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Abstract

In the class of high-frequency amplifiers that are known as parametric amplifiers,
varactors, variable-reactance amplifiers, and so on, the active elements are variable-
reactance parameters; i.e., inductances or capacitances whose values vary periodically.
The power that amplifies the desired signal comes from the source which varies the
parameter.

We present a general method of analysis of circuits containing a few decoupled peri-
odic elements in a network of lumped, linear, finite, passive, bilateral, time-invariant
elements. For these circuits we show that the characteristic frequency-domain equa-
tions that define the voltages and currents as functions of the complex frequency are
linear difference equations with variable coefficients.

A sinusoidally varying capacitance in an arbitrary passive network with steady-state
signal excitation is discussed. By using the calculus of finite differences to find exact
solutions to the difference equations we are able to prove three fundamental statements
concerning parametric amplifier performance: (a) The gain is independent of the phase
of the signal relative to the varying parameter except in a degenerate case that can eas-
ily be avoided. (b) The passive circuit admittance at idler frequency, the difference
between the signal frequency and the frequency of the parameter, is important. A cir-
cuit with a zero of admittance at the idler frequency will oscillate regardless of the
admittance at the signal frequency. (c) Because of the interaction of the signal and the
varying element, high-frequency voltages are produced; but the voltage amplitudes go
to zero exponentially as frequency increases, if the varying parameter is positive for
all time.

We discuss the mechanics of finding a solution. In mathematical literature various
series methods have been presented, but there is no a priori assurance that any partic-
ular type of series will work. We show that a solution in the form of a factorial series
can always be found by a routine procedure. Even for fairly complicated amplifiers the
procedure is manageable as a desk calculator problem.
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I. INTRODUCTION

1.1 PARAMETRIC AMPLIFYING DEVICES

In the past few years there has been considerable interest in a new type of high-

frequency amplifier that has been known by such names as parametric amplifier, var-

actor, variable reactance amplifier. The active elements in this class of amplifiers

are variable reactance parameters; that is, inductances or capacitances whose values

are made to vary periodically. The power that amplifies the desired signal comes from

the source that varies the parameter.

In 1957 Suhl (1) suggested using the anomalous dispersion effect in ferrites to make

a variable-inductance parametric amplifier at microwave frequencies. After this,

others suggested using back-biased junction diodes as variable capacitances (2) and

modulated electron beams as variable energy-storage elements (3). We shall not try

to give a bibliography of the proposals or the devices that were actually constructed;

the list is quite long and growing rapidly.

In amplifiers with diode capacitors or ferrite inductors the usual circuit arrange-

ment is that shown in Fig. 1. The nonlinear element is connected to a passive network.

The circuit is then excited by two sources

at different frequencies. One source, known

· + I ( as the pump, is of large amplitude and thus
SIGNAL AT

FREQUENCY W, drives the nonlinear element over a wide
PASSIVE NONLINEAR
NETWORK ELEMENT range. The other source is the signal that

PUMP AT is to be amplified. If the signal is small
FREQUENCY (go _ 

compared with the pump, the amplification

is essentially linear, and a linear, small-
Fig. 1. Parametric amplifier with signal analysis can be used. In modulated

nonlinear element.
beam amplifiers the beam with its associ-

ated apparatus appears as a linear, time-

variant reactance to the signal, so that linear analysis applies directly. In this report

we shall deal exclusively with linear analysis.

1.2 DEVELOPMENT OF A LINEAR-CIRCUIT MODEL

Analysis of parametric amplifiers cannot be accomplished by conventional lumped,

linear, finite, passive, bilateral, time-invariant circuit theory because these ampli-

fiers contain elements that are nonlinear and time-variant. The circuits that we wish

to consider contain lumped, two-terminal elements. Associated with each element

there are two time functions, the current, i, and the voltage, v. We shall also use the

charge, q, and the flux linkage, X, which are the indefinite integrals of the current and

voltage, respectively. Each circuit element is characterized by a specific relation
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between the current and the voltage. The elements that we shall use and the relations

that characterize them are:

capacitance q = fc(v, t)

elastance v = fs(q, t)

resistance v = fr(i, t)

conductance i = f (v, t)

inductance v = fl(X, t)

reciprocal inductance X = f (v, t)

current sources i = i(t), independent of v

voltage sources v = v(t), independent of i

The characteristic relations f c fs' fr' fg f and f are all functions of two variables;

their partial derivatives with respect to the first variable are always positive, and

consequently their inverses with respect to the first variable exist for all values of the

time (4). For each element, the partial of the characteristic function with respect to

the first variable will be designated by the same name as the element; for example,

afc/av is called the capacitance. Therefore the restriction to positive partial deriva-

tives restricts our circuits to positive elements.

In lumped, linear, finite, passive, bilateral, time-invariant circuit theory the

element values - that is, the partial derivatives with respect to the first variable - are

constant. Our approach to the problem of analyzing a parametric amplifier will be to

extend constant-parameter circuit theory to include one, or at most, a few nonconstant

elements. Throughout the development we shall use a capacitance when discussing a

single nonconstant element. This is merely for definiteness, and the same analysis

applies to the other elements.

Consider a variable capacitance connected to a network of constant parameters and

sources as shown in Fig. 2a. If we apply Norton's theorem to the part of the network

containing the constant parameters and sources, we have the circuit of Fig. 2b. Now

suppose that there are two distinct sources in the network. Since the constant param-

eter network is linear, the driving current i(t) in the Norton equivalent will be the sum

of two terms: il(t) from the first source, and i 2 (t) from the second. We now wish to find

a method of separating the effect of the two sources on the output voltage; that is, we

want to find conditions under which we can use superposition, at least in a limited

sense.

CONSTANT PARAMETERS +
AND SOURCES v q= (vt) i(t

ORIGINAL NETWORK

qc f (v,t)

NORTON EQUIVALENT

(a) (b)

Fig. 2. Electrical network with one variable parameter.
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If, in the original network, the first source is set to zero, the current drive in the

Norton equivalent is i 2 (t). Let us call the resulting voltage v 2 (t). Writing Kirchhoff's

current law at the one node gives

i2(t) = L y(t-T) vZ(T) dT + d f(Vz, t) (1)

With both sources present, drive i(t) = il(t) + i2(t), and response v(t), let us define

vl(t) = v(t) - v2 (t) (2)

Note that v is not, in general, equal to the voltage that would appear if the first source

were operated normally and the second source set to zero. If it were, superposition

would apply and the network would be linear. Now with both sources Kirchhoff's law

gives

i 1 (t) + i 2 (t)= y(t-T)[v(T)+v2 (T)] dT + d fc(v, t) (3)

But by the differential approximation theorem (ref. 5)

af
fc(v, t) = fc(Vl+v z2 t) = fc(v 2 , t) + (v2 , t) vl(t) + R (4)

where

IRI
lim = 0

v 1-0 Ivll

Therefore, substituting Eq. 4 in Eq. 3, and subtracting Eq. 1 from the result gives

il(t) = y(t-T)V(T ) dT + [ v (v2, t) vl(t) + R (5)

Now let us see if there are situations of interest in which R can be neglected. In

Eq. 4 we have

lim -= 0
Vl-0 [v I

This means that when v1 is small, R is very much smaller. On the other hand, the

smallness of R does not guarantee the smallness of dR/dt. However, if the charge on

the capacitance is composed of a sum of sinusoids, as it would be if the sources i and
af

i2 are periodic, we expect both C (v, t) vl(t ) and R to be sums of sinusoids. Then

the ratio of the derivatives of the two terms is of the same order of magnitude as the

ratio of the two original terms. Under such circumstances Eq. 5 becomes
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il(t) =f y(t-T) vl(T) d + C(t) v(t ) (6)
oo

where

af
C(t)= -- (v 2 t)

But Eq. 6 is the equation of the circuit shown in Fig. 3. This circuit is linear, for there

are no elements whose value depends on the electric excitation.

The mathematical restrictions that allow us

to go from the circuit of Fig. 2 to Fig. 3 are

+ exactly the physical conditions for small-signal

I1t VtX v1(t)z C(t) operation of the parametric amplifier of Fig. 1.

Therefore, Fig. 3 is a reasonable linearized

Fig. 3. Circuit with time-variant model for analyzing a parametric amplifier for

capacitance. small signals. In the modulated beam ampli-

fier, where the beam looks like a time-variant

reactance to the signal, we arrive at the circuit of Fig. 3 directly.

1.3 DEFINITION OF A LINEAR PARAMETRIC AMPLIFIER

Now that we have some definite circuit models that are pertinent to parametric

amplifiers we are in a position to define a class of parametric amplifiers precisely.

Our definition is based on a circuit model, and we shall say that a particular device is

covered by the definition if the model gives a reasonable approximation to the perform-

ance of the device.

DEFINITION. A single-stage, linear parametric amplifier consists of a single

periodic time-variant reactive element - that is, a reactive element whose value is a

periodic function of time, independent of the electric excitation - imbedded in a time-

invariant, linear, finite, passive, bilateral network.

Since this report is devoted mainly to the analysis of the single-stage, linear para-

metric amplifier, the words "single-stage, linear" will be deleted. When we wish to

talk about a parametric amplifier that does not quite fit the definition, we shall make

special note of it. The circuit of Fig. 3 is the circuit of a parametric amplifier when

y(t) is the impulse response function of a time-invariant, linear, finite, passive, bilat-

eral admittance, and C(t) is a periodic function. If the time-variant reactive element

is an inductance, the circuit of Fig. 4, which is the dual of Fig. 3, is appropriate. In

this circuit, z(t) is the impulse-response function of a time-invariant linear, finite,

passive, bilateral impedance, and L(t) is a periodic function. We shall call a para-

metric amplifier "capacitively excited" when the time-variant reactance is a capaci-

tance and "inductively excited" when it is an inductance. Henceforth, we shall discuss

only the capacitively excited case; analysis of the other case is merely the dual.
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A parametric amplifier will be called realiz-

+ T{H < able if the value of the variable element, including
e(t) OL(t)

the parasitic capacitance (or inductance) of the

passive circuit, is positive for all time. The

Fig. 4. Inductively excited para- gain of a parametric amplifier' is defined as the
metric amplifier. ratio of the average power delivered to the pas-

sive circuit at the desired output frequencies to

the average power delivered by the electrical source.

To be considered an amplifier a device should have a power gain greater than one.

When a parametric amplifier has a gain greater than one, power is delivered to the

passive circuit by the variable reactive element. We can now see why, in our definition,

we did not allow the variable element to be a resistance. To be realizable, the resist-

ance must be positive for all time. But a positive resistance always absorbs energy;

therefore, a network like that of Fig. 3, with the variable capacitance replaced by a

variable resistance, cannot be an amplifier.

1.4 OBJECTIVES AND RESULTS

The primary objective of this report is the development of a general method for

analyzing single-stage, linear, parametric amplifiers with steady-state signal inputs.

As a secondary objective we would like our analysis technique to be suitable for circuits

with more than one time-variant element and transient, as well as steady-state, inputs.

Finally, we would like the analysis to yield currents and voltages that are functions of

the complex frequency. Then when a parametric amplifier is used in conjunction with

a linear time-invariant system the results of the amplifier analysis can be used directly

in the analysis of the rest of the system without the need for laborious transforms.

In Section II we find that the performance of parametric amplifiers is characterized

by linear, variable-coefficient, difference equations in the frequency domain. The

order of the equation depends on the number of terms required to approximate the

parameter variation with a finite Fourier series. Amplifiers with several variable

parameters are characterized by simultaneous difference equations. For cascade ladder

networks, such as the distributed parametric amplifier, the set of equations can be

reduced to a single equation by systematic elimination. Therefore, if we can solve

the single-difference equation, we shall accomplish all of our objectives, so far as

amplifiers of current practical interest are concerned.

In Sections III, IV, and V a method for solving the difference equations is developed

in considerable detail. In order to keep the notation within bounds the discussion is

carried out for a sinusoidal capacitance in an arbitrary realizable time-invariant net-

work. There is nothing inherent in the mathematics that requires this restriction; the

extension to variable elements with more complicated variation is straightforward. In

keeping with our stated objectives, the emphasis in these three sections will be on a

5
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steady-state response. However, in developing the steady-state solution we find two

different methods that lead to the transient response. The order of the discussion in

Sections III-V is chosen from an engineering point of view; each step is motivated by

an effort to keep our feet somewhere in the neighborhood of the physical ground.

In Section III we set out to find the voltage that appears across the amplifier when a

sinusoidal signal is applied. Using the method of variation of parameters, we find a

formal solution. However, this solution involves the complementary solution to the

amplifier equation in the absence of a signal. By physical reasoning we are able to

justify our formal solution and deduce some of the properties of the complementary

solution even before we solve the equation for the undriven amplifier.

In Section IV we show mathematically that the solutions to both the driven and

undriven amplifier can have the properties that are deduced physically in Section III.

Then in Section V we discuss the specific procedure by which a series solution can be

found. The procedure is discussed in detail, and it is shown that a convergent series

can be found in all cases.

In Sections I-V we accomplish all of our objectives. However, a report on para-

metric amplifiers would not be complete if it did not show that these devices can, indeed,

amplify. The case considered in Section VI is concerned with the parametric ampli-

fying devices used in practice. That is, in addition to providing for the signal frequency,

the network contains a resonant circuit at the idler frequency. The idler frequency is

the difference between the pump and the signal frequencies. For such a device we can

prove that if the idler frequency is lower than that of the pump, and the idler circuit

has infinite Q, then the device has infinite gain. This applies regardless of the other

characteristics of the time-invariant network; we need no ideal filters such as are

required in most of the analytical literature on parametric amplifiers. Furthermore,

since the gain expression is a well-behaved function because damping is added in the

idler circuit, we can be sure that the amplifier still has gain when the Q is finite.

The method of analysis developed in this report differs from other methods found

in the current literature on linear parametric amplifiers in that it is exact for realiz-

able networks. In the most widely used method of analysis, Bolle's method, we must

assume that the network contains ideal filters. The connection between our method

and Bolle's method is discussed in Appendix B. Other methods available (6, 7) seem

too cumbersome to be useful in general parametric-amplifier analysis. By using our

exact method we show that

(i) Including voltages at all frequencies is not a severe handicap, for the power

carried by these voltages is finite.

(ii) The so-called linear amplifier is indeed linear; that is, the gain is independent

of the amplitude and phase of the input signal.

(iii) The so-called parametric amplifier can indeed amplify.
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II. FREQUENCY-DOMAIN EQUATIONS FOR A PARAMETRIC AMPLIFIER

In Section we developed a circuit model appropriate to a class of variable-

parameter electrical networks, and we called this model a parametric amplifier. Next

we must develop a mathematical procedure for analyzing the network; that is, a proce-

dure for finding all voltages and currents when only a few are specified by sources. In

this section we shall derive the necessary equations for analyzing our parametric ampli.

fier. The methods of solution will be discussed later.

The rules for obtaining a set of equations from a circuit model are given by

Kirchhoff's laws. For all types of lumped circuits these laws lead to a set of ordinary

integro-differential equations. In the case of constant-parameter networks, we find

that these equations can be most easily solved by transforming to the frequency domain.

The result is a set of linear, algebraic equations that can be readily solved. In fact,

we normally write our equations for the circuit directly in the frequency domain, and

then we solve for voltages and currents that are functions of the complex frequency, .

In parametric amplifiers the parameters are not all constant, and so the usual

method of frequency-domain analysis by algebraic equations does not apply. However,

since the nonconstant parameters are periodic functions of time, we can develop a

method of frequency-domain analysis by using difference equations. The first step in

writing the frequency-domain equations for circuits containing periodic parameters is

to derive the frequency-domain voltage-current relations for these parameters.

2.1 VOLTAGE-CURRENT RELATIONS FOR PERIODIC CIRCUIT PARAMETERS

In order to analyze parametric amplifiers we must consider four types of variable

circuit elements: capacitance, elastance, inductance, and reciprocal inductance. For

completeness, we shall also include a discussion of the other two elements, resistance

and conductance. The parameters that are to be discussed are periodic functions of

time. Let us make another restriction that the functions are such that the Fourier-

series representation converges uniformly for all time; consequently each parameter

can be approximated as closely as we wish by a finite sum of exponentials.

Consider the capacitance

k jnw t
C(t) = E Cne

-k

Since C(t) is a real-time function,

C = C*-n n

where the star denotes a complex conjugate. The time-domain voltage-charge relation-

ship for this element is

7



k jnw 0t
q(t) = C(t) v(t)= X Ce v(t)

-k 

Multiplying both sides by e-jwt, and integrating from - to oc with respect to t gives

k
Q(w) = Z CnV(w-nwo ) (7)

-k

where Q(w) and V(w) are the Fourier transforms of q(t) and v(t), respectively. In the

frequency domain, I(w) = jwQ(w), so that

k
I(w) = jw CnV(w-nwo) (8)

-k

Next, consider the reciprocal inductance

k jnw t
r(t) = r nC

-k

The current is then i(t) = r(t) X(t), and the Fourier transform is

k
I(X) = E rnA(w-nw o)

-k

Since the Fourier transform of the voltage in an inductive circuit is V(w) = joA(W), the

voltage-current relation for the reciprocal inductance is

k rnV(w-nwo
I(w) Z 0 (9)

-k j(w-nwo)

Similarly, for the conductance,

k jnw t
G(t) = Ge 

-k

we have

k
I(w) = GnV(w-nwo) (10)

-k

We could also expand the reciprocals of these parameters for analysis on a loop

basis. The appropriate expansions are: For elastance,

k jnw t
S(t)= Z Sne

-k

for inductance,

k jnw t
L(t)= Le e

-k

8



and for resistance,

k jnw t
R(t) =) R e

-k

The corresponding voltage-current relations are: For elastance,

k SnI(w-nw o)
V() (wn (11)

-k J(-nOo)

for inductance,

k

V(w) = jw E, LnI(w-nw ) (12)
-k

and for resistance,

k

V(w) = RnI(w-nwo) (13)
-k

Choosing an appropriate method of analysis (loop or node) in a variable-parameter

circuit is more involved than choosing the simpler method for a fixed-parameter cir-

cuit. In the time-invariant circuit we need only count the loops and the node pairs to

see which gives the smaller number of equations. In the periodic-parameter circuit,

we must also look at the number of terms in the parameter expansion. For example,

if C(t) = C + e + e- j , with C > 2, then

1 et + ejt (et +e-jt) 2

S(t) 2 3
0 C C

o o

It might take quite a number of terms of this series to get a good approximation to the

desired elastance.

2. EQUATIONS FOR NETWORKS CONTAINING ONE OR MORE PERIODIC

PARAMETERS

Now let us consider the circuit of Fig. 5. Writing the Kirchhoff current law equation

in the frequency domain gives

k
I(w) = Y(w) V(w) + j CnV(w-k o ) (14)

-k

This equation is a linear, variable-coefficient difference equation of the 2k th order. In

section 2. 3 we shall discuss the terminology and some of the useful properties of dif-

ference equations; then in later sections we shall investigate some methods of solving

the equations. For the present, let us assume that we can solve Eq. 14 for the unknown

voltage V(w). Once we have found V(w), we can get Ic(w), the current flowing into the

9



capacitance, from Eq. 8.

We cannot use the circuit of Fig. 5 for finding the currents through and the voltages

across the constant parameters in the parametric amplifier because when we make a

Norton or Thevinin equivalent we lose the identity of these elements. To find these

voltages and currents we use the circuit of Fig. 6, in which the capacitance is replaced

by a known voltage, V(w), and a known current, Ic(w), in a network of constant param-

eters and sources. Now our known voltage or current plays the same role as any other

voltage or current source in the network. The circuit can be analyzed in the usual way

for constant-parameter circuits. The frequency-domain analysis can be readily used,

for the equivalent source of the variable element is already specified as a frequency

function.

The technique for analyzing a network with one periodic parameter that has been

discussed can be extended to networks with several periodic parameters when the fre-

quencies of all parameter variations have a common divisor. One case that can be

handled occurs when the variable element is not a pure capacitance, inductance, or

resistance. For example, a parallel resonant circuit whose Q, center frequency, and

impedance level are all varying periodically can be represented by a parallel G, L, C

v(t) (t)

i(t) OR OR C(t)= O e
OR V () Y ()

I(w) -

Fig. 5. Norton equivalent of a capacitively excited
parametric amplifier with driving source.

C__ _ _ _ _ _ _ _ _ _r ,. 0 ) E e

Ic( | r(t)T dC(t) G(t) Gut = e ne

NETWORK OF CONSTANT
V(W)

PARAMETERS AND SOURCES _ 

G (t) = .G e
n~ °

-t

Fig. 6. Parametric-amplifier problem after Fig. 7. Variable resonant circuit.
solution of the Norton equivalent.

jno
o
t

-~w) 1 , -k

I(d)-C(tI) : 2(t f w 3(t) * C2(t) Cne
n " t

C3(t) = CneJneo
t

Fig. 8. Parametric ladder network.
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circuit, as shown in Fig. 7. For this circuit the frequency-domain current-voltage

relation is

k r
I () = . C + n + G Vr(-no) (15)

r -k n i(w-nw 0) nr 

When such a circuit is imbedded in a constant-parameter network, the resulting

Kirchhoff current law equation is still a linear difference equation with variable coeffi-

cients.

For circuits with several variable elements that are connected across different

node pairs, the resulting equations are sets of simultaneous difference equations. In

general, there is no obvious way to reduce such a set of coupled equations to a single

difference equation in one unknown. However, in a ladder network with the variable

elements separated by constant-parameter sections, the reduction is straightforward.

Consider the network of Fig. 8. Let the constant-parameter networks Yi have

driving-point and transfer admittances Y1' Y2 and Y', and let Vi be the voltage
11 22' 12' 

across C. Then the difference equations that characterize the network are:

k 1
1(w) [Y+Y 1 1 V1(W) + j C nVl(-no) - Y1 2V 2 (W)

-k

1I 2 2
O = -Y1 2 V 1 () + [Y 2 +Y ] V 2 (W) + j C nV (-no -Y V 3()

121 Z il2n n 1 2 3

2
= -Y12V 2 (W) + [Y 2 2 +Yo] V3(0) + jw Z CnV3 (w-nwO )

-m

To reduce these three simultaneous equations to a single difference equation in V 1 , we

solve the first equation for V2 in terms of V 1 , and substitute the result in the second

equation. Then the resulting equation is solved for V 3 in terms of V 1. Finally, both

V2 and V3 in the third equation can be replaced by a linear function of V 1 , and we

obtain the desired single equation in one unknown. Recently, traveling-wave parametric

amplifiers have been proposed (8). These amplifiers are characterized by parametric

ladder networks as shown in Fig. 8.

2.3 TERMINOLOGY AND PROPERTIES OF DIFFERENCE EQUATIONS

In the frequency domain the equations describing the behavior of parametric ampli-

fiers are difference equations. Therefore, it is appropriate that we discuss the termi-

nology and some of the fundamental properties of these equations. One of the best

discussions of the subject has been given by L. M. Milne-Thomson (9).

Consider the equation

11
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AnV(+nw) + AnlV(+(n-1)wo) + ... + A 1V(w+w o ) + AoV(w) + A_ 1 (-o) + ...

+A_(m-l)V(-(m-l)co) + A_mV(o-mco) = g(w) (16)

where the Ak's are known complex-valued functions of and V; V is an unknown func-

tion; is complex and may take on any value in the complex plane; m and n are positive

integers; o0 is a constant, which in general may be complex, called the difference; and

g is a known function of . Equation 16 defines a complex-valued function V for all

values of the argument. The function so defined will not, in general, be unique. We

shall be interested in those functions that are analytic, except for a countable number of

singularities. Such a function will be called a solution to the equation.

Equation 16 will be called a linear equation if the A's are independent of the unknown

function V. A linear equation is also a constant-coefficient equation if the Ak are also

independent of ; otherwise it is a variable-coefficient equation. The order of the equa-

tion is (m+n). The equation is homogeneous if g is identically zero; if g is nonzero,

the equation is called a complete equation. The solution to a homogeneous equation is

called a complementary solution, and a solution to a complete equation is called a

particular solution. The equation is said to be in standard form if the difference is one.

Equation 16 can be put in standard form by a change of variable; = o o. The result

is a difference equation in standard form with argument w. Two values of the argument,

c1 and w2 , are said to be congruent if ol = 2 ± 0 

In order to discuss some of the properties of the solutions to linear difference equa-

tions let us examine a second-order equation in standard form:

Az2 () V(o+2) + A1 (w) V(w+1) + Ao(w) V(@) = g(o) (17)

First, let us discuss the solution to the homogeneous part of Eq. 17, that is, the equa-

tion with g(w) identically zero. Suppose that V 1 is a solution to the homogeneous

equation. Then if p is a constant, pV 1 is a solution. Furthermore, if p is any arbi-

trary periodic function of period one, pV 1 is a solution. To show this, let us first

note the definition of a periodic function. If p is a periodic function of period a, then

p(w±a) = p(w). Now let us substitute pV 1 in our original homogeneous equation (Eq. 17)

with g(o) identically zero. We have

A 2 () p(c+2) V 1 (+2) + A () p(o+l) V (w+l) + A o() p(w) V1 () o (18)

But, by definition, p(c+2) = p(w+l) = p(w). Hence our questioned equation (Eq. 18)becomes

p(w)[A2()Vl(w+2)+Al()Vl(o+l)+Ao(o)Vl(O)] 0 (19)

But since V 1 is assumed to be a solution to the homogeneous part of Eq. 17, the expres-

sion in the bracket in the questioned Eq. 19 is zero. Therefore, we have proved the

assertion that pV 1 is a solution.

Now let us turn to the complete equation (Eq. 17). If V2 is a particular solution to

12



the complete equation, and V 1 is a complementary solution to the homogeneous part of

the equation, then obviously V 1 + V 2 is also a solution to the complete equation.

Finally, we shall demonstrate the principle of superposition for the linear difference

equation. Suppose in Eq. 17 that

g(W) = p1(W) gl(c) + P 2 (co) g2() (20)

where P1 and P2 are periodic functions of period one, and gl and g 2 are arbitrary

functions. Let us also suppose that V1 is a particular solution to the equation

A2(c) V 1(w+2) + Al(w) Vi(w+l) + Ao(w) V 1 (W) = gl(c) (21)

and that V 2 is a particular solution to the equation

A2 (c) V2 (c+2) + A1(w) V 2 (c+l) + Ao(0) V2 (c) = g2 (W) (22)

Then we assert that pl(o) V1 ( ) + P2(W) V 2 (w) is a particular solution to the original

complete equation, Eq. 17, with the restriction of Eq. 20. To prove this assertion let

us substitute in the original equation

A 2[ 1P(+)V 1 (W+2)+p2(+Z)Vz2 (+Z)] + A 1[P l(W+l)V 1(c+1)+P 2 (c+l)V 2 (+1)]

AoPl ( )Vl(W)+PZ(W)V 2 (W)] p1 (W) g l (W) + P2 (w) g 2 (')

Since p((+2) = pl(o+l) = Pl(), and p 2 (w+2) = p 2 (c+l1) = P2 (o), we may rewrite our

questioned equation, as follows:

Pl(W)[A 2V 1(+)+A 1V 1 (C+l)+AoVl( a)] + pZ(O)[AZV 2(w+2)+A 1VZ(+)+AoV2 (o)]

pl(w) gl ( ) + P2 (w) g 2 (w)

But, by Eqs. 21 and 22, the expressions in the first and second brackets are equivalent

to gl(w) and gz2 (), respectively. Therefore, we have an identity and we can erase the

question marks.

As any student of differential equations will recognize, the terminology and the

properties of difference equations are often similar to those of differential equations.

One significant difference is that the arbitrary multiplicative constant in differential

equations finds for its counterpart in difference equations an arbitrary multiplicative

periodic function. Consequently, solutions to difference equations have a higher degree

of arbitrariness than those of differential equations. Analogies between difference and

differential equations are often helpful; however, we must be careful because the two

are not completely analogous.

13

__



III. AMPLIFIER PERFORMANCE - THE PARTICULAR SOLUTION

In order to analyze our single-stage parametric amplifier (Fig. 9), we must first

solve the difference equation.

k
I(w) = Y(w) V(w) + E CnV(w-nw ) (23)

-k

In order to keep the notation within bounds, we shall henceforth consider the special

case with k = 1; that is, with sinusoidal capacitance variation. The extension to higher-

order equations is straightforward for any specific problem, but very cumbersome in

a general discussion. The resulting equation is

I(W) = j CV(W+wo) + Y(w) V(w) + jwC 1V(-Wo)

The realizability condition requires that Y(w) contain a parasitic shunt capacitance, C 0 ,

greater than 2C 1.

To further simplify the notation, we shall make the following normalizations:

(a) Choose the time origin so that C1 is real.

(b) Normalize the frequency scale so that w0 = 1.

(c) Normalize the admittance level so that C 1 = 1.

These three transformations do not restrict the generality of the analysis. Equation 23

now becomes

I(W) = jV(w+l) + Y(W) V(W) + jV(w-l) (24)

with

Y(W)
lim = C > 2

w-O00 j o

The normalized circuit is shown in Fig. 10.

In a parametric amplifier, as in most electrical networks, we are interested in the

stability, the steady-state response, and the transient response. To determine stability,

we excite the network with an impulse at some time T, and then examine the response to

see if it remains bounded. In the frequency domain, a unit impulse at time becomes

ejwT. Therefore, the excitation function I(w) in Eq. 24 is ejwT when stability is being

investigated.

C y(t) C(t )- Cneyt j
ORe+ * i OR -(w),

Fig. 9. Single-stage parametric amplifier. Fig. 10. Normalized amplifier.Fig. 9. Single-stage parametric amplifier. Fig. 10. Normalized amplifier.
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In the real world, virtually every steady-state signal of interest can be expressed

as a sum of sinusoids. Since the Fourier transform of a sinusoid is an impulse, steady-

state signals are characterized by a sum of "6-functions" in the frequency domain.

Therefore, I(w) = Z Ii6(w-wi) is the appropriate steady-state excitation for Eq. 24. Since

superposition applies in this linear equation, we can consider the impulses one at a

time.

When the excitation is a transient that is zero before time to, the appropriate fre-

quency function is of the form

jwT.

I(o) = e Ri(W)

where Ri is a rational function. In this case, also, superposition can be used to

simplify the computations. To find the response for all three types of excitation,

we wish to find a particular solution to Eq. 24 with the appropriate forcing function,

I(W).

3.1 METHOD OF VARIATION OF PARAMETERS

A general method that can be used for finding the particular solutions for all three

excitations is the method of variation of parameters. For our second-order equation,

we must first find two complementary solutions, V 1 and V, to the homogeneous equa-

tion. In Sections IV and V we shall discuss these complementary solutions. For the

present, let us assume that V1 and V 2 are known, and proceed to find the desired

particular solution, V(w).

In the method of variation of parameters we assume that there are two functions,

A l and A 2 such that

V(w) = AI(W) V1 (W) + A2 (W) VZ(w) (25)

Since Eq. 25 is one equation containing two unknown functions, we may arbitrarily select

a second equation that the functions must satisfy. To this end we let

V(w-l1) = A 1(W) V1 (wO-1) + A2(W) V2 (W-1) (26)

To find the A's we substitute the solution, V(w), in Eq. 24. We have Eq. 25 for

V(w), and Eq. 26 for V(w-l). For V(w+l) we use Eq. 25, evaluated at (+1) and rewrit-

ten in a more convenient form. Thus

V(w+l) = A 1(W+l) VI(w+l) + AZ(W+1) V2 (W+1) = V 1(w+1) AA 1() + V2 (w+ ) AAZ(w)

+ A () Vl(w+l) + A2 (W) V2 (w+l) (27)

where A(w) = A(w+1) - A(w).

Substituting Eqs. 25, 26, and 27 in Eq. 24 yields

15



I(w) = j[Vl(w+l)AAl()+V2(w+)AA2(W)]

+ jw[A 1 ()V(w+l1)+A 2 ()V 2 (W+1)]

+ Y(w) [A 1(W)V I(w)+A 2 ()V 2(W)]

+ jw [A 1 ()V 1 (Wo- 1)+A 2 ()V 2 (w-l)] (28)

Since V 1 and V2 are solutions to the homogeneous equation, Eq. 28 becomes

I(w) = j[Vl(w+l)AAl1(W)+Vz2 (o+l)AA 2 ()] (29)

Equation 29 is a linear algebraic equation with two unknowns, AA1 and AA . We

shall now proceed to obtain a second equation in these two unknowns and solve for AA1

and AA2 . This procedure results in two first-order difference equations in Al and A2,

respectively. By solving these difference equations we find the functions A1 and A 2.

Substituting these two functions in Eq. 25 gives the desired particular solution.

To find the second equation in A1 and AA2, we rewrite Eq. 26 as

V(w) = A1(W+l) V1 (w) + A2 (W+1) V2 (W) (30)

Subtracting Eq. 25 from Eq. 30 gives our desired result:

0 = V1 (w) A1((o ) + V2(w) A 2 ( ) (31)

By solving Eqs. 29 and 31 simultaneously we find that

I(o) V2 (W)

1() = - jwD(w) (32a)

I(w) V 1()
AA2( -)- jwD(w) (32b)

where

Vl(w) V2 (W)

D(o) =
v 1 (o+1) V2 (w+l)

When the right-hand sides of Eqs. 32a and 32b are merimorphic functions, straight-

forward methods of solving for A 1 and A2 are available in mathematical literature.

However, in cases in which I(w) is such a function - that is, when i(t) is an impulse or

some other transient excitation - the particular solution can be found directly without

solving the homogeneous equation first (see section 5.5).

3.2 SINUSOIDAL INPUTS

In high-frequency amplifiers, the excitation that is of prime interest is the steady-

state excitation. Since the variation of parameters method is best suited to the case in
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which I(w) is an impulse, we shall discuss the steady-state response in some detail.

Suppose I(w) is an impulse of complex amplitude I at frequency °a Then Eqs. 32a and

32b become

~~~w~a a~~~~~~~~ ~(333

I V I (a )

AA2 (w) j, D(Wa)6 (oa) (33b)

Consider the equation

A(w+l) - A(w) = f(w) (34)

Formally, a possible solution to Eq. 34 is

oo

A(w) = p(w) - f(w+s) (35)
s=O

where p(w) is an arbitrary periodic function. This can easily be seen by substituting

Eq. 35 in Eq. 34. If the series in Eq. 35 converges, the A(w) thus defined is well

defined.

A second formal solution is

o0

A(w) = p(w) + . f(W-s) (36)
s=l

For Eq. 36 to be a well-defined function, the sum, of course, must converge.

In Eqs. 33a and 33b, which we wish to solve, the function represented by f(w) in

Eq. 34 is an impulse. Consequently, solutions of both forms (Eqs. 35 and 36) are infi-

nite sums of constant-amplitude impulses. Since the impulse is not a well-defined

function in the normal sense, we shall proceed formally to find the voltage without

settling the question of convergence. Then we shall select the form, Eq. 35 or Eq. 36,

which results in a physically meaningful voltage.

In order to see what voltages result from the two forms of solution, let us assume

A 1(w) of the form of Eq. 35, and A 2(w) of the form of Eq. 36 with the arbitrary periodic

functions equal to zero. Thus

VZ2 (Wa) (00os- (3)
A 1(W) j= jwD(w ) s= (+ a

IVI() 00oo

A JaD(a) s (38)

Substituting Eqs. 37 and 38 in the particular solution (Eq. 25) gives the voltage.

Since the voltage depends on the complex amplitude and the frequency of the input cur-

rent, we write

17



V (a) V2(w) 6(w-Wa)

o0

V(w, I, a)= I D + [Vz(Wa)Vl(a-s _)6(w+s- a)
a JWaD(Wa) s=l

+V1(Wa)V(Wa+s)6(w-s-Wa)] (39)

3.3 PHYSICAL INTERPRETATION OF THE SOLUTION

Equation 39 gives the value of the voltage that appears across a parametric ampli-

fier when the input is an exponential of complex amplitude I at the real frequency wa -

If the input is to be a real time function, it must contain a second exponential of complex

amplitude I at frequency (-W ). With a real input we expect the resulting voltage to

be a real time function. Thus if our solution (Eq. 39) is physically meaningful, we

expect that

V(-w, I*, -Wa) = V* ( I, wa) (40)

If Eq. 39 has this conjugate symmetry, the voltage resulting from a real sinusoidal

input is a sum of real sinusoidal voltages. The power flowing in the time-invariant,

passive network at each frequency is proportional to the square of the voltage amplitude

at that frequency. Physically, we know that the net power flowing into storage plus that

flowing out of the electrical form must be finite. In a general discussion there is no

way that we can determine the phase of the various complex powers. However, if the

gross power - that is, the sum of the magnitudes of the complex powers - is finite, then

surely the net power is finite. Thus our solution (Eq. 39) is physically meaningful if,

in addition to the conjugate symmetry (Eq. 40), it carries finite gross power. For the

voltage (Eq. 39) the gross power restriction requires that

0 {IVl(a - Is) I+V 2 (a+s) I}
s=O

shall converge. In Section IV, after discussing some of the properties of the comple-

mentary solutions, we shall see that both conditions are satisfied.

Since the voltage expression (Eq. 39) is rather cumbersome, we can define two

simpler expressions that characterize the terminal behavior. The first of these is the

input impedance. This is defined as the ratio of the voltage amplitude at the applied

signal frequency to the input current amplitude. Thus

Vl(Wa ) V2(wa )
Z - ( ) )(41)

Note that in the special case, with a an integer or half-integer, there is a second

term at frequency wa or (-wa). Then Eq. 41 is not the input impedance that we have
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defined. For the moment, let us consider such exact synchronism between pump and

signal as a degenerate case that is to be avoided. It would certainly be difficult to

maintain in a physical device that is used to amplify signals that carry any information.

In Appendix A we shall discuss some of the peculiarities of the degenerate case.

The second useful expression is the gain. In section 1.2 we defined the gain as the

ratio of the average power delivered to the time-invariant network at the desired output

frequency to the power delivered by the source. Thus the gain with output at frequency

(Wa+S) is

V l( IV a)V2((Wa+S) Re[Y(wa+)]
K (coa) = I Dw ) I Z(42a)

wa (a) j Re[Zin (a)]

The gain with output at frequency ( a-S) is

Vz(wa)V l( -s) IZ R [Y( a-s)]
K ( a ) = a a e a (42b)K-( a 21 D(a) 12 Re[Zin(Wa)]

In the degenerate case mentioned above these gain expressions must be modified. We

should note that Eqs. 42a and 42b are independent of the amplitude and phase of the

input signal. Therefore, our linear amplifier is indeed linear.

19
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IV. THE COMPLEMENTARY SOLUTION- GENERAL PROPERTIES

We shall now discuss some of the properties of the complementary solutions to the

homogeneous difference equation for a parametric amplifier. From these properties,

we shall see that, mathematically, the voltage expression (Eq. 39) satisfies the require-

ments that we deduced from physical reasoning in section 3. 3.

4.1 THE CONJUGATE NATURE OF THE SOLUTIONS

ASSERTION 1. If V1 (wo) is a solution to the homogeneous difference equation,

0 = jV(w+l) + Y(c) V(w) + jV(w-l) (43)

with Y(w) a positive real admittance function, then

V2 () = V (44)

is also a solution.

PROOF. Substitute Eq. 44 in Eq. 43 and show that the result is an equality. Then

jWVl (-0-l) + Y(c) V (-c) + jWVl(-W-l)

Making the change of variables, w = -w, yields

o 0 -jV (-l) + Y(-) V1() - jcVl(+l)

But since Y is a positive real admittance, we have

Y(-) = Y*(w)

Therefore

0 - -jWV (w-1) + Y*(_) Vl(w) - jV (w+1)

Taking the conjugate of this questioned equation gives

9
o jV 1(w=1) + Y(w) V 1 (_) + jVl(- +I)

But this is the original difference equation (Eq. 43) with w instead of w, and by assump-

tion V1 is a solution. Therefore, we erase the question mark, and the assertion is

proved.

When the two solutions to the homogeneous difference equation (Eq. 43) have the

conjugate property (Eq. 44) the determinant D(X), defined as

V 1(w) V2 (w)

D(X) = (45)

Vhas conjugate symmetry about = 0. In order to) Ve this statement, we need to()

has conjugate symmetry about = 0. In order to prove this statement, we need to
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use Heymann's theorem (10). The proof is given completely by Milne-Thomson; there-

fore we shall merely restate the theorem in the notation of this report.

Heymann's theorem relates to the linear difference equation

An(W) V(w+m) + An_l(w) V(w+m-l) + ... + An_m(w) V(w) + ... + A0o() V(w+m-n) = 0 (46)
th~~~~~~~~~~

For this n -order equation, we can

these solutions the determinant D(w)

V 1(W+l) V2(w+1)

Vl(w+n- 1) V 2(w+n- 1

find n linearly independent solutions, Vn(W).

is formed by

... Vn(W)

Vn(+l)

) ... Vn(w+n-l)

From

Heymann's theorem states that

A (W)
D(w) = ( 1)n Aw) D(w+l)

AnW)

For our difference equation

metric amplifier,

D(X) = D(w+l)

(Eq. 43), n = 2, and Ao() = An(w) = j. Thus for our para-

(47)

ASSERTION 2. For Eq. 43 with the solutions related by Eq. 44,

D*(-w) = D(w)

PROOF.

D(w) = V

V l (W+l)

V (-w)
D (-w) =

Vl(-W+l)

V1(0)vl(w)

Vl1(W)

v (--)

V1 (W- 1)

V(-W)

v (-+ l)

V l (-(w-l

V1(-W)1

= D(w-l)
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But by Eq. 47, D(w-1) = D(w). And therefore assertion 2 is proved.

Now, with the aid of assertions 1 and 2 we can prove another assertion.

ASSERTION 3. The parametric amplifier voltage (Eq. 39) has the conjugate sym-

metry property (Eq. 40) if the solutions to the homogeneous equation are conjugately

related by Eq. 44.

PROOF. Let us transcribe Eq. 39:

I
V(W,I, W) = jD()

a ja wa)

V 1( ) VZ(Wa) 6(o- )

+ S3 [VZ(w)Vl(ca-s)6(+s-W )
s=l

+V 1 (ca)V Z(ca +s) (-s-Wa) ]

Substituting Eq. 44 for V2 gives

V(, I, a) = IaD(a)jWaD(wa)

I
V(-, I*, - ) = I

a -j D(-w )a a)

V ( ) V (-%a) 6(W- )

+ [V (-a)V (Wa-S)6(w+S-wa)

+V (Wa)V*(-a-s)6(W-s a)]

V1 (-a) V (Wa) 6( -+wa)

+ [Vl((a)V1(-Wa-)(-+S+W a)
s=l

+V 1 (-oa)V 1 (oa+ s )- - ca)]

By assertion 2, Eq. 46, D(-oa) = D*(oa). Furthermore,

6( -+a) = 6(- a)

6(-w+s+c a) = 6(cW-s- a)

and

5(--s+a ) = 6(o+s- a )

Therefore

V(-w, I*, -Wa) = V* (, I, Pa)

and the assertion is proved.
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4.2 POINCARE'S THEOREM AND ITS IMPLICATIONS

The second restriction on the voltage that we deduced in our physical interpretation

was that the power remain finite (see section 3.3). We pointed out that the power was

certainly finite if

[j V(a-s) + V2(wa+s) ]
s=l

00

converges. If V 1 and V are related by Eq. 44, we need investigate only E jV2 (wa+s) 2
s=l

because the behavior of I V1 for large negative arguments is exactly the same as the

behavior of IV 2 for large positive arguments. There are two published theorems on

the difference equation which apply to the problem of convergence of the series
00

Z IV2 (w+s)I. The first, known as Poincare's theorem, applies the ratio test; the
s=l 00
second, known as Perron's theorem, applies the root test. If IVz(a+s) converges,

00 s=l
then IV V2 (a+s) 2 converges. We shall see that the series converges as long as the

s=l
amplifier is realizable.

Poincare's and Perron's theorems both apply to the difference equation of the

Poincare type. An equation of this type is a linear homogeneous equation whose coef-

ficients approach constants as the argument approaches infinity. When the homogeneous

difference equation (Eq. 43) for our parametric amplifier is written

= V(+l) + Y() V(w) + V(w-1) (49)
3o

the realizability condition

lim Y()_= C > 2
(0-00 j0 0

makes it an equation of the Poincare type.

Before stating the theorems we need to define the characteristic equation for a

Poincare difference equation. The characteristic equation is derived by the following

procedure. Start with the constant-coefficient equation to which the original difference

equation tends. In our case it is

V(W+1) + CoV( ) + V(W-1) = 0

Next, assume that V(w) = .', with a constant to be determined. Then substitute the

assumed solution into the constant-coefficient equation. In our case this gives

+ C O + o

Factor the equation in the form

W+SP(G) = 0
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in which s is a suitable integer to make p(p.) a polynomial. In our case we get

(w+ 1)(f2+C + ) = 0

Finally, the characteristic equation is p(jf) = 0.

In our case the characteristic equation is ,u+ c0 + 1 = 0. The roots of this equa-

tion are

2

When CO is greater than two, as it is in a realizable amplifier, the roots are real,

negative, and distinct. Furthermore, the two roots are reciprocals. Henceforth, we

shall use l for the larger root, that is, Eq. 50 with the plus, and use ~2 for the other

root.

We now have enough terminology to state the Poincare and Perron theorems. The

proofs, which are found in the last chapter of Milne-Thomson (11), will not be repeated

here. We shall use the notation of Eq. 46.

Poincare's theorem may be stated: An n th-order difference equation of the Poincare

type with (a) distinct moduli for the roots, i, of the characteristic equation; (b) the

ratio of the first coefficient to the last coefficient (Ao/A n in Eq. 46) nonzero for

the argument ( a+s), with s an integer and a a constant, possesses an n solution

V1' V2 . -I Vn such that

I Vi(oa++l) 
lim = |JI
s-0co Vi(Wa+s) 

The difference equation (Eq. 49) clearly satisfies conditions (a) and (b) so that

Poincare's theorem applies. If we associate the solution V2 to Eq. 49 with the root 2
cO

of Eq. 50, which is less than one, the series IV (oa+s)I converges by the ratio test.
s=l

Perron's theorem is a much more general theorem than Poincare's. It applies for

equations in which the roots of the characteristic equation are not distinct. However, in

our case these more general conditions are unnecessary. For higher-order amplifiers -

amplifiers whose variable elements are not pure sinusoids - we might need Perron's

theorem.

Perron's theorem, for our purposes, may be stated: For the n th-order difference

equation discussed under Poincare''s theorem the solutions have the property:

lim / IVi(cLa+s) = i

oo

As we have stated, Perron's theorem shows that IV2(ca+s)I converges by the
s=l

24



root test. From Perron's theorem we deduce that for large values of , V2(c) = 4,2U(),

where U(w) goes to infinity no faster than a polynomial as becomes infinite. In

Section V we shall find our solution in this form in the entire plane, not merely for

large w.
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V. BOOLE'S METHOD OF SYMBOLIC OPERATORS

In order to analyze a specific parametric amplifier and obtain the amplitudes of the

various voltages numerically we must still find one solution to the homogeneous differ-

ence equation. To find a solution for a variable-coefficient difference equation is not a

simple task. In fact, there does not seem to be a method that will solve our equation in

closed form. Most of the books on difference equations merely point out that a solution

in the form of a factorial series can be found in much the same way as a power-series

solution is found for a variable-coefficient differential equation. Milne-Thomson (12)

discusses in great detail a specific procedure for finding the series. The method is

known as "Boole's method of symbolic operators."

We shall start here by defining the operators and stating those properties that are

needed in the solution of the homogeneous equation for the parametric amplifier. We

shall then go through the procedure for the second-order equation. Generalizations

to higher-order equations are straightforward. In the discussion of the procedure

Milne-Thomson mentions two points at which the method may fail. However, we shall

see that in our case a solution can always be found. The method can also be used to

solve the complete equation for the parametric amplifier with transient inputs directly

without first finding a solution to the homogeneous equation.

5.1 DEFINITION AND PROPERTIES OF THE OPERATORS

With Boole's operational method, as with any operational method, we wish to con-

vert our original equation into an operational equation. More specifically, we start

with the homogeneous equation. If we call Vc the complementary solution, this equa-

tion has the form

f(w, V c ) = 0

We then convert it to the form

F(operators) Vc(C) = 0

Finally, we assume a series for Vc(w); and by knowing how the operators operate on

the individual terms in the series, we can evaluate the coefficients.

To apply Booles method to our equation we need two operators:

(i) pm defined by

r(w+l)
pmv() = V(w-m)

r(w+ 1-m)

where m is any complex constant, and r is the gamma function.

(ii) 1T defined by

TV(O) = [V(@)-V(W-1)]
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The operators p and r as defined in Milne-Thomson are somewhat more general in that

they may also incorporate a linear change of variable. However, this extra generality

is not needed in our solutions and is therefore omitted.

Now let us look at some of the properties of the operators p and r which enable us

to reduce the difference equation to operational form and then evaluate the coefficients

in the assumed series solution. The properties are merely stated here; the proofs are

found in Milne-Thomson (9). Throughout this discussion we shall use k and m for

complex constants, s for positive integers, and n for positive or negative integers.

The operator p with its r-functions looks quite formidable, but a well-known prop-

erty of the r-function renders the operator quite manageable. That property is r(+l) =

wr(w). Thus for integer exponents p does not involve r-functions at all. That is,

pSV(w) = w(w-1) (w-Z) ... (w-s+l) V(w-s) (51a)

p-v() =( (w+) (+2) ... (l+s) (51b)

Since factorial expressions like those in Eqs. 51a and 51b appear quite often in the

solution of difference equations, we shall use the simplifying notation

(s ) =(-1) (w-2) ... (w-s+l) (52a)

(-s) 1 (5
(w+l) (+2) ... (w+s)

We shall refer to Eq. 52a as a factorial expression, and to Eq. 52b as an inverse fac-

torial expression. Using the simplifying notation, we can rewrite Eqs. 51a and 51b

compactly for any positive or negative integer. Thus

pnv(w) = w(n)v(w-n) (53)

The operator p is defined for arbitrary complex exponents. It obeys the normal expo-

nent law

k m k+m
p [p v()] = pkm V(w)

Operation with can also be repeated; and hence for positive-integer exponents rs is

well-defined. From the definitions of p and i, we find that

wV(w) = (r+p) V(w)

Furthermore, since operation with (+p) can be repeated, we have

wSV(w) = (+p)S V(w) (54)

When expanding the expression (+p) s we must be careful, because iT and p do not

commute. However, there is a theorem (13) that allows us to separate the two opera-

tors. It states: If F is a polynomial of order s, then

F(r+p) V(W) = F(rr) + F 1 (iT) P + 12 F 2( ) P + + Fs() ) (55)1 r F2! s!+.. pVs~
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The polynomials F i are formed by

Fi(x) = Fi_1(X)- Fil(X-) = A Fi-l(x)
-1

i
If we use the symbol A to mean the operation A applied i times in succession, we

-1 -1
see that

i
F.= AF

-1

By using Eqs. 53, 54, and 55 we are able to transform the normalized equation for

any parametric amplifier to operational form. Before going through the detailed pro-

cedure for transforming the equation, let us continue with the properties of the opera-

tors which enable us to find a series solution. When p operates on the constant, one,

the result is a ratio of -functions. When the operand is one, we shall omit it. Thus,

without the operand,

m r(o+l)
P =

r(o+ 1-m )

The series solutions that we shall assume for our difference equations are power

series in p. With negative exponents the series is called a series of inverse factorials,

or a factorial series of the first kind. The series is

k-s r(w+l) o (-S)a P = as(c-k) (56)
s=O s r(o+l-k) s=O

With positive exponents the series is called a "Newton series," or a factorial series of

the second kind. This series is

k+s =r(+l) o
Eb ks P') E b ( k)( (57)

s= r(o+l-k) s=O

Once we have assumed a solution in the form of a power series in p, we shall have
to operate on it with rr. Again we turn to a theorem (14) concerning the operators p

and rr. It states that if F is a polynomial, then

F(w) pm = F(m) pm (58)

5.2 REDUCTION OF THE HOMOGENEOUS EQUATION TO OPERATIONAL FORM

Now let us see how the operators p and Tr can be used for solving the homogeneous

difference equation for a parametric amplifier. We shall proceed in detail for the case

of sinusoidal parameter variation, just as we did in the two previous chapters. The

extension to higher-order equations for more complicated parameter variation is the
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same concept except that it is more complex.

The difference equation to be solved is

jwVc(w+l) + Y(w) Vc() + jVc(- ) = 0 (59)

Since Y(w) is a positive real admittance function with parasitic shunt capacitance Co,

we can write

P(o) C 0 [(j)n +A l(j) n-l+... +An]
Y(o) = - n-2 (60)

Q(co) (jW) n - + B (jW) n - Z + B n

Substituting Eq. 60 in Eq. 59 and multiplying by Q(o) gives the difference equation with

polynomial coefficients:

jWQ(0) Vc(+1) + P(W) Vc(w) + jQ(w) Vc(w-1) = 0 (61)

Before introducing the operators into Eq. 61 we shall find it convenient to introduce

a free constant, p., by the substitution

Vc() = p."U(w) (62)

Making this substitution in Eq. 61 and multiplying by p. , we obtain

jWQ(W) 2U(c+l) + .P(W) U(W) + jQ(o) U(-l1) = 0 (63)

For the present, p. is a constant to be determined. However, when we determine it, we

shall find that it has the same value as the constant discussed in section 4.3. The solu-

tion (Eq. 62) is then in the form predicted by Perron's theorem.

To reduce Eq. 63 to operational form, we proceed as follows: First we use Eq. 53

with n equal to (+1) and (-1) to eliminate U(w-1) and U(o+l). The result is

[jO(+ 1)Q(W) 2p- +P(Wo)p+jQ(W)p] U(W) = 0

Next, we use Eq. 54 to eliminate all the o's in the bracket. Thus

[(+p)(r+p+1)Q(T+p)p 2 p-l+p(1+p)l+jQ(+p)p] U(W) = 0

Finally, we use Eq. 55 to put the equation in the form

[F_i(r)p-+Fo(n)+. .. +F n()pn+l] u()= (64)

The polynomials F i in Eq. 64 are constructed as follows:

F_l(l) = jT(T+l) Q(,) = jZ N()

Fo( ) = j 2 / N(1) + P() (65)
-1

j.2 i+1 p. i j i-1
Fi-() = A N(T) + - P(rr) + A Q(n) for i > 1

(i+l)! -1 i! -1 (i-I)! -1
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To learn more about the polynomials Fi we must investigate the operator . Let

us examine

A X m = Xm _ (X-1)m
-1

= xm xm xm1 (m) xm-Z +Xm + (-l)m

mX m -l (m) xm-2 + + ( )m

Consequently, when A operates on a polynomial, the result is a polynomial of one
-1

order lower. Therefore, the order of the F i of Eq. 65 is (n-i), n being the order of

the admittance (Eq. 60). For i > n, the Fi are zero. As the operation with A is

repeated, we see that for k < m

k

A Xm = m(k)Xm-k + (terms of lower order) (66)
-1

The polynomial F n is a polynomial of zeroth order; that is, it is a constant. In

Eq. 65 the leading term of N(w) is r2 (jr)n - , that of P(rr) is C(jTr), and that of Q(r)

is (jr)n - 1 . Thus by using Eq. 66 in Eq. 65, we have

jnp2(n+1) n p nn j n(n-1) 
+ o +n C

(n+l)! n! (n-l) !

We now select p. so that Fn (r) is zero, and thus simplify Eq. 64. Consequently,

C C 2-4)1/ 2
= - (- (67)

Z

As in section 4. 2, we shall use .1, for Eq. 67 with the plus sign, and p.Z for the root

with the minus sign. With determined, Eq. 64 becomes

[F 1()P +F0 (T)+. +Fn- (T)pn- U(() = 0 (68)

5.3 SOLUTION IN FACTORIAL-SERIES FORM

In order to solve Eq. 68 we shall assume a factorial-series (Eq. 56) form for U(W).

We shall begin by assuming a series of the first kind for two reasons. First, the evalua-

tion of the coefficient is somewhat more straightforward than for a series of the second

kind, and the behavior of the inverse series at infinity is easier to ascertain. Thus we

can easily see how this solution fits in with the Poincare and Perron theorems. We

assume that
oo

U(c) = a k-s (69)
s=0 S
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Substituting this series for U(w) in Eq. 68 gives

co
F_1(r) E as-lP

s=l

k-s k-s k-s
+ F () asp + . . + F l(T) as+n-lP = 0

s=0 s= 1-n

By using Eq. 58 we eliminate the operator rr, and Eq. 70 becomes

(o ks 0 k-s k-s
s a F_(k-s) p + a F(k-s) + + X as+nl Fnl(k-s) p = 0

(70)

(71)

If we set the coefficient of each power of p in Eq. 71 equal to zero, the e

surely satisfied. The result is a set of algebraic equations from which we c,

k and the a.. Thus

aoFn1 (k-l+n) = 0

aoFn 2 (k-Z+n) + alFn l(k-Z+n) = 0

aoF_l(k-1) + alFo(k-1) + ... + a-1nlFn_2(k-1) + anFnl(k-l) = 0

a 1F_ (k-z) + a2 Fo(k-2) + ... + anFn_-2(k-2) + an+Fn- l(k-2) = 0

a s-nFl(k+n-s-1) + as n+lFo(k+n-s-1) + ... + aslFn (k+n-s-1) + asFn-l(k+n-s-1) = 0

quality is

an evaluate

(72)

The first equation of Eqs. 72 requires that

Fnl (k-l+n) = 0

Since Fn-l is a first-order polynomial, this equation determines k uniquely. In terms

of the constants of the admittance (Eq. 60), we find that

(42+l)

rk = j 2 )(B -A1)(4. 1)

The details of the evaluation of k are given in Appendix C. The only significant point

for the present discussion is that k is an imaginary number.

The second equation of Eqs. 72 can be used to evaluate a as a constant times a.

Then a can be evaluated as another constant times a from the third equation, and so on.

The coefficient, a o , remains arbitrary because any solution to the homogeneous equation

can be multiplied by a constant. Therefore, we may as well choose ao equal to one.
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Thus we have evaluated all of the constants in the assumed solution U(w),

Before we can state that U(w) is a solution to the difference equation

must be sure that the series converges. To investigate convergence, we

series in more conventional terminology from Eq. 56. Thus

r( +l) a o

I(c+ a + 1
r(.+l-k) (w-k+l) (w-k+l) (-k+2)

Eq. 69.

(Eq. 63) we

shall use the

(74)

In this series the ratio of the s t h term to the (s-l) t h term is

t a (-k)(-S) a
s s s

s1 a _la (-k)(-s+ 1) as l(w-k+s)

We are interested in the limit of this ratio as s approaches infinity. Therefore, we may

replace (-k+s) by s.

For large values of s, the recursion formula (Eq. 72) for the a is

asn F_l(k+n-s-l) + as-n+lFo(k+n-s-1) + ... + aFn _l(k+n-s-l) = 0

We have found that the Fi are polynomials of order (n-i). Therefore, for large values
n-i

of s we may replace Fi(k+n-s-l) by 4is , where the pi are constants. Thus as s

approaches infinity the recursion formula becomes

as -n-i (S) + as-n+lfo(_s)n + . - + as-lbn-2S = an-l s~~~~~~~~~ s~n-b_

Dividing this equation by (asls2 n-l), we obtain

t a a (-san- 1 (-S
s s +s-n - as-n+l 

tS_-1 as-l s as-l' n _

)n-2

1

In order to test for convergence of our series (Eq. 74),

Let us assume that the limit exists, and that it is equal to

of Eq. 75 we have a sum of terms of the form

+ ... + as ln 2
(75)

t
we must find lim 

s-o s-1
T. On the right-hand side

h-1
(h-1) n-h- as-hS

where h is an integer grelater than one and less than or equal to n. Now

where h is an integer greater than one and less than or equal to n. Now

h-1 a s a
s-h 1 s-h . s-h-1

aS-i a s-h- as-h-2

a s

as

Therefore
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h-i
as-h 1

lim
S-o -a Th-l-- s-bo T

Thus, if we take the limit of Eq. 75, we obtain

T n- i l T +n n-21 nl+ T - + n - Z

Multiplying by TnT gives a polynomial, the roots of which determine the possible

values of T. The polynomial is

nTn - nTn_ + + (-1)n-l_ (76)

In Appendix D we show that this polynomial can be factored as

(T-l)n-1 /T - )

The polynomial, Eq. 76, tells us that the only possible values for the limit, T, are

one and p./(2p+Co). Of course, for a particular amplifier there is no such ambiguity,

since the coefficients, as , are uniquely determined. However, the interesting thing is

that we can investigate all possible amplifier configurations by studying only two cases.

When

T = (77)
21 + C

we get a convergent series if TI is less than one. Substituting Eq. 67 with the plus

sign for AL, we find that our series converges if and only if

C < 3 (78)
o /Z-

The series diverges if Eq. 67 with the minus sign is used.

For the second case, T = 1, the simple ratio test does not give any information

about convergence. In this case we use Weierstrass' criterion (15). This criterion
00 t

states: A series, ts , of complex terms for which = 1 - - + (_~), where > 1,
s=O s s 5 

and a is independent of s, is absolutely convergent if and only if Re(a) < 1. For

Re(a) < 0, the series is invariably divergent. If 0 < Re(a) < 1, each of the series

X It s-ts+1 j and Z (-1)st is convergent.
s=O S=0

For our series (Eq. 74),

tS__ a_ __ __ __s a S w-k (w -k) z

1 a (w-k+s) a sI s +
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Applying Weierstrass' criterion, we see that the series converges in the half-plane,

w > 1. In section 5.4 we shall show that once a solution is known in a half-plane, it can

be extended to the entire plane. Therefore, when T = 1, we can always find a solution

U(w) in the form of Eq. 74.

Once a convergent series for U(w) has been found we return to Eq. 62 to find Vc(W),

the complementary solution to the homogeneous difference equation. Next, we should

like to ascertain whether this solution is of the form V1 or V 2 for use in the voltage

expression (Eq. 39).

If in Eq. 67 we use the minus sign for A±, our solution V (W) = U() is V2 (W) if

IU(W+l)l
lim =1
w-co I U(w) I

In expression 74 for U(o) the series approaches one as approaches infinity. Thus for

large w,

U(w+l) r(w+2) F (+ l-k) ( (w+1) (+l) r(o+ l-k)
=-- - X = x

U(w) r(w+2-k) r(w+l) (w+l-k) r(w+l-k) r(w+ l)

Obviously, this last expression approaches unity as w approaches infinity, and the solu-

tion is V2 .

The difference equation (Eq. 68) could also be solved by assuming a factorial series

of the second kind for U(w), that is,

oo00 m+s
U(w) = Z b pm+s (79)

s=O

Substituting this series for U(o) in Eq. 68 gives

F() b pm+s + F (l) b p + ...
=-l s+l s=0s

00

+ F (1T) Z bs+ m+s
s=n-1

By using Eq. 58, we eliminate the operator r. Thus

00 +s 00 m+s

bs+F_l(m+s) m+s + bs F(m+s) pm+s
s=-l s=O 0

00m+s

+ E bs+l-nFn-l(m+s) pm+= 0
s=n- 1

By setting the coefficients of each power of p equal to zero, we get the recursion

formulas for the b.i:
1
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b F (m-l) = 0o -1

b l F 1 (m) + boF(m) = 

bnF (m+n-) + bnlF(m+n-1) + +boF n(m+n-1) = 0

bn+lF 1(m+n) + bnF (m+n) + ... + blFn_l(m+n) = 0

bsF_l(m+s-1 ) + bsFo(m+s-) +... + bsnFnl (m+s- 1) = 0

The first equation of Eqs. 80 requires that

Fl(m-l) = 0

(80)

Since F 1 is a polynomial of order (n+l), it has (n+l) roots. Thus there are (n+l)

possible values for the constant m.

From the first equation of Eqs. 65, we see that

F (m-1) = j(m-1)(m) Q(m-1) .

where Q is the denominator polynomial of the admittance (Eq. 60). Therefore, we can

proceed with our general discussion by choosing m equal to zero or one. If we choose

m equal to zero, Fl(m) is zero as well as Fl(m-1). Consequently, we are unable to

evaluate b from the second equation of Eqs. 80. Therefore, we choose m equal to

one. With this choice of m, the evaluation of the bi from Eqs. 80 proceeds exactly as

the evaluation of the ai from Eqs. 72.

Since m is an integer, the r-functions drop out of the solution. Therefore

U() = bs(+)s
s=O

= w + b 1w(-) + b l,(-l)(W-2) + ... (81)

For this series the ratio of the st h term to the (s-l)t h term is
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t bs(w-s)

t bs- 1 s- 1

Let

t -b s
T= lim 5= lim r

s-oo s-l s-oo s-1

Then, by the same procedure used in connection with the series of the first kind, we find

that for large values of s the recursion relation, Eq. 80, can be written

(T+1) T + 0

For the series of the second kind (as with the first kind) we can investigate conver-

gence for all possible admittances by studying only two cases. For the first case, we

require that

2 + C
ITI = 0 <1 (82)

Since Eq. 82 is the reciprocal of Eq. 77, the case 1 series of the second kind converges

when the case 1 series of the first kind diverges, and vice versa.

For the second case, we cannot use Weierstrass' criterion directly, because T is

equal to minus one. Therefore we examine the series

o0 co

Z T = Z (-1) t
s=0 s=0 

By applying the criterion to this series we see that U(w), Eq. 81, is well defined for X

greater than zero.

Once a convergent solution has been found, we use Eq. 62 to find the complementary

solution to the original difference equation. Since the series of the second kind can

always be found with the use of ,1' we can write

Vc(A) = pI U(c) (83)

This solution is most probably V 1 in the voltage expression (Eq. 39). However, we

can not be absolutely sure from the general series form that U(w) does not behave like

2 and that the solution is really V2 .

5.4 SOLUTION IN THE ENTIRE PLANE

With solutions in series of both the first and second kinds there is the possibility

that the series converges only in a half-plane on the right. To extend the solution to

the entire plane, we use the original homogeneous equation. For example, suppose we

have a solution, Vc , that is meromorphic for w > b, and unknown for w b. Let us
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write the homogeneous difference equation Eq. 59 in the form

V (-l 1) = -V (+ 1) Y(w) ) (84)Vcw-) c -l j VcW)

Clearly, this equation evaluates the function Vc(x) for (b-l) < x b as the sum of two

known meromorphic functions. By continuing the process we can find the function Vc

in the entire plane.

Both of the series forms Eqs. 74 and 81 are analytic in the right half-plane. For

Eq. 81 the analyticity is obvious. We can see that Eq. 74 is analytic in the right half-

plane if we rewrite it in the form

o0 a
s (85)

U() = r(w+l) 0 r(+l-k+s)

The reciprocal r-function is analytic everywhere, and the r-function has poles only at

zero and all negative integers. Thus U(w) has poles at all integer points on the real

axis in the left half-plane, but it is analytic everywhere else. Since multiplication by

t° does not disturb the analyticity, both forms of solution fit the discussion of the pre-

ceding paragraph.

As we extend the solution Vc(w) to the left by Eq. 84 it remains analytic until we

evaluate Vc(c-1) at a point where Y(w)/jw has a pole. If Vc(O) has a zero, V (o-l) is

analytic, and we proceed. However, if Vc(W) is nonzero, then Vc(w-1) will also have a

pole. As we continue evaluating Vc to the left, the pole will propagate to all points con-

gruent with the pole of Y(w)/jw.

One situation in which such a string of poles occurs is found in case 1 of the series

of the first kind. Then Eq. 85 with its left half-plane poles applies in the entire plane.

There may well be other situations like this when we extend a case 2 solution in either

series form. However, these poles can be eliminated by utilizing one of the properties

of the complementary solution discussed in section 2. 3. That is, if Vc(o) is a comple-

mentary solution, and p(w) is a period function, then p(w) Vc(o) is also a complementary

solution. If we choose a p(w) that has zeros at the points where the original Vc(w) has

poles, we get a new complementary solution that is an entire function. When U(w) is

given by Eq. 85, p(w) can be chosen as sin o.

Consequently, for the homogeneous difference equation (Eq. 59), a solution, Vc, that

is an entire function can always be found.

5.5 THE COMPLETE EQUATION WITH TRANSIENT INPUT

Boole's method of symbolic operators can also be used to solve the complete equa-

tion for the parametric amplifier with transient inputs.

In section 3. 1 we saw that the general transient case could be analyzed if we could

solve the difference equation (Eq. Z3) with
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. E(w)
I(w) = eT (86)

F(o)

where E and F are polynomials.

For definiteness, let us look at the second-order difference equation with input I(w),

Eq. 86.

E(w) P(W)
e-JT = jwV(w-l) + V(w) + jV(W+l)

F(w) Q(W)

Multiplying this equation by F(w) Q(w) gives

e - j E(w) Q(w) = jwQ(w) F(w) V(w-1) + P(w) F(w) V(w) + jQ(w) F(w) V(w+1) (87)

The left-hand side of this equation is an entire function, and therefore it can most prob-

ably be expanded in a factorial series, at least in a half-plane (16). This series can be

written as powers of p.

The right-hand side of Eq. 87 can be reduced to operational form, just as the homo-

geneous equation was reduced. Then a series of the same kind as that used for the left-

hand side of Eq. 87 can be assumed for V(w). The evaluation of the coefficients in the

assumed series then proceeds essentially as it did for the homogeneous equation. Now,

however, the recursion relations similar to Eqs. 72 and 80 have constants on the right

instead of zeros. Consequently, the coefficient a in the series for V(w) is not arbi-

trary.
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VI. A PARAMETRIC AMPLIFIER WITH GAIN

Throughout this report we have used the term "parametric amplifier" to designate a

class of electrical networks with one or more periodic parameters. However, we have

not yet shown that such a circuit could amplify a signal. In the literature on parametric

amplifiers we find four distinct reasons given to justify the claim that such a device can

amplify. Essentially, these arguments may be summarized, as follows:

(i) The second-order differential equation with periodic coefficients (Mathieu's equa-

tion (17)), has unstable solutions, and thus a periodic circuit element can supply electric

energy to a network.

(ii) The power-flow relations for a nonlinear reactance (Manley-Rowe relations (18))

show that a nonlinear reactance can convert energy from a pumping source to a signal at

a different frequency, provided that the associated linear network allows power flow at

only a few frequencies.

(iii) Bolle's method (see Appendix B) shows that a network with one period reactance

and two ideal filters can amplify.

(iv) Parametric amplifiers have been built and they work.

Of these four arguments, only the last is very satisfying. We shall proceed to show

that a sinusoidal capacitance in a particular realizable electric circuit can have infinite

gain. The network that we select is prompted by the devices that have been built. Thus

we assume a passive admittance, Y(w), which has a resonance at the idler frequency; that

is, the difference between the signal and pump frequencies. As we shall see, the idler

resonance is sufficient for amplification, the other circuit properties need not be speci-

fied.

Consider the normalized parametric amplifier shown in Fig. 11. The admittance

eORO I· , ej' + 
e jit

I (-W,)

Fig. 11. Normalized parametric amplifier.

function Y(w) is a positive real admittance, subject to two further restrictions. The

first is realizability:

lim Y(@) = C > 
0-00 j03 0

The second is the presence of the idler:

Y(Wb) = 0 for I l-, a = b < 1

The difference equation for this amplifier is
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I 6(c-wa) = jV(c-1) + Y(w) V(@) + jV(w+1) (88)

In section 3. 3 we found (Eq. 41) that the driving-point impedance as seen by the

source at frequency a is

a aVi(°a ) V2 (°a) (89)

Here V 1 and V2 are complementary solutions to the homogeneous difference equa-

tion for the amplifier, and D(w a) is their determinant. Furthermore, we found

that

V1(W) = V:(-Wa) (90)

D(w) = D*(-woa) (91)

and

D(wa 1l) = D(wa ) (92)

When we examine the circuit of Fig. 11 with excitation first at a = 1 + b' and then

at a = 1 - b' we shall find that the real parts of these two impedances have opposite

signs. Therefore, at one of the two frequencies the network appears as a negative

resistance to the source. We shall discuss the implications of this after the proof has

been given.

Let us write the homogeneous part of Eq. 88 in the form

V (-1) -() V(w) - V (+l) (93)
Vc jW ·

Then since Y(wb) is zero, we have

Vl(Wb - 1) = -Vl(ab+l) (94)

and

V2( b-1) = -V2(wb+l) (95)

Now

VI(Wb + l ) V2(W b + l )Zin(b+ L (b+ ) D(wb+)

Aeja Bejp (+P-Y-)

[CeW/2 De j y

By using Eqs. 90-93, we find
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V I (1-b b) VZ(1-wb)
Zin(I-W b j(1-wb) D(Ib)

2(wb-1) V(fb-1)

= 2(wb+l) Vl(wb+l

Lj(l-'b) D (wb+ 1)

Ae a Bep [_ AB j (a+- Y+

ej e/ De-j

Thus if we let X = a + - y, a real constant, and H = (AB)/D, a positive constant,

we have

R Z sin 
Re[Zin(l+b)] 1 + sin b

and

Re[Zin(1-b)] - 1 sin X

That is,

(l +Wb) Re[Zin( 1 +b)] = -(1 -tb) Re[Zin( -wb)] (96)

From the derivation of Eq. 96 there is no way of knowing at which of the two fre-

quencies, (1-wab) or (l+wb), the negative input resistance occurs. For all parametric

amplifiers for which conclusive data have been published amplification occurs when the

signal is below the pumping frequency. In those circuits in which the admittance func-

tion Y(w) is almost the admittance of the parasitic capacitance for X above (b+l), we

can use an analytical plausibility argument to show that the negative resistance probably

occurs at (1-wb). The argument goes as follows. At very high frequencies the input

impedance (Eq. 89) is essentially the input impedance for a capacitive circuit (see

Appendix A). This impedance is purely reactive and well behaved. As we move to

lower frequencies, finding V1 and V2 by Eq. 93, we do not expect any strange behavior

to occur until after the point where Y(o) goes through some gyrations. Thus we do not

expect a negative input impedance to occur at frequencies above the zero of Y(w).

Thus far, our analysis has shown that a network with an infinite-Q resonance at a

frequency wab is a stable oscillator at frequency (1-wb) or (l+b). Since an infinite-Q

network is about as hard to realize as an ideal filter, our argument is still no more con-

vincing than arguments (ii) and (iii) above. However, those arguments break down
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completely when the ideal-filter restriction is relaxed. On the other hand, the present

argument allows us to lower the Q and keep some of the gain.

To show that infinite Q is not required, we examine the components of the input

impedance (Eq. 89). In section 5.4 we pointed out that solutions V 1 and V 2 that are

analytic everywhere can be found. Furthermore, from the process by which these solu-

tions were generated we see that the solutions vary continuously as the coefficients in

the admittance are varied. Thus the product Vl( a) V 2 (wa) varies continuously as the

zero is moved away from the axis. The determinant D(w) also varies continuously as

the Q is lowered, for D is constructed from the V 's. Moreover, a Y(W) can be found
c

for which D(wa) is nonzero. This is obvious from Cassoratti's theorem (19), which,

for our amplifier, states that D(U) is nonzero everywhere, except possibly at points

congruent with the singularities of Y(w)/jw. Thus, as the Q of the idler is decreased

from infinity, Zin(wa) is continuous. Therefore, as the zero moves from the axis out

into the plane, the amplifier varies continuously from a stable oscillator, to an infinite

gain amplifier, to a stable amplifier, and then to a strictly passive device.

The preceding discussion implies one very important practical application for para-

metric amplifiers. It appears that the frequency characteristics of the amplifier are

determined primarily by the idler circuit. Thus for a fixed idler circuit we can vary the

pumping frequency, and thus vary the signal frequency while we are keeping the band-

pass constant. Such a device certainly seems easier to construct than good tunable

filters. This property, as well as the many other useful properties of parametric

amplifiers found in published works, warrants more investigation, both analytical and

experimental.
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APPENDIX A. THE ONE ELEMENT KIND NETWORK

One class of parametric circuits that can be handled without the complexity of

Boole's method is the one element kind circuit. By one element kind we mean a circuit

all of whose elements, both constant and time-variant, are of the same kind; that is,

all resistances, all capacitances, or all inductances. The simplification occurs because

the appropriate difference equation is a constant-coefficient equation. Besides that of

Milne-Thomson, who devotes a whole chapter to the constant-coefficient case, there

are popular applied mathematics texts (20) that discuss these equations.

t G t + e-t Fig. A-i. Normalized resistive parametric circuit.
OR

I ()

In practical construction one element kind networks are most likely to appear as

resistive networks. Examples include circuits containing motor-driven potentiometers

and resistive diode mixers. Consequently, we shall consider a resistive network that

contains a sinusoidal resistance. The current-voltage relations for resistive networks

are identical with the charge-voltage relations for capacitive networks and with the flux

linkage-current relations for inductive networks. Thus the analysis here applies

directly to the other single element kind networks.

Consider the circuit of Fig. A-1. The current-voltage equation for this circuit is

I(w) = V(w+l) + GV(w) + V(w-1) (A - i)

If the circuit is to be realizable we must require G to be greater than two.

To get the complementary solutions to the homogeneous part of Eq. A-1, we proceed

exactly as in section 4. 2. That is, we assume that

Vc(c) = "

Substitution of this solution in the homogeneous part of Eq. A-1 gives

0= + G + +

Multiplying by gives the algebraic equation in p.:

0= 2 +G + 1

This equation is satisfied if we choose

G (G2-4)1 / 2
4 = - 2

For each of the two values of p., one with the plus sign and one with the minus sign,

we obtain a complementary solution. To keep the notation consistent with that of
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Sections III, IV, and V, we use the following:

G+(G_2 4)1/2 (A-2)
2 (A-Z)

V l (W) = ej W al|@ (A-3a)

V2 (w) = Vl(-w) = ej w Il- (A-3b)

v( I ) v (W)
D(w) = = e j (G2 4)1/2 (A-4)

V 1(W+l) V 2 (+1)

Since G is greater than two, p. is real and negative, and I is greater than one.

To analyze the circuit of Fig. A-1 for the steady-state behavior we consider I(W) =

I 6(w-wa), where the amplitude, I, on the right is, in general, complex. The steady-

state voltage expression (Eq. 39) applies to the present case if we recall that the cur-

rent, I(w), in a resistive circuit corresponds to the charge I(w)/jw in the capacitive

circuit. Thus the voltage is

V(o, I, a) - I [S(Wa V (Wa) (w-W) + X [V(w )V(a+)(

I 0s=0
/ z6(-W) + X (-1) s I11-s [6(-a s)+(-a+ (A-5)

(G2?4)1/2 a s=

For the simple circuit of Fig. A-1 we could solve for the voltage in the time domain

by elementary algebraic means. Let us carry out the solution and compare the results

with Eq. A-5. By Ohm's law,

VM = i(t) = i(t+ -

v(t) = G + t + e - jt G + ejt + e j
t

Since G is greater than two, (eJt+e-jt)/G is less than one, and we can expand the term

in the bracket in a power series. We obtain

v(t) i(t)_ eJt +e -jt (eJt+e-jt)? ] (A-6)

Now let us look at the case in which i(t) is an exponential of complex amplitude, I,

at frequency w . That is,

j t
i(t) = I e 
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When the exponential i(t) is inserted in Eq. A-6, the binomials in (eJt+e- jt ) are

expanded, and the terms regrouped frequency by frequency, the resulting form is

0o j(Wa +s)t
v(t) = I As e (A-7)

-o0

The As in this expression are expressed as infinite series, the terms of which involve

binomial coefficients and powers of 1/G.

To compare Eq. A-7 with our frequency domain result, Eq. A-5, we note, first,

that the functional forms of the two equations constitute a Fourier-transform pair. If

the two equations actually form such a pair, we have

A= 21 (-) (A-8)
s G -4

Let us check Eq. A-8 for A . The terms that contribute to Ao are the constant terms

in the bracket of Eq. A-6 after expansion of the binomials. There is one such term in

each of the even powers of (eJt+e-jt). Thus

A =- + ... .+ .
But this G n+ )n/

But this is exactly the expansion of (G 4) /.

Before leaving the sinusoidal steady state, let us examine the input impedance.

Except in the degenerate case, when wa is an integer or half-integer,

V( a, I, a) 1
in a) I

(G 2 -4) 1/

Thus for our resistive circuit, Zin is real as long as the circuit is realizable. For

large shunt constant conductance, G, the impedance approaches 1/G, as we would expect.

As G decreases toward two, the impedance increases toward infinity. The additional

power that this large impedance takes from the source is dissipated at the other fre-

quencies.

Now let us look at the degenerate case, when wa is 1/2. For this case,

in1 V(1/Z,I, 1/2) + V*(-1/z,I, 1/2)
Zin I

1 I

(G _4)1/2 I 1

If we write the complex I as III ej 0, we get
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Zi() I ( 2 _
4 )1/ G - (G 4)1/2 e2

Since I [ is greater than one, Re [Zin(-) is still positive, but Zin now has an imagi-

nary part. Furthermore, Zin is a function of the phase of the applied signal with

respect to the time variation of the parameter.

In the one element kind reactive circuit, the same analysis shows that the input

impedance in the nondegenerate case is purely reactive. The sign of the reactance

is the same as that of the passive circuit. In the degenerate case, a resistive term

appears. This resistive term can be positive or negative, as determined by the

phase.

Next, let us look at the transient analysis of our one element kind parametric cir-

cuit. As an example, suppose we find the time-variant impulse response. For a

unit impulse applied at time T, the appropriate frequency-domain forcing function

is

I(w) = e j T ~

Many methods for finding a particular solution to the complete constant-coefficient

equation have been published. Since we already have the solution to the homogeneous

equation, and we have developed the variation of parameters method most of the way in

section 2. 1, we shall use the variation-of-parameters method. In section 2. 1, we

found a particular solution in the form

V(w) = A1 () V1 (w) + A 2(W) V 2 (W) (A-9)

The functions Al and A2 are determined by the first-order difference equations

I(W) V2 (w) -[In |+j(T+T)]
AA 1(W) =

D(w) (G2 _4) 1/2

AA2(w) = -e
[

lnl _ L-j( + -) _

(G2 -4) 1/2

The solution (21) to the equation AA(w) = k ° is

kW
A(w) = k - 1

To show that this is true, we examine the equation

kW+l kw 
AA(w) = A(w+l) - A(w) = k - k

Thus the voltage, Eq. A-9, becomes
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_r 1

(G2_4) 1/2 L_e-ln I FL -jT - 1 el n -jT + 1

e(G24)1/ eT- + 1 T 1

(GZ-4) 1/- I{I e- + 

j
TX

G + ejT + e- j

This is obviously the right answer.
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APPENDIX B. BOLLE'S METHOD

In most of the literature on parametric amplifiers an approximate method for finding

the amplitudes of the voltages at the frequencies of interest is used. This method was

first discussed in detail by Bolle (22, 23). Recently Duinker (24) has extended this

method to include all types of periodic variable elements in a general n-mesh or n-node

network. The Duinker paper also contains a thorough discussion of linearization, which

is somewhat different from that given in section 1. 2, and a complete bibliography. In

this section we shall show how Bolle's method fits in with our difference-equation

approach. A more thorough discussion of Bolle's method, with an example, has been

given elsewhere (25).

The complete difference equation for the normalized parametric amplifier with

sinusoidal capacitance variation and sinusoidal input is

I 6(0-aa) = jwV(w+l) + Y(w) V(X) + jV(-l1) (B-l)

In section 3.2 we found that the particular solution to this equation is given in the form

oo0

V(w) = Vs 56(-a-S) (B-2)
-00oo

where the V are complex constants.

For Bolle's method we substitute the formal solution (Eq. B-2) in Eq. (B-1) and

examine the resulting equation at each of the frequencies where impulses occur. For

the equation to hold for all frequencies, the amplitudes of the impulses at each fre-

quency where impulses occur must satisfy the equality. Thus the difference equation

reduces to the infinite set of coupled algebraic equations.

I = jWaV1 + Y(a) V + jcaV_ 1

(B - 3)
0= j( a+s) Vs+l + Y(0a+S) V s + j(Oa+s) Vs5 1 for s 

Since each of these equations contains three of the unknown voltages, we must obtain

two of the voltages by some other means. Then we can solve for all the voltages with

Eqs. B-3. The usual assumption that is made is that the tuned circuits that make up the

admittance Y(c) are good approximations to ideal filters. Then all except a finite num-

ber of Vs are zero, and we can solve for the nonzero voltages in the passbands of the

filters.
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APPENDIX C

EVALUATION OF THE CONSTANT k IN THE INVERSE FACTORIAL-SERIES

COMPLEMENTARY SOLUTION

In section 5. 3 we mentioned that the constant k for the inverse factorial series is

to be evaluated from Eqs. 72. The first of these equations requires that

Fn_ (k+n-l) = 0

The first-order polynomial Fn-1 is given by

2jl2 n

n! -1

FL n-1

(n-l) !
A
-1

[P] +
j n-2

(n-2) !
A [Q]
-1

(C - 1)

The polynomial, 0, is of order (n+l); P is of order n;

Therefore, each of the operations with A is of the form
-1

-l
-1

and Q is of order (n-l).

(polynomial of order m)

In connection with the evaluation of the constant,

r1 !

Ax M 

F, we also saw that

if s < r

if s = r

m-1
To evaluate F we must still investigate A Xm

~ni ~~~-1

m-l

-1

m-2
xm= A

-1 A xmj]
m-2

A
-1

Now

+ terms of lower order]

-2 m - 1 m(m-1)(m-Z)! m-2 m-1
=m X - = m X

-1 -1

m!
2

m-3
= m(m-1) A m- _ m(m-1) (m-2) (m-3)! m!

-1 this process through ( ) operations yields

Continuation of this process through (m-l) operations yields

m-l

-1
= m!X (m-l) m!

2

From the definitions of the polynomials O, P,

Y(w), Eq. 60, we obtain

and Q in terms of the admittance
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a O( /n-l n+l+(jn-l+B Zn-)n

-1 -1

/% P(W)= / Jnn+A J 

n-2 n- 2 n- n-I n-2 n-2 1

A1 Q(')= n-1 +B 2 j 

Thus

Fn 1 n { I(n+i)W-(n+1 )n +l-jB Z] l+ C o [n(n-) -jA 1]

+(n- 1)w- (n- 1)(n-2) jB}

= n{( +Co+l) (n ) + -1 ( 2-Coll-3)

+ 2 - -j( LZ+1) B 2 jCoAl}

But since . + Co L + 1 = 0, we have

Fn -l() = .n[(I+l1-n) (2-1)-j(2+1) (B 2 -A 1)
]

Thus if we set Fnl(k+n-1) equal to zero, we obtain

(k+n-l+l-n)(2 -1) - j(G2+1)(B-A 1 ) = 0

Therefore

2
p. +1

k = j (B 2 -A 1)

p -1
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APPENDIX D

FACTORIZATION OF THE POLYNOMIAL (EQ. 76)

We wish to show that the polynomial [Xnn -X +. . . +(_ 1)n- 1 

the i are given by

i jn [2 (n+1) +C (n)

where

n- 1)

can be factored in the form (X-l)n 1 Since jn appears in all the i we
2 + C0

can divide it out. Then we proceed by induction.

For n = 1, we have

(2K2 +Co) X - fL = LK ij _
2 + CO

For the induction step we must show that multiplying the polynomial for n = h by

(X-l) gives the polynomial for n = h + 1. Thus we must show that

h+l h h
bi = di + i-1

where the superscript indicates the value of n.

Now

h +h .i-l l(h+i) + (hl ) + C aL(i) +((i 1)

h! [h-i+l+i]
= (i-l)! (h-i)! i(h-l+1)j

Similarly,

(ih+l) + (h+(i+ 1I \ 1

(h+l) !
i! (h+ -i) 

(h+2Z
\ i+l/

and

(h-) h-) ( h)

Therefore

h+1 h h
ci = =i + i-
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