El 5 :2/3 E2 El

0~~~~~~~~ ,,_ 

E 2 = AEl

Fig. 4. A ladder. Fig. 5. Grounded configuration.

6. RELATION OF ONES TO TRANSMISSION ZEROS

There is an interesting analogy between the mechanisms by which ones and transmission

zeros are produced. It is well known that there are two ways in which transmission zeros can

occur: if a certain circuit element or combination of circuit elements has a pole or zero which

effectively isolates the input of the network from the output or, if there is cancellation caused

by the transmission through two or more parallel paths just happening to add up to zero. The

analogy with ones is apparent. It is also well known that, because of the reasons given above,

certain network configurations can have zeros of transmission only in certain portions of the s-

plane. For example, the zeros of the ELL-network of Fig. 2 occur only where Za has a pole or

Zb has a zero and are, therefore, constrained to certain parts of the s-plane by the type of element

(RLC, LC, RC, RL) used in the synthesis, while the zeros of the lattice of Fig. 3 arise from can-

cellation caused by the balancing of a bridge (Za = Zb) and can be anywhere in the s-plane.

These constraints on the positions of zeros are well known and are clearly analogous to those

for the ones.

In the special case of a grounded network, this analogy becomes a much closer relationship.

The ones and transmission zeros of a grounded network can be interchanged by a change of ref-

erence terminals. (See Fig. 5.) Thus the general grounded network can have transmission zeros

only where it can have ones and vice versa. Any restriction on the positions of two ones is also

a restriction on the positions of the zeros.

A word of caution is in order; the above statements refer to general grounded networks.
Particular network configurations may add additional constraints, which may restrict the ones

and/or transmission zeros to particular parts of the s-plane. For example, the configuration of

the RC ladder used in the previous example restricts the transmission zeros to the negative real

axis, while no such restriction exists for the ones. The above statements refer to general

grounded networks with unspecified configurations.
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II. BASIC LIMITATIONS ON NETWORK BEHAVIOR

1. INTRODUCTION

The concept of the one places in evidence various constraints on network performance.

(Hereafter, the word "network" refers to linear, lumped, finite, passive, bilateral networks that

contain no ideal transformers or mutual coupling.) Certain of these constraints apply to particular

network configurations, as demonstrated in the examples of Section I, while others apply to all

networks independently of their configuration. This second type is, in a sense, more fundamental

in that it gives the basic limitations on the behavior that can be obtained from physical networks.

Such limitations are of importance in determining exactly which transfer functions can be realized

and which cannot.

In this section these limitations are derived in the form of four theorems that state necessary

properties of physical networks. In subsequent sections synthesis procedures are derived based

on these theorems, thus showing them to be sufficient as well as necessary.

THEOREM 1. No network can have a one or minus one on the positive real axis except at

zero or infinite frequency where the gain can be one but no greater (17). (An obvious exception

to this theorem is any network that has a gain identically equal to one.)

PROOF. On the positive real axis, all the circuit elements behave like positive resistors

whose values depend on . Clearly, such a "resistive" network cannot have a gain greater in

magnitude than one. Moreover, the gain can only equal one or minus one if some of the resistors

have zero or infinite resistance, but the "resistors" considered here can only have zero or infi-

nite resistance at zero or infinite frequency.

This theorem gives the maximum value of the constant multiplier that can be obtained from a

given pole-zero constellation no matter what network configuration is used in the synthesis. As

shown in the previous section, there is some value of K below which no ones or minus ones are

on the positive real axis and above which some of the ones or minus ones are on this axis; this is

the maximum value of K.

2. TEST FOR MAXIMUM K

A graphical statement of the above theorems can be given as follows:

The curve of A versus a must lie between the lines A = 1 and A = -1 everywhere

on the positive real axis; the curve can only touch one of the lines at zero or

infinite frequency.

At the maximum value of K, there is some frequency at which the curve just touches one of

the lines. This can occur at zero frequency, infinite frequency or at any finite nonzero value of

a. If it occurs at zero or infinite frequency, the curve may cross through the A = 1 or A = - 1 line,

but if it occurs at any other value of a, the curve must not cross the line and must be passing

through one of its maxima or minima. Thus the frequency at which the curve touches the line is

either zero or infinity or one of the frequencies at which A has one of its extrema.
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These properties form the basis of the test for maximum K. First the frequencies at which

all the maxima and minima occur are found by setting the first derivative of A equal to zero. Then

the transfer function is evaluated at each of these frequencies, as well as at zero and infinite fre-

quencies, and the value of K is chosen that makes the magnitude of A equal to one at one of these

frequencies and less than one at all of the others.

To determine the frequencies at which the function has its maxima and minima, the derivative

is set equal to zero.

d KN DN'- ND\
- (-) = K 
ds D D2

DN'- ND'= 0

where the prime denotes differentiation with respect to s. The frequencies of interest are the

positive real roots of this equation. The actual factoring of the polynomial must be done by

using Newton's method or some other approximate method. But before beginning one of these

lengthy procedures, various tests can be used to determine the number of positive real roots:

a. Descartes' rule of signs states that the number of positive real roots of a polynomial

is not greater than the number of sign variations in its coefficients. A particular case

of interest is one in which there are no sign variations. In this case, no positive real

roots are present and the transfer function goes through one at zero or infinite frequency.

b. Sturm's test can be used to determine the exact number of positive real roots and to

help localize those roots.

EXAMPLE. Consider the voltage transfer function

=K s (s- 1)

(s + 1) (2 + 1)

This function has positive real axis zeros at zero frequency, infinite frequency, and at the

frequency s = 1. A sketch of the function (see Fig. 6) shows that there are at least two extrema

A

Fig. 6. Sketch of a transfer function on the positive real axis.

12
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on the positive real axis, one between s = 0 and s = 1, and one above s = 1. The polynomial

DN'- ND'is found to be:

DN'- ND'= s4 - 2s 3 - 2s2 + 1 = 0

Descartes' rule of signs shows that there are no more than two positive real roots. Thus there

must be exactly two such roots. The factors of the polynomial are found to be:

DN'- ND'= (s - 2.65) (s - 0.598) (s2 + 1.255 + 0.621)

The voltage transfer function is then evaluated at each of the positive real extrema:

At s = 0.548 A = 0.119 K

At s = 2.65 A = -0.15 K

The maximum K is then:

1
K < - 6.67

0.15,

The strict less than sign is used, because, as shown later, this maximum can be approached

but never attained.
THEOREM 2. A grounded network cannot have a transmission zero on the positive real

axis except at zero or infinite frequency (17).

PROOF. This can be proved by using the relationship between ones and transmission

zeros of grounded networks or by using the same reasoning as in the last proof. On the positive

real axis all the circuit elements look like positive resistors. Such a grounded resistive network

cannot have transmission zeros unless some of the resistors have zero or infinite resistance,

but, again, these resistors can only have zero or infinite resistance at zero or infinite frequency.

COROLLARY. Since grounded networks have no zeros on the positive real axis, the
transfer function must be either everywhere positive or everywhere negative on this axis. Using
the same kind of reasoning as above, we can easily show that the voltage transfer function of a

grounded network must be positive everywhere on the positive real axis.
Theorem 2 states the difference between the functions that can be realized as grounded

networks and those that must be realized as ungrounded networks.

EXAMPLE. The voltage transfer function

s (s - 1)
A=K

(s + 1) (s2 + 1)

which was considered in the previous example, cannot be realized as a grounded network, but

can be realized as an ungrounded network (as will be shown later).

13



In a more complicated case, Sturm's theorem can be used to determine whether or not there

are any positive real zeros. Of course, this test is only necessary if the numerator has any

negative coefficients. In particular, if the first or last coefficient of the numerator is negative,

then the function cannot be positive everywhere on the positive real axis and is excluded as a

grounded network.

3. NETWORK CONSTRAINTS CAUSED BY COMPLEXITY

Theorems 1 and 2 raise some interesting questions. If a grounded network cannot have a

zero on the positive real axis, how close to this axis can it have a zero? If no network can

have a one on the positive real axis, how close can the ones come? The answers to those

questions involve some physical constraints imposed by the network configuration on the allow-

able positions of the ones (or the zeros in the grounded case). The complexity of the network

(the actual number of resistors, inductors, and capacitors in the network) determines how close

the ones (or the zeros in the grounded case) can come to the positive real axis. As the complex-

ity increases, the ones (or zeros in the grounded case) can approach closer and closer to the

axis, finally reaching it only if the network has an infinite number of elements. In order to

demonstrate this several theorems will be derived.

THEOREM 3. The transfer function (voltage, impedance or admittance) of a grounded net-

work has all positive coefficients. By transfer function is meant the actual transfer function of

the network before common factors in the numerator and denominator are canceled. If the transfer

function is expressed as the ratio of determinants Alk/A, then both Alk and A have all positive

coefficients.

PROOF. Consider making a star-delta transformation at each of the internal nodes of the

network so that the resultant network has only two nodes, one at the input and one at the output.

Such a transformation has the property that, although it may yield nonrealizable elements, it

always yields positive coefficients. The theorem follow immediately. (This simple proof of

Theorem 3 was suggested by Professor S. J. Mason.)

This theorem states the constraints on the positions of right half-plane zeros as a function

of the complexity of the network. If a given transfer function has some zeros in the right half-

plane, some of the coefficients in the numerator may be negative. Then, in order to realize the

function as the transfer function of a grounded network, the numerator and denominator must be

multiplied by some Hurwitz polynomial (or some negative real root polynomial in the RC or RL

case, or j-axis polynomial in the LC case) so that the resultant numerator has all positive co-

efficients. This in turn will increase the complexity of the network.

The degree of the required augmenting polynomial is a function of the angle that the zero

makes with the positive real axis (or more correctly the angle made by the line joining the origin

with the zero). As the zero gets closer to the positive real axis, the angle gets smaller, the

degree of the required polynomial, and thus of the required network, increases rapidly, approach-

ing infinity as the angle approaches zero. Some quantitative results that relate the degree of

the required polynomial to the angle of the zero will be derived in a later section.

14
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EXAMPLE. The all-pass voltage transfer function

2 _ -s+1
A=

S2 +s+ 1

which can be readily synthesized as a lattice or as a grounded network that contains mutual

reactance, cannot be realized as a grounded network that contains no mutual reactance or ideal

transformers in its present form, because of the negative coefficient. However, if the numerator

and denominator are augmented with the polynomial s + 1, the resultant functions become:

( 2 _ s + 1)(s+ 1) s 3 + 1
A =

(s2 +s+1) (s + 1) s 3 + 2s2 + 2s + 1

which can be realized as a grounded network.

THEOREM 4. The expressions 1 + A and 1 - A have all positive coefficients.

PROOF. 1. For grounded networks.

a. Since A has all positive coefficients, 1 + A has all positive coefficients.

b., As demonstrated in Section I, 1 - A also represents the voltage transfer

function of a grounded network and, therefore, has all positive coefficients.

2. For ungrounded networks.

Any ungrounded two terminal-pair voltage transfer function can be written as

the difference between two grounded voltage transfer functions (see Fig. 7),

each of which must have all positive coefficients. Now 1 - A and 1 + A are

given by

1 - A = (1 - A1 4) + A1 3

1 + A = A1 4 + (1 - A1 3 )

Both of these expressions have all positive coefficients, since they are the

sum of two expressions, each of which has all positive coefficients.

tEz2 E- E 4

Fig. 7. Two terminal-pair network.
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This theorem places the limits on the positions of ones and minus ones in the right half-

plane as a function of the complexity of the network. Given a voltage transfer function, there is

a minimum number of elements that can be used to synthesize that function, determined by the

number of its poles and zeros, and there is a maximum gain that can be achieved by using this

number of elements, determined by the greatest value of K for which D - KN and D + KN have

positive coefficients. This value of K may or may not be the highest possible K as given by

Theorem 1.

a. If, for this value of K, D - KN or D + KN has a zero at zero or infinite frequency, then

the network has a one, in this limiting fashion, on the positive real axis, and no increase

in gain is possible.

b. In all other cases, the negative coefficients that would result from an increase in K are

caused by ones or minus ones in the right half-plane, and it is possible to obtain a high-

er gain at the expense of increasing the number of circuit elements in the network. This

is done by multiplying the numerator and denominator by some Hurwitz polynomial (or

negative real root polynomial in the RC or RL case or j-axis polynomial in the LC case),

which enables the ones and minus ones to move closer to the positive real axis before

the expressions D - KN or D + KN have negative coefficients. Thus the gain can be

increased somewhat; however, there is a maximum gain, as determined by Theorem 1,

which can never be exceeded even if the network is infinitely complicated.

EXAMPLE. Consider the voltage transfer function

Ks (s- 1) K (2 _ s)
A=

(s + 1) (2 + 1) s 3 + s 2 +s 1

which was studied in a previous example. It was shown that the maximum gain obtainable from

this function for any network configuration is 6.67. For this function,

D - KN = s 3 +(1- K) s 2 + (1 + K) s + 1

D + KN = s 3 +(1 + K) s 2 +(1 - K) s + 1

Thus the maximum gain that can be obtained without augmentation is K = 1.

If, now, the numerator and denominator are augmented with the polynomial (s + 1)

A K(s 2 - s)(s+ 1)

(s3 + s 2 + s + 1) (s + 1)

K (s 3 - s)

(s4 + 2s 3 + 2s2 + 2s + 1)

16



then, for this augmented voltage transfer function,

D - KN = s 4 + (2 - K) s3 + 2s2 + (2 + K) s + 1

D + KN = s 4 + (2 + K) s3 + 2s2 + (2 - K) s + 1

Now a K of 2 can be obtained with no further augmentation.

EXAMPLE.

1
A

S2 +s+ 1

For this function,

D - KN = s 2 + s + (1 - K)

The following statements can be made about determining the maximum gain.

a. For a value of K greater than 1, D - KN has negative coefficients.

b. For a value of K equal to 1, D - KN has a zero on the positive real axis.

Therefore, K = 1 is the maximum possible gain, and it is obtainable without any augmentation.

The function

1
1 s

A= =

2 +s+1 s +1+ 1

can be realized by inspection as an ELL-network, as in Fig. 8. No other network can be built

El

El I T i E2

Fig. 8. ELL-network.

that possesses this transfer function with a higher constant multiplier K.

Clearly, this type of reasoning applies to all functions of the form

K
A=

P (s)

17
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and also to functions of the form

Ks m
A=

sm + b _ s m + - - + b s + bo

All functions of this type can be realized as networks with maximum gain without any augmentation.

4. COMPLEXITY OF POLYNOMIALS

Now some results will be derived concerning the relationship between the degree of a poly-

nomial that has all positive coefficients and the angle of its right half-plane zeros.

THEOREM 5. A polynomial of degree n which has all positive coefficients can have a zero

no closer to the positive real axis than an angle of ± ir/n radians. (The following proof of The-

orem 5 was given by Professor S.J. Mason.)

PROOF. Consider making a Nyquist plot around the pie-shaped wedge in the s-plane formed

by the rays at an angle ± 7r/n radians. Along the two rays the given polynomial,

n
P (s) = aksk

0

can be expressed as a sum of vectors,

n

P (pert/n) = Z akpkejk (/n)

0

Since each of these vectors has an angle less than 7r/n radians (except the nth which just

equals /n radians), and since all the coefficients are positive, the locus cannot encircle the

origin and the polynomial cannot have a zero inside the pie-shaped wedge. If all the coefficients

except ao and an are zero, the locus just touches the origin and there is a zero on the boundary.

Thus the Butterworth polynomials s n + 1 (here normalized) are the polynomials of smallest

degree that have zeros closest to the positive real axis.

If the right half-plane factor is given by

s 2 cos s + 1

and if is an exact divisor of r (or even if = m7r/n with m and n integers), the above theorem

immediately gives a polynomial with all positive coefficients that contain that factor. If 0 is not

an exact divisor of 7r, the following method can be used to obtain a positive coefficient polynomial.

a. Multiply s 2 - 2 cos 0 s + 1

by s 2 + 2 cos s + 

and obtain s 4 - 2 (2 cos 2 -1) s 2 + 1 = s 4 - 2 cos 2 s2 + 1

18
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b. Continue multiplying

s4 - 2 cos 2 0 s 2 + 1

by s 4 + 2cos 2 0 s 2 + 1

and obtain s8 - 2 cos 4 0 s 4 + 1

c. Repeat this process for p steps, and obtain

2P - cos P s2P +

or

s n - cos nO sn/2 + 1
2

where cos n is negative or where
2

2 2

n > 

If we compare this value of n with that specified in the theorem, it is apparent that, for n > 4, this

method yields the polynomial of smallest degree that contains a given right half-plane zero. For

n 4, the polynomial s + 1 is an optimum augmenting polynomial.

A similar result was derived by Poincare"(23), who showed that a polynomial of the form

s2 2 cos 0 s + 1

can be augmented with the polynomial

s n - 2 sin (n - 1) + sn - 3 sin(n - 2) 0 + - - + s sin 2 0 + sin 0

where n is the smallest integer

to obtain

to obtain

sin (n - 1) 0 sn - sin n sn/2 + sin 0

Poincare's augmenting polynomial can be shown to be the product of all the augmenting polyno-

mials used in the previous method.

Unfortunately, for n greater than 4 or 0 less than 45°, the polynomial that is to be used to

multiply the numerator and denominator is no longer a Hurwitz polynomial, but this theorem does

put a lower bound on the complexity of RLC networks.
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For RC and RL networks, a similar lower bound is easily derived in the form of the statement

that

(s2_ 2 cos s + 1) (s + )n

has all positive coefficients for

2 cos 0
n >- for n even

1 - cos 6

2 cos 0
n+ 1 >-. fornodd

1 - cos 6

which can easily be verified by using the binomial theorem.

For LC networks, an exactly similar relationship exists

(s4 - 2 cos 0 s 2 + 1) (2 + 1)n

has all positive coefficients for

2 cos 0
n >-Co for n even

1 - cos 6

2 cos 0
n + 1 for n odd

1 - cos 0

EXAMPLE. Consider the voltage transfer function

Ks
A=s2 s+l

A. Maximum possible gain.

lated.

To compute the maximum gain, the function DN '- ND' is calcu-

DN'- ND'=(s2 + s + 1) - (2s + )s

=(s + 1) (s- 1)

The function has a positive real zero at s = 1. At this frequency, the transfer function is eval-

uated at

s= 1, A = K/3

Therefore, the maximum gain is K 3.
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B. Maximum gain without augmentation. To compute the maximum gain without augmentation,

the function D - KN is formed.

D - KN = s2 + (1 - K) s + 1

The maximum K without augmentation is K = 1.

C. Augmentation. If numerator and denominator are multiplied by (s + 1), then

Ks(s+ 1) K (s 2 +s)
A= ±

(S2 + s + 1) s + 1) s3 + 2s 2 + 2s + 1

Now

D - KN = s 3 + (2 - K) s2 + (2 - K) s + 1

A value of K = 2 can be obtained without further augmentation.

If the lower limits derived in the previous section are applied, the following table is obtained

according to the relation

77

n)
co-1 K - 1

2

Table I

Obtainable Value

of K

1

2

2.5

2.9

2.99

2.999

3.0

Lower Limit on Degree

of Resultant Denominator

2

3

5

10

32

96

00oo
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III. NETWORK REALIZATION

1. THE REALIZATION PROBLEM

The synthesis approach to the design of any physical system is logically divided in two parts.

The first part is concerned with a study of a given system, to establish exactly the possible and impos-

sible types of behavior for such a system. To speak mathematically, this part consists of establishing

the necessary conditions for the realizabilty of the system. The second part is concerned with the

determination of realization techniques based on these properties that yield systems which have

any allowable behavior that is determined by the first part. Mathematically, the second part de-

termines those conditions that are both necessary and sufficient for the realization of that function.

There may still be a third part, which consists of looking for practical realization techniques; that

is, techniques that have certain desirable properties, such as easy alignment, input and termina-

ting capacitors, and so forth, but for our purposes, the synthesis is complete if any network real-

ization method is found.

The synthesis problem has been completely solved for driving-point and transfer impedances

and admittances. The results derived in the first two sections represent the first part of an at-

tempted solution to the synthesis of voltage transfer functions. The succeeding sections deal with

the second half of the problem-namely, realization techniques.

Very often the realization problem is difficult in the general case and the solutions obtained

are unwieldy and difficult to use. Therefore, it is customary to approach the problem in small

steps. The general case is subdivided into simpler cases that can more easily be solved; and

the general case is then built up as a combination of these simpler cases. Thus, in the driving-

point impedance problem, the two-element-kind case (RC, LC and RL) is first solved. The so-

lution of the general case (RLC) is an extension of these simple techniques. In the synthesis of

transfer impedances and admittances, the two-element-kind case is further subdivided into:

1. Those transfer functions whose transmission zeros are either on the j-axis if the function

is LC or on the negative real axis if the function is RC or RL.

2. Those transfer functions whose transmission zeros are elsewhere in the s-plane.

Functions of the first kind can be realized in such a way that the transmission zeros are produced

by circuit elements that have poles or zeros, such as those in a ladder configuration, while in the

second case the problem is more difficult because the transmission zeros cannot be produced by

circuit elements that have poles or zeros but must be produced by cancellation. However, the

problem can be solved by a simple extension of the methods used in the first part; for example, a

parallel combination of ladders can be used.

For the synthesis of voltage transfer functions, we propose to make still another subdivision

into:

A. Those voltage transfer functions whose ones and minus ones are all: in the left half-plane

for RLC functions; on the negative real axis for RC or RL functions; and on the j-axis for LC

functions, so that, in a realization of such a function, these ones and minus ones can be produced
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by network elements that have poles and zeros.

B. Those voltage transfer functions that have ones or minus ones elsewhere in the s-plane,

so that these ones and minus ones must be produced by cancellation.

It will be shown later that the first case can always be realized as a symmetrical network, while

the second case requires more general (and more complicated) methods.

This type of subdivision is slightly different from the ones considered previously because

the same transfer function that has the same poles and zeros, may belong to either group, de-

pending on the value of the constant K. As shown in Section I, for K below a certain critical

value, all voltage transfer functions (except possibly for RLC functions with j-axis poles) have

their ones and minus ones in positions in the s-plane that correspond to the first group; that is,

in the left half-plane for RLC functions; on the negative real axis for RC and RL functions; and

on the j-axis for LC functions. For larger values of K, the ones and minus ones move to positions

that correspond to the second group.

To clarify the relationship between the critical value of K considered here and the various

other critical values of K discussed earlier, the important values of K will be briefly reviewed:

A. The highest value of K for which the voltage transfer function has no ones or minus ones

on the positive real axis - This value of K yields the maximum gain obtainable from any network

that has the given poles and zeros.

B. The highest value of K for which the functions 1 - A and 1 + A have all positive coef-

ficients - This value of K yields the greatest gain obtainable from the given poles and zeros

without augmentation.

C. The highest value of K for which the ones and minus ones are all: in the left half-plane

for RLC functions; on the negative real axis for RC functions; and on the j-axis for LC functions.

This is the greatest value of K for which the function belongs to the first group and can be real-

ized simply as a symmetrical network.

Any two or all three of these values of K may be equal. For example, all three of the critical

values of K for the function

K
A= 

s+l

occur for K = 1. This function can be realized with one resistor and one capacitor (or one in-

ductor) in the form of an ELL-network (which is a degenerate symmetrical network) and no other

network can be built that possesses this voltage transfer function and has a greater gain.

2. THE IMPEDANCE POINT OF VIEW

The subdivision we have been considering can also be discussed in terms of the impedance

and admittance functions of the network. If the voltage transfer ratio is expressed in terms of

these functions,
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z12 Y12
A= =

Zl 1 Y22

then a little thought shows that there are only three ways in which ones can occur.

1. If at some particular frequency, z 1 2 and 1ll have a pole with the same residue, at that

frequency, Y1 2 and Y2 2 will, of course, be equal.

2. If at some particular frequency, Y1 2 and Y2 2 have a pole with the same residue, at that

frequency, z 1 2 will just equal 2 2 .

3. If at some particular frequency, z 11 just happens to equal z1 2 and Y22 just happens to

equal Y12 , neither the impedances nor the admittances will have a pole or a zero at that frequency.

(The case of z 1 2 and Z1 1 both having a zero with the same slope is not a separate case, because

if 1 2 and Z1 1 both have zeros, then Y12 and Y22 both have poles, which corresponds to case

two.)

Again, the discussion includes only ones; the discussion for minus ones is very similar except

for several minus signs in residues.

The first two cases correspond to ones and minus ones, because the elements have zeros

and poles, and the third case corresponds to cancellation. (For two-element-kind symmetrical

networks, cases one and two correspond to the residue condition, being satisfied with the equal-

ity sign.) This way of looking at the subdivision throws some light on one of the apparent incon-

sistencies of voltage transfer synthesis when it is considered from the impedance point of view.

For a given voltage transfer function,

12 12
A - __

Y2 2 Z1 1

there appears to be insufficient information for determining the Z and Y functions of the network.

The numerator and denominator of the transfer function serve to determine the zeros of z 1 2 and

Z1 1 (Y12 and Y2 2 ) but what of the poles of the impedances (and admittances)? They appear to be

arbitrary, subject only to certain realizability conditions. Indeed, in the general case, it will be

shown that these poles are arbitrary, but in the particular case considered here, the poles of the

Z and Y functions are directly related to the ones and minus ones of the function, as is shown by

the following reasoning. If

Y12
A=-

Y22

then
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y1 21-A 2 =1___
2

22

or

2 2
(D - KN) (D + KN) Y22 y12

D2 Y22

At this point in the discussion, the possibility of a symmetrical network realization for functions

of group one first becomes apparent. For symmetrical networks,

Y22
Z =

11 2 2
22 12

then

(D -KN) (D + KN) 1

D2 11Y22

Thus, for symmetrical networks, all the ones and minus ones are included in the poles of Z11 or

Y2 2

3. TEST FOR CRITICAL VALUE OF K

Before discussing the realization techniques appropriate to group one, it is necessary to

develop a test for the value of K below which the ones and minus ones are in the positions in the

s-plane that correspond to this group. This will enable us not only to associate an obtainable

gain with a given function but also to ascertain how much of the maximum possible gain is being

sacrificed in order to obtain a practical structure. Naturally, the tests will differ in the two-

element-kind and the three-element-kind cases.

4. TWO-ELEMENT CASE

The two-element case consists of RC, RL, and LC networks. Since the test is very similar

for these three types of network, the details will be presented for the RC case; the extension to

the other two cases is straightforward. For RC networks, the object of this test is to determine

the greatest value of K for which both D - KN and D + KN have all their roots on the negative

real axis. The most straightforward way to perform such a test is to actually form the functions

D - KN and D + KN; keeping K as a parameter, and apply a test to the resultant polynomials to

determine for what values of K they have all their zeros on the negative real axis. Such a test
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is described below.

If P(s) is a polynomial that has all its zeros on the negative real axis, then P(s)/--
is an RC impedance, since it has all simple poles on the negative real axis with positivep(s
real residues (in this case all equal to one). The test consists of expanding P(s)/ ds
in a continued fraction expansion and demanding that all the quotients be positive. This is a
general test to determine whether a given polynomial has all its zeros on the negative real axis.
Unfortunately, in the application considered here, the determination of the values of K for which
all the quotients are positive is computationally difficult. Each quotient in the continued fraction
expansion is a rational function of K, the first of first degree, the second of second degree and
so on. The computation becomes prohibitive.

A much more satisfactory test involves, first, determining the frequencies at which the ones
or minus ones leave the axis and then determining the corresponding value of K. The test is quite
similar to the one described earlier for the maximum possible gain, in which we determined the
frequencies at which the ones and minus ones left the positive real axis. By similar reasoning,
it becomes apparent that ones and minus ones can only leave the negative real axis, through zero
frequency, infinite frequency or at some finite nonzero frequency at which two roots come together
and then leave the axis as a complex pair. As described in Section II, this latter condition can
only occur at one of the maxima or minima of the function. The test then consists of the following
two steps:

1. Find the frequencies at which the function has its extrema on the negative real axis.
These are just the negative real zeros of the first derivative of the function, which are the neg-
ative real roots of the polynomial DN '- ND 

2. At each of these frequencies, as well as at zero and infinite frequency, evaluate the
function. Pick the value of K for which the function is equal to or less than one at each of these
frequencies.

EXAMPLE. Consider the voltage transfer function

K ( 2 + 2)
A

(s + 1) (s + 2) (s + 3)

For this function,

DN'- ND'= -(s4 - 5s2 + 12s + 22)

= -(s + 2.50) (s + 1.35) (s2 - 3.85s + 6.51)

The function is then evaluated at each of the negative real roots and at zero and infinite fre-
quency:

A (0) = 1/3K

A(oo) =0
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A(2.5) = 22K

A(1.35) = -7.5 K

The maximum K for this test is then K = 1/22 = 0.045. Compare this value with the K of 3,

which is the highest obtainable for this zero-pole configuration, and which, incidentally, is ob-

tainable without augmentation.

5. RLC CASE

For the three-element case, the object of the test is to determine the greatest value of K for

which D - KN and D + KN are Hurwitz polynomials. Again, there are two possibilities:

1. The Hurwitz test can be applied directly to the polynomials D - KN and D + KN. However,

this method leads to computational difficulties.

2. The frequencies at which the ones cross the j-axis can be determined and then the corre-

sponding values of K can be calculated. This is the test that will be discussed.

The ones and minus ones can only cross the j-axis at zero frequency, infinite frequency or

at some other j-axis point at which the function is pure real. These latter frequencies are just

the j-axis zeros of the imaginary part of the voltage transfer function. If the function is

ml + n1
A=

m2 + n2

in which m and n refer to even and odd parts and m2 + n2 is a Hurwitz polynomial, but m + n1

is not necessarily a Hurwitz polynomial, the imaginary part of this function on the j-axis is given

by the function

M A m2nl - mln2

m2 n2

The frequencies of interest are the j-axis zeros of the polynomial

m2 n1 - ml n2 = 0

The voltage transfer function is evaluated at each of these frequencies, as well as at zero and

infinite frequencies, and the constant K is so chosen that the value of the function is less than

one at each of these frequencies.

EXAMPLE. As an example of this test, consider the function

K (2 + 2)
A=

(s + 1) (s + 2) (s + 3)

which was considered earlier. This function has all its poles on the negative real axis and can

be realized as an RC function. As shown in the preceding example, the maximum gain for this
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function when realized as an RC symmetrical network is K = 0.045, while K= 3 is the maximum

possible for this pole-zero configuration. Now we investigate the matter of what K is obtainable

if an RLC symmetrical network realization is to be used.

For this function,

m2 n1 = mln2 = s (S
2 + 2) (2 + 11)

The function is evaluated at zero frequency, infinite frequency, and at each of the j-axis roots of

this polynomial.

A(0) = 1/3K

A(oo) = 0

A(j2) =0

A = (jll) = 3/20K

The maximum K for this test is then K = 3. Since for this value the one crosses the j-axis at

zero frequency and then finds itself on the positive real axis, K = 3 is the maximum obtainable

for any configuration.
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IV. LATTICE REALIZATION

1. INTRODUCTION

For many years, symmetrical networks in the form of lattices have been one of the basic

building blocks used by the network designer. Lattices were first used in the image parameter

techniques of conventional filter theory and later incorporated into many of the synthesis proced-

ures of what we like to call "modern network theory." The simplicity of the realization tech-

niques for the lattice structure, as well as its generality, have led to its wide use as a starting

point from which to derive other symmetrical, as well as nonsymmetrical, networks.

A similar approach will be used here. In this section we wish to show that any voltage

transfer function (A possible exception is RLC functions with j-axis poles, which will not be

considered; for a discussion of this case see refs. 15 and 16) which has a value of K small

enough so that all the ones and minus ones are: (a) in the left half-plane for RLC functions;

(b) on the negative real axis for RC and RL functions; (c) on the j-axis for LC functions can

be realized as a symmetrical lattice. The next section will consider the problem of converting

the lattice to unbalanced form; it will be shown that any voltage transfer function can first be

realized as a lattice, and then the lattice can always be unbalanced, provided only that the given

transfer function has all positive coefficients, a condition which was shown to be necessary in

Section II.

2. THE LATTICE NETWORK

It is well known that the lattice is the most general symmetrical network; that is, any sym-

metrical network that can be realized at all can be realized as a lattice. This configuration is,

therefore, an appropriate starting point for a study of symmetrical networks.

It is readily apparent either physically or mathematically that, for the lattice, all the ones and

minus ones are attributable to elements having poles or zeros. From Fig. 9, it can be seen that

Fig. 9. A lattice.

the lattice can only have a one when Za is a short circuit (has a zero) or when Zb is an open

circuit (has a pole) and it can only have a minus one when Za has a pole or Zb has a zero.
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This can also be seen mathematically by writing

12 b a
A=

z Z+Z
11 b a

Y -Y
12 a b

Y +Y
Y22 a b

A can have a one in two ways:

1. If Zb has a pole not contained in Za, in which case Zll and z 12 have a pole with the

same residue.

2. If Za has a zero not contained in Zb or in other words Ya has a pole not contained in

Yb, in which case Y1 2 and Y22 have a pole with the same residue.
Similarly A can have a minus one in two ways:

1. If Za has a pole not contained in Zb, in which case Z12 and Zll have poles whose

residues are equal in magnitude but opposite in sign.

2. If Zb has a zero not contained in Za or in other words Yb has a pole not contained in

YA, in which case Y1 2 and Yll have poles whose residues are equal in magnitude but opposite
in sign.

For two-element-kind networks, these conditions correspond to the case in which the residue

condition is satisfied by the equality sign.

Thus all the ones and minus ones are attributable to circuit elements that have poles or

zeros, causing either Zll and z 1 2 or Y2 2 and Y1 2 to have poles with residues equal in magnitude

and either the same or opposite sign. The lattice then definitely belongs to group 1, as defined

in Section III; it remains to be proved, however, that any voltage transfer function belonging to

group 1 can be realized as a lattice.

If the expression for A is written in the form

Za1 Za
Zb

A=
Za1+a
Z b

and this expression is solved for Za/Zb, the resultant equation reads,

Za Yb 1-A D-KN

Zb Ya 1 +A D+KN

It is again readily apparent that all the ones and minus ones are caused by Za or Zb with poles

or zeros.
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3. LATTICE SYNTHESIS

Now that the properties of lattices are known, the realization can proceed in a straightforward

fashion. Starting with a given voltage transfer function,

KN
A=

D

for which an appropriate value of K has been determined by using the methods of Section III, the
following expression is formed.

Za D - KN

Zb D+KN

The problem is then to split Za/Zb into Za and Zb so that both are realizable impedances. The
methods for doing this differ in the two-element and three-element cases; therefore these two pro-

cedures will be considered separately.

4. TWO-ELEMENT CASE

The method given here for the two-element lattices was first derived by Fialkow and Gerst

(14). The methods for RC, RL, and LC functions are essentially similar; therefore the details of
the procedure will be given only for the RC case, but examples will be given for both the RC and
LC cases.

For RC functions, the problem can be stated as follows. Given the expression,

Za D-KN

Zb D + KN

all of whose critical frequencies are on the negative real axis, split up Za/Zb into Za and Zb,

both of which are realizable RC impedances.

Clearly, the critical frequencies of the quotient of two RC impedances Za/Zb must obey
certain order relationships on the negative real axis. Similarly, because of the principle of the
continuity of the roots of an algebraic equation with a parameter K, the critical frequencies of the

expression (D - KN)/(D + KN) must also obey certain order relationships on the negative real axis,
provided that K is small enough so that all the zeros of both polynomials are on this axis. We shall
show that these order relationships are identical and, moreover, that a knowledge that such a rela-

tionship exists allows an expression of the form Za/Zb to be readily split into Za and Zb.

The relationship involved is one of double alternation, which can be defined as follows with
the help of Fig. 10. The poles and zeros of a function exhibit the property of double alternation
on the negative real axis if, starting from zero frequency, each pair of critical frequencies con-
tains one pole and one zero in either order. The highest critical frequency may be a pole or a

zero and may or may not belong to a pair.
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Fig. 10. Double alternation.-

Fig. 10. Double alternation.

f e d c b a

Fig. 11. An RC voltage transfer function.

a. The Critical Frequencies of D - KN/D - KN Exhibit Double Alternation

PROOF. The zeros and poles of the function D - KN/D + KN are the ones and minus ones

of the given voltage transfer function. The proof then consists of showing that the ones and minus

ones exhibit double alternation. To clarify the discussion, Fig. 11 shows the critical frequencies

that lie on the negative real axis of a typical RC voltage transfer function. All of the poles of the

function are on the negative real axis; some of the zeros are on the real axis and some are off, but

only those that are on the axis contribute to the discussion; therefore only these are shown. Cor-

responding to each pole of the transfer function is a one and a minus one. The one is to the right

of the pole and the minus one to the left of the pole if the residue in that pole is positive, and the

one is to the left and the minus one to the right if the residue is negative. Whether the residue is

positive or negative depends only on the critical frequencies that are on the real axis. If there are

none or if there are an even number of zeros to the right of the first pole, the residue will be pos-

itive; if there are an odd number, the residue will be negative. Similarly, if there are none or if

there are an even number of zeros between the first and second poles, the residue in the second

pole will be of opposite sign from the residue in the first pole; if there are an odd number, the

residues will be of the same sign. By the use of this reasoning, the ones and minus ones can be

drawn approximately as in Fig. 11. Since the figure is drawn for K that is sufficiently small, the

property of double alternation is clearly satisfied. The question remains, however, as to whether

or not this condition will be true for all values of K for which the ones and minus ones are all on

the negative real axis. As K is increased, three things might happen to upset the situation:

1. b and c might come together. This condition specifiesthe maximumKfor this configuration.
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For all K below this value, the double alternation property exists, and for K above this value,

the function no longer has all its ones and minus ones on the axis; therefore it is no longer of in-

terest. For K that is equal to this critical value, the double alternation property still exists in a

limiting form.

2. a might go through zero frequency, or f might go through infinite frequency. Again, this

specifies the maximum K for this configuration.

3. d and e might cross, thus ruining the double alternation property. This condition can never

occur, since d and e can only reach the zero that is between them for an infinite value of K.

Since all cases have been covered, it becomes apparent that the ones and minus ones exhibit the

property of double alternation for all values of K for which all the ones and minus ones are on the

negative real axis.

b. The Quotient of Two RC Impedances Exhibits Double Alternation

PROOF. The easiest way to become convinced of the truth of this statement is by considering

a simple example. Fig. 12 shows a pole-zero plot of two arbitrarily drawn RC impedances and the

Za

Zb

Za/Zb

Fig. 12. Double alternation of the quotient of two RC impedances.

pole-zero plot of their quotient. Clearly,double alternation will always exist. The steps in the

realization procedure are now clear.

1. Choose K so that D - KN and D + KN have all their zeros on the negative real axis.

2. Form

Za D - KN

Zb D + KN

This function will exhibit double alternation.

3. Split Za/Zb into Za and Zb. This splitting can be done in a large number of ways, either

with or without surplus factors. One way that will always work is as follows. If

Za K(s + al)(s + a 2 ) ---

Zb aZb (s + a~) (s + ,) -- -
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where the numerical and literal order refer to the order on the negative real axis starting from zero

frequency, then for RC networks,

K1 (s
7 
- a =

Zb

+ °2) (s + 4) - -

(s + a) (s + ac) - -

K2 (s + b) (s + Od) - -

(s + al1 ) (s + C3 ) - -

where

K1
K =

K2

EXAMPLE 1. The voltage transfer function

K (2 + 2)
A(s + 1) (s + 2) (s + 3)

(s + 1) (s + 2) (s + 3)

was considered in previous problems. It has been shown that K = 0.045 is the largest K for which

this function can be realized as an RC lattice. Then, let us realize

0.045 (2 + 2)
A=

(s + 1) (s + 2) (s + 3)

For this function,

D - KN = s3 + 5.955s2 + 11s + 5.91 = (s + 2.5)2 (s + 0.955)

D + KN = s3 + 6.045s2 + Ils + 6.09 = (s + 1.05) (s + 3.19) (s + 1.81)

The factoring of D - KN was particularly easy because the double-order one at s = -2.5 was

known beforehand from the calculation of maximum K. Then

Za D - KN (s + 2.5) 2 (s + 0.955)
Zb D + KN (s + 1.05) (s + 3.19) (s +1.81)

One way to form Za and Zb is as follows:

s + 2.5
a = (s + 1.05) (s + 3.19)
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Zb =

s + 1. 81

(s + 0.955) (s + 2.5)

EXAMPLE 2. Consider the LC voltage transfer function

K (s 4 + 1)

(s2 + 1) (2 + 2)

We first determine the maximum K, by finding the extrema of the function on the j-axis.

DN'- ND'= 6s (s 4 + 2 s2 -_ 1) =6s
3

(s2 + 1.39) (2 + 0.73)

Evaluating the voltage transfer function at the j-axis zeros of this polynomial, as well as at zero

and infinite frequency, yields

A () = K

1
A (0) =-K

2

A (j l/.39) = 46.5

Then the maximum K is

1
K = 6 = 0.0215

Just to be different, we shall realize the function with a K that is less than the maximum

0.02 (s4 + 1)
A=

(s2 + 1) (s2 + 2)

For this function,

Za

Zb

D - KN 0.96 (s2 + 0.96) (s 2 + 2.10)

D + KN (S2 + 1.05) (s2 + 1.89)

Za and Zb can be formed in a number of ways. Three ways will be shown: two without surplus

factors, and one with surplus factors.

0.96 (2 + 0.96) s2 + 1.05

s (s2 + 2.10)
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0.96 (2 + 0.96) (s2 + 2.10) Zb + 1.89
Za = Zb - (2)

s (s2 + 1.05) 

Za 0.96 (s 2 + 0.96) (s 2 + 2.10) Z (S2 + 1.05) (2 + 1.89)

s ( 2 + 1.5) (s 2 + 3) s ( 2 + 1.5) (s 2 + 3)

5. THREE-ELEMENT CASE

For RLC networks, the problem can be stated as follows. Given the function

Za D - KN

Zb D + KN

the numerator and denominator of which are both Hurwitz polynomials, split this function into Za

and Zb both of which are positive real impedances. This problem is inherently more difficult than

the two-element case, because

1. The realizable conditions for RLC functions do not easily lend themselves to the methods

of root locus, which we have been employing.

2. The realization techniques of RLC networks are inherently more complex than those of

the two-element case, so that a general RLC network may be difficult to build.

For these reasons, methods that are not completely general but yield networks with simple

realizations are often more useful than the general solution. In this section, six solutions will

be presented, which can be divided into three general categories.

1. Methods that work in particular cases, and yield simple realizable networks with any

realizable gain.

2. Methods that will always work and yield simple realizable networks but sometimes give.

less than the maximum gain.

3. A general solution that will always yield a network with any allowable gain but uses

surplus factors and does not allow a simple realization.

These methods will now be discussed.

a. A Particular Method - Lossless Impedances in Series or Parallel with Resistors

In certain cases, a realization in terms of lossless impedances in series or parallel with

resistors is possible. For such a realization, either the odd or the even parts of the numerator

and denominator of the given voltage transfer function A = KN/D must be proportional. The

details will be presented for the odd parts proportional; the extension to the other case is obvious.

If

KN mN + knD
A = =

D mD + k nD
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Za mD - mN +

Zb mD + mN +

which can be written

Za m + C n2

Zb m2 + n2

(1 - k) nD

(1 + k) nD

m = mD - mN n2 = (1 + k) nD

1-k

1 +k
C = k

m2 = mD + mN

Then, since the odd parts of the numerator and denominator of the function Za/Zb are proportional,
we can write

mlC+ 
Za n2

Zb 1 + m 2

n2

The function can then be split into Za and Zb, either

m1Z b = + 2

n2

1
Zb=

CmlC +
n2

1
Za

1+ 2
n2

Then the lattice impedances are lossless networks in series or parallel with resistors. Part of

this resistance can be removed from the lattice either as a series or as a shunt termination.

If, in the given voltage transfer function, k is equal to zero, that is, if the numerator is even

(or odd), then in the function Za/Zb, C = 1 and the resultant impedances Za and Zb are both

lossless networks in series or parallel with one-ohm resistors, which can be completely removed

from the lattice, leaving a lossless network terminated in a one-ohm resistor. This is a familiar

realization for transfer functions that have even or odd numerators. However, this method is
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slightly more general than that, in that it applies when the numerator has both odd and even
coefficients, as long as the odd or even parts of the numerator are proportional.

EXAMPLE 1. Consider again the voltage transfer function

3 (s 2 + 2)
A=

(s + 1) (s2)(s + 3)

Since the numerator is even, we can write

1+ 3s
Za D -KN s3 + 3s2 + l s s2 + 11

Zb D+KN s 3 +9s 2 + ls + 12 1+ 92 + 11

s (2 + 11)

Then

-1 3s

s2 + 11

9S2 + 12
Zb= 1 +

s ( 2 + 11)

EXAMPLE 2. Consider the voltage transfer function

s4 + 5s 2 + s + 4
A=

3s4 + 2s 3 + 15s 2 + 5s + 12

For this function,

Zaa D-KN s4 + s3 + 5s2 + 2s + 4

Zb D +KN 2s4 + s3 + 10s2 + 3s + 8

1+ (s2 + 2)
Za (s2 + 1) (s 2 +4)

Zb 2+ s (S2 + 3)
(s2 + 1) (2 + 4)

b. Methods That Always Work but Sometimes Yield Less Than the Maximum Gain
1. For I A(jc) I < 1, if I A(jo) I < 1, it is well known that the function (1 - A)/(1 + A) is positive

real, in which case the expression
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Za 1 - A D - KN

Zb I + A D + KN

can be split into

1-A
Z a 1+A

Zb = 1

The proof that 1 - A/ + A is positive real for IA(jco) 1 can be carried out in a somewhat

novel fashion by using the methods developed here.

A. Since I A(jo) I < 1, then I D(j w) > I KN(jo) \ and, by Rouche's theorem, D, D - KN,

and D + KN all have the same number of zeros in the left plane. This proves that D - KN and

D + KN are both Hurwitz polynomials.

B. If

ml + n

A=--
m2 + n2

then

1 - A m2 -ml + n2 - n

1 +A 2 + m +n 2 + n 1

The real part of this function on the j-axis is given by

Re 1 - A (jo_) m22 -_ n22 - m12 -n 1
2

1 + A (jco)J (m2 + m l )2 -(n 2 n l )2

2 2 2
m2 -n2

(m2 + ml)2 - (n2 + nl ) 2

[I- IA(j) 12] (m22 n22)

(m2 + n1 )2 - (n2 + nl ) 2

Thus the real part of 1 - A/1 + A is positive on the whole j-axis when the magnitude of A is

greater than one on the whole j-axis, and, for this condition, 1 - A/1 + A is a positive real

impedance.
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EXAMPLE. Consider again the function

K (2 + 2)
A=

(s + 1) (s + 2) (s + 3)

We must first determine the appropriate value of K for which this procedure is possible. This

can be done by forming A (jw) and then differentiating to determine its extrema, after which the

function is evaluated at each of these frequencies and an appropriate value of K is picked so that

the magnitude of A is less than one at each of the extrema. However, in this simple case, a

glance at the pole-zero plot shows that the maximum value of the magnitude occurs at zero fre-

quency. Thus a K of 3 is possible without the magnitude of the function becoming greater than

one anywhere on the j-axis. In this case, no decrease in gain below the maximum is required for

this method. For this value of K,

Za D-KN s 3 +3s 2 + 11s

Zb D + KN s 3 + 9s 2 + Ils + 12

This is a positive real function, as can be readily verified. Then let

s3 + 3s2 + ls
Za =

s 3 + 92 + Ils + 12

Zb = 1

2. For [ Re [A (jo)] < 1, the requirement that the magnitude of the real part on the j-axis be

less than one is clearly less of a restriction on gain than that the magnitude be less than one.

For this case, two realization procedures are possible.

Method 1. If

ml + n1

A=
m2 + n2

form

Za D-KN m2 -ml + n2 -n l

Zb D + KN m2 + + n2 + n1

Let

m2 - m + n2 - n1 2 - m + n2 - n

Z a = Zb=
m2 + n 2 m2 + n2
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To prove that these two functions are both positive real for I Re [A (jo)llI < 1, form their real part

on the j-axis.

Za,b(jo) =

(m22 - n22) T (mlm2 - nln2 )

m22 _ n22m2 '"2

mlm2 - nln2
= I 2 2

m22 n2 2

= 1 A (j&o)

It is clear that for I Re [A (joj)] I 1, the real parts of both Za and Zb are positive on the whole

imaginary axis.

EXAMPLE. Consider again the function

K ( 2 + 1)
A=

(s + 1) (s + 2) (s + 3)

The rigorous way to find the maximum K that is appropriate for this method is to form the real

part of A on the j-axis and then differentiate to find its extrema. However, in this case, we

already know that a K of 3 is the maximum gain, and since, for this value of K, the magnitude of

the function on the j-axis is not greater than one, then the real part on the j-axis also cannot be

greater than one; therefore a K of 3 can be realized with this method.

For K = 3,

Za D-KN

Zb D + KN

s3 + 3s 2 + lls

s3 + 9s2 + Ils + 12

s3 + 3s2 +
Za =(s+(s + 1) (s + 2)

Ils

(s + 3)

s3 + 92 + Ils + 12

Zb (S + 1) (s + 2) (s + 3)

both of which are positive real impedances, as can be readily checked.

Method 2. Two parallel lossless networks terminated in resistors.

Using the fact that, for two networks in parallel,
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(1) + (2)
12 12

A=
y (1) +y (1)

22 22

we can write

ml + n1

A=
m2 + n2

as

1 -

m2 + n2 +m 2 + n2
A=

m2 n2

m2 + m2 2 + n2

and then realize the over-all function as two networks in parallel. To realize one of them, for

example, let

(1) =

12 =m 2 + n2

and

(1) _ m2

22 m2 + n2

The voltage transfer function of this network is

Y12 m a( 1) = =
y m

22 2

which represents the voltage transfer function of a lossless network. Then, if we write

1 1
y(1) 1

22 + n2 1 + z 2

m2

this amounts to a lossless network in series with a one-ohm resistor at the output end, which

does not affect the voltage transfer function of that network. Considering the lossless part of

the network, we wish to construct a lattice with
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(1)' = 
22 n2

A( 1) =_ 
m2

For this lossless lattice, form

y(l)
b

a

1 - A m2 - ml
1 + A m2 + ml±+Am2 l

and let

y(l) m 2-m 1y() =2 
b n2

y(l) =m 2 + 1

n2

These admittances are guaranteed realizable if I Re [A (jo)] 1, because the numerator and

denominator of these admittances are the odd and even parts of the impedances considered in the

previous method, which were shown to be positive real for Re [A (jo)]I < 1.
The over-all network, which consists of the parallel connection of two networks each of

which is a lossless lattice in series with a one-ohm resistor, is shown in Fig. 13. For this
structure

m2 n2

Y22 = + =12 2 + n2m 2 + n2

While this type of structure is not, strictly speaking, a lattice, it enjoys the advantages of easy

I

t E2

Fig. 13. A type of lattice structure.
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realization and, as will be shown in Section V, it is possible to unbalance the lattices by using
the methods applicable to two-element-kind networks.

EXAMPLE. Consider the voltage transfer function

K (s3 - 2)
A=

(s + 1) (2 + s + 1)

For this function,

Re fA(jw j) K (o 6 - 2 4 4 2 - 2)

ow6 +1

K 2 (o 4 + 32 + 2)
Im {A ()} =6

A. Maximum gain for any lattice. To find the maximum gain obtainable for a lattice real-

ization, we must evaluate the voltage transfer function at zero frequency, infinite frequency, and

at each of the j-axis zeros of the imaginary part. Since the imaginary part has no finite nonzero

j-axis zeros, the maximum gain obtainable is %.
B. Maximum gain with this method. The maximum K obtainable with this method is that

value of K for which the real part of K is always less than one on the j-axis. To determine this

value of K, we must find the maxima of the real part. Differentiating, we obtain

a 4w (2 - 11) (2 -_ 3.16) (o 4 + 0.26co2 + 1.13)
[A (jwc)] =(9(j ([A6 + 1)2

The j-axis extrema of the real part occur at co2 = 1.1, 02 = 3.16. The real part is then evaluated
at these frequencies, as well as at zero and infinite frequency

A (0) = -2K

A () = K

A [j (1.1) ]= 0.985K

A [ji (3 . 16) 2] =2.0OK

Thus a K of Y is obtainable with this method and no decrease from the maximum is required.

For K = ,

2 (s 3 - 2)
A=

s3 + 2s2 + 2s + 1
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1 3
2 s

+ 2s2 + 2s

1

s3 + 2s2 + 2s + 1+1

s3 + 2s
S3 + 22 + 2s +1

+ + 2s2 + 1

s3 + 2s2 + 2s + 

Network 1.

(l1) 
12

() =
22

1_ s3
2 nl

s3 + 2s2 + 2s + 1 m2
+ n2

s3 + 2s

s3 + 2s2 + 2s + 1

n2

m2 + n 2

For the lossless part of this network,

y(1) n2 s3 + 2s
22 =2 2s2 +1

A(1)

1 s3
nl 2

n2 s3 + 2s

Then

1 s(S2 + 4)
y(1) = _ - _nl 4

b 2 s2 + 1
2

s(s 2 +4)Y() n2 + n l 3 3
A m2 4 s 2 + 1

2

Network 2.

-1

2s2 + 2s + 1

write

y(2) =
12 s3 + m2 + n2
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(2) = 2s2 + 1

22 s 3 + 2s2 + 2s + 1

Then

y(2) m2 - 2(s 2 + 1)

b n2 s(s2 + 2)

m2 + m 2s

a n2 s2 + 2

The over-all network is then as pictured in Fig. 14.

5/16 8/5

El E2

Fig. 14. Parallel lattice network.

c. A Partial-Fraction Method

If the maximum gain is not required, a synthesis in terms of partial fractions is possible.

Starting with the expression,

Za 1-A

Zb 1 + A
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write

Za = 1 -A

Zb = 1 + A

(orl = 1 + A and 1 - A)
Za Zb

Now expand A in partial fractions. Some of the terms in the expansions for A and -A will be

realizable and some not, but those that are not can be made realizable by the addition of a suit-

able resistor. Consider the one in the expressions 1 - A and 1 + A as a one-ohm resistance

reservoir, which is available for this purpose, and pick K small enough so that the one-ohm re-

sistance is sufficient to make all the terms realizable. K will certainly have to be smaller than

the value required to make the real part of A less than one on the j-axis, since we have shown

that this value of K is necessary in order for 1 - A and 1 + A to be positive real.

The resultant RLC partial-fraction canonic forms are well known. Incidentally, the input

impedance of this lattice is

Z11 = 2 (Z a +Zb

= (1 -A) +(1 +A)
2

= 1 ohm

which is particularly convenient for some applications.

EXAMPLE 1. Consider the function

K (2 + 1)
A=

(s + 1) (s + 2) (s + 3)

Expanding A in partial fractions, we obtain

3 K 11 K
2 6K 2

A = --- +
s+l s+2 s+3
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Then write

3K 11 K
2 2

Za =I-A=1 _i
s+l s+3

Zb=1 +A =1 -

3
6K 2K

+
s+2 s+1

A K of 3/10 will yield realizable partial-fraction terms. Then,

3s 11 9
2 -s -2 2 5

Za=- + ++s+1 s+3 s+2

9 s 9 33
1 10 20 20

Z b=]- + + + +
10 s + 2 s + s + 

EXAMPLE 2.

K (s 3 - 2)

(s + 1) (2 + s + 1)

Expanding this function in partial fractions, we obtain

A = - 3K Ks
+ 1 2 + s + 1

Then write

a 3KZa = 1- A=1-K + s+l

Zb=1+A=I+K- 3Ks+l

Ks

s2 +s+I1

Ks
+

s2 +s+1

A K of ' will yield realizable partial-fraction terms. Then

3
2

Za = + +s+l

s2+ 1

s2 +2+1
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3 1s s
2 2

Zb = +
s+1 2 + +1

d. The General Solution

The general solution that will be described was discovered by Kahal (21,16). It is included

here for the sake of completeness together with a partial proof.

Given a function

D - KN P(s)

D + KN Q(s)

whose numerator and denominator are both Hurwitz polynomials, and which it is desired to split

into the quotient of two positive real impedances, we wish to construct an auxiliary lossless im-

pedance Z(s) so that

Z(s) is positive real

P(s)
Z 2 (s) = Z(s) ) is positive real

Q(s)

These are the two desired impedances. In order to establish the conditions for realizability of

the second impedance, we must study the behavior of its real part on the j-axis. On this axis, we

can write

PQ(s) s _O- R ()) + jx ()
Q(s) s = jC 1

Z(s) = jx ()

Then the real part of their product is

Z 2(j) = -x 1 () x ()

P(s)
If we are given , this specifies x (X) and the problem is to pick x (o) so that the

function -x (() s always positive on the j-axis. The auxiliary impedance x (o) is only

needed if -x 1 (o) should go negative; this can only happen at the odd-order j-axis zeros of x ().

If -x 1 (co) is written so as to place these odd-order zeros in evidence,

-x(co) = (1o)2 (22 _ 2) _ _ xi (o)
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where the numerical values refer to the order on the j-axis and -x (co) contains no odd-order
1

j-axis zeros, then the required impedance Z(s) can be constructed according to the following
rules:

1. If -x (o) has a positive sign,

-x (o) = j ( 2 2) (2 2 _ 2) x '(c)

then pick

(W 2 _ c2) (o 2 _,2) __
1 3

x (co) =
j (22 C_ 2) _ _

so that

-x (o) x() (o 2 2)2 ( 2 _ 2)2 -- x'(X)
1 1 3

2. If -x 1 (co) has a negative sign,

-X1 ()) jo=2 2 - 2) ( 2 2) x'(o)

then pick

jo(fi2 _c2) _ _

x(co) =
(O 2 co2)(co 2 _o2)_ _(co _ - -

1 3

so that

-x (o) x (6) = 02 ( 2 _ 2)2 ()42 _ 2)2 _ _ x'()

In both cases the real part of Z 2 (s) is positive. Then the impedances Z (s) and Z2 (s) are

known to be positive real, provided that it can be proved that their j-axis poles are simple with

positive real residues. Kahal and Fialkow and Gerst give proofs of this last point, but we shall

not include the details of their proofs.

EXAMPLE. The function

K (s 2 + 2)A=
(s + 1) (s + 2) (s + 3)
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was considered in many of the previous examples, in which it was shown that K = 3 is the great-

est obtainable gain. For

3 ( 2 + 2)
(s + 1) (s + 2) (s + 3)

we can write

Za

Zb

D - KN'

D +KN

s3 + 3s2 + Ils

s3 + 92 + Ils + 12

To split this into Za and Zb, we first form the imaginary part on the j-axis

I z·ZaIm
Zb

() )}
16w (2 - co2) (11 - 2)

(12 - 9(o2)2 + (o2 (11 - o2)2

=-jo (2 - 2) (11 - 2) x'()

Then the reactive impedance Z(s) is

jco (11 - W2)

x2 2() 

s (S2 + 11)
Z(s) =

s 2 +2

and we can form Za and Zb as follows

s ( 2 + 11) 9s
Za = - s +

s2 +2 s2 + 2

(s3 + 92 + Ils + 12) (s2 + 11) 9s 1
= S +~ +

s 2 +2 1
S2 + 2 1

61 _2 s

6 s2 + 11
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V. UNBALANCING LATTICES

1. INTRODUCTION

When a grounded symmetrical network is desired, the lattice is still used as a starting point

in the synthesis procedure; the only additional problem involves converting the lattice to unbal-

anced form. Three well-known steps are available for this purpose.

1. Series impedances, common to Za and Zb can be removed from the lattice as series

elements (Fig. 15a).

2. Shunt admittances common to Za and Zb can be removed from the lattice as shunt

elements (Fig. 15b).

3. The lattice can be split into two parallel lattices and each one separately converted to

unbalanced form, after which the two grounded networks are connected in parallel without the

need of an ideal transformer (Fig. 15c).

The purpose of this section is to show that for the two-element-kind case a combination of

these steps will always succeed in unbalancing the lattice provided that the transfer function

has positive coefficients, a condition which was proved necessary in Section II. If a given two-

element-kind voltage transfer function has all positive coefficients (in the general case, some

decrease in gain may be necessary), a synthesis procedure is always possible in which the func-

tion is first realized as a lattice and then converted to unbalanced form. The methods are also

applicable, with only slight alteration, to the synthesis of transfer impedances and admittances.

It is strongly believed that the statement of the two-element-kind case is also true for the

three-element case, but no proof is available at present. However, such a conversion is always

possible in the RLC case if the maximum gain is not required. As shown in Section IV, an RLC

function can always be realized (with possibly a slight decrease in gain) as a parallel combina-

tion of two LC lattices each of which is in series with a resistor. The methods of this section

can then be used to unbalance the lossless lattices.

The proof of the two-element case will consist of considering certain particular types of

voltage transfer function in which it can easily be shown that the lattice can be unbalanced.

Then the general case will be considered as a combination of these particular cases and a com-

bination of the methods used in the simple cases will be shown to work always, as long as the

given function has positive coefficients. As usual, the details will be given for RC functions,

but the results will apply to all two-element-kind functions.

2. CASE 1 - THE TRANSFER FUNCTION HAS ALL ITS ZEROS AT ZERO OR INFINITE

FREQUENCY

If the transfer function is of the form

K s P
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ZI Za
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oe" ' 

ZI ZO ZI

o-~ c / -

(a)

Y

(b)

(C)

Fig. 15. Unbalancing lattices.
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where P < m, a particularly easy procedure is possible. Let us first consider the zeros at

infinite frequency.

If the transfer function has a zero at infinite frequency, then, at that frequency, Za = Zb

and Ya = Yb, since it is the bridge action that causes the zeros. Now, in the RC case, at

infinite frequency, the impedances can only behave like a resistor or a capacitor:

Za () = Zb (o) - R

Z a () = Zb (o) sC ( -

If the impedances are finite at infinite frequency, then the resistor Ro0 can be removed from

Za and Zb, leaving both of them positive real and RC. If the impedances have a zero at infinity,

then the admittances have a pole; this pole can be removed from Ya and Yb as a shunt capacitor,

C, leaving both the admittances positive real and RC.

Now, if the original transfer function had a double-order zero at infinite frequency, the re-

maining lattice still has a zero at that frequency and the impedances and admittances of this

remaining lattice are still equal at infinite frequency (Za = Zb). Then the process can be repeat-

ed; if the first time a series resistor was removed from the impedances, this time a shunt capac-

itor will be removed from the admittances and vice versa. These steps can be repeated until all

the zeros at infinite frequency have been developed.

The same reasoning shows that if the transfer function has a zero at zero frequency, then,

since Za(O) = Zb(O), either a series capacitor or a shunt conductance can be removed from the

lattice. Then, if the original function has a double-order zero at zero frequency, the remaining

impedances are still equal at zero frequency and another element can be removed. The process

can be repeated until all the zeros at zero frequency have been developed.

If the transfer function has all its zeros at either zero or infinite frequency, then, at any

point in the procedure,a zero at either infinite frequency or zero frequency can be developed by

removing the appropriate elements, and the process can always be continued until all the zeros

have been developed and the lattice is then unbalanced. Because of the choice in the order of

removal of zeros, a variety of configurations is frequently possible.

The process will always unbalance the lattice if all the transmission zeros are at zero or

infinite frequency. If only some of the zeros are at zero or infinite frequency, these methods can

still be used to develop these zeros and thus simplify the given lattice.

EXAMPLE. Consider the voltage transfer function

Ks
1

A=
(s + 1) (s + 2) (s + 3)

It can be readily calculated, by using the methods of Section III, that the maximum gain for a
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lattice realization is K = 0.06. For

0.06

(s + 1) (s + 2) (s + 3)

we have

Za D - KN (s + 0.96) (s + 2.49)2

Zb D + KN (s + 1.06) (s + 1.76) (s + 3.24)

This function can be split into Za and Zb in a number of ways either with or without surplus
factors; the method will work for any of them. For example,

s + 2.49
a (s + 1.06) (s + 3.24)

s + 1.76
b =(s + 0.96) (s + 2.49)

Since the given voltage transfer function has a simple zero at infinite frequency and a double
zero at zero frequency, the following continued-fraction expansion is appropriate:

1 1
= s + 1.37 +

Z a 0.056
-a + 0.023
s

1 1
= s + 1.37 +

b 0.056
s + 0.031

The unbalanced ladder network can now be formed by inspection, as shown in Fig. 16. The two
elements on the extreme left can be omitted if a voltage excitation is applied, leaving a resistor

in series with the voltage source.

17.9 .023 .023 17.9

Fig. 16. An unbalanced lattice.
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3. NEGATIVE REAL TRANSMISSION ZEROS

If all of the finite, nonzero transmission zeros are on the negative real axis (for RC networks),

a procedure that is analogous to zero-shifting is possible. This process, like zero-shifting, in-

volves using surplus factors. Since the function

Za D - KN

Zb D + KN

possesses the double alternation property, a polynomial, P (s), can always be found whose zeros

are all on the negative real axis and alternate with the zeros of both D - KN and D + KN, so that

D - KN

Za P (s)

and

D + KN

Zb= P(s)

are both realizable RC impedances. For this particular method, the surplus polynomial is chosen

in the following way.

P (s) = KN 'Q(s)

The polynomial KN'consists of all the factors of the numerator polynomial KN, which can be

used and still have the impedances, Za and Zb, RC. If, for instance, KN has two zeros between

two of the roots of D - KN or D + KN, then only one of these factors can be used in KN: The

remaining part, Q(s), is the smallest polynomial that it is necessary to add in order to make the

impedances RC. Its zeros are arbitrary, subject only to the realizability conditions of the imped-

ances. Two separate cases are recognizable:

1. KN 'contains all the factors of KN.

2. KN does not contain all the factors of KN.

These two cases will be considered separately.

1. KN'= KN. In this case we can write

D - KN
Za =

KN Q(s)

D + KN
Zb =b KN Q(s)

If Za and Zb are expanded in partial fractions, the following results will be obtained.
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A. The poles corresponding to the zeros of KN have the same residue (as they must, since

Za = Zb wherever the transfer function has a zero), and these poles can be completely removed

from the lattice as series elements. This step corresponds to total pole removal in zero-shifting.

B. The poles corresponding to the zeros of Q(s) will not have the same residues in Za and

Zb but some of each pole (the minimum of Za and Z b ) can be removed from the lattice. This step

corresponds to partial pole removal in zero-shifting.

C. The lattice that remains has a transfer impedance

1
Z1 2 (Zb - Za)

1 D +KN D - KN 1
2 ( KN Q(s) KN Q(s) Q(s)

Since all of the transmission zeros are at infinite frequency, the methods of the previous section

can be used to unbalance the remaining lattice. The general form of the over-all structure appears

in Fig. 17, in which the extraneous series elements at the output end have been omitted.

TOTALLY REMOVED POLES PARTIALLY REMOVED POLES
H' F/ a CAUER LADDER

T To
Fig. 17. A zero-shifted ladder.

EXAMPLE. The function

(s + 2) (s + 4)

(s + 1) (s + 3) (s + 5) (s + 7)

has its transmission in the proper places, but it is not an RC function. Then

Za D - KN s 4 +16s 3 + 85s 2 + 170s + 97

Zb D +KN s 4 + 16s 3 + 87s 2 + 182s + 113

Split this into

s4 + 1 6 s 3 + 85s 2 + 170s + 97

Za s(s + 2) (s + 4) (s + 6)
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s4 + 16s 3 + 87s 2 + 182s + 113

Zb = s(s + 2) (s + 4) (s + 6)

where the poles at s = -2 and -4 will produce the transmission zeros, and the remaining poles

are arbitrary. Expanding these functions in partial fractions, we obtain

15 9 23
16 16 48 97

Za = --1 + + + s+2 s+4 s +6 48s

15 9 7
16 16 48 113

Zb =1 + + +
s+2 s+4 s+ 6 48s

As was expected, the poles caused by the transmission zeros of A can be completely removed,

producing the transmission zeros, while the surplus poles at s = 0 and -6 can only be partially

removed. After these common factors have been removed, the remaining lattice has the impedances:

1
3 1

a= = 
a s + 6 3s + 18

1
This lattice has al its transmission zeros at infinite frequency and can be unbalanced by in-

This lattice has al its transmission zeros at infinite frequency and can be unbalanced by in-

spection. The resultant unbalanced network is shown in Fig. 18,in which the extraneous elements
on the right have been omitted.

15/32 9/64 8/23

I , rCo- 48/97

Fig. 18. An unbalanced lattice.

2. KN'does not contain all the factors of KN. This case is inherently more complicated

than the first; it corresponds to zero-shifting when more than one shift is necessary to

realize one zero.
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In this case,

D - KN
Za - KN' Q(s)

D + KN

b KN'Q(s)

The following steps are necessary.

A. Since the residues in the poles of Za and Zb attributable to KN 'are equal, these poles

can be completely removed from the lattice as series elements, thus realizing these transmission

zeros.

B. After removing these poles, the impedances of the remaining lattice are of the form

QI (s)

Q(s)

b Q2 (s)
Q(s)

where Q1 (s) and Q2 (s) must be equal at all of the undeveloped transmission zeros. The object

of this step is to reduce the complexity of the lattice by creating zeros of admittance (or imped-

ance) simultaneously in both lattice admittances, and then removing the corresponding poles of

impedance (or admittance). The conventional techniques of zero-shifting are used. By partially

removing, either one of the poles attributable to Q (s), or the constant value at infinite or zero

frequency, a zero is shifted to the correct place simultaneously in both admittances (or imped-

ances). Since the admittances (and impedances) are equal at the frequencies of the transmission

zeros, if a zero is created in one of them, at one of these frequencies, because of the subtraction

of a suitable element, then subtraction of that element from the other will also produce a zero at

the same frequency.

The zeros that are produced in both admittances (or impedances) will not have the same slope

unless the original transmission zero was of second order so that the poles in the inverse function

will not have the same residue. (The fact that a first-order transmission zero exists, just makes

the impedances equal at that frequency; a second-order zero makes their slopes equal, and so

forth.) Therefore only part of that pole can be removed from the lattice and it may appear that the

transmission zero has not been developed. However, this is not true; part of the poles has been

removed at each end of the lattice, and if the entire unbalanced lattice is considered as a single

development of a driving-point function, then one of the terms represents the partial removal of a

pole and the other term represents the removal of the rest of the pole, thus producing the trans-

mission zero. This point will be clarified in the example at the end of the section.
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After the development of one transmission zero, the process is repeated; the lattice imped-
ances must still be equal to all the undeveloped zeros. (Sometimes it is possible to shift more

than one set of zeros simultaneously by removing some of each of the poles of Q(s) at the same

time.) The only difficulty that may be encountered, in addition to those usually encountered in
zero-shifting, is that the shifting must be done at the same time in both Za and Zb; thus the same
factors must be removed from both. At the first step, both impedances have the same denominator

so that no difficulty arises, but after one zero-shifting step, the numerators and denominators of

both impedances will, in general, be different. Then it is necessary to perform the zero-shifting
with the zero or infinite frequency values of the impedances or admittances. It cannot be proved

that these methods will always work, but it is considered highly probable because of the freedom

allowed in the order of the shifting process, as well as in the choice of Q(s). If these methods
do not work, the methods described in the next section can always be used to unbalance the

lattice.

C. After all the finite transmission zeros have been developed, the remaining lattice has all

of its transmission zeros at zero or infinite frequency and can be unbalanced by the methods ap-
propriate to such lattices.

EXAMPLE.

1 (s + 2)2 (s + 3)
A-

8 (s + 1) (s + 4) (s + 6)

For this function,

Za D - KN 7s 3 + 81s 2 + 256s + 180

Zb D + KN 9s3 + 95s 2 + 288s + 204

One of the transmission zeros can be produced by the methods of the previous section. Let

7s3 + 81s 2 + 256s + 180
Za =

s(s + 2) (s + 5)

9s3 + 95s2 + 288s + 20 4

Zb=
Db s (s + 2) (s + 5)

where the pole at s = -2 will produce the transmission zero; the other poles were picked arbi-

trarily. Removing the pole at s = -2 yields

32 7 2 169
3 +7s S + 90

s + 2 s(s + 5)
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32 92 + 1 99 s + 102

Z 3 + 3
s + 2 s(s + 5)

The zero at s = -2 is now developed. The remaining lattice still contains the other zeros at

s =-2 and s = -3; therefore Z a must be equal to Z' at these frequencies.

8
Z a (-2) = Zb (-2) = -

a b 9

8
Z a (-3)= Zb (-3) = -a 3

This is a partial check on the work.

In this problem we cannot simultaneously shift both of these zeros to the proper places

because then Za and Z would have zeros at s = -2 and -3 which would not be interlaced with

the poles. It is, therefore, necessary to zero-shift one zero at a time. Partially removing the

value at infinity will shift one of the zeros to s = -3.

16 (s + 3) (13s +30)
3 8 3

a s+2 3 s(s + 5)

16 (s + 3) ( 17 s + 34)
3 8 3

Zb= +-+
s+2 3 s(s + 5)

Inverting the remaining function and expanding in partial fractions, we obtain

16
3 8 1

Za= - + +s+2 3 2S
17 0.113 s

s +3 s + 6 .9

16
3 8 1

Zb + +
+b= 2 3 2S

15 0.0246 s

s + 3 s + 5.36

The residues in the pole at s = -3 are not equal. This is to be expected; we have already used

the fact that Za = Z at a transmission zero, when we shifted a zero to that frequency in both

impedances at the same time. We cannot expect that the slope at that zero will be the same in
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both impedances, unless the original transmission zero was of double order. Therefore, only part
of the pole at s = -3 can be removed at this time, and it appears that we have not created a trans-

mission zero. However, we are really removing part of the pole at each end of the lattice; we

shall see later that this actually will produce the transmission zero. Removing part of this pole

at s = -3, we have

16
3

Z 3
a s+2

16

Zb =3
b s+2

8 1
+ -+

3 2
17 0.113 s

s + 3 s + 6.9

8 1

3 2
17 0.04035 s(s + 3.91)

s + 3 (s + 3) (s + 5.36)

The process can be continued in a straightforward fashion, but the remaining lattice is so simple

that it can be unbalanced by inspection.

16
3 8

a s + 2 3

16
3 8

Z b = + 2 3s+2 3

1

2-s
17 1

s+3 8.85 + 61
s

2
17

s+3

1

8.85 + 61
1

s ' 0.04s 0.023 s
s+2 s+5

The unbalanced network is shown in Fig. 19, in which the extraneous series elements at the

right end have been omitted. At this point, we might consider how the different zeros have been

developed. There is actually no question as to whether or not the ladder has the proper zeros,
since the original lattice had all the zeros and any development of the lattice must also have

those zeros, but it is interesting to see how the zeros are produced.
1. Branch A produces one transmission zero at s = -2.

2. Branch C produces the other transmission zero at s = -2.

3. Branches B and F produce the transmission zero at s = -3. Branch B represents a partial
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A
8/3 E

8/3 8.85 1/61 1/61 8.85

3/16
17/2 25/2 4.35 17/2

F

2/51 1/25 1/217.5 2/51

B C D

Fig. 19. A zero-shifted ladder.

removal of a pole of admittance and branch F represents the removal of the rest of the pole, thus

producing the transmission zero.

4. Branch D does not produce a transmission zero at its resonant frequency (s = -4) because

the network to its right (E and F) also contains a zero of impedance at this frequency.

4. PARALLEL LATTICES

When some of the zeros of the transfer function are off the negative real axis (for RC func-

tions), the lattice cannot be converted into a single ladder. Some portion of the resultant unbal-

anced network must contain parallel paths in order to bring about the cancellation that produces

these zeros. In order to accomplish this cancellation in an unbalanced equivalent of a lattice,

the given lattice is first split into two or more parallel lattices and then each of these lattices is

converted into a ladder. The resultant parallel ladder's configuration produces the required can-

cellation. This splitting into parallel lattices need not be done at the beginning of the procedure;

it can be done after zeros have been developed at zero frequency, at infinite frequency, and on the

negative real axis.

A simple example of the parallel lattice method has been given by Guillemin (13). He shows

that a lattice of the type shown in Fig. 20a can be split into two equivalent lattices, as in Fig. 20b,

and then each lattice can be converted to unbalanced form, as in Fig. 20c, provided that the fol-

lowing condition is satisfied by the original impedances.

Rb Ca
-- + - 1
Ra Cb

It can be easily shown that these are the most general conditions under which this lattice can be

unbalanced by simply writing the voltage transfer function for this lattice:
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2 1 Rb + a s + Is +
Zb - Za RbCa Ra RbCCb

A= =
Zb+Za 2+ Rb C + 1 s+ 1

RbCa Ra Cb RaRbCaCb

The condition stated by Guillemin is seen to be the condition in which A has positive conditions,

and, therefore, it is the most general condition for unbalancing the lattice.

Ca

2 C C b

(a )

K I

(b)
I-
F. e 2

Fig. 20. Guillemin's parallel lattices.

a. General Procedures

In order to split a lattice into parallel lattices and insure that each of the parallel lattices

is convertible to unbalanced form, the following rules must be followed:

1. Ya = Yal + Ya2 + --

Yb = Ybl + Yb2 + --

2. Ya - Ybl must have all positive coefficients

Ya2 - Yb2 must have all positive coefficients
In the following discussion, impedances or admittances without numerical subscripts (Ya, Zb)

refer to the original lattice, while elements with subscripts (Yal, Zb2) refer to the individual

parallel lattices. The first rule states that the parallel combination of all the lattices must equal
the original lattice, and the second rule states that each parallel lattice must be convertible to
unbalanced form. If each parallel lattice is to be convertible to one of the ladders described in

the previous sections, rule 2 must read,
2 '. Yal - Ybl must have all negative real zeros or it must have all its zeros at zero or

infinite frequency, depending on the ladder desired.

It is relatively easy to satisfy each of these conditions individually but it is more difficult to
satisfy both conditions simultaneously. For example,
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1. To satisfy condition 1, expand Ya and Yb in partial fractions and consider part of each

term as belonging to each lattice. This splitting can be done in an infinite number of ways; how-
ever, for any particular way, there is no guarantee that the transfer function of each individual

lattice will have positive coefficients. This method has not yet yielded a satisfactory realization
method.

2. To satisfy the positive coefficient condition, consider the transfer admittance

1 KN
Y12 2 (Ya - Yb) (s)

where KN is assumed to have all positive coefficients. Split KN into two or more polynomials,
each of which has all positive coefficients.

KN N1 N2

P(s) P(s) P(s) 12 , 1 + 12 , 2

Consider each of these functions to be the transfer admittance of one parallel lattice. To obtain

the lattice impedances of each of these lattices, expand Y12 1 and Y12, 2 in partial fractions,
calling the terms with positive residues 1 ad 1calling the terms with positive residues Ya and 2 Ya2 and those with negative residues 2 Ybl
and- Yb2. However, when this is done there is no guarantee that condition 1 has been satisfied,

2
namely, that

Ya = Yal + Ya2

Yb = Ybl + Yb2

To clarify this last point, consider a lattice in which

1 7s
Ya = 2s + -+s+2

52
3

Yb-- 7s+3

and

1 s 3 +1 KN
Y12 2 (Ya Yb 2) (s + 3) P (s)

If Y12 were broken into
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s3 4s 9s
Y s +- -
12, 1 (s + 2) (s + 3) s + 2 s + 3

1 1
1 1 3 2

Y, = = +
12, 2 (s + 2)(s + 3) 6 s + 3 s + 2

it is apparent that the parallel combination of these two lattices would not be equivalent to the

original lattice, since one of the terms from branch A of the original lattice appears in branch B

of one of the parallel lattices, and one of the terms of branch B from the original lattice appears

in branch A of one of the parallel lattices. The two lattices in parallel have the same transfer

admittance as the original (i.e., by construction), but they have different input admittances and

hence different voltage transfer functions.

In the general case, in order to insure that the parallel combination of the two lattices is

equivalent to the original lattice, it is sufficient (but not necessary, as shown later) to require

that, at each of the poles Y12, the three polynomials KN, NI, and N2 have the same sign. (The

signs may be positive at one pole and negative at another in any order but, at any particular pole,

the three polynomials have the same sign.) Then, in the partial-fraction expansion of Y12 , Y12, 1,

Y12,2, all three of the terms corresponding to a particular pole will have the same sign so that, if
that sign is positive, the term will belong to branch A of all the lattices and if negative, to branch B.

This requirement is automatically satisfied in one very important practical case-when the

numerator is an odd or an even polynomial. (This includes the case with all the zeros on the j-

axis.)

5. UNBALANCING THE LATTICE WHEN THE NUMERATOR IS ALL EVEN OR ALL ODD

The details of this method will be presented for the numerator that is even; the extension to

the other case is straightforward.

The lattice admittances Ya and Yb are formed from the function

Yb D - KN

Ya D + KN

in any convenient manner. Then the transfer admittance is computed.

I KN
Y12 =(Ya - Yb) =y12 2(Ya b P (s)

where KN is of the form

KN=a +a 2
s 2 +a 4 s4 +- - a2ns 2 n
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This polynomial is split as follows:

N1 = a0

N2 = a2 s2

N3 = a4 s 4

Nn+l =a 2 ns 2 n

The transfer admittances of the individual lattices are then

a0

Y12, 1 =p(s)

a2 s 2

Y12,2 P=(s)

a2 ns 2 n
Y12, n+l = p(s)

The sum of these transfer admittances is clearly the original transfer admittance. Now the

individual lattice admittances of each parallel lattice can be formed from a partial-fraction expan-

sion of its transfer admittance, and, since the numerators of all the transfer admittance are posi-

tive on the whole negative real axis, as is the polynomial KN (provided that KN has all positive

coefficients), the conditions on the residues are satisfied, and the sum of all these lattice ad-

mittances, which represents the driving-point admittance of all the lattices connected in parallel,

will indeed be equal to the driving-point admittance of the given lattice.

Since each of the individual parallel lattices has all its transmission zeros at zero or infinite

frequency, they can all be easily unbalanced by using an appropriate Cauer expansion.

EXAMPLE. The set of short-circuit admittances

s i

s4 + 1 1 2 ) s )
12 (s + 1) (s+2) (s + 3) 6 s + 2 s + 1 s + 3

s4 + 88 s3 + 9 2 s2 + 200 s+1 17 s 41s
3 3 1 2 s 3

= s+ + +--+-+ + -
Y11Y22 = (s + 1)(s + 2)(s + 3) 6 s + 2 s + 1 s + 3
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correspond to a voltage transfer function

s4 + 
A=

s4 + 8 8s3+92s2 + 206s +1
3 3

To split this into two parallel lattices,

Y12, 1

12,2

(s + 1) (s + 2) (s + 3)

1

(s + 1) (s + 2) (s + 3)

1 s 27 
8s 2 2

s ++ s+-- s
s+2 s+l s+3

1 s

1 2
Ts+ 2
6 s+2

1s

2

s+l

s
6

+ 3
s+3

where it is readily apparent that

Ya = Yal + Ya2

Yb= Ybl + Yb2

Since each of the individual lattices has all its zeros at zero or infinite frequency, an appropriate
Cauer form is used.

Lattice 1.

2 (2 + 10s)
al = s +2

2 (14s2 + 15s)
bl= (s + 1) (s + 3)

Lattice 2.

2 (2 s + 1)
3 3

a2 = s + 2

1

1 1
10s 25 +

I

1 1
10s 25

1

3 + 1
48s

9

1
2
5s

+ 1
2 1
5s 3

1
9
4
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2 (2 s 2 + 10 s)
3 9 1

b2 = (s + 1) (s + 3) 3 
4 8 +1

9 + 1
4 2

9

The complete unbalanced network is shown in Fig. 21.

10 5/2 5/2 10

Fig. 21. Parallel ladder development.

6. THE GENERAL CASE

In the general case, when the numerator is neither odd nor even, it is not readily apparent

how the numerator can be split in the required manner. We present here two methods that will

always unbalance the lattice provided KN has all positive coefficients, but which require a re-

duction from the maximum gain and will also use surplus factors. It is strongly suspected that

a method can be developed which does not involve either of these inconveniences.

Both methods consist of, first, splitting the numerator into its odd and even parts, KN =No +Ne,

that is, splitting the given lattice into two lattices, one with an even numerator and one with an

odd numerator, each of which can be unbalanced by using the methods of the previous section.

It is immediately apparent that this split does not obey the sufficient condition given previously;

No and Ne do not have the same sign at each of the poles of Y12 ; in fact, they have opposite signs

everywhere in the negative real axis. Nevertheless, it will be shown that the split can still be

made, but at the expense of surplus factors and a decrease in gain.

Method 1. The given voltage transfer function is of the form

KN No + Ne Y1 2
A = = _

D D Y

We are interested in splitting this into parallel lattices, using the expression
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Y12 Y12, 1 + Y12, 2
A -

Y22 Y22, 1 + Y22, 2

Introducing a surplus polynomial P (s), which will be determined later, we can write the voltage

transfer function in the form:

KNo KNe
+

P (s) P (s)
A=

1 D ID
2 2

P(s) P(s)

The lattice has now been split into two parallel lattices.

KNo D
For lattice 1, Y12, 1 P (s) 22, 1 2P (s)

2 KNo
A = D

KNe D
For lattice 2, y yFor lattice 2, 2 P (s) Y22, 2 sP (s)

2 KNe
A2 =

D

Forgetting about the surplus polynomial P (s) for a moment, we see that the maximum gain obtain-

able is the value of K for which both lattices are realizable; that is, the value of K for which

D - 2 KNe D - 2 KN o

D + 2 KNe D + 2 KN o

all have their zeros on the negative real axis. This value of K is of the order of one-half the max-

imum K obtainable from the original lattice and may be considerably less than this value.

There is no choice in the construction of the lattice admittances

D - 2 KNe

Ybl = P(s)

D +2 KNe

Ya = P (s)
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D - 2 KNo

Yb2 P (s)

D + 2 KNo

Ya2 2 P(s)

Notice that the ones and minus ones of the lattice are produced only by the zeros of Ya and Yb,

while the poles are surplus factors. The surplus polynomial P (s) is determined by the requirement

that its zeros alternate with the zeros of each of the polynomials

D - 2 KN o D - 2 KNe

D + 2 KN o D + 2 KNe

The methods of root locus show that for small enough value of K, it is always possible to find

such a polynomial P (s). In fact, if we consider the polynomials two at a time, a polynomial P (s)

can always be found whose zeros alternate with the zeros of both D - 2 KNo and D + 2 KNo, for

example, for any K less than that required for the polynomials to have all their zeros on the neg-

ative axis. If we consider the four polynomials at once, a slight reduction in gain may be neces-

sary.

This completes the synthesis; the previously derived methods can be used to unbalance the

lattice.

EXAMPLE. Consider the voltage transfer function

s3 +1
A=

s3 + 52 s2 + 104 s + 
3 3

for which K = 1 is the highest obtainable gain. For this method, a constant of one-half, at most,

can be associated with the function. Using this constant, we can split the function in the ap-

propriate manner

s3 1
2 2

+ _
P (s) P(s)

A=
(3 + 52 s2 + 1 04 s) 1 (s3 + 52 2 104 s+1)

2 3 3 2 3 3
+

P(s) P(s)

P (s) will be determined later. The lattice is now split into two parallel lattices.

71



For lattice 1,

D -2 KNo

Ybl P(s)

YA1 D + 2 KN o

P (s)

17.3 (s + 0.029) (s + 1.971)

P (s)

s (s + 0.0295) (s + 3.06) (s + 5.57)

P (s)

For lattice 2,

D -2 KNe

Yb2 P (s)

YA2 D + 2 KNe

P (s)

s (s + 2.29) (s + 15.0)
P (s)

(s + 0.060) (s + 2.24) (s + 14.96)

P (s)

Now P (s) can be chosen so that its zeros alternate with the zeros of all four polynomials. For

example,

P(s) = (s + 0.5) (s + 4)

Then, for lattice 1,

Yb =
17.3 (s + 0.029) (s + 1.971)

(s + 0.5) (s + 4)

1 6.85s

2 s +0.5

9.97s
+

s+4

2 (s + 0.0295) (s + 3.06) (s + 5.57) 1

(s + 0.5) (s + 4)

6.98s 0.817s
= -+ 2s + + 
2 s + 0.5 s + 4

and for lattice 2,

s (s + 2.29) (s + 15.0)
Yb2 =- (s + 0.5) (s + 4)

7.49s
= S +

s + 0.5

(s + 0.060) (s + 2.24) (s + 14.96)
(s + 0.5) (s + 4)

6.35s
s + 0.5

The common factors can be removed as parallel admittances at the input and output.

1 13.2s 6 .61s
Ypar=-+s + ~+

par = 2 s+ 0.5 s+4

The remaining elements are
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Lattice 1:

9.15s 1

Al s+4 0.44=

s 9.5

b1= 0.14s 1
Ybl = 2s + =s + 0.5 0.44 I

s 9.5 + 007
0.07

Lattice 2:

, 0.14s
Ya2= =s + 0.5

· 0.143
Yb2= 1 + s+4

1

0.875 + 1
s

0.440

1

0.875 + I
s _1

0.440 1.25

The unbalanced network is shown

have been omitted.

2.3

in Fig. 22 in which the extraneous shunt elements at the left

7.2 2.3

Fig. 22. General Development.

Method 2. Method 1, although it allows any lattice to be unbalanced, involves a considerable

reduction in gain. Frequently, it is possible to use an alternate method which uses some of the

philosophy of the first method but does not involve such a large decrease in gain. Starting with

the original lattice which has a voltage transfer function A = KN/D, for which
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Yb D - KN

Ya D + KN

we write

D - KN
Yb P(s)

D + KN
a P(s)

where P (s) is a surplus polynomial whose zeros alternate with the zeros of both D - KN and

D + KN. Now form

I KN
Y12 (Ya - Yb) = P (s)

1 D
Y22 =(Ya + Yb ) = p (s)

and split KN into its odd and even parts.

Ne + N Ne Ne

12 P(s) - P(s) + (s) P (s Y12, + Y12, 2

We can call Y12, 1 and Y12, 2 the transfer admittances of two lattices which, if connected in

parallel, will yield the desired transfer admittance. However, we are not sure that the input ad-

mittances that correspond to these transfer admittances will add up to the desired input admit-

tances. We shall, therefore, compute the input admittance that corresponds to this splitting and

compare this with the original input admittance. To find this input admittance, first, we find the

lattice admittances of the parallel lattices by expanding the transfer admittances in partial func-

tions and grouping together the positive and negative terms (noting that at every pole of YI2 the

residues in Y1 2 , 1 and Y1 2 , 2 have opposite signs)

Ne Na Nb

Y12, 1 P (s) P (s) P2 (s) al -bl

No Nc Nd

YI12, 2 P (s) P2 (s) (s) = a2 - Yb2

(Note that the polynomials Na, Nb, Nc, and Nd are not of importance here.) Now, if these two
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networks are connected in parallel, the equivalent lattice admittances are

Na Nc Q1 (s)
Ya = Yal + Ya2 ( + P2(s ) P(s)

a aPI (S) P2 () P (s)

Nb Nd Q2 (s)
Yb = Ybl + Yb2 = P 2 (s) + P 1 () P (S)

(Note that Q1 (s) and Q2 (s) are of no importance here.) Notice that each lattice admittance

contains all of the poles of Y12, as do the admittances of the original lattice. Then the input

admittance of the parallel lattice is

Y , Q1(s) Q2 (s) Q(s)

in= A b P(s) + P (s)P(s

Let us compare this with the input admittance of the original lattice:

D(s)
in p (s)

If we think of both input admittances as being expanded in partial fractions, the following cases

can be distinguished.

1. If, at a particular pole, the residue in Yin is just equal to the residue in Yin, then no

further work is required.

2. If, at a particular pole, the residue in Yn is less than the residue in Yin, then an ad-

mittance corresponding to the difference in the residues can be added in parallel with the input

and output of the parallel lattice, thus making the parallel lattices equivalent to the original

lattice.

3. If, at a particular pole, the residue in Yinis greater than the residue in Yin, the method

breaks down.

The question naturally arises, as to when the method will work, that is, when will condition

3 not occur at any of the poles of Yin? There is no readily apparent way to determine this before

actually carrying through the synthesis. Clearly, for a small enough value of K, the method will

always work, because it can be reduced to the previously described method, but, as will be shown

in the example, frequently a much higher value of gain can be realized with this method. In ad-

dition, the best choice for the surplus polynomial P (s) is not at all apparent, although it is felt

that a good first choice would be the polynomial that has been found suitable for the method of

the last section.
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Consider, again, the voltage transfer function

s 3 +1

s3 + 522s2 + 104 s + 1
3 3

for which K = I is the highest obtainable gain. Let us try to obtain this value of gain by using

the method described in this section. For this value of gain, a lattice can be constructed for

which

Y 52 s (s + 2)
b D - KN 3

Ya D + KN s(s + 3) (s + 5.61) (s + 0.060)

The surplus polynomial P (s) is arbitrarily chosen to be the same polynomial that was used in the

previous example,

P (s) = (s + 0.5) (s + 4)

Then, for this lattice,

2(s + 0.06) (s + 3) (s + 5.61)

(s + 0.5) (s + 4)

45 s
7

= 2s + 1 +
s + 0.5

s(s + 2)

+ 0.5) (s + 4)

52 s 208
7 21

+ s+

s + 0.5 s + 4

97 s
1 14

=-S +-+
2 s + 0.5

227
42

s+4

s3 + I1
(s + 0.5) (s + 4)

I s
1 2
2 s + 0.5

Then, the transfer admittance is split in the appropriate fashion:

1 s 64 s
14 14

12, 1=(s- (s+0. 4) s + 0.5 s + 4

1 s 8 s
Y 1 1 14s 14

12, 2= -+ -+
(s +0.5) (s +4) 2 s +4 s +0.5
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Ya =

19 s
21

s+4

52

Yb=3 (s

Ya + Yb
Yll=

2

Ya - Yb

Y12= 2 =2

9 s
2

s+4

Y

EXAMPLE.



Then, the lattice admittance for the individual lattices is

1
Yal 14 s
- = s +

2 s + 0.5

1
Ya2 1 14s

2 2 s+4

64
Ybl 14

2 s+4

8
Yb2 14 5

2 s + 0.5

The input admittance for these two lattices in parallel is

Yal + Ya2 + Ybl + Yb2

2

s
1 14

= s +-+ 
2 s + 0.5

The residue in each of these poles is equal to or less than the residue in the corresponding pole
of the desired transfer admittances. Therefore, the two lattices in parallel can be made equiv-
alent to the desired lattice with the addition, at each end of the lattice, of a parallel admittance

equal to the difference Y11 - Yll. The appropriate admittance is

86 s 32 s
7 7

Yll -Yi =Ypar =+ 4s + 0.5 + s+4

The fact that such a realizable admittance exists assures the success of this method.

The individual lattices can then be unbalanced by an appropriate Cauer development:

7
Zal =16s

1
64 1
7 1

16

7 7
Zbl = + 16-

7 1
Za2 = 8+ 16s 1

7 8

Fig. 23. Another development.
7 7

Zb2 =+ 6s

The completely unbalanced ladder appears in Fig. 23, in which the extraneous elements in
parallel with the voltage source have been omitted.
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VI. GENERAL METHODS

1. INTRODUCTION

When the required gain is greater than that obtainable from a symmetrical network, but less

than the maximum obtainable from the given pole-zero plot, realization techniques which are more

general than those previously considered must be used. Because the ones and minus ones can no

longer be produced by circuit elements that have zeros or poles, but must be produced by cancel-

lation, the concept of the one loses a good deal of its significance if it is applied to the general

problem. On account of this, the reasoning for the realization techniques tends to be more numer-

ical than physical and the resultant network configurations tend to be more complicated than those

previously considered.

In the general case, the only restriction on the gain is that D - KN and D + KN have positive

coefficients. For a given value of K, less than the maximum, some augmentation may be required

to meet the positive-coefficient condition, but we assume that any necessary augmentation has

been done and the voltage transfer function is in the form:

ansn + anl s n-1 + - - als + a o
A=

bnsn + bnlsn + b ls + b o

where the magnitude of each numerator coefficient is equal to or less than the corresponding

denominator coefficient, aj bj. If the realization is to yield a grounded network, then the nu-

merator coefficients must be all positive (which may require further augmentation); if an ungrounded

network is satisfactory, then the numerator coefficients can be positive or negative, provided only

that the magnitude of each numerator coefficient is less than or equal to the magnitude of the cor-

responding denominator coefficient.

The general realization problem was first solved by Fialkow and Gerst (14, 15) in papers

that appeared in 1952 and 1954. Similar realization methods will be described here, which, al-

though they use a good deal of the philosophy of the procedures of Fialkow and Gerst, introduce

some simplifications and generalizations. Thus the present methods frequently require much fewer

elements than do the original methods of Fialkow and Gerst. At every point in the discussion, it

will be made clear exactly where the similarities and differences between the two methods lie.

In building up the solution to a general problem like this, it is frequently helpful to consider

certain particular cases in which the solution can be easily accomplished, and then to show that

the general case can be treated as a combination of these particular cases. This method was ap-

plied to the problem of lossless driving-point impedance realization with great success by Foster,

who showed that the general LC driving-point impedance can be constructed as the series or par-

allel combination of certain simple canonic forms, the realization of which is trivial. A similar

process will be used here, consisting of the following steps.

1. Simple canonic form networks will be discovered for the realization of particular kinds of
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two-element-kind grounded voltage transfer function.

2. It will be shown that the general two-element-kind grounded voltage transfer function can

be realized as a combination of these canonic forms.

3. It will be shown that the general three-element-kind grounded voltage transfer function

can be realized as a combination of general two-element-kind grounded networks.

4. It will be shown that any ungrounded voltage transfer function can be realized as a com-

bination of grounded voltage transfer functions.

2. CANONIC FORMS FOR TWO-ELEMENT-KIND GROUNDED NETWORKS

The details of this discussion will be given for RC functions, but the results apply to the

RL and LC cases as well.

By a canonic form, we mean a simple voltage transfer function which can be realized easily

with any obtainable gain, and which can be used to construct more general voltage transfer func-

tions. Almost the simplest nontrivial RC voltage transfer function that can be studied is of the
form

als + ao
A-

b l s + bo

where

O s al b

O a 0 b

This is the most general voltage transfer function of degree 1 (that is, the denominator is of the
first degree). Two simple RC realizations in terms of all networks are possible for this function,

corresponding to writing two functions in the following form

als + a Y2 C 2 s + G2
1. A (Fig. 24b)

bs + bo + Y1
+

2 (C 1
+ C 2)s + G1 + G2

ao R 1 +_
al +-3 1z Cls

2. A= = - (Fig. 24a)
bo 1 + 2 Ri + R2 + 1 1+ 
s +Cs C2 s

These two ELL-networks are shown in Fig. 24, in which all the element values are guaranteed

to be positive by the positive-coefficient condition. These are the canonic forms used by Fialkow

and Gerst in their realization procedure.
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R2 C2

I

I -
G 

(a) (b)

Fig. 24. ELL canonic forms.

At least two other canonic forms exist; these comprise functions of the forms

ansn
1. A = 0 an bo

bnsn + bn I +-- bs + bo

ao
2. A= 0 ao b

bs+bns+blsni +b l s+ b o

Both of these functions can be realized as ladder networks by using essentially nothing more than

simple Cauer continued-fraction expansions. In either case, write

KN Y1 2

D Y22

associate a surplus polynomial P (s) with the given function

KN

D 
P(s) Y22

where P (s) is any polynomial that has all its zeros on the negative real axis alternating with

the zeros of D in such a way that D/P(s) is an RC driving-point admittance. Then expand this

admittance in a Cauer ladder:

1. in the form shown in Fig. 25a, if all the zeros of A are at zero frequency, as in canonic

form 1.

2. in the form shown in Fig. 25b, if all the zeros of A are at infinite frequency, as in canonic

form 2.
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(a)
T T T

(b)

Fig. 25. Cauer canonic forms.

The resultant ladders will have a gain of exactly one at infinite frequency and zero frequen-

cy, respectively (corresponding to an = bn or ao = bo). This is the maximum gain obtainable from

such voltage transfer functions. If less than the maximum gain is required, that is, if an < bn or

ao < bo, then these networks can be modified to yield the reduced gain by an application of

The'venin's theorem, as shown in Fig. 26. If a voltage transfer function with a certain gain has

been realized with an input series element as in Fig. 2 6a, any gain smaller than this original

value can be achieved with the circuit of Fig. 26b, in which

E' E
k--

E 1 E 1

k 

as can be readily verified from The'venin's theorem. With this method, voltage transfer functions

that have the canonic forms 1 or 2, can be realized with any obtainable gain.

Yw

tE( N tE 2

(a)

K Y

tE, (I-K)Y N t E'2 =KE2

0 - 0(b)
(b)

Fig. 26. An application of Thevenin's theorem.

EXAMPLE. The voltage transfer function

K
A=

(s + 1) (s + 3) (s + 5)

can be realized with a gain as high as K = 1. In order to demonstrate the method just described,

the function will be synthesized with K = 2/3.
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2
3A=

(s + 1) (s + 3) (s + 5)

An appropriate surplus polynomial is associated with this function.

2
3

Y12 (s + 2) (s + 4)
A= -

Y22 (s + 1) (s + 3) (s + 5)
(s + 2) (s + 4)

Then Y22 is expanded in the proper Cauer ladder with all its transmission zeros at infinite fre-

quency, as in Fig. 2 7a. This ladder has the desired voltage transfer function, but with K = 1,

since the voltage transmission is obviously equal to one at zero frequency. In order to obtain a

K of 2/3, The'venin's theorem is used on the conductance in series with the voltage source to

obtain Fig. 27b, which is the desired network.

1/30 1/6 1/3 1/20 1/6 1/3

T12 3 1 1/10 12 3 

(a) (b)

Fig. 27. A ladder network.

3. GENERAL SYNTHESIS OF TWO-ELEMENT-KIND GROUNDED VOLTAGE TRANSFER

FUNCTIONS-(WITH RC AS THE EXAMPLE)

The general philosophy of this synthesis method can be summarized as follows.

1. If the given function is exactly one of the canonic forms, then realize it in the appropriate

manner.

2. If the given function is not one of the canonic forms, then break the function into smaller

functions that are canonic forms, realize these canonic forms and then interconnect them in the

appropriate manner.

The only new technique that must be studied is the method of splitting a voltage transfer

function into simpler voltage transfer functions in a manner that corresponds to splitting the net-

work which realizes that voltage transfer function into simpler networks. This splitting is done

by using the formula
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Y12 Y12 (1 ) + Y12(2)
A= =

Y2 2 Y2 2 (1) + Y22 (2)

for the voltage transfer function of two networks in parallel. Before considering the general

method, it is helpful to consider a simple example that will clarify the problems involved. The

simplest voltage transfer function that can be studied is that of second degree (the first-degree

function is a canonic form).

EXAMPLE.

2 +1
A=

(s + 1) (s + 3)

At first thought, one might consider dividing this function into

s 2 1

1A = (s + 1) (s + 3) A2 = (s + 1) (s + 3)

associating an appropriate polynomial with each function so as to put it in the form A = Y12/Y22

s2 1
s+2 s+l

Al A
1 (s + 1)(s+3)' 2 (s + 1) (s + 3)

s+2 s+2

realizing each function by the methods considered previously for canonic forms, and then con-

necting the two networks in parallel. However, if this is done, the resultant voltage transfer

function is

Y1 2 (1 ) + Y1 2 (2 ) 1 (s 2 + 1)
A= 

Y22(1 + Y2 2 (2 ) 2 (s + 1) (s + 3)

and the maximum gain has not been realized.

One way to split up this voltage transfer function so as to obtain the maximum gain is as

follows. (A general method for doing this will be given later.) Starting with

s 2 +1 s 2 +1
Am =

(s+ 1) (s + 3) =2 + 4s + 3

associate a surplus polynomial with this function in order to put it in the form Y12/Y22:
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s2 +1
s+2

A= 
(s + 1) (s + 3)

s+2

then split the numerator and denominator as follows:

s 2 1

s+2 s+2 Y12 (1) + Y1 2 (2 )

s 2 +2.1s + 1.9s + 3 Y +
s+2 s+2

It is of importance in this particular splitting that the entire first coefficient of the denominator

(and numerator) belongs to the first network, while the entire last coefficient belongs to the sec-

ond network. It is this property that ensures the success of this procedure. Each of these two

networks can be realized by either of the canonic forms. The realization will now be carried out

for both canonic forms.

a. Cauer Forms

For network 1,

s2 + 2.Is
Ys+222(1) s + 2

s 2

12(1) s + 2

The appropriate Cauer continued-fraction expansion is

1

Y2 2 (1 ) +1 1
2.1s 64.1

The corresponding network

For network 2,

1.9s + 3

22(2)- s+2

is the top ladder in Fig. 28a.

1

12(2) s+2

This time the continued-fraction expansion must

theorem. The continued fraction expansion is

1

Y22(2) 1 + 1
1.9 36.1 1s+

8 8
5.7

be followed by an application of Thevenin's
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After the application of The'venin's theorem to reduce the gain by 1/3, the network appears as the

bottom ladder in Fig. 28a. The over-all network is the parallel connection of these two ladders,

as in Fig. 28a.

21 2.1

1/2.1

7 
(b)

(a) 2 ) I/I.9

(c)

Fig. 28. An example.

b. Fialkow and Gerst Canonic Forms

The Fialkow and Gerst canonic forms require two steps for their realization.

For network 1, since

s2 + 2.is

22(1) s+2

and

s 2

Y12(1) s+ 2

the voltage transfer function of this network is

s 1 Zb
AI - = 2. = z bs+2.1 1 +- Za

s

This voltage transfer function can be realized as an ELL-network, as in Fig. 28b. The ELL-

network has the correct voltage transfer function, but the incorrect Y22' However, if an impedance
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is added in series with the output terminal, and the impedances in the ELL-network are scaled

in magnitude, the output admittance Y22 can be adjusted without affecting the voltage transfer

function. When Y22 has been adjusted to the correct value, then Y12 must automatically be correct,

since the voltage transfer function remains unchanged. Fialkow and Gerst showed that such a

series impedance can always be found (in fact, an infinite number of appropriate impedances exists).

In this case no work is involved, because if we multiply R and 1/C by 1/64 and add a 2.1-farad

capacitor in series with the output, we obtain the same circuit as the top ladder in Fig. 27a, which

is evidentally a correct network.

For network 2, a similar procedure can be used. Since

1.9s + 3 1

22(2) s+2 Y12 s+2

the voltage transfer function

1
A=

1.9s + 1

can be realized as a simple canonic ELL-network; this time an admittance ELL is used and the

resultant network is shown in Fig. 28c. Again, this network has the incorrect output admittance

Y22, but if R and 1/C are multiplied by 8/19, and a 1/1.9-ohm resistor is used as a series im-
pedance, the same network as the bottom ladder in Fig. 28a results. These two networks are then

connected in parallel, yielding the circuit of Fig. 28a.

In this simple problem, the two canonic forms can be made to yield the same over-all net-

work. In the general case this is not true, and it will be shown that the Cauer forms frequently

require fewer circuit elements.

c. The General Synthesis

Given an RC voltage transfer function,

KN ansn + an_Isn-1 + - - als + ao
A= =

D bnsn + bn_lsn-l +--s bls + bo

ansn + an _1sn + - - als + ao

(s + al) (s + 2) - - - (S + n)

where 0 < aj bj, the first step is to associate a surplus polynomial, P (s), with the function, in

order to put it in the form
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KN
P(s) 12

A _ =
D y22

P (s)

where P (s) is any polynomial, of one degree less than D, that has all simple zeros on the neg-

ative real axis alternating with the zeros of D in such a way as to make D/P (s) an RC admittance.

Then, if the resultant function is one of the canonic forms, this form is realized and the synthesis

is over. If the resultant function is not a canonic form, the second step is to split it up into the

parallel combination of two networks, each of which is simpler; this splitting is continued until

one of the canonic forms is encountered.

To split 2 2 into simpler driving-point admittances, first expand

22 D

s sP(s)

in partial fractions, then multiply by s in order to obtain the usual Foster-like expansion of RC

driving-point admittances:

Cvs

Y2 2 = As+B + + V

where A and B are not zero because of the form of P (s). Now form the two simpler driving-point

admittances as follows.

For Y22(1), use the following terms: (a) all of the pole at oo (As); (b) none of the constant

value (B); and (c) some arbitrary, nonzero part of each of the finite poles, but not the entire pole.

For Y2 2 (2 ), use the rest of Y2 2 , consisting of: (a) none of the pole at oo (As); (b) all of the

constant value (B); and (c) the rest of each finite pole.

The splitting given here accomplishes the same purpose as that given by Fialkow and Gerst,

but our procedure is somewhat simpler. When this procedure has been carried out, we obtain:

Y22 = Y2 2 (1 ) + Y22(2)

bn s n + b s n - +--b s+b bn s + cn_ l s n-1 +--c2s 2 + c ls

P (s) P (s)

dnlsn - I + -- dls + bo

+ P(s)
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Of importance in this splitting are the following:

1. Both Y22(2) and Y22(2) have the same denominator.

2. The numerator of Y22 has been split between Y22(1) and Y22(2), so that bj =cj + dj for

j n or 0.

3. The entire coefficient of the highest power of the numerator of Y22, bn, is in Y22(1) and

the entire coefficient of the lowest power bo is in Y22(2), so that the numerators of Y22(1)

and Y22(2) are each one degree simpler than that of Y22.

The next step is to split the transfer admittance

N

12 P (s)

ansn + an_Isn-1 + -- a l s + ao

P (s)

into Y12(1) and Y12(2), so that, if each transfer admittance is associated with its driving-point

admittance, the ratios

Y12 (2)

Y22 (2)

are both realizable voltage transfer functions. This is readily done by splitting the numerator

of Y1 2 as follows: Since in the original voltage transfer function each term in the numerator (a j)

is equal to or less than the corresponding term in the denominator (bj), that is, aj < bj, and, since

the denominator has been split so that bj = cj + dj, it is always possible to split up aj = ej + fj

so that

ej c

fj < dj

This splitting of the numerator can be done in a great number of ways. The resultant voltage

transfer function is of the form:

ansn+ en_lsn- + en_2 s n -2 + __ - e2s 2 + els

P (s)

bnsn + Cn_lsn- + Cn_2 sn- 2 + - C2s 2 + Cis

P (s) +

fn_sn-l+ - f1
s + a o

P (s)

dn_lsn - + -- - ds + bo

P (s)

Y12 () +
12 (2)12(1) '12(2)
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The original network has been split into two parallel networks, each of which has a real-

izable voltage transfer function. If that function is one of the canonic forms, then that form is

realized; if not, the process must be repeated. But before that can be done, each of the network

functions must be put in the same form as the original function. This last statement will be clar-

ified as we proceed. The method of reasoning is different for the two networks.
Network 2. For this network,

fn _1 n - 1 + -- a N2
Y = =

12(2s) P(s S)

dn _lsn-1 + - - bo D2
v = =

22(2) P(s) P (s)

fn-i s n- 1 + ao N2
A =

dn_lsn-l+ - - bo D2

The voltage transfer function is one degree less than the original voltage transfer function.

However, the denominator associated with Y22(2), P(s), is of the same degree as its numerator

(D2 ), while in the original function, the denominator of Y22, P (s), was of one degree less than its

numerator (D). Therefore, in order to put this function in the same form as the original function,

we must associate with it a different polynomial P 2 (s). This is done as follows. Consider

Z 1 P(s)
Z = =

Y22 D2

If a resistor equal to the value of this impedance at infinite frequency is removed from Z 2,

P 2 (s)
Z2 = R + --- = R + Z2

D

and the remaining impedance will have a numerator P 2 (s), of one degree less than P (s). This

process is shown pictorially in Fig. 29. The reduced network N2 has the same voltage transfer

function as N2 , but with a different Y12 and Y22. For N,

N2

P 2 (s)
A =P

D2

P2(s)
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where P 2 (s) is of one degree less than D. Thus, network 2'is of the same form as the original

function (but one degree simpler) and the process can be repeated. The resistor R.. in series

with network 2 'changes its output admittance to the correct value for its insertion in the over-all

network.

Network 1. For this network,

ansn + en Isn- + -- e2 s2 + els sN1

12 (1) P (s) P (s)

D 1

Y22(2) = bns n + C sn-I +-- C 2 s2 + C 1 s = s P

an sn - l + en_lsn-2 + -- C 2 s + el N1
A1 ==

bnsn - +en _lsn-2 + C 2 +C 1 Di

Notice that, in the voltage transfer function, the s-factors cancel, thus making it one degree

smaller than the original voltage transfer function. Again, we have the problem of associating

with this network a new polynomial P 1 (s), of one degree less than P (s); we must also remove

the s-factor from the numerator of Y22(2), since that factor cancels out in A. Again, consider

1 P(s)
Z 1 = -

22(1)

and remove the pole at zero frequency

1 1
PI (s) C1 C1

Z 1 =-- + -= IZ +-
D s s

Now Pi (s) is of the proper degree, and, in addition, the s-factor has been removed. This process

is shown in Fig. 30. Again, the reduced network N1 has the same voltage transfer function as

N1 , and the capacitor makes the output admittances of the two networks equal, as well as supply-

ing the extra factor that cancels. Physically, this extra factor is another transmission zero at

zero frequency, which is supplied by the capacitor. For network N1

N1

Pl (s)
A1 =

Di

P (s)

This is a function of the form originally considered and the process can be repeated.
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R0O

,, . Z2 N eZ -Z2

(a) (b)

Fig. 29. A reduction step.

I<Z I P-N. E ZI
NI ,- Z I NI Z '- Z -

(a) (b)

Fig. 30. Another reduction.

Fig. 31. After one step.

After this one step the over-all network is in the forrfi of Fig. 31. The process is then re-
peated on N1 and N2 until all the networks have been reduced to canonic form; the result is a

tree-like arrangement.

The method used by Fialkow and Gerst for removing the series elements is somewhat

different from that given here. They pick the polynomials P 1 (s) and P 2(s) arbitrarily, subject
only to certain realizability conditions, and then find the series impedance that is necessary to
obtain the correct output admittance (after suitable impedance scaling). The series impedance

is, in general, not a single resistor or capacitor.
In comparing our method with the original method of Fialkow and Gerst, the following state-

ments can be made:

1. Our method uses much of the general philosophy of their method.

2. Certain steps, which are part of both procedures are given here in slightly simplified
form. In particular, the removal of only one resistor or one capacitor is needed in the final step

in each cycle.

3. The introduction of a new canonic form allows a considerable reduction in the number of
elements in certain particular cases.

EXAMPLE.

s4 +s+1
A=

(s + 1) (s + 3) (s + 5) (s + 7)
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s4+s + + 

s4 + 16s3 + 86s 2 + 176s + 105

First, a polynomial, P (s), must be associated with this function in order to put it in the form

Y12/Y22. Let P(s) = (s +2) (s +4)(s + 6). Then

s4 + s + 1

12 (s + 2) (s + 4) (s + 6)
A =

y22 (s + 1) (s + 3) (s + 5) (s + 7)
(s + 2) (s + 4) (s + 6)

This is not one of the canonic forms, so

in partial fractions, we have

it must be split into simpler networks. Expanding Y22

15s 2., r15 s 9 s 5 s
35 6 16 16

Y22 = s + s + +616s+2+s+ s+6

For one of the simpler admittances Y12(1), we

Y at each of the poles

take the whole pole at o, and, arbitrarily, a residue of

s Is s
4 4 4

22(1) + s + 2+2 s + 4 s + 6

s4 + 12.75s 3 + 50s2 + 59s

(s +2) (s +4) (s + 6)

For y2 2 ( 2 )' we take the rest of Y22

11 s 5 1
35 16 16 16 3.25s3 + 36s2 + 117s + 105

Y22(2) 16 s + s + s + 6 (s + 2) (s + 4) (s + 6)

Now Y22 has been split into two parallel driving-point admittances; the next step is to split Y12

into two transfer admittances, and associate each with one of the driving-point admittances. This

can be done in a number of ways. One convenient way is

s4 s+l
Y +Y+
Y12 (1 ) + Y12 (2 ) (s + 2) (s + 4) (s + 6) (s + 2) (s + 4) (s + 6)

A=
Y22(1) + Y22 (2) s4 +12.7 + 2 + 59s 3.25s3+ 36s2+ 117s + 105

(s + 2) (s + 4) (s + 6) (s + 2) (s + 4) (s + 6)
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This particular way was chosen because network 1 is a Cauer canonic form and can be immediately

realized. In a Fialkow and Gerst realization, this function would have to be split and the process

repeated.

Network 1. Since Y12 (1) has all its zeros at zero frequency, an appropriate Cauer expansion

of Y22 (1) will yield the required network.

1

22(1) 0.815 1
+ .s 17.86 + l0.157+ 1

s 150 + 10.0268 1
s +4350 + 1

0.0012
s

The corresponding network is shown in Fig. 32.

.0012 .0268 .1 75 .815

4350 )150 ,1268

Fig. 32. Canonic form.

Network 2. This network is not a canonic form and must be split again, but before doing

this, a series resistor must be removed from I/y 2 2 (2)

1 3 s3 + 12s 2 + 44s + 48
Z2 = 

Y22 (2 ) 3.25s 3 + 36s 2 + 117s + 105

0.92s2 + 8s + 15.7 1
0.308 + = 0.308 +

3.25s 3 + 36s 2 + 117s + 105 y22(2)

At this point, network 2 appears as in Fig. 33.

Network N2. The rest of the procedure deals with the realization of network N2, which has

the following parameters

3.25s 3 + 36s 2 + 117s + 105
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s + 1l

12(2) 0.92s2 + 8s + 15.7

,, s+l
A2 =

3.25s3 + 36s2 + 117s + 105

Fig. 33. Partially reduced network.

To split N2 , into two parallel networks, Y22(2)

3.25s3 + 36s 2 + 117s + 105 3.25s 3 +

must be expanded in partial fractions

36s 2 + 117s + 105

0.92s2 + 8s + 15.7

= 3.53s + 6.69 + 705
s + 5.71

0.92(s + 5.71)(s + 2.99)

0.1675s
+

s + 2.99

22(2)A 22A

0.5s
= 3.53s + -- +

s + 5.71
0.5s

s + 2.99

3.25s 3 + 2.86s2 + 58.0s

0.92(s + 5.71) (s + 2.99)

6 0.205s

22(2)B Y22B s + 5.71

1.175s
s + 2.99

7.40s + 59s + 105

0.92(s + 5.71)(s + 2.99)

The voltage transfer function corresponding to N can be written

+

A 0.92(s + 5.71)(s + 2.99) 0.92(s + 5.71)(s + 2.99)
A2 = 

3.25s + 2 8 .6s z + 58s 7.4 0 sL + 59.15s + 105
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Then write

+
0.92(s + 5.71)(s + 2.99) 0.92(s + 5.71)(s + 2.99)

N , 3 0 8

22(2)

1s
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12A + Y12B

22A 22B

Network N has now

separately.

For network A,

'12A - 0.92(s

3.25s 3

Y22A 0.92(s

been split into an A and a B network, each of which must be realized

+ 5.71)(s + 2.99)

+ 28.6s 2 + 58.0s

+ 5.71)(s + 2.99)

1

A 3.25s 2 + 28.6s + 58.0

This voltage transfer function is a Cauer canonic form and can be realized by a continued-frac-

tion expansion of 22A (in which a series capacitor at the output end supplies the cancelled s-

factor), followed by an application of The'venin's theorem at the input terminals. The continued

fraction expansion is

1

Y22A 0.27 1

s 65s + I

0.00428 + 1

9.75s +

0.0206

Since the required gain is 1/50 of the maximum obtainable with this canonic form, Thevenin's

theorem must be used on the input series resistance, thus yielding the network of Fig. 34.

Fig. 34. Network A.
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For network B,

7.40s2 + 59.Is + 0.05
Y22B

Y12B

A =

0.92(s + 5.71)(s + 2.99)

1

0.92(s + 5.71)(s + 2.99)

1

B 7.40s2 + 59.1s + 105

This voltage transfer function is also a canonic form and can be realized by a Cauer expansion

of y followed by an application of Thevenin's theorem. The continued-fraction expansion is

1

Y22B 0.125 + 1

11.4s + 1

0.022 + 1

102s + 1

0.00276

Since the required gain is 1/105 of the maximum obtainable with this configuration, an applica-

tion of Thevenin's theorem is necessary at the input, thus yielding the network of Fig. 35.

1/.29 .022 .125

1/361.67 102 1 1.4

Fig. 35. Network B.

The entire voltage transfer function has now been realized. It consists of the appropriate

interconnection of the above network; it is shown in Fig. 36.

4. RLC Grounded Networks

Before considering this general RLC grounded network problem, it is appropriate to note

that the second-order RLC voltage transfer function

a 2 s2 + as + a o
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Fig. 36. Complete network.

can always be realized without using these general methods. A can be written either in the form

ao

a 2 s + al +-
A sA= 

bo 
b2 s + b +-

s

1
L1 s +R +

C1

s

(L + L2 ) s + R 1 R 2 +

or in the form

1
CAS + GA + LA

1 1
-+-

(CA + CB)S + GA
LC LB

+GB + s

and then can be realized as one of the ELL networks of Fig. 37.
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R2 L2 C2
-a _~ C- eo GI

(a) (b)

Fig. 37. RLC canonic forms.

One might be tempted to extend the reasoning used on two-element impedances to the RLC

case, that is, to break up complicated functions into simpler ones until the canonic form is

finally reached. However, the RLC case is sufficiently more complex than the two-element case

that it is difficult to visualize the splitting process in terms of pole-zero plots or partial frac-

tions, and, in addition, the Bott and Duffin or a similar procedure must be used to realize the

RLC driving-point impedances without transformers.

For these reasons, a different approach will be used in the RLC problem. The method is

almost exactly similar to that given by Fialkow and Gerst. It will be shown that the general RLC

grounded voltage transfer function can be realized as the parallel combination of two lossless

networks, each of which is in series with a one-ohm resistor. The methods of the previous sec-

tion can then be used to realize the lossless networks.

Consider the general RLC voltage transfer function

ansn +anlsn-1 +-- als+ao KN
A= =

bnsnbn + bn_ lsn1 + bo D

where D is a Hurwitz polynomial and aj bj. Denoting by m and n the even and odd parts of a

polynomial, we can rewrite this function as

ma + na
A=-

mb + nb

To split this into two lossless networks, write it as

ma na
+--

mb + nb mb + nb

98

mb nb
mbn-- n+
mb + nb mb + nb

. . .L r



12(1) + Y12(2)

Y 22(2) + 22(2)

Now consider network 1:

ma

12(1) mb + nb

mb

22(1) mb + nb

ma
Al =-

nb

A1 is the voltage transfer function of an LC network, but the output admittance Y2 2 (1 ) does not

correspond to a lossless network. H owever, if we write

1 mb + nb nb
Z1 = . =1 +-

Y22() mb mb

it becomes apparent that network 1 corresponds to a lossless network in series with a one-ohm

resistor (as in Fig. 38a). For this lossless network,

ma

12(1) nb

mb

Y22(1) nb

ma
Al =-

mb

The methods of the previous section can now be used to realize the lossless network. In par-

ticular, it may be necessary, first, to remove a series lossless element if the degree of nb is

greater than that of mb.

For network 2,

na

Y12(2) mb + nb
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LC Y b L¢

(a) Y m (b)-n k, - (

(c)

Fig. 38. RLC grounded networks.

nb
y

2 2 (2 ) mb + nb

na

A2 =
nb

A2 is the voltage transfer function of an LC network; an exactly similar process can be carried

out by removing a one-ohm resistor from l/y22(2),

1 mb + nb
Z2 . ..

22(2) nb

mb
=1+

nb

then

na

12(2) mb

Y22(2) mb

na
A2 -

nb
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The only complication is that an s-factor cancels out of the numerator and denominator of A2 ,as
in one of the previously considered two-element-kind realizations, and a series capacitor must

be removed from Z 2 in order to produce the required network. Network 2 then appears as in

Fig. 38b. The over-all network is the parallel combination of these two networks and appears as

in Fig. 38 c. This type of configuration is a logical extension of Cauer's work on single-loaded

lossless networks.

EXAMPLE.

(s 2 - s + 1)(s+1) s3 +1
A =

(s 2 + s + 1) s3 + 2s 2 + 2s + 1

To split this into two lossless networks in series with one-ohm resistors, write

1s3

s3 + 2s2 + 2s + 1
A=

s3 + 2s
3 + 2s2 + 2s + I

+ 2s2 + 2s + 1

2s 2 + I

s3 + 2s 2 + 2s + 1

Y12(1) + Y12(2)

22(1) + Y22(2)

For network 2,

2s2 + 

22+(2) 3 + 2 2 + 2s + 

I

12 (2)= 3 + 2s2 + 2s + 1

1
A2 =

2s2 + 1

The voltage transfer function is a canonic LC form, and can be realized by a Cauer expansion

after the one-ohm resistor has been removed. The whole process can be accomplished by one

continued-fraction development,
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1
Y
22(2) 1

1 +-s + 1
2

4
-s + 1
3

3
-s
2

and the resultant network is the top ladder of Fig. 39.

3/2 1/2

Fig. 39. RLC network.

For network 1,

s 3 + 2s

s3 + 2s2 + 2s + 1

s3

'12(1) s3 + 2s2 + 2s + 1

s2
A = s2+2

s + 2

This voltage transfer function is also a canonical form and can be realized as a Cauer form after

the one-ohm resistor is removed. As before, the whole process can be accomplished by one

continued-fraction expansion
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y 
22(1) 1 1

1+--+
2s 4

-+1
3s

3

2s

and the resultant network is the bottom ladder of Fig. 39.

The over-all network is the parallel combination of these two ladders as shown in Fig. 39.

In this simple example, the series elements at the output ends of the ladders were developed in

the normal course of the Cauer development.

5. TWO TERMINAL-PAIR (UNGROUNDED) NETWORKS; TWO- AND THREE-ELEMENT-KIND

FUNCTIONS

The method given here is exactly similar to that given by Fialkow and Gerst. If an un-

grounded network is desired, the numerator of the voltage transfer function is not required to

have positive coefficients, and the most general form of the function is

ansn + an-lsn-1 +--als + a KN
A- 

bnsn + bn_sn- + b1 s + bo D

where D is a Hurwitz polynomial for RLC networks, a negative real root polynomial for RC or RL

networks or a j-axis polynomial for LC networks, and aj bj. To realize this function, we split

KN:

KN = N1 - N2

where N1 and N2 consist of all the terms of KN with positive and negative coefficients, respec-

tively. Then we can write

N1 N2
A = - - - Al - A2

D D

Now A has been split into the difference between two other voltage transfer functions, each of

which can be realized as a grounded network by using the previously discussed methods. Then

these two grounded networks are connected as in Fig. 40, in order to realize the over-all voltage

transfer function.

EXAMPLE. To illustrate this method, a very simple example will be used.

s-1
s +
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I
4I 

EiI

Fig. 40. General ungrounded configuration. Fig. 41. An Example.

Splitting this into the difference between two grounded voltage transfer functions, we have

s 1
A = A - A2 = I

s+I s+l

1
1 S

I+1 1+1
s s

Each of these grounded functions can be realized by inspection, and the over-all network is the

appropriate interconnection of these networks (as in Fig. 41). Notice that, for this particular

function, the resultant network is identical in form with a lattice realization of the same voltage

transfer function.
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