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Abstract

This thesis concerns the use of optimum nonlinear filtering for the recovery of
messages from modulated signals in the presence of additive Gaussian noise. Signal-
to-noise ratio, defined in a manner especially suited to nonlinear filtering, is taken as
the measure of performance. This definition also provides a useful connection with
the mean-square-error criterion.

Each filter has a linear section and a nonlinear, memoryless section. Attention is
focused primarily on the latter. A simplified review of important properties of the
orthogonal polynomials employed by Wiener for representation of the nonlinear filter
section is included; special emphasis is placed on the properties of Hermite polynomials
because this is a cornerstone in the derivation of succeeding results. The low signal-to-
noise-ratio performance of communication systems is shown to be related in a simple
way to the structure of the optimum filter polynomial.

The use of this nonlinear filter theory confirms the notion that conventional
frequency-modulation practice produces somewhat less than optimum reception at low
signal-to-noise ratios. This study indicates that the type of frequency modulation that
has potentially the best performance in this range is narrow-band FM with a phase-
synchronized carrier. Also, the proper use of amplitude information in the noisy
FM signal improves performance moderately.
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I. INTRODUCTION

1. 1 PURPOSE OF THIS RESEARCH

This report contains a study of nonlinear least mean-square-error filters and their

signal-to-noise-ratio performance in communication systems that are subject to addi-

tive Gaussian noise. Special emphasis is placed on frequency-modulation (FM) systems,

particularly at low signal-to-noise ratios.

The theory of optimum linear least-squares filtering developed by Wiener, Lee,

and others (1), is a standard analytical tool in modern statistical communication theory.

However, the nonlinear filter theory of Wiener (2) and others (3) has thus far found

little application in communication research, partly because of its relative newness,

but even more because of its complexity. The aim of the present study is to simplify

concepts and notation to the point where the nonlinear theory reveals a number of simple,

interesting facts about the optimum performance of noisy communication systems.

Expressions for corresponding optimum filters are found to be particularly simple at

low signal-to-noise ratios.

This investigation is oriented toward continuous systems and signals. Discrete

cases are discussed either for comparative purposes or as approximations to continuous

cases.

Special interest in FM systems derives from the fact that most analytical techniques

have proved clumsy, if not inadequate, in the treatment of frequency modulation at low

signal-to-noise ratios, the region in which the Wiener theory finds its simplest

application.

1.2 COMMUNICATION SYSTEM MODEL

Consider the simplified communication system model shown in Fig. 1. The non-

linear operator is an abstraction of a transmitter. The nonlinear filter represents a

receiver. Message and Gaussian noise sources are assumed to operate independently.

Fig. 1. Communication system model.
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The message, s, noise components, x and y, and filter output, z, are assumed to

have zero mean values (=0, x=0, y=0, z=0, where the bar stands for "average

value of"). Regarding Fig. 1, the purpose of this report is to discuss optimization of

the nonlinear filter and the resulting signal-to-noise-ratio performance of the system,

when we are given the message and noise statistics and a description of the nonlinear

operator.

It is important to be aware of several subtle or implicit features of the model of

Fig. 1. One feature is suppression of the time variable. Mathematically, the various

signals are treated as random variables or random functions. A random variable

represents a signal at a single instant of time. We define a random function as the

representation of a signal over a continuous range of time values. (Thus, by this

definition, a random function is a generalization of a random vector. ) For example,

the noisy signals u and v in Fig. 1 are treated as random functions, since the non-

linear filter generally has memory. Averages given in this report are usually statistical.

In physical situations we must deal with time averages. The two averages are linked by

the ergodic hypothesis (4). The Gaussian noise sources are assumed to be ergodic. If

the message source is ergodic and the nonlinear operator is time-invariant, all signals

in the system are ergodic. If message statistics or the nonlinear operator vary peri-

odically, one possible procedure is to sample at the periodic rate and ascribethe ergodic

property to the samples. In any case, the important point is that we convert problems

involving time signals into their statistical equivalents, whenever it is possible.

Another potential source of confusion is the statement that z is an estimate (or recon-

struction) of s. In a physical problem, we would say that the signal z(t) estimates the

signal s(t-T) for some specified delay, T (prediction, if T is negative). We therefore

assume that T is specified implicitly (if not explicitly) in any particular situation, and

then omit it, as well as t, from the notation.

Another feature of the Fig. 1 model is the lack of an explicit carrier. In a double-

sideband carrier communication system, with sinusoidal carrier

cos (27r fot+ 0) (1)

a general expression for the transmitted signal which explicitly includes the time vari-

able is

p(t) cos (2r fot+0) + q(t) sin (27rf 0 t+0 0 ) (2)

where p(t) is the amplitude of the in-phase component and q(t) is the amplitude of the

quadrature component. Omission of the carrier is a convenience which, like omission

of the time variable, does not affect any essential elements of the problems considered

herein. Physically, carrier removal can be accomplished by ideal product demodu-

lation. In phase-synchronous systems, 0 is a known constant, and demodulationyields

the p and q signals depicted. If the system is not phase-synchronous, 0 must be

replaced by e(t), an appropriate phase-error signal. Then the demodulated signal

2



corresponding to p in Fig. 1 is given by

p(t) cos 0e(t) + q(t) sin 0e(t) (3)

and that corresponding to q is given by

q(t) cos 0e(t)- p(t) sin e(t) (4)

It will frequently be simpler to redefine p and q to represent expressions 3 and 4

directly, rather than to carry along all the extra notation or define additional variables.

The only important effect of ideal product demodulation on Gaussian noise is to

shift its frequency spectrum to the base band. Under the assumption that the original

noise band is symmetrical about the carrier frequency, the in-phase and quadrature

base-band noise components, x and y in Fig. 1, are independent and have power

spectra similar to that of the original noise, but centered about zero frequency instead

of the carrier (5).

A base-band system is represented in Fig. 1 by eliminating quadrature signals, so

that q- 0 and y- 0 (hence v 0). Other systems, such as single-sideband systems,

may require notational changes for accurate representation, but they can generally be

put into a form that is essentially the same as that outlined in Fig. 1.

1.3 FREQUENCY-MODULATION MODEL

Referring again to Fig. 1, the FM signal model is defined by

p= cos n
(5)

q= sin J

where the phase, 0, is a zero-mean (0 = 0) operator, controlled by the message, s,

and expressed in functional notation as

0= 0[s] (6)

Signals p and q in Eq. 5 may be thought of as derived from cos (+2 fot+0 o ) by ideal

product demodulation. For FM systems that are not phase-synchronous the intro-

duction of a phase error, 0 e, as in Eqs. 3 and 4, leads to the alternative definition

p= cos (-0e)

(7)
q= sin (0-0e)

It should again be stressed that removal of the carrier is a simplification involving no

theoretical limitation on the usefulness of the results. However, this does not imply

that the optimum physical receiver must contain a product demodulator.

3
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1.4 WIENER FILTER REPRESENTATION

Figure 2 diagrams the Wiener description of the nonlinear filter in the Fig. 1

system. Linear networks with impulse responses h 1 ... hL provide a finite repre-

h I
U

U ·

UL

I l.

v- 

z(U,V) z
z

Fig. 2. Nonlinear filter representation.

sentation of the

be expressed in

uj(t) =f 

vk(t) = i
00O

u, v signal components at the filter input.

the conventional manner,

hj(T) u(t-T) dT

hk(T) v(t-T) dT

Network outputs may

(8)

These networks are orthonormal in the sense that

L_ hj(t) hk(t) d= 6k (9)

For example, Laguerre networks (6) and tapped delay lines would be suitable physical

networks. If the linear filtering is accomplished before demodulation in a physical

carrier system, only a single set of filters is required. This is the main reason for

indicating in Fig. 2 identical sets of filters for the separate u and v components. The

subscript notation for network outputs is suitable because linearity permits resolution

of additive components. That is, u = p + x implies

uj = pj + x.J J J
(10)

and similarly for v.

The nonlinear, memoryless part of the filter (Fig. 2) is shown as a function, z(U,V),

where

z(U, V)= z(ul ... . uL' v1'... vL) (11)
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That is, the symbols U and V represent the sets of variables

U=u {u 1 ,...UL}
(12)

= (vl,...,vL}

In the Wiener representation, z(U, V) is a polynomial. Because polynomials can

approximate continuous functions (7), their use entails no physical restriction on gener-

ality of the results.

The importance of the Wiener filter representation should not be underestimated.

Representation of filters by abstract nonlinear functionals may be fine theoretically,

but it gives little intuitional insight into problems of practical interest. Even the time-

amplitude representation suggested by Bose (6) is less than ideal in this respect, con-

sidering its difficulty in classifying types of nonlinearity (in particular, in distinguishing

between linear and strictly nonlinear characteristics of a filter). An important problem

that will receive scant treatment in this report is that of choosing the networks in the

linear section of the Wiener filter so that they provide an adequate representation of the

filter input. (This could also be thought of as approximating the infinite-dimensional

vectors u and v by the finite-dimensional vectors U and V over their ranges of vari-

ation, in some average sense. ) In order to focus attention on the nonlinear, memoryless

part of the filter, standard procedure will be to assume that linear networks have been

satisfactorily chosen for any given problem and are fixed, while z(U, V) and desired

system parameters are varied.

5
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II. SIGNAL-TO-NOISE-RATIO PERFORMANCE

2. 1 PRELIMINARY REMARKS

Signal-to-noise ratio has been chosen as the performance criterion, in preference

to mean-square error, because the former is gain-invariant and has greater intuitive

meaning in many communication problems than does the latter. However, these two

criteria are closely related, as we shall see. Both find greater application in continu-

ous than in discrete systems; this feature fits in with the scope of this investigation.

Much of the following discussion is based on an earlier report (8).

Suppose we have a desired signal, S, and an independent noise, N, combined to give

the noisy signal, S + N. If S = 0 and N = 0, the conventional definition of signal-to-noise

power ratio, y, for the noisy signal S + N, is

S
7y = _ (13)

N 2

The adjective "power" is dropped, as in conventional practice. The quantity 10 log 1 0 7,

expressed in decibels, is also conventionally called signal-to-noise ratio. The dis-

tinction between y and its logarithmic measure will be evident whenever it is important.

The purpose of section 2. 2 is to generalize the definition of Eq. 13 to situations in which

the desired signal and the noise are not additive, independent components of the noisy

signal.

The present discussion applies to systems of the form shown in Fig. 3. We shall

assume that the signal, s, and the noisy signal, z, have zero means ( = 0, = 0).

NOISY

SIGNAL NOISY U NONLINEARNONLINEAR
SOURCE s FUNCTION zOPERATOR 

Fig. 3. General noisy system model.

As suggested by the notation, the system shown in Fig. 1 is a special case of the system

shown in Fig. 3. The nonlinear operator, Gaussian noise sources, and linear networks

(Fig. 2) belonging to the nonlinear filter shown in Fig. 1 constitute one possible form

of the noisy nonlinear operator shown in Fig. 3. (If it is desired, the quadrature vari-

ables in Fig. 1 may be implicitly included in Fig. 3; it complicates the notation unneces-

sarily to include v1 , ... , vL explicitly. ) The system illustrated in Fig. 3 is used not

only for increased generality, but also for the simplification achieved by suppressing

the linear part of the Wiener filter, as we have mentioned. The nonlinear function
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represented by z(U) (see Eqs. 11 and 12) need not be a polynomial for present purposes;

any integrable function will do. Time variables are deleted, as before, under the

implicit assumption that z(t) estimates s(t-T), for some fixed T.

2. 2 GENERALIZED SIGNAL-TO-NOISE-RATIO DEFINITION

It is clear from Fig. 3 that the noisy signal, z, will not generally be the sum of the

desired signal, s, and an independent noise. However, it is possible to define a new

desired signal, S, by the relation

S= cs (14)

where c is a constant. Consider the additive noise, N, defined as

N = z-S (15)

Since s= 0 and i= 0, S= 0 and N= 0. Therefore, if

SN= 0 (16)

the desired signal and noise components are linearly independent (at least for the fixed

time shift, T). If we ignore the trivial solution c = 0, Eqs. 14-16 are satisfied simul-

taneously if c is given the unique value

sz
c= -- (17)

2
s

Hence, it seems reasonable to extend the definition of Eq. 13, with the aid of Eqs. 14

and 15, to obtain

2 2c s (18)

(z-cs)2

where c is given by Eq. 17.

It is of incidental interest to observe that the noise power, N, is minimizedbythis

choice for the constant, c. For, the equation

dN 2
= -2 s(z-cs)= 0 (19)

dc

is satisfied only when c is given by Eq. 17, and

d2 N2 2
=2s >0

dc2

The form of Eq. 18 is not particularly convenient for a definition (with its dependence

7



on Eq. 17) or for computation. Hence, we introduce the correlation coefficient Ps,

p = (20)

s z( )l/2

which is valid when = 0 and z = 0. Then, Eq. 18 can be rewritten

1
1 (21)

2
Psz

which is considered to be the signal-to-noise-ratio definition. The gain-invariance of

-y is evident because Psz is normalized.

If it is desired, Eq. 21 may be expanded in the power series

= p2j (22)
j=1

2
Observe that the series converges unless p = 1, in which case it is still correctsz
because y = oo. This expansion is clearly most useful at low signal-to-noise ratios,

when one or only a few terms need be considered.

In the Fig. 1 system, the output signal-to-noise ratio yo is defined by Eq. 21. At

the input of the nonlinear filter, the input signal-to-noise ratio yi is defined as

2 + q2

yi= - (23)
2 + y2

x +y

This formula may be justified as follows. From the model of a carrier signal given in

Eq. 2, signal power (mean-square value) is found to be

1 (p 2+q2)

For example, the FM signal given in Eqs. 5 and 7 has power 1/2. The noise power at

carrier frequencies is the same as the power in either base-band noise component,

x2 = y2 . If we make use of the definition given in Eq. 13, Eq. 23 follows. Nothing has

been assumed about the mean values of the signals p and q. If one of these means

does not vanish, it indicates that the respective carrier component is not suppressed by

the modulator.

Observe that Eq. 23 is also valid for a base-band system (q 0, y 0) in which

p = 0. Appropriate signal-to-noise ratios can be worked out for single-sideband or

other systems. However, Eq. 23 may no longer be correct, unless the notation is

chosen specifically to provide this convenience.

8



2.3 APPLICATION TO LEAST-SQUARES FILTERING

The least-squares nonlinear function illustrated in Fig. 3, chosen to minimize

(z-s)2
, and distinguished from other functions by the subscript o, is the conditional

mean (9):

z00 (U) = s p(slU) ds (24)
00

where p is the conventional symbol for probability density function. Recall that

p(sIU) p(U) = p(s, U)

We are now equipped to compute the average s (z(U) is an arbitrary integrable

function, and dU = du 1 .l.duL),

sz = s z(U) p(s, U) ds dU
00 o00

f=S s p(slU) d z(U) p(U) dU

= zo(U) z(U) p(U) dU
00

= z z (25)

The relation

P P Pz z

can be derived from Eq. 25 and from the definition of Eq. 20. But Ipz zlmax 1, the

maximum being achieved whenever z(U) is a (nonzero) scalar multiple of z(U). There-

fore, by Eq. 21, we have

1
max = (26)

2

SZC0sz0

That is, a maximum signal-to-noise-ratio filter is a least-squares filter followed by

any amount of ideal, noiseless gain. In particular, a least-squares filter is a maximum

signal-to-noise-ratio filter. (Remember that in these calculations the linear part of

the filter has been held invariant, and only the nonlinear function has been changed. )

There is an alternative expression for the correlation coefficient associated with

least-squares filters that also happens to be valid for orthogonal approximations to the

least-squares filter. Such filters arise in the Wiener representation, as we shall see.

An orthogonal approximation, ZN(U), is defined to satisfy the equation

9



ZN (z -zN) = 0 (27)

From Eqs. 25, 27, and the definition, Eq. 20,

2
2 ZN

p -(28)
SZN 2

s

This formula contains one less average than the one in Eq. 20.

2.4 DISCRETE-SYSTEM EXAMPLE

Optimum discrete systems operating at low noise levels tend to have much higher

output signal-to-noise ratios than comparable continuous systems. As a simple ex-

ample, let the noisy nonlinear operator in Fig. 3 be a binary symmetric channel with

probability of error Pe' If the signal source output, s, assumes the values +1 or -1

with equal probability, the least-squares function (conditional mean) is

zo(+1) = +(1-2pe)

Next, define

He ( i ) (29)Pe= 1--(}/2) (29)

where (x) is the normal distribution function. (This is a model of a binary trans-

mission system subject to additive Gaussian noise, with signal-to-noise ratio i at

the receiver input.) By approximating 1 - (x) (see Davenport and Root (10) or

Feller (1)) and using the formulas of section 2. 3, we find that

° 7r )1/2 Yi/2
o 8 1 e (30)

as i o. This demonstrates our contention because the continuous systems that are

commonly used have o 0 proportional to yi for large i .

10



III. WIENER FILTERING

3. 1 GENERAL REMARKS

This section concerns the construction and performance of optimum least-squares

Wiener filters for use in noisy communication systems of the type indicated in Fig. 1.

The nonlinear, memoryless part of the Wiener filter, a polynomial, is constructed

from basic polynomials having an orthogonality property that will be discussed presently.

Two random variables, x and y, are said to be orthogonal if 3xy = 0. Whenever = 0

or y = 0, orthogonality is therefore the same as linear independence. (The terminology

suggests that x and y be viewed as vectors, with inner product xy. This convenient

viewpoint is not exploited in the present study. ) Although we shall not explore the point

in detail, it is worth noting that an orthogonal representation for the least-squares

polynomial guarantees that a sequence of approximating polynomials converges in the

mean-square sense to a function that is independent of the exact nature of the sequence.

Other advantages of this orthogonal representation will be made clear in the discussion.

It will often be necessary to indicate a product of U-variables (Eq. 12) in a form

such as

u. ... u.

31 JN

in which the subscripts m and n may be equal if m ¢ n. The point of this notation is

to distinctly label every variable in the product, whether or not the variables are all

distinct.

3.2 ORTHOGONAL BASIC POLYNOMIALS

The material presented in sections 3. 2 and 3. 3 has been treated in one way or an-

other by Wiener (2) and Barrett (3), not to mention others. The generality of the follow-

ing discussion is sufficient to include systems of the class illustrated by Fig. 3. The

emphasis placed on the nonlinear, memoryless part of the Wiener filter by a Fig. 3

system is advantageous, as we have mentioned.

An N-degree basic polynomial in the set U = {u 1 . .. , UL} is defined as a single N-

degree leading term, u. .. . UjN, plus a polynomial of less-than-N-degree, the latter

being so chosen that the entire basic polynomial is orthogonal to anyless-than-N-degree

polynomial in variables of the set U. The 0-degree basic polynomial is defined to be the

constant, 1. Since all but the 0-degree basic polynomial are orthogonal to constants,

they must have zero means, and orthogonality is then directly equivalent to linear inde-

pendence. Notation for a basic polynomial is

Fu(ujl .. uj) (31)

11
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Notice that the leading term (hence the degree) and the set over which orthogonality

holds are explicitly exhibited.

It is important, but nearly trivial, to observe that the basic polynomials form a

basis for all polynomials. This fact does not depend on orthogonality. Specifically,

an arbitrary N-degree polynomial P(U) in the set U can be expressed as a weighted

sum of basic polynomials with degrees not exceeding N. In proving this statement we

may inductively assume its truth for all degrees less than N. But the arbitrary N-

degree polynomial can be written in the form

L
P(U) = E a. u ... u. Q(U) (32)

jl=l 1 N J1 JN

N=

j<. <jN

where Q(U) is a less-than-N-degree polynomial. From the definition of a basic poly-

nomial, it follows that

L L
a. F(u u = a. . u. .. u. +R(U)

ji=l 1 ... ' N j J=1 J ' '' N Jl JN

jN=1 jN= 1
<...<.

j 1 -J N 3j- l N

where R(U) is a less-than-N-degree polynomial. By using simple arithmetic, we obtain

L

j=1 1 *a F(uj ... UjN) - R(U) + Q(U) (33)

Jx- JN

Since -R(U) + Q(U) can be expressed, by assumption, as a weighted sum of less-than-

N-degree basic polynomials, the argument is complete.

There are several possible procedures for constructing the basic polynomials. One

of the simplest is a variation of the Gram-Schmidt orthogonalization procedure (12).

From the basis property just described, it is sufficient that a basic polynomial be

orthogonal to all lower-degree basic polynomials. Assume that all basic polynomials

in the set U of less-than-N-degree have been constructed. The form of the desired

N-degree basic polynomial, with leading term ujl ... u. , can be expressed as

12



N-1 L
Fu/u. = . u = ... - 0 ak k FU(uk ... u)k (34)

Fu(Uj 1 UjN) J1 JN n=O kl =1 1 '' n n

k =1
n

k < ' ''-<k1 n

The required orthogonality property is given by

Fu(Ujl... UjN) FU(Um ... UmM) = (35)

whenever M < N. By using Eq. 34 and the assumption that F(um .. . u ) is

orthogonal to FU(uk . .. ) if n M and n < N, Eq. 35 can be written as the

condition 

L

U; F U. m umM) =kl-1 akl ..k M FU(Ukl * UkM) FU(uml... UmM)

k =1

kl < ' <k(
1 M '·(36)

M+L-1 _(M+L-1)!

For a fixed value of M, the C M equations of the form of Eq. 36,
M (L-1)'

corresponding to all possible distinct sets of subscripts {m 1 ... mM}, constitute a

set of simultaneous linear equations in the coefficients ak k This set of
a 1. M

equations can be solved by Cramer's rule (12), unless the collection of all CM+ L-1
CM

basic polynomials of M-degree is linearly dependent (that is, a nontrivial weighted sum

of these basic polynomials can be made to vanish identically). The last possibility can

be eliminated by making the following assumptions:

(a) The random variables in the set U are not linked deterministically; that is,

there is no function f such that for some j, u = f(U-uj), where U - u. is the set

{u1 , . uj_1 ,U j +1 . uL}. 

(b) All variables in U range over an infinite number of values.

The first assumption eliminates redundancy in the variables of U. The second

assumption is fulfilled in systems like that of Fig. 1 because the additive Gaussian

noise has a continuous amplitude distribution. In a finite-state Fig. 3 system, limi-

tation to a suitable finite set of basic polynomials will satisfy the second assumption.

Therefore, the coefficients in Eq. 34 can be uniquely chosen by Eqs. 36 to satisfy

Eq. 35, and the orthogonalization procedure is complete.

The basic polynomials in the set cU = {cu1, ... . cuL} and those in U are related

by the equation

13
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cU(cuj ... CujN) = c FU(N jl** (37)

Equation 37 follows from Eq. 36 by induction. Notice that the coefficients in Eq. 36

must satisfy

ak ocN-M
1'k M

as c is varied, if we use the set cU.

3.3 GENERALIZED HERMITE POLYNOMIALS

Here, U is assumed to be a set of zero-mean randomvariables with a joint Gaussian

probability distribution. The corresponding basic polynomials are the generalized

Hermite polynomials, designated Gu(ujl... UjN ) to distinguish them from basic poly-

nomials in non-Gaussian sets. The Hermite polynomials and Gaussian variables from

which they are derived possess several useful averaging properties that are not true in

non-Gaussian cases.

The fundamental averaging property of zero-mean Gaussian variables is the pairing

formula for averaged products:

u. u. = E uluT .... u. u. .TN. N (38)
J1 JN distinct JT() JT(2) JT(N-) JT(N)

pairings

The method indicated by Eq. 38 is to arrange the variables of the product u ... u.
Jl JN

in pairs, average each pair independently, and then sum over all distinct ways of

pairing (distinct with respect to the second subscripts). Mathematically, T(1), ... , T(N)

is a permutation of 1, ... , N, and the sum is over those permutation operators, T,

which produce distinct pairwise combinations of 1, ... , N. Notice that the required

pairing is impossible if N is odd. This is to be interpreted by the fact that

u. ... u. = 0 for odd N. If N is even, the number of pairings is readily deduced:
l1 JN

Pick any variable and pair it with one of the other N-1 variables, pick a third and

pair it with one of the remaining N-3, and so on. This number may be expressed as

N!(N-l) (N-3) ... () = N. (39)
2N N

2

The average in Eq. 38 is readily derived as the coefficient of 01 ... ON in the

power-series expansion (14) of the joint moment-generating function, M(01, ... . N),

of the variables u. , ... uj. For zero-mean Gaussian variables, the moment-

generating function (15) expansion is given by

14



M(01 ... N exp 2 Z . Uj. 

n =1

00 N

Z 1 L U U. ... U U. ' 8 m 1 (40)k=O k! m=l m n m nk
n =1

oo N

1

nk =1

Inspection of Eq. 40 shows that the coefficient of 0 . N must come from terms for

which k = N/2. This proves Eq. 38 if N is odd. For even N, this coefficient is

X u . ... u. (41)
T 2 N/2(N), JT(1) JT(2) JT(N-1) JT(N)

where the sum includes all permutation operators, T. There are 2 N/2 identicalpermu-

tations formed by reversing subscripts in each pair; and (N/2)! ways of ordering the

pairs. Adding identical permutations and only summing T over distinct combinations

therefore leads to Eq. 38.

Since odd-degree products of zero-mean Gaussian random variables have zero mean

values, polynomials having only odd-degree terms must be orthogonal to even-degree

polynomials. It follows that the basic Hermite polynomials must have all odd-degree

or all even-degree terms. It is worth noticing that these statements are true for any

sets of variables, U, in which the joint probability density function (or discrete proba-

bilities) possesses the symmetry property

p(u 1 .. . uL) = p(-ul.... -UL)

The next important formula simplifies the calculation of averages involving a

Hermite polynomial.

Uil ujN GU(uk, 1 k M)

- u u. . u (42)
combinations JT(M+l) JT(N) .k JT(1 T(M) M

of M u.'s pairings
jf pairings

from u. ... u.
J1 JN

15
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That is, pair variables in the Hermite polynomial leading term across to a like number

of variables in the other product, average the pairs, and sum over all M! such cross

pairings; average the remaining unpaired terms as an independent product, and finally

sum over all distinct ways of dividing the product u ... u. into the two required
JN

classes. The averaged product u( ... u. can be found with the aid of the

pairing formula Eq. 38. If M + N is odd, both sides of Eq. 42 vanish, by the odd-even

orthogonality pointed out above. If N < M, the left side vanishes by the Hermite poly-

nomial orthogonality, and the right side disappears because the required pairing is

impossible. If N = M, the right side is composed solely of the inner sum. If M = 0,

the inner sum is defined equal to unity. The following simple example may help clarify

operation of the formula.

U1U2U3U 4 G(u 5u U(U5U6) = uaub (43)
(abcd)

where the subscript set (abcd) is summed over the six distinct permutations (1234),

(1324), (1423), (2314), (2413), and (3412), or any equivalent sets found by inter-

changing a and b or c and d.

Equation 42 is best proved with the aid of an auxiliary classification scheme. The

average on the left side of Eq. 42 can be expanded into a sum of products of averaged

pairs with the aid of Eq. 38. We classify each such product by the number of pairs, K,

containing-both a uj and a uk. The following example illustrates this classification

scheme.

j uj2 ukluk2 u ju + Ju 2 K=2 + (ujuj klk2 K=O

Returning to Eq. 42, an expansion of the left side might be expected to include classes

for K = M, M- 2, ... , 0 (if M is even, or ending with K = 1 if M is odd). Exami-

nation of the right side shows that it is precisely the M-class of the left side. Hence,

we must show that all K-classes for K < M vanish from the average on the left side.

It is sufficient to consider only those cases for which M > 0, N > M, N + M is even,

and K + M is even. If M is even, a little study shows that the O-class for the left side

of Eq. 42 contains those terms that make up the average

uj 1.. . U GU(Ukl... UkM)

But G(uk... ukM) = 0, so the O-class vanishes. If M is odd, the 1-class on the left

side of Eq. 42 is the sum of averages

N
n u. ... u. .u. u G ... uk)

n=1 Jl J(n-1) J(n+l) JN Jn U)kl )

If M = 1, Eq. 42 gives this result because G(Uk) = Uk. If M > 1, ujn G(uk ... ukM) =0

for each n, and the 1-class vanishes.

16
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We now assume inductively that for some K such that K < M and K + M is even,

all K-classes of the average on the left side of Eq. 42 vanish when K < K If K = M - 2,

the formula is proved. If K < M - 2, consider the quantity

u. . . u . u ... u GU U ...U (44)
JT(K +3) JT(N) JT(1) JT(K+2) U . kM)

The possible K-classes of this average all have K < K + 2. By induction, the K-classes

for which K < K + 2 vanish. On the other hand, the whole average in Eq. 44 is zero

because of the orthogonality of Gu(uk... ukM). Therefore, the K + 2 -class also

vanishes. If we sum the average in Eq. 44 over all ways of choosing K + 2 of the

uj-variables, it follows that the whole (K +2) -class for the left side of Eq. 42 vanishes.

This completes the inductive argument; the K-classes with K < M vanish, and Eq. 42

is proved.

The averaged product of two N-degree Hermite polynomials is now readily derived.

GU U... ujN) GU(uk... ukN) = Ujl ... ujN GU(Ukl...UkN)

u U. k u jT(N)uk (45)
ujUk JT(1)kl T(N) kN

pairings

That is, pair across and average variables between the two leading terms in all possible

ways. The first equality holds because the second polynomial is orthogonal to all lower-

degree terms of the first polynomial. The second equality is a direct application of

Eq. 42.

The basic Hermite polynomials can be expressed in a form similar to that of Eq. 34,

but with explicit expressions for the coefficients.

U( ... jN) = l.. UN

N-2

- Z X ... UjT(n))
n=O, combinations iT(n+1) IT(N) U(jT(1)U T(n))

(N+n) of n u.'s
even J
even fromu . . .u. (46)

i ~JN

As usual, the coefficients u. ... u. may be expanded as in Eq. 38. Proof of
JT(n+ 1) JT(N)

formula 46 consists in showing orthogonality of the right-hand side to any Gu(uk... ukM)

for M < N. The average Uj ... u.j Gu(Ukl...UkM) is given directly by Eq. 42. For

the remaining terms, the average Gu(ujT( 1 ) ... u j T (n))GU(uk ' ' ukM) vanishes unless

17
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n = M, in which case Eq. 45 leads to the result. If all of these averages are assembled,

careful observation shows that they cancel. Hence, Eq. 46 is correct.

The representation of Eq. 46 can be built up in a step-by-step manner which is

illustrated by the following example. We shall choose for the leading term ulu2 .

Pick three variables in this term, average the remaining pair, sum over ways of

choosing distinct combinations of three variables, and subtract the result from the

leading term. Then we have

2 3 2 3 2 2 2u_ 2 u u2 -6 uu u -3 u u (47)UlU 12 112 2 1 2

The third-degree terms are leading terms of the third-degree Hermite polynomials in

Eq. 46 and have the coefficients given. It follows that expression 47 is orthogonal to

all third-degree Hermite polynomials. Averaging expression 47, with one variable in

each term fixed, and summing over all possible ways of picking out this variable com-

pletes the procedure by orthogonalizing the expression to first-degree polynomials.

Thus

23 2 3 u 3 2 3 2
G (u u = uu2- 2(u1 -3u2u 2 )- 6u 1 u 2 (u 1 u2 -2u 1u2 2u 2 1 )

22 2 22 3
- 3 u2 ulu2 -u 12 - u1u2 - 3u 1u2 2 - 2u 1 2 u 1 (48)

The last two coefficients can be expanded by using Eq. 38 to obtain

22 22
u 2u 2 2 +2 2u u 2

12 = U1 2 + (49)

3 
u1 u2 =3 UlU2 u 2

The expression in Eq. 46 shows that a Hermite polynomial is determined solely by

the variables in its leading term. This contrasts with the general situation (Eq. 34) in

which any or all variables from the set U can appear in the lower-degreeterms. Thus,

the Hermite polynomials are said to be completely orthogonal, whereas the general

basic polynomials are said to be partially orthogonal. One advantage of complete

orthogonality will appear later, when averages of products of basic polynomials belonging

to different sets of variables are required. If the two sets are jointly Gaussian, the

orthogonality property still holds. Otherwise, polynomials from the two sets do not

have this property.

3.4 LEAST-SQUARES POLYNOMIAL FILTERS

We now discuss the construction of Wiener filters, using the basic polynomials just

described. These filters are designed to minimize the mean-square error, (z-s)2, and

therefore to maximize the output signal-to-noise ratio, in Fig. 1 systems. The linear

18
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networks of the Wiener filter are assumed to be fixed in advance, as before, and the

nonlinear, memoryless part of the filter is then adjusted to give optimum performance.

The quadrature variables (q, y, v) are again suppressed, since their explicit inclusion

would not be of help.

The least-squares polynomial takes the form

N L
zN(U)=Z b F(u u (50)

n= 1 j l J=1 U( jl ) (50)n

=1n

There is no constant (n=O) term because ZN(U) = 0. (For least-squares filtering, = s,

but s = 0.) The coefficients b. . are determined in the usual Fourier-series
J' 'Jn

manner (16) by equating the averages

s F(uk... UkM) = ZN(U) FU(Ukl... ukM) (51)

From Eq. 50 and the orthogonality of different-degree basic polynomials, Eq. 51 can

be written

L
s FU(ukl 'uk M) b . FU(ujl...Uj FU(uk...UkMA (52)

ll J1.*. JM \ J1 JM) Vl M}

jM=1

Given any fixed degree M, the C M equations of the form of Eq. 52 must be solved

simultaneously for the coefficients. That a unique Cramer's rule solution exists

follows from the same considerations discussed in connection with Eq. 36.

It is important to observe that

zN(cU) = zN(U) (53)

This looks surprising until we recall that the two ZN's are different polynomials, with

zN(cU) optimum for input cU, and ZN(U) optimum for input U. We can derive Eq. 53

from Eqs. 37, 52, and 50. Physically, Eq. 53 must be correct because scalar multi-

plication of signal u should not change the operation of the appropriately revised opti-

mum system. The difference in functional form between zN(cU) and ZN(U) reflects a

practical difficulty with optimum nonlinear filters, namely, the dependence of their

performance on input signal level. Incidentally, everything mentioned thus far applies

also to the more general system shown in Fig. 3.

Suppose that the noise in the Fig. 1 system is zero (x_ 0), so that u p. Then the

least-square Wiener polynomial, now represented by zN(P) (P = {P 1... PLD is an
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inverse or an approximate inverse of the nonlinear operator. As in Eq. 50,

N
ZN(P) = X

n=l

L

j-1

j =1
n

A

ib. Fp(P .. n)31 ...- Jn (Pil '. .Pin)

in which the Fp's are the basic polynomials in P. The coefficients

determined as in Eq. 52.

One important property of zN(P) is that it can replace s in Eqs.

A
b.

J

(54)

are
I1.. . n

51 and 52. For,

n
u .... u. = X

J 1 Jn m=0
7

distinct
combinations

PiT(1) . PiT(m) XiT(m+ 1)
... x. (55)

JT(n)

where T is a permutation operator. This expansion follows directly from the fact

that u = pj + xj. Hence,

s Ul ... U. =

J1 3n

n

m=0,
n-m even

distinct
combinations

because x is independent of s and p, and x.

But, by construction (Eq. 51), T(m+1)

s PT(1)... p. xT(m) .XT(m+l)... X.
T( 1T) JT(m) JT(m+1) JT(n)

. x.JT(n)21T(n)

(56)

= 0 when n- m is odd.

SPJT() . PjT(m) = ZN(P) PjT(1)
m... p m) (57)

· JT(m)

if N > m. Substituting zN(P) for s in Eq. 56 therefore

tention is proved.

changes nothing, and our con-

A

We observe that if b. .i n 0 (Eq. 54) whenever n < N , then bk1... 0

(Eq. 50) whenever m < N o . For, Eq. 57 must vanish if m < N, and thus, because of

Eq. 56, the left side of Eq. 52 is zero if M < N o . But this means that Eqs. 52 are

homogeneous for any fixed M < N, and the corresponding coefficients are all zero. If
A 0

some b. .j 0, Eqs. 52 are not ahomogeneous set for M = n, and some bk k 0.
... n

Taken together, these results demonstrate the important fact that the lowest degrees

of the nonvanishing basic polynomials comprising zN(P) and zN(U) are the same

(designated No).

Incidentally, it can be shown that zN(P) is a mean-square limit of N(U) as

x 0, if p and s are held constant. This fact depends on the continuity of the

polynomials representing these functions. However, a detailed proof is beyond the

scope of this report.
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3.5 OPTIMUM LOW SIGNAL-TO-NOISE-RATIO FILTER PERFORMANCE

The output signal-to-noise ratio, y o, of a least-squares filter, ZN(U), in a system

such as that of Fig. 1 or Fig. 3 is a function solely of the quantity ZN/s , from Eqs. 21

and 28. Assuming that s 2 is fixed, we shall study the behavior of z2 (U), and hence of

T o , as afunction of the input signal-to-noise ratio, i =p 2/x2 (Eq. 23). For convenience,

p is assumed to be fixed. Then, qualitative results follow from the proportionality

1 (58)

x

To justify the use of Eq. 58, we must show that multiplying p and x by the same

2
positive scalar (which leaves their ratio, yi, invariant) has no effect on zN(U). But
this is the same thing as replacing the signal u = p + x by the signal cu = cp + cx and

using the modified zN(cU). It follows from Eq. 53 that

zN(cU)= zN(U) (59)

as required.

From Eq. 50 and the orthogonality of different-degree basic polynomials,

N L
z2(U) n: Z U. ...ZN (U) Z Z bjJ b F Jn Ukn ) (60)

n j 1= .. n 1 kn U ujn)(F 1 u)

j =1

k =1

k =1n

k < . <k

where N is the lowest degree of the nonvanishing basic polynomials in N(U), from

the discussion in section 3. 4. The use of Eqs. 52, 34, and 36 demonstrates that z2 (U)

is equivalent to a rational fraction in averagedproducts of u.-variables; some averages
J

2
also include the variable s. By using Eqs. 55-57, zN(U) can then be written as a

2
rational fraction in averages of products of pj- and xk-variables. Holding p constant

means that all pj-averages (and s 2 ) remain constant. But
n/2

x ... x. x 2 (61)
J1 Jn

Since the average on the left is zero for odd n, only integral powers of x will arise.

We are especially interested in the situation in which yi is small - which means large
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2 2
x relative to p (proportionality 58). Thus, an expansion of zN(U) in the largest

powers of x2 , by Eq. 61, is equivalent to an expansion of z2(U) in small powers of

Yi. From Eq. 22,

k

Y, k=l (62)

~~~~k-lt~~~2 2

Finding the M smallest powers of y i in a small-yi expansion of z2(U) and using the

first M terms in Eq. 62 provides an M-term expansion of yo in the lowest powers of

Yi. This is most useful near the limit yi = 0, where we only need M = 1 or 2.

From a study of Eqs. 55 and 37 we see that the average

FU(u . . un) FU(uk... ukn) (63)

n

is of order x, or lower, for large x . In order to find the order of magnitude of the

b. . coefficients, it is helpful to obtain a number of intermediate results.
J1 ... Jn

Consider the average

n
u j uPj .. p .pj x ...

ujl.31 Jn m=0, distinct iT(1) T(m) JT(m+1) JT(n)
n-m even combinations (64)

which follows directly from Eq. 55 and the independence of p and x. This average is

dominated by small-m terms when x is large, and it might be expected to behave

somewhat like an averaged product of Gaussian variables. We shall show that the

pairing formula taken from Eq. 38,

u ... u. - u. u. ... u. u. (65)
J1 Jn distinct JT(1) JT(2) JT(n-1) JT(n)

pairings

is correct for the m = 0, 1, and 2 terms of Eq. 64. That is, formula 65 is correct

___n/2 (n-2)/2 (n-l)/2

for terms proportional to x2 and x2 if n is even, or to x2 if n is

odd. To obtain these results, we must assume that p = 0. This assumption is not very

restrictive because we are ultimately interested in the basic polynomials for which

FU[(ui- 1 ) ... ( jn ) FU(U..U j * un ) (66)

This follows from the unique representation argument of Eqs. 32-33.

First, suppose that n is even. The right side of Eq. 65 can then be written
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n

X E PjT(1)p. p.
m=0, distinct PT(1)JT(2)

m even pairings

... PJT(m-) p. p.T()

X X . ... x. x.

JT(m+l)XJT(m+2) iT(n--l) T(n)
(67)

because ujuk
= PjPk+ Xjxk The m = 0 terms in expression 67 are just the pairing

formula expansion of the m = 0 average in Eq. 64. Similarly, it can be seen that the

m = 2 terms in Eqs. 64 and 67 must also agree. Neither expression has m = 1 terms;

thus the approximation claimed for Eq. 65 is correct when n is even.

Now, suppose n is odd. The right side of Eq. 65 vanishes because the pairing is

impossible. There are no m = 0 or m = 2 terms in Eq. 64 now, and the m = 1 terms

are zero because p = 0 implies pj = 0 for all j. Therefore, the approximation claimed

for Eq. 65 is also true for odd n, and hence for all n.

Recall that the pairing formula was the basis for deriving all Hermite polynomial

formulas exhibited in section 3. 3. Therefore, these formulas apply whenever averaged

products of uj-variables are under consideration, and are correct for terms proportional

to the highest possible power of x2 . We shall show that these formulas apply to a

limited (but useful) extent when the averages include basic polynomials in P. The

structure of the basic polynomials in U was given by Eq. 34:

n-l

FU(u .. .Ujn) . n- . -
9 J1 Jn J 1 Jn m=0

L

k- =1 .. Uk 1' Ukm)

k =1m
k <. ... <k

1- - m

We would expect Eq. 46 to be a good large-x2 approximation to this equation; this means

that

ak km U(m+1.k. m JT(m+ 1)
(68). u. (n)

JT(n)

if {k 1 --- k m = T(l).---T(m) ) (a subset of the leading term subscripts

{jl1.. .in ) and n-m is even. Otherwise, we should have ak k From

the preceding discussion, these approximations must be correct for terms proportional

(n-m)/2 (n-m-1)/2
t 2 2 O) in a large-x2

to x2 (n- m even) or to x2 (n-m odd and p = 0) in a large-x2

expansion of ak . No higher powers of x2 can be present in such an expansion
... m

because of Eqs. 64 and the proportionality, ak .. k c N-M
ak 1.. ' kM o 

Hence, Eq. 68
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is correct for the terms proportional to the highest possible x power.

Next, we investigate the average

Fp(P.. Pj) Uk... Ukmkm

m

K=n, distinct
m-K even combinations

Fp(PJ .. PJn) PkT(1) ... PkT(K) Xk
T(K) T(K+ 1) ... Xk

T(m)

(69)

which follows from Eq. 55. The sum over n can start with K = n because of the orthogo-

nality property of F Pij). This also shows that the average is zero if n > m.

For large x , we claim that an approximate formula that is closely related to Eq. 42

holds.

Fp(PJl .. P) Uk km1m

E
distinct

combinations

UkT(n+
T(n+1)

... uk
T(n)

(70)

Since Fp(Pjl- ... Pj) kT(1 )
UkT(n) = Fp(PP J ... ) P T1) PkT(n)

uk ... uk
kT(n+ 1) T(m)

by xkT
kT(n+ 1) kT(m)

in Eq. 70 yields the K = n terms in

(m-n)/2

Eq. 69. Hence, Eq. 70 is correct for terms proportional to x2 , if m- n is

(m-n-1 )/2
e v n f - s d n d = O . t e t e m r o o t o lt- 2

even. If m- n is odd and p = 0, the terms proportional to x are zero in

Eqs. 69 and 70. Therefore, Eq. 70 is correct for terms proportional to the highest

possible x power, just as in the other large-x approximations.

It is now possible to conclude that the basic polynomials in P and those in U exhibit

an approximate joint orthogonality property (similar to complete orthogonality) for

large x . Specifically, we claim that the average

(71)
Fp(Pjl. .. Pn) FU(Ukl .Ukm)

has these properties for large x :

(a) If n > m, it is zero.

A0

(b) If n = m or n = m - 1, it is of the order of x (constant).
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(m-n-2)/2

(c) If n < m- 1, it is of the order of x2 , or less.

The first statement and the n = m case of the second statement follow directly from

Eq. 69. Statements (b) and (c) are true because the basic polynomials in U have been

shown to behave like Hermite polynomials in averages, to an approximation that is valid

for terms proportional to the highest possible power of x , and this behavior includes

approximate complete orthogonality when the set P is joined with the set U. The whole

line of argument heretofore has been somewhat sketchy because clarity depends on a

real understanding of the properties of Hermite polynomials as outlined in section 3. 3,

and not on a more detailed discussion. It is possible, but comparatively quite compli-

cated, to prove the statements concerning Eq. 71 without reference to Hermite poly-

nomials.

We are now able to find the order of magnitude of the coefficients b. (Eq. 60)

in powers of x2 for large x . Recall that these coefficients are determined by the

Cn equations of the form of Eq. 52, with M = n. From expression 63 and then
associated discussion, the determinant of these simultaneous equations cannot be of

_n

order greater than x2 raised to the Cn + L - 1 power. That the order of the determinantn

is at least this large for large x can be seen by temporarily letting p 0. The

resulting determinant has terms of only the order in question and cannot vanish, for

the reasons mentioned in connection with Eq. 36. But returning to the case for p 0

does not add any terms of the order in question, and so our contention is proved.

The numerator determinant in the Cramer's rule solution of Eqs. 52 has one column

consisting of the averages

s FU(Ukl..Ukn) ZN(P) FU(uk... ukn) (72)

n

if we assume that N > n. Thus, x2 raised to the C n+L-l-1 power and multiplied byn
the largest of these averages gives a bound on the order of the numerator determinant.

Let No be again the lowest degree of the nonvanishing basic polynomials in zN(P).

Then the average in Eq. 72 has these properties for large x :

(a) If n < No , it is zero.

2
(b) If n = N or n = N + 1, it is of the order of x 

(n-N -2)/2

(c) If n > N + 1, it is of the order of x , or less.
0

These properties are a consequence of the similar properties of Eq. 71. If we make
n

use of Cramer's rule, these statements will apply to x2 b.
J''i
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By using Eqs. 58, 60, 62, 63, and 72, we can assemble the low signal-to-noise-ratio

qualitative results in compact form. The expansion of yo in powers of i for small i

can then be characterized by the following statements:

(a) The No-degree basic polynomials in ZN(U) supply yo and higher powers of yi

to the y expansion.
N +1

(b) Any (N + 1)-degree basic polynomials in ZN(U) supply yiNo and higher powers
of i to o.

(c) Any greater-than-(N + 1)-degree basic polynomials in ZN(U) supply no lower-
N+2 0

power terms than i o to To.

Notice the dependence of these statements on N, the lowest degree of the basic poly-

nomials in N(P) and N(U). These statements together show that To behaves as i o

(except for a constant multiplier) when i - 0. Thus, the system performance at low

signal-to-noise ratios is inversely related to the size of No, and systems with a large

linear (N = 1) component will give the best performance in this range. These state-
0

ments also show that ZN(U), for any N > No , converges in performance (and in the

mean-square sense) to zN (U) as i - 0. Since zN (U) consists solely of N -degree
O O

basic polynomials, the optimum filter takes on a relatively simple form at low signal-

to-noise ratios. Finally, these statements show that zN + 1(U) is optimum when the
0

N N+1
expansion of TO includes just yi o and yi o terms. However, it is not possible to

say, in general, that zN(U) is optimum when yo includes terms up to i.

Suppose that we have a system like that in Fig. 1 in which the additive noise is not

Gaussian. The fact that zN(P) and ZN(U) have the same lowest degree, N , for their

N
nonvanishing basic polynomials is unchanged. It is also true that yo behaves as i o

when yi - 0. The difference is that basic polynomials of degree greater than N can

N
supply "y o terms to the expansion of 'y0. Hence, N (U) may no longer be optimum

0

near the low signal-to-noise-ratio limit; this necessitates a polynomial filter with

higher-degree terms in this range. It would be interesting to explore the low signal-to-

noise-ratio case in greater detail for non-Gaussian noises and attempt to relate noise

characteristics to the performance and structure of the optimum filter.

3.6 EXAMPLES OF SIMPLE SYSTEMS

Consider the class of systems in which p (Fig. 1) is a zero-mean Gaussian signal.

Then u = p + x is Gaussian, and variables in the set U + P = {u 1 . - . uL 'Pl, PL )

have a joint Gaussian distribution. Therefore, the basic polynomials GU in U and Gp

in P are Hermite polynomials, and exhibit complete orthogonality with respect to

the set U + P. As might be anticipated, several results of section 3. 5 can be

strengthened for the Gaussian case.

The major difference between the Gaussian and non-Gaussian cases shows up clearly
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in Eq. 71. If p is a Gaussian signal, the average shown there is zero unless m = n, by

the complete orthogonality property. If m = n,

Gp(PJl... P ) GU(ukl. ukn) = G(Pl Pi)uk.. kn

=Gp(P ... Pjn)Pk...Pkn (73)

which is also correct in the non-Gaussian case. Notice that this average involves none

of the xk-variables. Following essentially the same reasoning as in section 3. 5, we

are led to these conclusions:
A

(a) The M-degree basic polynomials contained in zN(P) (N > M), and none having

other degrees, determine the coefficients of the M-degree basic polynomials in ZN(U).
M

(b) The M-degree basic polynomials contained in N(U) supply only yi and higher-
power terms to a small-yi expansion of yo.

The first statement shows that the structures of N(P) and N(U) are more closely

related here than in the general case. In particular, the degrees of the nonvanishing

basic polynomials in zN(P) and in N(U) are the same, whereas, in general, this is

only true for the lowest (N ) degree. The strongest version of the first statement,
0

which is generally valid for non-Gaussian signals; is that no basic polynomials in

zN(P) of degree greater than M can influence the M-degree coefficients in N(U). It

has already been emphasized that the second statement is only true in general for

M = No , N + 1, and N + 2 (it is trivially true for M < N).

A simple Gaussian, memoryless example illustrates one possible type of system

behavior. Assuming that p is a Gaussian signal, we let

S = ZN(P) = Gp()

where N > n, of course. From the preceding discussion, we must have

zN(U) = b Gu(un) (74)

for N > n. Let p2 = 1, for simplicity, and notice that this makes proportionality 58 an

equality. The formulas of section 3. 3 make it easy to compute the averages

2
s n

n

G 2 (un) =n! u2

n

= n! 1 + x2 )

s GU(u) = n!
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With the aid of Eq. 52, we can now calculate the coefficient b in Eq. 74:

1
b=

Therefore,

2 n
zN(U) 1 Yn

s 2 (12) n (l+Ti)n

in which we have introduced i 1 l/x. Finally, from Eqs. 21 and 28, andthebinomial

expansion, we have

n
Nyi

io n-i 1 (76)o n-1
z nC m

m=O

n' n
nwhiere Cm nt Notice that as i -0 , we obtain yo yi , which agrees with

m (n--m)

the general low signal-to-noise-ratio results. A logarithmic sketch of the behavior of

Eq. 76 is shown in Fig. 4. (The particular curve shown is for the case n = 2.)

LOWER ASYMP
SLC

Fig. 4. Signal-to-noise-ratio curve.

It may be possible to improve the performance of a linear system by using a non-

linear filter, if the signal p is not Gaussian. The following example is interesting

because the optimum filter at both high and low signal-to-noise-ratio limits is linear,

but it is possible to improve midrange performance by nonlinear filtering. We again

choose a memoryless case, for simplicity. Let s = p = w2 - 1, where w is an auxiliary
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2
variable, having a Gaussian distribution with w = 0, w = 1. We now compute

z 1(U) = bl F(U )

z 2 (U) = b F(u) b 2 F(u 2 )

and compare their performance.

The calculations are routine, so we shall omit the details. The basic polynomials are

Fu(u) = u

2 8 2
Fu(u2 ) =u 2 8 u -(2+x2)

2+x

The coefficients can then be found:

2
22+x

4x 2

b2 2 3

24 + 36x 2 + 6x 2 + x 2

Observe that s = p = 2, and i = 2/x2. It follows that the linear filter performance

is described by

Yo =li (77)

as expected, since the linear filter merely changes the signal amplitude. The second-

degree filter performance is given by

1 + 7i + 9y2 + 3i3
c'Yi o 2 3 r'Y~~~~~~ i ~(78)

1 + 3Y 5 + 3yi + 5 i

It is clear that Eqs. 77 and 78 are practically the same for large or small values of

Yi, and that the latter is moderately larger than the former when i 1. The following

tabulation indicates the improvement in output signal-to-noise ratio in going from the

linear to the second-degree filter, for several values of input signal-to-noise ratio.

The results are expressed in decibels.

10 logl 0 zi Improvement

-15 db 0.48 db

-10 db 1.22 db

- 5 db 2.18 db

0 db 2.22 db

5 db 1.26 db

10 db 0.51 db
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Whether it would be possible to obtain this much improvement in a corresponding physi-

cal system is debatable because of the need for careful adjustment of the filter to match

the signal and noise levels. On the other hand, there may be cases in which the

potential improvement resulting from nonlinear filtering would be great enough to

merit a painstaking trial.
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IV. FREQUENCY-MODULATION SYSTEMS

4. 1 INTRODUCTION

One of the first detailed studies of interference suppression in FM communication

systems was carried out by Armstrong (17). The notion that wideband FM could be used

to reduce interference at the receiver to a level below that of an AM system with the

same carrier power was experimentally confirmed. Carson and Fry (18) put some of

the FM theory on a more mathematical basis. In much of the early work emphasis was

almost exclusively on operation at relativelyhigh signal-to-noise ratios, partlybecause

many important commercial applications required high-quality performance. Also,

there was some indication that frequency modulation did not retain its superiority over

amplitude modulation when the signal-to-noise ratio at the receiver input was low.

Almost one decade later, Rice (19, 20), Middleton (21, 22), and Stumpers (23) were

leaders in analyzing the FM noise problem from a statistical viewpoint. The input

noise was assumed to be additive and Gaussian. The detector in each case was an

idealized discriminator sensitive only to rate-of-change of signal phase (instantaneous

frequency), although Middleton also showed how to take into account amplitude variations.

These studies tended to confirm the conjecture (which checks with experimental evi-

dence) that FM only outperforms AM at relatively high input signal-to-noise ratios.

Furthermore, it appeared that at low input signal-to-noise ratios the FM bandwidth

should be as narrow as possible, in order to obtain optimum performance.

There have been many attempts to improve the noise performance of FM systems,

some of which are mentioned in the studies already discussed. Black(24) lists anumber

of other important papers. More recently, Baghdady (25) has employed a novel feed-

back scheme in which the limiter and associated filter are included. However, the

optimum performance potentiality of FM systems will remain somewhat uncertain until

a more general analysis is undertaken.

In this section, the Wiener polynomial filtering previously described is used to

examine optimum FM noise performance at low input signal-to-noise ratios. The

results indicate that present detection methods are not optimum, but not too far from

it either. It appears to be safe to affirm the advantages of AM over FM at low input

signal-to-noise ratios, at least in the transmission of continuous messages.

To emphasize the importance of taking a general nonlinear approach to the FM

noise filtering problem (filtering in this sense includes the detector), it should be

observed that the optimum filter must make use of amplitude fluctuations in the received

signal. This contrasts with the usual approach, in which some form of limiting is

employed to smooth out amplitude changes. In the vector FM signal model, amplitude

is proportional to vector length, and phase angle is equal to the vector angle. In Fig. 5

we have shown a transmitted signal vector, F, together with two possible additive

noise vectors, N and its negative. Because N and --N have equal probability of
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occurrence, so do the two resultant vectors, G

and G' (for a given F). Notice that thelength

of G is greater than the length of G', and that

for the magnitudes of the phase errors, e I < I E' .

We can similarly construct almost all possible

resultant vectors in equally likely pairs, and in

each pair the longer vector will have a smaller

Fig. 5. FM signal model. phase error. Hence, the amplitude of the

received signal is useful in providing infor-

mation about the probable size of the phase

error. However, we do not claim that this additional information will usually provide

more than a moderate improvement in output signal-to-noise ratio. From a practical

viewpoint, the complexity of a general nonlinear FM filter may often outweigh the

advantage of improved performance attained by its use.

4.2 FREQUENCY-MODULATION SPECTRUM

We shall now study briefly the spectrum of FM signals when the modulation is a

Gaussian wave. Knowledge of the spectrum is useful in choosing the linear networks

of Wiener filters with economy, but we shall not pursue this relationship here. Much

of the material presented in this report has evolved from Wiener's (26) work; a more

detailed account has appeared elsewhere (27).

We shall use the complex FM signal model,

im
g= e m

instead of the model with two real components, largely as a matter of convenience.

The phase, 0, is assumed to have a Gaussian distribution, with = 0, 02 = 1. The

quantity m is then the rms phase deviation, as well as being the modulation index.

Let us represent the complex FM signal model formally by the series

o0 (im )n

g= - (79)
n=0 n!

Wiener first changed this into a series of orthogonal basic polynomials (Hermite, since

0 is Gaussian). He then multiplied by the same series shifted in time, averaged, and

thus found the autocorrelation function

Rgg(T) = exp 2[R ()]} (80)

where R 0 0 (T) is the autocorrelation function of 0. It was not difficult to show that

Eq. 80 splits into two parts. One part is the autocorrelation function for

cos ,
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Rcc(T) = e cosh m2 R 0 0(T) (81)

the other part is the autocorrelation function for sin 0,

2
-2 2

Rss(T) = e m sinh m2R 0 0(T) (82)

Equations 81 and 82 are interesting because in practice the FM signal can be thought of

as containing the two corresponding real components, but not as the complex variable

of the FM signal model.

The power density spectrum can be written as a term-by-term Fourier transform

of the power series expression for Eq. 80,

2n2 o m
Sgg (f)= e- Z 7I Hn(f) (83)

where

H (f) = 6(f)

i2rfT
H1(f) f R 0 0 (T) e dT (84)

Hn(f) = Hn (x) H 1 (f-x) dx

The even terms in Eq. 83 come from Eq. 81; the odd terms, from Eq. 82. Notice that

since H1 (f) > 0 and _ Hl(f) df = 1, H(f) could be considered abstractly as the proba-

bility density function of some random variable, f. We shall make use of this interpre-

tation later.

Now suppose we desire to represent S gg(f) by a partial sum of the series in Eq. 83.
gg

Let A represent the total power left out in such a sum. Since f Sgg(f) df = 1, A is

also the fraction of the power left out. The length of the partial sum is determined by

the size of A. For example, if m 2 > 2, summing over those terms for which

(1-a)(m2-1) < n < (l+b)m 2 (85)

gives the bound

1 3
A < 21- + (86)

am 1
a bi 2 2 m

as shown elsewhere (27). To hold the bound on A constant for large deviation m, we

must have, approximately
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1
acc

m
(87)

b cc |m

Therefore, the important terms in Eq. 86 are those for which n 2 1, if m is large.
m

However, from Eq. 87 the number of terms with subscripts satisfying Eq. 85 is pro-

portional to m. Hence, the actual number of terms that must be included in Eq. 83 is

of the order of m.

We can be more definite about the form of S gg(f) for large values of m. Recall

that Hl(f) can be likened to a probability density function. From Eqs. 84, Hn(f) can
then be interpreted as the probability density function for the sum of n independent

f-variables. The central limit theorem (28) shows that Hn(f) assumes a normal form

as n - -. The shape of Hn(f) does not change greatly for small percentage changes in

n, so

exp f 

2m2s2
S (f)_ (88)

ggf ) ~
(299 )1/2

(2 r 2s )

as m - o, where

00

s2 = H (f) df (89)

and we assume that H(f) is a continuous function. Let

1 dO
s 2 dt (90)2 7 dt

Then it follows that f2 Hl(f) is the power density spectrum of the message, s, which
fact gives more significance to Eq. 89. Notice that ms is the instantaneous frequency

of the FM signal, from Eq. 90, and that replacing f by ms in the right side of Eq. 88

gives the probability distribution of this instantaneous frequency. Therefore, Eq. 88

verifies the instantaneous-frequency concept for large m and Gaussian phase - that the

power in any part of the signal spectrum is proportional to the probability (or average

amount of time) that the instantaneous frequency occupies the given part of the spectrum.

Returning to the series in Eq. 79, recall that Wiener changed this into an orthogonal

series before proceeding. The orthogonal series is guaranteed to converge inthe mean-

square sense. It is interesting to see under what conditions Eq. 79 converges in the

mean-square sense. (This obviously happens if 0 is a bounded variable, for then the

series converges uniformly. ) If we replace mO by w and write
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N (iw)n

9g~~~ ~~~~~~N Z C nl ~~~~(91)
n=0

then gN approaches g in the mean-square sense if and only if

19- 2 (92)

as N - o. An obvious necessary condition for convergence is

2 _2N

-N 2N- 10 (93)

as N - .

Next, we calculate formally

E n-NE1 F(m)
n=N+l m=0 (n-)! (n+m)!(94)

n=N+l [ m=0 (n-m)' (n+m)w

where F(m) = 2(-l)m , m i 0, and F(0) = 1. The bracketed sum is an alternating series

bounded in magnitude by 2/(n!)2 . Hence,

00

1 N <2 > 2 (95)
n=N+ 1 (n!)

Inequality 95, together with Eq. 92, yields the sufficient condition for convergence

2n
2, 2 < 00 (96)

n=0 (n ) 2

This is stronger than the necessary condition, Eq. 93.

For a simple example of the preceding results, let w = x ,where x is a zero-mean

Gaussian variable. It can be shown that the sufficient condition for convergence, Eq. 96,

is satisfied if C < 2, or if C = 2 and x2 < 1/4. On the other hand, the necessary con-

dition, Eq. 93, is violated if C > 2, or if C = 2 and x2 > 1/4. Hence, we did not need

the orthogonal series for the preceding spectrum computation with a Gaussian phase

signal (C = 1), and this fact has been verified by direct calculation.

4.3 POLYNOMIAL FILTERING

The FM signal model of Eq. 7 will be employed henceforth. In this case, 0e is the

phase-error angle, which might be introduced by lack of perfect phase synchronism in

carrier demodulation. We shall begin with "random-phase FM, " in which 0 e is

assumed to be uniformly distributed over an interval of length 27r. If 0 e(t) is treated
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as a time signal, then we are assuming that 0 e(t) and 0 e(t) + c are equally likely, where

c is a constant. From the standpoint of Eq. 7, this constant c could be limited to an

interval of length 27r. Random-phase FM is a suitable model for practical systems that

are phase-insensitive such as those employing a conventional discriminator. For this

purpose, it is often satisfactory to let 0e be a randomly chosen constant, rather than a

random signal.

For random-phase FM, the probability densityfunction relatingthe message andthe

received signal variables has the partially odd symmetry property

p(s, u, v) = p(s, -u, -v) (97)

For, u = cos (0-0 e ) + x, so that keeping s (hence 0) fixed, shifting e by 7r, and

replacing x by -x changes u into -u without affecting any joint probabilities. The

same comments apply to v = sin (0-0e) + y. This proof also applies to all higher-order

joint probabilities relating s, u, and v, so that

p(s, U, V) = p(s,-U,-V) (98)

where U and V are the set of outputs of the linear networks in a Wiener filter (Fig. 2)

as defined in Eqs. 12. If we average out s in Eq. 98, p(U, V) = p(-U,-V). From the

discussion of the symmetry property for any set of variables, U, it follows that the

basic polynomials in U and V have all odd-degree or all even-degree terms, just as

the Hermite polynomials. With the aid of Eq. 98, we find that the average of s times

an odd-degree basic polynomial is always zero. It follows that ZN(U, V), the least-

squares polynomial part of the filter, contains only even-degree basic polynomials.

We are now in a position to obtain some qualitative low signal-to-noise-ratio results

for random-phase FM. Since zN(U, V) contains only even-degree basic polynomials, it

has none of the first degree. If we assume that not all second-degree polynomials

vanish, it follows (see section 3. 5) that

of -Cy-Y2 (99)

as i 0. On a logarithmic plot, Eq. 99 would have an asymptotic slope of 2 as

?i 0; this agrees with known theoretical results (19-23), as well as many experi-

mental determinations. Hence, we may infer that random-phase FM is a realistic

model for conventional FM systems, and that such conventional systems are not grossly

inferior to the optimum system at low input signal-to-noise ratios, if we assume that

the system is not phase-synchronous.

For comparison purposes, observe that if 0e is not translation-invariant (the

frequency modulation is not random-phase), N(U, V) may contain first-degree poly-

nomials. If this is so, we have shown in section 3. 5 that

To ~ C' Ti (100)

for optimum filtering, as yi - 0. Such performance is akin to that of an AM system,

although C' could be quite small. No matter how small C' is, Eq. 100 can exceed
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Eq. 99 by an arbitrarilylarge ratio, if yi is sufficiently small. Of course, if C' is

too small in relation to C, the improvement attained by fullyutilizing phase information

may not be significant at signal-to-noise ratios that are large enough to be useful for

communication purposes.

It is helpful to introduce some simplifying assumptions, which will be in effect

henceforth. These simplifications are not needed to produce tractable problems. First,

we require symmetry of the message distribution,

p(s) = p(-s) (101)

and this is assumed also to hold for s as a random function (replacing s by -s does

not change any higher-order probabilities). We assume odd symmetry for the phase

functional

0[-s] = -[sl (102)

Notice that Eq. 102 is automatically true if 0 is a linear functional. Let the phase

error, 0
e , have a symmetrical distribution

P(-0 e ) = P(0e) (103)

and this holds also for 0 as a random function. The linear part of the Wiener filter is
e

assumed to be a tapped delay line, so that U and V are sets of samples of u and v,

respectively. We choose sampling because it implies that

n =cos (n-Oen) ~ (104)

n = sin ( 0 n--0 en)

where 0 - 0 is the corresponding sample of the phase angle. Finally, we let the
n en

noise samples be independent, which is equivalent to linear independence for the

Gaussian noise,

x x 
m n

l__ _ _ (105 )

if m ¢ n. Such independence would be true, for example, in uniform sampling of a

rectangular noise band at the Nyquist rate, so this assumption is not completely arti-

ficial.

In order to study the effect of the preceding assumptions on the class of problems

that can be handled, we observe that

p(s, u, v) = p(-s, u,-v) (106)

For, changing s (hence 0), 0
e , and y into their negatives does not change any joint

probabilities (see Eqs. 101-103); it leaves u unchanged, and converts v into -v. This

proof also shows that
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p(s, U, V) = p(-s, U, -V)

If we average out s in Eq. 107, p(U, V) = p(U,-V). Thus, the average of a product of

U- and V-variables will be zero if an odd number of V-variables is present. This

means that the basic polynomials in U and V can be divided into two classes, in one

of which all terms in each polynomial have an odd number of V-variables, and in the

other, only terms with even numbers of V-variables appear. Furthermore, the basic

polynomials from opposite classes are automatically orthogonal, even if they are of the

same degree. With the aid of Eq. 107, the average of s multiplied by a basic poly-

nomial from the even-number-of-V-variables class is zero. It follows that only basic

polynomials from the odd-number-of-V-variables class can appear in ZN(U, V).

Let us return to random-phase FM. Combining the simplifying assumptions with

the earlier results, we can make the following statements.

(a) The nonvanishing basic polynomials in zN(U, V) (for least-squares filtering) are

of even degree, and each term has an odd number of V-variables (hence, also an odd

number of U-variables).

Next, suppose that /2 is added to 0
e , s is replaced by -s (hence 0 by -0),

x by y, and y by -x. No probabilities are affected, but U-variables are changed into

the corresponding V-variables, and V-variables into -U-variables. From Eq. 107

and the fact that all basic polynomials under consideration have odd numbers of U- and

V-variables, the averaged product of such a transformed polynomial with s is

unchanged in magnitude and sign. This leads to a second observation about random-

phase FM filters.

(b) The terms making up the nonvanishing basic polynomials contained in N(U, V)

can be written in pairs, the second term of each pair being formed from the first by

interchanging U- and V-variables and adding a minus sign.

Property (b) is useful because it cuts in half the number of independent coefficients

that must be found in constructing ZN(U, V). For example, let us consider some possible

second-degree basic polynomials that might appear in zN(UV). From the first property,

we cannot have FU, V(umun) because the leading term has an even number of U-variables.

From the second property, we can use FU, V(umvn-unvm ) in place of FU, V(umvn) and

FU, (unvm). Also, FU, (umvm-umvm) = 0; this shows that FU V(Umvm) does not

appear. Notice that

F (u v-u v )=u v -u v (108)UV m n nm mn nm

because umvn = 0, and orthogonality to first-degree terms is automatic.

It is relatively easy to calculate the low signal-to-noise-ratio least-squares filter

for random-phase FM, under the simplifying assumptions made previously. The

important average is

s(u v-u v ) = s sin ( -0 m ) cos ( -0 (109)
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in which we have used all of the given symmetry properties. Under the further simpli-

fication that Be is a randomly chosen constant, cos (en-Oem) = 1. Then,

L
N(U, V) 27i2 s sin (0n- m ) (umvn-u nv m ) (110)

m=1
n>m

as Yi - 0. The coefficient 2y can be discarded for maximum signal-to-noise-ratio filtering,
and thus the filter will be independent of 'yi (except that it must be small). This inde-

pendence of the filter from input signal-to-noise ratio does not usually occur in nonlinear

filtering, but it is certainly a great practical help when it does. Another feature of

Eq. 110 is that the sum roughly models a lowpass filter such as the one following the

discriminator in a conventional FM receiver. The precise nature of thelinearfiltering

represented by this sum depends, of course, on the coefficients s sin (n-em).

For further study of Eq. 110, we introduce the polar-coordinate variables r and q:

u = r cos

v = r sin (111)

which are especially appropriate to a vector representation, as in Fig. 5. Because we

have employed sampling,

u = r cos tn n n
(112)

v =r sin 
n n n

Polar-coordinate samples are designated by the usual set notation:

R = {r1 ... rL}~

1 ,L}} (113)

After transformation by Eq. 112, Eq. 110 becomes

L
ZN(R, ) 2 i s sin (0n -O m ) mrn sin (--) (114)

1 m=1 n m m n n rn

n >m

Notice that only differences between phase variables appear, for both the transmitted

phase, 0, and the received phase, . This suggests differentiation, atleast for samples

spaced close to each other in time. Hence, it can be argued that the natural modulation

for random-phase frequency modulation is to make the instantaneous frequency, dt 

proportional to the message, s. This is not a conclusive argument, by any means, but

it is in fairly good agreement with standard practice in FM systems. Another interesting

feature of Eq. 114 is the appearance of rmrn as a weighting factor that gives more

emphasis to the large-r samples. This agrees qualitatively with the discussion of

Fig. 5. We found then that larger r can imply smaller probable phase error, - 0.
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For random-phase FM, the output signal-to-noise ratio has already been found to

be of the form -o C 2y as i -- 0 with optimum nonlinear filtering. From Eqs. 110,

28, and 22, we find that

2 L 2
C --- E s sin (n-0 m ) (115)

2m=l
n >m

as -i - 0. We can bound Eq. 115 by assuming that sin ( n- m ) = ± 1 when s = ±s

(a constant). The result is

C < L(L+ 1) (116)

Because the phase differences in Eq. 115 are not all independent, a closer bound for C

is around L 2/2, at least for large L. When L = 2, the bound in Eq. 116 is clearly attain-

able.

Next, let us suppose that e is not uniformly distributed. Then the optimum filter

at the low signal-to-noise-ratio limit is usually linear. Recall that because of the

symmetry conditions (Eqs. 101-103), all of the U-variables drop out (terms must have

an odd number of V-variables). The important average is

s vn = s sin 0 cos 0 (117)n n en

If we pick the most favorable case, in which there is no phase-error signal (0 e - 0),

then cos 0 = 1. In this case,en

L

zN(U, V) 27i s sin n vn (118)
n=1

as -yi - 0. The coefficient 2i can be discarded without changing the output signal-to-

noise ratio; this makes the filter independent of 'i, as usual for a linear filter. It might

be expected that the coefficients s sin n usually turn out so as to make the filter

essentially lowpass. It is interesting to note that for narrow-band frequency modu-

lation, a linear filter like that of Eq. 118, operating on the quadrature signal, v, would

be close to optimum for all signal-to-noise ratios, not just for the lowest.

Transforming Eq. 118 by means of Eq. 112 gives

L

zN(R, ) 2i s sin0 rn sin n (119)n=1 n n n

Here, the transmitted and received phase variables appear singly; this fact suggests

that the appropriate frequency modulation in this situation is phase modulation, with 0

proportional to s. Notice the appearance of rn as a weighting factor. Again, we have

agreement with the probability relationship between the magnitudes of r and - 0.

The output signal-to-noise ratio for optimum nonrandom-phase FM performance is

of the form yo - C'I i as ,Yi - 0, from Eq. 100. With the use of Eq. 118, we find that
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L 2
C'' - 2 s sin n (120)

2n=l
S

as yi - 0. We can obtain a bound, C' < 2L, by letting sin 0n = +1 when s = s . This

bound is clearly attainable for any L by a binaryphase-reversal system, which is really

equivalent to a phase-locked binary PCM system with suppressed carrier.

For wideband frequency modulation, the required transmission bandwidth, W, is pro-

portional to the modulation index, m; that is, W cc m. If the interfering noise is white,
1

varying the bandwidth without changing transmitter power means that i cc W' Under

these conditions, we have the well-known relation between output signal-to-noise ratio

and modulation index

0c cM 2 (121)

as long as i remains large enough sothat noise peaks are almost always less than the

peak signal amplitude (29).

Now, suppose that 'Yi is small. Observe that the necessary number of samples, L,

for achieving a good signal representation is proportional to the bandwidth; that is,

L cc W. Also, consider the average

s sin mn s sin mn p(s, 0 )ds d (122)- 0n n

If the integrand on the right side of Eq. 122 is an integral (a smoothness condition that

will almost always be satisfied in practice for continuous systems), a special form of

the Riemann-Lebesgue theorem (30) shows that

s sin m cc 
-- n m

or smaller, for large m. With the use of the results derived after Eq. 120, we can

calculate that

t 01 (123)7o 2
m

or smaller, if m is large and i - 0. Practically the same proof shows that Eq. 123

holds for random-phase FM, or for any sort of phase-error signal, 0
e . Notice that

this is just the inverse of the relation in Eq. 121. Hence, narrow-band frequency modu-

lation generally outperforms wideband frequency modulation at low input signal-to-noise

ratios; this is just the reverse of the high-input signal-to-noise ratio situation. Com-

parison with AM performance can be made by recalling the similarity between phase-

synchronous narrow-band FM and AM.
It does not appear profitable to use Wiener polynomial filtering for FM signals at

high input signal-to-noise ratios, since a high-degree polynomial must be computed in

order to achieve a good filter. Moreover, conventional techniques can be used to pro-

duce nearly optimum results in this range. The complexity is also great at intermediate
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input signal-to-noise ratios, but here it seems certain that conventional techniques are

not optimum (review the argument about using signal amplitude and refer to Fig. 5). We

leave for future speculation the question of whether or not a simple nonlinear correction

filter might be designed to make a worth-while improvement in the performance of a

conventional FM discriminator.

4.4 EXAMPLES OF FM SYSTEM PERFORMANCE

In order to develop some feeling for the averages used in obtaining low signal-to-

noise-ratio performance of FM systems with optimum filtering, we shall compute the

quantity

2
s sin ms

C = (124)
2

s

for several distributions of s. Similar averages appear in Eq. 115 if 0 - 0m cc s, or

in Eq. 120 if On x s. Notice that the bound C < 1 is attainablefor abinary distribution

(for example, let s = ±1 and m = r/2).

First, let s have the rectangular distribution

2' Is <I1
p(s) = (125)

L0, Isl > 1

From Eq. 124, we can compute C. The results are:

m C

0.5007 0.49

0.6627r 0.57 (max)

1. 000r 0. 30

The middle value is the maximum for C. Since system performance increases with C,

these results give some indication of the importance of properly adjusting the modu-

lation index, m. Also, note that the maximum value of C for this distribution is not

much over half that attainable for a binary message. This reflects the fact that a dis-

crete signal usually has better signal-to-noise-ratio performance than a continuous

signal.

Next, we try the triangular distribution

rl -Is, Isl s 1
p(s) = ic t >a (126)

We compute again and the results are:
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m C

0. 500r 0.29

0. 8337r 0. 44 (max)

1. 0007r 0.40

The fact that this maximum for C is lower than before may be explained roughly by

observing that a rectangular distribution is closer to being binary (the optimum) than is

a triangular distribution. Also, remember that we are mapping the message, s, into

a function, sin ms, that has a multivalued inverse if the range of ms exceeds r.

Hence, distributions that are more spread out for a given variance might be expected

to provide lower performance.

In the light of the preceding argument, it is interesting to compute C for an unbounded

message. Therefore, we assume that s is normally distributed.

-s2/2
p(s)= e /

(27r)1/

With some effort we can compute the average

-m2/2s sin ms = m e

Therefore, when m = 1,

1C =-10.37
max e

As expected, this maximum is lower than those already computed, largely because the

extensive tails of the distribution are mapped many-to-one in the modulation process.

It is worth while to consider a simple example of lowpass behavior for the linear

filter of Eq. 118 (used for optimum low signal-to-noise-ratio filtering of quadrature

signal v when 0e - 0). If we discard the coefficient 2 i, and define

a = s sin 0
n n

the filter impulse response can be written in the form

L
h(t) = an6(t Tn)

n=l

where the Tn are the sampling times. The power density spectrum for this filter is

readily found.

L

H(f) = a ma cos 2r (Tm Tn) f
=1n

n=1

Assume the spectrum of signal v has no important frequency components above W, so
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that we need only investigate H(f) for f < W. Such a restriction is usually needed for

a filter constructed from a finite number of all-pass elements, of course.

For our particular example,

1
T - T =
n+l - n 2W

for all values of n, which implies uniform sampling at the Nyquist rate. Then, we

assume that all filter coefficients are equal. Admittedly, this is a somewhat artificial

situation, but the results are not unrealistic. We let an = 1/L for all values of n, so
n

that H(O) = 1. The resulting filter spectrum is

L-1

H(f) =+ (1 nl cos nr W (127)

Although we shall not go into details here, it can be shown that if L > 1,

H(2W) = 

is the lowest-frequency zero of H(f), and most of the area under H(f) is within the band

marked by this zero. Since it is reasonable to assume that the message bandwidth is

proportional to W/L, this result appears to be qualitatively correct. To help visualize

these spectra, we have sketched Eq. 127 for L = 1, 2, and 4 in Fig. 6.

H

Fig. 6. Filter spectra.

4.5 DIRECT STATISTICAL APPROACH

In this section, the least-squares FM filter is of the form shown in Fig. 2. How-

ever, the nonlinear function, z(U, V), is represented directly as a conditional mean,

not constructed of orthogonal basic polynomials. We make all the simplifying

assumptions of Eqs. 101-104. The polar coordinates defined in Eqs. 112 are also used.

First, let us consider random-phase FM, with the simplification that 0 e is a randomly
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chosen constant. Straightforward (but somewhat lengthy) computation gives the con-

ditional mean (Eq. 24):

_-- 

(128)

I
0 1/2} U

;(+m En ;Em On) 

in which Xs ' 0 means "average X over s and the -variables"; X means "average

X over the 0 n-variables"; and Io(x) = Jo(ix) is the zero-order modified Bessel function

of the first kind. Note that only differences between pairs of phase angles appear, as

before, thereby suggesting differentiation and the importance of instantaneous frequency.

Samples of the vector length (signal amplitude), r, again show up as weighting factors,

in accordance with their relation to phase-angle errors.

With the aid of the power series (Jahnke and Emde (31)),

2

n=O n!]

Eq. 128 may be written as the ratio of two series. Notice, by the way, that only even

powers of yi appear in these series. As i 0, the denominator series converges in

the mean-square sense to 1 (its first term), and the numerator to a first term that is

identical to the second-degree polynomial of Eq. 114. This exact agreement in form

with the orthogonal polynomial representation ceases, however, after the first term

'because the two expansions are built up in different ways. Nevertheless, it is

encouraging to find this readily demonstrable similarity of the filters near the low

signal-to-noise-ratio limit.

Next, we exhibit the conditional mean filter for the case in which there is no phase-

error signal ( e - 0).e

zoo(R, ,) =

s, 0

s exp i 1 r cos (n- on)]

exp [2i rncos (n-On)

(129)
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The phase-angle variables appear singly this time; this suggests the importance of

phase modulation, as in the polynomial approach. The weighting by r-samples is still

present. We can again expand the numerator and denominator in power series, and as

i 0 the result converges in the mean-square sense to the first-degree polynomial
of Eq. 119. Actually, the low signal-to-noise-ratio filters for polynomial and conditional-

mean approaches agree in form-no matter what distribution is chosen for 0
e , and even

if other simplifying conditions are removed.

To increase our familiarity with the use of conditional means, we shall compute two

simple low signal-to-noise-ratio examples. Assume that the filter cannot make use of

amplitude information, as in a ratio detector. We begin with the conditional probability

density function

e n n n n n n enP(Rc~I0,0e) n or rnexp 1sln (+n-n-en) + (r-cos (t n0 _ r )) jj (130)

obtained by using the Gaussian noise distribution. If we form the series expansion for

the exponential and integrate out the R-variables, Eq. 130 becomes

L L-- 1/2

P('0, Oe) = (1-) + (2- 1 / n=( 1 cos (nn- -en)

L--2

+ (A) '4i E cos ( -O -e ) cos ( -0 -0 )+. (131)
m=1
n >m

for the smallest three terms in powers of yi.

First, we consider a random-phase case with L = 2, ms = 82- 01, and 0e1 = 0e2 = 0e

Integrating over 0e in Eq. 131, we obtain

P(1' (2 Is 1 'Yi
(2) 2 8r cos (2-1-ms)
47r

as Yi - 0. Let s have the rectangular distribution of Eq. 125. In the simple case

with m = 7r, the conditional-mean filter can be computed. The result is

'Yi
Z(, %2) - 2 sin (2

as Yi 0. The standard low signal-to-noise-ratio computation for this filter then gives

'0 - 0. 38 2y (132)

With the aid of Eqs. 115 and 124 and the comparable result for C, the coefficient of 2yi

in Eq. 132 must be compared with the value 0. 60 that is obtained when the optimum

filter can make use of amplitude r. Hence, the performance is improved noticeably

by using r, as we have claimed from the study of Fig. 5.

We can make a similar comparison when 0
e - 0. If L = 1 and ms = 01 (let ~1 =1 ),
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the first two terms of Eq. 131 become

1/2

p(+l s) - + i )T cos (4-ms)

as i - 0. Again, if we let s have the rectangular distribution of Eq. 125 and take

m = 7r, the conditional-mean filter is represented by

1/2

z) - ( ) sin 

as i - 0. Finally, for this filter,

'o - 0. 48 i (133)

Compare the coefficient of yi in Eq. 133 with the value 0. 60 that is obtained when r is

available for use in the optimum filter. We might speculate that even greater differ-

ences in performance may occur between optimum filters that do and do not use r, if

the input signal-to-noise ratio is intermediate (say, around 0 db). However, it would

probably be just about as easy (or difficult) to use the polynomial approach for such a

comparison, and we leave the question open for future exploration.
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