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Abstract

Bismuth Telluride (Bi 2 Te3 ) has a hexagonal close-packed structure and highly aniso-

tropic electrical and thermal conductivity. However, its thermoelectric -power tensor
is only anisotropic under two rather special conditions. It is shown theoretically, on
the basis of transport theory for the many-valleyed model of the band structure of
Bi2 Te3 , that one way in which the thermoelectric power of this material can be made

anisotropic is by causing two scattering mechanisms (lattice and impurity) to operate
simultaneously in the material. Iodine-doped n-type material accordingly exhibits an
anisotropy of thermoelectric power which is believed to be caused by this mixed scat-
tering, whereas undoped p-type Bi2 Te3 is found to have isotropic thermoelectric power

for any temperature up to room temperature.
The theory also predicts that the thermoelectric power can be made anisotropic if

there is simultaneous conduction by holes and electrons. Thus, above room tempera-
ture, when intrinsic conduction is setting in, the thermoelectric power of undoped p-type
material indeed becomes anisotropic.

Single crystals of Bi2Te3 were grown in a crystal puller, and were used to make the

necessary measurements of conductivity and thermoelectric power, in both crystallo-
graphic directions, over a wide range of temperature. These results of the measure-
ments were in agreement with the predictions of the theory.
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CHAPTER I

INTRODUCTION

At the time when the present study was undertaken, late in 1958, the occurrence of

anisotropy of thermoelectric power was somewhat of a puzzle. There was certainly, at

that time, no sound theoretical treatment of the origin of such anisotropy, although there

were published reports of early (Boydston 1927) experimental data on the semimetal

bismuth, and later reports (Goldsmid 1957) of observations of this effect in the semi-

conductor Bi2Te 3. Goldsmid gave a crude explanation of the effect in iodine-doped

n-type Bi2 Te 3 , using isotropic models, which we shall describe.

The materials in which this effect has been observed have all been crystals of

hexagonal (or rhombohedral) symmetry. A summary of all crystal symmetries in which

this effect might be observed has been made (Nye 1957). Two of the principal crystal-

lographic axes in these materials are equivalent for terms of first order in E, VT, and

H in the perturbation of the equilibrium distribution function. These two equivalent

principal directions (in the based plane) can be distinguished by magnetoresistance and

similar higher-order effects.

The electrical and thermal conductivity of the materials is generally highly aniso-

tropic. It turns out, however, that the thermoelectric power is only anisotropic under

certain rather special conditions that will be taken up in this work.

Bismuth is an intrinsic semimetal and thus has overlapping conduction and valence

bands. It is therefore a two-carrier system. The anisotropy of thermoelectric power

arises in such a system when the ratio of the mobility of holes to that of electrons is dif-

ferent in the two nonequivalent principal crystallographic directions. The detailed cal-

culation has been carried out independently here and by Chandrasekhar (1959).

The semiconductor Bi 2 Te3 has two kinds of behavior which depend on the range of

temperature considered and the level of doping. Above room temperature it becomes a

two-carrier system and exhibits anisotropy of thermoelectric power for the same reason

that bismuth does.

Below room temperature Bi 2 Te3 is usually a one-carrier system. Because the

maximum of the liquidus solidus curve is on the bismuth-rich side of stoichiometry,

undoped Bi 2 Te3 is p-type. It can become n-type by doping with sufficient iodine. The

anisotropy of thermoelectric power arises in iodine-doped n-type Bi 2 Te 3 because there

are two scattering processes, lattice and impurity, operating at once. This results in

a relaxation-time tensor from which the energy dependence is not factorable. In undoped

p-type material only one scattering process (lattice) operates and hence the thermoelec-

tric power is isotropic.

Goldsmid observed that the thermoelectric power was anisotropic in iodine -doped

n-type Bi 2 Te3 , but isotropic in undoped p-type material. He made a crude theoretical

calculation, for a one-carrier system, based upon the following reasoning. He observed
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that the thermoelectric power differed in the two nonequivalent principal crystallographic

directions, as does the electrical conductivity. Then, using the parameters for one of

the crystallographic directions, he imagines a homogeneous isotropic material with

spherical energy surfaces, constructed in such a way that it has these same parameters.

For this material, he works out the relationship between the thermoelectric power and

the electrical conductivity. He then does this same thing for a homogeneous model

having the parameters of the other crystallographic direction. He derives a relationship

between the difference of the thermoelectric powers in the two principal crystallographic

directions and the ratio of electrical conductivities in the two directions. He finds that

this relationship is confirmed by experiment on Bi2Te 3.

In this study we improve upon Goldsmid's work by analyzing carefully the more gen-

eral anisotropic many-valleyed model of Bi 2 Te3 . The relationship between thermoelec-

tric power and electrical conductivity which he derived is found to be true for the more

general model, provided that the electron statistics are classical. We also confirm his

experimental result.

Thus it has been possible to observe in single crystals of essentially one material,

Bi 2 Te 3 , anisotropy of thermoelectric power from two different internal mechanisms.

In Chapter II the theory of thermoelectric power is developed by using the anisotropic

many-valleyed model for the electronic constant-energy surfaces that was used by

Drabble (1956) to explain magnetoresistance in bismuth telluride. In the first part of

Chaper II the tensor relationship between the flux of particles and the gradients of tem-

perature and chemical potential for a one-carrier system is obtained. The thermoelec-

tric power for a one-carrier system is then obtained from these tensors and the

conditions for anisotropy are deduced. It was found that in order for the thermoelectric

power to be anisotropic in such a system, the energy dependence of the relaxation-time

tensor must not be factorable from it. It is shown that with the exponential type of

scattering approximation normally used to make analysis tractable the only way to obtain

this anisotropy condition is to have two competing scattering mechanisms, one of which

(lattice scattering) is anisotropic. The relationship between the conductivity ratios and

the difference between the thermoelectric powers for the two principal crystallographic

directions of the material is then shown to hold for the general model, if the situation

permits the use of classical statistics.

In the second part of Chapter II we consider a two-carrier system and find for it the

tensor relationship between the current density and the gradients of temperature and

chemical potential. The thermoelectric-power tensor is then found from these relation-

ships and the conditions for anisotropy of thermoelectric power are determined without

assuming a multiple -scattering mechanism. This anisotropy exists because the shape

and orientation of the constant-energy surfaces for the conduction band are different

from those for the valence band. The anisotropy condition can be expressed in terms

of the mobility ratios in the principal directions, and becomes identical in form to the

one used by Chandrasekhar for bismuth (although the details of the band structure

2



for the two materials are different.) (Our analysis was made independently of

Chandrasekhar' s.)

The preparation of the pulled single crystals of Bi 2 Te3 used in this work is

described in Chapter III, and the method of cutting them is discussed.

Equipment for measuring the electrical conductivity of thermoelectric power and

Hall effect is discussed, and the resulting data are presented in Chapter IV. We have

measured the thermoelectric power at temperatures ranging from 100°K to 700°K for

stoichiometric Bi2Te 3 in both orientations, and for iodine-doped n-type Bi 2 Te 3 in the

temperature range 100°K-390K also in both orientations. Electrical conductivity for

both orientations of both types of material has been measured from 77°K to 310°K. The

Hall effect of both materials has been measured only at room temperature and in one

orientation.

In the first part of Chapter V the validity of the theory of thermoelectric power based

upon mixed conduction and a single-scattering mechanism is checked on Bi2 Te3 at high

temperatures, at which the assumptions of the model are met. The agreement of theory

with experiment is quite good.

In the second part of Chapter V the validity of the theory of thermoelectric power

based on one-carrier conduction and a mixed scattering mechanism is discussed. The

observed behavior with temperature of the anisotropy of thermoelectric power for Bi 2 Te 3

is shown to agree qualitatively with the theory, and the predicted quantitative relation-

ship between the conductivity ratios and the difference between the thermoelectric

powers is shown to hold quite closely.

All of the experiments discussed here were carried out on pulled single crystals of

Bi 2 Te 3, which, to our knowledge, have not been studied before in the same context. The

results are in agreement not only with the general theory but also with such other

experimental data as are available on single-crystal material produced by different

methods.

3



CHAPTER II

THEORY OF ANISOTROPY OF THERMOELECTRIC POWER

2. 0 INTRODUCTION

Bismuth telluride is an anisotropic crystal of hexagonal close-packed (3m) structure.

Because of this anisotropy the simplest models of the constant-energy surfaces will not

explain its transport properties. For example, a spherical energy surface gives purely

isotropic results. A single ellipsoid of revolution will give anisotropic conductivity and

Hall constant, but will predict that some magnetoresistance constants, which experience

shows are appreciable, equal zero.

The model that we shall use for the energy-band structure of Bi 2 Te 3 is that proposed

by Drabble and Wolfe (1956) and used successfully by them to interpret magnetoresist-

ance data in Bi 2 Te3. It consists of six ellipsoidal valleys centered in the reflection

planes. The y-axis of the particular valley centered at (Kx,0,Kz) is in the direction of

the y-axis of the reciprocal lattice. The other valley axes are obtained from this one

and by rotations that conform to crystal symmetry. Of course, the arrangement of the

valleys satisfies the 3m symmetry of the crystal. See Fig. 2. 1.

180
°

K,

K,

K' x

Fig. 2. 1. Constant-energy surfaces.

We shall use the Boltzmann equation to find the perturbation of the equilibrium dis-

tribution function resulting from electrical and thermal gradients which we shall then

use to find the transport equations for a single valley. The effects of all of the valleys

will then be summed to obtain the transport equations for the entire crystal.

The thermoelectric power for the one-carrier case is computed from the coefficients

of these equations. The assumptions concerning the relaxation time necessary to obtain

anisotropy of thermoelectric power are discussed. A relationship between the ratio of

conductivities along the cleavage planes and perpendicular to the planes and the differ-

ence between the thermoelectric power with heat flow in these directions is derived.
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An expression for total current arising from both holes and electrons is obtained,

and the thermoelectric power of the mixed conduction system is derived from this

expression. The conditions on the forms of the constant-energy surfaces for the two

carriers to obtain anisotropy of thermoelectric power are discussed. The expression

for thermoelectric power is then put into a convenient form for computation.

2. 1 DERIVATION OF TRANSPORT EQUATIONS

2. 11 Transport Equations for a Single Valley

The Boltzmann equation is the equation of continuity in phase space. It represents

the balance between the ordering forces (electrical and thermal gradients) and the dis-

ordering forces (collisions) in determining the distribution function. In the steady state

the Boltzmann equation (Wilson 1953) is

afr ·Vf+p '7 fr p at coll

where f is the distribution function of the particles; V r is the gradient with respect to

space; V is the gradient with respect to momentum; is the acceleration of a particle

between collisions; r is the velocity of the particle between collisions; and at is

the time rate of change of the distribution function caused by collisions.

If the constant-energy surfaces in momentum space are assumed to be ellipsoids,

the energy, E, is given by

2 P (m)P

where

( i=mm

- 0 0
m 1

0 1 0
m2

O 0 1
m 3

when the coordinate axes are taken along the principal axes of the ellipsoid that is con-

sidered.

If the external fields perturb the distribution function only slightly from its equilib-

rium value, f may be written (Bullis 1956)

af
f = f - G VpE + .

0 p=aE

1 --
where f 1 is the equilibrium distribution function; G is a function of

1 + exp[(E-E)/kT]

5
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the energy only; and VpE is the group velocity of the particles. Bullis has shown that

this is equivalent to expanding the distribution function in spherical harmonics.

The existence of a tensor relaxation time defined by

df __

df = . . V E o
dt coll p 8E

where

iT = O

is assumed.

If an electric

= VpE, and

o 0

2 J

0 T3

It is taken to be diagonal in the same axes as the

field E and a thermal gradient VT are applied to

the transport equation may be written

effective mass tensor.

the medium, p = qE and

Neglecting G V E - in the sums on the left-hand side but not in the product on the

right-hand side, we have__x df

p= r o Po T * p- dE

The thermal gradient appears in Vrfth because left-hand is a function of T. Thus

f (p, r) = -
0 E(p) - G(r) 1 + ea

1 + exp 
L kT(r)

where a = (E-E)/(kT), and it should be noted that is an implicit function of T. Thus

Of0 aE a 

Vrfo aE aaT VrT

and hence

Of FE d 

Vro aE dT -T r

Now

df
V f VE 0Vpfo = dE

and so the transport equation becomes

VpE E + T dTt - + qE V E G VE Ep dE=T p=E

6



af
The function V aE may be factored out, so that this equation may be solved for G.

pE OE
G A= - + T dT () VrT + q E

and the perturbed distribution function is, therefore,

f = f _ T E - + T T E 0 L dT /T r P dE

This function can now be used to find the fluxes of both particles and of heat. The flux

of particles J resulting from valley v alone is

2 3

h single P
valley

and the flux of energy, c, carried by these particles is

2 3
C 2 EV Efd3p

h s ingle-
valley

All of the equations in this section are assumed to be in the coordinate system of

a single valley. If the perturbed distribution function is inserted, an expression, which

is appropriate for either the flux of particles or the flux of energy, is

Fluxv V E E = -+TdT T VT V E d h3 P-= ELy+ dTT P= dE

=e for particles j(n)
when m = 0 for particles J(n, and m = 1 for energy C.

Now assume the use of a mass tensor

2 2 2
p1 P2 P32E = 2 +m2 + 2m3

therefore

P - P2 P3 V E 1 3
pE_ ml 2 m3

*E. T1 E lP T2 E2 P2 T3 E3P 3.E.VE= + +
p= m1 m 2 m 3

and

dT P dT P2 dT P3
T VT' V E = T1 d + T2 + T d

p= - dx m1 2 dy m 2 3 dz m 3

Therefore the flux equation becomes

7
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Flux,,t~~1 222Z d332-T / dT 1 dT P2 p dT P3 M df0 P
X2 = 3 m 2mZ 33LT TdT dx m 1 T2 d 2+ T3 dz md) d_ a3E

an

Here the integration was done first over a surface of constant energy and then with
respect to the energy. From Bullis (1956) we find that the integral over a constant-
energy surface is given by

r =
rs

ds (2)7/2pPPB aE 1/2 3/2 (2)
P Ps (M Inin m in ) Tr6 EPrPs 8E 1 (mlm2m3m r s rs= 3

8n
p

in which rs is the Kronecker delta. A typical component of flux is therefore express-
ible as

~Fluxl TiEi 2
Flux vi = -3 h fvi 2 Pih m

Flux . = 2
V1 h3

E
T _

LT dT (TI

dT

i j---1 -j

)2 df

T dT _ Em o[i dx. = dE
2 dxiA dE dE

ds
P

dE

ani

surface

ds
2 P

Pi 2E

dn
P

29/2w 1/2
FluxVi= 3h3 (m 1 m2m 3) mi

3h

00

0
/qTi.Ei

1 2
Mrni

Ti dT Em+3/2
2 -

m i 1

Next let

1- dEj 1= dE =

and E be the gradient of a potential, 

_ d~

1 dx.
1

We now have the two transport equations

(n) 29/2 (mlm2m3) /2 qd
. _3h 13h3 hm iM _d

T(d ( dT]
T T - xi

K 1 + dT KI T 
29/2 (mlm 2m 3 )l/2

vi 3h 3 mi
_Fqdf 

dxi +
T d 

dT
K +I dTK

2 T dxi-.,dT
8

or

qT iE

2
Mi

r00

or

df
dEdE=

(2. 1-1)

and

(2. 1-2)

(2. 1-3)

r
I

-EI+T d 
LT dT 



These equations are inconvenient to transform because of the V(E/T) term. If we

rearrange the first equation, multiply it by E, and subtract it from the second equation

a more convenient form in which V(1/T) has been separated from VE will be achieved:

j(n) 29/2 (mlm2 m 3 )l/2 d 1

(n) dj~d 1 dT (2. 1-6)
hvi pi dxy +i T dx. (2. 1-7)1 dT

29/2 (m 1 m m )1/2~~h 2 I z 2 3 K EK d(Ee [K(2. 1-5)
i 3h 3 m i 1

Now~iiT = (E+e£ is the electrochemical potential, and we have accordingly reduced the

29/2 (mlm 2 m 3 e valley to the form/2

i 3h3 mi (K 2 -EK1 ) (2. 1-9)29/2) (i i (2. 1-6)Vi = d- iT dx.

61Z 1 dT
produced by forces applied alongdx. (2. 1-7)

where

9/2t is convenient to make the transformation in two steps. The x-axis lies in the/2
ai 3h3 K 1 (2. 1-8)

3h3 m i

29/2 w (mlm m3)1/ 2

i: 3 (K _EK (2. 1-9)

and

29/2 (mlm m3 )1 / 2

'Yi 2 7r 1 2 3 [K3-,EKZ] (2. 1-10)3h 3 [3K

The equations given above represent the fluxes of particles and energy in a single valley,

produced by forces applied along the principal axes of that valley. It is now necessary

to consider how the effects of the six valleys add to produce the resulting transport equa-

tions for the whole crystal.

2. 12 Transport Equations for the Whole Crystal

We must now transform each of the six sets of valley equations from the coordinate

system of the individual valley to the coordinate system of the entire reciprocal lattice.

We may then add the resulting equations to obtain the transport equations for the crystal

as a whole.

It is convenient to make the transformation in two steps. The x'-axis lies in the

9
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reflection plane of the valley and is parallel to the basal plane. The y'-axis is perpen-

dicular to the reflection plane. First, xz-axes pertinent to a particular valley are rotated

in the x-z plane, about the y-axis, in such a way that the valley z-axis coincides with

the reciprocal lattice c-axis (z').

ZI
/Z

XI

x = x' cos - z' sin 0

y = y'

z = x' sin 0 + z' cos 0

These equations

Ixy zl= Q

define a tensor

xl

zy

where

c 0 -S

Q= 0 1 0

s 0 c

when c = cos 0, and s = sin 0. Next, the resulting xy'-axes are rotated about the

z-axes to coincide with the lattice (the double prime) axes.

V

1Y

y
x' = x" cos v + y" sin 

y' = -x" sin 4v + y " sin v

Z' = z

Here, = v (r/3),

the expression

with v = 1, 2, . . . 6. These equations define a tensor T that satisfies
' ° ~ ' * ~~~~~~~~V

Ix'y' z'l T .Y

Let a v = cos IO, b = sin lvy then

10

II
X



a

T = -b
v v

0

b 0
V

a 0
V

0 1

(2. 12-1)

There are six such tensors, one for each valley (each of which has a different value of v).

The expressions for the tensors a and in crystal space are, then,

-(c)
Vcrystal
space

p(c)

crystal
space

:- Q"-I a(v) " L
v valley Tv

space

Tv Q Pvalley Q T
space

We have assumed that all the tensors that are of interest are diagonal in the valley axes.

Then let

a(v) a 

Now let us transform this tensr,

Now let us transform this tensor,

lattice axes.

-(v) Q J -a 2s

L

and

which is diagonal in valley axes, into the reciprocal

als O

a2c 0

0 a3

Q-la(V)Q =

Hence

(Q-1avQ) T

1( 1 c 2+a 2s 2) 0 (a 3 -a 1) sc

0

(a 3 -a 1 ) sc

av(a lc2 +a 3 s

-bva2

av(a 3 -a 1 ) 

0 (a 1 s2+a 3 2)

b (a c 2 +a3 s2)

ava2

b (a3-al) sc

and the tensor a, diagonal in the axes of the valley v,

nates of the reciprocal lattice:

is as transformed into the coordi-

11
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T-(Q-l1 a(V)Q) T =

[a ( l c 2 +a 3 )+ 2

[ab(ac +a3 sZ)-avbva

[av(a3-a)sc]

[avbv(alc2+a 3 s2)-avbva 2 j [av(a 3 -a)sc]

[b2(a 1
2 +a3 2)+a2a 2

[bv(a 3 -a )SC]

[bv(a 3 -a1 )sc ]

[a 1 s2+a 3 c2

In order to obtain the total a tensor for the whole crystal (all six valleys), it is neces-

sary to sum this tensor over all six values of v. The only elements of this tensor, which

are different for different valleys,

lar form:

Valleys above
z -axis

Valley

0

120 °

2400

Sum

are the a and bv, and they are summarized in tabu-

a
v

1

1
2

1
2

0

b ab
V VVW

0

2

2/3
2

0

0

4-
4

4

0

a2 b2

v v

1 1

1 1
4 4

1 1
4 4

3 3

The resulting a tensor for the whole crystal is therefore

acrystal

3 (a 1c +a2+a35 )

3 (a c2 +a +a3s2) (2. 12-2)

6(a 1 s2+a 3 c 2 )

Similarly, the P tensor becomes

3(131 2+p 2 +p 3
s )

Pcrystal 3 (p 1 c +p 2 +p 3 s )

6(p 1s2+P3 c2)

These a and P tensors are diagonal because the x" and y" axes have been defined with

respect to crystal symmetry to make them so.

2.2 THE THERMOELECTRIC POWER OF AN ANISOTROPIC CRYSTAL

The particle flux for the whole crystal is given by the tensor equation

a(n) Vr + Vr T (i = a rF4 - r T 'v ~~7 ~rT ~(2.2-1)

12



If we insert S = E - e in Eq. 2. 2-1, we get

-(n) = ( e r ) +T Vr (2. 2-2)

This equation can be solved for

1[ , ¥
VrE = e - a ·- (n) +T ·* (p-7VrT)

The Seebeck voltage is defined as the potential difference across an open-circuited

thermocouple (across points 1 and 2) as sketched in Fig. 2. 2 with the two junctions

between the materials A and B at two different temperatures, T 1 and T 2 . Points 1 and

2 are at the same temperature. Mathematically, it is the integral of VC between points

TI

Fig. 2. 2. A thermocouple.

1 and 2, with J = 0. Since V~ is a scalar potential, this electromotive force is given by

the integral of V~ around the thermocouple wires from point 1 to point 2. We can then

integrate Eq. 2. 2-2 around the path with J(n) set equal to zero.

ESeebeck e rE d+ T A T dr +

1 -- A r'd+T 2

= I (2_) + -v/' VTT d -

1

T 2 -a T

T T
1

The Fermi level E is a function of temperature only and will be the same at points 1 and

2, and so (E2 -E1 ) = 0.

Now the thermoelectric power of an individual material is defined as the limit of the

Seebeck voltage per degree of temperature difference in the material as this tempera-

ture difference approaches zero. The thermoelectric power (TEP) is then given by

TEP = -
TEP eT

13

(2. 2-3)

VrT drr

dr



2. 3 THERMOELECTRIC POWER PRODUCED BY ONE TYPE OF CHARGE CARRIER

ONLY

The thermoelectric power tensor for the one-carrier case, from Eq. 2. 2-3, is

a-1 1

T e

c2 1 + 2 + s233

c al + a + 2a 32 2

c21P + P2 + s2[3

c al + a2 + S a3

21 22
s2c 1 + cp3

S a1 +c a3

(2.3-1)

The 11 and 22 terms are equal, but the 33 term might be different. The 33 term

will be different from the other two if any of the following conditions hold:

1l P3 P1 z2 P3 z2
al a3 a1 a2 a3 a2

These inequalities in terms of the K integrals in Eq. 2. 1-1 are equivalent to

KlK2 * KYKX2

K1K 2 2

KYKz 0 K3 K1 2 1 2

where x, y, and z refer to the component of the relaxation-time tensor that appears in

the integral. Written out, these relations become

3/2 dfo 5/2 odf0 3TEdE 5/2 df
E dE E T E3/2 dE T dE (2. 3 -2)x= dE y= dE y= dE= x= dE

Similarly, expressions can be written involving Tx and Tz and Ty and Tz. It is easily seen

that if T = C f(E), then the equality sign holds in these expressions.

Thus Tx and Ty, 
T

x and Tz, or T and Tz must be different functions of energy if these

expressions are to be unequal. This means that the energy dependence of the relaxation-

time tensor must not be factorable from the tensor itself.

There is no single scattering mechanism of the simple form usually used (energy to

a power) that gives a nonfactorable energy dependence of the relaxation-time tensor.

Such a tensor may be obtained by postulating the existence of two scattering mechanisms

operating at once. One must be anisotropic, but the other may be isotropic. For

14



example, consider lattice scattering, which has a relaxation time of the form

(Shockley 1950)

T =aE-1/2
-

T = bE-1/2
y

and impurity scattering, which has a relaxation time of the form T =

lision frequencies are assumed to add as reciprocals:

i q
T= ce q

y
The col-

1 1 1

Tt =- Ti

that, in turn, becomes

1 1 1

TX E-1/2 ce q
aE

cEq + aE- 1/2

acE- 1/2+q

1 1
TY be1/2
Y be- 2

cE q + bE- 1/2
1 

ce q bcE-1/2+q

and so condition 2. 3 -2 becomes

acE-1/2+q /

c q+ aE1 E3/2

cE aE cE + bE- 1/2

E5/2 df
- dE

bcE-1 /2+q
dE =

cE + bE 1/2

E3/2 dfo
dE 

acE- 1 /2+q

cE q + aE-1/2

E5/2 dfo
dE

which can be simplified as

E

1 +a E-(1/2+q)
C =

df
0 AT

dE 

df
O .L 

1 + bE - (
c -

1/2+q) dE - -

1 +a E-(1
C =

/2z+q) d

which, in turn, can be further simplified as

df df
d- dy dxdy *-jx -jy

2xy

.1C
df df

o d dxdy
dx dydxdy

15
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1 + bE-(
C-

df
0 Arm

1/2+q) dE

2xy

df
o -- ql~

x 

-----

E 2

I II' · -! _ T 'J

~JU

(1+vx- (q+ 1/2))('+Iy-(q+l/)) (i+vx- (q+ I /Z) ('++L-(q+ 1 /Z)



The inequality sign will hold unless v = or a = b. Thus we have shown that the thermo-

electric power will be anisotropic if lattice scattering is anisotropic and there is another

form of scattering, which may be isotropic, in addition to it.

2.4 RELATIONSHIP BETWEEN ANISOTROPY OF THERMOELECTRIC POWER

AND THE CONDUCTIVITY RATIO

Goldsmid (1957) obtains an empirical relationship between TEP33 - TEP 11 and

(°'33)/°l 1 by applying a simple classical spherical energy-surface model separately to
each direction of the material. His argument runs as follows: If the relaxation time is

assumed to be of the form

T (E) = T E T1 (E) E(
- 011i= o01=

in which the subscripts II and I apply to properties measured with current or heat flow

parallel to or perpendicular to the cleavage planes, respectively, then, for classical

statistics,

TEP = e- 2 11 TEP =e- 2

and

TEP1 -TEPI, ( e ( 2 )

Now

03 3 (kT) (3P 3 )/2(3 + P3 ! e/kT

1 l (kT) (3+ p )/2(3 + Pl) e/kT

and

log - ( log kT + constant

therefore

k d 'gj)
TEP± - TEP i =e d(log kT)

We shall now show that this same relationship holds for the many-valleyed model clas-

sical statistics. In order to do this we must make some preliminary calculations.

First, we must evaluate the integral

K. = ()j1/2 df
Kj T (E) E J dE (2.4-1)

J j dE

16



We assume that

Ti(E) = T Ei/2

Inserting this in Eq. 2.4-1, we obtain

K.J 0i1j E_[(pi+l)/2]+j df°
Kj = Tot dE dE

Second, we must find the relationship between this integral and the tabulated integrals

co xq
dx

The Fermi function + egiven by

The Fermi function is given by

1
f
o

1 + e( E - E )/kT

Define

E
x = kT and 1 = kT

Then,

df df
o o= kTdx dE

and Eq. 2. 1-1 becomes

[(p.+ 1)/2]+j
Kji = Toi(kT) [(i+1)/Z]+ d dxx dx ddx (2. 4-2)

Integrating by parts, we find that

oo df 
o xq dx = -q x f dx

Inserting Eq. 2. 4-3 in Eq. 2. 4-2 yields

[(Pi+ 1) / 2 ] + j Pi P+ 00 Kji = -T oi(kT) 2 + x f dx
o

(2. 4 -3)

(2. 4-4)

These Kj integrals enter into the thermoelectric-power expression in the form K2 -EK 1 .

For classical statistics, the integrals become r functions and there exists a simple

relationship between them which is expressed as

r(n+ 1) = nr(n)

17



and therefore

K2 - EK1 T (kT)(Pi+3)/2( P+ 3\ /p + 3\P + 5 (
2 r oi2 2K2 (K 2 = )( )P 5i(kT) r ri]o (2.4-5)

Use of Eqs. 2. 1-8, 2. 1-9, and 2. 3-1 gives the difference between the parallel and per-

pendicular thermoelectric powers:

2 1 s

m (K -EK 1)1 + m (K 2 -EK1)2 + (K -CEK)3TEI~ 1 -TEIP 12 c :K7? ( 2 m 3 2 13
TEP - TEP, = e 1L m 2 (K 1

m l (K) + m 2 + m3 (K1) 3

2 2
m (K 2 -K 1 )1 + m (K 2 -EK 1 )3m 2 1 31

2 2
5 cm 1 (K1)1 + (K) 3m 31 31 m ( K 1) 3

From Eq. 2.4-5, this equation becomes

/P3+3 p 3+ 5
_ __

C2
(kT)(Pl+3)/2 (P1+ ) (Pl)[ l

+ 1 (kT)(P2+3)/2 P2 P 2 p m3 ( kT (P 3 +3)/
2
(P 3+ (P3+ ) ? 2 2 Y) -3

TEP - TEP : k

s
2

p1 + )2 ((Pl
+

3)
/ L (Ply )F(P l 3)+ 3/ (p+3

) / 2
(P+ 3)r?2 +3 8 T +3/2 P3\

1
P3+11 (T c ( ) -)(kT)2/2 r (L2 -) r r ) + ( ) (P3 2 ( 23

ls22 'T ( p1 +3)/2 p1+ + 3\+ 2 ( p3 + 3)/ 2 (P3 +3 +5 

(kT)P+32 ( ) 1 ) + (kT) P3+3) r )

(2.4-6)

The denominator of the first term in Eq. 2. 4-6 is just 1 1l. If the expressions in the

brackets equal 1, the numerator would be 11 also. A similar statement involving 33

applies to the second term. Hence that part of the expression in the brackets, which is

the same in all brackets (that is, 5/2-r?), cancels. This leaves only the pi/2 factor in

the brackets. Hence each term in the numerator is equal to the corresponding term in

the denominator multiplied by the factor pi/2. The numerator is then the derivative of

the denominator and the following relationship holds for classical statistics:

kT(1 drI do-3
TEPII - TEPI =- dT+ 3 dT)

which when rearranged becomes

d ln 3

TEP{ - TEP = -- (2. 4-7)
PT i e d(ln kT)

18
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2.5 ANISOTROPY OF THERMOELECTRIC POWER ATTRIBUTED TO MIXED

CONDUCTION

The phenomenological equations that are component forms of Eq. 2. 2-1 for the flux

of each type of carrier, are:

j(n)

:electrons

j(n)
lholes

J. d u
Jie de
-e = aie dx.

1

Jih
+e

dF ha - +
ih dx.I

where the a's and p's refer to the whole crystal.

dji
and dx.

1 electrons

is found in the following way.

dji
The relationship between dx

i holes
The chemical potential for electrons is

Fe e = f - Ec e%

and for holes is

h h + eh = E - E + e%

Summing these two equations gives

i + = E -E = -E
e h v c g

Differentiating this equation and assuming E to be constant with position gives
g

di

dx.
1

(2.5-2)
dx h

- dx.
1

If we insert Eq. 2. 5-2 in Eqs. 2. 5-1, the current produced by the electrons is given by

dhJ =+ea.e ie dx.
1

1 dT
eie T dx.

and the current produced by holes is given by

djh 1 dT
h ie dx. + eih T dx.

The total current is given by

The total current is given by

Je + Jh = e(aih+aie)dx. + e(Pih-Pie)
1

1 dT
T dx.

1

The a-tensor for the two-carrier system is, then, the sum of the a-tensors for the

two one-carrier cases. The p-tensor is the difference of the tensors for the two cases.

19

1 dT
Pie T dx.1

1 dT
Pih T dx.

1

(2. 5-1)
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Written in matrix form, the corresponding a and tensors are:

3 (a c +a,+as2) + 3 (a 1 +a2 +a33( 23, h

3(alc 2+a 3+a) + 3(ac +a 2 +a3S2)
z e, 

+
3(a

3 (plc+2+pz3s) + 'c+P2+PsZ 3

~=_ -3(pIC2+P 2 +p3 s) + 3(P1cZ +P2+P3s2)h

6(as+a3 cZ)e + 6(a 1sz+a3 )h

-6(P 1 s2+3 3 cZ)e + 6(p 1 s2+P 3 c2)

(2. 5-3)

and, from Eq. 2. 2-2, the thermoelectric-power tensor is

-(1 3 )e + )h
+3(alc2+ + 2)e + 3 (aC2a 2+a3s2)h

-3(tlc +I2+P+3 s Z) + 3(P1C 2+Z+p3 s 
2
)h

+3 (L 2+a2+a3 s2)e + 3(a 1c2+a2 +a3 )h

-6 (Pi sZ+fi3cZ )

+6 (a s 2+ cZ)
3 e

+ 6(p 1 sz2+f33 cZ)

+ 6 (as2+a3cZ)h
h 

(2. 5-4)

The tensors of the individual ellipsoids (v) in terms of fundamental physical quantities,

from Eq. 2. 1-8 and 2. 1-9, are:

29/2
aie. = vie 3

(m lm 2 m 3 )e
m.le

m O

T. E3/2 d dEle dE=

29/2
Pvie 3 

29/2
avih 3 3

(mlm2m 3 e/
m.ie

(m 1 m 2 m 3 )h/2

mih

o dE

m1/2

E 
kT

d3/f1
T.E3/2 ° dE]
i- dE -

(2. 5-5)

/2 dE
TihE3/2 dEihe dE =

29/2
Pvih: 3

(m 1 m2 m 3 )h/2
1 2 3 II 

mih
m1/2[ E/2 df

nih- dE dE
E k E3/2 d E

kT ih- dE 

20

a-lp 1

eT eT



Let us assume that lattice scattering for which T. = T E1/2, with T a function of tem-

perature ( ' , is dominant. In order to evaluate the integrals in Eqs. 2.5-5, it is

necessary to know the relationship

o EP ° dE =

With the assumption Ti
1

27/2 m/2kT 
vie 3 " o

-Pf00 Ep - 1 f dE = -pFp- l (N)
-=

= T E- 1/2, Eqs. 2. 5-4 take the following form:
O--

(m1 m 2 m 3 )1/2

oe miele

_ I 
- 0o''e'

27/2 1/2(kT)2
vie 3 o oe

27/2
avih 3

Ir mo kT Toh

(M MM) /2
(m m 2m 3 F )

mie IF (

1/2
(m 1m2 m 3 )h F 

mih

-fT Fo( e)

(2. 5-6)

ml/2(kT)2
o

(mlm 2 m 3 ) h/ 2
Toh mih

Inserting Eq. 2.5-6 in Eq. 2.5-4, we obtain

(P) = ( eT 
\eT ~ .... . I/2 /2 1 2 _ .,

(mlm2 m3 )' Toe m + 2 + m) Fo(e) + (mlm2m3)h- Tohm + +) Fo(h)

(2. 5-7a)

We define

Toh(m 1 mm3
)1/2c +

21
h \m 1 m 2 mh

+ m3
(2. 5-7b)

Toe(milm 2 m 3 )e m1 2 
+ + 2

m 2 m3/
e

and Eq. 2. 5-7a becomes

TEPll =TEP2 1 22 e

-[2F 1 (he)-aleFN( e)] + 611 [ZF 1 (lh)-hF o(lh)]

L Fo(re) + b6 IFo(h) 

Similarly, if we define

21

27/2
Pvih 3

(2. 5-7c)

- --

�

I' I JJ 

.
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Th (mI m 2 m A/2(s 2 +_ )
-oh(mlm 2 m 3) h + i 3

= Toe(mlm2m3) (ml + h m3 (2. 5-7d)

then the component of thermoelectric power perpendicular to the cleavage plane becomes

k T-[2F1 (1 )-rl Fo ()] + 61 [2F 1 (h)-llhFo(lh)] (. 5-7e)
TEP = _ .- e-

Fo(e) + 61Fo(h)

The thermoelectric power will be anisotropic only if

eT / \ eT/

This will be so if 611 Z 61, which is equivalent to

+ + s + 3

m 1 m2 m3 m I m3
(2. 5-8)

c + ss +
ml m2 m3 , m 3

e e

In order for inequality 2. 5-8 to become an equality, the valence and conduction-band

models would either have to be identical, or they would have to be different in a very

special way; that is, the ratios on the two sides of the equation would have to be equal.

It seems unlikely that either condition would occur except, perhaps, by accident. It

seems likely that the thermoelectric power would be anisotropic over any temperature

range in which there is mixed conduction.

By considering the mobility ratio, the expressions for thermoelectric power

(Eqs. 2.5 -7) may be put into a more convenient form. To achieve this result, note first

that by using Eqs. 2. 5-5 and 2. 12-1 the parallel resistivity can be written

29/2 1/2 1/2 21 2
a 1 1 - 3 o (kT) T) 1 + m 2 + m Fo( ) (2. 5-9)

and the number of carriers is given by

n = 2 3 O (kT F/2(n) (2.5-10)
h

Thus the mobility of electrons in the parallel direction is given by

(kT)- 1 /2 2 Fo(rl)
= -T

' e e m oeml + m2 m3 F 1 / 2 (e )
S1e Fo (e)

22



and the mobility of holes is given by

(kT)1/2 /2 2> F ()
= h3 T + + + )
h m0 oh 1 m 2 Fo(e)

h 

The mobility ratio for the parallel direction, accordingly, is

2 1 2 Fo(tlh)

c2 1 s2 F01qe)
T°_ + +
oe m m2 m3 F (' )

(2. 5-11)

This expression may be used to find the thermoelectric power in terms of the mobility

ratio, by inserting Eq. 2. 5-11 in Eqs. 2. 5-7.

* 3/2

(me)h-[2F101e )-,neFo(n)] + h h
1 e e e m* Fe )

e Ii, IkTEP = -
e

3/2

Fo(lne) +e C t

11i

Fo(] e )

F1/2(qe )

Fl/z(q h )

[2F 1 (T h)-nhFo(Tlh )]

F o0(1h )

Fo(r e )

F /2z( e )

F1/2(]h)

Fo (1h )
Fo(oh)Fohh

Define a convenient parameter y by the relations

3/2

II me ) e )

and

= 3/2

'YI ii-
e Fe ),

Then Eq. 2. 5-12 becomes

TEP,1 = 

2F 1 (TIe ) F 1 /2 (q1e )

L Fo (iF e )

eF1/2(Teie j + Yii,± LFl(h) F/2(lh)_ 2F1 (h) F1/2(Vhh)

F1/z(le) + Y 1I F1/2(qh)

- hF 1/2(1h)

(2. 5-13)

The parameters of Eqs. 2. 5-7 are functions only of the effective masses and the

angles, and the form of the equation makes it convenient to assume that these are con-

stant. One might think that these 6's would be more nearly constant with temperature

23
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than the y parameters of Eq. 2. 5-13 which are products of the 6 factors and

F ( ) Fl/2(rTh)
0 e (the Fermi product). This Fermi factor product decreases approx-

F 1/Z( e) Fo(Nh)
imately 30 per cent from 77°K to room temperature.

We first computed the intrinsic thermoelectric power, using Eq. 2.5-7. We used

the density-of-states effective masses, the mobility ratios, and the value of the Fermi

level obtained from thermoelectric-power measurements at 77°K by Drabble et al. to

compute the parameters at 77°K. We then assumed that the 6's remain constant and

computed the intrinsic thermoelectric power from Eq. 2. 5-7, using these 6's and the

appropriate high-temperature Fermi functions. The agreement with experiment was

poor - the values of thermoelectric power were too large. The intrinsic value of ther-

moelectric power, in the parallel orientation, computed in this way, was 90 pv/degree,

against an experimental result of approximately 60 v/degree.

On the other hand, when we assumed the mobility ratio, which is 6 times the Fermi

factor product, to be constant (at its value at 77°K obtained by Drabble et al.), and used

Eq. 2. 5-13 to compute the intrinsic thermoelectric power, the computed result agreed

quite well with the experimental value of 60 ,v/degree. Hence, we have concluded that

the mobility ratio of this material is more nearly constant than the factors involving the

effective masses and angles.
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CHAPTER III

PREPARATION OF SINGLE CRYSTALS OF BISMUTH TELLURIDE

3.1 PROPERTIES AND STRUCTURE OF Bi 2 Te 3

Bi 2 Te 3 has a rhombohedral unit cell with R3m

ecule per unit cell. (See Figs. 3. 1-1 and 3. 1-2.)

lographic properties (Wyckoff 1948):

symmetry. There is one linear mol-

The following list gives its crystal-

a= 10.47 A

a = 24o8 '

1 Te at 0, 0,0

2 Bi at u, u, u

2 Te at ± v,v,v

u = 0.399

v = 0. 792

This material has very marked cleavage planes at right angles to the axis of the crystal.

The cohesive force between these cleavage planes is so weak that the material splits

o Te(2)

* Te
(
'

)

e Bi

I
S

o Te

Te

Bi

Fig. 3.1-1. Structure of Bi 2 Te 3 . (From Harker,

Z. Krist. 33, 181, 1934.)

Fig. 3. 1-2. Unit cell of Bi2Te 3 .Fig. 3.1-22 T3~
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Fig. 3.1-3. Liquidus solidus curve of
the bismuth-tellurium system.
(From C. B. Satterthwaite
and R. W. Ure, Jr., Phys.
Rev. 108, 1165, 1957.)

ATOMIC PER CENT , Te

very easily. The melting temperature is 585'C and the maximum in the liquidus solidus

curve (Fig. 3. 1-3) is on the bismuth-rich side of the stoichiometric composition

(Satterthwaite and Ure 1957), and hence single undoped crystals are p-type.

3. 2 PREPARATION OF SINGLE CRYSTALS OF BISMUTH TELLURIDE

Single crystals of both p-type and iodine-doped n-type Bi 2 Te 3, of approximate

dimensions 12 cm X 2 cm X 3 mm, have been grown in a Czochralski type of crystal-

pulling apparatus. The material used for growing the crystals was semiconductor grade

bismuth and tellurium of stated nominal purity of 99. 999+ per cent obtained from the

American Smelting and Refining Company. At first, this material was placed directly

in the crucible and the reaction took place in the crystal puller. There was always a

slag deposit on top of the melt, usually covering most of it. The reacted material was

cooled, removed from the crucible, and the slag scraped off. After a second melting,

the surface was usually visibly clean, although a little slag did accumulate on the

coldest part of the edge of the melt.

Seeds would start fairly easily in this melt, and the growth had a strong tendency to

thicken by forming step growths, which will be described in more detail in this section.

A seed could be allowed to thicken, in this way, up to 2. 9 mm, but when it was grown at

this thickness for 1 or 2 inches, visible longitudinal pleats indicating gross imperfections

appeared in the crystal. These pleats emanated from little nucleations on the surface

of the crystal which would then pile on top of each other and result in a pleated surface.

The tellurium for the melts was distilled three times thereafter. In melts made with

distilled tellurium the crystals did not thicken readily, but the imperfections decreased

as the growth progressed. The trick needed to obtain thick growths, then, is to let a
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Fig. 3.2-1. Crystal puller.

small seed in an impure melt widen and thicken to the desired size, and then let this

expanded seed continue the growth as long as desired in a purified melt.

The first crystals were grown in an apparatus previously developed in our labora-

tory. In spite of very careful cleaning of this equipment, the melts usually became

dirty. Small amounts of vacuum grease on the apparatus heated by the furnace resulted

in contamination of the melt. Because grease was used on the pushrod and chamber

seals, it was very difficult to alleviate this problem.

A new apparatus, partially modeled after one used by Freeman D. Shepherd at the

Air Force Cambridge Research Center, (Shepherd 1959) was developed. This apparatus

had a dry O-Ring chamber seal and a Teflon pushrod seal. In it consistently clean melts

were achieved. A sketch of the new apparatus is shown in Fig. 3. Z-1. The second

procedure for growing crystals is similar to that described by Shepherd (1959); The

melt is placed in the crucible, the seed mounted in its holder, and the apparatus

assembled. The apparatus is then pumped down to a good forepump vacuum (10 ,).

Helium is admitted to the chamber and the system is pumped down again. This helium

flushing procedure, repeated several times, removes all of the oxygen from the system.

Helium is then admitted with a slight over-pressure.

The furnace is raised to a position that is such that the melt is well down in it. The

controller is set for a temperature above the melting point of Bi 2 Te 3, but not so high

that a yellow vapor of bismuth and tellurium appears. Otherwise, the vapor condenses

on the seed, forming sites for nucleation of crystallites. The presence of these sites

makes it difficult to stop growth of a polycrystal (even at growing temperature some con-

densation occurs, but it can be minimized by keeping the temperature as low as possible).

After the material is melted, it must be brought to proper growing temperature.

The furnace is lowered so that the top of the melt is approximately 0. 125 inch

below the top of the furnace. The temperature at which the controller is set is

lowered slowly, in a manner that keeps the system in thermal equilibrium (that is,

in such a way that transient conditions are avoided and the set point actually deter-

mines the temperature) until the material just begins to solidify around the edge of
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(a)

(b)

(C)

(d)

(e)

Fig. 3. 2-2. Single crystals of bismuth telluride.

the crucible. The seed may then be lowered into the melt and fine adjustment of

the temperature can be made.

The temperature is correct for pulling if the melt is just hot enough to form an

upward-directed meniscus around the seed, but not so hot that the crystal necks down too

rapidly or breaks off. Once the growth has been started successfully, the temperature

may be lowered to widen and thicken the crystal.

As we have mentioned, thickening often occurs in steps (see Fig. 3. 2-2a-d). A crys-

tal grown at constant temperature, giving only slight evidence of step growth, is shown

in Fig. 3.2-2e.

In order to maintain a uniform melt temperature, the seed with the growing crystal
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was rotated to provide stirring action. In spite of this rotational motion, it is seen from

Fig. 3. 2-2 that a flat-shaped crystal resulted. The flat faces are the cleavage planes of

the crystal. Thus the hexagonal c-axis is normal to these flat faces. The persistence

of the flat shape of the crystal indicates a very high anisotropy in the energy of formation

of the various crystal planes.

Since the volume of the crystal pulled per unit time is equal to the crystallization

rate, we would expect that, at constant pulling speed, the cross-section area of the crys-

tal would vary with the crystallization rate. This was indeed found to be true. If the

melt temperature was decreased, and the rate of crystallization thereby increased, the

cross-section area of the crystal would increase (and conversely).

However, it appears that the increases and decreases in cross-section areas are not

fully reversible. It was found, on the one hand, that decrease of the melt temperature

increased the thickness of the crystal, as well as its width. New planes would build up

in the direction of the c-axis, as exhibited by the step growths. It should be noted that

these steps start as hexagons; this indicates the preservation of hexagonal symmetry in

the basal plane. On the other hand, when the temperature of the melt was increased,

and the crystallization rate decreased, the corresponding decrease in cross-section area

was manifested only in a decrease in the width of the crystal thickness.

A possible explanation for the observed behavior of the crystal shape is a general

tendency toward masking anisotropic effects at high crystallization rates. This masking

is represented by a transition from the flat shape to a more nearly cylindrical one; that

is, to a thickening of the crystal. The ultimate cause of this thickening is probably the

increased density of nucleation centers, produced by imperfections that occur when the

crystal growth is rapid. But when the melt temperature is increased and the crystalliza-

tion rate is thereby reduced, existing crystal planes probably tend to perpetuate them-

selves. Hence the only way that a decrease in the cross-section area can occur is by

a decrease in the width of the crystal.

Approximately 0. 5 gram of material condensed on the walls of the chamber, the

crucible, and the seedholder during a run. At first, we thought that this material was

tellurium alone because its vapor pressure was higher than that of bismuth, at least at

room temperature. However, a chemical analysis (Manley 1960) has shown that this

residue contains both bismuth and tellurium in approximately equal amounts. This

finding is supported by the fact that crystals grown from stoichiometric melts all have

very uniform properties; this indicates that the melt composition does not change much

with time. For these stoichiometric crystals the resistivity, at room temperature, was

approximately 1 milliohm-cm; the Hall constant, 0. 40; and the thermoelectric power,

approximately 215 pv/degree.

Attempts have been made to dope pulled bismuth telluride crystals with iodine.

Because the particular apparatus employed here must be evacuated to eliminate oxygen,

it is not feasible to dope by placing pure iodine in the pulling chamber because it would

be pulled out of the system by the vacuum pump. The compound bismuth tri-iodide was
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tried instead. It was found that if the BiI3 was placed with the cold material in

the crucible, it would decompose at a temperature lower than the melting point of

Bi2 Te 3. The iodine vapors then etched the stainless-steel pushrod, and condensed

both on it and on the chamber walls. Little iodine remained in the melt, the mate-

rial was only slightly compensated, and it remained strongly p-type. The resistiv-

ity of the crystal pulled from such a doped melt was 2.3 milliohm-cm, the Hall

constant at room temperature was 0. 80, and the thermoelectric power 220 [iv/degree

(p-type).

To circumvent the decomposition problem, some Bi 2 Te3 was placed in a nickel con-

tainer suspended in the chamber. After the melt was brought to equilibrium growing

temperature, a magnet was used to dump the BiI3 into the melt. The resulting crystal

was n-type, with a thermoelectric power of -100 [~v/degree, R = 0. 79, and p = 5

milliohm-cm. There was sufficient dirt in the BiI3 to cover a substantial portion of the

melt and thus make it impossible to grow a very thick crystal.

Good iodine-doped crystals were finally obtained by adding to 120 grams

of stoichiometric material 60 grams of iodine-saturated material reacted in a

Bridgman furnace. The first crystals pulled from this melt had a thermoelectric

power of -120 [Lv/degree and the third crystal, -216 v/degree with a Hall constant

of 0. 38. The first crystals had too much iodine. During these pullings enough

iodine escaped so that the third crystal had the right amount to give nearly the

maximum thermoelectric power that occurs in this material. These crystals were

2. 9 mm thick.

3.3 CUTTING OF SINGLE CRYSTALS OF Bi 2 Te 3

Bismuth telluride is a very brittle material with well-defined cleavage planes.

It is therefore very hard to work. Several methods for cutting it without damage

were tried.

If a smooth cut surface is not of great importance, sandblasting is the quickest

method. The crystal to be cut is affixed to a microscope slide with a 1-mm

coating of rosin. This slide is moved in a micromanipulator under the sandblast.

Cuts can be made this way through a 1 cm X 2 mm crystal in approximately

5 minutes. The drawback of this method is that pits are formed in the sample,

apparently from vortices in the sandblast (Fig. 3.3-1). These vortices begin to

form at distances approximately 1 mm from the nozzle of the blaster. Cuts free

from pits can be made if the total thickness of the sample, including the potting

material, is less than approximately 1 mm. This method has been used to cut

the samples for the thermoelectric-power and Hall-effect determinations to be

reported in Chapter IV.

The damage produced by this cutting procedure was evaluated by making it visible

by etching the sample in a 2:1 solution of aqua regia for 10 minutes. All cracks were
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., I& 

(b)

Fig. 3.3-1. Bi2 Te 3 crystals cut by the sandblaster.

clearly displayed after the treatment. A sample with a crack is shown in Fig. 3.3 -lb.

Nearly all of the samples were crack-free.

31

-- 



CHAPTER IV

MEASUREMENTS OF THERMOELECTRIC POWER, CONDUCTIVITY, AND HALL

EFFECT OF Bi2Te3

4.1 APPARATUS FOR MEASURING THERMOELECTRIC POWER

The usual way to make thermoelectric-power measurements is to embed thermo-

couples in the sample and apply the thermal difference at the ends of the sample. In

this way, the potentials and the respective temperatures are measured at exactly the

same points.

However, the grown Bi 2 Te3 crystals have a maximum thickness of approximately

2. 9 mm perpendicular to the c-axis and measurements must be made with the heat flow

both parallel and perpendicular to this axis. With this small thickness it is impractical

to embed thermocouples in the sample because they would cause a very large perturba-

tion in the heat flow.

The apparatus was designed to permit measurement with thermocouples attached to

the contacts, which were either soldered or glued to the sample with silver paint. With

this apparatus there exists the possibility of thermal gradients in the contacts so that

the thermocouples would measure a higher temperature difference than was actually

applied to the sample. If this were the case, the value of thermoelectric power obtained

could depend on the temperature gradient applied. When solder was used to mount the

samples the thermoelectric-power readings were completely independent of temperature

differences from 3 C up to approximately 25 C. Below this temperature, the accuracy

is limited by the accuracy of the potentiometer, and above it the variation of thermo-

electric power with temperature (approximately 0.25 Lv/degree) of the material becomes

significant. When silver paint was used to mount the sample the readings were approxi-

mately 3 per cent low and a variation of thermoelectric power with temperature gradient

became perceptible for a AT of approximately 20'C. Pressure mounting of the sample

resulted in readings that were 25 per cent low and very temperature -gradient dependent.

A diagram of the apparatus is shown

in Fig. 4. 1-1. The thermocouples were

/THCOPPERCOPLNSTANTINE insulated from the aluminum block withTHERMOCOUPLES

thin drawn glass tubing. The anodyzing
ALUMINUM BLOCK_ _ i~ was found to be unreliable for insulation.
HEATER WINDINGS --NICKEL FACES

PYREX ROD N_ NICKEL FACES At first, ceramic thermocouple tubing

ALUMINUM BLOCK PYREX ROD was used but the reading varied greatly
with AT. The reason for this was that

TC the ceramic insulated the thermocouple

thermally from the aluminum block. HeatFof thermoelectric power. 1-1. Apparried aatusfor measurement
of thermoelectric power. was carried away by the thermocouple
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wires, hence the bulb of the thermocouple was at a lower temperature than the actual

sample surface. This situation resulted in high readings of thermoelectric power. When

the ceramic tubing was replaced by thin-walled glass the readings became independent

of temperature gradient.

The heater windings were of an oxide-insulated cupro-nickel wire wound on Fiberglas

tape. There are two identical windings on the two blocks with an additional temperature-

gradient winding on one of them. The heater windings had a resistance of approximately

1 Q and were powered by 6. 3-volt filament transformers driven by variacs.

Solder was used for the contacts from 100°K to 390°K. Above this temperature, the

indium solder melted and quickly destroyed the sample by forming an alloy with it. Use

of high-temperature solders such as lead tin resulted in cracking of the sample when it

cooled. Silver paint was tried from 320°K to 700°K. The results were consistent up to

500°K on samples that were cut parallel to the cleavage planes, and up to 650°K on sam-

ples that were cut perpendicular to the cleavage planes. At these points the samples

became discontinuously n-type; this indicated doping by the silver in the paint. At 650°K

the silver paint charred, leaving a poor mechanical contact when the sample was

returned to room temperature. The reason that the parallel orientation became con-

taminated at a lower temperature than the perpendicular orientation is that silver will

diffuse along the planes more readily than it will across the planes.

The thermoelectric power of stoichiometric samples of both orientations is shown

in Fig. 4. 1-2, and the thermoelectric power of iodine-doped material in both orienta-

tions is shown in Fig. 4. 1-3.

4.2 MEASUREMENT OF CONDUCTIVITY OF Bi 2 Te3 FROM LIQUID-NITROGEN

TEMPERATURE TO ROOM TEMPERATURE

The conductivity of both p-type and n-type materials in both orientations was meas-

ured by an ac method. A Hewlett-Packard 300C oscillator was used to drive a 60-watt

McIntosh amplifier that supplied approximately 0.5 amp to the sample through an 8-ohm

resistor. The voltage was measured across probes of 0. 005-inch gold wire by a

General Radio wave analyzer. The measurement was made at 275 cps.

For parallel samples, soldered end contacts were used and the voltage probes, in

some cases, were soldered by potting the sample in a thin vat of rosin, sandblasting two

parallel narrow grooves across the thickness and perpendicular to the length of the sam-

ple, nickel-plating the groove, and soldering to the nickel plate with Cerroseal. In other

cases, the voltage probes were sparked with a low-voltage (7-volt) high-capacity

(20, 000 mfd) spot welder. Although strain lines were visible when the sparked contacts

were used, the results were substantially the same as those with the solder contacts.

The perpendicular samples were only 2.9 mm thick, making soldered voltage

probes, which were seldom less than 0.5 mm wide, impractical. Sparked contacts were

used. Whenever soldered end contacts were used for the perpendicular orientation the
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values of conductivity obtained were lower than predicted by the theoretical value of

G1 /y; thus damage to the sample was indicated. The ends of the sample were nickel-

plated and pressure contacts were used to pass current through the sample. The ends

of these samples were quite parallel because of the nature of the crystal, but the edges

were very ragged because of the rough cuts made by the sandblaster. The absolute value

of the conductivity is therefore quite uncertain.

The conductivity and conductivity ratio of p-type samples for both orientations are

shown in Fig. 4. 2-1, and for n-type samples in Fig. 4. 2-2.

4.3 SIMPLIFIED MEASUREMENT OF HALL EFFECT AT ROOM TEMPERATURE

The carrier concentration in Bi 2 Te 3 is very large (approximately 1019 per

cubic centimeter). Therefore the Hall voltage is very small (approximately 10 v)

for samples of manageable thickness (0. 5 mm). Direct-current measurements are

complicated by interfering thermal effects, but it was found that Hall voltages could

nevertheless be measured with an accuracy of 10 per cent if these effects were properly

taken into account (Lindberg 1952). Values thus obtained were found to check with ac

measurements made on the ap equipment (AFCRC -TN-60 -125) within the stated accuracy.

The dc apparatus consisted of a modified magnetron permanent magnet, immersed

in a large water tank. The sample was suspended in the water between the poles. The

field was reversed simply by turning the sample around. The water tank and sample

support rested on a large stack of newspapers that reduced the vibration markedly. The

water served to minimize thermal effects, especially those usually produced by drafts.

Current was supplied by a storage battery and a series resistor. The Hall voltage was

measured directly with a Kiethley micro voltmeter. With this meter it was possible to

see the drifts in readings caused by the thermal effects.

Undoped stoichiometric p-type samples cut from pulled crystals had a Hall constant

of 0. 4 and resistivity of 1 milliohm-cm along their cleavage planes. Partially compen-

sated p-type iodine samples had a Hall constant of approximately 0. 8 and resistivity of

4 milliohm-cm. The n-type iodine-doped crystals made with iodine-saturated Bridgman

material had a Hall constant of 0. 4.
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CHAPTER V

COMPARISON OF THEORY WITH EXPERIMENT

5. 1 CHECK ON THE VALIDITY OF THE THEORY OF THERMOELECTRIC POWER

BASED UPON MIXED CONDUCTION AND A SINGLE SCATTERING MECHANISM

The validity of the theory of thermoelectric power based upon mixed conduction and

a single scattering mechanism has been checked in a number of ways.

The detailed behavior of both orientations was checked on bismuth as we have

described it in section 2. 11. In bismuth telluride the effect can only be observed at high

temperatures at which measuring techniques are difficult, and so a complete quantitative

check was not made because of lack of complete data. Nevertheless, by using our

thermoelectric -power data, which does not extend all the way up to the intrinsic range,

a qualitative check of the anisotropy was made and the results reported in section 5.121.

In section 5. 122 the conductivity and Hall data of Shigetomi and Mori (1956), on the

parallel orientation only, was used to compute curves of thermoelectric power as a func-

tion of temperature in the transition range. The computed curve for the parallel orienta-

tion is then compared with their experimental thermoelectric -power data on the same

orientation. The agreement of the calculated curve with the experimental points is good

up to the knee of the transition range, but not beyond. The calculated curve for the other

orientation is discussed qualitatively.

In section 5. 123 the limiting values of the thermoelectric powers in the intrinsic

range are computed by a method that is completely independent of the data of Shigetomi

and Mori that were used in section 2. 122 and is based on the energy-gap value given by

Goldsmid. Qualitative agreement with the published value of the intrinsic thermoelectric

power in the parallel direction is good. There are, to our knowledge, no published data

on intrinsic thermoelectric power for the perpendicular orientation, but consistency with

other data is considered.

5. 11 Bismuth

The first check on the validity of the two-carrier single-scattering mechanism theory

of thermoelectric power was made on bismuth by Chandrasekhar (1959). The model used

by Abeles and Meiboom to interpret magnetoresistance data on bismuth comprises a con-

duction band having six ellipsoids (this band model is identical with the one that we used

on bismuth telluride, which has a crystal structure identical with that of bismuth), and

a two-ellipsoid valence band. Our six-ellipsoid model for the valence band of bismuth

telluride can be reduced, of course, to the two-ellipsoid model by setting s = 0 and

dividing by 3 in the valence-band parts of Eqs. 2. 5-3 and 2. 5-4. Chandrasekhar used

the thermoelectric-power expression involving the mobility ratio (our Eq. 2. 5-4) with

the magnetoresistance data of Abeles and Meiboom to obtain the density-of-state effective
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masses for bismuth. His value for this effective mass for the electrons agrees well with

that deduced from the de Haas-Van Alphen effect and cyclotron resonance experiments.

The value for holes is very close to that given by cyclotron resonance, but much smaller

than is inferred from electronic heat-capacity data. We have checked Chandrasekhar's

calculation independently, but happen to have done so in reverse, by calculating the val-

ues at room temperature of the thermoelectric power from the above-mentioned effec-

tive masses. We have accordingly achieved good agreement with his published data on

thermoelectric power. We also measured the thermoelectric power of bismuth at room

temperature in the two orientations and found it to be in close agreement with the theory.

In addition, we made the same measurement on a single-crystal sample of antimony and

found the thermoelectric power to be approximately 20 1tv/degree with heat flow along

the c-axes, and 40 pv/degree with heat flow in the cleavage planes. We have not made

calculations on antimony.

5. 12 Bismuth Telluride at High Temperatures

5. 121 Qualitative Agreement with the Theory of Anisotropy in the Transition Range

We have used the effective mass and conductivity values of Drabble et al. to compute

the y parameter of Eq. 2.5-13 for the two principal directions. The calculation is given

in Appendix A. The value of is greater than that of y,; thus the thermoelectric power

should be more p-type in the perpendicular direction (current flow perpendicular to the

cleavage planes) than it is in the parallel direction (current flow along cleavage planes).

This prediction is in qualitative agreement with the data illustrated in Fig. 4. 1-2 which

is isotropic at low temperatures, when conduction is by a single carrier, and becomes

increasingly anisotropic when mixed conduction sets in. This anisotropy increases with

temperature as the number of electrons becomes more nearly comparable to the number

of holes. Just before contamination of the samples by the contacts the two curves

appeared to be beginning to level off toward their intrinsic values.

5. 122 Quantitative Agreement of Thermoelectric Power with Theory and Qualitative

Agreement of TEP_ with Theory in the Transition Range with the Use of the

Data of Shigetomi and Mori

A curve of thermoelectric power versus temperature can be calculated directly if

the Fermi level is known as a function of temperature. This level can be obtained from

the equations

F nh
F1/2(e) =3/2

2 rmkT)

and
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F . In = ph
/ n 13/2

2 (2 rmhkT)

These concentrations may be found from the conductivity and mobilities by means of the

equations

n =p - p s

and

Ca = lhe(bn+p)

when ps is the number of acceptors, and b = e/h is assumed to be constant in the cal-

culation.

The mobility of holes in the saturation range is found by dividing the conductivity by

the number of acceptors: p = -/ps.

The values taken from a straight-line extension of the saturation-range conductivity

curve divided by ps are assumed to give the mobility at high temperature. The number

of acceptors is obtained from the Hall constant and its anisotropy factor A ) . Thus

R = r A(P)
ps e

where

(T
2 )

r _

(T)

The Hall "constant" is not constant but rises with temperature, its value at 300°K

being 1. 6 of its value at 77°K. Drabble's calculation of A(P ) is made at 77 ° , so we shall

make the computation of ps at this temperature. Our calculation is made from the data

of Shigetomi and Mori. Their data are for a single-crystal specimen with the current flow

along the cleavage planes. Their experimental points, along with our calculated points,

are shown in Appendix C (Fig. C-2). Our calculated points for the perpendicular orienta-

tion are also shown.

The calculated points follow their experimental points quite well up to approximately

500°. Then the calculated curve levels off too soon. The reason for this behavior is

that at high temperature the extrapolated mobility drops faster than T3/2, causing the

F1/2(r) value to become large, in fact, large enough to give positive Fermi levels for

both holes and electrons. This would imply the vanishing of the energy gap; this result

is at variance with the data from other workers. It is possible that the mobility extrap-

olation does not hold at high temperatures, but it seems unlikely that the scattering

mechanism would change from the 3/2 power law at high temperatures. It is more likely

that the effective masses would change with the position of the Fermi level.

The thermoelectric power curve for the perpendicular orientation again behaves in a
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manner that is qualitatively correct. It is coincident to the parallel curve in the region

of one-carrier conduction, and separates from it, becoming more p-type than the curve

for the parallel orientation when mixed conduction sets in. Finally, in the intrinsic

range, the curve for perpendicular orientation appears to level off above the curve for

parallel orientation.

5. 123 Quantitative Agreement with Theory of Thermoelectric Power and Qualitative

Agreement with Theory of Thermoelectric Power in the Intrinsic Range

It is also possible to calculate the intrinsic values of the thermoelectric power from

the assumption that p = n, the values of the energy gap, and the mobility ratios. This

is done in Appendix B. For the parallel orientation, the agreement with the experimen-

tal data of Goldsmid and of Shigetomi and Mori is quite good. They do not publish data

for the perpendicular orientation. Our experimental thermoelectric-power data show

that the perpendicular orientation is more p-type than the parallel orientation - which

is the condition toward which our experimental curves seem to tend. Thus it is fair to

say that the calculated values of intrinsic thermoelectric power in both orientations are

consistent with the limited range of the available experimental data.

5.2 CHECK ON THE VALIDITY OF THE THEORY OF THERMOELECTRIC POWER

BASED UPON SINGLE-CARRIER CONDUCTION AND A MIXED SCATTERING

MECHANISM

The thermoelectric power of n-type iodine-doped Bi2 Te 3 is shown for both orienta-

tions in Fig. 4. 1-3, the conductivity for both directions is shown in Fig. 4. 2-2, and the

ratio of conductivities is shown in Fig. 4. 2-2. These data agree very closely with the

results reported by Goldsmid. Our measurements were taken on pulled crystals,

whereas his were taken on zone-refined material.

In Chapter II we derived a relationship between the anisotropy of thermoelectric

power and the conductivity ratio, from Eq. 2. 4-7. We obtained

d In(j

TEP - TEP = k
e d(ln kT)

The slope of the plot of In r versus In kT, from Fig. 4. 2-2, is equal to 0. 25. The dif-

ference of thermoelectric powers predicted by Eq. 2.4-7 is, then,

TEP,1 - TEP1 = 88 ,v/degree X 0. 25 = 22 Lv/degree

The maximum experimental difference between TEP1 and TEP1 observed in

Fig. 4. 1-3 is 25 Lv/degree, and is at the high-temperature end of the plot. This differ-

ence decreases as the temperature decreases. This can be explained as follows.

40

_ _�_ � __ I



In the degenerate limit the thermoelectric power equals zero and, of course, the

difference is zero. In the region of partial degeneracy the difference between the ther-

moelectric powers decreases (experimentally, as shown in Fig. 4.1-3) at about the same

rate (with temperature) as the absolute value of the thermoelectric power decreases. The

change in this difference is due to the increasing degeneracy.
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APPENDIX A

COMPUTATION OF THE PARAMETER y OF EQ. 2.5-13

From the data of Drabble et al. (1956;1958) the density-of-states effective masses

are

m = 0.45
e

m h = 0. 511hh 

me)3 / 2

(m3/2

3/2

= 0. 302

= 0.368

= 1. 22

Their three n-type samples are not radically different from one another. Our computa-

tion will be based on their n-type sample No. 19. The parameters at 77°K are:

P11 1.46 X 10- 6

P3 3 = 4. 1
Pl

Ae= 0.326

= 0. 425P123

The Fermi level is not available for this sample; r will be taken to be 1 at 77 K. Then

r Ae
P123 ne

It follows that

rAe 0.326 6
ne P - 0.425 6 = 0. 767 X 10

123 0.425obilities (in inks units) are:10

The mobilities (in mks units) are:

1 1

767 X 10- 6e 1 pll ne 1.46 X 106 X 0.
= 0. 893

and

- 1 1 = 0. 218
e, pine 4. pll ne

Their two p-type samples were quite different from each other. We shall make the

calculation for both of them. The parameters at 77°K (in mks units) are:
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Parameters Sample No. 19 Sample No. 23

P 11 4.23 X 10- 6 1.40 X 10- 6

P33p3 3 2.81 3.16
Pl

P1 2 3 1.06 X 10- 6 0. 240 X 10- 6

AP 0. 475 0. 425

r 1. 08 (from TEP)

The thermoelectric power of sample No. 19 was measured, and the Fermi level found

to be +1.8. The computed value of r for this Fermi level is 1. 09. No thermoelectric

power data were available on sample No. 23, so we shall take r to be 1. We can now

rA
omput e = rAP ; the computation yields:

compute P123

For sample No. 19,

1. 08 X 0.475 0.485 X 106

1.06 X 10 6

For sample No. 23,

1 X 0. 425 = 6

0. 24 X 106 6

The mobilities (in mks units) are:

For sample No. 19,

1 1

Pl Pi Pe 4.23 X 0. 485 = 0487

0. 487
P_ -2.8 0. 173

For sample No. 23,

1
PI 1.4 X 1. 77 =0.403

0.403
= 16 =0. 128

The mobility ratios are:

For sample No. 19,

= O.843 0.545
e I
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~/ __e~~ 0. 1 73 0. 795(X°) 8 = 0. 795
= 0. 218 =

For sample No. 23,

:0. 0.589
= 0.21 = 89

The y parameters are: y¥1 = 0.545 X 1. 21 =0. 66 for sample No. 19, and 0.450 X

1.21 = 0. 545 for sample No. 23; Y = 0. 795 X 1. 21 = 0. 961 for sample No. 19, and

0. 588 X 1. 21 = 0. 712 for sample No. 23.
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APPENDIX B

CALCULATION OF THE INTRINSIC VALUES OF THERMOELECTRIC

POWER OF Bi2Te 3

In order to obtain the thermoelectric power, we must obtain the Fermi levels that

are contained in the following expressions.

nh
F1/2(e) 3-

2 (ZTrm*kT)

ph

F1/2(qh) =

2 (2rmhkT)3/2

Now, if the material is intrinsic, n = p, which implies that

*3/2

Fl/ 2 ( e ) Fl/Z(qh) (B-l)

and

kTrl e Ef - E c

kTqh = Ev - Ef

and so

E - E Ev c g

(re+h) = kT = - kT (B-2)

The energy gap is a function of temperature. This temperature dependence can be

expressed approximately as a linear perturbation from the value of the gap at absolute

zero. The expression for it is

Eg= E +BT

Goldsmid (1957) gives the values

E = 0. 16 ev
go

p = -1.5 X 10- 4 ev/°K

The melting point of the material is 58°C, which is 859°K. We shall arbitrarily pick

T = 800°K to make this calculation. At this temperature the energy gap is 0. 04 ev.

Now we must find, from the tables of McDougall and Stoner (1938), values of 1 e and
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ip that simultaneously satisfy Eqs. B-i and B-2. A good starting value would be the

classical value given by

E *3/2
1 y In1

~e 2 kT 2 n

1 0.04 1
0.0665 + In 1.212 0.0665 2

0. 19-0.300 + = -0. 205
2

E
y

rh = -kT - e

-0. 600 + 0. 205

= -0. 400

From the tables, if 1h = -0. 4 and e = -0. 2, then F 1/ 2 (1 h ) = 0. 489 and F1/(e)

0. 577, and therefore

F1/2('1e )

= 1. 18

F 1/2 ( h)

Equation B-1 states that for classical statistics

h' = 1.21

F 1/2( h ) me

so classical statistics give a fairly good number at this temperature. Then it should be

all right to use the classical formula for thermoelectric power given by Johnson and

Lark-Harovitz (1953):

E
TEP =

Using the values = 0. 545 and (i) = 0. 795 for sample No. 19, given in Appendix A,

we obtain

(/1 -e = 0. 114

+ e)
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and therefore

TEPIi = -88 X 0. 288(2. 3) = -58 puv/degree

and

TEP = -88 X 0. 114(2.3) = -23 FLv/degree

The value for TEPIl is in very good agreement with the published data of Shigetomi

and Mori (1956) and of Goldsmid (1957). There are, to our knowledge, no published data

for TEP .
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APPENDIX C

CALCULATION OF THERMOELECTRIC POWER VERSUS TEMPERATURE IN

THE TRANSITION RANGE

The conductivity data of Shigetomi and Mori (1956) are replotted on a log a- ver-

sus log T scale in Fig. C-1. The low-temperature slope is extended into the high-

temperature region. This extended curve divided by the number of acceptors is taken

to be the mobility. The ordinates read from this curve are designated o- 

The Hall constant of this material at low temperatures, taken from Shigetomi and

Mori's Hall curves, is 0. 422. The number of acceptors is then given by

rA p 19
= -rA 0. 75 X 10 per cubic centimeter

P 12 3 e

when r is taken to have its classical value, and AP = .45 is an average of the values for

samples No. 19 and No. 23 of Drabble et al. (1956;1958). Data taken from Shigetomi

and Mori's conductivity curve and the mobility extension of the conductivity curve,

together with tabulated values of the Fermi integrals, have been used for the calculation

described in Chapter V. The results are tabulated in Table I. The thermoelectric-

power data of Shigetomi and Mori are replotted in Fig. C-2. Their points are repre-

sented as crosses. Our calculated points for the parallel orientation are shown as

0?g
I2

0

0
z

0
0

1001

+ 0,

00

T (K)

Fig. C-1. Replot of the conductivity data of Shigetomi and Mori.
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power of Bi2Te 3 in the transition range.

Point T( C) T(°K) P n T3/2 F F
19 19/2h /Ze

(X10 9) (XIO1 9 ) (X10 9)

1 26 300 593 593 .75 .75 0 5220 .720 .000

2 76 350 470 423 .835 .78 .03 6580 .593 .0278

3 126 400 490 320 1. 15 .89 .14 8000 .555 .107

4 176 450 595 250 1.79 1.11 .36 9540 .581 .275

5 226 500 675 195 2.60 1.40 .65 11,200 .625 .354

6 276 550 750 157 3.58 1.75 1. 00 12, 900 .677 .472

7 326 600 815 130 4.70 2. 14 1.39 14, 700 .830 .584

8 427 700 1000 9. 1 8. 25 4. 06 3.31 18, 500 1.38 1.37

F1(Th )

.878

.714

.659

.693

.755

.822

1. 14

2.30

Fo0 ( h )

.726

.612

.576

.595

.646

.693

.911

1.32

Fl( e )

.0299

.118

.308

.406

.582

.693

2.30

Fo0 ( e )

.030

.114

.287

.368

.511

.596

1.32

F1F/2h

° h

1.38

1.27

1.35

1.46

1.61

2. 04

4.78

(1F1/2•

e

. 056

.221

. 590

.780

1.08

1.33

4.78

TEPII

+206

+139

+85

+18. 2

-6. 9

-20. 2

-25

-61

TEP1

+206

+160

+124

+55

+37

+21.3

+12. 1
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Point

1

2

3

4

5

6

7

8

I h

+. 076

-. 167

-. 248

-. 192

-. 100

.000

+.400

+1.00

-00

-3.8

-2. 1

-1. 1

-. 80

-. 40

-. 20

+1.00

C��=

'ne

-�-- ·

Table I. Calculation of thermoelectric



0 CALCULATED POINTS OF TEP,,
200
w CALCULATED POINTS OF TEP i

Uw\ + EXPERIMENTAL POINTS OF
o f+ SHIGETOMI AND MORI FOR TEP,

5 100
0

W PERPENDICULAR
EL \ ORIENTATION
0

0I T(°C)
100 2O0

+
300 400 500

PARALLEL
ORIENTATION + + + + +

Fig. C-2. Thermoelectric power of Bi 2 Te 3 in the transition range.

circles and those for the perpendicular orientation as squares.

The agreement of the calculated curve for the parallel orientation with the data of

Drabble et al. and Shigetomi and Mori is quite good up to 300°C. Above that tempera-

ture, the n and p values obtained from the o- and - curves give positive Fermi levels

for both holes and electrons. This finding implies that the energy bands have overlapped

and the material has become a semimetal. This is at variance with data of other

workers. Apparently the mobility extrapolation is not good at these temperatures.
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