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Abstract

The separable class of random processes is
esses for which the g-function,

g0

g(x 2 , T) =

-00

defined as that class of random proc-

(x1 - ) p(x 1 , x 2 ; T) dx 1

separates into the product of two functions, one a function only of x 2, the other a func-

tion only of T. The second-order probability density function of the process is
P(xl,X 2 ;T) and p. is its mean. Various methods of determining whether a random proc-

ess is separable are developed, and basic properties of the separable class are derived.
It is proved that the separability of a random process that is passed through a

nonlinear no-memory device is a necessary and sufficient condition for the input-output
crosscovariance function to be proportional to the input autocovariance function, what-
ever nonlinear device is used. The uses of this invariance property are pointed out.

If a nonlinear no-memory device is replaced by a linear memory-capable network,
so as to minimize the mean-square difference between the two outputs for the same
separable input process, analysis shows that the optimum linear network has no mem-
ory. Simple relations among correlation functions for these circuits are also derived.

Some results on Markov processes and best estimate procedure are derived, impor-
tant examples of separable processes are given, and possible generalizations of
separability are stated.
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GLOSSARY

Symbol

Px(x, t)

P(Xl' t l ; ... ;X n t n )

A-x(t)

x(tl t)

+x(tl t)

rx2 (t)

Px(tl' t)

fx( 1 tl; ; n, tn)

Gx(f)

Horizontal bar

Definition

First-order probability density function of x(t)

nth-order probability density function of x(t)

Joint probability density function of x(t) and y(t)

Mean value of x(t)

Autocorrelation function of x(t)

Autocovariance function of x(t)

Variance of x(t)

Normalized covariance function (correlation coefficient)
of x(t)

nth-order characteristic function of x(t)

Frequency spectrum of stationary x(t)

Mean value

v



1C



I. DEFINITION AND EQUIVALENT FORMULATIONS OF THE SEPARABLE CLASS

OF RANDOM PROCESSES

1. 1 INTRODUCTION

Many problems in electrical communication theory require statistical (probabilistic)

methods of analysis in order to obtain useful measures of performance. For example,

the prediction and filtering of some waveforms requires knowledge of correlation func-

tions (1). Also, a quantitative measure of the rate of transmission of information between

two points requires joint probability density functions (2). Although the statistical

approach is the best one in many cases, the computations are often extremely involved

and cannot be carried through unless a great deal of time and money is spent on the

apparatus for computing, or special properties of certain cases are used. For instance,

the useful properties of the Markov class of random processes have facilitated compu-

tions for some analysis problems.

In this report we define a property of partially integrated second-order statistics

which we shall use to classify random processes into either separable or nonseparable

classes. One of the purposes of this classification is to point out the simplicity of anal-

ysis of some communication networks when they are excited by the separable class of

random processes.

The classification of random processes has been found to be a useful means of

dealing with some electrical engineering analysis problems. In this connection, the

Markov class of random processes has been found exceedingly useful. Thus, instead

of working an analysis problem through in detail for a special random process, it may

be that the problem can be worked through for a class of random processes. Indeed,

the ability to work a problem, for a particular random process, may not be a virtue of

that particular case, but of a broader class of random processes, all of which possess

the same useful (and perhaps simple) properties. Such is found to be the case for the

separable class of random processes in several engineering applications.

The establishment of the separable class of random processes may point the way to

other classes of random processes which are useful for different analysis problems. In

fact, in this report, we formulate some conditions, in addition to the separable classes'

conditions, that are functions of higher-order statistics, and use them for classifying

random processes for different purposes. The classification of a process does not

depend on the use to which it is put. Rather, the uses of the class are investigated sep-

arately; the uses of the separable class are amply demonstrated here.

Knowledge of the fundamental rules of probability theory is necessary for under-

standing most of the present work and it will be assumed of the reader. The statistical

quantities that are used are defined in the glossary.

The practice of presenting the simpler versions of a theory will be followed, for the

most part, and generalizations will be made at the end of each section. For example,
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we present the analysis of stationary and time-invariant cases first, and then outline the

general results that are applicable to nonstationary and time-variant cases afterwards.

1.2 FORMULATION OF SEPARABILITY

Let p(X1 , x 2 ; T) be the second-order probability density function of a (stationary)

random process. Define the g-function as

g(X T) = f (X1 - p.) P(X1l, ;T) dxl (1)

(All integrals without limits are over the range (-oo, oo). ) Notice that the g-function

is determined by an integral on second-order statistics and involves no higher-order

statistics. Now suppose that the g-function separates as

g(x 2, T) = g(X 2 ) gZ(T) (2)

for all x 2 , T. (We could now replace the variable x2 by x but we retain the x2 in order

to keep symmetry of some formulas.) We then call the random process a separable

random process. Now, since the autocovariance function of a stationary process x(t) is

+(T) = [X(t) - p] [x(t+T) - ]

= [x(t) - F] X(t+T)

= ff (X1 - ) 2 P(X 1 ' X2;T) dx 1 dx 2

= x 2 g(xZ, T) dx 2

where p(x1 ,x 2 ;T) is the second-order probability density function of the x(t) process, we

see that if Eq. 2 holds, we have

+(T) = g(T)f x gl(x2) dx Z

Then

g2 (T) = p(T) = g2 (O) p(T)
fX 2 gl ( 2 ) dx 2

where p(T) is the normalized autocovariance function, or correlation coefficient, of the

process. Thus, if the g-function separates as in Eq. 2, the function of T must be a

constant multiplied by p(T). Now let us look at Eq. 1 for T = 0. Since, following Wang

and Uhlenbeck (3),

p(X1 , X;O) = p(x 1) 6(x 2 - X1)

we have

g(x 2 , 0) = (XZ - ) () (x) = gl() g

2



where p(xZ) is the first-order probability density function of the process. Therefore

(x2 - p.)p(x 2 )

gl1(x) = g2(0)

and so

g(x, T) = (X2 - )(X 2 )p(T) (3)

Incidentally, the same separation holds for the integral on x 2 - .L:

(X2 - )p(X, X2 ; T) dx2 = ( 2z- a)P(XZ2 ;- T) dx 2

= (x 1 - )P(X 1 )P(-T) = (X1 - l)P(X 1)P(T)

Thus

if a process is separable, the g-function must split up into the product of

the correlation coefficient and a simple first-order statistic involving only

the first-order probability density function of the process.

This is an extremely simple and useful property, as will become apparent. Hence the

determination of whether a random process is separable or not can be easily deter-

mined by finding the second-order probability density function of the process, substi-

tuting in Eq. 1, and seeing if Eq. 3 holds. However, in some cases, the statistics

relating to the process may be given in a different form, perhaps in a form involving

the characteristic function. We shall derive the relation equivalent to Eq. 3 for the

characteristic function of a separable process. The second-order characteristic func-

tion f(S1 , 2; T) of a random process x(t) is defined here as

f(t 1 , ; T) = eiJ 1 [x (t)- ] ejtZ[X(t+T)-I ]

=ff e]e e p(x 1, x2 ; T) dx dx 2

This definition differs from the usual definition in the subtraction of the mean L in the

exponent. The justification for this definition lies in the simplicity of the formulas

given in this report. Let us define a G-function as

af(t 1, ;T)
G(t 2, T) = t

a 1

tz) (XzIt)
(x 1 - ) e p(Xi x 2 ; T) dx 1 dx 2

fj xe Z g(x 2 , T) dx 2 (4)
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This formula relates G and g for all processes regardless of separability. Since it is

a Fourier transform, we can obtain g from G (the inverse of Eq. 4) as

g(x 2, T) = f2 eiax 2 G(a, T) d2e (5)

It is now obvious from Eq. 4 that if g is separable, so also is G. Conversely,

from Eq. 5, if G separates, so also does g. Either g and G both separate or neither

does. Now G is found by a single partial derivative of the second-order characteristic

function, whereas g is determined by a single integral of the second-order probability

density function. Since derivatives are usually easier to effect, the determination of

G might well be the point at which to ascertain the separability of the process. On the

other hand, if P(X 1 ,X2 ;T) is more easily found than f(l 1 , h2; T ), determination of g might

be easier. Each case must be investigated individually.

We have previously found that if g is separable, it is of the form given in Eq. 3.

We substitute this relation in Eq. 4 to determine what form G must take for a sepa-

rable process. We have

G(g 2 , T) = jp(T) e I (x2 - pi)P(X 2 ) dx2

The first-order characteristic function f( 2 ) is defined here as

( i [x(t)- ]
f(S2 ) =e

= i e

= e x p(x 2 ) dx2

Therefore

() = j (x2 - e p(x Z) dx 2

where the prime denotes a derivative with respect to the argument of f. We see there-

fore that G takes the form

G(Z2, T) =f'(2)P(T) (6)

Then if a process is separable, the G-function must split up into the

product of the derivative of the first-order characteristic function and

the correlation coefficient.

This very simple general formula is found to be exceedingly useful for determining

the basic properties of the separable class, as shown in Section II. Indeed, without this

formula, the content of Section II could not have been worked out. Equation 6 is recog-

nized as being the counterpart of Eq. 3 in a different domain.
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Still another method of determining separability can be obtained. From Eq. 4 we

have

G(Z,T) - j[x(t)-,] e 2

j[x(t)- ] ( n! xn(t+T) e j 2

n=O-00 

je 2 E n! [x(t)- xn(t+ T)
n=O

Now if

[x(t) -]Xn(t+T) = b n(T) for all n (7)

where bn is a real number independent of T, we have

G( 2 ,T)n e 2
G(92, T) = p(T)j b n n! e

n=O

which indicates a separable process. However, this line of attack requires that Eq. 7

be true, which is a sufficient but not a necessary condition. We may have a separable

process for which Eq. 7 is not true merely because of the nonexistence of the left-hand

side of Eq. 7 for large n. Thus separability and Eq. 7 are not identical; separability

is a much more lenient condition. However, if the left-hand side of Eq. 7 exists for a

certain n for a separable process, it must be the right-hand side of Eq. 7 for the

same n. Therefore

[x(t)-,]xn(t+T) = x(t)xn(t+T) - x(t)xn(t+T)

=x2g(x2 , T) dx2 = p(T) X(X 2 - )p(x 2 ) dx Z

= bnP(T)

Thus, if the waveform of x(t) is known, its substitution in the left-hand side of Eq. 7

can be made, the quantity determined for various n, compared with the right-hand side

of Eq. 7, and separability ascertained. This test fails, as we have mentioned before,

when and only when the left-hand side of Eq. 7 does not exist for some n. Since this

approach does not require the explicit determination of the second-order probability

density function or the characteristic function, it could, in some cases, be the sim-

plest way of fixing separability.

In all that has gone before, the a-c component of the random process was used
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throughout. The reason for this will become apparent in Section III when we deal with

covariance functions under distortion. The general theory could have been carried

through with the mean present, of course, but future results dictate the present formu-

lation of separability.

Notice that the requirement of separability of a process is a restriction not directly

on the form of the second-order probability density function p(x1 , X2 ;T) but on an integral

of it. This leaves open the possibility for a wide variety of separable random proc-

esses, and in Section VI we see that this is indeed so.

1.3 EXTENSION OF SEPARABILITY TO TWO RANDOM PROCESSES

We extend our definition of separability to two (stationary) random processes as

follows: Let p(x, y;T) be the joint probability density function for the two random proc-

esses x(t) and y(t). We define the g-function with respect to the y(t) process as

g(y, T) = f (x - x )P(X, y;T) dx

If g(y, T) separates as

g(y, T) = gl(Y)g 2 (r)

we say that the x(t) process is separable with respect to the y(t) process. It then follows

that, since

qxy() = f (y - 1y)g(y, T) dy

we have

g2 (T) = Cxy(T)

where oxy(T) is the crosscovariance function of the processes x(t) and y(t), and C is a

constant. However, in this case, we are unable to say anything specific about the form

of gl(y). Whereas the second-order probability density function of a process has in it

a delta function for zero shift, no such relation holds true for the joint probability density

function of two random processes at any value of shift. Thus the results for two proc-

esses, although they are more general, are less specific.

For the G-function with respect to the y(t) process,

af(x , , y;T)

G( y ,T) = x0

we find that separability implies that

G( y, T) = P (T)G 1 (y)

where the form of G 1 (9y) is, in general, unknown. The same comments made above

apply. Note that separability is easily determined, however, even though the general

form of separation is not known. The fact that separability itself holds can be quite

6



useful, even though the exact functional form, which depends on the particular case that

is being investigated, is unknown.

Analogous to Eq. 7,

[x(t) - ] yn(t+T) = bnxy(T)

for all n is a sufficient condition for the x(t) process to be separable with respect to the

y(t) process. Again, this relation is not necessary; high-order averages may not exist.

It is obvious that separability can be ascertained with respect to either process,

although one process may be separable with respect to the other without the converse

holding true. Then, too, a process x(t) may be separable with respect to a process

y(t) but not with respect to a process z(t). All these relations are functions of the exact

statistics involved, and each must be investigated on its own merit.

1.4 EXTENSION TO NONSTATIONARY PROCESSES

For nonstationary (single) random processes, we define a g-function as

g(x 2 ; tl, t 2 ) = f I[x - (tl)]p(xl tl; x2 ' t) dx

and formulate separability as

g(x 2;tlt 2 ) = gl(x 2 t)g 2 (tl t 2 )

Then by reasoning that is strictly analogous to that leading to Eq. 3, we find that

g(X 2; t t2) =(t 1 , t ) x2 A (t2) ] P(x2 t2 )

irrespective of the particular process used. Detailed computations with this g-function

are no more difficult than with the stationary case, since the time instants t 1 and t 2 are

mere dummy variables in any integration formulas for averages. Lack of stationarity

adds no great complications to statistical problems with separable processes; nonsta-

tionary processes can be used as freely as stationary processes.

7



II. BASIC PROPERTIES OF THE SEPARABLE CLASS OF RANDOM PROCESSES

2. 1 SUMS OF SEPARABLE PROCESSES

In communication networks the addition of two random processes occurs very fre-

quently. In fact, since noise is present in every part of every physical piece of appara-

tus, the resultant quantity at the "output" must be the superposition of several noise

voltages. In many cases, the addition of two processes (voltages) in the first stage,

either intentional or otherwise, has a marked effect on the performance of the over-all

system. Also, in communication across great distances, random atmospheric disturb-

ances added to the transmitted signal constitute the received waveform that the receiver

has to work on.

It is thus apparent that the study of the sum of two random processes is important

for evaluating the performance of a communication system. Since separable processes

will be found useful processes with which to excite networks by virtue of their simple

analytic properties, it is of the utmost importance to determine under what conditions

the sum of two (separable) processes is separable. Better still, we would like to find

out what the necessary and sufficient conditions are in order that the sum of two sep-

arable random processes be separable.

Suppose we add two stationary processes x(t) and y(t) together to form a third sta-

tionary process z(t):

z(t) = x(t) + y(t)

In order to determine whether or not z(t) is a separable process, we have to determine

j T 1 [Z(t)-Lz ] i 2 [Z (t+ T)-z ]

=f ei [x + y I-1x- y e Y p(x 1' 1' Y1 ; Y;T) dx 1 dy 1 d dZ

where p(x 1 ,Y1 ;X, Y2 ;T) is the joint second-order probability density function of the two

processes x(t) and y(t), and then take a derivative to determine Gz(t 2 , T). (In the rest

of this section, subscripts will be put on the various statistical parameters in order to

distinguish them.) Now in order to form any conclusions about the process z(t), we

need further knowledge about the joint second-order probability density function. Instead

of assuming specific forms for this probability density function, we assume that we are

adding two independent processes, for which it is true that

P(X 1 , Y; x2'Y 2 ;T) = Px(X1 x; T)py(y 1 , Y2 ; T)

where Px(x , x 2 ; T) and Py(Yl y 2 ; T) are the second-order probability density functions

for the x(t) and y(t) processes, respectively. Then

8



fz(~l 2 ;T ) = fx(l' 2; )fy(1 2; T )

and

G2f Z( t= 1 2;T) 

= Gx(t2 , T )fy( 2 ) + Gy(t 2, T)fx(t2 (8)

Now if the x(t) and y(t) processes are not separable, it would be a coincidence if the

z(t) process were separable, as is evident from Eq. 8. Accordingly, we restrict our-

selves to the case in which the two processes x(t) and y(t) are both separable. Then

using Eq. 6, we have

Gz( 52, T) = fx(+2)fy(2)x(T) + f(t 2 )fx( 2 )Py(T) (9)

Two sufficient conditions for the sum process z(t) to be separable are immediately

evident:

PX(T) = py(T)

and

fx(S2) = fy(t 2 )

are sufficient conditions for z(t) to be separable. (The latter condition requires, inci-

dentally, that the two processes have the same variance. We shall remove this restric-

tion presently.) However, let us now determine the necessary conditions for z(t) to be

separable under the assumption that the two additive processes are independent and

separable. We assume, then, with the use of Eq. 6, that

Gz( 2, T) f(t 2 )p(T) (10)

Now

fa) = [fx(t )fy( = fx(2)fy(2)+ fx= dfx(t,

and

X(T) + y( T)

pz(T) = = apx(T) + by(T)
x(0) + y(0)

where

x(O)
a =

4x() + y(0)

and

g(O)
b =

,x(O) + y()

9



Therefore, equating Eqs. 9 and 10, we require that

[f ()fy(g 2 ) + f()fy (2)] [apx(T) + bPy(T)] = x( 2)fy(2)P x(T) + f()f y(t)Py(T)

Regrouping terms, we arrive at

[Px(T)- PY(T)] [bfx(t 2 )fy(a 2 )- afx(62 )f ( 22) ] = 0

Therefore we must have either

PX(T) = Py(T) (i la)

or

bf' (S,)fy( 2 )= afx(2)f 2)

The first condition has already been described as a sufficient condition. The second

condition can be manipulated into a more tractable form:

1/U-2 1xZ_
[fx(2)] X [= y(2)] Y (lb)

This condition is easily verified to be a sufficient condition by substitution in Eq. 9. Thus

two sufficient conditions for the sum of two independant separable pro-

cesses x(t) and y(t) to be separable are

pX(T) = Py(T)

and

1 /ff2 1/Zr2
[fx()] = [fy()] y

Also, at least one of these conditions is necessary in order for the sum

to be separable.

Hence, two independent separable processes, with identical spectra, added together form

a new separable process with the same spectrum. On the other hand, if the spectra

are not identical, the first-order characteristic functions must satisfy Eq. lb, a

rather restrictive condition. An immediate conclusion is that the sum of two processes

is generally nonseparable. (We shall generalize our definition of separability in

Section VII to alleviate this behavior.)

In attempting to extend the previous results to the sum of more than two independent

separable processes, necessary conditions are not obvious. However, two sufficient

conditions follow easily: Let

N

z(t) = 7 xm(t)
m=l

10



Then

N

fz(1l ' 2 ; T) = iH fm( 1 l, 2 ; T)
m=l

and we have

aGf (T 1, ;T)
G (t 2 T) aI 1

N

=1
m=l

since all processes are separable.

isfies the condition

The symbol
6jk

is the Kronecker delta which sat-

and

fm0)( 2 ) = fm(2) f)(t 2 ) = fm()

Now, it is obvious that if

P1 (T) = P2 (T) = . . =PN(T) p(T)

then

G ( T) = f (t)p(T)' Z

(12a)

and z(t) is a separable process. Thus the sum of N independent separable processes

with identical spectra is separable. Alternatively, if

f ( 2 ) =f2(2) == fN(2)

then

2 2 2
('2 +. . . + N)/2

G(~ 2z T) = f (N2 ) 1
fl(2) 2

a1

mPm(T)m m

N

m=l

(12b)

d f ( + .
l~~ (

. + )/' 1 }z

11

5,=0

(5 1m) (6 Nm)
f1 (Y. . f N (~z)p (T)

6 jk 0 

= fISt )p (T



and z(t) is a separable process. Now Eqs. 12a and 12b are two sufficient conditions for

the sum process to be separable, but they have not been derived as being necessary.

Indeed, the ability to prove necessity for the sum of two processes was a result of the

fortunate grouping of terms in the expression just above Eq. 1 la. No such grouping

seems possible for more than two processes, and necessity has not been achieved.

2.2 PRODUCTS OF SEPARABLE PROCESSES

Another operation that commonly arises in communication networks is that of

multiplication. For instance, with mixers, a predominant term in the output is the

product of the two inputs. Accordingly, we shall investigate the product of two proc-

esses for separability. Let us form a stationary product process z(t) by multiplying

two stationary separable processes x(t) and y(t):

z(t) = x(t)y(t)

Then

jA 1 [z(t)- z ] j [z(t+T)-Z ~]
fz(l, 2;T) = e e

= ffff 1(xlY Z) e 2 p(x1 , Y;X2, Y2 ;T) dx dyl dx 2 dy 2

Again, we shall assume that the x(t) and y(t) processes are independent in order to

obtain results about the z(t) process without assuming specific forms for the joint

second-order probability density function. Temporarily, we shall also assume that

= y 0. Then z = 0, and

fz, Z;T) ffffe e Px( xl,2;T)py(Yl,YZ;T) dx dy 1 dx 2 dy2

Therefore

GZ( 2 T) = j///jxlyl e Px(Xl, X2 ;T)py(Y1 , Y2 ;T) dx 1 dy1 dx 2 dy 2

= jjJ e2x 2 X2px( 2 )PX(T)y 2Py(y 2 )pP ( T ) dx 2 dy 2

in which we have used Eq. 3 for both the x(t) and y(t) processes. Then

G ( 2,l T) = f( 2 )p (T)

where

pZ(T) = PX(T)Py(T)

and

fz( ) = e 2 Px(x)py(y) dx dy (13)z x y~~~~~~~~~~~~~~~~~~~~(3

12



because of the independence of the two processes. Thus the z(t) process is always

separable; that is

the product of two zero-mean independent stationary separable proc-

esses is always separable, irrespective of the particular statistics

involved such as power density spectra, characteristic functions, and

so on.

A further immediate conclusion is that the product of any number of zero-mean inde-

pendent separable processes is always separable, again, irrespective of the particular

statistics.

The determination of necessary conditions for the product of two independent sepa-

arable processes to be separable is quite involved and is somehow related to the linear

dependence or independence of px(T), p y(T), and px(T)py(T). In general, zero means

are not necessary, as may be seen by considering the product of two independent

(random) square waves alternating between A and -A, with symmetric or unsymmetric

first-order probabiliby density functions. (Example 5 of Section VI demonstrates that

a square wave is a separable process.) However, if the processes being multiplied do

not have zero means, conditions for separability to hold true are involved. We shall

derive an equation that the statistics of the individual processes must satisfy in order

that the product process be separable, for the special case in which one of the proc-

esses, say x(t), has a zero mean. This is a special case of the more general case of

two nonzero means, but it demonstrates the difficulties involved.

Let px = 0. Since the two processes are independent, 1Lz = 0, and

P z ( T) - y 
1 + y 

0a+ 2 y
Yy

Multiplying p z(T) by fz(S2), with f ( 2) given by Eq. 13, we must have

for all T, if the z(t) process is to be separable. Now, actually, ) for
Gz( 2, T) fffxy e2P(X)py(y) d x )y y2;(T) 1 2 y 1 y

= 2i 2p (r)ffe] xzpx(xa)P(Ya)[+(y - y)py(T)]dxa dy 2 (14)
w

a'
Y

for all tZ' T, if the z(t) process is to be separable. Now, actually, G( Z , T) for

x = 0 is given by

G z( Z,,2 T) = j ly 1 e PXxi (XXZT)py(Yl,yZ;T) dx 1 dx Z dy 1 dy Z

= ip X(T) e i Z Xzx (XZ)Ppy(yz*L y)[ y+( -y )y ( T)] dyZ (15)

where we have used Eq. 3 and recognized that x = 0. Thus, for separability of the

13



z(t) process, we require equality of Eqs. 14 and 15:

]Px(T) f f 2 xy y [ } P(TPx)py(y) (y _ Cly) xpy (T
1+2

- 1 XzL ] dx dy = 0

IX+ y2

for all '2' T. Or, if we rewrite, we have

PX(T)[C ()Py(T ) + C 2(g 2)] = 

where

C1(~ ) 2) Jc I(~2) = //e PX(X)py(Y)

for all 2, T

x(y - ) - x d dy

1 ++t
2r

and

2 = , , J ff XYC2z(Y = /re Z
Y dx dy2r

1+ y
YL

Now let us hold 92 fixed in

would be dc, and therefore

Eq. 16; then, since py(T) varies

unimportant), we must have

with T, (otherwise y(t)

C1 (g z ) = C2(g 2 ) = 0

for all 2.' Writing C2( 2 ) = 0 out, we must have

o 0=j i e (17)Px(x)Py(y)x d dy

2i

for all 2. C 1(gZ) = 0 yields nothing new, since the integrands in C 1 (Y2) and CZ(y 2 )

are negatives of each other. Expanding Eq. 17, we have

0 = j - Y py(Y) fxe p(X) dx dy

1 y~

+i J
-oo

IL y t (Y x py(y)xe px(x) dx dy =

_ _ _ _ jY2

14
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YY) y - 2 e Px() du dy= [ ~Y 1 + O/ z Y d

y u
ooY yY

where the minus in the last equation is due to the fact that y is negative in the range of

integration. Interchanging integrations, we have

o = i~ueizutf 0 I / - . P(y)P U)dY

=j 1 [Y Py(Y)Px () dy du, all2

or

oo . O

y2 [1
dy = 2 y 2 (Y ) dy

1 + 

for almost all u. This condition is a rather stringent condition on the statistics but we

have not been able to simplify it.

It may appear disturbing, at first, that the mean of a process should have so much

to do with the separability of a product process. However, by looking first at the prod-

uct process formed by two zero-mean processes, x(t) and y(t),

z1 (t) = x(t)y(t)

and then at the new product process obtained by adding a dc component to one of the

processes, say the y(t) process,

z2 (t)x(t) [(t)+.] = (t)y(t) + x(t)

we see that

Z2 (t) = z l (t) + 1 x(t)

Thus we have a sum of processes constituting z 2 (t). But we saw from our earlier

results on sums of separable processes (and both z l(t) and x(t) are separable),

that, in general, the sum process is not separable. Granted that in the present

case, zl(t) and x(t) are not independent, yet the essential points are the same. Thus

it is not too surprising that nonzero means can destroy the separability of the prod-

uct process.

15



2.3 NONSTATIONARY PROCESSES

We now generalize to the case of nonstationary time series. By reasoning analo-

gous to that for the time stationary case, we find that

x(tl t ) (y(t, t2)

*x(t2 t 2 ) *y(t2' t 2 )

or

1/r (t) l/Gr2 (t)

[f x(, t)] x = [fy( t)] )

are sufficient conditions in order that the sum process z(t) = x(t) + y(t) be separable, if

x(t) and y(t) are independent separable processes. Also, at least one of these conditions

is necessary in order that the sum process be separable.

For products of processes, we find that the product process z(t) = x(t)y(t) is always

separable if x(t) and y(t) are independent, separable, and have zero means. Thus

Lx(t) = ,.y(t) = 0

Again, necessary conditions seem to be very difficult to obtain.

In summary, whereas multiplying processes generally preserves separability,

adding processes seldom does. This is unfortunate, because addition is a far more

important operation in communication networks than multiplication.
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III. INVARIANCE OF COVARIANCE FUNCTIONS UNDER NONLINEAR

TRANSFORMATIONS

3.1 THE INVARIANCE PROPERTY

In the transmission of information between two distant communicators, the detection

of a signal in additive noise is all important. Various schemes have been devised for

the reliable determination of whether or not a signal is present in a received waveform

(4), and which of several possible signals is present (5). Many of these schemes depend

on the determination of a crosscorrelation function, or equivalently, a crosscovariance

function.

Since the determination of correlation functions is so important, we shall investigate

in this section some of the useful properties of the separable class of random processes

for correlation measurements, and point out potential ways of utilizing the separable

class for simplified correlation and detection schemes. We shall also relate the pres-

ent results to past work on the invariance of correlation functions under trans-

formations.

x, (t) Yl (t)

x2 (t) f y2(t)

Fig. 1 Nonlinear no-memory system.

Consider the system of Fig. 1, in which the two stationary random processes xl(t)

and x 2 (t) are used as inputs, and yl(t) and y2 (t) are outputs. One of the inputs, xl(t),

is passed through an all-pass network, and the other input, x2 (t), is passed through

a nonlinear no-memory network (which will be called a device) characterized by the

function f. Hence

y 2 (t) = f[xz(t)]

The output y2 (t) of the device f at time t thus depends solely on the input to the device

at the same time instant t. Let us now define the input crosscovariance function as

(T)= [x 1 (t) - p][x 2(t+) -) 2

=[x1 (t - Plz(t+ T)

j7(xl- PJ 1)x 2 (x 1,x 2 ;T) dxl dx 2 (18)
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where p(x 1 ,x 2 ;T) is the joint probability density function of the inputs x1 (t) and x 2 (t),

and define the output crosscovariance function as

f(T)= [Y 1(t)- yl(t)] [Y 2 (t+T) Y2 (t+T)]

= [y 1 (t)- Yl(t)] YZ(t+T) [(t)- I1] f[ 2 (t+ T)]

=ff(x1 - ~i)f(x2 )p(xl,x 2 ;T) dx1 dx 2 (19)

A subscript is put on (T) in order to indicate the dependence of the crosscovariance

function on the particular device f that is used. Now, in general, there is no relation

between +(T) and f(T). However, for the case in which the xl(t) process is separable

with respect to the x2 (t) process,

g(x2' T) = gl(X2 )(T)

we see from Eq. 19 that

4f(T) = (T) f(x 2 )g1 (x 2 ) dx 2

= Cfq(T) for all f and T (20)

where Cf is a number depending on the nonlinear device and the input statistics. Thus,

regardless of the nonlinear device used, the input and output crossco-

variance functions are identical, except for a scale factor, when the undis-

torted process is separable with respect to the "distorted" input process.

The scale factor depends on the nonlinear device and the input statistics. However,

for a fixed pair of inputs and a fixed nonlinear device, this scale factor does not change

with T.

This behavior of the covariance functions is called the invariance property. Note

that we include, as a special case, xl(t) = x 2 (t). In this case, the invariance property

relates the input-output crosscovariance function to the input autocovariance function

if the input is a separable process. In the case of one input, also, the simpler results

for the separable class, as derived in Section I are applicable. That is, since x(t) =

x 2(t)- x(t),

g(x 2 , 7) = ( 2 - )P(X 2 )P(T)

where p(XZ ) is the first-order probability density function of the input process

x(t), and

Cf 2 f f(x2)( 2 - )P(x 2 ) dx2 (21)

No such simple formula as Eq. 21 holds when xl(t) x 2 (t). In this latter case,

g(x 2 , T) must be found from (1).

18



3.2 USE OF THE INVARIANCE PROPERTY

The importance of the invariance property can be seen in several ways. Suppose,

for instance, that we wish to measure the crosscovariance function of two random proc-

esses xl(t) and x2 (t). We find, in amplifying these processes that one of the processes

undergoes some unintentional nonlinear no-memory distortion. If the undistorted input

process is separable with respect to the "distorted" input process, the nonlinearity gives

us no trouble whatsoever, and we can measure the crosscovariance function after ampli-

fication (at the output) and be assured that what we have, in fact, computed is what we

set out to get.

Or alternatively, we may deliberately put in a nonlinear no-memory device to operate

on, say, x2 (t) to simplify covariance measurements. For example, if f were the per-

fect peak clipper,

f(x) = -1, x < O

+1, x > O

then the computation of the output crosscovariance function is effected by multiplying

a waveform Yl(t) by a second delayed waveform, y2 (t+T), which takes on only two values,

±1, and by averaging. This follows by virtue of Eq. 20. But in this case multiplication

can be replaced by gating. The output Yl(t) of a network is controlled by the polarity of

the waveform y2 (t+T). Thus we have a simplified correlator that replaces the multi-

plier that is used in the conventional correlator by a gating network. In both schemes, a

delay line must be present together with an averager, and so nothing is gained along this

line. However, the multiplier is the hardest component to construct and we can actually

eliminate this component in favor of a gating network that is easier to construct. This

applies only for separable processes.

3.3 DISCUSSION AND INTERPRETATION OF THE INVARIANCE PROPERTY

In leading up to Eq. 20 we used the fact that x1 (t) was separable with respect to

x2 (t). Thus separability was a sufficient condition for the invariance property to hold.

The sufficiency of certain classes of processes for yielding the invariance property has

been investigated by several people. Bussgang (6) showed that the Gaussian process

satisfied the invariance property, and Luce (7) generalized to the class of separable

processes. (Luce could not prove the necessity of the separable class for the invariance

property to hold; in fact, he tried to generalize the Gaussian result to a wider class.

However, one of the consistency relations that must be satisfied by a joint probability

density function is violated in his work, and hence the proposed class is invalidated.)

Barrett and Lampard (8) then generalized to a class of processes that could be expanded

in a special single series, and Brown (9) later generalized to a special double series.

We shall have more to say about these classes later. In any event, all previous results

have been directed toward sufficiency classes. The question obviously arises about
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what is the most general class of processes for the invariance property to hold. In sec-

tion 3. 4 we prove rigorously that a necessary and sufficient condition for the invariance

property to hold is that the g-function separate. Then, since separability is both neces-

sary and sufficient, we know that determination of the g-function (or G-function) is the

only necessary calculation for checking whether or not the invariance property holds.

This eliminates the degree of coincidence which has accompanied the invariance property

thus far, and states in definite terms what must be true of the input processes.

Since the proof of necessity in section 3. 4 is lengthy, we present here an alternative

approach to the problem which, as well as being shorter, gives more insight into the

problem, and points out experimental limitations in determining correlation functions

by use of separability. Referring to Fig. 1, let us assume nothing about separability

of the inputs, but, rather, let us suppose that the output crosscovariance function f(T)

is proportional to the input crosscovariance function +(T) - not for all nonlinear devices

f but only for a particular device fl. That is,

Of (T) = fl(x)g(x2)g(x, T) dx2 = Cf +(T)

for all T, but nothing is known (at the moment) about Of (T) where f# f1' Then

fl( T1 ) 1

Cfl - (Tj) = ~(Tj ) fl(Xz)g(Xz ' T1) dxz

where T1 is any T with the property that )(T1 ) 0. Therefore

fl ) g(, ) - (T) g(x z Tl)] dx 2 = 0

for all T. Thus, since T1 is some fixed number, if we let

g(Xz, T1)
gl(z) (T1)

and

V(X2 , ) = g(X2 , T) - gl(X2 )4(T) (22)

we have

f f(XZ)V(x2 , T) dx 2 = 0

for all T. That is, v(x 2 , T), which is determined solely by input statistics, is orthogonal,

as a function of x2 , to the particular function fl, for all T. Therefore satisfaction of the

invariance property for a particular function fl implies very little about the function

v(x 2 , T) - only orthogonality with fl.

Let us now investigate the meaning of these results in terms of laboratory measure-

ments. Suppose we find experimentally that the output crosscovariance function for a

particular nonlinear distortion fl is proportional to the input crosscovariance function.
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Then we have found out nothing about the separability of the input process but merely

that v(x 2 , T), as defined by Eq. 22, is orthogonal to the particular nonlinear device f.

It is readily seen, however, that v(x 2 , T) can be tied down quite effectively if we

specify that the covariance functions be proportional for a certain class C of nonlinear

devices rather than for one particular nonlinear device. Then, for the class C, v(x 2, T)

is orthogonal to each and every one of the functions (or devices) in C. Now if C is a

closed (or complete) system of functions (10), then v(x 2, T) must be zero except for a

set (in x 2 ) of zero measure, for any T. If C is not a closed system, then nothing spe-

cific can be said about v(x 2 , T) except that it is orthogonal to all the functions in C; this,

in the general case, allows v(x 2 , T) to take on widely different characteristics.

Interpreting, again, in terms of laboratory measurements, we are led by the results

to the conclusion that since we can make only a finite number of measurements, we can

never hope to prove experimentally that the inputs are separable. We can only state

that v(x 2 , T) for that pair of inputs is orthogonal to all the nonlinear devices considered.

Then in order to state separability of processes, we need to know something more about

the input processes, such as how they were formed or the nature of the components

producing them. Thus we see that the results of Section II are of importance in deter-

mining whether a process (or processes) is separable. Also, the various methods of

determining separability, as given in Section I should find some use in this investigation.

We can now state that:

if the invariance property holds for any closed system of functions, then

the g-function is separable (almost everywhere).

The converse cannot be stated unequivocally; the separability of g is not enough. It

may be that for a particular function in the closed system that is under consideration,

the output covariance function does not exist for all T. In such a case the invariance

property cannot possibly hold. But let us define the class C of nonlinear devices as
P

that class for which the output crosscovariance function exists for all T. Then we alter

the previous statement to read:

The separability of the g-function is a necessary and sufficient condition

for the invariance property to hold for any closed system of functions that

is a subset of C
p

By this approach we can derive both necessity and sufficiency. In section 3. 4, we derive

this relation in a manner that does not require the statement of a closed system of func-

tions and is, therefore, more useful.

3.4 PROOF OF THE INVARIANCE PROPERTY

Consider the system of Fig. 1 with stationary input processes xl(t) and x2(t ),

and a time-invariant nonlinear no-memory network f. The output y2 (t) is deter-

mined as

y 2 (t) = f[x 2 (t)]

21

-



The input crosscovariance function, defined as

(T) = [x l (t ) - L1] [X 2 (t+T) - Z2[= [ l (t ) - i 1 ] (t+T)

=ff(x 1 -K t)XzP(X l, X;T) dxl dx2

is assumed to exist as a finite-valued Lebesgue double integral for all T. That is,

(x1 - 1l)X2 p(X1 ,Xz;T) is Lebesgue integrable for all . The input joint probability den-

sity function is p(x1, x2 ;T).

The output crosscovariance function, defined as

f(T)= [Yl(t)- Yl(t)][Y2 (t+)- Y2 (t+ T)]= [ 1 (t)- Yl(t)]Y 2( ( t+T)

= [lx(t) - lf[x 2 (t+ )]

=fj(xI - l)f(x 2)p(X1,XZ;T) dxl dx 2 (23)

exists as a Lebesgue double integral, for all T, only for a class Cp of nonlinear devices

f. That is, f is in Cp if and only if Eq. 23 exists for all T. The class Cp depends only

on the second-order probability density function P(X 1l,X 2 ;T). The subscript f on f(T)

indicates the dependence of the output crosscovariance function on the particular nonlin-

ear device that is under investigation.

Let us rewrite Eq. 23 as

f(T) = f(x 2 )g(x 2, T) dx2 (24)

where

g(x 2, T) = (x - 1 )p(xl,x 2 ;T) dx 1

We shall now prove the following theorem.

THEOREM:

g(X 2 , T) = g1 (X?)N) implies and rf(T) = Cf4(T)

almost everywhere is implied for all f in Cp, (25)

in x2 , for all T by .for all T.

Cf is a constant dependent only on the particular nonlinear device f. The satis-

faction of the left-hand side of Eqs. 25 will be called separability (of the

g-function). The satisfaction of the right-hand side of Eqs. 25 will be called

the invariance property.

Thus, the separability of the g-function is a necessary and sufficient con-

dition for the invariance property to hold.

PROOF:

Sufficiency:

From Eq. 24, for any f Cp,
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if(T) = ff(x2 )g(x2 , T) dx 2

= f(x2 )gl( 2 )q(T) dx2 = Cfq(T)

where

Cf =ff(x)gi(xz) dx2

Cf certainly exists by virtue of f E Cp; that is, Eq. 4 exists for all T.

Necessity:

We have, by assumption, f(T) = Cf4(T), for any f E Cp, for all T.

Suppose, now, that (T1 ) 0, for some T1 . (If this is not true, the

following derivation needs few revisions to establish the separability of g.)

Then

f(T 1)

cf - (T 1 )

for any f E Cp. Therefore

if(T) = f(T1) (T )

for any f E Cp, for all T. Therefore, from Eq. 24,

f(x 2)g(x 2 , T) dx 2 - (T1) f( x z) g (x z2 T1) d 2

for any f Cp, for all T. Or, equivalently,

f (x 2 )[( 2zT) - 1i(T) g( 2 Tl) dx = 0

for any f E Cp, for all T.

Consider any fixed T; call it T2 . Then

f f(x2)[g(X2, ) - (T 1) g(X2 , T)dx 2 =0

for any f E C . Let
P

(T z)
VTT2(X 2 ) = g(X2 ,T 2 ) - O(T1 )g(X 2 JT 1 ) (26)

Then

f()VTT(XZ) dx2 = (27)

for any f Cp. Choose

+lxZI if V T2(x2) >0
f(x2) = if T T( 0 (28)

-IX21 if v T (X2 )< 

v1 zx)
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This particular f belongs to Cp, since it is measurable because g is meas-

urable. Also

I f(x2)1 IX2 1

and therefore

I f(x2)g(x 2 ,) I x 2 g(X2 , T)

for all T. Now x2 g(x 2 , T)I is integrable for all T, since x 2 g(x2 , T) is integrable

for all T. Therefore f(x2 )g(x 2 , T) is integrable for all T. Thus f E Cp.

Thus with the use of f, as defined in Eq. 28, in Eq. 27, we have

X2VT T (X) dx = 0

With the use of the lemma stated below, it follows that

X2 VT T (X2) = almost everywhere

Therefore

v TZ (x) = 0 almost everywhere
T1 2

Recalling Eq. 26, we have

(T )

g(x2v T2) = (T 1)g(x 2, T1 ) almost everywhere in x2

Since, now, T2 is any T, we have

g(x, T1 )

g(X2, T) - ( 2 ) +(T) almost everywhere in x2 , for all T

g(x2,' T1)
And since T1 is a fixed number, g(T1 ) depends only on x 2 . We shall denote

it by

g(xz' T1)
gl (x2) = (T1

Then

g(x 2z' T) gl(X2 )4(T) almost everywhere in x2 , for all T.

It is obvious from this proof that, instead of Eqs. 25, we can state:

g(X2 , T) = gl(X2)+(T)

almost everywhere

in x2 , for T E S

where S is an arbi-

trary set of the real

line.

implies and

is implied

by

I f(T) = Cf4(T)

for all f E Cp,

for all T E S
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LEMMA:

Given:

fEfd = 0 with f > 0 on E

Let E be the subset of E on whichf> n. EcE 2 c . c E. Then (E) = 0 for
n p n n

all n. Otherwise, J fd > 0. Let

El = E E' = E EE =E E
1 E1' E2- E13 3 2'- E .

Therefore

E' E' =4 if m*n
m n

where 4Q is the empty set. Then let

00

A=UE'U n
n=l

and

00

(A) = E L(E n )

n=l

by the complete additivity of }p. Now

0 - p(En) (E n) = 0

Therefore )p(En) = 0, for all n, and ~p(A) = 0. However, A is the subset of E

on which f 0. Therefore f = 0 almost everywhere on E. If we let ti be

Lebesgue measure, we have our particular case.

3.5 NECESSITY OF COVARIANCE FUNCTIONS

In Section I we defined the g-function for a single stationary process as an integral

on the second-order probability density function of the input process with a factor (xl- p.):

g(xr) = (x 1 - )P(Xl ,x 2 ;T) dx 1 (1)

The reason for this definition will now be explained with reference to two stationary

input processes. One input is, as mentioned before, a special case. Consider, again,

the system of Fig. 1. Suppose we define the input and output crosscorrelation functions,

respectively, as

+ (T) = Xl (t)x 2 (t+T)

and
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f( ) = y (t)y 2(t+ T)

= xl (t)f[xz(t+ T)]

Now if we require

'If(T) = Cf/(T) (29)

for all T, where Cf is a constant dependent only on f, then for f a constant, say K, we

shall have

[ 1K = Cf¢(T)

for all T. This requires +(T) to be a constant and is obviously much too restrictive. We

therefore define the ac input and output crosscorrelation functions, respectively, as

q(T) = [X l (t)- 1 ][X2 (t+T) - 2]= q(T)- [1 [L2

and

f(T) = [Y 1 (t)- Yl(t)] [y 2 (t+T)- yz(t+T)] = *f(T) - 1 Y2 (t)

These functions are also known as the crosscovariance functions, as explained in Appen-

dix 1. The invariance property is now stated as

f(T) = Cf0(T) (30)

for all T. This form is identical with the previous form, Eq. 29, when L1= 0, but does

not suffer from the case of having f a constant. For we have

0 = Cf (T)

and consequently Cf = 0. This leaves (T) completely arbitrary.

Then with g(x, T) as defined in Eq. 1, with replaced by [[1 (for two processes),

we have

(T) = fx 2 g(x, T) dx 2

and

"f(T) =/f(x2 )g(x 2 , T) dx 2

and if f(r) and j(T) are proportional, it is obvious that any relation that must hold true

will involve g(x 2, r), and not the joint probability density function p(x, x2 ;T) explicitly.

3.6 EXTENSION TO NONSTATIONARY PROCESSES

We now discuss the results that relate to time-variant statistics and a time-variant

device f in Fig. 1. Now
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y2 (t) = f[x 2 (t),t]

which means that the nonlinear function relating x 2 (t) to y2 (t) depends also upon the time

t. For time-variant statistics we define the input crosscovariance function as

(ti t2)= [X(tl) - l1 (t 1 )][x(t2 ) - 2(tdl

= x 2g(x 2 ; t 1 , t Z) dx 2

where p(x 1 , t 1 ; X 2 , t2 ) is the joint input probability density function, and

g(x 2 ; tl t 2 ) = [x l - l(tl)](x t l ; X2 , t 2) dx1

Also, the output crosscovariance function is

f(tlit2 ) = [Y 1 (t ) - Yl (tl)] [ Y2(t 2 ) - YZ(t2 )

= f(X 2' t 2 )g(X2 ; t1 , t) dx 2

Now if xl(t) is separable with respect to x 2 (t), then

g(x2 ;tl, t 2) = gl(x 2, t 2 )(tl' t2 ) (31)

and

f(t 1, t 2 ) = (tl, t 2 ) f(xZ t9)g (x2, t 2 ) dx 2

= Cf(t 2 )k(tl, t 2 ) (32)

Thus the covariance functions are proportional for fixed t. This is the invariance

property for the time-variant case. We must include a time dependence in the scale

factor Cf to allow either for a time-variant device or for input statistics that change

with time. Conversely, if Eq. 32 is true for all t, t2 and all f for which the left-hand

side of Eq. 32 exists, we can show in a manner that is strictly analogous to that in

section 3.4 that the g-function separates as in Eq. 31. Thus,

for nonstationary processes and time-variant devices, separability of

the g-function is a necessary and sufficient condition for the invariance

property to hold.

If the input processes are the same, and separable, then from Section I,

x2 - (t 2)
g(x 2 ;tlt 2 ) = (tlt 2 ) 0.2 p(x 2 ,t 2 ) (33)

and the scale factor relating covariance functions becomes

x2 - (t) 2 (
cf(t2) = f(x2 t ) 2 p(x2 t 2) dx (34)
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These relations, Eqs. 33 and 34, readily reduce to those stated earlier for the time

stationary case.

As a special case of Eq. 32, consider

fn(x2, t2) = x.

and let f (tl, t 2 ) exist. Then it follows that
n

[Xl(tl) - lj(tl)]x2(tz) = Cf (t2 )d(tl, t2 )
n

or

x 1 (t)x2(tz) - xl(t )x2(tz) = Cf (t2 )(t 1, t 2 )
n

for all n for which the left-hand side exists. This is a convenient way of stating the

invariance property, in that moments are readily interpretable.

One more variation is obvious with the invariance property: If we restrict ourselves

to time-invariant networks but allow nonstationary inputs, we obtain

g(x 2; t t2) = gl (x 2 )¢(tl t2 )

as a necessary and sufficient condition for the invariance property to hold. This relation

is somewhat more restrictive than Eq. 31.

3.7 APPLICATION TO RADAR

We have already pointed out one important use of the invariance property and we now

elaborate slightly on the method. Let us consider that we are transmitting a random

signal s(t) and measuring the range of a target by correlating the return signal with a

delayed version of the transmitted signal (5). Then our received signal will be

y(t) = As(t - T1 ) + n(t) (35)

where n(t) is additive independent noise (intentional or otherwise), A is a gain factor

dependent on the range of the target, and T1 , is the two-way delay to the target. [We

assume there are no multiple reflections and that A does not vary over the time of

transmission of s(t).] We now correlate y(t) with a delayed version of the stored signal,

s(t - T), where T2 is variable and at our control. Then the average output of the corre-

lator is

y(t)s(t - T2 ) = [As(t - Tr) + n(t)]s(t - TZ)

= A4s(T 1 - T2 )

in which we have let s(t) = n(t) = 0, which is the usual case. Now in some applications,

the spectrum of the transmitted signal is deliberately shaped, so that the rate of decay
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of the correlation function indicates how far off our local estimate T2 of the actual delay

T1 is, and also spurious indications of the delay are avoided. It is therefore all impor-

tant that the output of the correlator yield something proportional to s(T - T2 ). Now

let us consider that before we crosscorrelate y(t) with s(t - T2 ), we deliberately distort

the stored signal s(t - T2 ) by means of a nonlinear device f. Then, as the average out-

put of our correlator, we obtain

y(t)f[s(t- T)] = [As(t T) + n(t)] f [s(t- T2)]

= As(t- T1 )f[s(t - 2) ]

= A x 1 f(x 2 )Ps(Xlx 2 ;Tl - T2) d dx 2

Now suppose that we use a separable process for the transmitted signal. Then the

average output, with the use of Eqs. 1 and 3, is

y(t)f[s(t - T2)]= A Ps( T2 )f(x 2)XZ Ps(x2 ) dx2

and we have preserved exactly the form of the correlation function, as we desired. In

this arrangement we transmit a random signal s(t) in order to avoid detection, and then

distort a delayed version of the stored signal, which may then have characteristics that

are more easily detected, as, for instance, clipped noise. Thus the transmitted signal

preserves its random nature. The correlation in the receiver may be done with simpler

equipment, for instance, by clipping, and then eliminating the multiplier, as previously

mentioned. Notice that we use separability only of the signal process in order to derive

this simplified range-preserving correlator, and assume only that the additive noise

is independent and otherwise arbitrary. In this application it is of no importance

whether the sum process, s(t) + n(t), is separable or not.

We could, instead of distorting the stored delayed signal, distort the return wave-

form given by Eq. 35, and still preserve the shape of the signal correlation function

and simplify our correlator. The average output of our correlator would be

s(t - T)f[As(t - T1 ) + n(t)] =fffx 2f(Ax, + y)pS(x, X2; l- T2 )Pn(Y)P(A) dx 1 dx 2 dydA

= Ps(T - T 2)fff xlf(Ax + )P s (X1 )Pn(y)p(A) dxl dy dA

Thus the average output is proportional to the signal correlation function, as desired.

If a clipper were chosen as the nonlinear device f, we could eliminate the multiplier for

a gating network in the correlator and obtain a simplified correlator for this arrange-

ment also. However, this may be less advantageous than the previous one. If we delib-

erately clip the return waveform, and the signal-to-noise ratio is very small, the output
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of the clipper will be essentially the polarity of the noise voltage. We shall then ruin

our signal-to-noise ratio at the output of the correlator, for, by clipping, we are almost

completely destroying the part of the return waveform which is correlated with the

delayed signal. Thus, although the correlator is simpler, its performance is poor. We

should, therefore, clip the delayed signal instead and use it as a gating signal in a sim-

plified correlator. The signal-to-ratio should be better.

Although the separable class of processes is useful for designing simplified corre-

lators, it offers no advantages in the computation of the signal-to-noise ratio for the

simplified correlators. The signal-to-noise ratio is a property of the particular sta-

tistics involved, and separability does not contain enough simplification for this com-

putation.

3.8 CONNECTION OF THE PRESENT WORK WITH OTHER RESULTS

It is of interest to see how separability is connected with previous work on the

invariance property. Barrett and Lampard (8) showed that for their class A of prob-

ability density functions, the invariance property held. Brown (9) then generalized the

class A. We shall work with Brown's class of probability density functions and show

that under Brown's hypotheses, the process is a separable one. For Brown's class,

for the joint probability density function p(xl, t1 ; xZ t 2 ) (allowing nonstationary proc-

esses), we have

p(x 1 ;x 2 t 2 ) = p(x t)P 2 (x 2 t 2) Y amn(tl' t 2 )(ml)(xl,tl) o(2)(x 2,t 2 ) (36)
m=O n=O

where pl(xl,t l ) and p2 (x, t 2 ) are the first-order probability density functions of the

processes xl(t) and x 2 (t), respectively. The 's are polynomials satisfying

PI (x, t)0m)(x, t)0(n1)(x, t) dx = 6(37a)

jp( x t) )(x, t)n )(x, t) dx = (37b)

and amn is given by

amn(tT, t ) = je P(Xl t ;x 2, tz)ml)(x 1 t )O()(xZ t 2 ) dx dx

Then

g(x 2 ;tl t 2 ) = [x - 1(tl)]p(xl, tl; 2 , t 2 ) dx

o

= Z aln(tl t 2 )p2 (xz t2 )(n )(xz, t 2 )l(tl) (38)

n=0

in which we have used Eqs. 36, 37, and the following equation of Barrett and Lampard (8),
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x - l(tl)
0 1(x 1 ,t 1) = l(tl )

Brown has shown that if the joint probability density function can be expanded in a series

such as Eq. 36, then

aln(t1 , t2 ) = bn(t2)P(tl t 2 ) for all n (39)

is a necessary and sufficient condition for the invariance property to hold. But sub-

stitution of this relation in formula 38 for g(x 2 ; t 1 , t 2 ) gives

P2(X2 t2 ) (2)
g(x; tl t2) = 1(tl't) bn(t n (x t) (40)

Z(tZ) n=0

= c(t 1 t)g 1(x 2 , t 2 )

which represents a separable process. Thus,

Brown's class of processes (and therefore Barrett and Lampard's), for

which aln(t, t 2 ) = bn(t2 )p(tl, t 2) for all n, is a subset of the class of sep-

arable processes.

Note that under Brown's formulation, determination of Eq. 39 would be a formidable

task indeed (some of the examples in Section VI will illustrate this). We would need to

determine the orthogonal polynomials, the functions aln(t1 , t 2 ), if they exist, and then

see if the joint probability density function could be expanded in a double series (Eq. 36).

Instead, all we need to do is to perform a single integral on the joint probability density

function and test the separability of the resulting function.

We have shown that if Eq. 39 is true, the process is separable. Conversely, we can

show that if the process is separable, and if the joint probability density function can

be expanded in a double series (Eq. 36), then Eq. 39 is true if the left-hand side exists.

We have

a (t 1 t ) = 0 )(x t 1 )0(n)(x 2 t )p(x 1tl;x2 t2) dx dx

1(t 1 ) g( ; t 1,t 2 )0

=, (tl) 2gl(x2 ' t 2)On (XZ't 2 ) dx 2

P(tl t2z) (tz) gl( 2 t 2)On2)( 2 t) dx2

=bn (t 2 )(t 1 , t2 )

Now if we are dealing with a single process, our joint probability density function
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becomes the second-order probability density function of the process, and we can show

some interesting facts about the sequence {bn(t 2 )}. Setting t = t2 t in Eq. 40, and

dropping superfluous subscripts and superscripts because we have only one process, we

have

g(x2 ; t, t) = r(t)p(x 2 , t)

n=O
bn(t) 0n(X2' t)

But

g(x2 ; t, t) = f[x - (t)] p(x, t; x2 , t) dx1

- x1 ) dx1

[x2 - (t)]P(x 2 , t)

Therefore

0c

t) = p(x 2 , t) 2

n=O

bn(t)o(t)0n(x 2 , t)

= p(x 2 , t) bo(t)cr(t) + bl(t){x - ()}

oo

+2
n=2

bn (t)o(t)On (x 2,

a 1 0 (tl, t 2 ) =f 1 (x 1 , t 1)o(X 2 , t 2 )p(x 1 t; x 2, t 2 ) dx1 dx2

l(X1, t 1 )p(x 1, t l ) dxl = 0

since 00 (x 2 , t 2 ) = 1, according to Barrett and Lampard (8).

Therefore, Eq. 41 becomes

x2 - (t)]p(x2 , t) = [x 2 - (t)]P(x 2 , t) +

Therefore

n=2

and

bn(t) = 0 for n > 2

Also, since a 11 (t l ,t 2 ) =

bn(t) n(x 2, t) = 0

This is Brown's class A . A familiar result,

X2 - g(t 2 )
g(x2; t, t 2 ) = (tl, t z2 ) (t ) P(X2 t 2)
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[X2 - (t)] p(x 2 ,

Now

t)]

(41)

o0

p(x 2 , t) I bn(t)'(t)0n(x2' t)
n=O

= IX1 ~(t] P(xl 0(x?

P(ti t2), b (t) = 



also follows. Thus, the requirement of Eq. 39 for one process results in the proc-

ess being separable and all the bn's being zero, except b which equals one. No

such simple relation in the sequence {bn(t)} exists for two processes.

Conversely, if a process is separable, then

aln(t t2) j/8 l (x1 I tl)Sn(X2 t)p(xl t; x2, t2 ) dxl dx 2

- (t ) 0n(x Z t )g(x 2 ; t 1 t ) dx2

6lnP(t1 t 2 )

and

bn(t) = In for all n

Returning to the more general case of two processes, we have shown that separa-

bility is identical with the satisfaction of Eq. 39 whenever the quantities in Eq. 39 exist.

Also, in Section I, we showed that separability is identical with cross moments, and

hence

[xI(t 1 ) - XI(t)]xZ(t 2 ) = bn(t 2)(t 1, t2 ) for all n.

Therefore there must be a direct connection between the cross moments and the quanti-

ties aln(t 1 ,t 2 ). We shall now derive the connection.

a (t, It 00)(xi I t )0(2)(x 21 dxan(t t )2 / 1 (x tl)n2) Xt2)(xl t; x 2 ' 2 1 2

and

n

o2)(X2,2) = ak )(t2)x 2

k=O

Therefore

ln(t, t2) =P(xl, tl ;x 2 t 2 ) 1 (t2)X dx1 dx2
k=O

(n) xl(tl)x2 (t2 ) - Xl(tl)x2 (t 2 )

k l(tl)k=0

Now if

x1 (t 1)xk(t) - x1(t 1)x(t 2 ) = dk(t2) (t 1t z) for all k

then

aln(t1, t2 ) = bn(t 2 )p(t 1, t 2) for all n

Conversely, if
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aln(t1 l t2 ) = bn(t2 )p(tl t 2 ) for all n

then, taking successively n = 0, 1,2 ... , in Eq. 42, we find that

x1 (t1 )xk )(t - x = d k ( t 2) (t 1 t2) for all k (43)

Thus an alternative statement of Brown's condition for the invariance property to hold

can be made in terms of cross moments, as in Eq. 43. Now the determination of the

satisfaction of Eq. 43 is much simpler than that for Eq. 39, because Eq. 39 requires

the determination of the orthogonal polynomials associated with the process and the func-

tions aln(ti, t 2 ). Also, expression 43 has a ready physical interpretation, whereas

Eq. 39 does not. On the other hand, both of these approaches suffer in the cases in

which higher-order moments do not exist, but there are no such troubles with separa-

bility.

3.9 DOUBLE NONLINEAR TRANSFORMATIONS

A further variation that bears investigation is that of inserting in the top lead of

Fig. 1 another nonlinear no-memory network f' . What, then, is the necessary and

sufficient condition that must be imposed on the input statistics for the input and output

crosscovariance functions to be proportional? We shall call it the invariance property

for this more general network. By an approach that is strictly analogous to that in

section 3.4, we find, for the stationary case, that

p(x 1 XZ; T) - P1 (x)PZ(X) = h(xl; X2 )() (44)

is a necessary and sufficient condition for the invariance property to hold.

The fnction h(x 1 , x2 ) is a function only of the variables xl and x 2. Examples of proc-

esses that satisfy Eq. 44 are difficult to find, although this class is not empty. A trivial

example of processes in this class is x l (t) = C 1 and x 2 (t) = C 2 . Luce (7) proved the

sufficiency of Eq. 44 but was unable to prove its necessity, except under very restric-

tive conditions. Extensions to nonstationary cases are straightforward.
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IV. EXTENSION OF BOOTON'S EQUIVALENT GAIN NETWORKS

4.1 SEPARABILITY AND EQUIVALENT GAIN TECHNIQUES

In some problems of electrical engineering the statistical analysis of networks is

exceedingly difficult. A simpler approximate method of analyzing networks was pro-

posed and investigated by Booton (11, 12, 13). In Booton's method, a nonlinear no-memory

device was replaced by a linear no-memory device, so chosen that the mean-square

difference between the two outputs, for a Gaussian input, was minimum. By this method,

the analysis of feedback networks, for instance, with single nonlinearities, is possible,

since the techniques of linear feedback networks are well established and are relatively

easy to apply.

In this section we extend Booton's results to the (stationary) separable class of

inputs and allow more general linear networks. Let x(t) be the input process into a

nonlinear no-memory network characterized by a function f. Then the output y(t) is

y(t) = f[x(t)]

We now want to replace the nonlinear no-memory network f by a realizable linear

memory-capable network plus a constant, with output

r(t) = C + f h(a)x(t-a) da

in such a way that the mean-square error

E = [y(t) - r(t)l]

is minimum. By allowing a choice for the quantity C, and for the impulse response

h(t), we can reduce the error E to a smaller value than with just an impulse response

alone. Furthermore, the computations are no more difficult. The error is

E = f[x(t)] - C - h(a )x(t-a) da

Then aE/8C = 0 gives

f[x(t)] = C + h(a)x(t-a) da

Substituting this value for C in the expression for the error E, we obtain

E =f[x(t)] - f[x(t)] - h(a)[x(t-a) - x(t-a)] da]

We now have to choose h(a) in such a way as to minimize E. If we define a desired

output d(t) as
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d(t) = f[x(t)] - f[x(t)]

and an input i(t) as

i(t) = x(t) - x(t)

we have to minimize

E = d(t) - j h(a)i(t-a) d]

by choice of h(a). According to Wiener (1), the optimum impulse response h(a) sat-

isfies the integral equation

bid(T) = ho(a)ii(T- a) da, T > 0 (45)

Now

ii(T) =[x(t) - x(t)] [x(t+T) - x(t+T)] = 2 p(T)

and

id(T) =[x(t) - x(t)] [f[x(t+T)1 - f[x(t+T)]]

x(t) - x(t)]f[X(t+T)]

ff( - L)f(xZ)p(xl, x2 ; r) dx 1 dx 2 (46)

Now let us suppose that the input process is a separable process. Then

Sid(T)f = ;f(x(xz - )P(xZ) dx 2p(T)

Substitution of these expressions in the integral equation (Eq. 45) for ho(a) gives

p(T) f(x 2 )(x 2 - )P(X2 ) dx2 = J ho(a)- 2 p(r-a) da

for T > 0. Therefore

h0 (a) =sf(x) x i-r p(x) dx 6(a)

That is, the optimum mean-square linear memory-capable network

which replaces a nonlinear no-memory network, has, in fact, no memory

for a separable input process! It is merely an attenuator.

Thus, when Booton restricted himself to networks with no memory, he was choosing

the best network out of the class of linear networks, for separable input processes.
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In this case, the output of the approximating network becomes

r(t) = f[x(t)] + 2 f[x(t)][x(t) - x(t)-(t)- x(t)] ~

= f(x)p(x) dx + jf (x)(x-)p(x) dx [x(t)-x(t)]

Thus, the dc and ac components of the output are separated. The dc c\

output should give little trouble in the analysis of a linear system, and t

is a mere attenuator. Notice also that the constant relating the ac compc

output to the ac component of the input to the approximating network is

2 f(x)(x-)p(x) dx = Cf

as given by Eq. 21. Thus the equivalent ac gain is the same as the constant of i

tionality in the invariance property. We have, then

r(t) = f[x(t)] + Cf[x(t)-X(t)]

Now let us define an error process for the approximation procedure as

e(t) = y(t) - r(t)

= fx(t)] - f[x(t)] - Cf[x(t)-x(t)] k47)

Then the input-error crosscorrelation function (or crosscovariance function, since

e(t) = ) is

xe(T) = x(t)e(t+T) = [x(t)-~]e(t+T)

= [x(t)-p.] {f[x(t+T) - f[x(t+T)] - Cf[X(t+T) - X(t+T)]}

= [X(t)- L]f[X(t+T)] - Cf[X(t)- ]X(t+T)

= CfN(T) - Cf(T) = 0 for all T

Then the input and error processes are linearly independent for separable processes.

The linear approximating network has done its best in attempting to resemble the

nonlinear device and leaves only an error that is linearly independent of the input, if

the input is a separable process.

We can also show that, for arbitrary nonlinear no-memory devices, the input and

error are uncorrelated only if the input process is separable. To prove this, we sup-

pose that
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qxe(T) = [x(t)-L]e(t+T) = 0 for all T

for any f; the error is found by replacing the nonlinear device f by the optimum

ear network. Then e(t) is given by Eq. 47. Therefore

= [x(t)-x(t)] [f[x(t+T)]- f[x(t+T)] - Cf[x(t+T) - x(t+T)]]

Lor any f, T, with Cf given by Eq. 21. Therefore

= [x(t)-xi(t)]f[x(t+T)] - Cf[x(t)-x(t)]x(t+T)

= f[f(x 2 ) - Cfx 2 ]g(x 2 , T) dx 2

= f f(xz)g(x2 , T) dx - Cfa p(T)

= f(x2)g(x2 , T) dx 2 - f(x2 )(x 2 - t)P(X2 ) dx 2 (T)

=/f()[g(x 2, T) - (x 2 - )p(X2 )P(T)] d 2

for any f, T. Therefore

g(x 2 , ) = ( 2 - )p(X 2 )p(T)

and we have a separable input process. Thus we have shown that

separability is a necessary and sufficient condition for the input and

error in the approximation scheme to be uncorrelated for arbitrary

nonlinear no-memory devices.

Let us now look at the output autocovariance functions of the approximating linear

network and the actual nonlinear device. We have

yy(T) = [f[X(t)](t)- f[x(t)]] [f[x(t+T)] - f[x(t+T)]]

= [Cf[x(t)-x(t)] + e(t)][Cf[x(t+T) - x(t+.)] + e(t+T)]

= Cf(T) + Cf[xe(T) + Txe(-)] + ee(T)

But if our input process is separable, we have

qxe(T) = 0xe(-T)= .

for all . Then

38



yy (T)= Cf (T) + ee(T)

Now

rr(T) = [r(t)-rt)][r(t+T) - r(t+T)]

Cf [x(t)-x(t)] [X(t+T) - X(t+T)]

-e4NT)

Therefore

yy(T) = lrr(T) + ee(T)

This relation holds true only for separable processes. In general, we have to include

cross-product terms. Thus, neglecting the error term in the linear approximation to

f amounts to neglecting bee(T) in the output autocovariance function. The formula

given above may be useful in measuring how good the approximation is. For, we have

have

Gy(f) = Gr(f) + Ge(f)

where Gz(f) is the frequency spectrum of the z(t) process. Then if we compute Gr(f)

and Ge(f), and inspect the transfer functions following the nonlinear device, we can

tell how much of Ge(f) would be suppressed in comparison with Gr(f), and obtain a

rough idea of how well our over-all approximating system will perform.

We have minimized E = ee(0) to obtain the optimum linear network. For sepa-

rable processes, we in fact obtain identically the same linear network by minimizing

f'ee(T) for any fixed T.

Also, since

r(t) - r(t) = Cf[x(t)-x(t)]

the approximating response-error crosscorrelation function (or crosscovariance func-

tion, since e(t) = O) is

$re(T) = r(t)e(t+T) = [r(t)-r(t)]e(t+T)

= Cf[x(t)-x(t)]e(t+T)

= Cfxe(T) = 0 for all T

for a separable input process. Thus the response is also linearly independent of the

error for a separable input process.

For other processes than separable processes, the optimum linear memory-capable

network impulse response will not be a delta function. In general, from Eq. 45, we have
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bid(T ) = ho(a)~ii(T-a) da, T > 0

Now

+id(T) = f f()g(x 2 , T) dx 2

from Eq. 46, and

~ii(T) x2 g(x2 , T) dx 2 = a- 2 p(T)

Therefore

f ( 2 )g( 2 , Tr) dx2 = f h(a)p(T-a) da (48)

for T > 0. Now in order for h (a) to be a delta function, the integral on the left-hand

side of Eq. 48 must become a constant multiplied by p(T). Since this happens only

coincidentally (for some particular functions f) for other processes than separable proc-

esses, we see that the optimum linear network, in general, contains memory. Thus

for the separable class alone do we get such an easy approximation network. Let it

be noted that although the solution of Eq. 48 is not difficult, in order to use this linear

network in a feedback network, for instance, we would probably have to find the system

transfer function. But we are not assured that the system transfer function will end up

as a rational function, and it is for rational transfer functions that our computations

and manipulations become very simple. If we wanted a rational transfer function, we

would have a further approximation problem. But for the separable class of processes,

we are always assured that the transfer function will be rational; in fact, it will be a

constant.

The error in a particular approximation can be evaluated fairly easily for the sepa-

rable class:

E = [f[x(t)]- f[x(t)]- Cf[x(t)-x(t)]]

2 _____2 2
= {f[x(t)] - f[x(t)1} - 2Cf[x(t)-x(t)]f[x(t)] + C 2fa 2

2 _z2 2
= f [x(t)] - f[x(t)] - Cf2 2

or

E = f (x)p(x) dx -[/f(x)p(x) dx] [ f(x) x p(x) dx]

and only the first-order probability density function is needed.
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4.2 NONLINEAR NETWORKS OF GREATER GENERALITY

A variation of this problem is possible, in which the output of the nonlinear network

is a combination of a nonlinear no-memory operation and a linear unrealizable operation

on the input:

y(t) = f[x(t)] + fu(a)x(t_) da

The problem is to approximate to y(t) by a linear realizable network. By an approach

analogous to that given in the beginning of Section IV, we find that the optimum impulse

response for a separable input process is given by

h0(a) = /f(x) x - p(x)dx 6(a) + h"(a)

where h'(a) satisfies the integral equation

f ~ h (a)p(T-a) da /U(a)p(T-a) da

for T > 0. Thus, for a separable process, the part of the optimum impulse response

corresponding to the nonlinear no-memory operation has no memory. The remaining

part is approximated to in the usual fashion (1).

Another class of nonlinear networks that is easy to deal with, if the input process

is separable, is the class (14, 15) whose output is given by

y(t) = j F[a, x(t-a)] da (49)

where x(t) is the input. This class includes realizable linear networks and nonlinear

no-memory networks as special cases. We wish to approximate to y(t) by a realizable

linear network (let x(t) = 0 for convenience), as follows:

/0
r(t) = h(a)x(t-a) da

Then, according to Wiener (1), we have to solve

bid(T) - 0(c ho(a)ii(T-a ) da

for T > 0, where

cii(T) = x(t)x(t+T) = p(T)

and

id(T) Xt) = x(t) F[a,x(t+T-a)] da =
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=- f'ff xilF(a, x2)P( X 2 ;T-a) dx 1 dx 2 da

=g f XZF(a, X)P(x2 )P(T-a) dxz da

in which we have used the fact that the input process is separable (with zero mean).

Therefore

fgm p(T-a)[x 2 F(ax)p(X) x2 dxj d 2 f h(a)p(T-) daaa

for T > 0. Therefore

h (a) = F(a, x)p(x) dx

for a > O0. Thus,

when the input process is separable (with zero mean) and the actual

nonlinear operation is given by

j F[a, x(t-a)] da

the optimum linear impulse response is easily found as

h(a) j 2 F(x, a)p(x) dx

No integral equation for ho(a) need be solved.

However this optimum linear network, in general, contains memory.

Extensions to time-variant statistics are straightforward by using the results

of previous sections.

In an actual feedback network, it may be very difficult, if not impossible, to tell

whether or not the input into a nonlinear device is a separable process. This requires

additional work, and can perhaps be best investigated by use of the moment formula,

x(t)xn(t+T) - (t)xn(t+T) = bnp(T) for all n

for separability to hold. The determination of the second-order probability density

function or characteristic function is out of the question.
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V. MARKOV PROCESSES AND BEST ESTIMATE PROCEDURE

5. 1 CORRELATION FUNCTIONS OF MARKOV PROCESSES

Doob (16) has shown that a Gaussian (zero-mean) Markov process of order one has

a correlation function that must be an exponential function. Barrett and Lampard (8)

showed that any Markov process of order one in their class A must also have an expo-

nential correlation function. We now demonstrate that this holds also for the (stationary)

separable class of random processes which is a Markov process of first order. We

assume a zero-mean process for convenience. We have, since the process is Markov

of first order,

p(x 1, X2 ;T 1)P(X 2, x3 ;T 2 )
P(X;X,T 1 ; X3 T2) 2 3; 

where T1, T2 > 0; T1 is the time between samples xl and x2 ; and T2 is the time between

samples x 2 and x 3. Then

/ P(X 1 X 2 ;T)P(X' x 3;T) dx
P(X1, X3;T1 +T ) P(X2 ) 2

and with the use of separability, we have

X lp(xl, X 3 ;Ti+T2 ) dx1 = x3P(X3 )P(T 1 +T2 )

=Xl P(XI P(X IX;T1l)P(X 3 IX2 ;T 2 ) dx 2 dx 1

P(X3 X;TZ ) XilP(Xl;, T'1 ) dx 1 dx 2

P(X 3 IX 2z;T 2 )X2 p(x)P((T ) dx

= P(T1) X2P(X2, X3 ; 2 ) dx 2

P(T 1 ) x 3 P (x 3 )P ( T 2 )

Therefore

P(T 1 + T2 ) P(T 1 )P( 2
)' T1 , T2 Z o

The only continuous real solution to this equation is

p(T) = eaT
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but, since Ip(T) P(0) = 1, we have

p(T) = e-CITI for all T

where C 0. Thus

a separable (zero-mean) Markov process of order one has a correlation

function that is an exponential.

We can also show that a separable Markov process of order one has a second-order

correlation function that is an exponential. The second-order correlation function

is

x(t)x(t + T1 )X(t + T 1+ TZ) = xl zX3p(xl;xx 2zITI;x 3) Tdx 1dx Zdx 3

= 2 x p(x2 ) jX P( x2 ;Tl)dxl x3P(Xz X3;T) dx3 dxz

=f 2 p() Xzp(X )P(T1)X)p((T2 ) dxZ

= p(T + T )f X2P(X2 ) dx

-CIT1+T2 1
= x (t) e

Thus

the second-order correlation function is an exponential for separable

Markov processes of order one. Also, the location of the middle

sample in the definition of the correlation function is unimportant.

We see this readily by setting a 1 = T1, a2 = T1 + T2 . Then

x(t)x(t + al)x(t + a 2 ) = x3(t) e 1

and a1 does not appear. However, this formula holds only for 0 , al < a 2.

Attempts to use separability to find the form of the third-order correlation function,

for Markov processes of order one, met with failure because of lack of knowledge of

statistics. We need knowledge about

xP(X 1 , Xz; T) dxl

about which we have made no assumptions.
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5.2 SINGLE SAMPLE BEST ESTIMATE PROCEDURE

Given the past history of a signal plus noise, it is sometimes of interest to find out

what the value of the signal will be at some future time. This is a combined filtering

and prediction problem. When the signal and noise are random processes, we cannot

expect to predict exactly what the signal will be at some future time; we can only hope

to get an estimate of the signal. We define an error and attempt to minimize it by choice

of an operator on the past history of the signal plus noise. When the error is defined as

the mean-square difference between the actual future value of the signal and the imper-

fectly predicted value, we find that the best operator on the history of signal plus noise

is the conditional mean of the signal at the future time, given the past history of the

signal plus noise. This is a well-known result, but is often an ideal approach that

cannot be realized practically because of limited knowledge of the statistics of the input.

Instead of using the complete past history of the signal plus noise, we often restrict

ourselves to using a few past samples of the signal plus noise. This simplifies the

statistics that we need to know in order to find the best estimate network. In this report

we restrict ourselves to using only one sample of the (stationary) signal plus noise, the

present value, and attempt to predict the signal at some time T seconds in the future.

Let

y(t) = s(t) + n(t)

Then the best estimate or operator on y [ = y(t)] is

e(t+T) = sp(s y;T) ds

where p(s Y;T) is the conditional probability density function of the signal at time t + T,

given the value of the signal plus noise at time t. Now

p(s, y;T)
p(S y; T) =

P(Y)

and

p(s, y;T) =fPs(sl, s;T)pn(y - sl) ds

where ps(Sl, S;T) is the second-order probability density function of the signal, pn(n) is

the first-order probability density function of the noise, and p(y) is the first-order prob-

ability density function of the sum of signal and noise. Then

e(t+T) = p(y) js(s 1, s;T)pn(y - sl) ds 

Now let us assume that the signal process is a separable process. Then
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jSPs(S 1 , S;T) ds ps(s1 )[(s1 - 1S)Ps(T) + I-S]

and

e(t+T) = p y) Pn(y - Sl)P(S 1)[(s 1 - pS)Ps(T) + Is] ds

Now

Ps(Sl)Pn(Y - S) = p(sl, s + n = y)

Therefore

1
ply) n(y - sl)Ps(s1 ) = P(s s l + n =y)

and

e(t+T) = P(s l + n = y)[(s1- S)PS(T ) + s]dS

= s1(L- )p(s lls + n = y) ds 1 Ps(T) + S

also

e(t) = /s (s )p( 1 + n = y) ds 1 + (50)

Therefore

e(t+T) = e(t)Ps(T) + js[1 - PS(T)]

Now e(t) is the best estimate of the signal, given the value of the signal plus noise at

the same instant of time. Thus it is the optimum filter. Hence

for prediction and filtering of a separable signal in arbitrary additive

independent noise, the best operator on one sample is an optimum filter

with a gain ps(T) and an additive constant s[l - pS(T)].

The optimum filter is found by substituting the first-order statistics of the signal and

noise in Eq. 50. In addition to these first-order statistics, we need know only the

normalized covariance function ps () of the signal process, if it is a separable process.

Such a simple relation does not hold true for other than separable processes.

In the special case in which there is no noise, the optimum prediction is

e(t+T) = S(t)p s (T) + IS[1 - PS(T)]

which is a gain factor multiplied by the present value with an additive constant. This

linear relation, known to be true for Gaussian processes, is thus seen to be true for

separable processes. The error with the latter process is easily evaluated:
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E = [e(t+T)- s(t+T)]-

=[s(t)ps(T) + s[ - PS(T)] - S(t+T)]

=:zL - p$(T + sps(T) [1- Ps (T)

From the results under separable Markov processes of order one with zero mean,

we see that the optimum predictor with the use of one sample of (Markov) signal gives

as its output

e(t+T) = s(t)e-C TI

Thus, a mere exponential attenuator is the best predictor.

The present results are easily extended to nonstationary statistics.
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VI. EXAMPLES OF SEPARABLE PROCESSES

6. 1 GAUSSIAN PROCESS

p(X 1, X2 ;T)

g(x, T) = (x- )

= [2rraz(l - 2(T))1/2] exp

e
Zrr a-

(x -1 2

1 _ 2

(x 1 - 11) + (X2 - )z - ZP(T)(X 1 - ,)(x z _ - )

2 [1 _ P Z(T)] 

p (T)

G(S, ,T)= -- 2 e P (T)

6.2 SINE-WAVE PROCESS

x(t) = A cos(wt t+), p(O) =- 2 0 < < 2rr

f( 1 , 52' T) JO[A(t + + 212
os wT) 1/Z]

G(,, T) = - AJ 1 (A) COS T

0, lxl > 

g(x, T) =

'A2 _ x2

A

COS WT, IxI < A

6.3 ENVELOPE OF SQUARED NARROW-BAND GAUSSIAN PROCESS

p(x 1, X; T) 2 Io[ Y 1x2 ]e
2v I

Xl, X2 >_0

where - is the power of the Gaussian process (8), w(f) is its spectrum (defined for

f >_ 0),

2 2 2,1 ,~ .fO
° .fO

y = y(-r) = [Z ( 1

w(fl)w(f 2 ) cos 2(f 1 - f2 )T df 1 df 2

[0
w(f) df2

- (T)) ]
-
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Then

x

222 22
x - Z 20 2 2

g(x, T)= (T) e x>_0
200

G(, T) = f'(()2(T)

where

_ j22 e

f(a) = 2
1- j0r 

6.4 SQUARED GAUSSIAN PROCESS

G(,, T)= pZ (T)
(I - jzG2e)/ 2

where P(T) is the normalized covariance function of the zero-mean Gaussian process,

and r2 is its power. It is easily checked that no other power of a Gaussian process

yields a separable process.

6.5 SQUARE-WAVE ALTERNATING BETWEEN a AND b, RANDOMLY OR

OTHERWISE

Let x(t) = . Now

xn(t) = an + x(t)-a (bn - an)
b a

Therefore

n n
[x(t)-L]xn(t+T) = [x(t)-p]x(t+T) b a

and the process is separable with a scale factor in the cross moments of value

n
bn n

b a b k - an-k (n > 1)
b-a y

k=l

6.6 CARRIER-SUPPRESSED AMPLITUDE-MODULATED PROCESS

y(t) = x(t) sin (t + O)

If the x(t) process is separable and independant of the uniformly distributed random

variable 0, the y(t) process is recognized as being a product of two independent proc-

esses. Since the sine wave is a separable process with zero mean, y(t) will be a sep-

arable process if x(t) is a separable process with a zero mean. (Actually, if x(t) has a
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nonzero mean, it appears as a frequency component at the carrier and is eliminated.)

If we do not suppress the carrier, we have

y(t) = [l+x(t)] sin (t t+o)

and

G(t, T) = jy(t)e j Y(t+T)

= -pi(t) cos WT - PZ(a) cos WTP(T)

where

P1(a) =f J[j(1+x)]p(x) dx

and

PZ(t) =f J[(+x)]xp(x) dx

Here p(x) and p(T) are the first-order probability density function and the normalized

covariance function of the x(t) process, respectively. Thus y(t) is not a separable proc-

ess. However, we can generalize the definition of separability (as we do in Section VII)

to include cases similar to this one.

6.7 PHASE- (OR FREQUENCY-) MODULATED PROCESS

y(t) = A cos [T+ 0 + z(t)]

where z(t) is independent of the uniformly distributed random variable 0. We let z(t) = 0

with no loss of generality, since an additive constant on 0 changes nothing. This form

represents a frequency modulated wave, as well as a phase modulated wave, since z(t)

itself may be an integral of another random process. Then, since y(t) = 0,

G(,, T) = jy(t) ejy(t+T)

= -A cos [T - {z(t+T) - z(t)}] J 1 (At)

which is a separable function. Notice that we have assumed nothing about the separa-

bility of the z(t) process. Thus

a phase- (or frequency-) modulated process is separable regardless of

the modulation.

Now
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COS [T- {z(t+T) - t)}]

= Re ej [WT {(t +T) - (t)}]}

= Re {e Te (t) - z t+T)]}

= Re [eJ)Tf z (1, - ; T)]

and we need to know the second-order characteristic function of the z(t) process at two

points. For the special case of a Gaussian modulation,

f (1, -1; ) = exp[-f (1-p(T))]

and therefore, in this case,

G(a, T) = -AJ 1 (A) coS T exp[- (1-p(T))]

6.8 SQUARE-WAVE AND ARBITRARY PROCESS

We shall give a simple example of a process that is separable with respect to another

process. Bussgang (6) has given one also. Let xl(t) be an arbitrary random process

with zero mean, and let x2 (t) be a square wave alternating between A and -A, randomly

(or otherwise). Then

jgx (t+T)
G(, T) = j[Xl(t)-xl(t)] e

- sin A 4(T)
A

where (T) is the crosscorrelation function between x1 (t) and x2 (t).

6.9 REMARKS ON OTHER EXAMPLES

By using the rules given in Section II, we see that an infinity of separable processes

can be constructed. For instance, we could take any number of the examples given in

Section VI, subtract their means, and multiply them together. Thus, for example, the

product of a zero-mean Gaussian process and a sine wave is a separable process. Also,

by adding together processes with identical spectra, we can construct more separable

processes. Thus the separable class is seen to contain many widely different members,

and no over-all characteristic is apparent.

Extensions to nonstationary examples are apparent; the first seven examples are all

separable, even if nonstationary.
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VII. GENERALIZATIONS OF THE SEPARABLE CLASS OF RANDOM PROCESSES

7. 1 SEPARABILITY OF VARIOUS DEGREES

Thus far, we have been considering processes for which

g(x z , T) = (X1 - )p(X l ,X X;T) dx1 = gl(X2 )p(T)

Let us now define a process as being separable of degree n if

g(x2 , T) = (x 1 - )P(X 1
n

X2 ;T) dxl = I hk(XZ)Pk(T)

k=l

Examples of processes in this class are easily created by adding together n independent

separable processes. Let

n

y(t) = I xk(t)
k=l

Then

fy(1' f2; T)

n

=11
k=l

fk(al' t2; T)

and

Gy(,, T) = G1(, T)f) .. fn()

+ fl(g)G2 (, T) ... fn()

+ f 1 ()fz(a) ... Gn( , T)

= P1 (T)f()f2() . . fn( )

+ f 1 ()f 2 () ... fn( )Pn(T)

n

= I H k()Pk(T)
k=l

Therefore

gy(y, T) = J

-jA(y-.L ) n
e YGy(, T) d = .

k=l
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Since each hk, or Hk, depends on different properties, the sum in gy(y, T) cannot, in

general, be reduced, and we have a process separable of degree n. Thus, an amplitude-

modulated process (section 6. 6) is a separable process of degree two.

We note also that for z(t) = x(t) + y(t), where

m

g (Z. ) h(Z)X) Pk (T)

k=1

and

n

gy(z, T) = h(y)(Z)PY)(T)

[=1

we have

Gz(~, T) = G(, T)fy(E) + fx(5)Gy(5, T)

m n

Hk ()Pk (T)fy() + X f()HY)()PY)(T)
k=l =1

m+n

= Hk()Pk(T)
k=l

Then

m+n

gz(z, T) = hk(Z)Pk(T)
k=l

Thus the sum of two processes, one separable of degree m, the other separable of degree

n, yields, in general, a process separable of degree m + n. If special conditions are sat-

isfied, the degree is less than m+n. Witness the requirements (in Section II) for m =n= 1.

By an approach analogous to that used in Section II, it is seen that the product of

two independent separable processes yields, in general, a process separable of degree

three. If the means are zero, we obtain the familiar separable process of degree one.

If a process is separable of degree n,

n

g(x, T) = hk(x)Pk(T)
k=l

then the input-output crosscovariance function of a nonlinear device, given in Eq. 19, is

4f(T) = f f(x)g(x, T) dx

n

kZl CfkPk(T)k=1l

53

1�1111_----P--



where

Cf = f (x)hk(x) dx

Thus, the input-output crosscovariance function for a separable process of degree n

must be a linear combination of the n factors of the g-function. Also, the input auto-

covariance function is

4(T) = fxg(x, T) dx

n
dkPk(T)

k=l

where

dk xh k(x) dx

So there is no obvious relation between f(T) and +(T) for processes separable of degree

n 2, except that each must be a linear combination of given functions.

There also exist processes whose degree is infinite; that is, there are processes

for which the g-function is expressible in the form of a sum of separable functions only

if the sum is an infinite sum. For example, let

y(t) = ex(t)

where x(t) is a Gaussian process with zero mean. Then

Gy(5, T) = j[y(t) - y(t)] ej[y(t+T)-y (t+T)]

= je -JY(t)[y(t) ejy(t+T) - y(t) ejy(t+T)]

Now, if we show that

y(t) ej y(t+T)

can only be expressed as an infinite sum of separable functions, then Gy(~, T) must be

also. Now

y(t)eijY(t+T) = eX(t)ej ex(t+T)

x2

=Je lejte p(x 1 . x ; ) dx 1 dx 2

00 ()n fn(T) (51)
n=O
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where

fn(T) = e e p(xl, XZ;T) dx 1 dx Z

= exp ( +n + 2np(T))

The set of powers {i n } is linearly independent, as are the functions fn(T). Then the sum

in Eq. 51 could never be made less than an infinite sum, and the process is separable

of infinite degree.

A diagram of the classes of possible second-order probability density functions is

shown in Fig. 2.

_ X---`,

\
\ \

I

/ I

/ i II

Fig. 2. Classes of separable processes.

The area included in each circle represents a particular class of processes, and

includes all of the other circles (classes) of smaller radii (generality). There is an

infinity of such circles, with a process existing in each and every circle. The smallest

circle, A, is Barrett and Lampard's class (8), B is Brown's class (9), and the circle

of index n is a class separable of degree n. Note that the class n = 1 is the class that

satisfies the invariance property. The classes for n >- 2 do not.

7.2 SEPARABILITY OF VARIOUS ORDERS

Another way to generalize the useful results of the separable class is to consider

g 3 (and, possibly, higher orders of g-functions):

g3 (XzX3 ;T 1, TZ) =f (x1 - )P(x 1 ;Xz, 1 ; 3, T2 ) dx 1 (52)

where p(x 1; X2 T1 ; X 3' T2 ) is the third-order probability density function of the process.

Here, also, there are cases that are separable of various degrees. Thus, in general,

we would have to investigate processes separable of order m and degree n.

Some questions of separability can be answered, in fact, only by knowing the
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higher-order properties described in Eq. 52. For example, consider the following

processes, all of which are indeterminate, as far as separability is concerned:

(a) sum or product of dependent processes;

(b) sum of process and process delayed;

(c) separable process through linear network; and

(d) inverse of separable process.

Thus to answer questions of separability for processes a and b of this list, we need

some results on fourth-order statistics; process c requires knowledge of all orders of

input probability density functions; process d is merely a matter of coincidence that

depends on the particular second-order probability density function.
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