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Abstract

Criteria for determining optimum pulse shapes for use in a synchronous pulse trans-

mission link are proposed and compared. Formulas for the optimum pulses are pre-

sented, and calculations are carried through in examples.

In a secondary problem, we present methods for calculating optimum interpolatory

pulses for use in reconstructing a random waveform from uniformly spaced samples.

The case of a finite number of samples and the case of an infinite number of samples

are discussed. A mean-square criterion is used to judge the approximation. The

results provide a generalization of the sampling principle.
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I. INTRODUCTION

This report is concerned with problems in the design of synchronous pulse trans-

mission links like the link shown in Fig. 1. In this model the transmitter sends a vol-

tage pulse into a transmission line every T seconds. The pulses differ only in their

amplitudes and time delays. The peak amplitude of each pulse corresponds to a mes-

sage. If the peak amplitude of a transmitted pulse can be determined at the receiver,

then the message carried by that pulse can also be determined.

PULSE TRANSMISSION MESSAGEFILTERING
MESSAGES TRANSMITTER LINE NETWORK DETECTOR MESSAGES

[ L- N RECEIVER

Fig. 1. Block diagram of a synchronous pulse transmission link.

The receiver consists of a linear network and a detector. The output of the trans-

mission line is filtered by the linear network, and the detector operates on the resulting

waveform every T seconds to extract one message. Ideally, the time delay between

the transmission of a message and its detection is a constant. That is, the link is syn-

chronous.

Our main problem is to determine transmitted pulse shapes and linear filtering net-

works that optimize the performance of such links. A secondary problem is to find opti-

mum interpolatory pulses to use in reconstructing a random waveform from uniformly

spaced samples. The same mathematical methods are required in each problem because

the same type of nonstationary waveform occurs.

Our main problem is motivated by the following practical, theoretical, and mathe-

matical considerations.

1. Synchronous pulse links are of great practical importance (1, 2) because they are

naturally suited to the transmission of digital messages (3). We discover how signal

power and bandwidth can best be used in our models to obtain good link performance.

This is a step in attempting to improve present synchronous pulse links (1).

2. It has been shown that, under idealized conditions, pulse code modulation (PCM)

exchanges increases in bandwidth for decreases in signal-to-noise ratio more efficiently

than comparable systems, such as frequency-modulation systems (4). A PCM link is a

special form of the synchronous pulse link. It is of interest to discover how well the

theoretical advantages of pulse code modulation are preserved in link models that are

different from the model that is considered by Oliver, Pierce, and Shannon (4).

3. The random waveforms that occur in synchronous pulse links are members of

nonstationary ensembles. The mathematical properties of these waveforms have been

only partially explored (5, 6, 7).
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Our search for optimum interpolatory pulses is also motivated by mathematical

interest in nonstationary ensembles. However, the main motivation is provided by two

questions: How well can a random waveform be reconstructed from uniformly spaced

samples of the waveform? Can present methods of interpolating samples be used for a

wider class of random processes?

In answering the first question, we shall obtain estimates to a measure of the

optimum reconstruction by considering a particular method of reconstruction. The pres-

ent methods that are referred to in the second question are those discussed by Shannon

and others (8, 9). Shannon considered the exact reconstruction of bandlimited waveforms

from an infinite number of samples. We shall consider the approximate reconstruction

of random waveforms from a finite number of samples.

II. THIN PULSE PERFORMANCE CRITERIA

2. 1 The Basic Model

Let us use the block diagram of Fig. 2 as our basic synchronous pulse transmission

link model - a model that follows Shannon's model for a general communications system

(10). The message source produces a sequence of area modulated impulses, m(t), where

00oo

m(t) = a n u(t-nT) (1)
n=-oo

and u (t) is the unit impulse or delta function. Each real number an, n = 0, ±1, 2,.

corresponds to a transmitted message. For example, a particular message might be

a page of English text or it might be a voltage amplitude. The waveform m(t) is the

input for the linear pulse-forming network of Fig. 2, which has an impulse response s(t)

and a transfer function S(f). Its output is

00

fI(t) = E an s(t-nT) (2)
n=-oo

The waveform fI(t) represents the transmitted signal in a real synchronous pulse link.

The linear transmission network represents the transmission medium in a real link.

It has impulse response (t), transfer function L(f), input fI(t), and output

00oo

fs(t) = a n r(t-nT) (3)
n=-oo

where

r(t) = / s(u) f(t-u) du (4)

The pulse r(t) is the response of the transmission network to an input pulse s(t).

The detector consists of a sampler and a clock. Ideally, the clock output, c(t), is
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a periodic train of unit impulses. And, ideally, each clock impulse coincides with a

peak value of one of the pulses of fs(t). An instantaneous voltage sample of fs(t) is taken

whenever the sampler receives a clock impulse. The ideal clock impulses and three

typical pulse components of fs(t) are depicted in Fig. 2. It is assumed that r(t) attains

H- DETECTOR 

-

JTPUT

Sn

m(t) = an U (t-nT); fI(t) = an (t-nT); fs(t) = anr(t-nT)
n -C n z.0D nz-CD

r(t)= s (u) (t-u)du

-al

MESSAGE SOURCE OUTPUT

m(t)
AREA,

-0 D * ·

-T 0 T

PULSE COMPONENTS OF f(t)

-/'ar t 'a r(t+T)

(b-I)T bT (b.I)T
O (b-I)T bT (bI)T

· * * t=+O

IDEAL CLOCK IMPULSES

. c(t)

AREA.

-T O T
· · · t=+ca

IDEAL SAMPLER OUTPUT

a | r(bT)

al r(bT)
a O r(bT) --

O (b-I)T (bT) (b+l)T

Fig. 2. Basic synchronous pulse transmission link model and associated waveforms.
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a peak value when t = bT, where b is a positive integer. Thus, if the clock emits the

ideal impulse train shown in Fig. 2 and if we say that the pulse an s(t-nT) is transmitted

at time nT, then the time delay between transmission and detection of a message is bT

seconds.

The actual time delay is a random variable because we assume that there is jitter

in the actual sampling instants. More specifically, the actual sampling instants are

assumed to be in one-to-one correspondence with the ideal sampling instants. Each

actual sampling instant does not differ from its corresponding ideal sampling instant

by more than P seconds; and 2P is smaller than T, the time between ideal samples.

Physically, this might come about because of thermal noise in the clock's oscillator.

Any long-term drifting of the clock impulses in either time direction is assumed to be

prevented, for example, by the use of special retiming pulses that are sent through the

transmission network.

2. 2 Definition of Interpulse Interference

If the clock impulses were ideal and r(t) were zero at all ideal sampling instants,

except t = bT, then the sampler output would be a sequence of real numbers, {an r(bT)},

that are proportional to the message sequence {an}. Three elements of an ideal output

sequence are shown in Fig. 2. We denote the actual sequence of sampler outputs by

{sn}. We say that our link performs well if each element of the normalized sampler

output sequence r(b) is close to the corresponding element of the message sequence
r(bT)

{an}. The differences n - an , n = 0, ±1,± 2,. .. , are called interpulse interference.
r(bT) n

Thus, the link performs well if interpulse interference is small.

Using this definition of interpulse interference, our assumptions about the sampler

operation and the sampling time jitter, and the expression for the sampler input in Eq. 3,

we can write the interpulse interference more explicitly. At any particular sampling

instant, t s , the interpulse interference is

00

E aj r(ts-jT) - a n r(bT)
J=_00

I(t ) =(5)
r(bT)

where

(b+n) T - < ts < (b+n) T + (6)

n = 0, 1,2,... (7)

and 2, the extent of the time uncertainty interval about each ideal sampling

instant, is less than T. We recall that 1/T is the rate of transmitting mes-

sages.
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2. 3 Discussion of the Basic Model

In previous publications on synchronous pulse transmission, ideal clock impulses

are almost always assumed (11, 12, 13). Under this assumption one can choose a band-

limited received pulse r(t) in such a way that r(t) is zero at all ideal sampling instants

except t = bT. Under these conditions the interpulse interference, I(ts), is zero at all

sampling instants. This occurs, for example, when

sin[(rr/T)(t-bT)]
r(t) = (8)

(rr/T)(t-bT)

In the absence of noise such a link would perform perfectly. That is, the output sequence

of samples would be proportional to the input message sequence of amplitudes. However,

the models of references 11, 12, and 13 do contain noise sources. In those papers major

emphasis is placed on combating noise other than interpulse interference. Here, we

place our emphasis on reducing interpulse interference. We assume that the effects of

any additive noise source, such as that shown in Fig. 3, are negligible, compared with

the interpulse interference. By the effects of the noise we mean the perturbations of

the normalized sequence of samples that are due to the noise alone. If the noise source

is removed, the linear filtering and transmission networks of Fig. 3 can be combined,

and we have our basic model of Fig. 2. It can be seen from Eq. 5 that interpulse inter-

ference is independent of the amplitude of the standard input pulse s(t). This follows

from the fact that the amplitude of the received pulse r(t) is proportional to the ampli-

tude of s(t). But if the amplitudes of the received pulses are increased by transmitting

larger pulses, the effects of the noise are reduced.

Fig. 3. Modified basic model.

Let us use our model of Fig. 2 and assume that the transmitted signal power is so

large that, for a given rate of signaling, 1/T, the performance of the link is limited

only by interpulse interference. For rapid rates of signaling this behavior can be

achieved at a level of signal power that is small, compared with the level required at

slow rates. This comes about because interpulse interference increases with the rate

of signaling, due to greater received pulse overlapping, while the noise effects are inde-

pendent of the signaling rate.
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2. 4 Output Energy Criterion

For a given rate of signaling we wish to make the interpulse interference, I(ts), small

at all sampling instants so that the link will perform well. We also desire to signal as

rapidly as possible so that our rate of flow of information is high. However, we do not

attempt to signal so fast that the condition

2P < T (9)

is violated. We recall that 2 is the extent of the sampling time uncertainty interval

that surrounds each ideal sampling instant, and 1/T is the signaling rate. Inequality 9

preserves the synchronous property of our basic link model.

One way to make I(t s ) small while signaling at a rapid rate is to make each pulse as

thin as possible. This can keep pulse overlap small. A criterion for obtaining a thin

output pulse is that

C 1 0 [r(t)]2 dt (10)
1 r(bT) -oo

shall be small. We assume that

r(bT) = f s(x) (bT-x) dx = K 1 (11)

where K is a constant. As before, r(t) is to attain a peak value at t = bT, and b is a

positive integer. It is reasonable that, if the energy in a pulse is small for a prescribed

peak value, the pulse must be thin. Strictly speaking, C1 is proportional to the energy

delivered by r(t) only if the impedance seen by r(t) is pure resistance. Further inter-

pretation of C1 is given in section 2. 6.

Standard calculus of variations and Fourier methods can be used to show that

2S(f) I L(f)12- kXL(f) exp(-j2rrbTf) = 0 (12)

is a necessary condition for C 1 to be minimized by variation of S(f), subject to the con-

straint of Eq. 11. (See ref. 14.) These methods are illustrated by a more detailed

derivation in section 2. 5. We recall that S(f) is the Fourier transform of the input pulse

s(t); L (f) is the complex conjugate of the transfer function of the transmission network;

and X is a Lagrange multiplier (14).

Equation 12 implies that IS(f) can become arbitrarily large near a zero of L(f). For

example, if

|L(f)| = exp(-f 2 ) (13)

then

IS(f) = exp(f2) (14)

and s(t) does not exist. That is, S(f) does not have a Fourier transform.
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Imposing a constraint on the input energy per pulse is a natural method of avoiding

this difficulty. In the case of statistically independent messages the input energy per

pulse is proportional to the average transmitted power. In other cases it is a convenient

measure of average power. For economic reasons it is often important to use average

power efficiently.

If the input admittance of the transmission network is Y(f), and s(t) is a voltage pulse,

then the equation

S(f) Y(f) S*(f) df = K2 (15)
0o

states that the input energy is a constant K2. If Y(f) is a constant conductance, then

Eq. 15 becomes

f S(f) S (f) df = K2 (16)
0o

A necessary condition for C 1 of Eq. 10 to be minimized by varying S(f), subject to

the constraints of Eqs. 11 and 16 is

*
kL (f) exp(-j2rrbTf)

S(f)= 2 (17)
I L(f) 12 + 1

where and are Lagrange multipliers that must be chosen to satisfy our two con-

straints. Equation 17 has the advantages that S(f) is Fourier-transformable and its mag-

nitude is bounded. One might think that values of . and X could be chosen to offset

these advantages. However, such values lead either to infinite input pulse energy or to

negative values of IS(f) .

If we select the values K1 and K 2 arbitrarily, we have no guarantee that we can solve

the constraint equations 11 and 16 for p and . But, given any pair of real numbers

([i, X), we can compute K1 and K2. We can then vary p. and to bring us closer to the

desired values of K 1 and K 2. This is a reasonable procedure because S(f), and hence

K1 and K2 , are continuous functions of and ip.

As an example, let us assume that

(exp(-j2rbTf) ifl < B

L(f) = (18)

otherwise

Then, from Eq. 17, we have

\/4+1 If < B
S(f):= (19)

otherwise
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H s = 2BX sin 2Bt (20)
s(t) + 2TrBt(20)

And r(t), the Fourier transform of R(f) = S(f) L(f), is

2BX sin 2rrB(t-bT)
r(t) + 2 B(t-bT(21)

27rB(t-bT)

From Eqs. 11 and 21, we obtain

2BX
r(bT) = K (22)

+1 1 1

By use of Eqs. 16 and 19, we have

S(f) S*(f) df = 2B = K2 (23)

Since K 1 and K2 are both determined by the ratio X/p.+1, they cannot be chosen independ-

ently.

If we had used the constraint of Eq. 15, rather than the constraint of Eq. 16, then

Eq. 17 is replaced by

*
XL (f) exp(-j2rbTf)

S(f)= (24)
S(f IL(f) 12 + Re[Y(f)] (4)

Since Eqs. 17 and 24 appear as special cases of Eq. 46, we postpone additional inter-

pretation to section 2. 6.

2. 5 Weighted Output Energy Criterion

We shall now consider a second measure of pulsewidth. It is

C r(bT) J (t-bT)2 [r(t)]2 dt (25)
r(bT) -o

This measure puts greater emphasis on portions of the pulse that are far away from the

sampling instant t = bT. According to this measure, r(t) is concentrated at t = bT if

C2 is small. The quantity C2 is analogous to the variance of a probability density func-

tion (15).

We shall now minimize C 2 under the constraints of Eqs. 11 and 16. Expressed in

the frequency domain, we want to minimize

C 2 1 / d IR(f) exp(+j2rrbTf) 2 df (26)
r(bT) -oo df

by varying S(f), subject to the constraints

8
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oo
r(bT) = R(f) exp(j2rrbTf) df = K1

from Eq. 11 and

from Eq. 11 and

-00

(27)

(28)IS(f) 2 df = K2

from Eq. 16.

The purpose of Eqs. 11 and 27 is to guarantee that our received pulses are large

enough so that the effects of noise are negligible compared to the interpulse interference.

The purpose of Eqs. 16 and 28 is to conserve the average transmitted power.

Equation 26 can be written more explicitly as

2 (T
r(bT) oo

d IR(f)l] + [IR(f)l F df (29)

where p(f) is the phase function of R(f) exp(j2rrbTf). Note that the second, positively

contributing term of the integrand in Eq. 29 is zero if p(f) is a constant. This constant

must be zero or, equivalently, a multiple of 2r. Otherwise, r(t) would be a complex

function of t. We also note that the first term of the integrand in Eq. 29 is independent

of p(f). Thus, we should choose pS(f), the phase function of S(f), in such a way that

p(f) = pR(f) + ZrrbTf = PS(f) + pL(f) + 2rTbTf = 0 (30)

where pR(f) and pL(f) are the phase functions of R(f) and L(f).

transmission network transfer function.

We now want to minimize

We recall that L(f) is the

C2 r(bT) f L I S(f)L(f) I df

by varying S(f) , subject to the constraint

oo
r(bT) = I S(f)R(f) df = K1

· i··i;-oo

(31)

(32)

and the constraint of Eq. 28. Using a well-known theorem of the calculus of variations,

we can solve our problem by minimizing

f .([ d IS(f)L(f) ] - XIS(f)L(f) - .IS(f)I} df
oo

(33)

subject to no constraint (16). The Lagrange multipliers,

such a way that Eqs. 28 and 32 are satisfied.

Minimization of integral 33 by variation of S(f) 

X and 1±, must be chosen in

is a standard variational

9



problem (17). A necessary condition for such a minimum is that I S(f) I must satisfy the

differential equation

d2

1L(f)I d 2 S(f)L(f): = XL(f)I + I S(f) (34)
df

The optimum phase function PS(f) for S(f) must satisfy Eq. 30. That is,

PS(f) + PL(f) = -2rbTf (35)

The writer has not obtained a general solution for Eq. 34, but special cases have been

considered.

Let us remove our constraint on the input pulse energy by letting [ = 0. We also

assume that the transmission network is an ideal lowpass filter as in section 2. 4 (cf.

Eq. 18). Thus, Eq. 34 becomes

2 2

d2 Is(f)L = z I R(f) = IfJ <B (36)
df2 df

or

IS(f)L(f)l = R(f)I = f2 + K3 If! < B (37)

where K 3 is a positive constant. There is no first-degree term in R(f) I; from Fourier

integral theory, I R(f) I must be an even function. From Eqs. 35 and 37 a solution is

R(f) =
d exp(-j2nbTf) If < B

(38)

otherwise

and

= 2 sin 2rrB(t-bT) sin 2iB(t-bT) cos 2rrB(t-bT)
r(t) = 2B(XB2+K3 ) - 4kB 3 2 (39)

3 2SB(t-bT) [2TrB(t-bT)]3 [2TrB(t-bT)] 2

If k is chosen to be negative and K 3 chosen to be -XB2, then the first term of r(t) drops

out, and r(t) falls off as /t 2 for large t. In this case, L'Hospital's rule shows that

r(bT) =- B3 = K1 (40)

Thus, our constraint can be satisfied for any positive K 1.

Gabor's "signal shape which can be transmitted in the shortest effective time" is a

particular solution of Eqs. 34 and 35 when there is no constraint on r(bT); that is, = 0,

and L(f) is again an ideal lowpass transfer function. In this case

K 4 cos (rf/2B) If < B

S(f) = (41)

tO~~ ~otherwise

10



where K4 is a constant. It follows that

K4 cos 21Bt
s(t) = r(t+bT) = 2 2 (42)

v B[(1/4B )-4t ]

We note that the envelope of this pulse falls off as K 4/4rBt2 for large values of t. For

comparison, a pulse whose spectrum has the same bandwidth and peak value is

2BK4 sin rBt
sl(t) = 2 (43)

(rrBt)

The envelope of sl (t) falls off as 2K 4 /Br 2 t 2 , or slightly slower than the pulse s(t) of

Eq. 42. However, s l (t) has a larger peak value than that of s(t).

2. 6 Least Squares Criterion

The thin pulse criteria were chosen to reduce the effects of pulse overlap. They

both neglect an effect of sampling time jitter. For example, if the received pulses are

very thin it is possible that a sample is taken when no pulse is present. In short, a

good received pulse must not only have low amplitude when other pulses are sampled,

but also have high amplitude whenever it can be sampled.

We continue to assume that each sampling instant occurs within p seconds of an ideal

sampling instant and that 2 is less than T, the time between pulses. Thus, a desired

received pulse-shape is

(d bT- <t <bT + 
d(t) = (44)

LO otherwise

where d is a positive real number that is chosen to satisfy our requirement for received

pulse amplitude. We recall that this amplitude must be large so that we can neglect the

effects of noise and use our model of Fig. 2. As before, we assume that the transmis-

sion delay is bT seconds.

Our criterion for a good received pulse is that

2 ,,,,_,,,,,·,,(45)CB =_ [d(t)-r(t)]2 dt (45)

shall be small. A necessary condition for C 3 to be minimum by varying S(f), the Fourier

transform of the input pulse shape s(t), is

D(f) L*(f)
S(f)= (46)

L(f) 2 + pRe[Y(f)]

This condition is obtained by the standard Fourier and variational techniques that we

employed in section Z. 5. The total energy available from a transmitted pulse is con-

strained as in Eq. 15, and the Lagrange multiplier [i must be chosen to satisfy this

11



constraint. The Fourier transform of the desired pulse shape d(t) is denoted by D(f);

L (f) is the complex conjugate of the transfer function L(f); and Re[Y(f)] is the real part

of the input admittance of the transmission network.

Equations 17 and 24 can be considered as special cases of Eq. 46 because the mathe-

matical steps leading from Eq. 45 to Eq. 46 are independent of our choice for d(t). If

we choose d(t) to be an impulse of area X, then Eq. 46 becomes Eq. 24. If, in addition,

Re[Y(f)] is independent of f, then Eq. 17 is the result. We can now interpret our output

energy criterion as a criterion for good approximation to an impulse.

Using Parceval's theorem and our optimum input pulse spectrum of Eq. 46, we can

rewrite Eq. 45 as

C 3 =j

-O

D(f) IL(f) 2

D(f) - I L(f) I + Re[Y(f)]
(47)

If the transmission network is bandlimited, the approximation error, C 3 , can be con-

sidered as the sum of two components - one from bandlimiting and one that results from

inaccuracy of approximation within the band. These components are called C 3 B and

C 3 , respectively.

If L(f) = 0 for frequencies that are such that If > B, and if d(t) is given by Eq. 44,

with d = 1 and = 1, then

sin Trf df = 2 sin 2 TB J
C3B = 2 f2d f T I

The quantity C 3 B is plotted as a function of B

The question then arises: How well can

0.10

0.09

0.08

007

n 0.06
0

0.05

0.04

0.03

0.02

0.01

0

P OO sin u dul

2rB u
(48)

0.1
in Fig. 4. For B > 1, we have C 3 B=X-.

r(t) represent d(t) when r(t) must be

I I I I I I I I I I
I 2 3 4 5 6 7 8 9 10

Fig. 4. C 3 B vs. B.

bandlimited? Let us assume that R(f) matches D(f)

is zero elsewhere. Let r(t) under these conditions

follows:

exactly within the band (-B, B) and

be called r (t). We obtain r (t) as
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r* (t-bT) = f sinf fcos ft dfr (t-bT) = 7-f cos 2ft df
Bf

d * 
dt r (t-bT) = -2 BB sin 7Tf sin Zifft df

-2 sin 2B(t-(1/2)) 2 sin 2rB(t+(1/2))

2r(t-( 1/2)) 2rr(t+( 1/2))

d r (t) dt = 1
-oo .' eTS 1- 1/ )

I:
2wB(t+(1/2)) sin x

dx
_- S / x

In Fig. 5, r*(t) is shown with d(t) for t > bT and B = 1.

One property of r (t), for B = 1, is that the envelope of r (t) drops off faster than

(0. 056/t2 ) for It-bT| > 1. Thus, if we receive pulses shaped like r (t) once each second,

if their separate peak values are ±1. 2, and if a sample is taken when each separate peak

occurs, then the maximum possible interpulse interference is less than

00 2
2 0.- 06= (0 12) 0.2 (50)

n=1 n

In this example we are signaling at one-half of the Nyquist rate. If we signal at the

Nyquist rate, the maximum interpulse interference is approximately equal to the peak

value of the largest single receivedpulse.

The advantages of using digital message values become apparent from the preceding

, 5

1.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

-0.1

. r(t) CASE A

x r(t)

- d(t)

x x x
x x x

2

Fig. 5. Graphs of r (t), d(t), and r(t) case A.
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example. If we choose 4 input message values in such a way that an individual output
1 1

pulse has peak value +1, +-, -- , or -1, and if we replace each sample of the received
waveform by the nearest of these values, the resulting sequence will be ideal. That is,

each element will be a fixed constant multiplied by an input message value. This is

because the interpulse interference is again bounded by 0. 2 and hence is never large

enough to cause an error. Thus, by restricting our message values to a finite, discrete

set we are able to transmit them without error through the idealized link of Fig. 2.

In the discussion of the preceding paragraphs we assumed ideal sampling instants.

If the sampling instants drift more than one-fourth of the time T between messages,

then, as shown by the plot of r (t) of Fig. 5, the maximum interpulse interference is at

least doubled. This means that a smaller number of messages is required to obtain per-

fect transmission. Of course, if the bandwidth B were increased, all other factors
*

remaining the same, then r (t) becomes flatter near the ideal sampling instant and thus

is less susceptible to the effects of jitter.

10 . [H(f)] + 

9-

7-

APPROXIMATE VALUE AND
POSITION OF MAXIMUM

X3 f S(f,X)

10-2 10-2 5

10-
4

10-
4

50
2-- -

10-6 10-6 500

10-8 10-8 5000

O 0.1 0.2 0.3 04 0.5 0.6 07 0.8 0.9 1.0
f

Fig. 6. Input pulse spectrum for two values of X.

An interesting example of the use of Eq. 46 occurs when the transfer function L(f)

has a zero within the band of frequencies to be used. We assume that Y(f) = 1 and that

d(t) is given by Eq. 44. We compare two cases. For case A,

14



IL(f) I = f I 1/2 exp(-10 f 1/2) Ifl <1 (51)

For case B

IL(f)I = exp(-lOlfl /2) Ifl < 1 (52)

In both cases L(f) is zero outside the band.

For case B the inband error can be made negligibly small. For example, if = 10 4 ,

then r(t) for case B cannot be distinguished from the optimum bandlimited pulse, r (t),

plotted in Fig. 5. For comparison, r(t), for case A and = 10 , is also plotted in Fig. 5.

Note that the latter function is shifted slightly downward, because the average output of

network A must be zero. The input pulse spectrum is plotted for case A and two values

of X in Fig. 6.

III. LOW ERROR PROBABILITY PERFORMANCE CRITERION

3. 1 Introduction

Let us now discuss a criterion by which we can compare synchronous digital pulse

links of the form depicted in Fig. 3. The adjective "digital" is intended to imply that

only a finite, discrete set of amplitudes is possible for the transmitted pulses. This

allows us to quantize the samples of the received waveform, and our messages can then

be transmitted without errors if noise and interpulse interference are not too great.

Using our criterion, we shall optimize the performance of our link model by proper

choice of the input pulse shape and linear filtering network (cf. Fig. 3). Thus we shall

emphasize problems in the design of digital links, although we shall find that our results

apply in other cases.

Another feature that distinguishes Section III from Section II is that for much of

Section III we assume knowledge of the power density spectrum of noise that is added

in the transmission network (cf. Fig. 3). This will enable us to combat the effects of

this noise by means other than increasing signal power.

3. 2 Low Error Probability Criterion for a Noiseless Link

We shall now develop a criterion for judging digital links of the form shown in Fig. 2.

Our particular assumptions about this model are:

1. The link is digital. That is, each element of the message sequence {an} is assumed

to be selected from the same set, A, of M real numbers, (A 1, A 2 ... AM). As discussed

in section 2.1, each element of {an} corresponds to one transmitted message.

2. We attempt to recover the transmitted sequence {an} by quantizing the sequence

of samples, {Sn}, rather than by dividing each element of {n} by r(bT), as discussed

in section 2. 2. As before, the ideal sampler output is the sequence {anr(bT)}. Since

our link is now digital, each element of this sequence is a member of the set

(A1 r(bT), A 2 r(bT),... , AMr(bT)).
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In the diagram of Fig. 7, we assume that, if a particular output sample sn differs

from Air(bT) by less than Wi/2 volts, i = 1,2,.. .,M, then sn is instantaneously replaced

by Air(bT). In Fig. 7 we assume M = 3. If s n lies in none of these M voltage intervals,

it is replaced by AM+1 r(bT), where AM+ is not a member of the set A. The widths

Wi, i = 1, 2, .. ., M, are chosen in such a way that the voltage intervals about each ideal

sampler output do not overlap. Thus, in Fig. 7, the quantizer replaces sn by Alr(bT),

Sn+1 by AM+1 r(bT), and n+2 by AM+l r(bT).

THREE QUANTIZER POSSIBLE
VOLTAGE VOLTAGE QUANTIZER

SAMPLES INTERVALS OUTPUTS

D +ao +ao

Sn

$nvl

0 -

Sn.2

VOLTS

0Q =AI r(bT) _

Q2 
=
A2 r(bT) -

Q3 = A3r(bT) -

.....................-

VOLTS

_ __ _ __

VOLTS

- A r(bT)=O I

- AM., r(bT)

-O-0

- A2 r(bT)=Q 2

- A3r(bT)=Q 3

Fig. 7. Quantizer operation diagram.

3. The operation of the clock of Fig. 2 is characterized by the probability density

function p(t), where

t
_t p(u) du (53)

is the probability that the actual sampling instant that corresponds to the ideal sampling

instant t = 0 occurs before time t. The correspondence between the actual and ideal

sampling instants was defined in section 2. 1. The probability density p(t) is assumed

to be nonzero only during the time interval (-T/2, T/2). We also assume that the proba-

bility density function for the sampling instant that corresponds to the ideal sampling

instant t = jT is p(t-jT), j = 0, +1, ±2 .. Each sampling instant is statistically inde-

pendent of all others. Physically, we assume that any drifting of the sampling instants

in either time direction is prevented, for example, by transmitting special retiming

pulses to resynchronize the clock. In this case, thermal noise in the clock could cause

our statistically independent jitter.

We say that our link operates perfectly if the actual sequence of quantizer outputs

{qn) is the same as our ideal sampler output sequence {anr(bT)}. Note that our definition
of the quantizer operation (cf. assumption 2 and Fig. 7), and the fact that our link is
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digital (cf. assumption 1), imply that the sequence {anr(bT)} would pass through the

quantizer unaffected. The probability that qn is not equal to anr(bT) for a particular

integer n, say n = 0, is called the error probability. If the ensemble of message

sequences [{an}] is ergodic, the error probability is independent of n.

If it is equally important that all of our M messages be transmitted correctly, low

error probability is a natural criterion for good digital link performance. This is

because each incorrect message receives equal weight. But there are two reasons for

not using the error probability directly as a criterion. First, calculation of the error

probability requires detailed a priori knowledge that would not normally be available to

the system designer. For example, it is necessary to know the probability of occurrence

of each message. Second, direct application of the error probability in our design prob-

lems is mathematically difficult.

Our criterion for low error probability is that an upper bound, U, to the error prob-

ability must be small. To derive U we first note that an error occurs whenever

W.

IQi-fs(ts) > 21 (54)

where f(ts) is the voltage amplitude of the sampled waveform (cf. Fig. 2) at a sampling

instant t s . The quantities W i and Qi are the width and center of the voltage interval

within which f(ts) must lie if the correct message is to be received (cf. Fig. 7). Since

there are M possible messages, the integer i may be 1, 2,...,M-1, or M.

The error probability, PE' can be written

PE Pr L Yi(ts) I> - p'(i) (55)
i= 

where Pr [I yi(ts) I>(Wi/2)] is the probability that I Yi(ts) I exceeds (Wi/2); p'(i) is the

probability of occurrence of the transmitted message value Ai, i = 1, 2, ... , M; and

Yi(ts) = fd(ts) - fs(ts) is the difference between a desired waveform, fd(t), and the actual

sampled waveform, fs(t), at time t = t s , given that the correct quantizer output at t = t s

is Qi'

The desired waveform at the sampler input, fd(t), is defined by

00

fd(t) = > an d(t-nT) (56)
n=-oo

where {an) is the input message sequence and

{d for p(t-bT) > 0
d(t) = (57)

L 0 otherwise

The real number d is such that

Aid = Qi i = 1,2,... .,M (58)
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As in Section II we assume that the approximate time delay of the link is bT seconds,

where b is a positive integer. We recall that p(t-bT) is the probability density function

for the sampling instant that occurs during the time interval (bT- 2T, bT+ I T). Thus,

at all possible sampling instants, the desired waveform lies in the center of the correct

voltage quantization interval. The only possible values for fd(t) are zero and the center

voltages Qi', i = 1, 2, ... ., M.

We now apply Tchebycheff's theorem to each term in the summation of Eq. 55 to

obtain our upper bound, U. Tchebycheff's theorem can be stated as follows (18):

If z is a random variable with mean m and variance -r2 and if P is the probability

that I z-mI exceeds k, then P does not exceed ar2/(kor) 2 .

Thus, if m i, the mean of Yi(tS), is zero, we can write

Pr Yi(ts), ~< I w2 (59)

1

by Tchebycheff's theorem, for i = 1, 2, .. , M. The quantity ai is the variance of the

random variable Yi(ts). We can now use Eqs. 55 and 59 to obtain

M 2
40i p'(i)

PE 2U= - (60)
i=l i

If we assume that the quantization intervals are of equal width, that is, W1 = W 2 . =

WM = W, then Eq. 60 can be written in the simpler form

4- 2

U z (61)
W

where

2 M 2
0. = 1 p'(i) (62)

i=l

3. 3 A More Explicit Expression for the Low Error Probability Criterion

In obtaining a more explicit expression for the low error probability criterion we

make the same assumptions that we made in section 3. 2. In addition, we assume that

the ergodic message sequence {an} has correlation function m (n) and that

E[an] = m(OO) = 0 (63)

where E[ ] denotes the ensemble average of [ ]. We also assume that

W W W = W1 2 = M (64)

This allows us to use Eq. 61 as our definition for U.
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If we are given two possible input pulse shapes s 1 (t) and s 2 (t), we shall say that sl(t)

is better than s 2 (t) if

U(s (t)) U(s2 (t)) (65)

where U(s(t)) is the value of U when the input pulse shape s(t) is used. An optimum

input pulse shape is one for which U is a minimum.

We recall that the validity of Eqs. 59, 60, and 61 depends on the conditional means,

m i , i = 1, 2 ... , M, being zero. However, we shall now show that in the case of Eq. 61

we need only require that

M
m = E[fd(ts)-fs(ts)] = E miP'(i) = 0 (66)

i=l

This follows from the fact that the error probability may be written

P- Pr [Iy(t )>i 2] (67)

if the quantizer voltage intervals have equal width W. The quantity y(ts) is the difference

fd(ts) - f(ts). If m = 0, Tchebycheff's theorem can be applied directly to Eq. 67 to give
Eq. 61. Physically, Eq. 66 requires that the expected value of each sample of the actual

received waveform be equal to the value of the desired waveform at that instant.

We shall now write m explicitly in order to obtain sufficient conditions for m = 0.

Using the definitions of fd(t) and fs(t) (cf. Fig. 2 and Eq. 56), we obtain

00oo

E[fd(t)-fs(t)] = E E[an](d(t-nT)-r(t-nT)) (68)
n=-oo

Thus, if, as we have assumed, E[an] = 0, then

m = E[fd(ts)-fs(ts)] = 0 (69)

Before we can minimize U by varying s(t) it is necessary to rewrite U in such a way
2

that its dependence on s(t) becomes more apparent. We first calculate 2

00oo

y(t) = fd(t)- f(t) = E an(d(t-nT)-r(t-nT)) (70)
n=-oo

y2(t) = Z aiaj(d(t-iT)-r(t-iT))(d(t-jT)-r(t-jT)) (71)
i=-oo j -oo

E[y2(t)]= e. (i-j)(d(t-iT)-r(t-iT))(d(t-jT)-r(t-jT))
i=-oo j=-oo

= . (m (k)(d(t-iT)-r(t-iT))(d(t+kT-iT)-r(t+kT-iT)) (72)
i=-oo k=-o m
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We note that the ensemble average E[y2(t)] is not, in general, independent of t. That

is, the ensemble [y(t)] is nonstationary. This type of nonstationary random process has

been discussed by W. R. Bennett (19).

To obtain E[y 2 (ts)] we must also average over the possible instants at which any one

sample could be taken. We assume that (n-(1/2)) T < t < (n+(1/2)) T, but we shall find
s

that E[y(ts)] is independent of n, n = 0,l,i±2,.... Since m = 0,

2 E 2(t1 (n+(1/2))T 2
or J EIn-(1/2))T p(t-nT) E[y (t)] dt (73)

Substitution of Eq. 72 and a change of variable u = t - iT gives

' = E (n+(/2))T p(u+iT-nT) m(k)[d(u+kT)r(u+kT)][d(u)-r(u+kT)][d(u)-r(u)] du
i=-oo j n-( 1/2))T-iT k=-oo

(74)

Performing the summation on i, we obtain

r = ~ p(u+iT) . qm(k)[d(u+kT)-r(u+kT)][d(u)-r(u) ] du (75)
-oo i=-oo k=-oo

For the case of uncorrelated messages

~m(k) = 0 k = ±1,±2... (76)

and Eq. 75 becomes

e2 = (0 ) puiT)[d(u)-r(u)]2) dt (77)
00 i=-00

For this case we can obtain U by substituting Eq. 77 in Eq. 61.

U= 02 J) Z p(u+iT)[d(u)-r(u)]2) dt (78)
W -o00 i=-o00

We recall that r(t) is the response of the transmission network of Fig. 2 to an input

pulse s(t); d(t) is an ideal received pulse shape that is defined in Eq. 57; p(t+iT) is the

probability density function for the sampling instant that occurs in the time interval

i-2 (-+ ) T); m(k), k = 0, 1, 2,..., is the discrete correlation function of

the ensemble of message sequences [{an}]; and W is the voltage width of each of the

M voltage quantization intervals (cf. Fig. 7).

We have shown that U is a suitable criterion with which to judge our link, because

U is an upper bound to the error probability. Aside from this, U also satisfies more

intuitive requirements for a good criterion.

Since there is no noise in our link, errors are caused only by interpulse interference,
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and U of Eq. 78 is very similar to the low interpulse interference criterion, C 3, of

Eq. 45. Both U and C 3 are least squares criteria, but the integrand of U in Eq. 78

is weighted by the sum of the probability density functions p(t+iT), i = 0, ±1, ±2,....

This weighting factor restricts the integration to possible sampling instants and gives

more importance to probable sampling instants. This makes U a more satisfying

criterion than C3 , because C 3 equally requires r(t) to be small, irrespective of the

likelihood of a sample, when d(t) is zero. The choice of r(t) according to either cri-

terion tends to keep r(t) large at the correct sampling instant, that is, the one closest

to t = bT. However, the use of U again stresses the importance of the more probable

sampling instants.

Let us now write the expression for U of Eq. 61 in the time and frequency domains

for the case of correlated messages. Substituting Eq. 75 into Eq. 61 gives

U 2 ( X p(u+iT)[d(u)-r(u)] E pm(k) [d(u+kT)-r(u+kT) ] du (79)
W 01 i=-oo k=-oo

We now note that the Fourier transform of

00oo

fl(u) = [d(u)-r(u)] p(u+iT) (80)
i=-00oo

is

F 1(f) T Xo ( Y [ () - T )] (81)
n=-oo

where P(f), D(f), S(f), and L(f) are the Fourier transforms of p(t), d(t), s(t), and f(t),

respectively. For example,

r0
S(f) = s(t) exp(-j2rft) dt (82)

-o0

In writing Eq. 81 we use the fact that R(f) = S(f) L(f) (cf. Fig. 2).

The Fourier transform of

00

f2 (u) = > ,m(k)[d(u+kT)-r(u+kT)] (83)
k=-oo

is

F 2(f= m(f)[D(f)S(f)L(f)] (84)

where

00 00

m(f) = m(k) exp(j2rrkTf)= k ,m(k) cos 2TkTf (85)
k=-oo k=-oo

In writing Eq. 85 we use the fact that m(k) is an even function. Thus, by use of

Parceval's theorem, we obtain
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Fl(f) F2(f) df

n--oo ( (D _ S (f_ L )] T f(f)[D ( f )- S( f)L (f)) df

(86)

where the asterisk denotes a complex conjugate.

3. 4 A Necessary Condition for an Optimum Transmitted Pulse Shape

We shall now obtain an equation that must be satisfied if U is to be minimized by

proper choice of S(f). Using standard techniques of the calculus of variations we assume

that there exists a signal pulse spectrum, S(f), that minimizes U (ref. 16). Such spectra

exist. For example, if there are no constraints on S(f), we can choose S(f) in such a way

that S(f) L(f) = D(f). In this case, U = 0, and this is as small as U can be.

We assume that S(f) is constrained to be nonzero only for some set of frequencies, F.

It is convenient, but not necessary, to think of F as a base band of frequencies (-B, B).

Physically, this constraint might result from (a) an artificial frequency restriction, such

as the allotment of a band of frequencies to one channel of a frequency division system,

or (b) a natural restriction, such as excessive transmission attenuation outside a certain

band of frequencies or practical difficulties in generating pulses with appreciable energy

at arbitrarily high frequencies.

We assume that S(f) is a spectrum that minimizes U and we replace S(f) of Eq. 86 by

S(f) + ap(f), where a is a real parameter, and f3(f) is the Fourier transform of a real

function. The function P(f) is zero if f is not in the set F. Any possible signal pulse

spectrum can be represented in the form S(f) + ap(f). Since S(f) is an optimum spectrum,

U is a minimum if a = 0. Thus, we require that

au
a a = 0 I T 

00oo n=-oo

+ (T n-oo P(T)[(f T-)L(f T)*(f[D*(f )- S*(f)L*(f)]) df= O
00 n= 0

(87)

This derivative is calculated from Eq. 86. We may rewrite Eq. 87 by making

of variable u = (n/T) - f in the second integral. We also use the fact that P(-f)

This follows from our definition of Mf). We then have

au
aa a=O

the change

= (f).

- (p*(f) (f) L*(f) P(f-)-S (f- T(f- ) df

T 13(u) L (u)-#:k\ P (T)[D ( -S(u- -S u- (- u- du= 0 (88)
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In writing the second integral in Eq. 88 we have used the fact from Fourier theory that

S(-f) = S(f), L(-f) = L (f), and D(-f) = D*(f). If we can show that

oo oo

ID(f) O" p n nH \ -,) C P · , ) H(f_ n D.(f_ 
X X "Y)T -T Tn=-oo n=-oo

where

H(f) = D(f)- S(f) L(f)

(89)

(90)

then, by substitution of Eq. 89 into Eq. 88, we obtain

2 p (f) 1*%(f) L*(f) E
J0 n=-oo

TI p(n)H(f-,-)df = 0 (91)

The validity of Eq. 89 is shown by transforming its right-hand side. By using

the definition of m(f) in Eq. 85, the right-hand side of Eq. 89 is

(92)

Using the fact that cos 2kT(f- T) = cos 2kTf and interchanging the order of summation

gives

(93)
00 ( )

n=-oo

Eq. 85 shows that *m(f) = m(f). Thus, expression 93 is equivalent to the left-hand

side of Eq. 89. Hence, Eqs. 89 and 91 are valid.

Since P*(f) is zero for all frequencies that are not in the set F and * (f) can be non-
zero at any or all of the frequencies in F, a necessary condition for Eq. 91 to hold is

that

T P(n) H(f- ) = 0TT T~I-
for all f in F (94)

Using Eq. 90 and the fact that '%(f) = m(f), we may rewrite Eq. 94 as

0o

cm(f) L*(f) 0

n=-oo

n-oo

n=-oo

T P() S(f T) L(f-T) = (f) L*(f)Y T 

for all f in F

The term

noo

n=-o

23

4m(f) L(f) 
n=-oo

(95)

--- I

n00 ~T=00 

1 P (-,n D (f- n

IP (-, ) Df n)
Y'T T



00

can be recognized as the Fourier transform of d(t) _ p(t+jT). From the definition
j=-00

of p(t) (Eq. 53 et seq.) and d(t) (Eq. 57) it follows that

00oo

d(t) p(t-jT) = dp(t-bT) (96)
J=-00

Thus, Eq. 95 may be written as

1)m(f) L *(f) E_ T P(n) S(f ) L( )

= d m(f) L (f) P(f) exp(-jTbTf) for all f in F (97)

Therefore, if s(t) is an optimum transmitted pulse shape, then its Fourier transform

S(f), must satisfy Eq. 97. We now wish to give some interpretation of Eq. 97.

For all frequencies that are such that

m(f) L (f) 0 (98)

Eq. 97 is equivalent to

T P )S(f-) L(fT = dP(f) exp(-j2rrbTf) for all f in F' (99)
n=-oo

where F' is the set of frequencies that are in the set F and that satisfy condition 98.

If F' includes all frequencies, (-oo, oo), then the result of taking the Fourier transform

of both sides of Eq. 99 is

00oo

r(t) p(t-nT) = dp(t-bT) (100)
n=-oo

Thus, the received pulse shape r(t) should be equal to d(t) when . p(t-nT) is
n=-oo

nonzero, and r(t) is undefined for other values of t. This agrees with our discussion

at the beginning of this section.

In this section we have shown that, if F, and hence F', do not include all fre-

quencies, then Eq. 97, and Eq. 99, must be satisfied. That is, at every frequency

at which we are allowed to transmit power, the Fourier transform of the left-hand

side of Eq. 100 should equal the Fourier transform of the right-hand side. The left-
00

hand side of Eq. 100 can be interpreted as a periodic function, X p(t-nT), that has
n=-oo

been amplitude-modulated by a pulse, r(t). Equation 97 was derived previously by the

writer in a less direct manner (20).
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3. 5 Optimum Pulse Shapes for a Noiseless Link

We shall now solve Eq. 99 for R(f) = S(f) L(f). This is equivalent to solving for S(f),

because

(a) If f is not in the set F, defined at the beginning of section 3. 4, then R(f) = S(f) = 0.

This follows from the definition of F. R(f)

(b) If f is in the set F', defined in connection with Eq. 99, then S(f) = , because
L(f)

L(f) is not zero. A special case occurs if f is in F, but is not in F'. It can then happen

that L(f) is zero, but R(f) is not zero, and thus S(f) will be infinite. This special case,

that is, Eq. 99 not equivalent to Eq. 97, will be taken up in section 3. 7.

We wish to solve the equation

I P(n) R(f- ) = dP(f) exp(-jZrrbTf) for all f in F' (101)
n=-oo

This equation is to be solved for R(f). We first note that, for the case in which F' is

contained in an open interval (-B, B) and 1/T > 2B, Eq. 101 reduces to

R(f) = dTP(f) exp(-j27rbTf) for all f in F' (102)

because here F = F'; R(f) is zero outside F; and (/T) is chosen large enough so that

none of the terms R (f- T) is nonzero in F'. This is best visualized by considering the

special case F' = (-B, B).

For example, let F = F' be the open interval (-B cps, B cps) and let p(t) be a unit

impulse that occurs at t = 0. That is, we assume dete.rministic, periodic sampling. If

1/T > 2B, Eq. 102 and the definition of F imply that

rdT exp(-j2ibTf) for If < B
R(f) = (103)

o0 otherwise

Thus

2BdT sin 2rrB(t-bT)
r(t) = (104)

2w B(t-bT)

We note that, if 1/T = 2B, then r(bT) = d. We recall that d is the desired received

pulse amplitude at its sampling instant. As T decreases, r(bT) decreases. This might

be expected from the fact that, if we receive pulses like that of Eq. 104 faster than 2B

per second, the pulses will overlap. The results of this example, that is, Eqs. 103 and

104, in the special case 1/T = 2B agree with those obtained by Nyquist (21).

As another example, let us again consider the assumptions of the previous example,

except that we now assume 1/T = B. In this case Eq. 101 becomes

R(f+B) + R(f) + R(f-B) = dT exp(-j2rrbTf) for IfI < B (105)

Unlike the previous example, where the solution was unique, we now have many possible
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solutions. One solution is

R(f)
dT exp(-j2rbTf) for If < B

(106)

otherwise

Another solution is

1dT exp(-j2irbTf) for If < B
R(f) = (107)

0 otherwise

The received pulse shape that corresponds to Eq. 106 is

d[sin Z2B(t-bT)]2

r(t) = (108)
[2TB(t-bT)]

This example seems to indicate that if we are willing to signal slower than the Nyquist

rate 1/T = 2B, then we gain more freedom in the choice of our received pulseshape.

However, we shall see that this conclusion applies only to deterministic, periodic

sampling.

We shall now solve Eq. 101 by rewriting it as a set of simultaneous, linear equa-

tions. We assume that the probability density function p(t) is positive over some time

interval of positive extent. That is, we shall no longer consider p(t) to be an impulse.

The set F', over which R(f) is nonzero, is assumed to lie within some interval (-B, B).

Given any particular frequency f in F' we let {xj} be the set of ordered (1/T) trans-

lates of f that lie in (-B, B). That is,

(1) x. is in (-B, B) for i = 1, 2,..., N'
1

(2) = + T for i = 2, 3 ... ,N'

(3) x. = f for some j, j = 1, 2, ... , N'

and N' is the number of elements of the set f+ n , n = 0,±l,±2,. , that lie in (-B, B).

The integer N' must be finite, because B is assumed finite.

For f = x we can write Eq. 101 as

N' (n-j\
Z P R(xn) = dTP(x.) exp(-j2rbTx.) (109)
n= 1

If we now let j = 1, 2, ... , N', we obtain a set of N' simultaneous linear equations. If

N is the number of elements in the set {xj} that belong to the set F', then only N of

these N' equations need hold, because Eq. 101 must only be satisfied for f in F'. Now

let {fj}, j = 1, 2, ... . N, be the elements of {xj} that are in F', and let f > f2 > ... > fN'

Of the N' unknowns in the remaining N equations, only R(f1 ), R(f2 ),. .. ., R(fN) are not

known to be zero. This follows from our assumption in this section that F' = F and

from our definition that R(f) = 0 for values of f that are not in F.
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If F' is the interval (-B, B),

equations is

DN =

P(O)

P(O)

then N = N', and the determinant of our set of linear

... p(N-1

... p(N-2)

p(N+l) p(-N+2) p(-N+3
P(O)

For other choices of F' some of the columns and their corresponding rows do not appear

in DN.

If DN is not zero, we can solve our set of equations by Cramer's rule (22). The

unique solution for f = f. is then
J

P(fl)D( ,) + P(f2)D(2,) +... + P(fN) D(NN 'j ) dT exp(-j2rrbTxj)

R(fj) = DN

0 otherwise

for f. in F'
J

where Dn(i' is the cofactor of the (i, j) element of DN.

We shall now prove the validity of Eq. 111 by demonstrating that the determinant DN

is always positive. We note from Fourier theory that, because p(t) is real, its Fourier

transform, P(f), has the property that P *(f) = P(-f). This implies that the matrix cor-

responding to DN is Hermitian. It then follows that DN is positive if its associated

quadratic form

N' N'

i=l k=l
AiAk (1T) (112)

is positive definite (23). If our set F' does not cover the whole band (-B, B), then some

of the coefficients A are zero. We wish to show that expression 112 is positive,

unless A A AN = 0.

Schetzen has shown that this expression is non-negative definite (24). We shall extend

his argument to obtain our result. We first rewrite expression 112.

N' N' k-i T/2

i=l k=l T/ 2

N' N'

i=l k=l

iTT/2 N'

-T/2 p(t) T/2 k= 1

AiAkP(t) exp(-j2k)t) dt

Ak exp(-j2rr kt) dt
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N'
We now note that, unless A1 = A 2 =...AN, = 0, Z Ak exp -j2w *t can be zero for

k=l N'
at most N' values of t. This follows from the fact that the polynomial Akzk can

k=l
have only N' roots, unless A = A2 = = AN, = 0. Since we assumed that p(t) is

positive over some subinterval of (-(T/2), (T/2)), it follows that the last integral

in Eq. 113 will be positive, unless A 1 = A2 = = AN, = . This proves that DN

is positive and hence that, under our assumptions, a unique solution to Eq. 101 always

exists and is given by Eq. 111.

We note that if p(t) is an impulse our proof does not apply because a zero of
N'

Ak exp(-j2 T t) can coincide with and cancel the impulse. This agrees with our
k=l
second example, given earlier in this section, in which the solution of Eq. 101 was not

unique and p(t) was assumed to be an impulse.

We shall now work out an example to demonstrate what computations must be made

when we apply Eq. 111. The set F' is assumed to be the open interval (-B,B), 1/T = B, and

2- for ItI <T
p(t) =T 4

0 otherwise

Henc e,

sin rw(T/2) f
P(f) =

7(T/2) f

(114)

(115)

If we choose f = x. in (-B, B) but not

f+ 7, only f and f (1/T) can lie

because ±B do not lie within (-B, B)

P(O)

P(O)

D1 = P(O) = 1

equal to zero, then N = N' = 2. That is, in the set

in (-B, B) because 1/T = B. If f = 0, then N = N' = 1,

(116)p()p() = 1 4

(117)

Application of formula 111 now yields

sin [(T/2)f] 2 sin [(T/2)(f+I/T)]

rr(T/2) f rw(T/2)(f+l/T)

- 4/2r 
dT exp(-j2rrbTf)

dT f = 0

sin [r(T/2)f] 2 sin [rr(T/2)(f-1/T)]
___T_2_ Tf-- dT exp(-j2wbTf)

~(T/2) f w ~(T/2)(f- 1/T)

1 - 4/rr
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It is important to note that the form of Eq. 111- in particular, the order of the

determinant DN - depends strongly on the rate of signaling, (/T), because this rate

controls the number of elements of {f+T} that lie in F'. If F' is a base band of fre-

quencies, (-B, B), and if we signal faster than the Nyquist rate 2B, then Eq. 111 can

be written in the simpler form of Eq. 102. As we reduce our signaling rate, R(f), for

any particular f, becomes a linear combination of many values of P(f).

3. 6 Low Error Probability Criterion for a Noisy Link

In this section we assume that noise added during the transmission of our signal can

no longer be neglected. This might come about because an excessive amount of signal

power is required to overcome the noise, or because we know the power density spec-

trum of the noise and wish to use this knowledge to reduce the effects of the noise. We

shall consider the synchronous link model of Fig. 8.

With the exception of the gaussian noise generator, the dc voltage source, and the

decoder, all of the blocks of this model have been discussed in connection with Figs. 1,2,

and 3. We recall (from sec. 2. 1) that the message source produces a periodic train

of area modulated impulses, m(t), where

00

m(t) = E an u0 (t-nT) (119)
n=-oo

and uo(t) is a unit impulse that occurs at t = 0. Each element a n of the message

sequence{an}is chosen from a finite set A. That is, the link is assumed to be digital.

The real numbers, (A 1, A 2 .. ., AM), that constitute A, are assumed to be in one-to-one

correspondence with M possible transmitted messages. The message probabilities

are such that Ai occurs at any particular place in a message sequence with probability

p'(i), i = 1, 2, ... , M, and the correlation function of the message sequence ensemble

[{an}] is m(n).
The linear, pulse-forming network has output response s(t) to a unit impulse input.

The Fourier transform of s(t) is denoted by S(f). The input to the transmission network

is then

00

fI(t) = E an s(t-nT) (120)
n=-oo

In a real link the individual input pulses might be transmitted by triggering some non-

linear device every T seconds. However, an input pulse train like fI(t) can always be

represented as the response of a linear network to an impulse train, and this latter

representation is convenient conceptually and mathematically.

The linear transmission network has output response (t) to a unit impulse input.

The Fourier transform of (t) - that is, the network transfer function - is denoted by

L(f). The noise waveform n(t) is added to the output of the transmission network to

represent the effects of noise in the transmission network. The random waveform n(t)
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Fig. 8. Synchronous digital link model.

is assumed to be a member of a noise ensemble [n(t)] that has correlation function n(r)

and power density spectrum n(f).

The resulting waveform is the input for a linear, pulse-shaping amplifier that has

output response a(t) to a unit impulse input. The Fourier transform of a(t) is A(f). White,
2

gaussian noise, n(t), with mean i 1 and variance an and dc voltage V are added to the
I 1 n 1~~~~~~~

output of the amplifier.

of the dc voltage will be

The waveform at the

Noise in the amplifier is represented by nl(t). The purpose

discussed later.

input to the sampler is called fs(t), and

00 /00

fs(t) = Z an r(t-nT) + n(t) + V +
n=-oo -oo

n(x) a(t-x) dx

where

oo 
-oo -oo

s(x)(u-x) dx] a(t-u) du (122)

The linearity of the transmission network and the amplifier enables us to interpret each

term of fs(t) as the result of a separate cause. The first term is the result of passing

the input waveform, fI(t), through the transmission network and amplifier; the next two

terms are the direct result of their addition to the amplifier output; and the fourth term

is the result of passing noise waveform n(t) through the amplifier.
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The sampler instantaneously samples its input whenever it receives an impulse from

the clock. We assume, as before, that there exists a small time interval about each time

instant jT, j = 0, ±1, +2.... These time intervals have the property that one and only one

sampling instant occurs within each interval. The probability density function for the

sampling instant that occurs in the jth interval is p(t-jT), j = 0, ±1, +2... . See

Fig. 8.

We assume that the quantizer operates as discussed in connection with Fig. 7. That

is, the sequence of sampler outputs, {sn}, is sorted sequentially into M voltage intervals,

each of which corresponds to a distinct member of the message set A. The decoder

instantaneously replaces each sample by an element of A according to this correspond-

ence. If a voltage sample happens to lie in none of the M intervals, the decoder replaces

it by the number AM+l, where AM+1 is not an element of the set A. The operation of

the quantizer and decoder is depicted in Fig. 8, where it is assumed that M = 3, and

the M voltage intervals are contiguous and lie within a voltage interval of width

2v2 volts.

We say that the link performs perfectly if the sequence of decoder outputs is the

same as the message sequence, {an}, except for a finite time delay. The probability

that these sequences will differ in any one place is called the error probability. The

discussion in section 3. 2 on the use of an upper bound to the error probability as a cri-

terion for link performance and our reasons for not using the error probability directly

apply to our present case as well.

We also note that the necessary and sufficient condition for an error given in Eq. 54

is valid for our noisy model. Also, the steps that lead from Eq. 54 to Eqs. 60 and 61

hold because they did not depend on the fact that our link was noiseless. In using

Eqs. 54-62 in connection with our model of Fig. 8 we need only use the fact that fs(t)

is now defined by Eq. 121.

Thus, from Eqs. 60 and 61, our criterion for good link performance in our model

of Fig. 8 is that U be small, where

M 42 p'(i)
U= Z 2 (123)

i=l W

in the general case, and

42
U= W2 (124)

W

in the case of equally wide quantization intervals.

3. 7 Necessary Conditions for Optimum Pulse Shapes in a Noisy Link

We shall now use the methods developed in section 3. 4 to minimize U by varying

the input pulse spectrum, S(f), and the amplifier transfer function, A(f).
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How does this problem arise? We recall from the discussion of Fig. 3 that the

linear amplifier of Fig. 8 is unnecessary in the sense that the link behavior is deter-

mined by the over-all transfer function S(f) L(f) A(f), if the link is noiseless. That is,

if we vary A(f), keeping S(f) L(f) A(f) constant, the performance of the link is unaffected.

If transmission noise with known power density spectrum is present, it is possible

to choose A(f) in such a way that much of the noise can be filtered out. However, such

a choice can make it impossible to achieve received pulses that are optimum in the

sense of Section II or section 3. 5. For example, good noise filtering might require a

zero in the transfer function A(f) at a frequency at which an optimum received pulse

spectrum is not zero. The following questions then arise: At any given frequency should

A(f) be chosen primarily to cut out noise or primarily to enhance the received pulse

shape? If the transmitted power is to be conserved, should S(f) be chosen primarily

to give a high signal-to-noise ratio at the amplifier input or primarily to obtain low

interpulse interference?

These questions can be answered within the framework of our model by choosing

S(f) and A(f) to minimize U and to conserve transmitted power. As in section 3. 4, we

assume that all M voltage quantization intervals are of equal width. This allows us

to use the expression for U in Eq. 124. We also assume that the noise random variables

are statistically independent of each other and of the message random variable.

As shown in section 3. 3 (cf. Eq. 66), if Eq. 61, and hence Eq. 124, are to be valid,

it must be true that

m = E[y(ts)] = E[fd(ts)-fs(ts)] 0 (125)

To calculate m we first use our definitions of fs(t) in Eq. 121 and fd(t) in Eq. 56 to

write

00

y(t) = fd(t) - fs(t)= E an[d(t-nT)-r(t-nT)] - nl(t)- V- n'(t) (126)
n=-oo

where

n'(t) = n(x) a(t-x) dx (127)

Thus

E[y(t)] = A E [d(t-nT)-r(t-nT)] - nl - V- n (128)
n=-oo

where A, ni1 , and n' are the ensemble averages of an , nl(t), and n'(t), respectively. Since

E[y(t)] = 0 implies that E[y(ts)] = 0, sufficient conditions for Eq. 125 to be satisfied are

M
A= AiP'(i)= (129)

i=l
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and

V = - - n' (130)

We assume that the set A has been chosen in such a way that Eq. 129 is satisfied and

that the dc voltage V satisfies Eq. 130.

Thus, Eq. 125 is satisfied, and U of Eq. 124 is a valid upper bound to the error

probability. Physically, Eq. 125 requires that the expected value of each actual sample

be equal to the value of the desired waveform at the sampling instant.

We calculate U by first calculating a-2 . Using Eqs. 129 and 130 and our assumption

that the random variables an , nl(t), and n(t) are statistically independent, we have

E[y2 (t)] = E X m(i-j)[d(t-jT)-r(t-jT)][d(t-iT)-r(t-iT)]
j=-oo k=-oo

+ E[(nl(t)+n)+n'(t)+V)2] (131)

where

E[(nl(t)+n(t)=V)2] = A(f) A*(f) ¢n(f) df + -()2 (132)

In general, E[y 2 (t)] is not independent of t. That is, [y(t)] is a nonstationary ensemble.

To calculate -2 we average over the possible times that any one sample can be taken.

We assume that (n-(1/2)) T < t < (n+(1/2)) T, but, as before, we shall find that a-2 is
s

independent of n.

2 E[y(ts)] (n+(1/2))T (3
a [y Eys J(n-(1/2))T p(t-nT) E[y dt (133)

If we make a change of summation index k = i - j in Eq. 131, as we did in Eq. 72, and

substitute the result in Eq. 133, making a change of variable u = t - iT, then we have

2 °° (n+(1/2))T-iT / o
Xr = . p(u+iT-nT) X m(k)[d(u+kT)-r(u+kT)][d(u)-r(u)] du

i=-oo (n-(1/2))T-iT k=-oo

0 2A*(f) 2 -
+_ A(f) A*(f) 4n(f) df + an (n') (134)

0 -oo 1

Noting that the first term of Eq. 134 is the same as the right-hand side of Eq. 74, we

can use Eqs. 74, 79, and 86, and Eq. 124 to write

U - nf- ( ) [ (- T )- S (- T ) L (f - T )A (f - T )] 'm(f)[D(f)-S (f)L (f)A*f)]) df

A + 2 (135)
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In writing Eq. 135, we use the fact that m(f) = m (f), from Eq. 85, and the fact that

in this section R(f) = S(f) L(f) A(f), instead of R(f) = S(f) L(f), as in section 3. 3. The

function R(f) is the Fourier transform of the pulse shape r(t).

To obtain our optimum input pulse spectrum, S(f), and optimum amplifier transfer

function, A(f), we must minimize U by varying S(f) and A(f), subject to the constraint

that our measure of average transmitter power,

X S(f) S*(f) df (136)

is held constant. As in Section II, we incorporate our constraint by the method of

Lagrange multipliers (17).

We shall obtain an equation that specifies the optimum S(f) for any given A(f) and

another equation giving the optimum A(f) for any given S(f). These equations will be

solved simultaneously to give the optimum pair (S(f), A(f)). We choose this method

because the methods and results of section 3. 4 can be used in a natural manner. Would

the same optimum pair (S(f), A(f)) result if we considered varying them simultaneously?

The answer is yes, and this can be proved by comparing the results of both procedures.

We will not go through this proof. However, it will be made plausible by demonstrating

the uniqueness of our optimum pair.

We first note that varying S(f) affects only the first term of Eq. 135, ad this term

is equivalent to Eq. 86 because, if A(f) is given, we can combine A(f) and L(f) into one

known function. For convenience, we denote the right-hand side of Eq. 86 by U8 6 . Our

problem is then to minimize U8 6 + X S (f) S(f) df by varying S(f) where X is a
-00

Lagrange multiplier (17). Using the discussion and definitions of the paragraph that

precedes Eq. 87, a necessary condition for such a minimum is that

a = + a 0 [S*(f)+aP*(f)][S(f)+ap(f)] d = 0 (137)
aa a=0 3aa 0o

a=0

By evaluating the derivative in the second term of Eq. 137 and using Eqs. 88-91 to trans-

form the first term, Eq. 137 becomes

-2 P (f) m(f) L*(f) T1 P n H(f- - XS(f df = 0 (138)
00 n=-oo

where H(f) is given by Eq. 90, with L(f) replaced by L(f) A(f). Since * (f) can be non-

zero at any or every frequency, it follows that

m(f) L (f) A*(f) T ([(f L f- A f- -D f- + S(f) = 0 (139)

Eq. 139 is our necessary condition for U of Eq. 135 to be minimized by varying S(f),

subject to the constraint that expression 136 remains constant.
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Similarly, if (a) we consider S(f) given and combine it with L(f) in Eq. 135 and (b)

identify A(f) of Eq. 135 with S(f) of Eq. 86, then minimizing U of Eq. 135 by varying

A(f) is equivalent to minimizing U8 6 + SS(f) (f) On(f) df by varying S(f). The argu-

ments used in obtaining Eqs. 137, 138, and 139 may then be repeated to show that a

necessary condition for such a minimum is

+ On(f) S(f) = 04n*(f) L*(f) E
n=-oo

(140)

To obtain from Eq. 140 a necessary condition for U of

varying A(f) we must reverse substitutions (a) and (b).

and L(f) by S(f) L(f) in Eq. 140. The result is

4m (f) S(f) S(f) (f)
n=-oo

Eq. 135 to be a minimum by

Thus, we replace S(f) by A(f)

(f-T) + n(f) A(f) = 0

In obtaining Eq. 97 from Eq. 95 it is shown that

no0 P() D (f- -) = dP(f) exp(-j2ZrrbTf)

(141)

(142)

The time delay bT originates in the definition of d(t) in Eq. 57.

presumably be chosen by the system designer. If we substitute Eq.
*

141 and use the fact that · (f) = ~(f) (cf. Eq. 85), we have

m(f) L (f) A (f) C
n=-oo

This delay can

142 into Eqs. 139 and

T-P(T)- S (f-T) L (f--) A (f--) + S(f)

= d m(f) L (f) A (f) P(f) exp(-j2rrbTf)

om(f) L (f) S*(f) n
n=-oo

T () A(fT) L(f- ) S(f ) + n(f) A(f)

= dm(f) L (f) S(f) P(f) exp(-j2ibTf) (144)

Equations 143 and 144 are necessary conditions for U of Eq. 135 to be minimized

by varying S(f) and A(f), subject to the constraint that expression 136 be held constant.

These equations are written in a form that emphasizes their symmetry in A(f) and S(f).

3.8 Optimum Pulse Shapes for a Noisy Link

We now wish to solve Eqs. 143 and 144 for S(f) and A(f).

case in which L(f) is bandlimited to frequencies less than B

(1/T), is not less than the Nyquist rate, 2B. In this case

written as

Let us first consider the

cps and the signaling rate,

Eqs. 143 and 144 can be
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T-C m(f) L (f) A (f) S(f) L(f) A(f) + S(f) = dm (f) L*(f) A*(f) P(f) exp(-j2irbTf)

(145)

and

T mY(f) L*(f) S(f) A(f) L(f) S(f) + nD(f) A(f) = dm(f) L*(f) S*(f) P(f) exp(-j2TrbTf)

(146)

We have used the fact that P(0) = 1, since p(t) is a probability density function.

For example, let us consider the special case in which 1/T 2B, n(f) = 0, and

X = 0. That is, we remove our constraint on transmitted power. Then both Eqs. 145 and

146 reduce to

R(f) = S(f) L(f) A(f) = dTP(f) exp(-j2rrbTf) (147)

Thus, when we remove the noise, our equations imply the results of our noiseless case,

because Eq. 147 is the same as Eq; 102.

We now rewrite Eqs. 145 and 146 in the following form:

dm(f) L (f) A (f) P(f) exp(-j27rbTf)
S(f) = (148)

(1/T) m(f) I L(f)A(f) 1 + 

and

d- m(f) L (f) S (f) P(f) exp(-j2rrbTf)
A(f) = 2 (149)

(I/T) m(f) L(f)S(f) 12+ n(f)

If we denote the phase functions of L(f), A(f), S(f), and P(f) by PL(f) PA(f)' PS(f)'

and pp(f), then matching phases on both sides of Eqs. 148 and 149 shows that PS(f) and

pA(f) must be chosen in such a way that

PS(f) + PL(f) + PA(f) = Pp(f) - 2rrbTf (150)

We note that the phases of the power density spectra m(f) and n (f) are zero.

Equating the magnitudes of both sides of Eqs. 148 and 149 gives

d m(f) I L(f) I A(f)I I P(f) (151)
Is(f)l (151)

(I/T) m(f) L(f) 121A(f) 2 + 

and

IA(f) = d (f) L(f) IS(f) P(f) (152)
(1/T) m(f) L(f) 12S(f)j 2 + , n(f)

This pair may be solved simultaneously to give

S(f) 2 = dT I P(f)( n_(f))/2 Tn(f)I S(f)12 = () (153)
L(f) I m(f) L(f) I
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and

IA(f)1 = dT P(f)I _ 1/2

I L(f) I "'n(f)l

XT

m(f) L(f) 
(154)

The symmetry between S(f) and A(f) is now quite apparent because Eqs. 153 and 154 are

identical except for an interchange in the positions of X and O (f). Equations 153 and
n

154 are valid only when

(k (f)),,/2
dIP(f) > n

Dm(f) L(f) I

This condition results from the fact that IA(f) and I S(f) cannot be negative. At fre-

quencies for which inequality 155 is not satisfied we must use the other admissible solu-

tion of Eqs. 151 and 152. That is

S(f) = A(f) = 0 (156)

We can now use Eqs. 153 and 154 to calculate the magnitude of the Fourier trans-

form of the received pulse shape r(t). We have

S(f) 2 L(f) 21A(f) 2 = ( I P(f) In(f)
X

X dT P(f) I ( /2
TX

Cm(f) | L(f) 

/ ~~~~~1' 2
( T(X' (f)) 2
= dTIP(f) - _nfl2

m(f) (f f) 

Therefore,

IR(f) = I S(f)L(f)A(f) = (158)
T(kb(f))l/2

dT IP(f) -

Im(f) I L(f) I

provided inequality 155 holds. Otherwise

IR(f)I = 0

The phase function of R(f) is, from Eq. 150,

(159)

(160)PR(f) = p(f) - 2rrbTf

With the results of Eqs. 150, 153, 154, and 158 and inequality 155, it is now possible

to answer the questions posed at the beginning of section 3. 7. We first consider ,
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(x1 (f))l/2
· m(f), and L(f) to be fixed. Also, we denote n by X(f).

cm(f) L(f) I
(a) If X(f) is small compared to djP(f)j, that is, On(f) is small, then from Eqs. 153

and 154

I L(f)I Pf ( f)

l dT P(f) (f)/ (162)

I L(f)I[6

and from Eq. 158

IR(f)l = dTjP(f)l (163)

We can think of I S(f) 12 in terms of its three factors, dT IP(f) , , and n

The first factor is the spectrum of the optimum noiseless pulse discussed in section 3. 5.

Thus, we should try to transmit pulses that result in low interpulse interference at the

receiver. The second factor compliments the loss of the transmission medium to help

preserve our desired frequency content. The third factor modifies our expression in

such a way that more transmitted power is allotted to frequencies at which the noise is

highest. Thus, we should also try to obtain a favorable signal-to-noise ratio at the

amplifier input. We note that A(f) 2 of Eq. 161 contains the inverse factor (f1/2

Thus, we reduce our gain where the most noise power lies.

(b) If Tn(f) becomes larger, so that X(f) dIP(f)I, then A(f)12 , IS(f) 2, and IR(f) I

all become very small, and, from Eqs. 156 and 159, if X(f) dl P(f) I then we should

not transmit or amplify at such frequencies; that is, A(f) = S(f) = R(f) = 0.

We have explored the critical nature of inequality 155 by increasing the noise power,

4 n(f). The same behavior results from decreasing the input signal power, i. e.,

increasing , or decreasing the message power density, m(f), or increasing the loss

of the transmission medium, i. e., reducing I L(f) 1.

The optimum transmitted and received pulse spectra, S(f) and R(f), and the optimum

amplifier transfer function, A(f), are given by Eqs. 150-158. Some limitations of these

results are: (a) We did not constrain our pulses s(t) and a(t) to be zero for t < 0. (b) We

assumed the quantizer intervals are equally wide. (c) We assumed that the signaling

rate is not less than the Nyquist rate.

The constraint mentioned in limitation (a) is not used because it is mathematically

inconvenient; the results are difficult to interpret physically; a solution with fewer con-

straints exhibits the ideal behavior that we are seeking; and, if enough transmission

time delay is allowed, our optimum pulse shapes can be closely approximated by

realizable pulse shapes.
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Limitation (b) cannot be easily disposed of. The difficulty is that we must

use Eq. 60, rather than Eq. 61, as our definition for the upper bound U. The

variational and computational problems connected with this bound are much more

difficult.

Limitation (c) can be removed by using the methods of section 3. 5. That is,

Eqs. 143 and 144 must each be expressed as a set of simultaneous linear equations.

These sets are solved separately. We then have two equations similar to Eqs. 148 and

149. These must be solved simultaneously for S(f) and A(f).

We have also assumed that the sampler was able to instantaneously sample

its received waveform. Physically, we are only able to take smeared samples

of a waveform. We assume a smeared sample of x(t) at time t can be repre-

sented by

J w(t) x(t) dt (164)
00

where w(t) 0, and w(t) O for t s - < t < t s + and 2 < T. If in addition, the sampling

time, t s , is a random variable that is characterized by the probability density p(t), then

the expected value of our smeared sample is

fX p(t) w(u-t) x(u) d dt = p'(u) x(u) du (165)

where

p'(u) = p(t) w(u-t) dt (166)
00

and p'(u) 0. Thus, we can replace p(t) by p'(t) to obtain optimum pulse shapes for the

case of noninstantaneous sampling. The only change in our formulas will be the intro-

duction of the normalizing constant

C = p'(u) du (167)
00

due to the fact that the area of p(t) is 1, while the area of p'(t) depends on the form of

w(t). For example, if the receiver integrates its input over a finite time interval

01/2P3 ts - P < t < ts + P
w(t) = (168)

otherwise

Thus, C = 1 and the formulas of Section III apply directly, with p(t) replaced by p'(t).
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IV. RECONSTRUCTION OF A RANDOM WAVEFORM

FROM UNIFORMLY SPACED SAMPLES

4. 1 The Problem

Let [x(t)] be an ensemble of random waveforms that has correlation function +(T), and

let [f(t)] be an ensemble of waveforms that are approximations to the waveforms of [x(t)].

We assume that there exists a one-to-one correspondence between the waveforms of

[x(t)] and their approximations in [f(t)].

If x(t) is a particular member of [x(t)], then f(t), the corresponding member of

[f(t)], is given by

N
f(t) = x(nT) s(t-nT) (169)

n=-N

where the sequence {x(nT)} represents samples of x(t) that are taken every T seconds

within the time interval (-NT, NT), and s(t) is an interpolatory function to be determined.

We wish to discover what interpolatory function, s(t), will make f(t) the best approxi-

mation to x(t) for all members of the ensemble [x(t)]. If N is finite, our criterion for

best approximation is that

1 NT
EN = NT NT E[(x(t)-f(t))2 ] dt (170)

2NT NT

be as small as possible. If N is infinite, we require that

T
E =T E[(x(t)-f(t)) 2 ] dt (171)

be as small as possible, where E[ ] denotes the ensemble average of [ ].

Because it is both practically and theoretically interesting, the method of recon-

structing a random waveform that is discussed in connection with Eq. 169 has received

considerable attention (e. g., refs. 8, 9, and 25). However, this attention has been

centered on the reconstruction of bandlimited waveforms from uniformly spaced samples.

This is because, if the samples are taken at a rate that is not slower than the Nyquist

rate, the waveform can be reconstructed with zero mean-square error. This result has

been extended to certain types of non-uniform sampling (9). Through our investigation

we wish to discover how well waveforms of arbitrary bandwidth can be represented

(a) over a finite time interval by a finite number of samples and (b) over an infi-

nite interval by an infinite number of samples.

Our criteria of Eqs. 170 and 171 are essentially mean-square criteria. However,

if we wish to grade the reconstructions that use different interpolatory functions by

attaching a positive, real number to each, then it is not sufficient to use the ensemble

average of (x(t)-f(t)) 2 . This is because [x(t)-f(t)] is generally a nonstationary ensemble,

(cf. ref. 19 and the discussion following Eq. 72). In the case of a finite number of
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samples, we perform an additional time average over the time interval (-NT, NT) to

remove the time dependence of the ensemble average. In the case of an infinite number

of samples the ensemble average is periodic in time, with period T (19). In this case

we need only perform our time average over one period.

4. 2 The Case of a Finite Number of Samples

In this section our problem is to minimize EN of Eq. 170 by varying the interpolatory

pulse s(t). We must express EN as a functional of s(t) and begin by calculating

E[(x(t)-f(t))2 ].

N
(x(t)-f(t)) 2 = x2(t)- 2 E x(t) x(mT) s(t-mT)

m=-N

N N
+ X E x(mT) x(nT) s(t-mT) s(t-nT)

m=-N n=-N
(172)

Since (T) is the autocorrelation of [x(t)], we have

2 N
E[x(t)-f(t) 2 ] = E[x(t)]- 2 E 4(t-mT) s(t-mT)

m=-N

N N
+ . E 4([m-n]T) s(t-mT) s(t-nT)

m=-N n=-N
(173)

Since [x(t)] is assumed to be stationary, E[x2 (t)] is a

The expression to be minimized becomes

EN = 2NT -T 2;NT/

constant, which we shall call C.

N
E -(t-mT) s(t-mT)

m=-N

N -N
+ X C([m-n]T) s(t-mT) s(t-nT dt

m=-N n=+N

Next we change summation index, letting m - n = k.

EN 2NT f-NT(

N m+N
+ k 

m=-N k=m-N

N
_ (t-mT) s(t-mT)

m=-N

(kT) s(t-mT) s(t-mT+kT) dt

(174)

(175)

The order of summation can be interchanged by the formula

N m+N 0 k+N 2N N

m =-N k=m-N k=-2N m=-N k1 m=k-N
m=-N k=m-N k=-2N m=-N k=l m=k-N
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We also allow the limits of integration to become infinite by introducing a function,

gN(t), in the integrand; gN(t) is 1 in the time interval (-NT, NT) and is zero elsewhere.
Interchanging orders of summation and integration, we have

N 0o

N- 2NT m=-N 

0 k+N
+ Z N

k=-2N m=-N.

2N

+ 1
k=l

N 
Z 

m=k-N -

gN(t)[-2((t-mT)(t-mT)] dt

f ~(kT) s(t-mT) s(t-mT+kT) gN(t) dt

'00

((kT) s(t-mT) s(t-mT+kT) gN(t) dt + C
-oo

We now make a change of variable, u = t - mT, and interchange the orders of sum-

mation and integration.

EN- 2NT 2+(u) s(u) N mT
_O '-N

)(kT) s(u+kT s(u) mkN N gN(u+mT)

+ (kT)s(u+kTs() m gN(u+mT) du) + NC
Lk=l Lm=k-N

(178)

The expression f(u) =

= 2N

N
Z gN(u+mT) can be described as follows.

m=-N

for ul < T

= (2N-1) for T < ul < 2T

(179)

for (2N-1) T < u| < 2NT

elsewhere

k+N
= gN( u + m T )

m=-N

N
= Z gN ( u + m T )

m=k-N

for -2N k 0

for 1 k 2N

= 0 for all other k

Note that fo(u) = f(u), and fk(u-kT) = f_k(u).

We can rewrite Eq. 178 as
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(177)

f(u)

Let

=1

=0

fk(u) (180)

_�______ __ _ _ __ _ �_ _
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N = 2(u) s(u) 2N f(u) + s(u) 2N, (kT) s(u+kT) N fk(u du + C
EN T 00 Nk=-2N

(181)

If we now substitute s(u) + a(u) for s(u) in Eq. 181 and assume that the function s(u)

minimizes EN, then a necessary condition for EN to be minimum is that

aEN

a a=O
=0

In our case,

aEN

8a a=O

f(u)1
P(U) (u) 2- du1 :

TI
00X

2N
P(u) Z N(kT)

=-2N

2N
s(u) Z +(kT)

=-2N

s(u+kT) (U du

fk(u!~p(u+kT) -fk( du2N

Making the

that jx(kT) = x (

change of variable, w = u + kT, in the last

-kT), and fk(w-kT) = fk(w), we have

integral, and noting

f(u)
1(u) 2(u) N- + 2NN

2N

k=-ZN
(kT) s(u+kT) fk2(u)du (183)

Since P(u) is arbitrary, our necessary condition for EN to be minimum becomes

f(u) 2N

(U) -T2N = Z
fk(u)

)(kT) s(u+kT) 2N

Let us now consider some properties of the solution of Eq. 184. Since f(u), fk(u),

and fk(U) are all zero for ulI > 2NT, s(u) is arbitrary for ul > 2NT. For simplicity,

we shall let s(u) be zero for u > 2NT.

For the special case in which 4(kT) = 0 for k = 1,±2, ... , 2N, Eq. 184 becomes

f(u) fs(u)
The solution) is2N

The solution is

(185)

for u| < 2NT

(186)

for ul 2NT

Another example is given by the following case:
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(182)

(184)

%(u)
s(u) =

(o0)

s(u) = 

I _·_ _ _I _I

+ I00
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I T
(T) 2 - -T for 0 -< IT1 < 2T

(187)
+(T) = 0 elsewhere

In this case, Eq. 184 may be written as follows for N = 1:

(2- 1 = Is(u-T) 1 + Zs(u) 1 + ls(u+T) (188)

with 0 u < T, and may be written as

w1 1(2- 1- = ls(w-T) 2 + 2s(w) 2 (189)

for T < w < 2T.

The form of Eq. 184 indicates that we should look for a symmetric solution; that is,

we assume that s(u-T) = s(T-u). Making the change of variable, w = u + T, gives us the

following system of equations which is valid for 0 < u < T:

u 1
2 Y = s(T-u) + 2s(u) + 2s(u+T) (190)

1 (i-T) -s(u) + s(u+T) (191)

A solution to these equations is

lul
1 - for 0 ju T

s(u) i (192)

0 elsewhere

Let us now substitute Eq. 184 in Eq. 181 to obtain an expression for the minimum

value of EN. We shall call this minimum value Em. It is given by the formula

1 oo f(u)
Em C - 4 (u) s(u) 2N du (193)

m N
-oo

For the special case that has just been discussed, C is 2. From the definition of

f(u) we recall that f(u)/2N is 1 in the interval (-T, T), and s(u) and (u) have been defined.

Thus Eq. 193 becomes

I T (TI(ITIE =2 -T - (- TT ) ( T)
m T T T

T 0 ( T ) (1T) dT = 2 2+ 3T

= 1 (194)3
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We might interpret this in terms of a ratio of average signal power to average "noise"

(or error) signal power into a unit resistor load. For our special case,

S 2 6 ~~~~~~~~~S 2 =Z~~ 6 ~(195)
N - 1/3 1

4. 3 The Case of an Infinite Number of Samples

We have been discussing the reconstruction, over a finite interval, of a member of

a stationary ensemble from a finite number of uniformly spaced samples. We have con-

strained the problem by requiring that each sample be treated the same; that is, the

same interpolatory function is used for each sample value.

We now turn to the case of reconstruction from an infinite number of samples. As

before, we do not restrict x(t) to be bandlimited. In this situation,

Eoo=100 =T E[(x(t)-f(t)) 2 ] dt

=T (-o 
I T-2

= E p(t-nT) s(t-nT) + E X d (nT-mT) s(t-mT) s(t-nT dt
n=-oo m=-oo n=-oo

(196)

Letting u = t - nT, we have

oo (-n+l)T (
E0 Tn=-o -- nT u)n=-oo nT

s(u) - s(u) E (nT-mT) s(u+nT-mT du
m=-oo /

(197)

Making the change of summation index, k = n - m, and then carrying out the sum-

mation on n, yields

(Z(U) s(u)- S(u)
-o

C(kT) s(u+kT)) du

A necessary condition for Eoo to be minimum (by varying s) is

oo

d(u) = X d(kT) s(u+kT)
k=-oo

If 0(f) is the Fourier transform

domain as

S(f) =

of '(u), then Eq. 199 can be written in the frequency

D(f)
(200)

%(kT) exp(+j2kirTf)
oo

Z (kT) cos 2rkTf
k=-o0

where S(f) is the Fourier transform of s(t), provided that the series in the denominator

has no zeros, where f(f) is nonzero.
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E=C-E C T _oo
00

(198)

(199)

k=-oo
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Analysis given by Bennett (19) shows that we can rewrite Eq. 200 as

S(f) = (201)

(1/T) E b(f-nfr)'
n=-oo

where fr = 1/T (ref. 19).

We can obtain an expression for the minimum value of EC , which we shall call E'

by substituting Eq. 199 in Eq. 198. Thus

El = C-J (u) s(u) du (202)

Use of Eq. 201 and Parseval's theorem gives

0 (f)
E' = C- df (203)m c so

X0 X f(f-(n/T))
n=-oo

We recall that C = E[x2 (t)].

For the special case in which (f) is nonzero only within the band (-B, B) and

1/T >- 2B, we have, from Eq. 201,

IT for Ifj <B

S(f) = 0 for n-fl < B, n = ±1,2,... (204)

otherwise undefined

One possible solution is

fT for If < B

S(f)l <B (205)

otherwise

Thus,

2BT sin 2nBt
s(t) = 2Bt (206)

in agreement with the sampling theorem (8, 9). We note that, if 1/T = 2B, then S(f) is

defined for all frequencies by Eq. 204.

As another example, let us assume that +(T) is given by Eq. 187. Equation 199 then

reduces to

+(u) = s(u-T) + 2s(u) + s(u+T) (207)

A solution of Eq. 207 is
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lul
I T ul <T

s(u) =

0 otherwise

(208)

in agreement with Eq. 192. Thus, in this case, the optimum interpolatory pulse is the

same for an infinite number of samples as it is for three samples. This is not true if

we are given an arbitrary correlation function, as shown by Eqs. 185 and 186. In the

latter case the function s(u) changes with N, in general.
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