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FOREWORD

There has long been a need in science and engineering for sys-
tematic publication of research studies larger in scope than a
journal article but less ambitious than a finished book. Much
valuable work of this kind is now published only in a semiprivate
way, perhaps as a laboratory report, and so may not find its
proper place in the literature of the field. The present contribu-
tion is the fourth of the Technology Press Research Monographs,
which we hope will make selected timely and important research
studies readily accessible to libraries and to the independent
worker.

J. A. Stratton

iii







PREFACE

This Technical Report (which is also an integral part of the new
series of Technology Press Research Monographs) was written
for several purposes. Primarily, it attempts to bring together in
one place the views that this group has developed over the past half
dozen years on processing the electrical data that we record from
the nervous system. The methods that one employs in processing
data are, of course, intimately related to the substantive problems
that one is interested in, to the models that one has formulated,
and to the capabilities of the instrumentation that is at one's com-
mand. Prevailing publication policies of most specialized journals
make the discussion of these topics difficult, if not impossible.
Since there is little overlap between those who read neurophysio-
logical journals and those who are interested in communications
systems, we felt that it might be useful to provide material of
common interest to the various branches of the Communication
Sciences.

Another motivating influence was the need to clarify our own
views by making an over-all assessment of the techniques that we
use in everyday research. The presentation that is given here
will permit us in future research papers to refer to this monograph
instead of having to include lengthy and perhaps not always appro-
priate discussions of data-processing techniques.

This is hardly the place to present a case history of how an
experimentally oriented group evolves, how it works, and the
factors that determine its choice of problems and its methods.

We have greatly benefited from belonging to the intellectual com-
munity that the Research Laboratory of Electronics constitutes
within ''the Institute,! The interest that Professor Norbert Wiener
has shown in certain of our experiments has proven stimulating,
and our association with Dr. Mary A. B. Brazier's group at the
Massachusetts General Hospital has been beneficial. The assist-
ance that the Digital Computers Group of the Lincoln Laboratory,
under W. N, Papian, and in particular, Wesley Clark, Jr., have
given us has been invaluable. ‘

The present report bears the traces (and indeed the scars) of
multiple authorship. A group such as ours cannot claim to be a
''team' nor is it something akin to a committee. The data con-
tained in this monograph were collected by present or former
members or associates of the group. The chapters were primarily
written by those whose names follow the chapter titles. Among
those who are not specifically acknowledged as co-authors have




been some of our most faithful critics. They read and reread the
successive versions of the different chapters and appendixes with
almost as much ego-involvement as the authors. Among them
should be singled out George L. Gerstein, who has performed
above and beyond the call of his duty as a postdoctoral fellowship
holder. Murray Eden, Belmont Farley, George Forsen, and
Jan Kuiper helped us by their insistence on clarity. Professor
William M. Siebert made an extraordinarily generous contribu-
tion to this monograph by writing what is to us an ideal introduc-
tion to the difficult topic of random processes. Appendix A
reflects his sensitivity to the problems that concern us.

The technical services of the Research Laboratory of Electronics
made their usual important contribution to the appearance and
readability of this report. The Publications Office, headed by
Mrs. Miriam C. Smythe, has had long experience in dealing with
our prose in connection with the Quarterly Progress Reports of
the Laboratory. It was in these reports that much of the material
that is presented here was first discussed, usually in rather suc-
cinct form. Mr. Phokion Karas (from RLE's Photographic Ser-
vice) and the personnel of the Drafting Room, under
Mr. Charles P. Navedonsky, were of great assistance in the
preparation of figures and graphs. Mrs. Aurice Albert and
Mrs. Norma Getty assisted in many ways in the preparation of
this monograph; Mrs. Albert, in particular, assembled Appendix D.
It is a pleasure to acknowledge here the skill and the responsible
manner in which Frank Nardo has collaborated in much of the
processing of the data that are reported here. Miss Constance
D. Boyd and Mrs. Ann Martin of the Technology Press exhibited
unusual patience in the various phases of the manufacture of this
monograph.

Finally, this series of acknowledgments would be extraordinarily
incomplete were we not to express here our gratitude to one of
our authors, who, with his other responsibilities, carried that of
being the co-ordinating editor for the monograph: C. Daniel Geisler.
Without his persistent, gentle prodding, without his industry and
his common sense, we would have never come within striking
distance of our deadlines; we might never have finished the job.

Walter A. Rosenblith
June 18, 1959
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Chapter 1
THE QUANTIFICATION OF NEUROELECTRIC ACTIVITY

W. A. Rosenblith

Throughout the history of science experimenters from different
fields have dealt with the problem of the quantification of their data
in a variety of ways. Technological necessities and the prevailing
theoretical structure of a given field determine to a high degree the
techniques of measurement that are developed and the choice of
variables that are quantified. Experimenters concerned with prob-
lems of ""organized complexity'! I often made little effort to report
their observations in quantitative or even systematic form. They
were too aware of the limited range of experimental facts that they
could ascertain with a sufficient degree of invariance and of the
narrow realm in which they could actually verify predictions from
mathematical models.

These difficulties and an overly narrow interpretation of Lord
Kelvin' s doctrine™ may be largely responsible for the fact that
neurophysiologists, for instance, have often been hesitant to go
beyond reporting raw data in a somewhat phenomenological manner.
Such an attitude renders communication with fellow scientists haz-
ardous. If verbal statements alone are made to carry the informa-
tional burden of large bodies of data, friendly model-makers from
the physical sciences are tempted to construct theories of '"how the
brain works' on the basis of a few isolated and easily mathematized
facts.

But it was just not caprice or lack of farsightedness among the
data-rich and theory-poor scientists that produced this mismatch
between their vast labors and the relatively small amount of
theoretically integrable knowledge that became available. They
were handicapped by a lack of adequate data-processing facilities
and by the fact that the mathematical models of classical physics
(and certainly those of quantum physics) had little to offer to the
student of the nervous system or of human behavior. Hence, many

* 1] often say that when you can measure what you are speaking
about, and express it in numbers, you know something about it;

but when you cannot express it in numbers, your knowledge is of

a meagre and unsatisfactory kind; it may be the beginning of knowl-
edge, but you have scarcely, in your thoughts, advanced to the
stage of Science, whatever the matter may be.'" Contrast this view
of Lord Kelvin' s with Godel! s contention® according to which it
is purely an historical accident that it [ mathematics] developed
along quantitative lines."
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among them were interested by cybernetics, which emerged as the
philosophical expression of the communications technology of the
postwar period. It was under cybernetics' influence that many
problems relating to the behavior of complex living systems were
reconsidered. Only too often these reconsiderations turned out

to be not only suggestive but also frustrating. At that stage a search
for general principles of the behavior of the nervous system could
not help but be somewhat superficial. The neuroanatomical, the
neurophysiological, and the behavioral data extant were not in a form
that made theorizing at a fairly general level meaningful.

1.1 Problems of Measurement and Analysis in Electrophysiology

For more than two centuries - thanks to various species of
electric fish - men have been aware of the existence of "animal
electricity. " 3 More than a century ago Helmholtz measured the
conduction velocity of nerve, and throughout the second half of
the nineteenth century an appreciable amount of knowledge con-
cerning brain potentials accumulated. A recent review article
on the '"Rise of Neurophysiology in the 19th Century" 4 summarized
the situation at the end of that century as follows: ''It was known
that the brain had "spontaneous' electric activity, that potential
shifts could be elicited in the appropriate cortical areas by sensory
stimulation, that these potentials could be recorded from the skull
and that anesthesia abolished them.'" However, electrophysiology
entered its period of rapid growth only after the technology of the
vacuum tube gave us amplifiers and oscilloscopes. These two
instruments permitted electrophysioclogists to increase the sensi-
tivity of their observations and to display even rapid fluctuations
in voltages as a function of time.

The characteristic deflections or patterns in voltage-versus-
time-displays constitute the electrophysiologist' s basic data.
But how are these characteristics of a waveform to be assessed?
As long as scientists deal with DC potentials or sinusoids, an
instrument that yields one or two characteristic numbers is per-
fectly satisfactory, but when they attempt to assess arbitrary wave-
forms containing sharp ''transients'" and ''noise, ! several questions
arise. Is the voltmeter (even the vacuum-tube voltmeter) the
appropriate instrument of measurement? Is it necessary to dis-
play the complete waveform by photographing it from the face of
an oscilloscope? Can we find selective transformations upon the
data that yield meaningful descriptions while reducing the total
amount of information displayed?

A further discussion of appropriate methods for the quantifica-
tion of electrophysiological data leads us to consider issues
that the physical sciences have faced - sometimes quite explicitly
and sometimes less so - throughout their history. Before we make
measurements reflecting the behavior of complex systems, it may
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be wise to ask ourselves two sets of questions. Why do we make

a particular measurement? What conclusions (regarding the phe-
nomena under investigation) shall we be able to draw on the basis
of the measurement?

The first set of questions inquires into the purposes of the experi-
menting electrophysiologist: Is he interested in relating the elec-
trical events that he records from an isolated nerve fiber to the
physico-chemical processes that occur in the transmission of a
nerve impulse? Is he using the electrical events in order to trace
certain pathways in the nervous system? Is he trying to study the
responses of certain neural structures to carefully controlled
sensory stimuli? Is he investigating the behavior of neural struc-
tures in relation to a mathematical model that he has formulated?
Is he studying the way in which certain chemical substances affect
synaptic transmission? Is he trying to relate changes in an organ-
ism's electrical activity to conditioning or learning? Or is he con-
cerned with the presence or absence of certain patterns in this
activity, with a view towards clinical diagnosis? Neurophysiology
includes all of these experiments. The experimenter's purpose
determines the choice of his variables, the display technique for
his data, and affects the very definition of what constitutes an
experiment: Which parameters are to be held constant, how rep-
licable must a phenomenon be, ... ? Neurophysiology - which has,
compared to the physical sciences, little theoretical structure of
its own - is thus characterized by an aggregate of techniques for
the study of the nervous system or of its component parts. As a
science it stands in close relation to fields such as neuroanatomy,
sensory physiology, biochemistry, psychology, biophysics, and
medicine, and the significance of neurophysiological findings is
often assessed in terms of their relevance to the neighboring fields,

The second set of questions deals with the inferences that can
be drawn from electrophysiological "pointer readings.'" It is here
that our lack of understanding of the organizational principles and
of the mechanisms of the nervous system is felt most seriously.
The organizational structure of this nonhomogeneous medium that
consists of large numbers of highly specific elements has so far
defied useful description in terms of the over-all physical proper-
ties of the medium. Much effort has gone into analyzing the fine
structure of its various components in terms of current bio-
physical and biochemical knowledge, but up to the present these
efforts have not yielded an approach that is capable of dealing with
the unique properties that characterize the nervous system of
higher animals. Here is a system that is composed of many inter-
acting units (all of which are by no means alike), that is organized
both flexibly and hierarchically, that consists of subsystems
(enjoying various degrees of autonomy) that are capable of fulfilling
specific and/or nonspecific functions. Here is a system that reacts
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more reliably and predictably to informationally rich stimuli than

to ''simple' ones. Here is a system that is capable of learning

and of giving reasonably reliable performance throughout an extended
period of time, with all the safety factors and maintenance and
repair requirements that such performance demands.

If we want to understand the ""systems neurophysiology'' that
underlies the behavior of information-processing organisms, what
is the type of electrical activity that we should study? What type
of strategy should we adopt in dealing with the signals that we
record from the nervous system - signals whose code is known so
incompletely? Should we attempt to isolate a single neuron and
and study its behavior in great detail, hoping that we will pick the
“right! (representative) one out of a not-too-well defined popula-
tion? Should we at the other extreme, work only with the muffled
polyneural roar that is able to make itself **heard' through man's
thick skull? Should we limit ourselves to studying recordings of
""'spontaneous' activity of a neuron (or of neuronal populations),
that is, the activity that we can still observe when we have turned
off all the stimulus generators that are under our control? Or
should we study stimulus-response relations, that is, those
response events whose occurrence is by some criterion (usually
a temporal one) linked to the delivery of a definable stimulus?

Can we assume that these latter stimulus-evoked events will always
simply add to the ''spontaneous background activity, ' or must we
study their interaction in different physiological states of the
organism?

Are the biggest voltages, especially when recorded at the outside of the
skull, the most important ones to study? If we compare this situation
with the facts of speech communication, we find that it is the vowels (yea,
their first formants) that carry most of the energy among the speech
sounds, although - in English at least - it is the consonants (whose clamor
for attention is much less loud) that carry most of the linguistic informa-
tion. There are perhaps other lessons to be drawn from the study of
speech communication. When a Fourier analysis of speech signals is
carried out, the vowels (whose duration is of the order of 1/10 second)
seem to be represented much more meaningfully by Fourier components
than the consonants. The latter can be viewed as ''transients' or "'transi-
tionals, ' whose spectral composition depends much more upon the vowels
that precede or follow them. The problem of where the vowels end and
the consonants start (technically known as the segmentation problem) pre-
sents a challenge all of its own, comparable perhaps to that of defining the
duration of an evoked response. An "ah" will exhibit rather different spec-
tral components when pronounced by a man, a woman, or a child; it will
even exhibit appreciable differences when pronounced repeatedly, and in
different context, by the same individual. And yet there is something
invariant about it that makes it recognizable as an ""ah." This ""ah''-ness
is not anything that is easily characterizable by absolute numbers, but
rather by distinctive features or parametrically defined patterns, by cer-
tain relations among the components of a sound, especially in relation to
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other sounds that might have been emitted. Lest this analogy be carried
too far, let us not pretend that we are waiting for somebody to break ''the”
code of the nervous system. Let us realize that we are trying to dis-
cover the units of analysis, the distinctive features of neural signals,

that will help us order the innumerable data of the nervous system.

What are the techniques of analysis that are readily available
to electrophysiologists when they record data to deal with the range
of experimental problems that we have mentioned above? Let us
briefly mention some sample techniques that have been used. The
mathematics of circuit analysis (at least in its simpler forms)
assumes that the circuits and their components are linear, lumped,
finite, passive, and bilateral. It would, of course, be absurd
to pretend that the nervous system has these properties, though it
may be possible to find, by applying circuit theory, in what manner
the behavior of a sensory system, for instance, deviates from this
model.

If we restrict ourselves to dealing with whatever waveforms may
have been recorded, we must ask whether the specific techniques
such as Fourier analysis or correlation analysis are actually appro-
priate to the particular experimental question. Such techniques
imply that the time series analyzed satisfy certain conditions.

Obviously, the assumptions implicit in these analytical techniques
are a price that we have to pay for their use. Physical scientists
also pay this price. They, however, know so much more about the
processes that underlie the phenomena they study than we know
about the mechanisms that underlie neuroelectric phenomena. Thus,
in physical science there is a better chance of adjusting and cor-
recting models than there is in neurophysiology. And yet the stu-
dent of the nervous system has little choice until more appropriate
techniques of analysis have been developed. He must utilize those
that are available in order to find out where they cease to fit. It
may, nevertheless, be wise to take the precaution of assembling
a sufficient body of apparently consistent data before getting involved
in ambitious computations.

Is there a moral that imposes itself on the basis of the preceding
tedious and yet incomplete enumerations of problems that one faces
in this type of research? We believe that there is, and we believe
that it can be stated in a single word: pluralism. Only a pluralistic
strategy guarantees, at this stage of our knowledge of the nervous
system, that we shall not blind ourselves to useful approaches
because we have oversold ourselves on one of them. The very
multiplicity of purposes precludes our prescribing experimental
design or methods of data processing and analysis too rigidly on
intrinsic grounds. We must, rather, be prepared to make our
choice on the basis of extrinsic values or influences: Given the
biases of interest that we - as a group - have, given the physical
and intellectual surroundings in which we work, we have developed
certain methods of data processing and certain types of mathematical
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models. We believe that these techniques are capable of coming
to grips with the statistical character of neural activity which is
one of the essential features of the nervous system. We have,
furthermore, a preference for packaging our results in a form
that is reasonably quantitative; that is, we try to express as many
of our findings as we can in some mathematical representation
without always trying to fit our data to analytical functions. Since
we are dealing with a multivariate system, we are not surprised
that the patterns and relationships that we find are often statisti-
cal. Finally, it is fair to say that, while we feel more secure
when we have the guiding influence of a mathematico-physiological
model in our experiments, we are not so narrow-minded as to
ignore the usefulness and even the beauty of a good classification
scheme that relates to variables whose importance to the organism
is undeniable.

1.2. A Statistical View of Neuroelectric Phenomena

No matter which aspect of the electrical activity of the nervous
system we study, we always face the task of defining "typical
events' among those we observe experimentally. This task con-
fronts the experimenter, whether his concern is with evoked
responses or with the EEG (electroencephalograph). He has to
establish certain criteria of judgment. These criteria will be
different when he records with the aid of gross electrodes than
when he studies the activity of a single cell with the aid of a micro-
electrode. The electrophysiologist has the further problem of de-
ciding whether two observations are 'identical.' Here the identity-
defining operation may range from identity in one aspect of the event
only (such as occurrence or nonoccurrence of a spike potential) to
identity in all measurable aspects )average spike latency, distri-
bution of spike latencies, and so on).

In order to decide whether an event is typical or whether two
events differ, we really have to know something about the dis-
tribution of possible events. This distribution might be obtained
by observing responses to a large number of identical stimuli or
by repeatedly sampling an EEG (electroencephalographic)trace.
Actually, experimenters rarely have such information available to
them, and yet, if they are well trained, they choose representative
records as illustrations for their papers. It is, nevertheless,
necessary to realize that few, if any, systematic studies have
been made to assess an experimenter's information-handling
capacity as applied to his ability to view oscilloscopic traces or
examine film records. In other words, we do not really know
how safe the current procedures are. 6. 7. 8

We have tried to present and review elsewhere °~ °~ =~ some
of the available evidence on the statistical character of input-
output relations in either single units or for responses from

populations of neuronal elements. Here we shall try to summarize
the essential arguments only.
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We faced this problem first when we tried to find criteria for
deciding what constitutes a typical evoked response (a response
that is evoked by the presentation of a discrete stimulus, most
often a sensory one). There exists, to our knowledge, no gener-
ally accepted operational definition of what is meant by an evoked
response although the concept has been exceedingly useful in
electrophysiological and neuroanatomical studies of the nervous
system.

Let us briefly see how evoked responses are recorded. The
experimenter usually knows when a stimulus is being presented.
He then most often establishes the presence or absence of an
evoked response by either of two methods or by the two methods
conjointly: (1) In recording with gross electrodes, he detects
visually the presence of a characteristic waveform or deflection.
(2) In recording with microelectrodes, he detects aurally {and/or
visually) a change in the acoustic signals that represent the
electrical events '"seen' by the microelectrode after these events
have been appropriately amplified and transduced.

As should be clear from this description, the experimenter's
ability to detect such changes in visual and/or aural displays
depends upon how stable these changes are in relation to the
patterns of '"background activity. "* These changes will be most
easily detected when they have short latencies (that is, when they
occur right after the presentation of the stimuli). The more
these changes exceed the experimenter's just-noticeable-difference
for the visual or aural displays involved, the more reliable their
detection will be.

For responses that are recorded with gross electrodes, there
is variability both with respect to amplitude and with respect to
time. The evoked responses of the classical afferent pathways
exhibit relatively short latencies and little variability in latency.
It is this relative stability of the temporal aspects of these
responses that makes the use of averaging by computing devices
(such as the ERD and the ARC-1) possible and useful. It goes
without saying that latencies determined from the average evoked
response permit us to say little about the latencies of the individ-
ual responses. So far no adequate techniques have been developed
to deal with electrical events that have longer and more variable
latencies (such as the so-called '"blocking of the alpha rhythm'').

* We have already mentioned the problems of the typicality of a
response and of the identity of two responses. These problems
include in some sense decisions of how typical the background
activity is in which these responses are imbedded. Amassian

and his co-workers emphasized only recently how the presence
of spontaneous cell discharges complicates the analysis of the
effect of stimulus variables.
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For responses that are recorded from single units with the aid
of microelectrodes, the variability problem is rather different:
Here we are dealing with a set of discrete events that are quite
comparable in waveshape and amplitude but that occur at latencies
that are governed by both stimulus parameters and the existing
sequences of '"*spontaneous' firings of the cell. The changes in
the patterns of !'spontaneous' firing that do occur may result in
either increases ("excitation') or decreases ('"'inhibition') in
average firing frequency; thus variability may now affect (a) changes
in nurnber of firings (how many spikes does a given stimulus elicit
or inhibit), (b) "first''-spike latency (latency of the spike whose
occurrence is most directly linked to the delivery of the stimulus),
(c) interspike intervals, and so on.

An overview of the problem of adequate detection and descrip-
tion of evoked responses leads thus to procedures in which com-
puters are instructed to "look'' for changes in patterns of ongoing
activity that are somehow linked to the delivery of stimuli.
"Looking'" for changes in averages, such as means, or for changes
in distributions within several time intervals becomes thus a
method of search in which the properly instructed computer sup-
plements human capacities.

From all that precedes, it should be clear that we must find
ways of dealing with the undeniable fact that repeated presenta-
tions of the same stimulus do not yield '"identical' neuroelectric
responses in many physiological preparations. Instead of abdicat-
ing before this fact by declaring that neuroelectric activity is
thus not tryly quantifiable, one can take advantage of this difficulty.

The variabilities that one observes seem to have their own
regularities, which are in turn related to both stimulus and organis-
mic variables. By constructing a model that had relevant state-
ments to make with recpect to both mean and variance of popula-
tion responses, Frishkopf10 was able to give a much deeper
interpretation of neural events at the periphery of the auditory
system than had been possible previously.

If we look for an interpretation of this statistical behavior, we
must first of all consider the complexity of the system or sub-
system under study, the multiplicity of possible interactions, *
and the lack of adequate description of state in which a cell or a
neuronal population finds itself at the time when a stimulus is
presented.

A recent article of BullocklZ gives a thoughtful discussion of
the present status of the neuron doctrine and suggests several

* Sholl, 1 who has discussed the quantification of neuronal
connectivity, states, for instance, that "impulses arriving along
a single primary visual fiber will be dispersed among the 5000
neurons distributed around its terminal branches."
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major revisions. Many of the ideas expressed by Bullock force
a reconsideration of what is meant by the state of a neuron and
emphasize the necessity for looking beyond the occurrence of the
spike potential as the sole indicator of neuronal function.

Although there will undoubtedly become available more adequate
descriptions of the state of single neurons or of neuronal popula-
tions, there is serious doubt whether we shall, in the foreseeable
future, be able to dispense with statistical descriptions of neuro-
electric phenomena. Given this prognosis, we shall endeavor to
develop and use the most appropriate methods available in order
to elucidate the statistical aspects of neuroelectric activity.
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Chapter 2
EVOKED RESPONSES

M. H. Goldstein, Jr., and W. T. Peake

with

C. D. Geisler, N. Y-S. Kiang, T. T. Sandel, andJ. S. Barlow

2.1. Introduction

The importance of studies of evoked responses in electrophysio-
logical research has been discussed in Chapter 1. Responses
evoked by controlled stimuli can be recorded by microelectrodes
from one or a few nerve cells, or by gross electrodes from many
cells. It was pointed out in Chapter 1 that in either case the re-
sponses have a variable character. This chapter presents certain
approaches to quantitative descriptions of evoked responses that
are recorded by gross electrodes.

Examples of evoked responses are shown in Figs. 2.1 and 2.2.
The responses in Fig. 2.1 were recorded from the auditory cortex
of an anesthetized cat. Although the stimuli were identical, the
individual responses show appreciable fluctuation. Fig. 2,2 illus-
trates activity recorded at two different times from the scalp of a
sleeping human subject. The five traces at the top of each column
show the activity recorded following the presentation of five con-
secutive click stimuli. In the set of individual responses on the
right, a characteristic deflection is observable at approximately
the same time in each trace. In the set of traces in the left col-
umn, taken 6 minutes earlier, characteristic deflections are diffi-
cult, if not impossible, to detect.

The variable nature of evoked responses which is illustrated in
these figures makes it difficult to obtain representative measure-
ments from any one response; sometimes it is even impossible to
determine by visual examination of the recordings whether the
presentation of stimuli has in any way changed the pattern of the
recorded potentials., Some of the methods which have been used
to cope with this problem change physiological state so much that
it is difficult to determine whether the results obtained under these
somewhat special conditions apply to more nearly normal situations.
These special methods include the use of deep anesthesia to reduce
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200 pv

I00 msec

Fig. 2.1. Cortical responses to periodic auditory clicks recorded from an
anesthetized cat (Dial anesthesia). The upper trace shows the
cortical responses; the lower trace indicates the times at which
stimuli were presented. The clicks were presented monaurally
at a rate of 10 per second. The intensity level was 35 db above
VDL (Visual Detection Level, the intensity level at which a re-
spons;is just visually detectable in the recorded activity). The
recording was from a monopolar electrode in the middle ectosyl-
vian gyrus of the contralateral auditory cortex (indifferent elec-
trode on exposed neck muscle).

In the experiments reported in this chapter, acoustic stimuli
were produced by an earphone (PDR-10), and, unless otherwise
stated, presented monaurally. Clicks were produced by the ap-
plication of electrical pulses, 0.1 msec in duration, to the ear-
phone. In all figures, unless otherwise noted, upward deflection
indicates negativity of the recording electrode with respect to the
reference electrode.

"ongoing'"! act:'wity1 : 2*, and the use of locally applied strychnine
to "potentiate!’ responses, 3

Another approach to obtaining stable measurements of responses
involves the use of special techniques in the processing of recorded
activity., These techniques include: (1) selecting particular portions
of the response activity for display; (2) selective filtering so as to
enhance the characteristic deflections expected in the evoked re-
sponses?; (3) using electrpode geometry in order to enhance certain
features of the responses™; (4) superposing of response traces with
the sweep synchronized to the stimulus delivery"; and (5) averaging
of individual responses to identical stimuli.

% These references will be found listed at the end of this chapter.
No attempt has been made to be complete or to list in each case
the earliest reference in the literature. We have rather attempted
to give accessible, illustrative examples.
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Averaging of evoked responses has been facilitated in recent
years by the use of electronic devices.  Two advantages of aver-
aging are that (1) characteristic deflections may be detected in the
waveform of the average of responses where such deflections are
not visually detectable in any single response trace and (2) the
average yields more stable measurements than those obtained from
any individual response. Both aspects of averaging are illustrated
in Fig. 2.2. The bottom trace in each column is the average of
100 responses. In the columnonthe left, the averaging process
brings out a characteristic deflection that is not visually detectable
in the individual responses. In the column on the right, although
characteristic deflections are visible in the individual traces, there
is considerable fluctuation that is reduced by averaging. An illus-
tration of the stability of the average response evoked by optical
stimuli is given in Fig. 2. 3. Seventy identical stimuli were

ASLEEP ASLEEP
(6 MIN LATER)

PN NI I
IS v V/\\”\/‘\/V\

INDIVIDUAL S N
RESPONSES AS I'OO;w

500 msec
—

AVERAGE OF 100
RESPONSES N 25 uv

Fig. 2.2. Responses to periodic clicks recorded from a sleeping human
subject. The five traces in the upper left show consecutive re-
sponses taken approximately 40 minutes after the subject was
instructed to sleep. The five traces in the upper right are con-
secutive responses taken 6 minutes later. Each of the lower
traces is the average of 100 consecutive responses {computed
by ARC-1), and includes the five shown above it. Clicks were
presented binaurally at a rate of 0.75 per second. Upward de-
flection represents positivity of an electrode at the subject's
vertex with respect to an occipital electrode (Subject H-432).

In all figures in this chapter, unless otherwise noted, stimuli
were presented at the times corresponding to the beginning of
each trace (that is, the left-hand edge).
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presented consecutively. The first ten and final ten responses of
the series were averaged separately. These averages and the
average of the seventy responses are shown together with ten indi-
vidual sample responses. Note that the averages for even ten
responses show less variability than the individual traces.

Averaging, of course, is not the only way of processing evoked
activity to obtain a stable and quantifiable description of responses.
For example, when the responses have a clearly identifiable wave-
form, as in Fig. 2.1, one can measure particular characteristics
of each response. Examples of such characteristics are the ampli-
tudes of peaks in the response waveform and the time intervals
from each stimulus onset to these peaks. When a number of
responses is processed in this way, averages, histograms, and
other statistics can be computed and displayed.

#* Thus far we have taken an operational view of certain methods of pro-
cessing electrical activity that has been recorded by gross electrodes.
This type of data reduction can be viewed more mathematically by attempt-
ing to find a mathematical model which closely ''fits' the experimental
data. Models which seem to be the best candidates for desgribing certain
aspects of the electrical activity recorded from the nervous system are
the mathematical models of random processes. An introductory discussion
of random processes is given in Appendix A. The methods of mathemati-
cal statistics which are used to estimate the parameters of the assumed
models and to check the 'fit'" of the models are discussed in Appendix B.

If stimuli are presented periodically, the appropriate model may be a
periodically time-varying random process. The averaging technique would
then be a method of estimating the mean of this process. For a time-vary-
ing random process the mean is generally a function of time, and in the
periodic case the mean is a periodic function of time.

The usefulness of a mathematical model is measured by its ability to pre-
dict results of processing the data in ways different from those used to esti-
mate the parameters of the model. If a simple model "fits" the data well,
it provides an efficient way of characterizing the data and may suggest new

experiments.
In certain of the cases presented below, the computations have been car-

ried out to test specific mathematical models which postulate a certain kind
of behavior for ''neural units.' In other cases, the mathematical theory of
random processes has been used as a descriptive model without reference
to any particular neurophysiological mechanism or structure.

An important facet of the description of electrophysiological activity in
terms of random-process models - the choice of appropriate models - lies
outside the realm of mathematics. Within the theory lies the means for
estimating parameters of models, and testing the probability that the models
could have generated the recorded activity. But the choice of models is in
the hands of the research worker.

*Passages in fine print in chapters 2 and 3 are written from the
viewpoint of random process models. A knowledge of the material
contained in Appendixes A and B is assumed.
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Fig. 2.3. Cortical responses to periodic light flashes recorded from an
anesthetized cat (Dial anesthesia). 70 monocular light pulses
about 100 msec long and 7 log units above VDL were presented
at a rate of 0.2 per second. The lower traces in A, B, and C
show the duration of the light flash. The beam supplied by the
photic stimulator was focused at the cornea of the cat where it
subtended a visual angle of 29°. Averages computed by ARC-1.
Courtesy of E. Berger and O. Gutierrez.

2.2. Processing of Evoked Responses

In this section, several examples are discussed in which neuro-
electric evoked response data have been processed in various ways.
Emphasis is placed on the techniques used in treating the data
rather than upon interpretation of results., (Readers are referred
to the References for formal reports of the research mentioned.)
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All of the operations to be described could be carried out, in prin-
ciple, by manual computation. However, electronic computers,
because of their great speed and reliability, have been used for
most of this work. Brief descriptions of some of the computers
that have been used are included here; more details are given in
Appendix C.

Measurement of Response Characteristics

One method of dealing quantitatively with well-defined neural
responses such as those of Figs. 2.1 and 2.4 is to measure the
amplitude and latency of certain deflections. An electronic com-
puter called ALMIDO (Amplitude and Latency Measuring Instru-
ment with Digital Output) was constructed to make measurements
of this kind, and its function is described here. (A description
of the device, including specifications, is given in Appendix C.)

A particular time segment of each incoming response is selected
by ALMIDO. The delay between the stimulus onset and the start
of this ""window'' and also the length of time for which the window
is open can be adjusted by the experimenter. An amplitude mea-
surement is made from the largest positive peak to the most nega-
tive peak in the selected time segment. This measurement is made
digitally as a number from 0 to 99, and it is printed on paper tape.
The results of a series of such measurements can be presented as
an amplitude histogram on a set of counters. Figure 2.5 shows
amplitude histograms which were computed by ALMIDO.

If the amplitudes of the responses are assumed to be samples of a random
process, the normalized histogram is an unbiased estimate of a step approxi-
mation to the probability density function of the random process (see Appen-
dix B). It is shown in Appendix B that the estimate will probably be close to
a steplike approximation of the density function if the number of samples is
large enough. For physiological data it is desirable to use the smallest num-
ber of samples consistent with the desired accuracy of the estimate, since
it is difficult to maintain preparations in a constant state for the time re-
quired to obtain a large number of samples. The number of samples neces-
sary to obtain a given accuracy can be determined experimentally by repeat-
ing the computation of the histogram several times with the same number
of samples and observing the variability in the estimate. If the variability
in the histogram is small, it is very likely that the estimate is accurate,

Each time that the amplitude measurement is made, ALMIDO
also measures the time interval from the stimulus onset to the
largest peak in the selected time segment. Scatter diagrams of
peak latency versus peak-to-peak amplitude for auditory nerve
responses to clicks and short bursts of noise are shown in Fig. 2.6.

A test of association can be made on the data in these diagrams. A cor-
ner test shows that the hypothesis of independence cannot be rejected
at the 5 per cent level for the click responses in Fig. 2.6a. The same
hypothesis can be rejected at the 1 per cent level in Fig. 2. 6b. Since short
noise bursts are similar to clicks having random amplitudes, the negative
correlation of latency and amplitude might be explained in terms of the de-
monstrated relationship between the latency and amplitude of responses
to clicks. (The latency decreases and the amplitude increases with increas-
ing intensity.)
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Fig. 2.4. Superposition of ten auditory nerve responses to periodic clicks
recorded from an anesthetized cat (Nembutal anesthesia). Click
rate was 1 per second; intensity was 35 above VDL. The record-
ing electrode was near the round window of the cochlea, and the
reference electrode was attached to the headholder, (Cat 376).
After Goldstein and Kiang %.
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Fig. 2.5. Histograms of peak-to-peak amplitudes of auditory nerve re-

sponses. An anesthetized cat (Dial anesthesia) was stimulated
monaurally by periodic clicks at a rate of 10 per second. Stim-
ulus intensity was 30 db above VDL. The recording electrode
was near the round window of the cochlea, and the reference
electrode was attached to the headholder. The two amplitudes
X and Y are defined in the inset diagram (Cat 494).
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Fig. 2.6.

Scatter diagrams of peak latency of N1 versus peak-to-peak am-
plitude (see inset of Fig. 2.5). (a) Responses to 0.1-ms square
pulses applied to earphone at a rate of 1 per second. Stimulus
intensity is 15 db above VDL. (b) Responses to 0.l-msec noise
bursts applied to earphone at the same rate. Intensity is 20 db
above VDL. (Cat 491.) Experimental conditions are the same as
described in Fig. 2.5. Latency is measured from the time of the
application of the electrical pulse to the earphone to the time of
the peak of Nl'
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Figure 2.7 is another example of computations performed on the amplitude
of auditory nerve response. The average of the peak-to-peak amplitude of
the auditory nerve responses to clicks (dimension Y in Fig. 2.5) and the
standard deviation of this amplitude are plotted as a function of the intensity
of the clicks. These data have been interpreted in terms of a probability
model for the behavior of '"neural units." The theoretical curve of the stand-
ard deviation, with confidence limits (based on this model), is presented
with the standard deviations of the experimental data. For a more detailed
description of this work see Ref. 12.
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Fig. 2.7. The mean and standard deviation of the peak-to-peak amplitude
of the auditory nerve response, as a function of click intensity,
recorded from an anesthetized cat (Urethane anesthesia). The
dimension Y in the insert of Fig. 2.5 shows the amplitude that
was measured. Each data point was computed from the responses
to 100 periodic acoustic clicks presented at 1 per second. The
recording electrode was near the round window, and the reference
electrode was placed on exposed neck muscle (Cat 349). After
Frishkopf and Rosenblith. 12 (Reprinted by courtesy of Pergamon
Press.)
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Averaging of Evoked Responses

In the following sections, results of several experiments are
presented in which evoked responses have been averaged. The
examples were chosen to illustrate some of the kinds of problems
to which this technique is applicable. The operation of the two
computers that were used to calculate response averages is
described first.

In order to compute an average response, the recorded activity
that is to be processed and a signal indicating the onsets of the
stimuli must be available in their correct temporal relationship.

If the activity is recorded onto magnetic tape for subsequent pro-
cessing, the stimulus signal must be recorded in such a way that
the temporal relationship of these two signals will be preserved
when the recording is played back. Figure 2.8 is a sketch of the
two signals. The stimulus presentations are marked to, ntl’

to, n+2 -+ %0, n+k- The average of the responses is computed
usmg the se two signals in the following way: (1) The amplitude of
the signal to be averaged is measured at a number of instants .
following each stimulus onset (such as tg, tooee, for the respon-
ses illustrated in Fig. 2.8). (2) Samples taken at tf}e same delay
after the stimulus onset are added, and their sum is stored. For
instance, the samples taken at tg, nt1’ fo,nt20 " to, nikr 7"

are added, the samples taken at t ntl? tl , nt2’ cee, tl ntkr *°

are added, and so forth. (3) After the desired number of responses
N has been added in this way, the average of the responses is given
by the computed sum times an appropriate scale factor. With use
of the notation of Appendix B,

N

—l-z x(t

N =1 j=0,1,+, P. (2.1)

Myft;) = i ntid?
The averaging process is illustrated in Fig. 2.9. In Fig. 2.9a,
all of the individual '"responses'' are identical, and therefore the
waveform of the average is the same as that of any single response.
In Fig. 2.9b, random noise has been added, and the individual
responses no longer are identical. The amplitude of the noise is

RESPONSE ACTIW
STIMULI M

7 T Xeo V2 BN .

- - - - N & o o~ x x x

: e E_ A t ¢ E_. ‘: ‘: ; < ;
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Fig. 2.8. Schematic representation of response activity x(t) and stirmuli
to aid in the explanation of averaging.
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SINGLE "RESPONSE" AVERAGE OF I180 "RESPONSES"
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Fig. 2.9. Illustration of the averaging process. (a) The left-hand trace
shows a single artificial ''response.’ The right-hand trace shows
the average of 180 such responses. (b) The left-hand trace shows
a single artificial '"response, '' the sum of a sinusoidal pulse and
random noise. The right trace shows the average of 180 such
responses (computed by ERD). After Barlow.

large relative to the amplitude of the sinusoidal pulse, so that the
pulse cannot be detected visually in the individual responses. In
the average, however, the sinusoidal pulse is clearly evident.

Since the sinusoidal pulse occurs in each response in exactly the
same way, whereas the noise varies randomly about a mean of zero,
the sinusoidal pulse will tend to be emphasized relative to the

noise as more and more of these responses are added.

An appropriate random process model for responses to stimuli periodi-
cally presented is a periodically time-varying random process. It can be
shown (see Appendix B) that for such a process, the average of N responses
(for a particular value of t;) is a random variable with a mean equal to the
mean of the random process, and a variance that decreases as the number
of responses is increased. Hence, if the number of responses is large
enough to make the variance small, the average will, with high probability,
be very nearly the process mean. For the example of Fig. 2.9, in which
the process is the sum of a fixed component (sinusoidal pulse) and a ran-
dom component with zero average (noise), the sample average looks like
the sinusoidal pulse for large N. Hence in this case, the average is an esti-
mate of the pulse waveform. However, neural responses are not necessarily
describable by this simple additive model (see p. 29).

Engineering considerations determine the particular form of the
electronic computer that is used for the calculation of averages of
responses. Considerations important to the design include: (1) the
desirability of computing averages during experiments ("on-line'
computation), (2) the amount of computer-caused drift and noise
that is allowable, (3) the desired resolution in time and amplitude,
and (4) the resources available for construction and maintenance
of the computer.

Two quite different average-response computers have been de-
signed for use in this laboratory. One is an analog device called
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the ERD (Evoked Response Detector). 8 For processing by ERD,
the data must be recorded onto magnetic tape, because the average
MN(t-) is computed for only one value of t; each time the data are
fed through the machine. The resulting sum is displayed by a
recording meter. To obtain the waveform of the average, the
process must be repeated for each value of t;. A more detailed
description of the ERD is given in Appendix C.

The other device isla3 digital computer called the ARC (Average
Response Computer), In this machine, the response activity is

sampled at 2 number of instants after each stimulus onset. The sums

N
b x(tj, ntk) for all j's are computed and displayed on a cathode-

rzf;} tube after each stimulus has been presented. This allows the
experimenter to observe how the set of sums builds up as the number
of responses N increases. (The set of sums is N times the average
of the responses.) When the desired number of responses has been
added, the result can be (1) displayed on the oscilloscope, (2) plotted
by a pen recorder, or (3) punched onto paper tape. A more detailed
description of ARC is given in Appendix C.

Responses to Acoustic Stimuli in Humans. - Electrical activity
of the brain can be recorded from electrodes located on the scalp
of an awake person, but it is usually difficult to see evoked
responses to sensory stimuli in the records of this activity. This
difficulty arises because of the presence of activity in the recorded
potential, which is not directly related to the stimulus., By averag-
ing responses, the activity which is time locked to the stimulus,
tends to be emphasized, so that characteristic deflections can be
detected in the average.

Figure 2.10a shows both an ink record and a computed average
of the potential between two scalp electrodes obtained while acoustic
clicks were being presented to the subject periodically. Figure 2.10b
shows the average when there is no acoustic stimulus. The depend-
ence of the early component of the average of the evoked responses
on click intensity is illustrated in Fig. 2.11.

A method for detecting evoked responses in awake human sub-
jects is of particular interest, since this makes it possible to
obtain psychophysical and physiological responses from the same
subject under the same conditions. In the experiment shown in
Fig. 2,11, the subject's psychophysical threshold for clicks was
approximately -85db. This corresponds quite closely to the lowest
stimulus intensity at which the characteristic deflection can just
be detected.

Responses to Photic Stimuli in Humans. - In activity recorded
from the cortex of anesthetized animals, many workers have
observed a series of apparently rhythmic waves following the
primary evoked response to sensory stimuli. A similar pattern
can sometimes be observed in the activity recorded from the scalp
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Fig. 2.10.

1004V

05 SEC

Responses to periodic clicks recorded from the scalp of a hu-
man subject. The upper records of (a) and (b) show ink traces
obtained from the scalp with and without clicks, respectively.
The pulse channel, recorded simultaneously, indicates in (a)
the times of click presentations, and in {(b) serves as a com-
parable time reference. The lower records in each case are
the average (computed by ERD) of 250 consecutive responses,
a few of which are shown in the ink traces directly above. The
clicks, about 70 db above psychophysical threshold, were pre-
sented at a rate of 1 per second. Upward deflection signifies
positivity of an electrode at the vertex with respect to an occipi-
tal electrode. (Subject H-436.)
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Fig. 2.11. Average responses to periodic clicks obtained from the scalp
of a human subject. Each trace represents the average (com-
puted by ARC-1) of 400 responses to identical click stimuli,
presented at a rate of 1.5 per second. Upward deflection indi-
cates that electrode A is positive with respect to electrode B.
(Subject H-480, awake, eyes open.) After Geisler, Frishkopf,
and Rosenblith. 14

of humans during stimulation by flashes of light. This rhythmic

activity appears to be about the same frequency (approximately

10/sec) as the "alpha activity' that is often observed in the EEG

of resting subjects. (See Chapter 3 for a discussion of alpha

rhythm.) It has been demonstrated that alpha activity tends to

disappear for a short time following stimulation by a light flash,

Hence rhythmic activity occurring after a flash might be the

reappearance of activity that is not time-locked to the stimulus.

Averaging responses tends to—e_:?nphasize activity that is time-
locked to the stimuli; however, even if the rhythmic activity were
not time-locked to the stimuli, the rhythmic component in the
average of the response will not, in general, be exactly zero.

Hence it is important to be careful in deciding from the average of

responses whether or not the activity is time-locked to the stimuli,

In particular, one can observe the way in which the average changes

as the number of responses is increased. If the rhythmic activity

were not time-locked to the stimuli, it should decrease in amplitude
as the number of responses in the average is increased. In

Fig. 2.12, averages are shown for 45 and 180 responses. Since

the amplitude of the rhythmic activity is about the same in both

cases, it can be stated that the rhythmic activity was time-locked
to the stimuli. The prominence of this activity varies considerably
among subjects.
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Fig. 2.12. Average responses obtained from the scalp of a human subject
stimulated by randomly delivered stroboscopic flashes. The
figure on the left shows the average (computed by ERD) of about
180 responses, while that on the right shows the average of
about 45 responses. Potentials were obtained from electrodes
placed on the left parietal and occipital regions of the scalp.
The time markers are separated by 100 msec.

Changes in Evoked Response Waveform with Anesthesia. -
Responses to acoustic stimuli recorded from the auditory cortex
of cats can be detected visually after almost every stimulus pres-
entation. However, the variability of the response is so great
that it is difficult to quantify changes in the waveform of evolved
responses. Averaging of responses provides more stable measures
and permits studies of response parameters as a function of both
stimulus and ''state' variables.

Figure 2.13 shows several examples of single responses to
clicks recorded during three different conditions: (a) before anes-
thetization, (b) five minutes after injection of Nembutal into the
femoral vein, and (c) one hour later. Averages of 300 responses
taken during each of the above conditions are shown in Figure 2.14.
It is clear that the shape of the average of responses changes with
the state of anesthesia and that quantitative statements can be made
about differences in the waveforms.

Responses from the Auditory Nervous System to Repetitive
Acoustic Stimuli. - Although the electrical response of the audi-
tory nerve to impulsive acoustic stimuli is well defined at low
stimulus repetition rates (see Fig. 2.15), the response amplitude
decreases considerably at high rates, and measurement of the
response from oscilloscope records becomes difficult. This
difficulty arises because the neural component of the recorded
potential is approximately the same amplitude as both the back-
ground activity and the cochlear microphonic potential. Figure 2.15
shows that, whereas at low stimulus repetition rates and moderate
intensities the microphonic potential does not interfere appreciably
with the neural component, at high rates it is difficult to see the
neural component. Although the random background activity can
be reduced relative to the neural component by averaging responses,
the microphonic potentials will be emphasized by averaging in the
same way as the neural potentials since they are also time-locked
to the stimuli. The microphonic potential is linearly
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UNANESTHETIZED 5 MIN. AFTER NEMBUTAL | HR. AFTER NEMBUTAL
(E. ISOLE) 16.5mg/kg LV, 16.5mg/kg LV,
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Fig. 2.13. Effects of intravenous Nembutal on the waveform of cortical re-
sponses obtained from a cat. Responses to periodic clicks pre-
sented at a rate of 1 per second are illustrated. The responses
were recorded (a) before injection of anesthesia (encephale
isol€, the cat was immobilized by a high spinal section); (b)

5 minutes after injection of anesthesia; and (c) 1 hour after
anesthesia injection. The potentials were recorded from the
middle ectosylvian gyrus of the contralateral cortex using a
concentric bipolar electrode (center electrode 2 mm below sur-
face of the cortex, sleeve on surface). Intensity was 35 db
above VDL. (Cat 459.)

UNANESTHETIZED 5 MIN/ AFTER NEMBUTAL | HR.. AFTER NEMBUTAL
(E. ISOLE) 16.5mg/kg L.V. o 16.5 mg/kg I.V.
e . o -
—or =+ - 4 or -
ot - I o - - 0€
—50msec—
02 SOT uv . %

Fig. 2.14. Effects of intravenous Nembutal on the waveform of cortical re-
sponses obtained from a cat. Each record represents the average
(computed by ERD) of 300 responses to successive clicks. Data
taken during experiment described in Fig. 2.13.
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Fig. 2.15. Auditory nerve responses to acoustic clicks obtained from an
anesthetized cat (Dial anesthesia). Responses were recorded
between a wire electrode near the round window and a reference
electrode attached to the headholder. Note that the microphonic
component (labeled M in the left-hand responses) reverses polar-
ity with reversal of stimulus polarity. Intensity was 35 db above
VDL. (Cat 498.)

related* to the acoustic stimulus for low intensity stimuli, where-

as the neural potential is a nonlinear function of the stimulus.

Hence, if the stimuli are bursts of random noise, the microphonic
potential will vary randomly about a zero average value, and in

the average of responses the microphonic potentials will be de-
emphasized because they will tend to be negative just as often as

they are positive. On the other hand, since the neural potentials
always have the same polarity (as seen in Fig. 2.15), they will

tend to be emphasized in the average of responses. Figure 2.16
shows that at low stimulus repetition rates the ratio of the micro-
phonic component to the neural component is maintained in the
average of responses to pulses, whereas this ratio is reduced con-
siderably in the average of responses to bursts of noise. Figure 2,17
shows both superimposed single responses and averages of responses
for several repetition rates. With use of this technique, neural
responses to repeated bursts of noise have been detected at rates

up to 3000/ second.

Cortical responses likewise become increasingly difficult to
detect as the stimulus repetition rate is increased. In the unanes-
thetized preparation, stimulus-locked activity tends to be obscured
at a lower rate than in the anesthetized animal because of greater
background activity, making it difficult to compare the two situa-
tions. Results from a study using averaging of responses to
overcome the detection problem are shown in Fig. 2.18. These

* That is, the microphonic potential can be thought of as the response
of a linear system to the stimulus. When the stimulus polarity is
reversed, the polarity of the microphonic potential also reverses.
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Fig. 2.16. Single and average auditory nerve responses. 0.l-msec rectan-
gular pulses and 0.1l-msec pulses of noise were applied to the
earphone at a repetition rate of 1 per second. Same prepara-
tion as that of Fig. 2.15. .

data indicate time-locked activity is present at higher stimulation
rates in the unanesthetized preparation than in the anesthetized. 1

'"Off'"" Responses from the Auditory Cortex. - Another response
which is difficult to detect because of the large background activity
present in unanesthetized preparations is the cortical response
that is evoked by abruptly turning off a burst of acoustic noise.
This response appears to be present only in unanesthetized prepara-
tions. Figure 2.19 shows averages of these responses recorded
before and after the administration of Nembutal. Figure 2.20 is
an example of the changes in the averages of these responses as
a function of the intensity of the noise bursts. The stability of the
average response makes it possible to measure quantitatively the
way in which characteristics of the average of off-responses
changes with intensity.

Measurement of Other Statistics of Evoked Responses

In the preceding section, several examples showing the utility
of averaging have been described. Although averaging is useful
for the detection of stimulus-locked activity, and though it yields
stable measures of response characteristics, it does not provide
a complete statistical description of the responses. In this section
some results are presented from computations that were designed
to give a more complete statistical description.

The computation was carried out in the following way. A number
of responses to identical stimuli were sampled at particular times
tJ. after stimulus onset. These samples were quantized so that
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Fig. 2.17. Single and average auditory nerve responses to bursts of noise
0.1 ms in duration. N is the number of responses averaged.
(The gain is increased by 4 in the lower left-hand figure and by
16 in the lower right-hand figure.) Same preparation as that
of Fig. 2.15.

there was a finite number of amplitude levels which the sample
could assume. The number of responses occurring at each level
was computed. The resulting set of numbers was used to plot a
histogram such as that shown in Fig. 2.21.

The family of histograms obtained for many values of t. are estimates of
approximations to the first-order probability density ,funcgions at these times.
The sample average response, which has been discussed in the previous sec-
tions, is an estimate of the first moments of these distributions.

In order to describe the way in which these distributions change as a func-
tion of time t., it is convenient to use measures of certain aspects of the
distributions Such as central tendency, dispersion, and skewness. In this
case, a general-purpose digital computer (the Lincoln Laboratory TX-0) was
programmed to calculate certain statistics and to display them with the his-
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Fig. 2.18.
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Average of cortical responses to repeated clicks. The responses
in the left column were recorded while the cat was unanesthetized
(encephale isolé). The responses in the right column were re-
corded after Dial was injected into the peritoneal cavity. Num-
ber of responses averaged: 10/sec, 600; 50/sec, 3000; 100/sec
6000. Averages were computed by ERD. The size of responses
to clicks presented 1 per second was approximately equal be-
fore and after anesthetization. Clicks were presented monaurally
at an intensity of 25 db above VDL. Recording from a concentric
bipolar electrode in contralateral middle ectosylvian gyrus.

(Cat 446.) After Goldstein, Kiang, and Brown.

LT Tveweetal N[/
f / / (33.0mg/kg) /S 7 77
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Effects of intravenous Nembutal on "off'" responses to bursts of
noise obtained from a cat. Each trace is the average (computed
by ERD) of 300 responses. Bursts 375 msec in duration, having
a 20 msec rise and fall, and at an intensity 60 db above VDL,
were presented at a repetition rate of 1 per second. Recordings
were made with a concentric bipolar electrode in area II of the
contralateral auditory cortex. (Cat 461.)
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Fig. 2.20. Effects of intensity of stimulation on '""off" responses to bursts
of noise recorded from area II of the auditory cortex of an
unanesthetized cat (Encephale isolé). Bursts 50 msec in dura-
tion, having an abrupt rise and fall, were presented at a repe-
tition rate of 1 per second. (Cat 467.) Each trace is the aver-
age of 300 responses (computed by ERD).

tograms. The numbers in Fig. 2. 2] represent (reading from top to bottom)
the first, second, and third quartiles* (Ql’ Q,, Q,), the interquartile range
(Q3 - 0;), the number [(Q3 -0,) - (QZ - Ql)], and the number of responses.
The second quartile, which is also called the median, is a measure of the
central tendency of the distribution; the interquartile range is a measure of
the dispersion; and [(Q3 - 0,) - (Q; - Q)] is a rough measure of skewness.
Fig. 2.22 is a plot of the interquartile range and the median as a function

of time after the stimulus t;, . It is clear from this picture that the disper-
sion is not the same for all values of t;. A mathematical model consisting
of an invariant response plus independént random noise (such as that illus-
trated in Fig. 2.9) has a dispersion which is constant as a function of t; .
Hence, these results indicate that this simple model does not adequately
describe these data.

* The quartiles are defined as the three values of amplitude that separate the
histogram into four sections, with one quarter of the samples in each section.
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Fig. 2.21.

Histogram of the amplitudes of 800 cortical responses taken
1.125 msec after the presentation of identical auditory stimuli.
The stimuli were 2900-cps tone bursts, having a duration of

150 milliseconds and rise and decay times of 5 msec. Stimulus
intensity was 40 db above VDL. The preparation was an unanes-
thetized cat, immobilized by a high spinal section. (Cat 496.)
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Fig. 2.22. The median and interquartile range of 800 cortical responses
obtained from an unanesthetized cat. Points were calculated
every 1.175 msec. The parameters of the first point in time
were calculated from Fig. 2.21. Same preparation as that of
Fig. 2.21.
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Chapter 3

TWO TECHNIQUES FOR THE PROCESSING
OF EEG DATA

C. E. Molnar

T. F. Weiss
C. D. Geisler

3.1 Introduction

The previous chapter has discussed techniques for quantitatively
describing the electrical activity of parts of the nervous system
following the presentation of a known stimulus. In many cases,
particularly when the preparation is not heavily anesthetized, fluc-
tuating potentials may be observed when the animal is not being
stimulated deliberately. These ''nonevoked' potentials may be
observed with microelectrode techniques in single nerve cells or
groups of cells, with gross electrodes located in the central ner-
vous system, or even with electrodes placed on the scalp of a hu-
man subject or experimental animal. The potentials observed in
the last case are often referred to as the electroencephalogram
(EEG).

Description of these nonevoked potentials poses problems that
are not encountered in the study of evoked responses. All of the
techniques described in Chapter 2, for the analysis of evoked re-
sponses, depend upon knowledge of the time at which a stimulus
has been presented. The results of these analyses are generally
in a form that shows the dependence of some quantity, calculated
from the potentials, upon the time elapsed since the particular
stimulus under study was presented. Even if the nonevoked po-
tentials were caused solely by the continuous flow of sensory in-
formation originating in the environment of the subject, the tech-
niques described earlier could not be applied readily; there is
no exact way to determine the instant at which such ""natural' stim-
uli occur or to ensure that the responses to various stimuli have
enough in common to justify averaging them. Furthermore, fluc-
tuating potentials are still observable when an experimental animal
or human subject is isolated from visual and auditory stimuli in a
soundproof and totally darkened room. Under these conditions,
olfactory, tactile, or taste stimuli may still occur and produce
effects within the nervous system. Moreover, the flow of informa-
tion from proprioceptors and other internal sources may also pro-
duce effects like those caused by external stimuli. Isolating the
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brain of a cat from many of these inputs by severing the spinal
cord still does not eliminate fluctuating brain potentials, 1 suggest-
ing that perhaps these potentials represent an intrinsic property

of the central nervous system and are not merely responses pro-
duced by external causes. In any case, the problem of describing
the fluctuations remains essentially the same whether or not one
regards them as being produced by causes external to the central
nervous system.

Visual examination of the potentials recorded from the scalp of
human subjects and from the cerebral cortex of cats suggests that
certain features of these potentials depend upon whether the subject
is awake or asleep; whether he is paying close attention to his sur-
roundings or ignoring them; and upon other factors which appear to
be related to the ''physiological state' of the animal rather than to
the presence or absence of specific stirnuli. Figure 3.1 illustrates
the differences between samples of EEG recordings taken from the

EEG RECORDING
SUBJECT AWAKE

LIV AWM

(a)

| SEC

=

SUBJECT ASLEEP

AN AN SN

(b)
Fig. 3.1. EEG ink traces from the same subject; (a) awake and (b) asleep.
Subject was in dark, anechoic chamber. Electrodes were located
at vertex and left occipital area. The ink trace represents 3 1/2
seconds of data.

same subject while awake and asleep. Figure 3.2, on the other
hand, shows the differences in samples of EEG recordings from
seven different subjects, all taken under similar conditions A
description of the recordings appears to require an examination

of the potential over a period of several seconds or even minutes.
It is therefore desirable that a data-processing technique be avail-
able which can extract information contained in several minutes of
a recording and present it in a form which is more compact and
easier to interpret than the original record.

It is not immediately apparent which properties of the record
should be emphasized and retained by such a data-processing tech-
nique, and which should be minimized or eliminated. If the mech-
anisms producing the potentials were more completely understood,
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Fig. 3.2, EEG ink traces of seven different subjects. All subjects were
seated in a dark, anechoic chamber. Electrodes were lacated
in the left parietal-occipital area. The ink traces represent 10
seconds of data in each case.

one could determine which properties of the potentials are capable
of yielding the most information about the functioning of the mech-
anisms. However, there is at present no way to decide which type
of analysis is most appropriate, other than an empirical compari-
son of different techniques.

An appropriate technique for the study of a particular experi-
mental question should produce results that are repeatable, that
is, the variability in the results obtained when an experiment is
repeated as exactly as possible should be much smaller than the
change in the results produced by a change in the experimental con-
ditions of interest. Ideally, the data-processing technique should
yield results that depend only upon those parameters of the experi-
ment that are being investigated in a particular case, and not at
all upon incidental parameters. Whether or not this ideal is ap-
proached in any particular case depends upon the experimental
questions being asked as well as upon the data-analysis techniques.

Two distinct approaches to the analysis of EEG records will be
discussed in detail. The first method represents an effort to perform
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electronically a type of analysis that is similar to that carried out
by an electroencephalographer when he visually examines the EEG
for certain rhythmic characteristics, The second method, correla-
tion analysis, was suggested originally by the similarity of some
EEG records to certain types of random signals encountered in
communication engineering. The success of correlation analysis

in the study of these random signals indicated that it might also be
usefully applied to the EEG. 2 The results of this type of analysis
present information that can be related to the results obtainable by
a frequency analysis of the signal. The discussion of correlation
analysis will depend to some extent upon the mathematical proper-
ties of random processes. An introduction to this latter subject may
be found in Appendix A and in the references listed there.

3.2 An Examination of Some Temporal Patterns in the EEG

One of the most striking properties in the EEG records of many
subjects is the occurrence of rhythmic '"bursts, ' a typical example
of which is shown in Fig. 3. 3.

0.l sec
-~ ~
-~ s o~
/,\\ ._ L »\/—‘\/\.’
s L | "o
~ N s
v Lo ~
~ -

Fig. 3.3. An example of a rhythmic burst in an EEG record, as photo-
graphed from the TX-0 cathode-ray tube display. The data re-
presented have been sampled at 300 samples/sec and a 10-point
moving average has been used to smooth the data.

A classification of the amount of this activity present is some- 4
times obtained by a visual examination of a paper record of EEG,
but cannot be regarded as a fully objective and repeatable measure
of the rhythmic burst activity. A refinement of the visual exami-
nation technique is the measurement of the ''alpha index, "5 the
percentage of the record which contains alpha rhythm. This method
provides a more quantitative measure of the alpha rhythm,
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and depends upon the manual measurement of the EEG wave ag
recorded on a paper record and is impractical for the examination
of large amounts of data. Certain computer applications to the
measurement of EEG data have also been made.

Many limitations of the visual and manual techniques for investi-
gating the rhythmic bursts in the EEG have been overcome by an
application of modern computing techniques to the problem. This
particular approach is an extension and mechanization of the general
ideas involved in the methods just mentioned. The analysis was per-
formed by the computer system shown in Fig. 3.4. Data recorded

MEMORY
65,000 words

DISPLAY
' "2 1
ANALOG-DIGITAL]
FM TAPE [~ > -
CONVERTER TX-0 \

DATA
| CONTROLS I TYPEWRITER

Fig. 3.4. Schematic diagram of the digital computer system used for the
measurement of rhythmic burst activity.

on magnetic tape were periodically sampled by an analog-to-digital
converter and transferred to the Lincoln Laboratory TX-O com-
puter.7 In effect, the computer stored a three-minute sample of
an EEG record and then classified portions of the record accord-
ing to three well-defined criteria. The detailed operation of the
computer program which executed this analysis is described else-
where~ and will not be given here. The criteria used to define
rhythmic burst activity and the way in which they are applied are
of some interest, however, and will be discussed briefly.

First, a section of record must have at least a certain minimum
peak-to-peak amplitude in order to be considered further. This
minimum amplitude is defined in terms of the median peak-to-peak
amplitude of the particular EEG record being analyzed. A fraction
expressing the relation of the minimum amplitude to the median
amplitude is called the amplitude parameter or AP.

The second criterion requires that the interval between two suc-
cessive '"'zero crossings, ' lie within a specified range. The limits
within which an interval must lie to be acceptable are defined as the
median zero-crossing interval plus and minus a specified fraction
(interval parameter) of this median interval. The interval param-
eter is denoted by IP.
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The third criterion requires that at least five consecutive zero-
crossing intervals meet both the amplitude and interval criteria.
Those portions of the record that satisfy all three criteria are then
defined as rhythmic burst activity.

The computer then tabulates the number of rhythmic bursts, and
the total activity, which is defined as the percentage of the record
that consists of rhythmic burst activity. Information about the dis-
tribution of burst lengths, peak-to-peak amplitudes, and zero-cross-
ing intervals is also available,

This process was first applied to the study of individual differences
in the EEG records taken from different human subjects under com-
parable conditions. Figure 3.5 indicates the range of the results ob-
tained from the analysis of records from four different subjects.
These results are shown in two graphs; (a) total (rhythmic) activity
and (b) number of bursts, plotted as a function of the amplitude
parameter,

Before the differences in the graphs for different subjects may be
interpreted as significant, one must consider the variability of the
results obtained from any one subject. Figure 3.6 shows the results
of processing EEG records taken from the same subject on four dif-
ferent days. The thin lines in the figure show the results for each
day, and the heavy line shows the average of the results for the four
days. The shaded areas enclosing the curves represent a rough esti-
mate of the limits within which 99% of graphs of the data points for
this subject would be expected to fall.

Any pair of curves taken from Fig. 3.5 is found to have at least a
few points lying outside of the shaded areas of Fig. 3. 6. This indi-
cates that the experiments (in other words, the same subject under
similar conditions) that generated the data of Fig. 3.5 were different,
with high probability, from those experiments that yielded the data
of Fig. 3.6.

Another experiment was conducted to determine how the amount
of rhythmic burst activity depends on time elapsed from the begin-
ning of a single long EEG recording. EEG records were taken from
subjects who were seated in a soundproof room and asked to close
their eyes but to remain awake. The lights were then turned out,
and a continuous recording of 12 minutes duration was made. At
the end of this long recording, the lights were turned on, and the
subject was allowed to talk and move freely for about 3 minutes.
Following this intermission, the previous experimental conditions
were restored and an additional 3-minute recording was taken.

This experiment was repeated six times for each of four subjects.
The EEG records thus obtained were divided into 3-minute samples
and processed, yielding the results shown in Fig. 3.7.

It is obvious from the data that the amount of rhythmic burst
activity for these subjects decreases as a function of time. Note
the recovery in the amount of burst activity after the intermission.
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Fig. 3.5. (a) Total rhythmic burst activity and (b) number of bursts, as a
function of the amplitude parameter for four different subjects.
Each subject was seated in dark, anechoic chamber with elec-
trodes located in the parietal-occipital area. The curves were
computed from 3 minutes of data.
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Fig. 3.6. (a) Total rhythmic burst activity and (b) number of bursts plotted
as a function of the amplitude parameter for one subject on four
different days. Data were taken while the subject sat in a dark,
anechoic chamber with electrodes located in the parietal-occipital
area. The curves were computed from 3 minutes of data.
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Fig. 3.7. Rhythmic burst activity as a function of time during the experi-
ment for four different subjects. The results shown are the aver-
age of results for six different days for each subject. Data were
taken while the subject sat in a dark, anechoic chamber with elec-
trodes located in the left parietal-occipital area.

The data-processing technique just described has been an attempt
to define a set of variables that describe certain features of EEG
data. The approach has been empirical and the particular process-
ing that was finally used evolved from a trial-and-error procedure.
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The experience gained in the development and application of this
technique suggests several thoughts both about the types of prob-
lems that may be amenable to this sort of processing and about
the role of general-purpose digital computers in developing tech-
niques for studying such problems.

The technique presented here differs from most of the other
techniques discussed in this monograph in one important respect
—attention was focused upon particular events in a waveform.

That is, instead of doing some sort of averaging (which is the
essence of the techniques presented in Chapter 2 and of the auto-
correlation technique to be discussed later in the chapter), the
TX-O computer was programmed to identify particular events on
the basis of a set of criteria whose parameters were determined
by a preliminary analysis of the data. The experiments discussed
in detail in this section, have by no means exhausted the possibil-
ities inherent in the general concept of "marking' various portions
of a waveform and selectively processing these portions. We have,
for example, considered the use of this sort of approach in the
study of the very challenging and theoretically important problem
of the interrelationship of evoked and nonevoked activity.

Studies such as the one just described need not be made with a
general-purpose digital computer; the versatility and flexibility
of such a computer constitute, however, a considerable advantage.
This is particularly true when the particular method of data pro-
cessing best suited to the problem at hand is not apparent from the
start, and empirical comparisons of different techniques must be
used in deciding which one is 'best.'" In this respect, flexible in-
put and output devices make it easier to monitor the operation of
particular techniques at every step of their operation, thus guid-
ing one toward a set of criteria that most closely approximates the
results desired. Once a particular scheme is found to be appro-
priate for the study of some problem, devices other than those
making use of general-purpose computers may turn out to be more
economical, more rapid, or more efficient. During the early
stages of an investigation, however, a general-purpose computer
is a most helpful tool.

3.3 The Use of Correlation Techniques in the Study of EEG

The rhythmic activity often seen in the EEG had suggested earlier
the use of still another data-reduction technique, correlation. 8
This technique can be viewed most simply as the performance of a
specific operation on data that may be too complex or too long to
interpret visually. For instance, consider Fig. 3.8. The left-
hand curve in each case shows 3 1/2 seconds of EEG data. Now
consider the problem of comparing two such EEG records of 100
seconds duration that might occupy 10 feet of paper record. By
use of an analog correlator (described in Appendix C) the curves
on the right of Fig. 3.8, autocorrelograms, were obtained.

45




neuroelectric data

. SN 7 O S A
DAV IR -
172 SEC
T iy A A o .
/ 7 777 7
i A A A B

[L})

Fig. 3.8. EEG ink traces and autocorrelograms for subject, (a) awake and
(b) asleep. The ink traces shown represent 3 1/2 seconds of
data. The autocorrelograms were computed from a sample
length () of 100 seconds of data. The delay increment (A7) is
10 milliseconds, and the maximum delay of the autocorrelogram
is 1.0 second. The data were recorded from a subject in a dark,
anechoic chamber. Electrodes were located in the parietal-
occipital area. (Subject H-432.)

The rhythmic activity in the upper EEG record is emphasized
by its correlogram, while the lower correlogram reflects the lack
of rhythmic activity in the lower EEG record. In this case, the
differences reflect the difference in EEG recordings obtained from
the same subject when he is asleep and when he is awake. Figure
3.9 is another example of the use of the autocorrelogram as an
aid in the interpretation of experimental data. 9 This figure shows
autocorrelograms of EEG records taken from the left and right
sides of the head of a normal subject, while Fig. 3.10 shows re-
sults of the same computational procedure” ° applied to records
taken in the same way from the left and right sides of the head of
a subject with a brain tumor. Another method of processing such
data is the computation of crosscorrelograms; the computational
procedure is similar to that used to obtain autocorrelograms, ex-
cept that now two different signals are involved. The crosscorre-
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Fig. 3.9. Correlograms computed from the EEG of a normal human sub-
ject: (top) autocorrelogram of EEG from the left parietal-occi-
pital area, (second from top) autocorrelogram of EEG from the
right parietal-occipital area, (third from top) crosscorrelogram
of data from left and right parietal-occipital areas and (bottom)
inked trace of EEG showing electrode placement. The delay in-
crement (A 1) is 5 milliseconds and 1. 0 minute sample length
(T) of data was used for the computation. After Barlow and Brown. 10
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Fig. 3.10. Correlograms computed from the EEG of a subject with a tumor
of the right cerebral hemisphere (P.C.): (top) autocorrelogram
of EEG from the left parietal-occipital area, (second from top)
autocorrelogram of EEG from the right parietal-occipital area,
(third from top) crosscorrelogram of data from left and right
parietal-occipital areas, and (bottom) inked trace of EEG show-
ing electrode placement. After Barlow and Freeman. 1
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lation of records from the left and right sides of the head yields
the crosscorrelograms shown in the bottom parts of Figs. 3.9
and 3,10 respectively.

Thus far the interpretation of the results of the computation of
the correlograms has involved no assumptions about the nature of
the data. The computation has been viewed merely as a method
for abstracting some characteristics of the EEG into a convenient
display that emphasizes these characteristics. However, a series
of questions remain: What kinds of experimental questions can this
approach answer, how does it answer them, and what are the impli-
cit assumptions and limitations of this technique of data analysis?
But before we can deal with these questions, we must define what
we mean by an experiment and by a class of experiments. We shall
consider an experiment to consist of obtaining and processing data
by a particular technique for the purpose of testing some hypothesis.
The experiments discussed so far in this chapter consist in record-
ing EEG data and in either measuring burst activity or in computing
correlograms from these data.

In order to draw valid conclusions about a particular hypothesis,
one must repeat these experiments. One can argue from theoretical
considerations that no physical experiment so defined can ever be
repeated exactly. The best that one can do, under these circum-
stances, is to control certain of the known variables, thereby form-
ing a class of experiments with respect to these controlled variables.
Changing any of these variables and conducting a new set of experi-
ments define a new class,

The concept of a class of experiments is not useful unless one can
make certain assumptions about the similarities of the experiments
within a given class. In particular, one requires that any class of
experiments be represented by a reasonable number of experiments,
For example, we compute the autocorrelogram of a 3-minute EEG
record taken at 9 A. M. on Monday morning from subject A. We
then repeat this on 30 different Monday mornings, keeping as many
of the conditions as uniform as possible. The requirement of gen-
eralization within a class requires that the 30 experiments we have
done will predict something about the outcome of the 31st experiment,
at least to the extent of giving us a probability statement about the
outcome. Suppose now that the hypothesis being tested was, sub-
ject A has alpha activity. Suppose further that an objective criterion
was set up to decide this question on the basis of the autocorrelogram
of his EEG record. Then if in 29 of the 30 experiments subject A
was judged to have alpha activity, we could predict (by standard
statistical inference tests) that with some probability p, he would
exhibit this in the next eéxperiment.

Thus the empirical approach to correlation discussed so far re-
lies completely on the manyfold repetition of a particular experiment
with each change of a parameter of the experiment. In other words,
this approach does not generalize from one class of experiments to
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another. If we were interested in the outcome of the experiment
on subject A on a Monday morning for which 15 minutes of data
instead of 3 were correlated, it would be risky to use the results
of the first 30 experiments to predict the new results. A new set
of experiments with 15 minutes of data would have to be run. This
procedure of rerunning a set of experiments each time an experi-
mentally uninteresting parameter (one which may have nothing to
do with the hypothesis under test) is changed is tedious, and it

is clear that an alternative to this approach is desirable.

The use of mathematical models often enables one to extend the
results of one class of experiments to describe those of a new class.
The more general the model, the more classes of experiments it
will be able to describe on the basis of the results of one class.

A successful model, as an added bonus, may suggest new experi-
ments.

At the present time, the models for physiological data are still
quite simple and not very comprehensive in terms of the number of
classes of experiments that are encompassed by them, but they are
of some use when such simple parameters as sample length of data
are changed. When more is known about neurophysiology, models
may be constructed of a sufficiently general character so as to in-
clude such complicated experimental changes as the change of
""state' of a subject or even the use of different subjects.

The theory of random processes appears to be one mathematical
model that is suitable for describing certain physiological data. If
one is willing to accept this mathematical model as a description of
the data, then the correlation function may yield a considerable
amount of information about the parameters of the model. Appendix
A deals at length with the random-process model and with some of
the assumptions implicit in it. Under certain conditions, the corre-
lation function is defined there as

) T
o(r) = ;_lf‘; % S_‘Tx(t)y(t+'r)dt. (3.1)

In this expression, T 1is the delay parameter, and x(t) and y(t)
are the two time functions to be correlated. When x(t) and y(t)
are two different functions of time, then Eq. 3.1 defines the cross-
correlation function. When x(t) and y(t) are the same time func-
tions (x(t) = y(t) ) then the resultant function is the autocorrelation
function. Note that the correlation function is defined for an infinite
sample length of data, and, therefore, it cannot be computed from
physical data. One can, however, compute the correlogram, defined
as

T

x(t) y(t + 7) dt. (3.2)

oplT) =
T 0

1
T
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Note that this function depends upon the sample length T . The
relationship between the correlation function and the correlogram
is discussed in Appendix B, where it is shown that the correlogram
can be considered to be a statistical estimate of the correlation
function. This estirnate becomes better and better as the sample
length is increased.

Appendix A gives some of the background necessary for a thor-
ough understanding of the autocorrelation function. Some of the
more elementary properties of this function, however, will be illus-
trated here by means of a few examples.

Figure 3.11 shows that the autocorrelation function of a sinusoid
of arbitrary phase is a cosinusoid. In general, periodic signals
have autocorrelation functions which have the same period. Figure
3.12 shows the autocorrelation function of a wide-band noise passed
through a low-pass filter. In this case the rate of decay (time con-
stant) of the autocorrelation function is inversely proportional to
the bandwidth of the filtered noise. Figure 3.13 shows the auto-
correlation function of noise passed through a narrow-band filter.

In this case, the frequency of the oscillations in the autocorrelation
function is approximately equal to the central frequency of the narrow-
band filter, and the decay (time constant) is again inversely propor-
tional to the bandwidth of the filter.

Figure 3.14 shows the autocorrelation function of a mixture of a
sine wave and random noise, and illustrates that the autocorrelation
function of a sum of independent signals is the sum of their autocorre-
lation functions.

The crosscorrelation function, which results from the correlation
of two different signals, emphasizes the frequency components that
are common to two signals. Figure 3.15 shows the crosscorrela-
tion function of two sinusoids of the same frequency but different
phase. The crosscorrelation function has the same frequency as
the sinusoids and shows the phase difference between the two sinu-
soids. It can further be shown that sinusoids of different frequency
have zero crosscorrelation. Thus it is suggested that correlation
functions deal basically with the frequency content of a signal.
Briefly stated, one can say that the autocorrelation function results
from putting all the frequency components of a time series into co-
sine phase and assigning to each component a value equal to its
mean-square value,

Figures 3.10 through 3,15 have illustrated the correlation func-
tions of some known signals. These functions have been computed
mathematically and do not come from any physical data. Now
consider Fig. 3.16, which shows the autocorrelogram of the fil-
tered output of a noise source. A comparison between this display
and Fig, 3.13 reveals the differences between a machine-computed
autocorrelogram and the autocorrelation function predicted by a
random-process model of the noise. The differences can be
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Fig. 3.11. Autocorrelation function of a sinusoid of arbitrary phase.
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Fig. 3.12. Autocorrelation function of noise with a low-pass frequency
spectrum.
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Fig. 3.13. Autocorrelation function of noise with narrow-band (quadratic)
frequency spectrum.
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Fig. 3.14. Autocorrelation function of a sum of a sinusoid of arbitrary
phase plus noise with a low-pass frequency spectrum.
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Fig. 3.15. Cross-correlation function of two sinusoids of identical fre-
quencies, with phase difference ¢.
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Fig. 3.16. Autocorrelogram of narrow-band noise, that is, wide-band
noise filtered by a narrow-band quadratic filter (central fre-

quency 237 cps, bandwidth 13.2 cps). Sample length (T) of data
is 7.5 seconds. Delay increment (A1) is 1/4 millisecond, and

the maximum value of delay is 185 milliseconds.
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RESTING
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Fig. 3.17. Autocorrelograms and crosscorrelograms computed from si-

multaneous recordings from two normal subjects at rest and
during 10/sec photic stimulation. The electrodes are located

in the right parietal-occipital area. The correlograms are com-
puted from one-minute of data. After Barlow and Freeman. 9

ascribed to the finite resolution of the equipment and the errors
of estimation (dealt with in Appendix B).

The investigation of known signals (signals for which mathemat-
ical models have been known to fit well in the past) has yielded
some information about the properties of correlation functions
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and the correlograms that estimate them. Knowledge of these sig-
nals allows one to make some statements about the results of corre-
lating EEG data. For instance, consider Fig., 3.17. The top part
of the figure shows the autocorrelograms of two subjects whose
resting EEG's (from parietal-occipital area) show a prominent al-
pha rhythm with periodicities that are approximately equal. Cross-
correlating these two records yields a crosscorrelogram that is
essentially zero. If repeatable, this result implies that the two
EEG's are incoherent - they have no common spectral components.
In the bottom part of the figure are shown the autocorrelograms for
the same two subjects when they are being flashed by a light at a
rate of 10 flashes per second. Note first of all, that the autocorre-
lograms now exhibit a marked periodic component at 10 cps. Cross-
correlating these two yields a periodic component at 10 cps, thus
indicating that there are common spectral components in the two
EEG signals. These results indicate that the rhythmic stimulation
is "'driving" the alpha rhythm of both subjects at the stimulus fre-
quency.

One can go even a little further, by applying the random-process
model to the EEG. For instance, consider the behavior of the auto-
correlograms of EEG for large values of delay. Figure 3.18 shows
three autocorrelograms computed out to delays of 4. 6 seconds. All
three of these records were computed from EEG data that had been
recorded from the parieto-occipital area of the scalps of normal
subjects who had their eyes closed and were seated in a dark ane-
choic chamber. The top two autocorrelograms are typical of the
autocorrelograms of many subjects. Note the large cyclic com-
ponent that these two autocorrelograms exhibit at large delays. The
presence of such a cyclic component in the autocorrelation function
of a signal might lead one to expect a narrow peak in the spectrum
of the signal. The following discussion (in fine print) is an effort
to show that a particular random-process model, narrow-band
noise,predicts that estimates of the correlation function computed
from finite lengths of data may contain some long-delay cyclic ac-
tivity. * One can conclude from the model that the mere existence
of long-delay cyclic activity in the autocorrelogram of EEG does
not necessarily imply the existence of a narrow peak in the spectrum
of the signal.

Now let us see exactly how the random-process model might help us to in-
vestigate the question of whether the cyclic component of the correlograms
of some EEG's necessarily indicates that there is a narrow peak in the spec-
trum of the signal. As a first approach, let us construct a model for the
EEG time series that will resemble it in some sense. In particular, let us
choose a model in which correlograms are very similar to those of the EEG
and study this model to see what the correlograms tell us about the correla-
tion function. Consider the correlograms of narrow-band, Gaussian noise,
as shown in Fig. 3.19. This signal was constructed by passing wide-band

*See T. F. Weissll for full development.
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noise through an RLC filter, and it can be seen that the correlograms at
first glance look rather similar to those of subjects with a prominent alpha
rhythm in their EEG (see Fig. 3.18).

To investigate the behavior of the finite-time-sample autocorrelation func-
tion (autocorrelogram) of narrow-band noise, one can start from the results
of Appendix B. There it was shown that ¢4(7) (defined in Eq. 3. 2) is itself
a random variable, dependent upon the random variable x_. It was shown that
¢7(7) is an unbiased and consistent estimate of ¢(7) (the autocorrelation func-
tion of xt). ¢(7) for the narrow-band noise process can be shown to equal

o(t) = exp(-o.|‘r|) cos w7 (3.3)

where 2a is the bandwidth and wg the central frequency of the noise. By
starting with Eq. B.14 in Appendix B and by assuming a zero-mean Gauss-
ian distribution for X the variance of ¢T(T) around its mean ¢(7v) can be
shown to approximate
2

D’T(T) = 2—0'—,1-:- (3.4)

for values of T and T thatare large compared with 1/a. This result sug-
gests that at large values of delay the variance of the random variable ¢T(T)
or the error caused by the finite sampling length remains constant even
though the mean of ¢-{T) is decreasing exponentially as 7 increases. This
result is shown plotted in Fig. 3. 20 for a particular value of a and for a
normalized time scale. In this figure the mean of ¢..(T) is plotted along
with a schematic representation of the 3o _(T) confi(irence limits of ¢T(-r).
Note that the relative errors of finite sam};Iiing (ratio of o—T('r) to E[¢;T(-r)} )
get larger for large 7 .

In addition to giving us some estimate of the errors due to finite sampling,
the random process model can also predict the form of these errors for the
narrow-band Gaussian noise signal. This can be done by computing the
crosscorrelation of successive samples of the correlogram for values of de-
lay that are large compared to 1/a. Thus consider the function

ko= Elop(m) oplr + 7' )], (3.5)

Under the assumption that T >> 1l/a such that

2
Elxx,, 1 = [E(x)] (3. 6)
the result of this computation for the noise signal gives
= L exp (-aT') <cosw,.T' for v' >0 (3.7)
7 2T 0 = :

Equation 3, 7 indicates that the errors of estimation (errors due to finiteness
of record length) have the same spectrum as the noise process.

In summary, it has been shown that a physical signal, namely noise passed
through an RLC filter, which has correlograms that appear to be similar
upon visual inspection to many EEG correlograms, has a very good repre-
sentation in terms of the random-process model. On the basis of this sta-
tionary Gaussian model of the noise, predictions can be made about the be-
havior of the estimate of the correlation function as a function of sample
length and delay. In particular, it has been shown that the long-delay cyclic
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20 MILLISECONDS

Fig. 3.19. Three autocorrelograms of narrow-band noise: wide-band noise
filtered by a narrow-band quadratic filter (central frequency 237
cps, bandwidth 13. 2 cps). Sample length (T) of data is 7.5 sec-
onds. Delay increment (A7) is 1/4 millisecond and the maxi-
mum value of delay is 185 milliseconds.
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Fig. 3.20. Mean of autocorrelogram plotted on a normalized scale with a
schematic representation of the 30‘T('r) confidence limit (ratio
of central frequency to bandwidth is 4 m).
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activity of these correlograms is a result of the finite sampling time.

The implication of these results for the EEG problem are not quite so
clear-cut. One can say, however, that the mere existence of long-delay
cyclic activity in an autocorrelogram of EEG does not necessarily imply
the existence of a sharp peak in the spectrum of the signal.

Some further work has been done to test this representation of some EEG
records by a narrow-band, Gaussian noise model. The amplitude histograms
of these EEG records have been studied, and at this time it appears that the
results are not inconsistent with the Gaussian hypothesis. The problem of
representing EEG records as coming from statistically time-invariant or
stationary processes is, however, hazardous. For the particular EEG re-
cord shown in Fig, 3.21, the narrow-band, Gaussian noise model appears
to be a very good one with respect to prediction of the behavior of the correlo-
gram as a function of sample length. Note the decrease of the long-delay
cyclic activity as a function of sample length.

SAMPLE LENGTH 100 SECONDS

/

200 SECONDS

,-"'."“.

400 SECONDS

500 MILLISECONDS

Fig. 3.21. Autocorrelogram of the EEG of a resting subject as a function
of sample length. Electrodes located on left parietal-occipital
area. Subject seated in a dark, anechoic chamber. Delay in-
crement is 6. 25 milliseconds and maximum value of delay is
4.6 seconds.
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This example of the use of the random-process model to answer
an experimental question has been given in some detail to show
the utility of such an approach. If the explicit assumptions of
this model are justified, then the utility of this approach can be
realized. As a result, a large number of questions about the data
can be answered on the basis of a smaller number of experiments.
For instance, for the noise signal, the effect of finite time samples
on the autocorrelograms is known, and many experiments plotting
these effects as a function of all the sample lengths of interest
need not be done. In addition, many other functions of this noise
signal that may be of interest can be computed mathematically.
Tolerance limits of the expected range of variations can also be
placed on these functions without doing a large number of experiments.
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Chapter 4

CONCLUDING REMARKS

The preceding chapters and the appendixes that support them
constitute a loosely strung chain of discussions and illustrations
that relate to certain methods for the data processing of neuro-
electric activity.* In Chapter 1 we tried to depict some of the
reasons for our attempts to study the nervous system as a com-
munication system. The authors have, however, little doubt that
this motivation does not shine through every page of the present
monograph.

The illustrative examples of data processing that are given in
the preceding pages were not thought up in order to illustrate the
capabilities of computers. They derive from studies of specific
aspects of the electrical activity of the nervous system (or of
parts thereof), in which we tried to deepen our grasp of the ob-
servable phenomena by quantifying them in the broad sense of the
term. The phenomena that we have dealt with range from elec-
trical potentials recorded from the round window of the inner ear
of an anesthetized cat to the electroencephalogram and evoked re-
sponses to sensory stimuli that are recorded from the scalp of
awake humans.,

In most of these problems a more-or-less explicit set of hypo-
theses had been formulated, and a class of experiments had been
designed in order to test the hypotheses. The experimenter then
tried to find a method of data processing that would serve these
purposes most adequately. An experimenter must not deceive him-
self regarding the range of data-processing techniques that are
available to him or, more importantly, the range of such tech-
niques that he will readily think of. Once one has special-purpose
computers in the laboratory or has experience with certain pro-
grams on a general-purpose computer, one will tend to think of

*As emphasized in the preface, the present monograph neither
attempts to discuss the processing of electrophysiological data
in general, nor does it claim a monopoly of insight for the meth-
ods described here; they are simply the methods that we have
used in recent years.
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the available techniques first and preponderantly. The sequence

of formulation of hypotheses, design of experiments to test these
hypotheses, and search for adequate methods of data processing

is, of course, a textbook ideal. The working scientist in the lab-
oratory operates rather less formally and more heuristically. He
thinks in terms of what he has learned to do and tries to stretch

his limited skills to cover a considerable range of problems. Nev-
ertheless, it is important to emphasize the necessity of looking for
problems of intrinsic scientific interest instead of letting the choice
be guided by the capacities of available computing devices.

Research on the nervous system demands the mastery of a va-
riety of techniques. Here we have concentrated on techniques for
the processing of data from sizable populations of neural units. We are
all aware that the quantification of such data remains rudimentary. We
must underline that the results that can be obtained by even the
most sophisticated methods of data processing are only as good as
the scientist's other experimental techniques (such as control of
stimuli and of physiological preparations) and the degree of rele-
vant knowledge that he possesses - in the domains of neuroanatomy
or of behavior, for instance. In particular, the quality of his re-
sults will depend upon how penetrating a question he has really
asked. No amount of data processing is a substitute for the selec-
tion of significant problems that are formulated sharply enough to
justify the use of powerful techniques in order to obtain nontrivial
answers. To use electronic data processing for "fishing expedi-
tions' or population studies with many uncontrolled variables will
allow one to pile up numbers at a fast rate but will not help neces-
sarily in interpreting the findings.

The computer's speed - important though it is - is not the only
asset that the computer has to offer to students of neuroelectric
phenomena. Computer programs require that problems be formu-
lated with a definiteness that transcends that commonly found in
verbal statements. Such definiteness leads often to 2 more search-
ing examination of the planned experimentation.

In the absence of theoretical schemes for the operation of the
nervous system (and in the presence of a multitude of possible
neural mechanisms), there is a premium upon being able to tackle
an experimental problem from different angles; a general-purpose
computer has the flexibility that permits the quantification of a
variety of measures. (Chapters 2 and 3, which dealt with the eval-
uation of a half-dozen statistical parameters, have by no means
exhausted this particular approach.) On the other hand, a special-
purpose computer can often perform a set of given calculations
more "efficiently and may thus offer the experimenter an advan-
tage if he can commit himself to one particular measure as being
of paramount importance in a large variety of experiments.

Recent evolution in data-processing techniques has made it pos-
sible to build computers into experimental setups for '"on-line use. "
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(See, for example, Chapter 2 where the use of ARC-1 as an "on-
line" averager is described.) When as complex a system as the ner-
vous system is being investigated, it is to the experimenter's ad-
vantage to monitor at least some of his results during the course of
the experiment. This use of '"on-line' computation can be carried
farther by using computers not merely to monitor data processing
but to control experimental parameters (such as stimulus patterns)
in relation to the organism's response behavior.

As we look to the future a question is often raised: '"What are the
important obstacles that we might run into when we use computers
in the study of the nervous system?' Clearly, there is a gap be-
tween the data-processing techniques that are now technically fea-
sible and the techniques that we might want to have at our disposal.
The gap involves our desire to do multichannel recording and to
have multichannel displays available; the gap exists in the size of
currently available memories, in the input and output equipment,
and, let us not forget, in the cost of computer facilities. But this
technological gap is small compared to the more serious gap be-
tween the possible experimental problems that we can adequately
handle and the relevant and realistic mathematical models that are
available. A discussion of such models deserves an entire mono-
graph, and all that we can do here is to refer to some of the initial
steps 1-3 that have been taken in this direction.

We need also to bring about a rapprochement between studies of
biological nervous systems and studies in which the behavior of
aggregates of neural units is simulated on computers.” ~ Such
studies may provide us with highly useful catalogues of possible
mathematical models in areas in which, up to now, not enough
collaborative work has been done by students of ''dry'' and "wet"
brains. To convince young researchers from the physical and life
sciences of the desirability of acquiring the gamut of necessary
skills is one of the purposes of this monograph.
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Appendix A
THE DESCRIPTION OF RANDOM PROCESSES

William M. Siebert

Neurophysiological phenomena, like many other natural phenom-
ena, often appear to be haphazard, disorganized, unpredictable,
random, or ''noisy.'" But these are relative words. They imply
only a degree of uncertainty or irregularity. We are not able to
predict the weather with precision, but still it will probably be
warmer in the summer than it is in the winter. Buried in the
''noise'' accompanying many of these random phenomena there are
often attributes that on the average demonstrate considerable reg-
ularity and that can be usefully, or even causally, related to ex-
ternal conditions or stimuli, as the average temperature can be
related to the earth's orientation with respect to the sun. Thus it
is possible sometimes to discover a degree of order in apparent
chaos.

But if the resulting descriptions of the average order are to be
quantitative, we must begin with a quantitative description of the
observed data. Observations of random phenomena, such as an EEG
record, can have many mathematical descriptions. Perhaps the
most familiar is to consider the data in terms of a specific function
of time, that is, for each time instant we assign a value to the func-
tion. But there is another means of representation - the random
process - which is often more useful, particularly if we are inter-
ested in the regularities or averages that are often the only appar-
ently meaningful attributes of the observed data. As contrasted
with a time function, a random process is defined not by its values
at various instants but by certain probability distributions and
averages such as means, moments, spectra, correlation functions,
and so forth. The principal purpose of this appendix is to suggest
briefly what a random process is and how it can be described.

Our treatment of random processes, although using mathemati-
cal notation where necessary, will be largely discursive, aimed at
qualitative comprehension rather than manipulative skill. It is an
introduction rather than an outline. Moreover we shall have little
or nothing to say about the application of the theory, so far as neuro-
physiological data are concerned, this topic belongs to the main body
of this monograph. But before proceeding it is necessary to make
in this regard one point that is often overlooked: A random process
is a mathematical model, not a physical reality, To say that some
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set of data can be usefully considered for some purpose as if it
came from a certain random process is not by any means the same
as saying that the physical process involved is that random pro-
cess. Indeed the physical process need not ;c-tually be "random"
at all in any ordinary sense. The problem may merely be so com-
plex in formulation or analysis (for example, the flip of a coin, be-
havior of gas molecules, height of ocean waves, and so on) as to
render the calculation of presumably deterministic effects unfeas-
ible. The theory of random processes bears the same relationship
to the ""real world'' as does any other mathematical theory, such
as geometry. Whether an observed shape can be usefully consid-
ered as a triangle and, if so, what values to assign to the angles
are problems in surveying, not geometry. Similarly whether an
observed fluctuating quantity can appropriately be represented as

a sample function of a random process, and, if appropriate, what
numerical values to assign to the parameters of the random pro-
cess are not really mathematical questions. And we shall not dis-
cuss them here. But it is only fair to point out that both of these
questions (which belong properly to the broad domain of statistics)
are often very hard to answer, particularly in neurophysiological
applications. The final test, of course, is ''in the eating'; if a
random-process model leads to useful results, that is proof enough
of its utility., Questions of "truth" lie outside mathematics.

1. Random Processes and Random Experiments -

A time function which has interesting, ''moisy, '' characteristics
can be constructed from the results of a sequence of random ex-
periments. For example, suppose that we spin the spinner shown
in Fig. A.la. The result is one of the six integers 1, 2, 3, 4, 5,
or 6 (we agree to ignore any spin that lies ''on the line'). Suppose
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further that we construct a pulse, starting at t = 0, of duration T,
and with an amplitude equal to the number on the spinner (see Fig.
A.1b). If, now, we perform a second similar experimentat t=T,
we can construct, starting at that time, a second pulse of amplitude

67




neuroelectric data

equal to the result of the second experiment, and so on. The re-
sult might be to generate the particular time function shown in

Fig. A.1lb. But suppose that we were to repeat the entire process.
We should not expect to get exactly the same time function, and in-
stead might obtain the time function shown in Fig. A.2. If we were

f(t)
ﬁl
6._.
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|
. I
ol I
] ' )
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Fig. A.2

to repeat the entire process an indefinitely large number of times,
we should obtain a very large number of time functions, some of
which might be very much alike, of course. The entire (infinite)
collection of waveforms obtained in this way is called an ensemble,
and each member of the ensemble is called a sample function. Pro-
visionally, we shall accept the complete ensemble as describing a
particular example of a random process.

There are many ways in which the procedure we have described
can be generalized. We need not, of course, limit ourselves to
spinning a spinner. We could toss a die, or toss ten coins and
count the number of heads, or pick a name at random from the
phone book, or sample the output of a noise generator such as a
diode. Also, we need not make the height of the pulse equal to the
number on the spinner but could make it equal the square or loga-
rithm of this number, or equal to the number of letters in the last
name of the person selected from the phone book, or in general
any real number associated with the particular result of the ran-
dom experiment which occurs. Such a number is called a random
variable. If the random variable can have only a set of discrete
values (for example, the random variable corresponding to the
spin of the spinner in Fig. A.la), then it is said to be of discrete
type, whereas if it could have any value in some interval (for ex-
ample, a random variable equal to the voltage output of a noisy
diode), then it is a random variable of continuous type. Further-
more, it is clear that the random experiment used to determine
the pulse height between 0 and T need not be the same as the
random experiment which determines the pulse height between T
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and 2T, and so forth. For example, a whole set of spinners with
different divisions of the circle could be used in sequence, subject
to the condition that they shall be used in the same sequence to de-
termine each sample function of the ensemble, or, alternatively,
the experiment used to determine the height of the second pulse
could be dependent on the result of the first experiment. For ex-
ample, suppose that a number of different spinners were labeled
with the integers 1, 2, 3, 4, 5, 6. Then, if the height of the first
pulse for a particular sample function were a 3, the spinner la-
beled 3 would be spun to determine the height of the second pulse
of that same sample function, and so on. Finally, if the random
variables representing the results of the various experiments are
of continuous type, if T is made very short, and if successive
experiments are made heavily dependent on the results of preced-
ing experiments, we can by an appropriate limiting process obtain
sample functions that are continuous functions of time.

2. Probability Distributions

The description of a random process in the preceding section is
open to several criticisms. In the first place a complete listing of
every possible sample function of the ensemble is clearly a ridicu-
lous procedure physically. This difficulty can be circumvented
either by specifying the process in terms of a certain set of spinners
and instructions for their use, or alternately by abstractly defining
the properties of an idealized set of spinners. For example, we
might specify each spinner by defining the angular sectors associated
with each value of the corresponding random variable, together with
the requirement that the result of each spin is equally likely to be
any angular position. This latter definition, which we shall explore
further in this section, clearly depends on an (intuitive) notion of
probability.

But, in the light of our introductory discussion of the distinction
between a mathematical theory and the ''real world, ' our provisional
definition of a random process is in still more serious trouble. We
have defined a mathematical concept in terms of a physical experi-
ment. This difficulty, too, is partially removed by replacing the
physical experiment with an abstract experiment involving idealized
spinners. But the success of this artifice is by no means complete
because the description of an idealized spinner requires a defini-
tion of probability, a notoriously difficult problem in mathematical
philosophy. To show how this final trouble can be resolved, we
shall first examine our intuitive notion of probability in terms of
what is called the relative frequency approach.

Let us return to the random process as described in the preced-
ing sections in terms of a sequence of experiments. The value of
each sample in the first interval 0 <t < T 1is determined by spin-
ning a certain spinner separately for each sample function. Suppose
that we examine N different sample functions in the interval 0<t<T
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and suppose that the value "l1'" occurs n; times, the value ''2"
occurs np times, and so forth. The ratio n /N is called the rela-
tive frequency of occurrence of the event '"1," n,/N is the rela-
tive frequency of '"2,!" and so forth. As N — oo, it seems reason-
able that n, /N should tend to some limiting value, p(x = 1), which
could be called the ''probability of occurrence of the event 'l.''" In
a similar way we could define p(x = 2), p{x=3), -+, plx = 6).
This approach has the weakness, from the point of view of the
mathematician, that the existence of a limit for the relative fre-
quency can never be proved, in the sense that the limit depends on
the unknowable future. But let us pass on for the moment; itis a
familiar fact that many random experiments do exhibit what is
called statistical regularity; that is, the relative frequencies of
events appear to be approaching limits as the number of trials is
increased.

To generalize, suppose that a discrete-type random variable x,
associated with a certain experiment, can have any one of the dif-
ferent values, ., &2, SN §M. If the particular value §, occurs
ny times out of N trials of the experiment, then, assuming that
the limit exists,

plx = §) = [ probability that x = gk] = lim n, /N.
N—->oo

The set of values of p(x = f:-,k) is called the probability distribution
for the random variable x. There are a number of consequences
of this ""definition':
1. Probability of a certain event (that is, one that is bound
to occur) = 1.

2. Probability of a null (or impossible) event = 0.

3. 0 < plx= gk) < 1.

4, Since the different values of a random variable are mutu-
ally exclusive (that is, x cannot simultaneously have two
different values) p(x = §; or E‘j or ék )= plx =g+
Plx = £5) + plx = £) + -+~

5. If the random variable x can take on any one of no more
than M different values, then

M

Ep(x=§k) = 1.

k=1

6. The probability distribution function for a discrete ran-
dom variable is defined by

Px<X) = ) plx= g)
all k
for which §; = X.
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7. Px<+ oo =1, Px < -00) = 0.
8. If b>a,
P(x < b)-P(x <a) = Pla<x<b) > 0.

In words, P{x < X) is a nondecreasing function of X.
As an example, let a random variable x be defined as the number
of '"heads' that occur if a biased coin is tossed M times. (A
single random experiment then consists of M tossings of the coin.)
Suppose that the probability of ""heads' occurring on a single toss
is p . The various possible values which x can have are

§0=0,§1=1,§=2,‘ M.

2 by T

It can readily be shown that

M!

k M-k
*M-ow PU-P o, 0<ksM

p(x = k)
which is plotted in Fig. A.3 for a particular choice of M and p
and is known as the Binomial Distribution. The probability distri-
bution function for this random variable is illustrated in Fig. A.4.

p(x=k)
A
oer M=10
p=0.5
(oX] &
0] } T 1 T T Y — —= K

Fig. A.3 Probability distribution.
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P(x< X)
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Fig. A.4 Probability distribution function.

In particular it is easy to see that

(c < M) S px = 19
P(x <M) = plx =
= MMV gy MELZD M2 )2
deee b -

= [p+(1-pﬂM= 1

(by the Binornial Theorem), as it should.

The relative-frequency approach to probability is familiar and
intuitive, but as we have suggested it suffers from the difficulties
that the existence of the limit can never be proved and, once again,
we are guilty of confusing theory and experiment. A way out of
this dilemma (suggested by Kolmogorov and now almost univer-
sally accepted) is merely to define the probability as a positive
real number associated with an event. Axioms (essentially num-
bers 1 and 4 of our list of ''consequences') for the manipula-
tion of probabilities are then specified so that probabilities '‘be-
have'' like relative frequencies. From the standpoint of the axio-
matic theory, then, the specific value of the probability attached
to a specific event is of no importance; indeed, the determination
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of the appropriate value for the probability of some (real) event
specifically lies outside the domain of the theory of probability.
There is no harm in thinking loosely about probabilities as rela-
tive frequencies, provided that we are careful to distinguish be-
tween two quite different quantities:

1. The (abstract) probability that some event ""has' (for
instance, the probability that a tossed coin will come up heads).

2. The estimate of this probability that we might derive
from some statistical experiment (for instance, the fraction of
heads in 1000 tossings). Whether such an estimate is a ''good"
estimate, or indeed whether the notion of probability is appropriate
to such an experiment at all, are subjective matters for which the
theory of probability can at best provide guides. With this under-
standing we shall assume that our metaphysical foundations are
reasonably solid and shall continue for reasons of intuitive sim-
plicity to discuss probability and random-process notions in rela-
tive-frequency language.

The concepts of the preceding paragraphs can be extended to

continuous-type random variables. Suppose, for example, that
a random experiment consists of sampling the output of a diode
noise source and that the associated random variable x is the
amplitude of the sample. Clearly, for every number X, the event
x <X occurs some number of times ny in N samples. Thus we
can "define' the probability distribution function P(x <X) for a
continuous-type random variable as the limit of a relative fre-
quency. As before, P(x <X) will be a nondecreasing function of
X ranging from 0 for X = -0 to 1 for X =+o0. If P(x <X)
is differentiable, we may define the probability density function

p(x) as

px) = EE=X 5
or
p(X) X = P(X <x < X + dX).

The probability density function for continuous random variables
is analogous to the probability distribution for discrete random
variables and has similar properties, for example;

©
§ pix) d&x =1
-0
X
S p(x) dx = P{x < X)
- 00
b
g p(x) dx = P(a<x<b) forb>a.
“Ya
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By far the most important distribution for continuous random variables
is the Gaussian or Normal Distribution

1 2 2
p{x) = N exp[-(x - m)~/20“] .

The density and distribution functions for this random variable are
plotted in Fig. A.5 and Fig. A.6, respectively.

opl(x)

Fig. A.5 Normal probability density function.
P(xsX)

1.0
08
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04
o X-m
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-3 -2 - 0 | 2 3 4q T
Fig. A.6 Normal probability distribution function.

It should now be clear that our original random process, which
was constructed from independent spins of a spinner for each inter-
val (n - 1)T <t <nT, can be neatly specified by the simple proce-
dure of giving the probability distribution p{x, = gk) that deter-
mines the relative frequency of the various possible values of the
discrete random variable X which in turn is equal to the height
of a sample function in the nth time interval. Of course, if the
same spinner is used for each time interval, plx, = §k) will not
depend on n, and only a single probability distribution p(x = &k)
is required.

But, as we have already pointed out, it is not necessary that
successive random experiments be independent. For example,

74




random processes

the particular spinner to be used in determining the value of a
sample function in the second time interval could depend on the
value of the same sample function in the first interval. In this
event, although it will still be possible to "define" p(x, = gk)
from relativefrequency measurements on the members of the en-
semble during the nth interval, the set of p(xn = gk) for each n
and k will not completely describe the random process because
these distributions say nothing about the interdependence of suc-
cessive values of a single sample function. To describe this inter-
dependence, we need to introduce the notions of joint and condi-
tional probability distributions.

Consider a pair of time intervals, and let x, with particular
values £;. be the random variable corresponding to the first inter-
val, and X5 with the same particular values &k be the random
variable corresponding to the second interval. Suppose now that
we examine N sample functions of the ensemble and we observe
that the particular pair of values x; = §3 and x, = §; occur to-
gether in the same sample function n{31) times. “Then we shall
define the joint probability of x; = £4and x, = &1 as

iy
Plx; = €4, X, = €) = lim —(—
N-m

or if there are M different possible values of £ , then the set
of M% numbers p(x1 = gi, x5 = £.) is called the joint probability
distribution for x; and X5 . From the definition it is clear that

< Bl =g, %= 6) <L

Furthermore, if p(xl = gi) is the probability of the ith value of the
first random variable considered alone and ''defined' as the limit
of a relative frequency as before, then

M
Py = 6) = ) pbe = By = 62 Bl < £y X, = )
j=1
M for all k
Bi, = £) = ) plx =&y %, = )2 plx = 6 X, = 8
i=1

for all k
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so that from the joint distribution we can obtain the first-order
distributions p(x1 = £;) and p(x2 = Ej). Finally, it should be ob-
vious that by considering more experiments simultaneously we can
"'define' in an exactly identical manner joint distributions p(x1 = gi,
Xy = gj, Xq = gk, X = gl ) of any order.

The dependence between a pair of random variables can be des-
cribed in another way. Let us consider the question, '""What is the
probability that x, = £;, if we know that the value x) = £3 has
occurred?'" This is the conditional probability of x, = §; given

x) = 5 written p(x, = §,/x, = §3). To see how to define

pxy = §1/x1 = gz), let nlzl) equal the number of simultaneous
occurrences of xy = §3 and x, = f;l in N sample functions from
the ensemble. Similarly, let n 3 represent the total number of
occurrences of the value x) = £3 in the same N sample functions
independent of what value of X, occurs. Then

L
n(13) ) n(13)/ N

is the fraction of those times when x) = §3 that X, = €, also and
in the limit should be the desired conditional probability. But the

(31)

ratio n /N:p(x1 =§., x_ = gl) in the limit and the ratio

3" 2

n(13)/N = plx; = §;) in the limit, so that
Phey = 85 %= &)

Plx, = § /x, =8 = PG, =€)

or in general
plx = 6,0 %, =) = Blx) = £)p(x, = 6./, = §,) = Plx,= 6 )plx;= 6, /x,=6.)

which is known as the product rule.
In some cases it might be true that

plx, = §/%) = £) = plx, = &)

J
for all i and j. In this event it is clear that knowledge of x
tells us nothing about what to expect of x,. Then x; and x, are

said to be statistically independent random variables,and the pro-
duct rule becomes

plx) = &, %, = §) = Blx; = £) plx, = £) .

If the experiments which determine the value during each time
interval of each sample function of the ensemble are dependent,
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then it will be necessary in general to specify the complete joint
distribution p(x; = gi, X, = :, Xq = € - ) in order to describe
the random process. But if ti-ne random variables corresponding
to different intervals are statistically independent (as we implicitly
assumed initially), then the joint distribution factors into a pro-
duct of first-order distribution, that is, a specification of plx,=§;)
is sufficient.

The concepts of joint and conditional probabilities can be extended
to continuous random variables in a more or less obvious way. Thus,
for example,

= < <
p(X, X,) dX, dX, = P(X <x <X

+dX_ , X <x§X

1 1”72 5% + o)

2

Xl X,
< < =
P(x1 ——Xl' x, < XZ) S‘ S‘ p(xl, xz) d:-:1 dx2
o -
©

pee) = 0 pie)s ) ax,

plx,, x,) = plx, /x,) p(x,) = p(x, /%)) plx,).

By analogy with the discrete-parameter discrete-valued random
process, if the random variable x; (corresponding to the amplitude
of the sample functions at time t ) is of continuous type and if each
sample function of the ensemble is a continuous function of time,
then a complete description of the random process requires a spe-
cification of the joint probability density function

P(x y X s v, X )
tl t2 n

for every choice of the times t,, t *, t_and for every finite n.
et bl 1 n —

2’
3. Averages, Correlation Functions, and Spectra

One of the principal ways in which random-process theory could
be useful in neurophysiology would be to provide a language for the
description of observed data in terms of the language used to de-
scribe a related random process. But, the discussion of the preced-
ing section, necessarily brief, has perhaps been detailed enough to
suggest that the complete specification of a general random process
in terms of joint probability density functions is a very complex and
difficult matter. In fact, for a completely arbitrary random process,
it is practically impossible. Fortunately it is often possible to com-
promise with a complete description in such a way that the descrip-
tion becomes tractable while retaining much of its significance. Spec-
ifically we nearly always limit our description of a random process
to the specification of a few simple averages (means, correlation
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functions, spectra, and so forth). It must be emphasized that
these averages do not in general completely describe the process.
But, by analogy with the first few terms of the power series ex-
pansion of a function, the limited description can often be very
good for some purposes, and there are cases of great importance
(as we shall see in the next section) in which a small number of
averages completely specify a random process.

Let us consider a discrete random variable x with M possible
values §;, g?_, cee, ‘g'M corresponding perhaps to the possible
values of the sample functions of some random process at a par-
ticular instant of time. If we examine N sample functions, let
us further suppose that the particular value &1 occurs n, times,
{3,2 occurs n, times, and so on. Then the average height of the
sample functions at this instant is clearly

E1my T &t Y iy
N .

Passing now to the ''limit" as N -~ oo, we shall define the statistical
average, ensemble average, or expectation of the random variable
x as¥

M
Elx] = ) & plx= ).
k=1

For a continuous randont variable the corresponding definition is

©
E [x] = SI xp(x) dx.

-Q00

If, now, we wish the statistical average of some function of x,
such as x“, log x, or, in general, f(x), the appropriate operation
is clearly
©
MM=SMWW-

-0
(Hereafter, we shall usually write formulas for the continuous case
only.) A most important class of functions is the set x?, n=1, 2, 3,
e, E[xn] is called the nth moment of the random variable x . The
name, of course, comes from analogy with mechanics, sincg if p(x)
plotted as in Fig. A.5 is imagined cut out of sheet metal, then E[x]

*E[x] should be read "expectation of the random variable x. "
The bracket notation is used to distinguish E [x] from a function
of x, such as f(x), where x is the independent variable.
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. . . 2, .
is the location of the center of gravity, E[x ] is the moment of
inertia about the origin

()

E[xz] = S‘ x2 pix) dx
-0

and so forth. Sometimes instead of the moments E [x?], the cen-

tral moments E[(x - E(x) )n] are more convenient. Two moments

are particularly important and are given special names and symbols:
1. E[x] is called the mean of x, E[x] = m.

2. E[(X - E[X]) 2 ] is called the variance of x,
E[(x-E[x]) %] = o2
It is easy to show that

crz = E[xz] - (E[x])2 = E[XZ] -m

2

which is analogous to the parallel-axis theorem of mechanics. As
we shall see shortly, o is (in electrical engineering terminology)
usually equal to the average '"a-c'' noise power in a sample function
of the ensemble and m 1is the '"d-c' value of the sample function,
while E[xz] is the total average power in the sample function.

As an illustration of the computation of the moments of a proba-
bility distribution, consider the Binomial Distribution defined
earlier:

1 -
P(X=k)='i<'%$—_'m Pk(l-P)Mk, 0< k<M
& N 'k k M-k
M! -
Elx] = ) kpbe=k) = ) ek p0-p)
k=0 k=0
AN Yt
) M - 1)! B, M-1-4
? =0
= Mp
2 & 2 4 ' 2 k
M'k k M-
E[x"] = zkp(x=k) = ZmP(I-P)
k=0 k=0
M
M! [k(k - 1) + k] Pk(l _p)M—k

k! (M -k)!
k=0

= M(M -1) p2+Mp
o2 = E[x%] - (Elx])? = Mp(l - p) .
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The moments are important, of course, because they partially
describe the shape of the probability distribution. Thus for a
single-peaked or unimodal probability density function (such as
that in Fig. A.5), m is approximately equal to the location of the
peak and

Ng2 = o = standard deviation

is an approximate measure of the width of the peak. Indeed, it can
be shown that if all the moments are finite (and they need not be,
even for probabiﬁy distributions related to well-defined physical
processes), then the moments completely determine the correspond-
ing probability distribution.

Analogously, if we consider a pair of random variables, x, and
X, representing a random proce—gg_z;.t two different instants of time,
then the statistical average of any function of x; and x,, suchas
X1Xp, X]exp (XZ)’ or in general f(xl,xz), is

o
E[f(xl,xz)] = S‘ g f(xl,xz) p(xl,xz) d.xl dx2 .
Yoo Y-00

Again, powers of x; and x, are important, and E [(xl - ml)l
(xz -m, is called the #-nth joint central moment of X

and x3. In particular, the case f = n =1 is of special importance,
and E [(xl -myHx; - mz)] is called the covariance. A related

quantity, if t; and t, are any two instants of time, is

E[xt x, ] = R(tl,t

)
12 2

which is called the autocorrelation function for the random process.
The covariance is a measure of the interdependence of % and
x3. But like ¢“ and m , the covariance does not provide a com-
plete specification of p(xl, xz) and thus does not describe com-
pletely the interdependence of x; and x,. For example, if
E[(xl - mj)(x; - m,)] = 0, then x; and x, are said to be uncor-
related, But this does not imply that x; and x, are unrelated.
Indeed, suppose that p(xl) is symmetrical about the origin and
that x, = (x )2. Then x., is exactly determined by x,, yet it
can be shown that x, an X, are uncorrelated; that is,
E[(xl - ml)(x2 - mz)]] = 0. On the other hand, if %; and x, are
statistically independent, that is, if p(x;, x;) = p(x;)p(x;), then
they are also uncorrelated, since

Qo [e o)
S g (x) -m))x, - m,) plx,, x,) dx; dx,
=-Q0 =00

@ ®
= S (x1 - ml) p(xl) dxl S (:-c2 - mZ) p(xz) d.x2 = 0.
- Q0 -0
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The statistical averages that we have been discussing are averages
at a given time over a large number of sample functions. But it is
clear that we could define another sort of average, the time average
of a particular sample function*as

! T
<i(x(t)) > = lim —— g £ (x(n) dt.
T—+oo -T

An important question, then, is under what circumstances will the
time averages and the ensemble averages be equal; that is,

Elttx, )] = < f(x(t)) > .
1

Since the time average cannot by construction be a function of time,
it is obvious that the two averages can be equal only if the ensemble
average also does not depend on time. In general it can be shown
that the ensemble average will be equal to the time average of al-
most every sample function, provided that the random process is
both stationary and satisfies the ergodic condition. A random pro-
cess is stationary if the joint probability density

P(x X, L,X, ,0" 7 ,X )

tl tZ t3 tm

depends only upon the time differences t, - tj, t3 - t;, and so forth,
and not upon the actual time instants; that is, stationarity implies
that the ensemble will look just the same if the time origin is changed.

(X 1 X0, X )= (X s X y ", X )-
PP, ¢ 7 P e T

The ergodic condition essentially requires that almost every sample
function shall be ''typical" of the entire group.

Next to the concept of probability itself, no concepts in random-
process theory have been the subject of quite so much confusing dis-
cussion and misinterpretation as stationarity and ergodicity. Much
of this confusion disappears if it is acknowledged that both station-
arity and ergodicity are attributes which relate to the abstract math-
ematical random-process model and only to this model. To ask

*It is often illuminating to think of a random process as a function
of two variables, one being the time variable which runs along
ea-c-l—l——sample function, and the other being an index variable which
indicates which sample function is being considered. This idea

is implicit in our notation; thus x, is to be thought of as (loosely)
a function of the index variable, over the ensemble, at a particu-
lar time t, whereas x(t) is to be thought of as a function of time,
along a particular sample function.
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whether some '"real-world'' process '"is' stationary or ergodic is
to ask a virtually meaningless question. This becomes evident
when one recognizes that our total experience with a ''real-world"
process typically corresponds to part of one sample function,
whereas stationarity and ergodicit_ﬁaves_igniﬁcance only in re-
lation to the whole ensemble. Putting the matter operationally,
given almost any arbitrary ''real-world" record of finite length,
it is possible?construct random processes that are either sta-
tionary or nonstationary, ergodic or nonergodic, as desired, and
that will contain the given record as a reasonably likely, typical
part of some sample function. Whether the random process cor-
responding to some observed data should be chosen so as to be
stationary or ergodic depends on what is known about the specific
situation. Thus a random process representing hourly tempera-
ture readings should clearly be nonstationary if the diurnal or
seasonal changes are the phenomena of principal interest.

For stationary random processes, we may write the autocorre-
lation function as

Elx %, ] = Rit;,t)) = R(t, -t

t

;) = R(T)

since the average can depend only on time differences. We may
also define a time-average autocorrelation function as
T
¢(t) = < 2x(t) x(t+ T7) > = lim _ZlT Sl x(t) x(t + T) dt.
T—+c T

If the process is ergodic, then

¢r) = R(T).

The autocorrelation function plays an important role in applica-
tions, and it is worth considering some of its more important pro-
perties. We assume the processes to be both stationary and ergodic:

1. R(0) = E[xtz] = o'2+1'nZ
1 T
= lim —— S' x (t) dt = average power in a
2T | .
T—o00 -T sample function.

2. R(0) > R(7) = R(-7).

3. For many physical processes, samples taken a long dis-
tance apart are uncorrelated, with the result that

lim R{T) = mz.

T+

4. The Fourier transform, S(w), of R{71) is always real
and positive. S(w) is defined by
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oo
S{w) = S R(T) exp (-jwT) dT
-0
and is called the power density spectrum. The justifica-
tion for this name will become more apparent shortly.

5. From the Fourier inversim formula,

1

()
R{t) = 5 g S{w) exp (jwT) dw .

In particular,

©
R(0) = total average power = Z—Iﬂ S S(w) dw
-0

which is part of the justification for calling S{w) a power
density spectrum.

6. Let H(w) be the complex frequency response of a linear
system (such as, for example, an electrical network).
Then, if 5;(w) is the power density spectrum of the input
(stimulus),

s () = |H(w)|zsi(w)

is the power density spectrum of the output (response).
In particular, the total average output power is

oo
1 2
R (0) = 3— Smsi(“) | )| ? a

which provides the final justification for calling S(w) a
power density spectrum. Thus suppose for example that
H(w) represents a narrow bandpass filter,

1 in band of width Af centered on w

H(w) = o
0 elsewhere.
Then
R, (0) = power of input process in band Af at w
0 0
w0+ w Af
1
= 5x S Si(w) dw = Si(w) Af
Wy Af

for small Af.

Thus, operationally, S.{w) has precisely the significance
we desire for a power spectral density.

Ensemble averages are important because they are the quantities
in terms of which we usually describe (more or less completely) a
random process. Time averages of a single sample function are
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important because they are closely related to quantities we can
actually measure. However, the relation between the (infinite)
time averages that we have been discussing and the corresponding
ensemble averages depends on stationarity and ergodicity. What,
then, are we to do in a situation that clearly must be considered
to be nonstationary (as, for example, the hourly temperature re-
cord mentioned previously)? No general answer can be given, of
course, but often it is possible to justify the significance of some
special sort of time average. Thus consider a periodically time-
varying random process whose joint probability density is not in
general independent of shifts in time, but which is independent of
shifts that are multiples of a period T. Thus

p(x ’x I'..)x ) p(x )x ,...’x )

tl tz tn t1+kT t2+kT tn+kT

for all integer values of k. For such a nonstationary process, we
can define a special sort of time average; for example,

N

lim L z x(t + kT)
Nerco 2N
k=-N

which is a function of t but which should be equal generally to the
ensemble average

E [xt]

for each t.

4, The Gaussian Process

The most important random process is certainly the Gaussian
random process. Formally, a Gaussian process is defined by the
requirement that the joint probability density function of every
order must have a certain form; for example, the second-order
joint probability density function for the random variables x; and
X, must have the form 1

2
2 =
1 (xtl ™)
plx, % ) = 2 SXP{ 2| T2 2
1 2 Zﬂtrltrz'\ll_pz 0'1 (l-p)
2(x -m X -m x 2
(t 1) ( t z) ( t 'mz)
) 1 2%, 2
. 2 2 2
75l - p) o, (1-p)

for all tl and tZ’ where
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2 2 2
ml = E[xtl], m2 = E[xtz], 0‘1 = E [xtI] - ml,

R, t)) - mm,

1%

q
NN
1]
=
ﬂxl\_‘
A
|
&N
!

From the standpoint of applications, the importance of the Gaussian
process depends on two characteristics:

1. A wide variety of physically observed random waveforms
can be usefully represented as sample functions selected
from Gaussian processes.

2. The Gaussian process has a number of mathematical fea-
tures that make analysis relatively simple in many situa-
tions which otherwise would present great difficulties.
The analyst would certainly be justified if he added to. his
familiar prayer, '"Oh, Lord, please keep the world linear, "
the words, "and Gaussian. '

The first of these characteristics is easy to understand in the
light of one of the most important theorems of probability, the Cen-
tral Limit Theorem. With some qualifications, the central limit
theorem states that any random process, each of whose sample
functions is constructed from the sum of a large number of sample
functions selected independently from some other random process,
will tend to become a Gaussian random process as the number of
sample functions added tends to infinity. This result is essentially
independent of the characteristics of the original random process.
Since so many physical random effects can be considered as the
superposition of innumerable random elementary causes {(for ex-
ample, the hiss of a radio receiver, the sound of rain on the roof,
the vibrations induced by a rocket motor), it should hardly be sur-
prising that the Gaussian process model can often be used quite
successfully to represent these effects.

Contrary to the general rule of the preceding section, a Gaussian
process is completely specified by one simple average: its corre-
lation function or (if the process is stationary) its spectrum. Fur-
thermore, an ensemble whose sample functions are sums of sample
functions from Gaussian random processes is, as might be suspected
from the central limit theorem, the ensemble of a Gaussian random
process. Thus in particular, if the input to a linear filter (that is,
a device whose output at any time is a sum of past inputs) is a sample
function from a Gaussian random process, then the output random
process will also be a Gaussian random process that is completely
described by its spectrum determined from the spectrum of the in-
put, as in the preceding section.

Finally, since a Gaussian process is completely described by its
correlation function, it must be possible to express any joint mo-
ment of any order in terms of the correlation function. For example,
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if x,,x, ,x, , andx are random variables corresponding to
f Tt Tt ty
the amplitudes of the sample functions of a Gaussian random pro-

cess at any four times, and if
E[xt]zExt]=E[xt]=E[xt] = 0
1 2 3 4

E [th xtZ xt3 xt4}= R(t, t,) Rit,,t,) + R{t), t,) Rt

then

2) t4)
+ R(t,t) R{t,,t,) .

This property of a Gaussian process can be exploited to determine
the correlation function of the output of a nonlinear device if the
input is Gaussian with a known correlation function. For example,
let x(t) be a sample function of a stationary Gaussian process with
zero average value and correlation function Rx(-r), and let y(t) be
a sample function of the output of a square-law device when x(t)

is the input; that is,

y(t) = axz(t) .

Then the correlation function of the output (non-Gaussian) random
process is

R _(7)
y

Ely(t) vt + 7)] = a’E[x(t) x(t + 1)]

2_2 2_2
a Rx (0) + 2a Rx (t)

where use has been made of the preceding general formula.

It is much less easy to justify the Gaussian process as a ''real-
istic' model for neurophysiological phenomena than it is for many
other physical processes. But even so, the Gaussian process is
pre-eminently important in neurophysiology. It is certainly the
simplest continuous process to describe. And, in part because of
this simplicity, it is an easy process to manipulate. If we desire
to know the result of some complex data-processing operation,
such as the squaring operation above, calculations that might other-
wise be very difficult can often be easily carried out for the Gaus-
sian case. Pragmatically, such calculations may often lead to use-
ful predictions or suggestions for new experiments, procedures,
analyses, and so forth, and thus are justified even though the Gaus-
sian-process assumption may be hard to rationalize ab initio. In-
deed, this procedure works so often that a demonstration that a
Gaussian-process assumption is not justified in a particular case
is a conclusion of some importance.
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5. Conclusion and Bibliography

The purpose of this chapter has been to provide an introduction
to the notion of a random process as a model for the description
of neurophysiological data and for the analysis of various forms
of data processing., It is clear that in the space available no more
than an introduction to the methods, concepts, and nomenclature
could be achieved. In particular the important question of statis-
tical estimates of the random-process parameters has been re-
served for Appendix B. For further study, a recent book is re-
commended:
W. B. Davenport and W, L. Root, An Introduction to the
Theory of Random Si&nals and Noise, McGraw-Hill Book
Company, New York, 1958.

Briefer treatments are given in:
H. M. James, N, B. Nichols, and R. S. Phillips, The Theory
of Servomechanisms, Chap. 6, McGraw-Hill Book Company,
New York, 1947,

or W. R. Bennett, "Methods of Solving Noise Problems, '"" Proc.
IRE, 44 609-637 (1956).

The first of these contains an excellent general bibliography. A

more complete bibliography is
F. L. Stumpers, "A Bibliography of Information Theory
(Communication Theory - Cybernetics),'' IRE Trans. on In-
formation Theory, PGIT - 2, (Nov. 1953), and IT - 1(2),
(Sept. 1955).

For more detailed study, the following three books and papers are

classics in the field:
W. Feller, Probability Theory and its Applications, John
Wiley and Sons, New York, 1950.
H. Cramer, Mathematical Methods of Statistics, Princeton
University Press, Princeton, 1946.
S. O. Rice, '""Mathematical Analysis of Random Noise,' Bell
System Tech. J.,23, 282-332 (1944); 24, 46-156 (1945).
Also reprinted in N. Wax, Selected Papers on Noise and
Stochastic Processes, Dover Publications, New York, 1954,
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Appendix B
MATHEMATICAL STATISTICS

M. H. Goldstein, Jr.
T. F. Weiss

1. Introduction

Statistics is the middleman between the real world of experiments
and the abstract world of mathematics. Like most middlemen, sta-
tistics works at more than one level. There is the branch of statis-
tics that deals with wheat prices in Cambodia and the number of blue-
eyed baby boys born in the Bahamas. This branch of statistics is
purely descriptive and has been of great importance to life insurance
companies, economists, and so forth. The other level at which sta-
tistics operates is the level of mathematical statistics, which is a
branch of probability theory. The models of mathematical statistics,
like those of probability theory, are abstract.

The raison d'étre of mathematical statistics is to make inferences
concerning experimental data. Here we meet a paradox. Although
we would like to make inferences in terms of the experimental data,
we are obliged to make our inferences in terms of probability models.
Inferential statements concerning experimental data must take the
form: "If we assume the data to have been generated by such and
such a class of probabilistic models, then a good value for some pa-
rameter of the models would be ...; or if we assume that the data
were generated by random process A or B, then the probability that
model A generated the data is ---." T

There is an analogous situation in the measurements made in sur-
veying. The angles that the surveyor reads from his transit are ex-
perimental data, and he uses a handbook to make inferences regard-
ing the topography of the terrain. In this analogy, the handbook plays
the role of mathematical statistics. The tables in the handbook are
computed according to the rules of geometry, an abstract mathemat-
ical model. Strictly speaking, the surveyor's inferences should be
couched in terms of the model ("if I assume this city block is repre-
sented by a polygon, then its area is --:'). The extent to which the
surveyor's inferences apply to the experimental situation depends
on the "fit" of the assumed models. Luckily for the surveyor, it is
usually easier to choose an appropriate geometrical model for a sec-
tion of land than it is to choose appropriate random-process models
for neurophysiological data.
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2. Estimation of Statistical Parameters

Independent Sampling. To explore further the relationship of
mathematical statistics and experimentally obtained data, let us
consider an example. Suppose that the solid-line waveform in
Fig. B.l represents experimental data (they happen to be the

e m—————

.
oo
-

Fig. B.1l. Relationship of experimentally obtained data
and ensemble of assumed random process.
The dots indicate infinite extension of the
ensemble and of the member functions,

amount won by a $2 ''place' bet on the winning horses in the first
six races at Jamaica, April 3, 1959) and that we wish to make
inferences about the mean and the distribution of the experimental
process which generated these data. What we actually are obliged
to do is to assume that the data were generated by some random
process and to estimate from the data the mean and the distribu-
tion of the assumed process.

If we assume that the data were generated by a random process,
the data obtained constitute a finite section of one of the infinite
number of infinitely long time functions in the ensemble that de-
scribes the random process. This situation is indicated in the fig-
ure. The six values of the solid-line waveform x,, Kpp tovy X
represent six samples from one member of the ensemble generated
by the random process, What we desire are functions of these
samples which enable us to obtain good estimates of particular
parameters of the random process. Such functions are called sta-
tistics or estimators. (Hereafter, instead of referring to the six
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samples in the example, we shall refer more generally to N
samples.)

First let us assume that the random process is generated by
independent repetitions of a random experiment. Each of the N
samples has the same statistical properties; in particular,

E[xk] = m 0'2[x =0, k=1,2,*",N. (B.1l)

"

We should like a statistic, a function of the N samples, that will
be a good estimate of the mean of the process. An obvious first
choice would be the function

N
1
k=1

which is sometimes called the sample mean.

Since My is a constant times a sum of random variables, it is
itself a random variable. In fact, since statistics themselves are
in general functions of random variables, statistics are random
variables. The '"'goodness'' of a statistic as an estimator depends
upon the way in which it approximates the estimated parameter.
Since the estimator is a random variable, a "good'" estimator could
be crudely described as one whose probability density is narrow
and well centered on the parameter being estimated. (See Fig.
B.2.) The center of gravity of the probability density of the esti-
mator is given by its expectation. In the case under consideration

N

1
N ¢ R E Elx, ] = m. (B.3)
k=1

PROBABILITY DENSITY
OF M,

PROBABILITY DENSITY
OF Xp

3

ESTIMATOR

Fig. B.2. Probability densities of two estimators of the
mean. My is the sample mean, and X, is the
second of a set of sample observations. Al-
though both estimators are correct on the
average, My, with the narrower distribution,
is the better estimator.

90




mathematical statistics

A statistic whose expectation equals the quantity being estimated
is said to be an unbiased estimator; MN is therefore an unbiased
estimator of the mean.

M,, is not the only unbiased estimator of the mean. For example,
the single sample x, is also an unbiased estimator of the mean.
However, as illustrated in Fig. B. 2, an unbiased estimator may be
a poor estimator if for a given sample size N its probability den-
sity function is much broader than those of other estimators. Both
of the estimators illustrated will be correct on the average, but it
is highly probable that the estimator M,, will be closer to m than
is the estimator x,. An important criterion of '"goodness'' of an
estimator is the spread of its probability density function for a given
sample size. A measure of this spread is the variance of the esti-
mator. The variance of MN is
)2

o? M) = E[My - EM])? ]

2 2
ElMy] - E5 Ml

From Eqs. B.2 and B. 3,

2 1 N 2 2
o‘[MN]zE <-ﬁ2xk) -m

k=1
2 1 2
o [MN] = =5 i iE[xkxn]-m
N k=1 n=1
N N
. L ; )} (2.4
- 2 [xkxn] -m (B.4)
N k=1 n=1
2
- 2
- N

The variance of x, is 0'2', and, as is evident in Fig. B.2, M
is a better estimator of m thanis x,.

Of course, the mean m is an incomplete description of a random
process, and we may want to estimate other statistical parameters
that yield a more complete description. One set of statistics is the
normalized histogram, which estimates the step approximation of
the probability density function, as illustrated in Fig. B. 3. The
range of the variable x is divided into a number of segments by
the points x, xg *** . The samples x;, x,, ***, XN are grouped
according to the interval in which they fall, and the area under
any rectangle in the normalized histogram is set equal to 1/N
times the number of samples falling in that interval.
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/
;

[
xa Xﬁ )(7 x8 oo » X
Fig. B.3 Step approximation of probability density
function. Area under any interval of step
approximation equals area under that inter-
val of p(x).

p(x)

STEP APPROXIMATION
OF p(x)

Consider the interval x_ to x. of the histogram HN(x). Out
of N independent samples the number of samples falling into this
interval will be described by the binomial distribution, in which
the probability of any sample falling into the interval is

X

8
P = S p(x) dx.
X
Y

Since the mean of the binomial distribution is pN, the expectation
of the area of the histogram within the interval xY to xg is

E[ (HN(X))(X6 -xy)] = p_;f = p, xY < x < X -

Therefore,

< .
E[HN(X)] = Xx -X - X =-X ’ Y - 6
& N (B. 5)

This expectation is the value of the step approximation to p(x)
between x_ and x, illustrated in Fig. B. 3,

The variance of the histogram between x and Xg, for inde-
pendent samples, is easily derived from the variance of the bino-
mial distribution 2= Np(l - p) :

0.2 [HN(X)] = __p(l_'_l’)_z_ , X < x < x (B. 6)
Y -6
N(xa-xY)

where

, 92




mathematical statistics

5
P = i pix) dx.

Y
For intervals in which 1 - p = 1,
E[Hy(x)]

2 P
o [H (X)] o = ,y X < x < x_.
N N, - xy)2 Nxg -x )" "y 7 =76

(B.7)

Dependent Sampling. The preceding discussion assumed that the
samples xj, X, -+, Xy Were generated by N independent repeti-
tions of a probabilistic experiment. This assumption is not always
justified in models of electrophysiological activity.

Before we consider probabilistic models specifically related to
electrophysiological data, let us generalize the preceding results
to include sampled random processes for which the samples are
not independent. Thus the random-process model for the data of
Fig. B.1 would be one in which the values of the sample functions
still represent repetitions of random experiments but where the
probabilistic parameters in each repetition depend on the previous
values of the sample functions. Such a random process was des-
cribed in Appendix A.

The data of Fig. B.1 could be generated by a random process
having statistical dependence between samples. If this model is
assumed, the data at hand can be used to estimate parameters of
the model. It is important to note that the assumption of a differ-
ent probabilistic model does not in any way change the experimental
data but changes the characteristics of the ensemble in which we
assume the data are imbedded. When the model of a process is
changed, the assumed statistical characteristics of a given estima-
tor may also change. As an example, we shall now consider the
mean and variance of the sample mean computed from dependent
samples. The expression for the sample mean remains

) N
MN i~ E X, (B.2)
k=1

If we assume a process in which the mean and variance of each
sample are the same

E[xk] =m o-z[xk] = 62, k=1, 2,-++, N (B.1)

then it follows that the expectation of MN’
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N
ElM ] = ﬁl E Elx ] = m. (B. 3)
k=1

Thus, as in the case of independent samples, MN is an unbiased
estimator of m .

From Eq. B.4, the variance has been shown to be

N N
O'Z[MN] = —;-— z E:(E[xkxn] - m2 > (B.8)
N k=1 n=1

If the assumed random process is stationary in such a way that
E[xkx'ld_.].i.s the same for all k and E[xkxk+j] = E[xkxk_j], then
B. 8 simplifies to

2 N-1 .
"Z[MN] = F ¢ '1211 Z (1 - %\I)(E[xkxkﬂ] 'm2>'
j=1

(B.9)

For uncorrelated samples (that is, E[xkxk+j] =m?), Eq. B.9
reduces to

2
o

2
o [MN] =K’ (B.10)
the result for independent samples (see Ref. 3).

An example of estimating a mean from dependent samples is
found in estimating the mean of a periodically time-varying pro-
cess. Such processes, which were discussed in Appendix A (p. 84),
are of special interest when we consider responses evoked by per-
iodically presented sensory stimuli. (See Chapter 2.) When it can
be assumed that the various physiological factors influencing a neuro-
electric potential define a state of equilibrium, then responses to
sensory stimuli can be studied by studying changes in the statistical
characteristics of the potential. Thus, if the sensory stimulus is
presented periodically, an appropriate model for the neuroelectric
potential is one with periodically varying statistical characteristics,
that is, a periodically time-varying random process.

Consider the upper waveform in Fig. B.4 to be responses to sen-
sory stimuli presented at times illustrated in the lower waveform.

RESPONSE ACTIVITY

X o -

TIMULI - -~ 1 - -
d Koo I AT
- - - - x
FRE Tt tie &
LSS s REEPE FCRNC I R
Fig. B.4 ''Responses'' to periodic stimuli. Upper trace

shows simulated neuroelectric potential, lower
trace shows stimulus timing markers.
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The responses to the n + 1th, n + 2th, and n + kth stimuli in a per-
iodic train are drawn. The mean of a periodically time-varying
random-process model of responses, such as these, is generally
periodic, and, to estimate the mean at one point, for example to,
in its period, we might periodically sample the data and average

these samples:
N

1 .
MN(tO) = § Z x(to, n + k).
k=1

To estimate the mean at other points, the data must be resampled
with other delays relative to the instants of stimulus onsets:

N
x(tJ,, n + k).
k=1

L

MN(tj) Sl

It is by just this process that the ''average responses'' computed by
the devices described in Appendix C estimate the mean of a random-
process model of evoked responses.

Continuous Time Averages. We have discussed the problem of

estimating the statistical parameters of a process from discrete
samples of data. For continuous, ergodic, random-process models
we can estimate these parameters by a continuous time average of
the data. In such a case, the parameters of the model are related
to averages over infinite lengths of time, and we are forced to make
our estimates on the basis of finite lengths of data. '

Suppose that we have an experimentally obtained time function
x(t), 0 < t < T. Assume that x(t) is part of one sample func-~
tion of the erggdic process x,_ and that the mean of this process is
m and its correlation function ¢{(r). A reasonable estimator of m
might be

1 T
MT = T S; x(t) dt. (B.11)

We may consider the integral in Eq. B. 11l as the limit of the
sample mean obtained by sampling x(t) with more and more closely
spaced samples in the interval 0 < t < T. In fact, the resulting
expressions for the parameters of MT are limits of the express-
ions obtained for the sample mean in the case of dependent sampling. *
The expectation of M is

1 T
E[MT] = E T go x(t) dt|. (B.12)

*Reference 3, p. 80-81.
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Interchanging the order of averaging and integration gives

T
1
EM] - & S' Elx] dt = m. (B.13)
0
Therefore, MT is an unbiased estimator of m . The variance
of M is
T
T T
2 1 2
o [MT] = ,ITZ S S‘ {E[xtlxtz] - E [xt]} dtl dt2
0 0
T T
2 o) 2
= - - —_— - E
T S (1 T {E[xtxt--ro] [xt]} dry
0
(B.14)
where T,=t -t

Note that the variance of MT approaches zeroas T -+ o, and
therefore, M., —-m.

We can generalize the results of the estimation of the mean of
a random process to the problem of estimating the correlation
function. Consider the function =x(t) of Eq. B.11l to be defined as

x(t) = z(t) vt + 7).

Then My becomes a function of 7 and can be designated as
¢T(T). Thus

1 T
¢T(T) = 7 S‘ z(t) y(t + 7) dt. (B.15)
0

This function, ¢T(-r), can be used to estimate the correlation
function and as T — oo approaches the correlation function, de-
fined in Appendix A as

T
o(t) = lim ?l,i, g’ z{t) y(t+ v) dt. (B.16)
T-+>oo T
Note that when z(t) = y(t), the equation defines the autocorrela-
tion function, whereas for y(t) # z(t), Eq. B.16 defines the cross-
correlation function. We should once more like to know the prop-
erties of é(T) as an estimate of the correlation function. Since
$r(T) is itself a random variable, we should like to know its
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probability distribution as a function of the two parameters T and
T . Unfortunately, this problem has not been solved, and we must
resort to computing the expectation and variance of this function to
get.some measure of its properties. Thus

T
E[¢T(T)] = E [—;—, Soz(t) vyt + T) dt] . (B.17)

Interchanging the order of averaging and integration, we obtain

T

E[$n ()] = -,11—, S‘ Elzy,, ] dt (B.18)
0

Elop(m)] = Elzy, 1 = &(r). (B.19)

The computation of the variance of ¢T(-r) is equivalent to the re-
sults of Eq. B.14 if x; is replaced by ZY¢4y - Lhus, op(T) is an
unbiased and consistent estimate of the correlation function, since
the mean of ¢(7) is ¢(7), and the variance of ¢ (7) decreases
to zero as T becomes infinite.

3. Concluding Remarks on Mathematical Estimation and
Electrophysiology

We have discussed the role of mathematical statistics in the esti-
mation of parameters of probabilistic models on the basis of experi-
mental data. The importance of the assumption that the data were
generated by some random process has been stressed. It has also
been pointed out that the choice of a specific random-process model
does not lie in the realm of mathematics.

In the description of electrophysiological data in terms of random-
process models, the research worker encounters a basic difficulty.
The applicability of these models depends on the extent to which ex-
perimental data exhibit statistical regularity. On the one hand, it
is difficult to maintain physiological preparations in a relatively
constant ''state' for prolonged experimental periods {see Chapter 3,
p. 41); on the other hand, it seems tenuous to assume that statis-
tical regularity applies to data recorded from a preparation under-
going significant changes of state. Thus one is often forced to work
with short samples and to accept correspondingly high variances in
the estimates of the parameters of the models.

One of the primary uses of probabilistic models is to obtain effi-
cient descriptions of experimental data. When we replace the mass
of original data by a small number of descriptive statistics, we per-
form a reduction of the data. This reduction may take the form of
an estimate of the parameters of a simple random process. An ad-
vantage of this type of data reduction is that it allows prediction of
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the results of performing other operations on the original mass of
data. The extent to which such predictions are correct measures
the '"fit" of the simple model.

Of course, the usefulness of any particular scheme of data reduc-
tion depends upon the relevance of the reduced data to the phenomena
of concern. It may be that no simple random-process model will
fit the data at hand. In such a case we may hope that simple statis-
tics of some (not simple) random process would be closely related
to the phenomena of interest. Even if this hope is not realized, we
may view the data as generated by some random process, and the
data reduction as an estimate of some statistical parameters of the
process, but very little is gained by doing so! However, since re-
search workers have just started to apply statistical methods in
electrophysiology, it might prove worth while to consider the simple
models first.
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Appendix C
DESCRIPTION OF COMPUTERS

R. M. Brown
J. S. Barlow
D. F. O'Brien
W. T. Peake
C. D. Geisler

1. Description of the CorrelatorlUsed by the Communications
Biophysics Group

The mathematical definition of a correlogram, as given in Chap-
ter 3, is

¢T('r) = 'lr S; x(t) y{t + 7) dt.

Hence, the computation of correlograms involves the operations of
time delay, multiplication, and integration. The particular device
presently used by this laboratory for computing correlograms oper-
ates in the following manner. First, the two signals* to be corre-
lated, =x(t) and y(t), are read into the correlator and shifted in time
with respect to one another by T seconds. Their product is com-
puted and then integrated over T seconds. The result is propor-
tional to the value of the correlogram at one particular value of T,

T = 79 . The correlogram is thus evaluated for a single value of

T, and the process must be repeated for each value of the correlo-
gram which is desired. The usual procedure is to perform the com-
putation for values of T separated by a constant increment AT
(that is, T = o To + AT, 7ot 2AT, 0, ot AT, -, Tt PAT).
These results, when plotted, yield a time-sampled correlogram.
Because the same signals must be reprocessed for each different
value of time delay T desired, the two signals are permanently
recorded and repeatedly read into the computer. The complete
correlator system, which performs the various operations already
mentioned, is shown schematically in Fig. C.1 and is now described.

*If a crosscorrelogram is desired, two different signals are read
into the correlator. If an autocorrelogram is desired, then the
same signal is read into both inputs. In either case, the operation
of the computer is exactly the same, only the signals operated
upon are different.
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Fig. C.1. Block diagram of correlator system used by
the Communication Biophysics Group. Solid
lines indicate signal channels, broken lines
indicate control functions.

The signals to be correlated are recorded simultaneously onto
magnetic tape. Because the capabilities of conventional tape-
recording machines are not sufficient to handle the low frequencies
often encountered, a frequency-modulation system is used, in
which a carrier wave, frequency modulated by the neuroelectric
potentials, is the signal actually recorded, The particular tape
recorder employed is an Ampex 7-channel FM recorder, and
allows the recording of signal frequencies that extend down to
zero.

The time delay is accomplished by means of a rotatmg magnetic
drum (Fig. C.2) patterned after one designed by Goff. %3 A sig-
nal is recorded onto the surface of the drum by means of one head,

" CHANNEL A (FIXED OELAY)

CHANNEL A
——d

FROM PLAYBACK HEADS

(VIA SWITCHING UNIT)
— ]
TRANNEL § 7 AMPLIrERS

TO FM DEMODUL ATORS
(VIA SWITCMING UNIT)

nmnul OELAV
CHANNEL B (VARIABLE DELAY)

Fig. C.2. Block diagram of magnetlc drum delay
system. After Goff. 3
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and is recovered by another head, which has some known angular
displacement from the recording head. Hence, the signal is de-
layed by the time required for a point on the surface of the drum
to rotate through the angular displacement between the recording
head and playback head. The delay may be varied by changing
the angular displacement between the two heads. The magnetic
drum itself has two channels. The recording and playback heads
of one channel are fixed, and the over-all delay in that channel is
approximately 15 milliseconds. In the other channel, the playback
head is fixed, but the recording head can be moved around a large
portion of the circumference of the drum to produce delays of
from 15 to 200 milliseconds. Thus the time delay between the out-
puts of the two channels is variable from 0 to 185 milliseconds.
In the variable-delay channel, a stepping solenoid under the con-
trol of the computer drives the record head around the circum-
ference of the drum, allowing the computer to change T in in-
crements ranging from 1/20 to 5 milliseconds.

The two signals from the drum, after demodulation, are fed into
a quarter-squaring multiplier. This multiplier takes the sum and
difference of both signals, squares both the sum and the difference,
and subtracts the two squares. This process produces a result
which is proportional to the product, since

2
(x+y) '(X'Y)Z = X2+2XY+YZ-X2+ 2xy-yz=4xy.

The integrator is a Miller integrator. The design of both the mul-
tiplier and integrator is taken from those used on a correlator for
speech waveforms that was built at the Imperial College of Science
and Technology in London. © The output, the value of correlogram
for a given delay 7 , is plotted on a recording milliammeter
(Esterline-Angus).

For each value of Tt at which the correlogram is to be computed,
the signals to be correlated must be processed by the machine (that
is, read in, delayed, multiplied, and integrated). The repeated
reintroduction of the data, which this process necessitates, has
been performed by reading in a section of tape, rewinding it back
to the starting point, reading it in again, and so on. Another, and
faster, way is to record the signals onto an endless tape loop. This
tape loop is then continually cycled; no rewinding is necessary, and
higher tape speeds are attainable. In both of these procedures, the
beginning and the end of the tape section on which the data are re-
corded are marked with pieces of silvered tape. As the silvered
tape passes under a carefully placed light source, light is reflected
onto a photocell that in turn sends pulses to the control unit, sig-
nalling the beginning or end of a section. The control unit then
either begins the computation or prepares the correlator for the
next read-in of the data.

The tape-recording speeds most frequently used have been from
30 to 0.3 inch per second. The correlator, on the other hand, reads
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the tape at a speed of 30 or 60 inches per second. Therefore, it
is possible to shorten data-processing time by recording the sig-
nals at a slower speed and by reading the tapes at 30 or 60 inches
per second. Speed-up factors of from 1 to 200 are available by
this method. The effective value of time shift obtainable by means
of the drum is also multiplied by the speed-up factor. The range
of possible delay T is thus increased up to approximately 35 sec-
onds. Recording at lower speeds, however, decreases the upper
frequency limit of the recorded signals. If the recording is made
at 30 inches per second, signals in the spectral band 0 to 5000 cps
are recorded. At slower speeds, the higher cutoff frequency is
5000 cps divided by the speed-up factor. At 0.3 inch per second,
therefore, the upper cutoff frequency is only 50 cps.

2. Description of ERD (Evoked Response Eetec'cor)5

The correlator system just described, with a few modifications,
can be used to compute the average of responses evoked by specific
sensory stimuli. Consider the experiment idealized in Fig. C. 3.

STIMULUS

TIMING STIMULUS STIMULUS
MARKERS K K+l

y(t)
A A
—~F-d —~{

STIMULUS
TIMING
MARKERS
SHIFTED

y(t-tg)

RESPONSE
ACTIVITY
x(t)

x(t)e y(t-t5)

Fig. C.3. Waveforms encountered in the crosscorrelation
of '""response activity' and stimulus timing
markers.
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The third trace from the top shows simulated '""response activity''
following the presentation of two stimuli, k and k + 1, thatare
part of a long train of such stimuli. The onsets of these particu-
lar stimuli are marked in the upper trace by small rectangular
pulses of constant amplitude.

The crosscorrelation of the two ''signals, " the stimulus markers
and response activity, could be accomplished by shifting the two
signals with respect to one another, multiplying them, and then
integrating their product over some time T . To illustrate this
process, let us calculate the value of the crosscorrelogram for
one particular value of time shift, T = -t,. First of all, the stim-
ulus markers are shifted by tj, as shown in the second trace t
from the top in Fig. C.3. Then, x(t) and y(t - ty) are multiplied,
yielding the waveform shown in the bottom trace A of Fig. C.3. The
response activity is multiplied by the height of the pulse A, as long
as the timing pulse lasts, and is multiplied by zero for the stretch
between pulses. Because the stimulus markers are rectangular
pulses of constant width and amplitude, the multiplication of the
two waveforms is equivalent to multiplying the response activity
by A and then gating a small fixed time interval d of the activity
occurring t; seconds after each stimulus. If the time interval
d is small, compared to variations in the response activity, the
height of pulse k in the lower waveform is approximately con-
stant, and proportional to the value of the response activity at
time t . Likewise, the height (and hence the area) of pulse
k + 1 is proportional to x(ty ;,,), and so forth. Finally, the
crosscorrelogram of x(t) and y(t) at -tg is computed to within a
constant by integrating x(t) - y{t - ty) over some sample time T.
This integral is just the area under all the pulses and is therefore
proportional (approximately) to the sum of response activity oc-
curring at times t; following the presentation of the stimuli. It
is clear, then, that

T N
1 Ad
¢T(-t0) =7 S'o x(t) y(t - to) dt = - kzl x(to’ k).

If this process is repeated for 7 = -(t5 + At), -(tg + 2AT), -,
-(t0 + jAT), -, -('co + PAT), the whole correlogram is computed.
According to Eq. 2.1, however, the value of this correlogram is
proportional to the average of responses. It follows, therefore,
that the average of responses may be computed by crosscorrelation
techniques.

The actual operation of ERD, though similar to correlating, in-
volves only part of the correlator. To compute one point of the
average, the stimulus marker signal and the response activity are
time-shifted by means of the magnetic drum of the correlator.
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However, after being shifted, instead of multiplying the response
activity, the stimulus markers are used as signals for a gating

and storing unit (see Fig. C.1). This unit samples the response
activity at the incidence of a stimulus marker, and the correspond-
ing voltage is stored until the incidence of the next stimulus marker,
at which time a new sample is taken, its value stored, and so on.
The waveform of the stored samples is integrated by means of the
integrator in the correlator and recorded by the recording milliam-
meter. The computer is then reset for the next value of time shift
T , and the process is repeated, and so on. This computation,
while mathematically similar to the crosscorrelation of response
activity and stimulus markers, avoids the operation of multiplica-
tion by substituting the more easily accomplished operations of
sampling and storing.

Since the present ERD incorporates much of the correlator sys-
tem, the capabilities of the two systems are similar. The avail-
able time delays, delay increments, speed-up factors, and so on,
mentioned in the description of the correlator apply also to com-
putation done by ERD.

Recently, an electronic system, using commercially available
components, has been constructed to replace the magnetic drum.
Other modifications have also been introduced so that ERD may
now be operated independently of the correlator. A magnetic-tape
loop is used to read in the data. The design of the sampling and
storage circuits has also been altered to provide improved opera-
tion over a wider range of operating parameters. In addition, ERD
can now compute a measure of the variance at particular times

tj after the onset of stimuli.

3. Description of ARC-1 (Average Response Computer) 7

The Evoked Response Detector just described requires that the
data must be reintroduced into the computer for each value of time
t; at which the average of responses is to be computed. In addi-
tion to requiring long computation times, this feature means that
the ERD cannot be used during experiments, since under 'on-line'
conditions the data may be read in only once. The desirability of
computing averages of responses during experiments led to the
design of ARC.

ARC is a high-speed transistorized special-purpose digital com-
puter using a magnetic-core memory. The computer consists of
256 magnetic-core registers, each having a capacity of 18 binary
digits, and of transistorized logic that controls this array. ARC
has two principal modes of operation. In one mode it computes an
average of responses and in the other, amplitude histograms.

The operation of the computer in the averaging mode is illus-
trated in Figs. C.4 and C.5. In this mode of operation, the onset
of the stimulus triggers the computer. After the preset initial de-
lay tg (see Fig. C.4), the computer triggers an analog-to-digital
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Fig. C.4. "Responses'' to successive stimuli. The
upper trace shows stimulus markers, the
lower trace shows a simulated neuroelectric
potential.
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Fig. C.5. Block diagram of Average Response
Computer System.
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converter (Epsco Datrac). (Since the logic is controlled by an

800 kc clock, this process will be carried out with a maximum
error of 1.25 microseconds in its timing.) When triggered, the
converter samples the response activity [point x(to k) of Fig. C. 4]
and sends to the computer a number that is the value of x(to K)
accurate to one part in 256. The number is coded as a seven-bit
binary number and a sign bit. The computer stores the number in
a memory register that has been assigned to the first sample fol-
lowing each stimulus. After a time interval At elapses, the con-
verter is again triggered by the computer, and a number propor-
tional to the amplitude of the response at that instant, x(tl k), is
sent to the computer and stored in the next memory reg1ster.

When this has been accomplished for all desired sample points,

the computer waits until the next stimulus is presented. Then,
after the same initial delay t;y, the process repeats. The number
representing the voltage x(to k+1) is added to the number repre-
senting the voltage x(to K and the sum is stored in the appropriate
memory register; the number representing the voltage x(tl k+1)
is added to the number representing the voltage x(tl K and’the
sum is stored in the next register, and so on.

Thus, at any moment, each data-handling memory register stores
the current sum of the responses sampled at some fixed point in
time relative to the stimulus onset, These current sums, multi-
plied by a scale factor, are displayed on a CRO after each stimulus,
allowing the experimenter to observe the actual build-up of the sum.
The process is repeated until a predetermined number of responses
(as many as 262, 143) have been summed.

The scale factors of the display are integral powers of 1/2 [up to
(1 /2) ] Hence if 2" (where n is an integer between 0 and 10)
responses are summed, the final display may be shown as the aver-
age of the responses.

" Prior to the computing of an average of responses, the number of
points P to be sampled in each response (up to 254) is preset, as is
the interval between sample points At (which may be chosen between
80 microseconds and 2. 62 seconds in 10-microsecond increments).
This assigns a particular memory register to some fixed point in
time after the application of each stimulus. Thus, for exa.rnple, the
same memory register is assigned to points x(t2 1), x(tz 2)i0 e,
x(tz K)ot x(tz N). The initial delay tg (variable from 0 to 2. 62
seconds in 10-microsecond increments) and the number of responses
to be averaged N are also preset.

The second mode of operation is one in which an amplitude histo-
gram of the responses is compiled. In this mode, each of the data-
handling memory registers is assigned the function of counting the
number of times that the activity at some specified instant t. after
each stimulus falls into a given amplitude range. As before, the
analog-to-digital converter periodically samples the response and
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sends a number to the computer. However, in this mode of operation,
the response is sampled at only one point in time t; after the appli-
cation of each stimulus. (This delay may be preset from 0 to 2. 62
seconds in 10-microsecond increments.) When the number repre-
senting the voltage at that point x(t, k) arrives in the computer, ARC
adds 1 to the particular memory register assigned to that numerical
value. Upon presentation of the next stimulus, the system samples
the response after the same preset delay, and adds 1 to the memory
register which has an assigned number equal to the numerical value
of the response amplitude x(t.’k+1). The computer stops after some
preset number of responses are processed this way.

Besides these principal modes of operation, the computer has a
test mode designed to serve as check on proper operation of the mem-
ory -logic circuitry, the 800-kc clock, the memory and the display
devices.

Three methods are available to display the end result of either the
average or histogram computations. (1) An oscilloscope (T ektronix)
presents the average of responses as a graph of amplitude versus
time. The same oscilloscope also displays the completed histogram
as a graph of number of responses versus amplitude. (2) The oscil-
loscope display may be permanently recorded by an X-Y plotter
(Moseley Autograph) (see Fig. 2.3 for an example of an average of
responses recorded by the plotter). (3) The results of these compu-
tations may be punched on paper tape by a motorized tape punch
(Commercial Controls). This paper-tape record is useful if the
data are to be further processed by general-purpose computers
that accept this type of input.

4. Description of ALMIDO (Amplitude and Latency Measuring
Instrument with Digital Qutput).

One particular instrument for measuring characteristic well-
defined neural responses, as discussed in Chapter 2, page 17,
is ALMIDO. This machine was designed and built by R. L. Koehler, 8
and is an improvement and combination of two earlier devices. 9.1
ALMIDO is designed to measure latencies of peaks and peak-to-
peak amplitudes in neural responses. It presents the results of the
measurements in digital form. Some results obtained using this
device have been presented in Chapter 2.

The general operation of ALMIDO is indicated by the block dia-
gram in Fig. C.6. The measurement is started by a pulse syn-
chronized with the stimulus. A preset interval after this pulse, the
gate opens and passes the amplified neural signal for a certain in-
terval. The stimulus pulse also gates a 100-kc oscillator (in count-
er control) into the counter. The counter registers the number of
cycles of the oscillator output occurring between the stimulus pulse
and the output pulse from the peak detector, The peak detector de-
livers an output pulse every time the gated signal has a peak that
is larger than any previous peak. The number in the counter at
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Fig. C.6. Block diagram of ALMIDO

the time of the peak is then transferred to the storage registers
without interrupting the count. Hence, the number in the storage
register after the gate closes indicates the latency of the largest
peak in the gated interval. The counter stops and resets at the
end of each gated interval. An optional inverter stage is included
in the amplifier so that the peak detector can operate on either
positive or negative peaks of the input signal.

The amplitudes of the largest positive and largest negative volt-
ages during the gated interval are stored in the peak-to-peak
amplitude detector. When the gated interval is over, this voltage
is compared to a linearly rising voltage in an amplitude-to-time
converter. A voltage ramp starts from a negative value; when
it reaches the level of the negative peak, an amplitude comparator
puts out a signal which gates the oscillator into the counter. When
the ramp reaches the value of the positive peak, a comparator
stops the counter. Hence, a number is held in the counter which
is proportional to the peak-to-peak amplitude.

Specifications of ALMIDO

Amplitude measurement.- The amplitude measurement is indi-
cated digitally as a number from 0 to 99. A gain adjustment on
the amplifier provides for four different scales 0.5, 1.0, 2.0, and
5 volts full scale.

Latency measurement. - Two ranges are available for latency
measurements. For responses of short latency (for example, re-
sponses to acoustic clicks recorded from near the round-window
of cats) the reading can be made from 0. 00 to 9. 99 milliseconds
in steps of 0.0l millisecond. For responses of longer latency
(for example, responses to clicks recorded from cat cortex), the
reading can be made from 00.0 to 99. 9 milliseconds in steps of
0.1 millisecond. The delay of the onset of the gate and the gate
interval are independently adjustable from 0.5 to 30 milliseconds.
The gated signal is available for observation on an oscilloscope
so that the gate can be adjusted visually to the desired delay and
duration.

108




computers

Output. - The latency and amplitude measurements are indi-
cated by neon bulbs. This indication is held until another stim-
ulus pulse is sensed by the machine. A display timer is included
which prevents a new measurement from being made for an inter-
val which is adjustable from 0.02 to 7 seconds. With this feature
the machine can be used to sample responses periodically for high
stimulus repetition rates.

Output Recorders

Histogram recorder. - This device has a set of twenty-three
electromechanical counters (Veeder Root). Twenty of these are
connected in such a way that they add 1 to their count every time
an amplitude measurement falls into a particular level. These
twenty levels are adjacent and can be placed anywhere in the range
of one hundred levels into which the machine quantizes amplitude
measurements. The other three counters indicate (1) total number
of responses, (2) responses larger than the highest of the twenty
levels, and (3) responses smaller than the lowest of these levels.
The histogram recorder will record at rates up to 20 per second.

Printer recorder. - An automatic printer (Hewlett-Packard)
can be connected to ALMIDO. This device prints the amplitude
and latency measurements on paper tape. It can be used at rates
up to 5 per second. Although the automatic printer is slower than
the histogram recorder and does not reduce the data into histo-
grams, it is sometimes desirable to have the data in this form in
order to test for correlations between latency and amplitude, or
between latencies or amplitudes from two different signals (re-
corded from different locations in the nervous system).
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Appendix D

A SELECTION OF PUBLICATIONS BY MEMBERS AND/OR
ASSOCIATES OF THE COMMUNICATIONS BIOPHYSICS GROUP

The following bibliography has been appended primarily for
illustrative purposes, It represents a selected sample of the
written output of the Communications Biophysics Group and of
some of the scientists and engineers who are and/or have been
associated with the group. Most of the full-length papers referred
to deal with problems of the nervous system: They are thus
written from a viewpoint that is complementary to that of the
present monograph, in which certain aspects of methodology and
techniques have been emphasized. It is perhaps worth while to
stress again the fact that the record of the activities of the Com-
munications Biophysics Group must be viewed in the context of
the neurophysiology and the data-processing technology of the
corresponding period. To view it in any other way would seriously
distort one' s perspective on the nature and the scope of what we
were attempting to do.

A fuller account of the activities of the Communications Bio-
physics Group is to be found in the Quarterly Progress Reports
of the Research Laboratory of Electronics, beginning with the issue
of January, 1952.
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ALMIDO, block diagram, 108
description of operation, 17, 107-109
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specifications, 108, 109

Alpha activity (see also Rhythmic
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» Alpha ""driving, ' 56
Alpha index, 39
Amplitude of evoked responses, com-
puter measurement, 17, 18,
107-109
statistics, 18, 20

Amplitude parameter, 40

Analog-to-digital converter, 104, 105

Anesthesia, effect on evoked responses,

26, 27

ARC-1, block diagram, 105
description of operation, 23, 104-107
examples of computations, 14, 15,

25, 29, 30
raison d! 8tre, 64, 104
specifications, 106-107
Auditory nerve responses (see also
Average of evoked responses),
microphonic potentials, 26, 28
Nl' 18
neural potentials, 26, 28
quantification, 17-20
to high-rate stimuli, 26, 28, 29
typical examples, 18
Autocorrelation function (random- pro-
cess), 80
relation to time-average autocorrela-
tion function, 82

Autocorrelation function (time-average),
definition, 50, 82, 96
estimation of, 96, 97
examples, 52, 53
properties, 82, 83

» relation to power density spectrum,

51, 82, 83
relation to random-process autocor-
-~ relation function, 82

Autocorrelograms (see also Correlo-
grams), as estimate of auto-
correlation function 57, 96, 97

computing device, 99-102

definition, 50, 96

for abnormal subject, 48

for normal subjects, 46, 47, 55, 59

in sleep, 46
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Average of evoked responses, 7

changes due to anesthesia, 26, 27

changes in sleep, 14
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definition, 21, 95

from visual cortex, 15
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limitations, 7, 29
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relation to random-process model of
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usefulness, 7, 14

Averages of random processes, 77-84
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estimation of, 89 ff

expectation, 78

mean, 79
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time average, 81
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design considerations, 22
ERD, 23, 102-104
present limitations, 64
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Correlation function (see also Auto-
and Crosscorrelation function),
50, 96
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cross-, 50
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Correlator, block diagram, 100
description of operation, 99-101
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specifications, 101-102
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96, 97
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definition, 50, 96
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correlation function, 96, 97

118

Crosscorrelograms—Continued
computing device, 99-102
definition, 50, 96
demonstrating alpha ''driving, ' 56
for abnormal subject, 48
for normal subject, 47

Data processing, choice of techniques,
62

present limitations, 64

EEG (see also Electroencephalograms)
Electrodes, gross, 7, 12

micro-, 7, 8
Electroencephalograms, 36 ff

differences between subjects, 38

differences in one subject, 37, 46

for abnormal subject, 48

for normal subject, 47

random-process model, 56-60
Electrophysiological data (see also

Neuroelectric data)
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Ensemble, 68
ERD, block diagram, 100
description of operation, 23, 102,
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improvements, 104
specifications, 104
Ergodic random processes, 81, 82
correlation function, 82
power density spectrum, 82, 83
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of random process mean, 22, 94, 95
of statistical parameters, 89 ff
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density function, 92
Estimation errors, 54, 57
Estimator, 89
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Events, 45, 70
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definition, 7
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Evoked responses—Continued
measurement of characteristics,
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methods of detection, 7
random-process model, 17, 20, 32,
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reduction of variability, 13-15
sign convention, 13
statistical nature, 6-8
statistics, 29, 33, 34
variability, 7, 12-15
Expectation, 78
Experiment, 3,
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Frequency components (see also
Autocorrelation function and
Power density spectrum), 51

Frequency spectrum of EEG, 56

Gaussian distribution, 74
probability density function, 74
probability distribution function, 74
Gaussian process, 84-86
Central Limit Theorem, 85
correlation function, 85
mean, 85
model for EEG data, 56-60
moments, 86
second-order joint probability den-
sity function, 84
variance, 85
General-purpose computers, input and
output equipment, 45, 64
limitations, 64
TX-0, 30, 39-41, 45
usefulness, 40, 45, 63, 64

Histograms, as estimate of step
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density function, 17, 30, 92

computing devices, 30, 104-109
definition, 91, 92
experimental data, 18, 33

Interval parameter, 40

" Latency of evoked responses, comput-
ing devices, 17, 107-109
definition of peak latency, 19

-

119

Latency of evoked responses—Continued
dependence upon intensity of click
stimuli, 17
experimental data, 19
variability, 7, 19
Linear filtering, 83, 85
Linear models, 5
Linearity of microphonic potential, 26,
28

Mathematical models, for ""background
activity, '' 22, 32
inferences from, 88
need for, 50, 64
of EEG, 56-60
of evoked responses, 17, 20, 22,
32, 34
random-process, 17, 20, 32
time-varying random-process, 16, 22
usefulness, 8, 16, 50, 66
Mean, definition, 79
dependent samples, 93
estimation by time average, 95
independent samples, 90
sample mean, 90
Microphonic potential, 26, 28
Moments, 78
central, 79
joint central, 80

Neural responses, 26, 28
Neural unit models, 8, 16, 20, 64
Neuroelectric data, analysis,
4, 5, 63
models, 8, 49, 50, 64
""pointer-readings, '* 3
quantification, 2, 6, 7, 32
statistical nature, 6-8
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stimuli, 28-32
Nonevoked potentials (see also Spon-
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Normal distribution (see also Gaussian
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examples, 42, 43
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"On-line'" computation, 64, 104

Photic stimulation, alpha ''driving, "
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evoked responses, 15, 25, 26
Power density spectrum, 82, 83
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physical significance, 83
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Probability, 69
axiomatic approach, 72
certain event, 70
conditional, 76
joint, 75
mutually exclusive events, 70
null event, 70
product rule, 76
relative frequency approach, 69
Probability density function, 73
conditional, 77
joint, 77
unimodal, 80
Probability distribution, 70
conditional, 76
joint, 75
Probability distribution function, 70, 73
joint, 77
Product rule, for conditional proba-
bilities, 76

Random experiments, 67
dependent, 68, 75
independent, 67, 74
Random process, 66
and random experiments, 67
central limit theorem, 85
complete description, 77
description by an ensemble of time
functions, 68
ergodic, 81, 82
estimation of parameters, 89 ff
periodically time-varying, 84, 94
stationary, 81, 82
Random-process model, applied to EEG,
56-60
applied to evoked responses, 16, 17,
19, 20, 30, 32-34
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Random variable, conditional proba-
bility density function, 77
continuous type, 68
definition, 68
discrete type, 68
joint probability density function, 77
joint probability distribution, 75
joint probability distribution function,
77
probability density function, 73
probability distribution, 70
probability distribution function, 70
statistically independent, 76, 80
uncorrelated, 80
Relative frequency, 70
Responses (see Evoked responses)
Responses from scalp, 14, 23-26
Rhythmic burst activity (see Total
activity)
Rhythmic ''bursts, ' 39

Sample function, 68
Sample mean, 90
dependent samples, 93
estimation by time average, 95
independent samples, 90
Sleep, effect on autocorrelogram, 46
effect on electroencephalogram, 37,
46
effect on evoked responses, 14
Speech, analogy to neuroelectric phenom-
ena, 4
Spontaneous activity (see also Non-
evoked potentials), 4
Standard deviation, 80
State (physiological), 9, 26, 37, 50
Stationary random processes, 81, 82
Statistic, 89
Statistical average, 78
Statistical estimate of correlation
function, 51, 95, 96
Statistical estimation of random process
mean, 94, 95
Statistical independence, 76
Statistical nature of neuroelectric data, *
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Statistical regularity, 70
relation to electrophysiology, 97, 98-
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Time-delay system, 100, 104
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Total (rhythmic) activity, 41-44
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Total (rhythmic) activity-——Continued
differences among subjects, 42
differences in one subject, 43

TX-O computer, bibliographic refer-

ence, 60
histogram computation, 30
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