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Canonical Forms for Information-Lossless Finite-State Logical Machines*

David A. Huffman

Department of Electrical Engineering and Research Laboratory of Electronics
MasSachusetts Institute of Technology

Cambridge, Massachusetts

Summary: An important class of finite-state machines transforms input sequences of digits into
output sequences in a way such that, after an experiment of any finite length on the machine, its input
sequence may be deduced from a knowledge of the corresponding output sequence, its initial and final
states, and the set of specifications for the transformations by which the machine produces output
sequences from input sequences. These machines are called information-lossless."

Canonical circuit forms are shown into which any information-lossless machines may be synthe-
sized. The existence of inverses for these circuits is investigated and circuits for their realization
are derived.

1. Introduction

An information-lossless transducer is, roughly, one for which a knowledge of the output sequence

of symbols is sufficient for the determination of the corresponding sequence of input symbols. Such

transducers find application in the preparation of data for transmission through channels in which

secrecy is important or in which the signals are subject to man-made or natural noise. Many different

types of data preparation have been used. It is the purpose of this paper to derive a single block dia-

gram for the representation of the most general information-lossless transformation that can be

achieved by a finite-state machine. Emphasis will be placed on circuits which process streams of

binary symbols, even though the results obtained are applicable to other alphabets of symbols.

2. Combinational Circuits

A combinational circuit is a finite-state circuit with only one state and therefore exhibiting no

memory. Such circuits are basic components of circuits which do have memories and will be studied

briefly here only to establish notation which will be useful later in the paper. Examples of related

work appear in references 1 and 2.

For a combinational circuit, the input symbol (or combination of symbols) at any given moment

uniquely defines the output symbol (or combination of symbols). An "information-lossless" combina-

tional circuit is defined here as one which has the additional property that the output symbols uniquely

determine the input symbols. Equivalently, a "lossless" combinational circuit is one for which no two

different input combinations can produce the same output combination. The requisite one-to-one

mapping is most easily seen by examining the describing truth-table. For a circuit with n inputs and

n outputs the condition of losslessness implies the solvability of the equations showing how the outputs

(y) depend upon the inputs (x).

As an example consider the circuit described in Fig. 1. The equations of Fig. l-b, written in

terms of the operations of the logical product and of addition mod-2, are seen to be nonlinear because

they contain product terms such as x x3 . The lossless condition is satisfied because the rows of the

right-hand side of the truth table of Fig. 1-c are merely a permutation of the rows of the left-hand side.
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In Fig. l-d, e are demonstrated the "inverse" table of combinations and solutions for the x's in terms

of the y's.

In general, n equations in n unknowns have unique solutions if and only if the algebraic expansions

of Y1' Y2 ... Yn and of the products of these functions taken 2, 3, ... , and n - 1 at a time do not

contain x z... x n, but if the product function yly 2 ... yn does contain xlz... xn . The presence or

absence of the term x x2 x3 in our example corresponds to the oddness or evenness, respectively, of

the number of 1-entries in the column which would describe the function in a truth-table. For instance

the number of I's in the yl column of Fig. -c is even, and thus the algebraic expression for x in

Fig. -b does not include the term x x2 x3 . On the other hand the truth-table for the product function

Y1Y2Y 3 would have a 1-entry only in the top row; therefore the algebraic expansion of Y1 y2y 3 would

contain the term x 1x2 x3 .

The notation that will be used for blocks representing various varieties of logical or combinational

functional dependencies is given in Fig. 2. The symbols stand for either the binary signals on a single

lead or the signals on a multiplicity of leads. In Fig. 2-a the relation is to be read "x determines y,"

a statement true of any deterministic logical network. For a lossless logical network the additional

statement "y determines x" also holds. A further representation (see Fig. 2-c) will be found useful

later in this paper. In it the input signals are divided into two sets, one of which, c, is labeled

"control." The interpretation for this type of block is "For any possible control signal, c, the input x

may be determined from a knowledge of the output y, although the actual mapping of x into y may be

a function of c."

3. Terminal Description of Sequential Circuits

A sequential or finite-state circuit 3 ' 4 can be represented schematically as a combinational circuit

with some of its output signals reintroduced as input signals after some delay (see Fig. 3). We treat

here only synchronous circuits, for which the signal delay around the feedback loops is the same for

all loops and this delay corresponds to the separation between successive digits in the input and output

streams of digits. The present state of a finite-state circuit is represented by the set of response

signals, s, at the outputs of the feedback loops, and therefore the next state is represented by the set

of excitation signals, S, at the inputs of these loops. The fundamental statement of finite-state circuit

theory is contained in the relation shown in Fig. 3, which is interpreted "The next state, S, and the

output, y, are determined by the present state, s, and the input, x." For a specific circuit these

dependencies may be listed in a matrix form (flow table) or in a graph (state diagram) whose nodes

represent states of the circuit and whose directed branches represent transitions between states. Both

methods will be found useful in this paper.

The correspondence between these two forms may be illustrated by reference to the indicated entry

and the indicated transition in Fig. 4, which describes a specific two-state circuit. Each of these is

interpreted "When the circuit is in state sl and the input symbol is x = 1, the resulting output symbol

is y = O and the next state is S2.m

4. Definition of Information Quantities

The information quantities that we shall use here are related to the knowledge that an observer of

the circuit has when he has a knowledge of the describing flow table and of the sequence of output

symbols but no direct knowledge of its input symbols or of its internal states. (These quantities are

defined more precisely and illustrated more fully in reference 5.)
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Input information is related to the output observer's expectation of a given input symbol. If, for

example, the binary input symbols are equally likely and independent of each other, the input informa-

tion rate is at all times one bit per symbol.

Output information is related to the output observer's expectation of a given output symbol. In the

circuit of Fig. 4 this observer knows that the state s 1 can be followed only by transitions which yield

the output y = 0. Therefore when he knows that the state of the circuit is sl and observes that the

output is y = 0 the corresponding output information is zero.

Information is stored when, from the output observations only it becomes impossible to tell exactly

what the state of the circuit is. If, for example, an observer calculates (as he might, if given the data

in the paragraph above) that the circuit is in state s1 or state s 2 with equal probability, then for him

the circuit has stored one bit-of information. Note that the quantity of information stored in this sense

may be arbitrarily large, even for a circuit with only two states and a correspondingly simple realiza-

tion if only the input symbols are unexpected enough to the observer.

Information is lost when change of internal state takes place in such a way that data about the past

history of the circuit input is lost. Its measure is related to the probability that the actual input

symbol sequence, rather than any of the other possible input sequences, was responsible for the

observed output sequence. For example, if the output observer knows that the initial state of

our circuit is s and then sees two zeros in succession as output symbols then, for him, information

is lost, even if the final state of the circuit is now revealed to be sz, since the corresponding input

sequence could have been either 0, 1 or 1, 0, and no further analysis of the output data preceding the

initial state of s 1 or of the output data following the final state of s 2 will be of any avail in determining

which input sequence actually occurred (see Fig. 5-a). If these sequences were equally likely one bit

has been lost.

It can be proved that with these definitions of information quantities the following information

conservation equation is valid for each step in an indefinitely long sequence of observations:

input Ioutput + Ilost + stored

5. Definition of Information-Lossless Finite-State Circuit

It is clear from the preceding discussion that information loss occurs in a circuit when two or more

input sequences map into the same output sequence, because then the input sequence cannot be uniquely

determined if only the output sequence is known. More exactly, a sequential circuit is defined as loss-

less if and only if there exist no two (not necessarily different) states s i and sf and no two different

equal-length input sequences {x} and {x'} and output sequence {y} such that both {x} and {x'} can lead

from s i to sf and yield {y}. This is, of course, equivalent to saying that a circuit is lossless if and

only if, for an indefinitely long experiment in which the initial and final states and the output sequence

are known, the input sequence may be determined if the state diagram description of the circuit is given.

The primary purpose of this paper is to determine how the form of the block diagram for a general
finite-state circuit (Fig. 3) needs to be more explicitly specified in order to describe only finite-state

circuits that are information-lossless.

6. Class I Information-Lossless Circuits

The clerical procedures for the determination of losslessness can be organized rather neatly.

Consider the flow table of Fig. 6-a and the derived table of Fig. 6-b. The first row of this derived

table tells us that if the initial state of the circuit is s 1 the next state may be deduced to be either S4
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or S3 immediately upon determination of the output symbol as y = 0 or y = 1, respectively. The other

rows have similar interpretations. Clearly, the example before us is a special case for which an input

symbol always produces an immediate (mod-2) effect upon the output and is characterized by the fact

that each of the two transitions away from any state are associated with the two different output symbols.

Thus the possibility for "parallel" sequences shown in Fig. 5-b does not exist. For such circuits,

which will be called Class I circuits, it is possible to derive "inverse" circuits which, when put in

cascade with the original, produce as their output sequence an exact replica of the input sequence of the

original. The terminal specifications for these inverse circuits are easily had by completing the table

illustrated in Fig. 6-b with entries that tell what x-symbol should be associated with a given transition.

A block diagram showing one possible realization of a Class I circuit is shown in Fig. 7-a, and

one possible realization of its inverse is shown in Fig. 7-b. These two circuits differ only in the

connections made to the mod-2 adder gate, and therefore we may conclude that the inverse to a Class I

circuit can be realized in a circuit having the same number of states as the original. Moreover, since

the circuits have a reciprocal relationship, either may be used as the canonical form of a Class I

circuit. Each circuit has the requisite property that the input and output digits differ (mod-2) by a

fixed function of the circuit state, s.

7. Class II Information-Lossless Circuits

Another case of an information-lossless circuit is shown in Fig. 8. The upper four rows of the

table in Fig. 8-b are derived in a manner similar to that used for our previous example, except that

now the knowledge of an output symbol does not necessarily lead immediately to a knowledge of the

input symbol that produced it. For example, the second row of the derived table is to be interpreted

as follows: If the initial state of the original circuit is s, then the symbol y = 0 must necessarily

follow, and as a result we are not now certain whether the following state is S1 or S3 (or whether the

input symbol was x = 0 or x = 1).

The first four rows of the new table indicate that confusion may exist between states s and s3 or

between s and s 4. The two symbols s13 and s14 are entered as designators for rows which are

added to the first four rows of the table. Entries for these new rows are found by adding subscripts

found in the corresponding entries found in the rows specified by the subscripts of the designator of

the new row. For instance, the entry in the y = 1 column for the row headed s1 3 is S1 34 , since the

entries found in the rows headed s 1 and s3 were S3 and S14. The newly derived entry tells us that

if we are uncertain as to whether the state of the circuit is s or s3 and if an output symbol y = 1 is

observed, our new uncertainty is among S1, S3 , and S4. The process of generation of new rows is
repeated as long as is necessary. Ultimately, the necessity for new rows is ended, and the table is

complete. If in the process of adding subscripts from "component" rows to find the subscripts for

"composite" rows no situation is found in which the same subscript is found in two of the component

rows, then the circuit being tested is information-lossless. Our present example is a circuit of this

type.

It could have been seen directly from Fig. 8-a that the flow table described a lossless circuit,

since two and only two transitions lead to each state and each of these transitions is associated with

a different output symbol. We shall call such a circuit a Class II circuit. Thus there is no possi-

bility for "parallel" sequences shown in Fig. 5-b. Further, a knowledge of the final state of the

circuit and the last output symbol is enough for the determination of the next-to-final circuit state.

Thus the input sequence for a finite experiment on a Class II circuit may be determined from a know-

ledge of the final state and the output sequence, just as the input sequence for a finite experiment on
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a Class I circuit may be determined from a knowledge of the initial state and the output sequence.

Since, for a Class II circuit, a knowledge of a state and the output symbol for the transition leading

to that state is sufficient for the determination of the preceding state and this input symbol, this is

equivalent to saying that the combinational logic of the general block diagram of Fig. 3 is, for Class II

circuits, lossless. (See Fig. 9.)

8. General Information-Lossless Circuits

It seems to the author that both Class I and Class II circuits deserve to be called information-

lossless; the first, because an inverse circuit can always be specified, and the second, both because

a specific decoding procedure can be described once the final state of an experiment is given, and

because it is conceptually satisfying that a lossless combinational circuit in which some outputs are

reintroduced as inputs after a unit delay is also lossless in the wider sense that we have used in this

paper to apply to sequential circuits. It is only fair to point out to the reader that some other, more

restricted, definitions of terms similar to information-losslessness as used in this paper have been

used, and probably will continue to be used, by others.

There are many circuits which are lossless which are neither purely Class I nor purely Class II

circuits. For all of these circuits the test illustrated in Fig. 8-b is valid, but the circuit cannot be

synthesized in either of the canonical forms already given. Instead, the more general canonical form

shown in Fig. 10 may be shown to be appropriate for any information-lossless circuit. The canonical

forms of Fig. 7-a and Fig. 9 can be seen to be special cases of the general form given in Fig. 10.

In order to show that every lossless circuit can be put into the form of Fig. 10 a synthesis proce-

dure will be illustrated. Our working example will start with the flow table of Fig. 11-a. The test

table showing losslessness is developed as in the previous example.

The first step in the synthesis procedure involves the assignment of "a-symbols" to some of the

sets of states listed as row-headings in the test table. The assignment is made in such a way that each

circuit state is associated with at least one a-symbol, and that each set of states given its own symbol

leads in the test table to other sets also given their own symbols. Obviously, this procedure could

always be followed because we could (even though it would be uneconomical of a-symbols) assign a

distinct symbol to each row of the test table. A result of the assignment is that a matrix can be

obtained (see Fig. 1 -c) which shows how the next symbol, A, depends upon the output, y, and the

present symbol, a. Thus

y, a . A (1)

Now (see Fig. 1 -d) assign to each state having a common a-symbol a distinct "b-symbol" so that

each pair of symbols a, b defines one of the circuit states. There will be as many b-symbols nec-

essary as there are members of the largest a-set. (If the a-sets are of different sizes, the empty

entries of the matrix can be filled with a "dummy-state," so, having the property that x, s o =-- y=

x, So .) Thus

a, b = s. (2)

and A, B S (2')

so that pairs of the present (or next) symbols a, b (or A, B) determine uniquely a present (or next)

circuit state, s (or S).

Because of the method of constructing the test table (and our proven assumption that we are dealing

with a lossless circuit) it follows that no two member states, s i and sj, of a fixed a-set, ah, can each
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lead in a one-step transition to a common state, Sk , and yield a common output symbol, y. The pro-

hibited situation is shown in Fig. 1 -e. It follows that, for all physically obtainable combinations of

y, a, A, and B,

y, a, A, B > x, b (3)

This condition may be replaced by the weaker-appearing condition

y, a, B = x, b (3')

since, from

y, a - A (1)

and

y, a, B -=-x, b (3')

we may derive

y, a, B ==/ y, a, A, B x, b

The dependence of x, b upon y, a, and B for our example is given in the matrix of Fig. l-f,

which is derived from the data in Figs. 1 -a, c, and d.

Our method of assigning symbols guarantees (see relation 2' and Fig. I1 -d) that a pair of symbols

A, B determines uniquely a next-state, S. Even though S does not uniquely determine a symbol pair

A, B, it is clear that at least one pair A, B is determined by each S. If, however, in addition to

fixing S we also fix the A-symbol at one of those values which is possible, then it is apparent from

our method of assigning symbols that a unique B-symbol is then determined. Thus

S, A === B (4)

The general relation

x, s => y, S (5)

is true for any finite-state circuit. By successive application of relations 2, 5, 1, and 4, we obtain

x, a, b ~==x, s, a, b -- x, s, a, b, y, S =x, s, a, b, y, S, A => x, s, a, b, y, S, A, B

from which we extract, from the first and last terms, that

x, a, b ==- y, B (6)

A matrix derived from Fig. 11-f to show the dependence of y and B upon x, a, and b for our

example is given in Fig. 1 l-g.

The synthesis is now complete, and the embodiment of the derived general relations

x, a, b -.. y, B (6)

y, a, B ==, x, b (3')

and

y, a A (1)

in a block diagram has been given in Fig. 10. The data from Fig. 11-c and Fig. ll-d may be combined

as shown in Fig. 1 l-h, and the resulting matrix checked for its equivalence to the original specifica-

tions for our example in Fig. 1 -a.

A
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9. Inverses for General Information-Lossless Circuits

The preceding discussion has indicated (by means of a rather involved synthesis procedure) that

every information-lossless circuit can be put into the form of Fig. 10. In addition, any two subcircuits

that are in communication with each other in the manner shown in that diagram form an over-all cir-

cuit that is lossless.

This is most easily seen by picturing the manner in which the various signals comprising the

input, output, and state signals influence each other at the successive steps of an experiment. In

Fig. 12-a we have drawn three "stroboscopic views" of the general circuit with subscripts on the sig-

nals indicating the successive time intervals of our illustrative three-step experiment. The flow of

the a- and b-signals from left to right in this diagram corresponds to the actual flow of these signals

around the feedback loops of Fig. 10. The signals on the leads marked with dots are sufficient to deter-

mine those on all other leads. Specifically, as in any deterministic finite-state circuit, the initial

state (in this case, the signals a 1 and bl) and the sequence of inputs determine all later states and

the circuit output sequence.

If we think of this figure as actually representing an iterative circuit (in which left and right have

positional significance) rather than a sequential circuit (in which left and right represent earlier and

later moments of time) then we may imagine building an "inverse" circuit as in Fig. 12-b. This is

possible because the special nature of the subcircuits labeled "losslessw guarantees that it would be

physically possible to design a network with the direction of signal flow reversed on all but the "control"

leads. The knowledge of the signals on all leads marked with dots could lead to a knowledge of the

signals on all other leads, including the x-signals which it is the job of the "inverse" circuit to repro-

duce. Specifically, we have represented in this diagram the fact that we may deduce the x-sequence

from a knowledge of the y-sequence, a knowledge of the initial value (a1 ) of the state of one of the sub-

circuits, and a knowledge of the final value (B3) of the state of the other subcircuit.

The iterative network with bilateral flow of information (reference 6) given in Fig. 12-b is not, in

general, physically realizable as an analogous finite-state circuit because this would require informa-

tion flow from the "future" (right) as well as from the "past" (left). Nevertheless, this diagram indi-

cates that a decoding procedure does exist and hence proves that any circuit in the form of Fig. 10 is

information-lossless.

We conclude this section with a few more comments about the circuit of Fig. 10. Even though the

synthesis procedure has been illustrated for a single binary input (x) channel and a single output (y)

channel, it is clear that nothing in the procedure or proofs would keep us from applying the same tech-

niques even if x and y represent signals on a multiplicity of leads. Nor does the number of input and

output leads need to be the same. The logical network labeled "lossless" has an appropriate interpre-

tation even if the number of y-leads exceeds the number of x-leads, for then the lossless network

corresponds to a system of a certain number of logical equations in a smaller number of unknowns.

As long as the equations have a unique solution the associated network is still lossless. This possi-

bility allows the circuit of Fig. 10 to represent the most general method of introducing redundancy

into the output of a finite-state machine in such a way that the transformation remains information-

lossless.

Some special cases of the canonical form of Fig. 10 may be noted. If the y-signals do not actually

influence the right-hand subcircuit and if the number of feedback loops in the left-hand subcircuit is

reduced to zero (the lossless network then could be a mod-2 adding device) then the diagram would

represent the adding of a machine-generated pseudo-random signal to the input signal to form the

output signal. On the other hand, the left subcircuit could represent a simple permutation device which
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connects its inputs (x- and b-signals) to its outputs (y- and B-signals) in various orders which are func-

tions of the state of the right subcircuit. A large number of other special cases may be deduced by the

reader. The preceding work has shown that these, and other lossless circuits - no matter what the

form of the block diagram from which they were designed - can always be synthesized in the canonical

form of Fig. 10.

10. Test for Lossless Circuits of Finite "Order"

We have shown that the most general lossless finite-state circuit has no inverse" which will regen-

erate the input sequence of the original circuit; some of the data necessary for this regeneration con-

sists of the final state (Bn) of one of the subcircuits at the end of the n-step experiment. Since n may

be indefinitely large it is clear that we can place no bound on the number of time intervals between the

occurrence of an input (x) signal of the "coding" circuit and its regeneration by a "decoding" circuit.

On the other hand, one of the properties of a Class I coding circuit is that its input can be regenerated

by an inverse decoding circuit after no delay whatsoever.

Many applications of information-lossless finite-state circuits make it desirable to be able to

retrieve the coding circuit input sequence after, at most, some delay, N, which is fixed but which is

greater than that (zero delay) given by a Class I circuit. The state diagram restriction which must

hold for such circuits is illustrated in Fig. 13. In this diagram we illustrate the restriction that must

hold for a decoding delay which will not exceed N = 3 time intervals, but its extension to other delays

is obvious. The state represented at the base of the "tree" of transitions is any one of the states in

the state diagram to which the test is to be applied. But the test described below must apply to each

of the states of the circuit in order for its x-sequence to be retrievable within N = 3 time inter-

vals. We shall call a circuit that meets this test an "Nth-order" information-lossless circuit. It is
th st nd

apparent that the class of all N h-order lossless circuits includes the N- s t , N-Z n d ... , and zeroth-

order classes.

The diagram of Fig. 13 represents the tree of possibilities which exist, starting at some reference

time that we refer to as t = 0. The 2 N+1 = 16 nodes at the right side of the diagram represent the

sixteen different possible states that could exist at the end of the Nt h time interval. The heavily-

marked chain of transitions indicates the sequence of events if the input sequence is actually

X= 1, x = 0, x2 = 0, x3 = 1. The upper subtree corresponds to x = 0, and the lower subtree to

x0 = 1. The digits marked on the directed branches illustrate a possible set-of output symbol possi-

bilities associated with the various transitions. The test for third-order decodability is, in this case,

met because each possible sequence y, Y1' Y2 , Y3 is associated uniquely either with x = 0 or with

x1 = 1. In other words, no output sequence of the upper subtree can be found in the lower subtree, and

vice versa. The meeting of the test guarantees that if an initial state (at t = 0) is known a further

knowledge of Y0 , Y 1l Y2. and y3 is sufficient to determine xo, and hence the next state (at t = 1) may,

in turn, be deduced. Clearly, if the illustrated test is met for each state of a state diagram, the input

symbols may be iteratively deduced from the output symbol stream with a delay of no more than N = 3

time intervals.

The block diagram that we shall give for an Nth-order lossless circuit depends heavily upon the

definition of binary symbols with the notation K (for i = 1, 2, . . ., N) which indicate the effect of the

actual output symbol Yt occurring at time t upon the possibility of the determination of the input symbol

Xt N+ i which occurred at time t - N + i if the preceding input sequence were known. The symbol Kt

equals 1 or 0, according to whether the symbol Yt would or would not lead to the determination of

Xt-N+i '
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In our example (see Fig. 13) for N = 3, K = 0, since the transition which actually occurred (for0
x = 1) and the transition for the other value of x would both have given yo = 0, and hence a knowledge

of Yo would not lead to a determination of the actual value of x. On the other hand K = 1 because

the transition that actually occurred (for x2 = 0, with the values of xoand x presumed to be known)

and the transition for the other value of x2 would have given opposite values of Y2, and therefore a

knowledge of Y2 would lead to a determination of the actual value of x2.

In the evaluation of K = 0, for instance, we must examine a larger set of possible values of output

symbols. This value of K has been determined to be zero because the value of Yt = Y2 which actually

occurred (y2 = 1) could also have occurred (as at least one of the values of Y2 shown in the upper sub-

tree corresponding to x = 0 and t = 2) if the value of XtN+i = x2 3+1 = x0 had been opposite to the

actual value of x = 1; therefore a knowledge of the actual value of Y2 would not in itself let us deduce

the value of x, and hence we have evaluated K2 = 0.
3 2 2

Note now that the logical sum of Ko, K1 , and K2 (all of them equal to zero in our example) indi-

cates by the fact that it is zero that the sequence yo = 0, Y1 = 0, 2 = 1 does not correspond uniquely

to the actual value of x (x = 1) but could also have occurred if x had had the other possible value.
3 2 1

If one or more of the values K K, K1, or K2 had had the value one, their logical sum would also have
been one and this would have indicated that we could deduce x from a knowledge of o', Y1l and Y2

o 1 2 o N o 
In general, let us define Kt as the logical sum of Ktl, Kt 2 ... and K N . Thus K indicates by

its value (1 or 0) whether or not the value of xtN could be determined from the sequence of values

Yt-N' Yt-N+l' '. and Yt-l'
The main reason for defining the Kt -symbols and for deriving from them the Kt symbol will now

be explained. In our example (Fig. 13) for the indicated set of transitions we have derived that

K3 = 0, since the sequence yo = 0, Yl = 0, y2 = 1 could have occurred for either xo = or x = 1. If

we wish to insure that the test for decodability with delay N = 3 will be met we must insist that the

checked transitions (for t = 3) for the subtree associated with x = 1 will carry output symbols opposite

to those associated with the checked transitions in the subtree for x = 0. In other words, if K3 = 0

we must arrange in the block diagram we are deriving that y3 shall be influenced (in a mod-2 fashion)

only by the input symbol x and not by any later x-symbol. If K had been equal to unity no such

restriction on the mode of operation of the derived circuit would have to be imposed.

11. Canonical Form for Nth-order Lossless Circuits

The embodiment of the preceding ideas in a canonical form (see Fig. 14) appears to be rather com-

licated in spite of the fact that the operation of the circuit is conceptually simple. The past N input

digits are stored in the "input section." The signals shown correspond to t = 3, and subscripts indi-

cating this have been given for most of the signals in the diagram. The "output section" (it corresponds

to the right-hand subcircuit of Fig. 10) is given that name because it is driven by the circuit output

and therefore its state is a function of the past outputs of the circuit. This subcircuit may have a mul-

tiplicity of feedback loops even though only one has been drawn. By proper design of its logical net-

work and of the logical network at the top of the block diagram the C-signals (there would, in general,

be 2N such signals) may be chosen to be any arbitrary functions of the actual past output sequence

from the circuit. The stored x-signals (perhaps modified by the K signal) select one of the C-signals

via the "transfer section" as the signal F ° ° ° . The transfers which are indicated allow a signal to flow

downward if the associated controlling signal is zero, but side-track it to another lead if that con-

trolling signal is unity. The other signals at the bottom of the transfer section correspond to what the

signal F ° ° ° could have been if the x-signals had been other than their actual values, and if the
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preceding output sequence had remained fixed.

The 2N - 1 G-signals represent differences (mod-2 sums) between the actual F ° ° ° signal and what

that signal would have been if other values of x, x2, and x3 had existed. If a comparison between F ° ° °

and those other signals indicates that they could have been the same, then the appropriate Kt -signal

will have the value zero, thus indicating that determination of the input XtN+i would be impossible

from a knowledge of Yt alone.

In the K-section these various signals are brought together with the proper timing and logically

added so that the resulting value of Kto will be zero if and only if the circuit is to be operated in that
th t

mode in which the Nt h preceding input (xo in our example) alone of the stored inputs influences the

output (in a mod-2 fashion).

12. Inverses for Nth-order Lossless Circuits

It is possible to build an "inverse" circuit based on the block diagram of Fig. 14 which will regen-

erate the x-sequence from the y-sequence with a net delay of N time units when the original coding

circuit is followed in cascade by the decoding circuit. The C-, D-, and E-signals will be especially

important in the development of the inverse circuit. We shall show this circuit (Fig. 15) broken down

into several component sections for ease of explanation of its operation. The signals which are shown

on the various leads correspond to the signals which would exist at t = 3. Then the input to the inverse

circuit is the signal y3 and its output is the third (in general the Nth) previous input, xo, to the coding

circuit which the decoding circuit is just developing. This x value is the input to a subcircuit (see

Fig. 15-a) which stores the three values of x that precede x. We shall also store the three y-signals

that precede y3 (see Fig. 15-b). These y-signals are used to drive four carbon copies of the two sub-

circuits which develop the eight C-signals of Fig. 14. The result is that we have available the

C-signals that are present not only at the present time (t=3) in the coding circuit but also replicas of

these signals for the three preceding time intervals.

In order to derive x we need to have available the three signals K, K and 2 and also the

signal which is their logical sum, Ko (see Fig. 15-c). Each of the first three signals will be developed

as shown below. The restrictions imposed by the canonical circuit of Fig. 14 guarantee that either
3 2 1 r

K = 1 or K= 1 or K = 1I (more than one of these statements may be true), or that K3 = 0. Subcir-

cuits will be shown which consider each one of these four possibilities and each of these subcircuits

will indicate, if enough information is available, that x = 1. Absence of an output from a subcircuit

will indicate either that x = 0 or that not enough information is available within that circuit for a deter-

mination of x. Either all of these circuits give an output of zero, indicating that x = O, or at least

one of the circuits gives an output of one, in which case we conclude that x = 1. The four subcircuit

output signals are logically added as shown in Fig. 15-d to give x.

If at t = 0 we had compared the signal F ° ° = x 3 @ YO with the E-signals we could have deduced

that if F00° ° had a value opposite to E ° 1 then x 0, but if F ° ° had a value opposite to E0 ° ° then

x = 1. If either of these statements was true then we could deduce that Ko = 1. A circuit corre-

sponding to these statements is given in Fig. 15-e. It consists primarily of a part of the transfer

section of Fig. 14.
000

If at t = 1 we had compared the signal F = x 2 Y1 with the D-signals we could have deduced that

000 had avalueoppositetoDolo oil oooif F d had a value opposite to D anto D1 then x = 0, but if Foo had a value opposite to1 1 1 o 1

D OO and to D 1 then x 1. If either of these statements was true then we could deduce that
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2
K = 1. The corresponding circuit is shown in Fig. 15-f. At t = 2 a similar comparison between FOO

and the C-signals leads to Fig. 15-g.

The final subcircuit is active only if each of the three previous subcircuits has failed to reach a
3 2 1 oconclusion about the value of x In that case, K K K = and K 0 follows. We may conclude

from Fig. 14 that when Kg 1y ).from Fig. 14 that when K3 = 0 then y3 = C 3 @xo, and therefore x = C y3 (see Fig. 15-h).

Among other things the reader may wonder why the K signal of Fig. 14 was not required to mod-

ify the x-signals which control the various transfer sections of Fig. 15. Briefly, at any time that K

is zero in Fig. 14, then F ° ° ° = E ° ° ° = D ° ° ° = C ° ° ° and the subcircuits of Figs. 15-e, f, g are auto-

matically kept from improperly deducing that x = 1.

The work presented in this section has led us to the conclusion that the restrictions on a finite-

state circuit necessary for making it information-lossless and of Nt h order may be shown in a block-

diagram canonical form. Moreover, the decoding procedure necessary for recreating the input to the

coding circuit exists and also has a circuit representation.
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Fig. 8. Tabular test for losslessness applied to a
Class II circuit: (a) flow table and (b) test
table.

y

x,S , y,S

yS > x,s

Fig. 9. Canonical form for a Class II circuit.

Y

x

o,x,b _ y,B

a,y,8 = x,b

Fig. 10. General canonical form into which every information-
lossless finite-state circuit may be synthesized.
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Fig. 12. An information-lossless finite-state circuit and its "inverse" developed as iterative circuits.
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Fig. 13. illustrating the state-diagram test for a third-order information-lossless circuit.
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Fig. 15. The components of circuit inverse to a third-order lossless circuit.
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Fig. 15 (cont.) - The components of a circuit inverse to a third-order lossless circuit.
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