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Abstract

The aim of this research is to present an investigation of the possibility of efficient,
discrete representations of random signals. In many problems a conversion is neces-
sary between a signal of continuous form and a signal of discrete form. This conversion
should take place with small loss of information but still in as efficient a manner
as possible.

Optimum representations are found for a finite time interval. The asymptotic behav-
ior of the error in the stationary case is related to the spectrum of the process.

Optimal solutions can also be found when the representation is made in the presence
of noise. These solutions are closely connected with the theory of optimum linear
systems.

Some experimental results have been obtained by using these optimum repre-
sentations.
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I. INTRODUCTION

1. 1 THE PROBLEM OF SIGNAL REPRESENTATION

A signal represents the fluctuation with time of some quantity, such as voltage,

temperature, or velocity, which contains information of some ultimate usefulness. It

may be desired, for example, to transmit the information contained in this signal over

a communication link to a digital computer on which mathematical operations will be

performed. At some point in the system, the signal must be converted into a form

acceptable to the computer, that is, a discrete or digital form. This conversion should

take place with small loss of information and yet in as efficient a manner as possible.

In other words, the digital form should retain only those attributes of the signal which

are information-bearing.

The purpose of the research presented here has been to investigate the possibility

of efficient, discrete representations of random signals.

Another example which involves the discrete representation of signals is the char-

acterization of nonlinear systems described by Bose.4 This involves the separation of

the system into two sections, a linear section and a nonlinear, no-memory section. The

linear section is the representation of the past of the input in terms of the set of Fourier

coefficients of a Laguerre function expansion. The second section then consists of non-

linear, no-memory operations on these coefficients. Thus, the representation charac-

terizes the memory of the nonlinear system. This idea originated with Wiener.

The study presented in this report actually originated from a suggestion by Professor

Amar G. Bose in connection with this characterization of nonlinear systems. He sug-

gested that since in practice we shall only use a finite number of Fourier coefficients

to represent the past of a signal, perhaps some set of functions other than Laguerre

functions might result in a better representation. We have been able to solve this pro-

blem with respect to a weighted mean-square error or even a more general criterion.

The problem of finding the best representation with respect to the operation of the non-

linear system as a whole has not been solved.

Fig.. 1. Discrete representation of a random function.

The problem of discrete representation as it is considered in this report is illus-

trated in Fig. 1. A set of numbers that are random variables is derived from a random

process x(t) and represents that process in some way. We must then be able to use the

1



information contained in the set of random variables to return to a reasonable approxi-

mation of the process x(t). The fidelity of the representation is then measured by finding

how close we come to x(t) with respect to some criterion.

1.2 THE HISTORY OF THE PROBLEM

The problem of discrete representation of signals has been considered by many

authors, including Shannon,Z 8 Balakrishnan,l and Karhunen. 19 Shannon and Balakrishnan

considered sampling representations, and Karhunen has done considerable work on

series representations. To our knowledge, the only author who has done a great deal

of thinking along the lines of efficient representations is Huggins. 11 He considered

exponential representations of signals which are especially useful when dealing with

speech waveforms.

2
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II. BASIC CONCEPTS

We shall now briefly present some of the fundamental ideas that will form the basis

of the following work. The first three sections will cover function spaces and linear

methods. A theorem that will be used several times is presented in the fourth section.

The fifth section will discuss random processes and some methods of decomposition.

This section is intended to give a rsum, and the only part that is original with the

author is a slight extension of Fan's theorem given in section 2.4.

2.1 FUNCTION SPACE

A useful concept in the study of linear transformations and approximations of square

integrable functions is the analogy of functions with vectors (function space). As we can

express any vector v in a finite dimensional vector space as a linear combination of a

set of basis vectors {~i }

n

vv= E v(1)
i=l

so can we express any square integrable function defined on an interval Q2 as an infinite

linear combination of a set of basis functions

00

f(t) = ai4i(t) (2)
i=l

The analogy is not complete, however, since, in general, the equality sign in Eq. (2)

does not necessarily hold for all t E . If the a i are chosen in a certain way, the equality

can always be interpreted in the sense that

n 2

lim f(t) - aii(t) dt = 0 (3)

i=l

To be precise we should say that the series converges in the mean to f(t) or

f(t) = . i.m. ai(i(t)
n-o i= 1

where l.i.m. stands for "limit in the mean." Moreover, if it can be shown that the

series converges uniformly, then the equality will be good for all t E Q, that is

n

f(t) = lim aii(t)

n-oo i=l

3
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n
(If, for any strip (f(t)+E, f(t)-E) for t E 2, the approximation Z aii(t) lies within the

i=l
strip for n large enough, the series converges uniformly. For a discussion of uniform

and nonuniform convergence, see Courant. 3 2 )

If the set {qi(t)} is orthonormal

i=
+i(t) +.(t) dt =

and complete; that is,

, f(t) f(t) dt = 0 all i = 1, 2,...

if and only if S f2 (t) dt 0, then the coefficients a. in Eq. (2) can be given by

ai = , f(t) i(t) dt

and the limit (3) holds.

Uniform convergence is certainly a stronger condition than convergence in the mean,

and in most cases is much more difficult to establish. If we are interested in approxi-

mating the whole function, in most engineering situations we shall be satisfied with con-

vergence in the mean, since Eq. (3) states that the energy in the error can be made as

small as is desired. If, on the other hand, we are interested in approximating the func-

tion at a single time instant, convergence in the mean does not insure convergence for

that time instant and we shall be more interested in establishing uniform convergence.

Another useful concept that stems from the analogy is that of length. Ordinary

Euclidian length as defined in a finite dimensional vector space is

n 1/2

vI =[Z vi2
i=l

and in function space it can be defined as

1/2

If(t)I = [S f2 (t) dt]

It can be shown that both these definitions satisfy the three conditions that length in ordi-

nary Euclidean three-dimensional space satisfies:

(i) Iv = 0, if and only if v = 0.
(ii) cv = clvi

4



(iii) I +wj _< I + Iwj

The first states that the length of a vector is zero if and only if all of its components

are zero; the second is clear; and the third is another way of saying that the shortest

distance between two points is a straight line.

There are other useful definitions of length which satisfy these conditions, for

example

lf(t)| r W(t) f (t) dt]

where W(t) > O. We shall call any such definition a "norm," and we shall denote a norm

by I f(t) or f 11.

In other sections we shall use the norm as a measure of the characteristic differ-

ences between functions. Actually, it will not be necessary to restrict ourselves to a

measure that satisfies the conditions for a norm, and we do so only to retain the geo-

metric picture.

In vector space we also have the inner product of two vectors (We use the bracket

notation v, w to denote the inner product.)

n

Kvw) = v.w.
i=l

and its analogous definition in function space is

<f g) = S f(t) g(t) dt

An important concept is the transformation or "operator." In vector space, an

operator L is an operation which when applied to any vector v gives another vector

w = L[v]

It is a linear operator when

L[al 1+a 2 v] = alL[v1] + azL[v 2 ]

for any two vectors v and v2. Any linear operation in a finite dimensional space can

be expressed as

n

wi = aijvj

j=l

which is the matrix multiplication

5
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Wi] = [aij ] Vi]

The same definition holds in function space, and we have

g(t) = L[f(t)]

A special case of a linear operator is the integral operator

g(s) = K(s, t) f(t) dt

where K(s, t) is called the "kernel" of the operator.

A "functional" is an operation which when applied to a vector gives a number; that is,

c = T[v]

and a linear functional obeys the law

T[alvl+a 2 v2 ] = alT[vl] + a 2 T[v 2]

For a function space, we have c = T[f(t)]. The norm and an inner product with a partic-

ular function are functionals. In fact, it can be shown that a particular class of linear

functionals can always be represented as an inner product, that is,

T[f(t)] = f(t) g(t) dt

for any f(t). (These are the bounded or continuous linear functionals. See Friedman. 3 3)

2.2 INTEGRAL EQUATIONS

There are two types of integral equation that will be considered in the following

work. These are

K(s, t) (t) dt = Xq(s) s E 2 (4)

where the unknowns are +(t) and X, and

K(s, t) g(t) dt = f(s) s 2 (5)

where the unknown is g(t).

The solutions of the integral (4) have many properties and we shall list a number of

these that will prove useful later. We shall assume that

61 1 IK(St)| 2 d s d t <

6
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and that the kernel is real and symmetric, K(s, t) = K(t, s). The solutions qi(t) of (4)

are called the eigenfunctions of K(s,t), and the corresponding set {X1} is the set of eigen-

values or the "spectrum." We have the following properties:

(a) The spectrum is discrete; that is, the set of solutions is a countable set. (A

proof has been given by Courant and Hilbert. 3 4 )

(b) Any two eigenfunctions corresponding to distinct eigenvalues are orthogonal. If

there are n linearly independent solutions corresponding to an eigenvalue ki , it is said

that Xi has multiplicity n. These n solutions can be orthogonalized by the Gram-

Schmidt procedure, and in the following discussion we shall assume that this has been

done. (A proof has been given by Petrovskii. 3 5 )

(c) If the kernel K(s, t) is positive definite; that is,

S 51 K(s, t) f(s) f(t) ds dt > 0

for f(t) 0, then the set of eigenfunctions is complete. (A proof has been given by

Smithies. 36)

(d) The kernel K(s, t) may be expressed as the series of eigenfunctions

oo

K(s,t) = kiqi(s) qi(t) (6)

i=l

which is convergent in the mean. (A proof has been given by Petrovskii. 3 7 )

(e) If K(s, t) is non-negative definite; that is,

,S n K(s, t) f(s) f(t) ds dt 0

for any f(t), then the series (6) converges absolutely and uniformly (Mercer's theorem).

(A proof has been given by Petrovskii. 3 8)

(f) If

f(s) = K(s, t) g(t) dt

where g(t) is square integrable, then f(s) can be expanded in an absolutely and uni-

formly convergent series of the eigenfunctions of K(s, t) (Hilbert-Schmidt theorem).

(A proof has been given by Petrovskii. 3 9)

(g) A useful method for characterizing the eigenvalues and eigenfunctions of a kernel

utilizes the extremal property of the eigenvalues. The quadratic form

~S ,K(s,t) f(s) f(t) ds dt

7
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where f(t) varies under the conditions

S f(s) ds = 1

5 f(s) yi(s) ds = 0 i = 1,2,..n-

where the yi(t) are the eigenfunctions of K(s, t), is maximized by the choice f(t) = Yn(t),

and the maximum is kn. There exists also a minimax characterization that does not

require the knowledge of the lower-order eigenfunctions. (A proof has been given by

Smithies . 4 0 )

We shall adopt the convention that zero is a possible eigenvalue so that every set

of eigenfunctions will be considered complete.

By Picard's theorem (see Courant and Hilbert41), Eq. (5) has a square integrable

solution if and only if the series

o 2 t 2
V f(t) yi(t) dt

i= 1 k i

converges. The solution is then

o00

g(t) = -. i(t) f(t) yi(t) dt t
i=1 1

2.3 THE SPECTRAL REPRESENTATION OF A LINEAR OPERATOR

A useful tool in the theory of linear operators is the spectral representation. (An

interesting discussion of this topic is given by Friedman. 4Z) Let us consider the oper-

ator equation

L[q(t)] = X(t) (7)

where the linear operator L is "self-adjoint"; that is,

<f,L[g]) = (L[f],g)

An example of such an operator equation is the integral Eq. (4) where the kernel is

assumed symmetric. It is self-adjoint, since

8



<f L[g]> f(s) { K(s, t) g(t) dt} ds

= i &K(t, s) f(s) ds} g(t) dt

=<L[f ], 

The solutions of Eq. (7) are the eigenvalues and eigenfunctions of L, and the set of

eigenvalues {ki} is called the spectrum.

We shall assume that Eq. (7) has a countable number of solutions; that is, {ki} is a

discrete spectrum. It can be shown that any two eigenfunctions corresponding to distinct

eigenvalues are orthogonal 43; therefore, if the set of eigenfunctions is complete, we can

assume that it is a complete, orthonormal set. If {yi(t)} is such a set of eigenfunctions,

then any square integrable function f(t) may be expanded as follows:

oo

f(t)= fiYi(t) (8)

i=l

If we apply L, we get

o00

L[f(t)] = fiXiYi(t) (9)
i=l

The representation of f(t) and L[f(t)] in Eqs. (8) and (9) is called the "spectral repre-

sentation" of L. It is seen that the set of eigenvalues and eigenfunctions completely

characterizes L.

If we want to solve the equation L[f(t)] = g(t) for f(t), then we use the spectral repre-

sentation and we get

o

ft)= ygi(t) = g(t)
1 

It is then seen that the eigenvalues 1/k i and eigenfunctions yi(t) characterize

the inverse L of L. For example, if we have an integral operator with a
o

kernel K(s,t) = , kiYi(s) yi(t), then the inverse operator is characterized by 1/k i

and yi(t) and we can write

oo

K (s,t) 1 yi(s) Yi(t)

9
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where K 1 (s, t) is the inverse kernel; this makes sense only if the series converges.

It is also interesting to note that if we define an operator Ln to be the operation L

taken n times; that is,

Ln[f(t)] = L[L[.. L[f(t)]... ]

then the spectrum of Ln is ifj, where {k} is the spectrum of L, and the eigenfunctions

are identical.

It must be pointed out that the term "spectrum" as used here is not to be confused

with the use of the word in connection with the frequency spectrum or power density

spectrum of a random process. There is a close relation, however, between the spec-

trum of a linear operator and the system function of a linear, time-invariant system.

Consider the operation

y(t) = h(t-s) x(s) ds

where h(t) = h(-t). This is a time-invariant operation with a symmetrical kernel. The

equation

5' h(t-s) (s) ds = \+(t)

is satisfied by any function of the form

Of(t) = ej 2wft

where

Xf = H(f) ' h(t)e -j ft dt

Thus, we have a continuum of eigenvalues and eigenfunctions and H(f) is the continuous

spectrum, or, as it is known in linear system theory, the "system function." This is

a useful representation because if we cascade two time-invariant systems with system

functions Hl(f) and H2 (f), the system function of the resultant is Hl(f) H2 (f). A similar

relation occurs for the spectra of linear operators with the same eigenvalues. If we

cascade two linear operators with spectra {k1l) and X{k2)}, the spectrum of the result-

ant linear operator is X(l)i )

2.4 A USEFUL THEOREM

We now consider a theorem that is a slight extension of a theorem of Fan.4 4 ' 4 5 Sup-

pose that L is a self-adjoint operator with a discrete spectrum and suppose that it has

a maximum (or minimum) eigenvalue. The eigenvalues and eigenfunctions of L are

X1l 2 ... and y1 (t), y2 (t), ... arranged in descending (ascending) order. We then

10
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state the following theorem which is proved in Appendix A.

THEOREM I. The sum

n

i= 1

where c1 > c2 ... cn , is maximized (minimized) with respect to the orthonormal set

of functions {i(t)} by the choice

qi(t ) = Yi(t) i = 1,2,...,n

n
and this maximum (minimum) value is Z ciki . It is useful to state the corollary for

i=l
the integral operator L[f(t)] = K(s, t) f(t) dt.

COROLLARY. The sum

n

i= 1

K(s, t) i(s) i(t) ds dt

is maximized with respect to the orthonormal set of functions {i(t)} by the choice

ci(t) = Yi(t) i = 1,,...,n

n
and the maximum value is Z i , where the k i and yi(t) are the eigenvalues and eigen-

functions of K(s, t). i= 1

2. 5 RANDOM PROCESSES AND THEIR DECOMPOSITION

For a random process x(t), we shall generally consider as relevant statistical prop-

erties the first two moments

m(t) = E[x(t)]

r(s,t) = E[(x(s)-m(s))(x(t)-m(t))]

Here, m(t) is the mean-value function, and r(s, t) is the autocovariance function. We

also have the autocorrelation function R(s, t) = E[x(s) x(t)] which is identical with the

autocovariance function if the mean is zero. For stationary processes, R(s, t) = R(s-t)

and we have the Wiener-Khinchin theorem

R(t) = 2
V-oo

S(f) ejZ rft df

and its inverse

S(f) = -o0

11
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where S(f) is the power density spectrum of the process x(t).

Much of the application to random processes of the linear methods of function space

is due to Karhunen. 19 ' 20 The Karhunen-Loeve expansion theorem4 6 states that a ran-

dom process in an interval of time 2 may be written as an orthonormal series with

uncorrelated coefficients. Suppose that x(t) has mean m(t) and autocovariance r(s, t).

The autocovariance is non-negative definite and by considering the integral equation

r(s, t) yi(t) dt = Xiyi(s) s 

we get the expansion

00

x(t) = m(t) + aiyi(t) t E (10)

i=l

for which

E[aiaj] ={

where a i = 5 (x(t)-m(t)) yi(t) dt for i = 1, 2, ... Moreover, the representation (10)

converges in the mean for every t. (This is convergence in the mean for random vari-

ables, which is not to be confused with convergence in the mean for functions. A

sequence of random variables xn converges in the mean to the random variable x if and

only if lim E [(x-xn)2 = 0.) This is a direct consequence of Mercer's theorem, since

E Lx(t) - m(t) - aiyi(t) = r(t,t) - 2 yi(t) r(t, s) i(s) ds + kii (t)
i=1 i=1 i=1

n

= r(t,t)- h Xi2vi(t)

i= 1

nn 2
By Mercer's theorem, lim Z iyi(t) = r(t,t), and therefore

n-oo i=l 

limE [x(t) - m(t) - ayi(t) =0
n-o

Karhunen has given another representation theorem which is the infinite analog

of the Karhunen-Loeve representation. Let x(t) be a process with zero mean and

12



autocorrelation function R(s, t), and suppose that R(s, t) is expressible in the form of

the Stieltjes integral 4 7

R(s,t) = c f(s, u) f(t, u) do(u)

where a(u) is a nondecreasing positive function of u. There exists, then, an orthogonal

process Z(s) so that

00

x(t) = f(t, s) dZ(s)2-oO
where E[Z2 (s)] = _(s). (A process is orthogonal if for any two disjoint intervals (ul, u 2)

and (u 3 ,u 4 ), E[(Z(uZ)-Z(u1 ))(Z(u 4 )-Z(u 3))] = O.) If, in particular, the process x(t) is
stationary, then, from the Wiener-Khinchin theorem, we have

R(s-t) = ejz2 f(s- t) dF(f)

in the form of a Stieltjes integral, so that we obtain the "spectral decomposition" of the

stationary process,

00 dZ(f)

which is due to Cram6r.

13
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III. THE THEORY OF DISCRETE REPRESENTATIONS

3.1 GENERAL FORMULATION

An important aspect of any investigation is the formulation of the general problem.

It gives the investigator a broad perspective so that he may discern the relation of those

questions that have been answered to the more general problem. It also aids in giving

insight into the choice of lines of further investigation.

In the general formulation of the problem of discrete representation, we must be

able to answer three questions with respect to any particular representation:

(a) How is the discrete representation derived from the random process x(t)?

(b) In what way does it represent the process?

(c) How well is the process represented?

To answer these questions it is necessary to give some definitions:

(a) We shall define a set of functionals {Ti} by which the random variables {ai} are

derived from x(t), that is, a i = Ti[x(t)].

(b) For transforming the set {ai} into a function z(t) which in some sense approxi-

mates x(t), we need to define an approximation function F for which z(t) = F(t, al, ... , an).

(c) We must state in what sense z(t) approximates x(t) by introducing a norm on the

error, e(t)[| = x(t)-z(t)t)11. (In general, it would not be necessary to restrict ourselves

to a norm here; however, it is convenient for our purposes.) This norm shall comprise

the criteria for the relative importance of the characteristics of x(t).

(d) We must utilize a statistical property of j| e(t)|| to obtain a fidelity measure

across the ensemble of x(t). In this report we use = E[II e(t)II 2], although others could

be defined. (For example, P[ e(t)| k]. It may be well to point out, however, that

the choice of the expected value is not arbitrary but made from the standpoint of analyt-

ical expediency.) We shall sometimes refer to as "the error."

x( t)

8

Fig. 2. The process of fidelity measurement of a
discrete representation.

14

jl _



The process of fidelity measurement of a discrete representation would then be as

shown by the block diagram in Fig. 2.

We are now in a position to state the fundamental problem in the study of the discrete

representation of random signals. We must so determine the set {Ti} and F that

= E[ IIx(t)-F(t, al, ... an) 12] (11)

shall be a minimum. We shall denote this minimum value by * and the Ti} and F for

which it is attained by {T*} and F*. In many cases the requirements of the problem

may force the restriction of {Ti) and F to certain classes, in which case we would per-

form the minimization discussed above with the proper constraints.

It is certain that the solution of this problem, in general, would be a formidable task.

We shall be dealing largely with those cases in which {Ti) and F are linear and the norm

is the square root of a quadratic expression. This is convenient because the minimiza-

tion of Eq. (11) then simply requires the solution of linear equations.

3.2 LINEAR REPRESENTATIONS IN A FINITE TIME INTERVAL

We shall now consider a random process x(t) to be represented in a finite interval

of time. We shall assume that (a) the approximation function F is constrained to be of

no higher than first degree in the variables a, ... , an, and (b) the norm is f(t) I =

~[&xf(t) dt j , where the interval of integration, Q2, is the region of t over which

the process is to be represented.

Considering t as a parameter, we see that F(t, al,..., an) may be written

n

F(t,a 1 ... an) = c(t) + ai4i(t)

i=l

We then want to minimize

= E x(t) - c(t) -i= aii(t) dt (12)

The minimization will be performed, first, with respect to the functionals {Ti} while

F is assumed to be arbitrary (subject to the constraint) but fixed. There is no restric-

tion in assuming that the set of functions {+i(t)} is an orthonormal set over the interval 2,

for if it is not, we can put F into such a form by performing a Gram-Schmidt orthogon-

alization. 4 8

We have then f i ( t) j(t) dt = 6ij, where ij is the Kronecker delta.

It follows from the minimal property of Fourier coefficients that the quantity in

brackets in Eq. (12) is minimized for each x(t) by the choice

15
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a i = Ti[x(t)] = [x(t)-c(t)] i(t) dtn

over all possible sets {Ti}. Likewise, it follows that its expected value, 0, must be

minimized. Setting y(t) = x(t) - c(t), we see that the minimized expression is

S= E Y(t) - i(t) y(s) (i(s) ds dt

i=l

n

= Ry(t,t) dt- j 5' R(s,t) i(s) i(t)dsdt

By the corollary of Theorem I, we know that

n

1i= 1

n n

R y(s,t) i(s) i(t) ds dt 7 C 2Ry(st) i(s) yi(t) ds dt= ki

i= 1 i= 1

where the Xi and the yi(t) are the eigenvalues and eigenfunctions of the kernel Ry(s, t).

O is then minimized with respect to the 4i(t) by the choice 4i(t) = Yi(t). The error now is

e = Ry(tt) dt - .
1

i= 

From Mercer's Theorem (see section 2.2), we have

oo0

Ry(s,t) = \ kiyi(S) Yi(t)

i=l

so that

Ry(t, t) dt

and therefore

oo

i=l

We now assert that each

have for each eigenvalue

eigenvalue is minimized by choosing c(t) = mx(t) = E[x(t)]. We

16
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Ry(s,t) i(s) i(t) ds dt

E[x(s)x(t)-x(s)c(t)-c(s)x(t)+c(s)c(t)] i(s) Yi(t) ds dt

Rx(, t) y(s) Y i(t) ds dt - 2 r(s) yi(t) ds c(t) yi(t) dt

2

c(s) i(s) ds]

Now, since

c(s) yi(s) ds - S mx (s)
2i() d Y.(s) ds > 0

We have

IS ( S1yifs) dS2
c(s) yi(s) ds

- 2 mx(s) yi(s) ds SQ -s,2
mx(s) yi(s)

Here, the equality sign holds for

2 mx(S) yi(s) ds = c(t) yi(t) dt

After applying this inequality to Eq. (13) we find that Xi is minimum for

n mx(s) i(s) ds = S c( t) dt

and since we want this to hold for all i, we have c(t) = m(t).

So, we finally see that if we have a random process x(t) with mean mx(t) and covar-
iance function rX(S, t) = E[{x(s)-mx(s)}x(t)-mx(t)} ], then is minimized for

n

F (t,al I... an) = mx(t) +
i= 1

aiYi(t)

The yi(t) are the solutions of

rx(s, t) yi(t) dt = kiyi(s) sE 2

arranged in the order 1 2 ... , and

17
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*
a. S x(t) yi(t) dt - m(t) y(t) dt

The minimum error is, then,

n 00

0*= r(t,t) dt- iX.= (14)

i= 1 i=n+1

This solution is identical to the Karhunen-Loeve expansion of a process in an ortho-

normal series with uncorrelated coefficients which was described in section 2.4. This

was first proved by Koschmann,21 and has since been discussed by several other

authors 1 3 , 5, 22

We have assumed that x(t) has a nonzero mean. In the solution, however, the mean

is subtracted from the process and for the reconstruction it is added in again. In the

rest of this report we shall consider, for the most part, zero-mean processes, for if

they are not, we can subtract the mean.

3.3 A GEOMETRICAL DESCRIPTION

A useful geometric picture can be obtained by considering a random process in a

finite time interval as a random vector in an infinite dimensional vector space. This

geometric picture will be used in this section in order to gain understanding of the result

of section 3. 2, but we shall confine ourselves to a finite m-dimensional vector space.

The process x(t) will then be representable as a finite linear combination of some ortho-

normal set of basis functions {Ji(t)}; that is,

m

x(t)= E xii(t)

i= 1

where the xi are the random coordinates of x(t). We see, then, that x(t) is equivalent to

the random vector x= {Xl, ... ,Xm}.

We shall assume that x(t) has mean zero and correlation function Rx(s, t). The ran-

dom vector x then has mean zero and covariance matrix of elements rij = E[xixj], with

m m

R(s, t) = E riji(s) ,j(t)

i=1 j=l

Our object is to represent x by a set of n random variables {al, . . ., an}, with n < m.

Using arguments similar to those of section 3. 2, we see that we want to find the
n 2

random vector z = c + ai i which minimizes 0 = E[ix-zI2]. Since x has zero mean,
i= 1

we shall assume that c = 0. Then, z is a random vector confined to an n-dimensional

hyperplane through the origin. Since the set {i} determines the orientation of this plane,

there is no restriction in assuming that it is orthonormal; that is, = ij. If we

18



x
3

Fig. 3. The best approximation
of a random vector.

X2

are given a particular orientation for the plane, that is, a particular set {4i}, and a par-

ticular outcome of x, then it is clear that the best z is the projection of x onto the plane,
n

as shown in Fig. 3. That is, z= , (x,i> i, so that ai = (x,i>, (i=l,...,n). This

is related to the minimal property of Fourier coefficients, as mentioned in section 3. 2.

The error, 0, then becomes

0=E[Ix-zl I

n n

i=1 i=l1

=E[lxI ]-E[ (x,4i)] (15)

Now, we must find the orientation of the hyperplane which minimizes 0. From

Eq. (15), we see that this is equivalent to finding the orientation that maximizes the

average of the squared length of the projection of x. We have for the inner product

m

OE +i= xij
j=l

where i = {il'' *im}' Then

Z

0 = E[lxl - E xjqi}

n m m

= E[Jx 2] -i 1 k- ij-
i=1 j=l k=1

19
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The quantity in brackets is a quadratic form

m

-[ail,.. I *im]- E

j=1

so that we must maximize

n

i=l

where {i} is constrained to

Suppose that n = 1, than

I 1 1 = 1. By the maximum
that

be an orthonormal set.

we must maximize f[ 1 1l . .. im] subject to the condition

property of the eigenvalues mentioned in section 2.2 we see

max ,[al] = -[y] = 1

11I = 1

where 1 is the largest eigenvalue of the positive definite matrix [rij ], and y1 is the

corresponding eigenvector. So we have the solution for n = 1. The surface generated

_> ;

Fig. 4. The surface generated by
the quadratic form.

r4t

by -F, by allowing l1 to take on all possible orientations, would be similar to that shown
m

in Fig. 4 for m = 3. This surface has the property that Z [i] is invariant with
m i= -

respect to the set {a} and is equal to Z i.. This must be so, since if all m dimensions
i=l 1

20
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are used in the approximation, the error must be zero.

By the maximum property of the eigenvalues, we also have

max 9-[+i] = [-Yi] = i
i - -

Ki, Yj) = 1 j = 1,...,i-1

So, from this property and by observing Fig. 4 we might expect that

n

max I =

{4i}i= I

n n

E H--i]= xi
i=1 i=1

This is in fact true, but it does not follow so simply because in this procedure the max-

imization at each stage depends on the previous stages. The fact that it is true depends

on the character of the surface, and it follows from Fan's Theorem (section 2.4).

3.4 MAXIMUM SEPARATION PROPERTY

There is another geometric property associated with the solution to the problem of

section 3.2. Let r be an m-dimensional linear vector space the elements of which are

functions over a certain time interval Q. Suppose that the random process x(t) consists

only of certain waveforms sl(t), . . sn(t) which occur with probabilities P 1 , . ., Pn

Only one waveform occurs per trial. The autocorrelation function is, then, R x(s, t) =
n
Z Pisi(s) si(t), and we shall assume that E[x(t)] = 0.

i=l 
Suppose that we arbitrarily pick a set of orthonormal functions y1 (t), ... , yq(t)

which define an 2-dimensional hyperplane r of r. Let y,+l(t) , ,m(t) be an arbi-

trary completion of the set so that {yi(t)} is a basis for the whole space. The projections

of the waveforms on rI are, then,

2 2

s (t) = yj(t) s(t) yj(t) dt = IYj(t)

j=1 j1

i= 1,...,n

where

j = ·.. · m

We shall define the average separation S

n

S ij= 

i, j= 

of the s(t) in r I to be
1 

P j , [si(t)-s(t)] 2 dt

21
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and we shall be interested in finding what orientation of r maximizes S.

k=l

We have

PiPj (Sik-Sjk)

PiPj S2k +

n

i, j= 1 k=l

{n
I 

ki= I

PiPjSjk - Z2
jk

n

i, j1

I

Pijsikij
k=l

PiSik}-2 

k=l

We note that

n

E[x(t)] =

i= 1

PiSi(t) =11i

m

= Yj(t)

j= 1

n

i=l

n n

i Pi 
i=1 j=1

P.s.. = 0
1 1J

therefore

n

i=l

P.s.. = 0
1 1J

n

S=2 Z
i= 1

n

= 

i=1 k=l

j = ,...,m

PiS 2
i ik

PiSS

SA R (s, t)=2 1

k=l

As we have seen before, this is maximized by using the first eigenfunctions of Rx(s, t)

for the yl(t), .. ., yq(t), so that the orientation of r which maximizes the average sep-

aration is determined by these.

22

n

i, j 1

n

=2 

i=l

k=l

k=l

PiS2
i ik

Sij YjIt)

and

n

S 

Si(S) Silt) yk (S) k(t) ds dt

'Yk(s) yk(t) ds dt



Consequently, we see that if we have a cluster of signals in function space, the

orientation of the hyperplane which minimizes the error of representation in the lower

dimension also maximizes the spread of the projection of this cluster on the hyperplane,

weighted by the probabilities of occurrence of the signals. If there were some uncer-

tainty as to the position of the signal points in the function space, then we might say that

this orientation is the orientation of least confusion among the projections of the signal

points on the hyperplane.

3.5 THE ASYMPTOTIC BEHAVIOR OF THE AVERAGE ERROR IN THE

STATIONARY CASE

In this section we shall consider the representation of a stationary process x(t) for

all time (see Jordan1 6 ). This will be done by dividing time into intervals of length ZA

and using the optimum representation of section 3.2 for each interval. Since the process

is stationary, the solution will be the same for each interval.

x(t)

Fig. 5. Division of the process
into intervals.

/ 2A \ 4A t

Suppose that we use n terms to represent each interval. We then define the density

as k = n/ZA, or the average number of terms per unit time. If we consider an interval

of length 4A, as shown in Fig. 5, consisting of two subintervals of length 2A each sepa-

rately represented, we would have an average error

20*(ZA) 0 (ZA)

4A - ZA

If we now increase the interval of representation to 4A while using Zn terms, that is,

0*(4A)
holding the density constant, we would have an average error 4A . It is certainly

true that

0*(4A) 0*(ZA)

4A 2A (16)

since if it were not true, this would contradict the fact that the representation is opti-

*(ZA)
mum. It is the object of this section to study the behavior of ZA as A increases

while the density is held constant.

Since the process is stationary, Rx(t,t) = Rx(0), and, from (14), we have

n

1 0*(ZA) = Rx(0) 2A i

i=l 

23
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where the Xi are the eigenvalues of
1

Rx(s-t) 4i(t) dt = Xkii(s) -A s A

Since n = 2kA must be a positive integer, A can only take on the values

nA -- n= 1,2,...n 2k

The sequence
0*(ZAn )

ZA is monotonically decreasing because of the argument leading to
n 

(16). Since 0*(2A ) 0, all n, the sequence must have a limit. ~u We want to find

0*(2A )
im Z2A = R (0)

n-oo n

2kA
n

- lim 2A
n o0 n ,

We now make use of a theorem that will be proved in Appendix B.

THEOREM II.

2kAn

lim 2A E
i= 

n

· = lim k 
n n 
n-oo

i=l

X. =
I

SE
Sx(f) df

where

S(f) = oo
Rx(t) e-j2 f t dt

and is the power density spectrum of the process, and

E = [f; Sx(f) ]

where is adjusted in such a way that

[E] = k

(The notation [f; Sx(f)a>] means "the

measure of the set E, or length for

set of all f such that Sx(f) ¢A."

our purposes.) Now since

A[E] denotes the

RP( ) = S0o
00RX(t) = o

Rx(0) = ~7oo

Sx (f) e j ft df

Sx(f) df

and

24
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0*(ZA) 00

lim 2A Sx (f ) df - Sx (f) df S= S(f) df (18)
n- oo n 00

where E' = [f; Sx(f)< 2].

In other words, we take the power density spectrum (see Fig. 6) and adjust in such

a way that the length along f for which Sx(f) > 2 is k and then integrate over all the

remaining regions. This gives a lower bound for the average error and the bound is

approached asymptotically as A increases.

iS(f)

kl+ k2+k 3 k

klW k 2k f |^ k - | f

Fig. 6. Method of finding the Fig. 7. Spectrum of a band-
asymptotic error. limited process.

If the process x(t) is bandlimited with bandwidth k/2 cps, that is, it has no power in

the frequencies above k/2 cps, then we have the spectrum shown in Fig. 7. If we then

use a density of k terms/sec, we see that must be adjusted, according to the condi-

tion of Eq. 16, to a level = 0. By Eq. 17, we have

lim 2A x(f) df= 0
n-oo n E'

This implies that we can approach arbitrarily closely an average error of zero with a

finite time linear representation by allowing the time interval to become large enough.

This is in agreement with the Sampling Theorem 2 8' 1which states that x(t) can be repre-

sented exactly by R equally spaced samples per unit time; and, in addition, we are

assured that this is the most efficient linear representation.

3.6 A RELATED CASE

Suppose that x(t) is a zero-mean random process in the interval [-A, A] with auto-

correlation function R x(s, t). We now consider the problem in which the ai are specified

to be certain linear operations on x(t)

A
ai= A x(t) g(t) dt i= 1 .. ,n

and we minimize with F constrained as in section 3. 2; that is,

n

F(t,al, .an) = ) ai4i(t)

i=l

25



(c(t) = 0, since the process is zero mean). If we follow a straightforward minimization

procedure, we find that the set {qi(t)} must satisfy

Rx (t, s)gi(s) ds = j(t) Rx(u, v) gi(u) g(v) du dv
j=1l

i= 1,...,n

which is just a set of linear equations in a parameter t.

If the ai are samples of x(t), we then have gi(t) = 6(t-ti) and the set {i(t)} is then

the solution of

j(t) Rx(ti, tj)
i= 1,...,n (19)

Solving this with matrix notation used, we have

qj(t)] [Rx(ti , tj)]- 1 Rx(t, t)]

If we consider (t)] for t = ti (i=, . . . ,n), then we have the matrix equation

[wj(ti)] = [Rx(ti,t)]-l [Rx(t i , tj)] = [I]

where [I] denotes the identity matrix, so we see that

4j(t) = {1:
0 O

t = t.
J

t = ti ,
1

j = 1,...,n

i #j

If the process x(t) is stationary and the ai are equally spaced samples in the interval

(-oo,oo), Eq. (19) becomes

R (t-kT ) = Oj(t) Rx(kTo-2T o ) k = 0, 1, -1, 2, -2. . .

2=-oo

where T is the period of sampling.

oo

Rx(t') = E p(t'+kTo) Rx(kT o

= -oo

Substituting t' = t - kT o , we get

-iT.) k = 0, 1, -1, 2,-2.....

This holds for k equal to any integer, so that

26

n

R (t, t i ) =
j=l



00

Rx(t') = 
2=-00

00

- - 0o

2=-oo

4)2(t'+(k+j)To) Rx((k+j)To-fT o )

10+j(t'+(k+j)T o ) Rx(kTo-T o)

and we have

$1(t+kTo) = +j(t+(k+j)To)

or

$1+j(t+kTo) = $ 2 (t+(k-j)To)

so that for = 0, k = 0

4j(t) = o0(t-jTo)

where j = 0, 1, -1, 2, -2, ....

interpolatory function, which is the solution of

oo

Rx(t) = 
=-0oo

The set {4j(t)} is just a set of translations of a basic

4o(t'+fT o ) Rx(2T o)

This problem has been studied by Tufts. 3 0

case is

He has shown that the average error in this

R n - C0
- % 1x-e

[Sx(f)]
oo

z Sx(f-2fo)
= - oo00

df (20)

where f= 1/T.

3.7 AN EXAMPLE

Let x(t) be a stationary random process in the interval [-A, A] with a zero mean and

autocorrelation function

Rx(s,t) = Rx(s-t) = r e-2ris-t

The power density spectrum is then

S x(f) = I
1 + f

The eigenfunctions for this example are

27
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i, odd

i, even

Ci cos bit

%i(t) =

c i sin b.t
1 

where the ci are normalizing constants and the bi are the solutions of the transcendental

equations

b. tan b.A = 2r
1 1

b. cot bA = -2w
1 1

i, odd

i, even

The eigenvalues are given by

4wr
2

%. 

1 2 2b.2 + 4 2

The details of the solution of this problem have been omitted because they may be found

elsewhere. 5 2

"AVERAGE ERROR FOR
sin xx INTERPOLATION

OPTIMUM INTERPOLATION

MINIMUM ERROR FOR FINITE TIME
INTERVAL REPRESENTATION

0.72

_____Z 0.66

"ASYMPTOTIC VALUE FOR THE
AVERAGE ERROR

Fig. 8. Comparison of errors for
several representations.

I I
1/4 1/2 I

A (SEC)

The minimum average error,1 , has been computed for several values of A for

the case k = 6 terms/sec, and these results are shown in Fig. 8. The predicted asymp-

totic value is

k/2 Sx(f ) df 2 1 2 df = . 644
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This is plotted in Fig. 8 along with the error incurred by sampling at the rate of

6 samples/sec and reconstructing with sin interpolatory functions. This error isx
just twice the error given in Eq. 31, or twice the area under the tails of the spectrum

for If > 3. This is a known fact; but a short proof will be given in Appendix C for

reference. Also shown in Fig. 8 is the error acquired by sampling and using an opti-

mum interpolatory function. This error was computed from Eq. (20).

3.8 OPTIMIZATION WITH UNCERTAINTY IN THE REPRESENTATION

It is of interest to know whether or not the solution of section 3.2 is still optimum

when the representation in the form of the set of random variables {ai} is subject to

uncertainties. This would occur, for example, if the representation is transmitted

over a noisy channel in some communication system.

In the following discussion we shall assume that the process is zero-mean; the

representation is derived by the linear operations

ai = x(t) gi(t) dt, (22)

and the approximation function is

n

F(tal,..,an) = 7 aii(t).
i=l 1

Our object is, then, to determine under what conditions

n 2

= E[ [x(t) (ai+Ei(t)] dt]
i=l

is minimized, when the Ei are random variables representing the uncertainties. Under

the assumption that {di(t)} is an orthonormal set, we obtain

O = R(t, t) dt - ZE (a+E (t) (t) dt + E(ai+Ei) 2

and we substitute Eq. 22 to obtain

n n

O= 5 x E t - Rx(s, t) g(s) .i(t) ds dt + SRx(s t) g1(s) gi(t) ds dt

i=l i=l

n n n

S E[ i x( )] i (t )) d ix(t)]+ E[i2]. (23)
i= 1 i= 1 i= 1
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If we replace gi by gi + ali in this expression, we know from the calculus of variations 5 3

that a necessary condition that 0 be a minimum with respect to gi is

a a=0

Applying this value, we obtain

aa |O = =2 S ' )i ( s, t) (t) dt - Rx(s, t) i(t) dt - E[Eix(s)]} = 0

and since i(s) is arbitrary, the condition becomes

S Rx(s, t)[)i(t)-gi(t)] dt = E[Eix(s)] sE 

i= l, ... ,n

It is seen, then, that if E[Eix(s)] = 0, s E 2, then +i(t) = gi(t) (i=l, ..., n) satisfies the

condition. (If Rx(s,t) is positive definite, this solution is unique.) For this case,

Eq. (23) becomes

n n

0 = (t, t) dt - '5 R(s, t) ci(s) i(t) ds dt + C E[E2 j
i= 1 i=l

Consequently, we see that if E[Eix(s)] = 0 (i=l,.. ., n), for all s E 2, then the solution

of section 3.2 is still optimum and the minimum error now is

n n

0* = R(t,t) dt - + i E[ E].

i=l i=1

3.9 A MORE GENERAL NORM

Although in the general formulation of the problem given in section 3. 1 we consider

a general norm, up to this point we have made use of only the rms norm. In many prob-

lems, however, we shall be interested in a measure not only of the average difference

between functions but also of other characteristics of the functions. For example, in

Section I we described in what way a linear representation of the past of a random proc-

ess is useful in a characterization of nonlinear systems. For the most part, such a

characterization is useful only for those nonlinear systems for which the influence of

the remote past on the operation of the system is small compared with the influence of

the immediate past. In such a case, we would be interested not in a norm that weights

the average difference between functions uniformly over function space, as in the

rms norm, but in a norm that weights the immediate past more heavily than the remote

past.
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In this problem we might also be interested in a norm that discriminates not only

in time but also in frequency. The high frequencies may influence the operation of the

system to a lesser degree than the low frequencies. So, we see that it would be of inter-

est to consider a norm that is more general than the rms norm which discriminates

neither in time nor in frequency.

We consider here a generalization on the rms norm which allows more general dis-

crimination in the characteristics of the random function. This norm has the additional

property that with it the solution of the representation problem still requires only the

solution of linear equations. This norm is

1/2

I|f(t)I = SfIt dt]

Here, fl(t) is obtained by operating linearly on f(t); that is,

fl(t) = 5 K(t, u) f(u) du; t E Q (24)

where K(t, u) is determined by the requirements of the problem. (We have assumed that

the linear operation is an integral operation, although this is not necessary. In our first

special case below it will not be strictly an integral operation.) Essentially, what we

have done is to pass the error e(t) through a linear filter and then use the root mean

square. In order for this to be a true norm, K(t, u) must satisfy the condition

S K(t, u) f(u) du = t E 0 (25)

if and only if f(u) = 0 for u E Q2. (See sec. 2. 1.) A necessary and sufficient condition

that this be true is that the symmetrical kernel

Kl(s, t) = K(u, s) K(u, t) du

be positive definite. This is because the conditions

fl(t) = i K(t, u) f(u) du = 0

an t dt = K(tu) K(tv) dt} f(u) f(v) du dv = 

are equivalent.

The error, , now becomes
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= ES dt K(t, u) (u) - c(u) aii i(u) du

n 2

= Ei dt K(t, u) x(u) du - K(t, u) c(u) du - 7 a. i K(t, u) iu) du

so we see from the second of these equations that the problem reduces to the representa-

tion of the process

y(t) = K(t, u) x(u) du

by the method of section 3.2.

F *(t, al, ... ,an) = mx(t)

Consequently, our solution is

n

+ 7 ai'i(t)

i= 1

in which the yi(t) are solutions of

(i(t) = K(t, u) yi(u) du

and the (Di(t) are the eigenfunctions of

G(s, t) i(t) dt = ii(s)

arranged in the order 1 > 2 > ....

G(s, t) = 

G(s, t) is found from

K(s, u) K(t, v) r(u, v) du dv

and we have

ai i
a. ds~(s)

K(s, v)[x(v)-mx(v)] dv.

The minimum error is

S =

G(t, t) dt -

G (t, t) dt -

n

i=1l

(30)

i
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in which the Xi are the eigenvalues of Eq. (28).

We have a particularly simple case when K(s, t) is expressed over the basis of eigen-

functions {i(s)} of rx(s, t); that is,

00

K(st ) = Piti(s) i( ).

i= 1

We then have for G(s, t)

G(s, t) = 

i=1
iai1i(s) i ( t)

where the ai are the eigenvalues of rx(S, t).
1x

We then have

i(s) = i(s)

ki = ai1 11

1

vi(s) = 1i i(s )

for i = 1, 2, ....

We shall now discuss two special cases of this norm which demand special attention.

THE FIRST CASE

First, we consider the rms norm weighted in time, that is, we have

I1 f(t) j = 5 W 2 (t) f2 (t) dt

so that the linear operation is just multiplication by W(t).

K(t, u) = W(t) 6(t-u).

This corresponds to a kernel

The solution now is

n
mi(t )

F (t, al ... an) = m(t) + ai W(t)

i= 1

SQW(s) r(S, t) W(t) i(t) dt = Xi i ( S)X 1 1

ai S W(t) i(t)[x(t)-mx(t ) ] dt

in which the error is
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n

*W 2 t) (t t) dt W(s r(s, t) W(t) cD(s) .(Dt) ds(t, W(s) dt
i=l

n

= i W 2 (t) r(tt) dt - Z Xi
i=l

This is of special interest in the nonlinear filter problem in which we want to repre-

sent the past of a random function with a norm that minimizes the effect of the remote

past. In fact, if the process is stationary, we must use this weighted norm in order to

get an answer to the problem at all. This is because if we use the method of section 3. 2,

the first term of Eq. (14) would be infinite; that is,

S0 r(O) dt = oo

and no matter how many terms we use, we would not improve the situation. Also, the

kernel of the integral equation

0
_ rx(s-t) yi(t) dt = kiyi(s) S [0, O]

is not of integrable square; that is, we have

SS_ rx(-t) 12 dsdt = oo

so that we are not assured that the integral equation has a countable set of solutions.

However, if we use a weighting function W(t) chosen in such a way that

i W4 (t) rx(O) dt = rx(O) W (t) dt

is finite, then we can find a solution.

It might be well to point out also that although we have said that we must pick a

weighting W(t), we have not attempted to suggest what W(t) to use. This must depend

upon the nonlinear filtering problem at hand and upon the insight and judgment of the

designer.

As an example we consider the zero-mean random process x(t) with autocorrelation

function Rx(s, t) = e s - t [ We shall be interested in representing the past of this pro-

cess with a weighting function W(t) = e over [--o, 0]. However, for the sake of conven-
-t

ience, we shall use the interval [O, co] and weighting function W(t) = e . In this case

the solutions of the integral equation 17
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00
s 0

are

1i
(t ) = Ai et J e

2
i- 2

qi

(31)

Here, the qi are the positive roots of Jo(qi) = 0. The Ji(x) are the Bessel functions of

the first order, and the Ai are normalizing constants. The error in this case is

8* =
*$

n n

e -Z dt - xi= -Z xi

i= 1 i= 1

The first two zeros of Jo(x) are5

ql = 2.4048

q2 = 5.5201

so that the first two eigenvalues are

k1 = 0. 3458

k2 = 0. 0656

The error for one term is then

8 = 0.5 - 0. 3458 = 0. 1542 (32)

and for two terms

82 = 0.5 - 0. 3458 - 0. 0656 = 0. 0886 (33)

THE SECOND CASE

Second, consider the case in which the interval of interest is [-oo, oo], and the kernel

of the linear operation of Eq. (24) factors into the form

K(s,u) = Kl(s) K2 (s-u)

so that we have

fl(s) = Kl(S) S K 2(S-U) f(u) du
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Thus, the operation consists of a cascade of stationary linear filtering and multi-

plication. If K l (s) >- 0 and the Fourier transform of K2(s) is real and positive, then

we can consider the norm as a frequency weighting followed by a time weighting. (For

these conditions, the condition of Eq. (25) for the kernel of the norm is also satisfied.)

Let us consider the example of the representation of white noise x(t) of autocorrela-

tion function Rx(s, t) = 6(s-t) and mean zero. Here we use as weightings

2
-s

K l (s) = e

2
-s

K2(s) = e

that is, Gaussian weightings both in time and frequency.

that we must find the eigenfunctions of G(s, t), where

G(s,t) = 55

= S700

From Eqs. (28) and (29) we see

K 1 (s) K2 (s-u) K1 (t) K 2 (t-v) Rx(u, v) du dv

s2 2 _ t 2 2
e e et e(t- v) (u-v) du dv

-s2 t2=e e

-t 2
The Fourier transform of e

-t 2 -j2fte e dt=we

-(s-u) 2 e-(t-u) du

(see Appendix D) is

-r2f 2
lT f

we know that

f(o') g(t--) do- =
-oo -oo

F(f) G(f) ej 2 wft df

where F(f) and G(f) are the Fourier transforms of f(t) and g(t). We then have

00rX
U-o

-u 2 -(s-t-u) du2 r
e e du = Tr

e-2r 2 f 2 ej2rf(s-t) dte e d

; - I (s-t)
= 2 e

so that

(s, t) 2 t 2 - 1 (s-t)2
G(st) = T e- s e e
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It is shown in Appendix D that the eigenfunctions of this kernel are

At2 d i -2 2t 2
(D (t) = Ai e - e

i dt11 1 ~dt 1 i = 0, 1,. . .

Here, the Ai are normalizing constants and the eigenvalues are

X. = / 1 (32-f)i
1 \/ 3 + 2

i = 0 1, ... .

It is seen that these functions are the Hermite functions modified by a scale factor.

Hermite functions 5 5 are given by

Hn(t) = (2nn! -)-1/2 et 2 /2
dn

dtn

-t 2

e n= 0, 1,2, ...

Therefore, we have

i (t) = (Z2)1/4 Hi[(2-Z)1/Z t]

and the A i are given by

A = (2X) /
(Zi! 1/

i = 0, 1, 2,...

i = 0, 1, 2, ...

Referring to Eq. (26) we see that in order to have the complete solution we must find the

Yi(t) that are the solutions of

1 (t) = c
cooX0

-t e (t-u) 2
e e ¥ i(u) du i = 0, 1, 2, ...

according to Eq. (27). It is

yi( t ) = Ai (- e)

shown in Appendix E that the solution is

l+NJTz 
t2

2 + NJZ? di
e

dt

- Tit2

so that the best representation is given by

F (t, a, .. . an) =

i=O

1+Nf 2
t

(JT+2)1 2 + Ja.A. e
1T V( 2 -,47)

ds A. e (NZ-l)s2 d e-Z2Zs 2

1 ds 1

di _-J t 2

e
dt 1

e - ( s - t ) x(t) dt
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and the error is

0 =

n

2 0
i=O

n

e dt -

i=O

3 (3_22-i
3 + 2z, 2

2_ / 4 (3_-2J-)i
23 + ZJ

3.10 COMPARISON WITH LAGUERRE FUNCTIONS

We now return to the first example of section 3. 9, but this time we use Laguerre

functions in place of the functions of Eq. (31). We shall be interested in just how close

we can come to the minimum possible error given by Eqs. (32) and (33). The Laguerre

functions 5 6 are given by

L (x) = - e n (xe )
n+l n dxn

n = 0, 1, 2, ...

for x 0.

Since orthogonality of functions over [0, oo] is invariant with respect to a change in

scale, we have a degree of freedom at our disposal. The Laguerre functions given above

satisfy the relation

00

0
L i(y) Lj(y) dy =

1 i=j

0 i j

and if we make the change of variable y = ax, we have

a Li(ax) L.(ax) dx =
0 J~~~~ {

1 i=j

0 i*j

from which it follows that the set of functions F Ln(ax) is orthonormal. We shall be

interested in picking a best scale factor a for a representation in terms of these

functions.

By replacing the functions Di(t) in Eq. (30) by the set NJa Ln(ax), we obtain for the

error

n

0 = W() x(t, t) dt - E sO 
i=1

and for the example it becomes

38
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n

= -2 1
i= 1

e-s-t e- s-t aLi(as) Li(at) ds dt.

Suppose that n = 1. The first scaled Laguerre function is

a

TJaL (ax) = IN e G1

so that we have for the error

1 2r°
e-s-t -I s-t 

as at
2 2a e ds dt

which on performing the integration becomes

(a)- (a+ )(a+4)1 2 (a+Z)(a+4) 

This error is shown in Fig. 9 plotted as a function of a.

for which 0 1(21sT) = 0. 157.

0.5

0.4

0.3

0.2

0.1

It has a minimum at a = Zq2'

I
Fig. 9.

.
8 (a)

92 (a)

I I I I I I

The error as a function of
scale factor for Laguerre
functions.

I 2 3 4 5 6

Now suppose that n = 2. The second scaled Laguerre function is

NFa L2 (ax) = -(e ax/2 ax eax/2

and the error becomes

(a) =2 (a+2)(a+4)
Oz- Z (a+Z)(a+4)

e-s-t-I s-tl ae -as/ -as/Z][e-at/Zat e- a t/2] ds dt
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which on performing the integration becomes

1 4 a 4 a(a 3- 4 a- 1 6 )

2 (a)- 2 (a+2)(a+4) (a+2)3(a+4)2

1 -a5 + 16a 3 - 32 a + 12 8
2 4 3

(a+2) (a+4)

This is also shown in Fig. 9 and it is minimum at a = 4, for which 62(4) = 0. 093.

We see, first of all, that the best scale factor for n = 1 is not the same as it is for

n = 2. Also, it is interesting that the performance of the Laguerre functions for the

best scale factor is remarkably close to optimum. The minima of the curves in Fig. 9

are very nearly the values given in Eqs. (32) and (33).

This example illustrates the value of knowing the optimum solution. In practice,

if we are interested in representing the past of x(t), we would derive the random

variables a i from x(t) by means of linear filters. In this example, the synthesis of the

filters for the optimum solution would be much more difficult than the synthesis of the

filters for Laguerre functions. For representing the past of x(t) we would have

(reversing the sign of t since in the example we have used the interval [O, oo])

0 

x(t) et Ai e 1/+ et] dt

so that we would use a linear filter of impulse response

hi(t) = Ai e J1I - t
1 1 1

which would not be easy to synthesize. Now, if we use Laguerre functions we would

have

0
ai = x(t) et J Li(-at) dt

and we would use a filter of impulse response

hi(t) = e - t Li(at) (35)

which is quite easy to synthesize and gives us an error very close to optimum. By

means of cascades of simple linear networks we can synthesize impulse responses in

the form of Laguerre functions 2 3 or other orthonormal sets of the exponential type. ll

In Eq. (35) we have a multiplying factor of e- t which can be accounted for in the complex

40
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x(t) S I I 
S 3 s+3 2 s+~'"'

al a a

Fig. 10. A linear circuit for representing the past of a signal.

plane by displacing the poles and zeros of these networks in the direction of the real

axis by -1. For example, suppose that we want to represent the past of x(t) using

Laguerre functions with a scale factor a = 4. By observing Eq. (34), we see that the

Laplace transform of a Laguerre function is

( = n = 0, 1,... (36)
n1 n (S 1)n+1

so that the Laplace transform of hi(t), from Eq. (35), is

(s-l)n
2

Hn+ (s) =- n n= 0,1,...
( s +3)

We then see that we could derive the random variables a. from the past of x(t) by using
1

the cascade of linear networks shown in Fig. 10.

By replacing s by jZrf in Eq. (36), we obtain the Fourier transform of Ln(t) which is

n - ~n

1n ( )n 1 1j2

n! ( 2 fl)n+l n j2f + L jf +

The magnitude squared of this expression is

1 2 4 (37)

(ii-!) 1 + 1612f2

We note that this is similar in form to the spectrum of x(t) in the example. That is,

since the correlation function of x(t) was Rx(t) = exp( It), the spectrum was the Fourier
transform of this, or Sxf = 2 2 Heuristically speaking, this may be the reason

why the set of Laguerre functions did so well. If the spectrum of x(t) were markedly

different from the form of Eq. (37), then we might not expect the results to be as good.
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IV. REPRESENTATION IN THE PRESENCE OF NOISE AND ITS BEARING

ON OPTIMUM LINEAR SYSTEMS

4. 1 REPRESENTATION IN THE PRESENCE OF NOISE

There are, perhaps, many situations in which a representation of a random signal

is desired when the signal is not available directly, but only in a more or less contam-

inated form. Such a situation would occur, for example, when the representation is

derived from the signal after it has been transmitted over a noisy channel. In this sec-

tion we shall deal primarily with this problem and its close relationship to optimum,

time-variant linear systems.

A discrete representation of x(t) will be found, but the set of random variables {ai}

will be derived from another process y(t) that is statistically dependent on x(t). The

process y(t) will, in most cases, be the perturbed version of x(t). In a fashion similar

to that of section 3. 1 we have

a i = Ti[Y(t) ] i = 1, . . .,n

z(t) = F(t, al,.. ''an)

and the problem can be stated generally as the minimum problem

min min E Ix(t)-F(t, a .a n)11. 2
{Ti} F

We shall now consider the linear case in which we find it necessary not only to
n

restrict F(t, al, ... , an) to be of the form c(t) + Z aii(t) but also to restrict the func-
i=l 

tionals to be linear in x(t). The latter restriction does not follow from the former as

it did in the case of direct representation. Also, we shall assume that the processes

are zero-mean; otherwise, it is only necessary to subtract the mean, as we saw in

section 3.2. Making use of the same norm as before, we shall minimize

n 2

= E[S X(t) aii(t) dt]2 (38)

and without loss of generality we can assume that

i hi= j

Since the functionals are linear, we shall assume that
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ai = gi(t) y(t) dt i = 1,...,n

Substituting this in Eq. (38), we have

n

= E[ 2 t) dt - 2 x(s) s ds t) g (t) dt
i=1

n

+ 5 5 y(s) y(t) gis) g(t) ds dtI
i= 

and, after interchanging the order of averaging and integration, we obtain

to = R(tt) dt -2 Rxy(s, t) i(s) gi(t) ds dt
i=1

n

+ n Ry(, t) gi(s) g(t) ds dt. (39)
i= 1

Our object is then to minimize this with respect to the sets of functions {gi(t)} and {qi(t)}

under the assumption that {i(t)} is an orthonormal set. First, we minimize with respect
to g(t). Then we replace g(t) by gi(t) + ai (t) and solve the equation

a= 0

from which we obtain

Ry(s, t) gis) ds = Rxy(s, t) is) ds = fi(t) t E . (40)

By Picard's theorem (see sec. 2.2), there exists an integrable square solution to

Eq. (40) if and only if the series

oc 2

2 -2- [5 f.(t) t41)
j-= Pj

converges, where the pi and e(t) are the eigenvalues and eigenfunctions of Ry(s, t). This
solution is

00

gi(s) = E p ej(s) i ej(t) f (t) dt. (42)

j=1 j
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This solution can be verified by substitution back in Eq. (40). We shall assume hereafter

that gi(s) is given by Eq. (42).

By substituting Eq. (40) in Eq. (39), we obtain

S Rxy(S t) i(s) gi( t ) d s dt
i=

and by substituting Eq. (42) in Eq. (43), we have

n

Rx(t, t) dt -
i=l 

n

i= 1

00

i R (s, t) i.(s) ds 
j=1

oo

j=1

R (t, t) dt - p I RX(S t)
Pj n 3

1 ) e- t :.
J ,S

ej(u) fi(u) du dt

4i(v) ej(u) dv dui(s) ejt) ds dt Rxy(v,u)

If we set hj(s) = Rxy(s, t) e(t) dt, after

n

0 S= R x(t, t) dt S S K(s, v )

i= 

some rearrangement we obtain

i(s) bi(v) ds dv

where

oo

K(s,v) = 

j=
hj(s) hj(v)

oo

j=l1

Rxy(s,t) ej(t) dt 5 Rxy(v, u) ej(u) du.

We know, then, from the corollary of Theorem I (see sec. 2.4) that is minimized

by choosing as the set {.i(t)}, the set of eigenfunctions {yi(t)} of the kernel K(s, t). Our

solution is

n

F*(t,al.. .,an)- = aiYi(t).

i= 1

Here, the yi(t) are the solutions of

S K(s,t) yi(t) dt = Xii(s) s E2

arranged in the order k 1 > x zh> . .. and

00

K(s,t) =

j=l

Rxy(s, u) ej(u) du

44
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in which i and ei(t) are the eigenvalues and eigenfunctions of R (s, t), and
1 ~~~~~~Y

a i = gi(t) y(t) dt i = 1,2,.... (46)

Here, the gi(t) are solutions of

S Ry(s,t) gi(s ds )y(s) ds = f(t) i = 1, 2,... (47)

and the error is

n

0 = Rx(t,t) dt X ki.
i=l

Thus, we have found the solutions to our problem of representation in the presence of

noise by using a mean-square norm. The solution for the more general norm discussed

in section 3. 9 can also be found in precisely the same way as before.

In finding this result, we have assumed that Eq. (40) has solutions gi(t) that are

integrable square. The result can be proved, however, under slightly more general

conditions. This condition is that the

fi(t) = ' Rx(s,t) i(s) ds

each be expressible as a uniformly convergent series of the eigenfunctions ei(t). This

condition includes our original assumption, since if gi(t) is integrable square, fi(t) can

be expressed as a uniformly convergent series of eigenfunctions of R (s,t) (see sec. 2.2).

In order to show that it is more general, let us consider the case in which gi(s) is the

impulse function 6(s-s 1). We have fi(t) = Ry(s 1' t), and from Mercer's theorem

00

f.(t) = iei(sl) e(t)

i=l 1

and the series converges uniformly.

For a positive definite, nondegenerate kernel, the order of summation and integration

in Eq. (45) cannot be interchanged without sacrifice of rigor because the series

J= lP ej(u) ej(v)

does not converge either uniformly or in the mean. As we pointed out in section 2. 3,

this series can represent the operation that is inverse to the operation z(s)=

S Ry(S, t) f(t) dt. We shall formally denote this series by

45
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o00

Ryl(s,t) = Z ej(s) ej(t).
y

j=l

With this notation, Eq. (45) becomes

K(s, t) = Rxy((t, v) Rx (u, v) du dv (48)

(If the kernels are degenerate, this is equivalent to the matrix multiplication [K] =

[Rx][R ][Rxy]T), and for Eq. (48) we have

gi(t) =i i R;l(t, s) Rxy(u, s) yi(u) du ds (49)

which are to be interpreted only in a symbolic sense.

4.2 ANOTHER INTERPRETATION

We have found the solution in a manner that is more or less straightforward but still

not very enlightening. We now consider a slightly different approach that will give us

a better idea of what the solution means. Considering Eq. (40), we see that it implies

that there exists some sort of linear relation between gi(t) and i(t). We could write

gi(t) = S h(s,t) i(s) ds i = 1, .. , n.

If we substitute this in Eq. (40), we obtain

5 Ry(s5t) 5 h(u, s) i(u) du ds = S RXY(st ) i(s) ds.

Then we interchange the order of integration

i ci(u) du h(u, s) Ry(st) ds = Rxy(st) i(s) ds

and, since we assume that the set {it(t)} is complete, we must have

5 h(u, s) Ry(s, t) ds = Rxy (u, t) u,t E 

which is similar to the integral equation of Booton5 7 for the optimum time-variant

filter. If we invert this equation formally, we obtain

h(u, s) = Ry(t, s) Rxy(u, t) dt.

If we pass y(t) through this filter, the output is
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z(t) = h(t,u) y(u) du.

The autocorrelation function of this output is, then,

Rzt) E[z(st = E[ )z(t)] = h(s,v) h(t, u) Ry(u,v) du dv

= ih(s, v) Rxy(t,v) dv

= i 2 Rxy(S,u) Ry(t, v) R(u,v) du dv

which is identical to the kernel given by Eq. (48). The solution can then be described

in the following way. We first pass y(t) through an optimum linear filter, and then we

represent the output in the optimal manner described in section 3.2.

Special Cases

Case 1. We consider the case in which the signal y(t) is white; that is, Ry(s, t) =

6(s-t). Observing that the kernel that is inverse to an impulse is also an impulse, we

have for K(s, t)

K(s,t) = Rxy(s, u) Rxy(t, u) du

so that if i and Yi(s) are the eigenvalues and eigenfunctions of K(s, t), we have

n

F *(t, a ,... a n ) = aii(t)
i=l 1

a i = x(t) gi(t) dt i = 1, . . .,n

in which, by Eq. (47),

gi(t) = S Rxy(s,t) yi(s) ds

and the error is

n

0 = ~ R(t,t) dt- ki.

i= 1

Case 2. Now suppose that the signal y(t) is the original signal x(t) plus independent

white noise so that Rxy(s, t) = Rx(s, t) and Ry(s, t) = Rx(s,t) + No6(s-t). From Eq. (46),
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we have

Rx(s, t) ei(t) dt + Nei(s) = piei(s)

from which we get

ei(t) = Yi(t)

pi = a.i + N

where ai and yi(t) are the eigenvalues and eigenfunctions of Rx(s,t). K(s, t), from

Eq. (45), is then

oo 2
a.

K(s, t) = a. + N Yj(s) Yj(t)
1 O

j=1

From Eq. (47) we have

i Rx(s,t) gi(s) ds + Nogi(t) = aiyi(t)

so that

a.
1

gi ( t ) = a. +N i(t )

1 o0

and the results are

n

F* (t, al, . ,a) = a(t)

i a + x(t) y(t) dt i= 1, . .. ,n
1 0

n 2

e* Rx(t, t) dt 7 - +N

i= 0

4.3 A BODE-SHANNON APPROACH

The derivation of the main results of sections 4. 1 and 4. 2 were rather long-winded;

however, we note that the results of the first special case are quite simple. We shall

now describe how this result can be derived in a shorter, more heuristic way, and then

we shall argue that any problem can be reduced to this one by passing the process y(t)

through a whitening filter. This approach is, of course, very similar to and motivated
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by the familiar Bode-Shannon 2 approach to optimum linear filtering for stationary

processes.

Let us suppose that we decompose the white process y(t) and the process x(t) that

we wish to represent into the orthonormal series

00

y(t) = Yi i(t)

i=l
(50)

00o

x(t) = xii(t)

i=l 1

so that the random variables

Y1' Y2' Y3' '''

x1, X2 , X3, ..xl, x2, x3 , *

represent the processes. Now, suppose we do this in such a way that

~~~~~E[y ~~~~~~ixj]~~~~ = (51)I0 i j

where 21 22 If we want to represent the set {xi} by n linear operations

Zj = Kjyj j = 1,...,n

j=1

in such a way that the total mean-square error is minimum, intuitively we would first

try to approximate the variable with the highest correlation, and then the next, and so

on. For the approximation of xl, we would minimize

oo ~ oo

E[(X-Z)2] = E[x2] - 2 KiE[x1 yi] + KiKjE[yiYj]

i=l i=1 j=l

00oo

= E[x] -KlE[xyl] + K -

i=l 1

Now

aK E[(xl- 1)2 ] = -ZE[x 1y] + ZK 1 =0,
1

so that
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K 1 = E[x ll] = 

K. = 0
1

i = 2, 3, . .

The total error is then

i=l

i= 1

E[x] - E 2 [x y 1].

Thus we would approximate the set {x}i by

z.i = E[xiYi] Yi1 L1 
i = 1, . . .,n.

Now the question is what orthonormal sets {i(t)} and {qi(t)} do we use for Eqs. (49)

so that conditions (50) hold? We want

E[xiYj] = S S Rxy(s't) i(s ) j(t) ds dt = 0

Then we use the solutions 5 8

i j

Rxy(s, t) i(t) dt = Xkii(s)

or

R xy(s, t) +i(s) ds = kiti(t)

s E 

tE 2

Oi(t) dt = kgii(s)1 11~~

Therefore, we use

y(t) i(t) dt = y(t) gi(t) dt,

Rxy(s, t) .i(s) ds

and

n

x(t) z(t) = aiq4i(t)

i= 1

50
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for which

z. = a.= .
1 1

E 

where

R [S, (s, u R(t, u) du]

gi =



in which the i(t) are solutions of Eq. (52).

n

i=l 1

= 5 R(t,t) dt -

and we are in agreement with our previous results in the first special case.

If the process y(t) is not white, we can make it so by performing the linear operation

Yl(s) = R-1/Z(s, t) y(t) dt,
y

where R-1/2(S t) = oo
Y i= 

Pi / ei(s) ei(t). The i and ei(t) are the eigenvalues and eigen-

functions of Ry(s, t). To show that yl(s) is white, we take its autocorrelation function

= E[Yl(s) Yl(t)] = R1/2 (s, u) RJ /2(t, v) R (u, v) du dv
y y y

j=

j= 

= 5 R/ (s, u) du 
Q 

= R- /(s,u) du
Y

oo

I pi /ei(t) e(v)
1 i=1

p/Zei(t) ei(u) =
i= 1

1jej(u) ej(v) dv

i=1

If we take any function f(t) of integrable square and perform the operation

R (s,t) f(t) dt =
Y1

oo

i= 1

ei(s) ei(t) f(t)
1 

00oo

dt = 7 ei(s) 5 ei(t) f(t) dt

i= 1

= f(s)

then this implies that

R (s, t) =
Yl

ei(s)
i=l 

ei(t) = 6(s-t),

which proves our assertion. We have lost nothing in performing this operation, since

we may recover y(t) by operating with R /2(s, t). We now apply the results obtained

for white processes. The kernel K(s,t) becomes

K(s, t) = R Rxy (s u) RX (t, u) du;

51
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but

R1/2(t, u) y(u) du]
y

SQR1/2 (t, u) Rxy(s, u) du
y xy

so that

Ry- /2(u,v) Rxy(s, v)y xy
dv R-1/ (u, w) Rxy(t, w) dw du

y xy

=bS~2
Rx (s, v) Rxy(t, w) R (v, w)xy xy y

dv dw

and

a i = (thi ( l(t) dt = gi(t) y(t) dt,

where

hi(t) = R (x,t) i(s) ds

= R '1/2(t, u) R(s, u) yi(s) du ds,

in which the yi(t) are the eigenfunctions of K(s, t). Now,

i= hi(s) y(s) ds = hi(s)
=Q

R- 1/2(s, t) y(t) dt ds
Y

R1/2 (s,t) h(s) ds

t) ds Ry/2 (s, u) Rxy(v, u) yi(v) du dvy XY~~~y~v

Ryl(t, u) Rxy(v, u) Yi(v) dv.

52

K(s, t) =

(53)

so that

gi(t) =

R- 1/(S,

(54)

g

Rxy (S' O= E (s) 

Rxy (s ) R t, ) R 1/2 (u, v) R I/Z (u, w) du dw dv

-SS,



We then see that Eqs. (53) and (54) agree with Eqs. (48) and (49).

4.4 TIME-VARIANT LINEAR SYSTEMS

The problem considered in sections 4.2 and 4. 3 can be interpreted in a slightly dif-

ferent manner that underlines its close relationship to optimum time-variant linear

operations. As we have pointed out, the optimum time-variant linear operation on a

process y(t) to approximate x(t) is given by

z(t) = h(t,) y(u) du (55)

where h(t, u) is the solution of

5 h(t, u) Ry(u,v) du = Rxy(t, v) t, v E 

If we assume that u is a parameter, the kernel h(t, u) can be expanded in the series

o00

h(t,u) = hU(t) = gi(u) (t) (56)

i=l

where {yi(t)} is orthonormal and

gi (u) = h(t,u) yi(t) dt.

If we substitute Eq. (56) in Eq. (55) and interchange the order of summation and inte-

gration, we obtain

oo

z(t) = yi(t) y(u) g(u) du

i= 1

so that

oo

z(t) = aiyi(t),

i=l

where

ai y(u) gi(u) du.

We can then conclude that on the basis of the results of section 4. 2 the finite

series
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n

gi(u) i(U),
i=l

in which {gi(t)} and {yi(t)} are solutions of Eqs. (44-47), approximates the linear opera-

tion (55) in a most rapidly convergent manner, in the sense that the mean-square error

between z(t) and

n

n(t) = i(t) y(u) gi(u) du (57)
i= 

is minimized for every n.

If we wished to perform a filtering of y(t) over all time, then we could do so by

dividing the time axis into a series of intervals of the form [T, (+1)T], where is

any integer, and then perform the optimum operation indicated in Eq. (57) for each inter-

val. If the processes are cyclostationary, that is

Ry(s, t) =Ry(s+T, t+T)

Rxy(s, t) = Rxy(s+T, t+T)

then the {yi(t)} and {gi(t)} are the same for each interval. ("Cyclostationary" means that

the ensemble statistics of the process vary periodically with time. This word was coined

by W. R. Bennett.) The finite term approximation in Eq. (57) can then be realized in

y(t) z (t-T)

Fig. 11. The finite term approximation of a time-variant filter.

the form shown in Fig. 11. The process y(t) is first passed through filters of impulse

responses gi(T-t), the outputs are then samples by an impulse at the end of each interval

so that the result is an impulse of value ai. The impulses then excite the second set of

filters of impulse responses yi(t), and the outputs are added together. The result is,
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then, the filtered version zn(t-T) and we have a delay of T seconds. Thus, we have

found an approximation of a time-variant filter for this cyclostationary case by using

stationary components. The time-variant information comes from the knowledge of

the sampling instants.

Single Time-Instant Estimation

Koschmann has considered a problem that is related to the one considered here.

It is the optimization of a set of coefficients {bi} in such a way that

E[(z(T )-x(T 1)) (58)

is minimized, where 0 T 1 - T, and

00 T

z(T1 ) = b i fi(t) y(t) dt; (59)

i=l 

that is, the estimation of the value of the process x(t) at a single instant of time, which

is based on an observation of the process y(t) during the whole interval. He showed

that the optimum set {bi} must be a solution of the set of equations

00 T T

bi Sk Ry(u, v) fi(u) f.(v) du dv= R (T1, s) f.(s) ds j = 1, 2,
j = 1 2 ....

(60)

In order to show that our solution in which b i = Yi(T 1) and fi(u) = gi(u) are used also

satisfies this condition, we substitute in Eq. (47) and, after inverting the order of inte-

gration, we obtain

00 T T T

y i(T 1) 0 yi (u) du { Rxy(Uv) gj(v) d = Rxy(Tl s) gj(s) ds.
i= 1

The series on the left is an orthonormal series with Fourier coefficients and therefore

it converges in the mean to the function on the right. Convergence in the mean insures

that Eq. (60) is satisfied everywhere, except at points of a set of measure zero. See

Courant and Hilbert. 5 9 Moreover, since our solution minimizes

T 2
i E[(zn(t)-(t)) ] dt

n T
where zn(t) = Z Yi(t) 5 gi(s) y(s) ds, then we can say that although for our choice

the series of Eq. (59) does 1not necessarily converge in a most rapid manner for
the series of Eq. (59) does not necessarily converge in a most rapid manner for
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every T1, it does so on the average over the interval.

4.5 WAVEFORM TRANSMISSION SYSTEMS

One example of a cyclostationary signal is the signal that occurs in a waveform

transmission system. (An experimental system has been studied by Lovell, McGuigan,

and Murphy. 25) In such a system we have at the transmission end a set of n random

variables {ci) that occur independently every T seconds. Each random variable multi-

plies one of an orthonormal set of waveforms {si(t)), each of which is zero outside of

the interval [0, T], and the results are summed so that our resultant random waveform

signal is

n

x(t) = E cisi(t)

i= l

and

n n

R (s,t) = E[c2] si(s) si(t) = 7 Xis(s) si(t)
i= i= 

where Xi = E[c2]. We shall assume that the signals are arranged in such a way that

Xk I> 2 > .... If we transmit this signal over a noisy channel, we would then be inter-

ested in making an optimum linear estimation of the set {ci} based on the received sig-

nal y(t). We note that there is a difference between this problem and the one considered

in sections 4. 3 and 4.4. In this problem we are interested only in estimating the value

of the parameters {ci}, whereas before we were interested in estimating the entire wave

shape.

Let us consider the case in which we want to find linear estimates {bi} of {ci}, with
T

bi = gi(t) y(t) dt, in such a way that

E (bi ci) (61)

i=l 1

is minimized. This can be pictured by thinking of c = {c 1''' . cn} and b = {b1 , ... bn}

as vectors. Then (61) is the average of the distance squared between the two vectors.
n

This operation is equivalent to finding an estimate z(t) = Z bisi(t) of x(t) in such a

way that i=

ELS (x(t)-z(t)) 2 dt]
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is minimized, since

Ers (x(t)-z(t)) 2 d = E i cis i(t) - E b s(t) dt

i= 1 j=l 

= EF (bi-Ci) .

i= 

We have already considered such a minimization in the first part of the representation

problem considered in section 4. 1, so that we see from Eq. (40) that gi(s) must satisfy

T T
Ry(s,t) gi(s) ds = Rxy(St) si(s)ds (62)

for 0 t T.

The best linear estimates of

filters of impulse responses hi(t)

the c. are
1

= gi(T-t),

then realized

and sampling

by passing y(t) through

at the end of each

b

y(t)

b2

Fig. 12. The best linear estimator for the parameters c..
1

interval as shown in Fig. 12. If we have additive and independent noise, then

Rxy(s, t) = E[x(s)(x(t)+n(t))] = Rx(s, t)

so that Eq. (62) becomes

S0 Ry(s,t) gi(s) ds = kis.(t) 0 t T

60which is the equation for the matched filter in the non-white noise case. If the noise

is white, that is Rn(s, t) = No6(s-t), then we have
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T

R0 x(s, t) gi(s) ds + Nogi(t) = Xisi(t) 0 t S T

x ..
The solution is gi(s) = i + N si(s ) for i = 1, n, so that hi(t) - k. +N si(T-t).

In this case, by substituting in Eq. (43), the error becomes

n n 2 n X.N
i1 0 (63)

i + No kXi + No (63)
i=1 i=1 i= 1

This linear estimator is a coherent device because its operation depends on the

knowledge of the sampling instants; that is, any such system must include a method

of extracting timing information from the signal.

4.6 WAVEFORM SIGNALS WITH MINIMUM BANDWIDTH

The problem with which we are concerned here has already been discussed by the

author for a slightly different case. 5 When the random waveform signal is perturbed

by independent white noise we see from Eq. (63) that the error is independent of the

particular set of orthonormal waveforms which is used. We shall now concern ourselves

with the problem of picking the set of waveforms in such a way that the expression

3 f S(f) df (64)

is minimized, where S(f) is the power density spectrum of x(t). Expression (64) is the

second moment of the spectrum and is, in a certain sense, a measure of the bandwidth.

Of course, x(t) is not stationary so that it does not have a spectrum in the usual sense

of the Wiener-Khinchin theorem. However, if we make the process stationary by

assuming a random phase relationship between the members of the ensemble, we can

then apply the Wiener-Khinchin theorem to the resulting stationary autocorrelation

function. This is tantamount to using the time definition of the autocorrelation function

with a single ensemble member

X(T) = li2T x(t) X(t+T) dt.

In the following discussion we shall assume that the waveforms have continuous and

bounded first derivatives and that E[ci] = 0 for i = 1, ... , n because if E[ci] were non-

zero, periodicities would occur and S(f) would contain impulse functions. In such a

case it would not be apparent what set of waveforms minimizes expression (64).

We can find S(f) by assuming that the random waveform signal was derived by

applying impulse functions to a bank of linear filters with impulse responses

s l(t), . ., sn(t), which are zero for t > T, and adding the outputs, as shown in Fig. 13.
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cnC2 i i

C, t

(t)

Fig. 13. Generation of a waveform signal.

The impulses are applied once every T seconds, and the impulse applied to the i t h filter

has value c i. Since the ci are uncorrelated, the input processes are also. Letting 6(t)

be the unit impulse function, we obtain for the individual input autocorrelation functions

R.(t) = E[ci] i(t) = E[c ] 6(t) i6(t).

In accordance with the Wiener-Khinchin theorem the power density spectra are (f) = k..
61'

It can be shown that the resulting output process has a power density spectrum

n n

S = (f) I S.(f)12 = 7 Xi S.(f) Z (65)

i-=l i=l

where

o0 T

Si( ) & _ S n(t) exp(-jZwft) dt = sn(t) exp(-jZft) dt. (66)

This method to find S(f) is essentially the same as that used by Lee.24

Expression (66) now takes the form

n

fS(f) df i f s 2 i(f) l df
i=1

n

00 oE i i f S(f) S(f) df (67)i= 1

where the bar denotes the complex conjugate.

In order for the integral (64) to converge, it is necessary that

f2s(f) = o(lf ,)

for large f, with k > 1. 6 2 (Note that f(x) = O(g(x)) signifies that f(x)/g(x) remains bounded

as x tends toward its limit.) Then
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S(f) = o(f-k-2),

and from Eq. (67),

I{Si(f)2 = 0({f(-k-2)

or

ISi(f) = (
k

fl 2

i = 1,2, . . .,n

i = 1,2, ... ,n (68)

where k > 1.

We shall now show that in order for Eq. (68) to hold, it is necessary that

si(0) si(T) = 0 i = 1, . . .,n

Integrating Eq. (66) by parts, we get

(69)

s.(0) - s.i(T) exp(-jZrrft)

Si(f) = 1 j2rf
+ jrf s!(t) exp(-j2Zrft) dt

in which the prime denotes differentiation.

Since the s!(t) are bounded, s(t) < K for 0 - t -< T for some number K. It followsthat
that

si(t) exp(-j2rrft) dt < K
2 f I

I 1-exp(-j2rfT) I

12 rf 

= 0(If l-2 ).

Unless conditions (69) hold, it is seen that Si(t) = 0(f -1); and this violates Eq. (68).

As seen from Eq. (70) with si(0) = si(T) = 0, the Fourier transforms of the s'(t) are

(j2Trf) Si(f). From Parseval's theorem we obtain

[sl(t)]2 dt(j2r0f) S0(f)(-j2rf ) Si(f) df =
oo -oo

42 co f2 lSi(f)I2 df

so that from Eq. (67) we see that the minimization problem has reduced to the

minimization of

n

i=l 1

(71)
dt

·i 1,rl~1·
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under the constraints that {si} be an orthonormal set and si(O) = si(T) = 0 for all

i = 1, ... , n. Integrating by parts, we obtain

2 T
[s(t)]2 dt = s!(T) s(T) - 0) s(0) - 0 i ) 1 )dt

T
: - st (t) s(t) dt

so that the minimization of (7 1) is equivalent to the maximization of

n T

Z ki 0 S si(t) s(t) dt (72)
i= 1

which is

n T

X. Si si(t)
i=l 

L[si(t)] dt,

where L is the linear operator

L[f(t)] = f(t)
dt2

with boundary conditions f(O) = f(T) = 0.

This operator is self-adjoint, since

T T
g(t) L[f(t)] dt = 0 g(t) f"(t) dt =

T

= 0 g"(t) f(t) dt =

T
so

g'(t) f'(t) dt

L[g(t)] f(t) dt

by integration by parts, where g(O) = g(t) ; 0, and f(O) = f(t) = 0.

From Theorem I, expression (72) is then maximized by the first n solutions of

d2

s(t) = Pisi(t)

with the boundary conditions si(O) = si(T) = 0. These solutions are
1 

sin - tT elsewhe tre T

elsewhere

= 1, 2, ...
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for which

= 1, 2,....
P = -

For these solutions

I S (f) = 2 Q 2 2Cos 7rfT
I Sl(f) 2 2

(2Z_4f2Z 2 2 2 0cs rfT

= - 2 nf 22 -f82T sin2 rfT
( T-4fT ) rr

From Eq. (65) the power density spectrum becomes

S(f) = 8T (cos rfT) 2

1T

The power

n X 2

(2 -4f T)
=1

I odd

density spectra obtained

+ -T (sin fT) 222 22
T 22 (f 4f T )=2

2 even

by using

-I

n = 1, 2, 3 are shown in Fig. 14

N=2

N=3

f (SEC -
')

14. Power density spectrum obtained by using the optimum waveforms.

for T = 1. In these examples it was assumed that X1 = 2 = '' . = = 1

n n
Let us consider a normalized version of this spectrum,

Sf 2T

SN(f ) = 
S(O)

for the case in which X1 > X2 > .... After some algebraic manipulation, we

find that
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[=1rco (co 2 s n (

2 Q odd 1 even

t odd

1 (2 -fn2 n )

If f > 1, then

22 

(Q -f2n2 2 (n -fZn2) 2

for ! ' n, so that for f > 1

2n 2

2 2 2 2(n 2 ~ 2 2 =n 2 '(2_f2n 2) 2 < n (2_f2n2)2 n(l f2)2 2

and therefore, we have the following upper bound for the spectrum for f > 1:

1
SN(f) < 2

n(l-f2)2

This tells us that it is possible to make up a signal with waveforms that are time-limited

to T seconds in such a way that the signal has, on the average, n/T degrees of freedom

per unit time, and the power contained outside of a bandwidth of n/2T cps is vanishingly

small for n that is large enough. We note in this respect that if we drop the time-

limited restriction we can do it with zero power outside of a bandwidth of n/2T cps by

using sin x functions.
x
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V. THE NUMERICAL COMPUTATION OF EIGENFUNCTIONS

In general, the analytical solution of integral equations of the form

Sl K(s, t) +(t) dt = X4(s) E 2 (73)

is a formidable problem. In view of this we have developed a computer program

for the solution of these equations on the IBM 704 computer at the Computation

Center, M.I.T. A general description of the methods used in this program fol-

lows.

5.1 THE COMPUTER PROGRAM

The program can be divided into three main sections:

(i) The approximation of the integral equation by a matrix equation.

(ii) The diagonalization of the matrix equation.

(iii) The manipulation of the diagonalizing matrix to obtain the desired approxima-

tion of the eigenfunctions.

For approximating the integral equation by a matrix equation, we use the Gauss-

Legendre quadrature method for the approximation of a definite integral. Assuming

that the integral has been normalized in such a manner that the interval of integration

is [-1, 1], we approximate the integral by a finite sum

n

51 f(t) dt = aif(ti),
i=l

where the weights a. and the abscissas t i are to be chosen. If we specify that the approx-
imation above be exact2 2n-1

imation above be exact for f(t) = 1, x, x , ... , x , then we have 2n equations

and 2n unknowns, and we can solve for the a.'s and t.'s. The approximation is then exact
1 1

for any polynomial of degree 2n - 1 or less. The weights and abscissas are tabulated for

the interval [-1, 1] for n up to 16.63 If a more accurate approximation is desired, the

interval can be divided into subintervals with a separate approximation for each interval.

In this program we have used a 10-point approximation for the basic interval, so that

n will be any multiple of 10.

If we apply this method to Eq. (73), we obtain

n

S K(s,t) +(t) dt ajK(s, t) (t) = (s)

j=1

and considering this for the same values of s as for t, we get the following set of

linear equations:
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n

k aiK(ti, t) 4(tj) i = k1, n.

j=l

We now make the substitution y(tj) = a'.j (tj) from which we have

n

E ]K(ti.,tj) ajy(tj)= ky(ti) i=1,..,n.
j=l

These equations are now symmetrical, and can be solved by diagonalizing the matrix

[N i K(ti, tj) .

This is done by means of an efficient and accurate subprogram64 written by

F. J. Corbato of the Computation Center, M.I.T. This program gives the eigenvalues

Xk' and the diagonalizing matrix with the eigenvectors yk(tj) as columns.

Our approximations of the eigenfunctions k(t) of Eq. (73) are then,

4k(tj) = ,1 Yk(tj) k,j = 1, ... ,n.

J

We now have n samples of each of the approximations of the eigenfunctions. These

samples are rather far apart, and in order to find intermediate values we have to inter-

polate. The interpolation is done separately for each subinterval by assuming that the

function is a linear combination of the first ten Legendre functions i(t ) :

10L aii(tj) jf(t) j = 1 ... , 10,

i=l 1

so that we have 10 equations and 10 unknowns, each equation corresponding to one

sample point or abscissa. We then solve for the ai's by using a program for solving

linear equations (we used program No. ANF402).

The time required for the running of the program on the IBM 704 computer for n = 40

is approximately 10-15 minutes.

We have described the program operation for a finite interval of integration. If the

interval is i = [0, oo], we can approximate the integral equation in a similar fashion. In

our program we have divided the time axis into the four subintervals [0, 3], [3, 8], [8, 16],

and [16, oo]. In the first three we have used a 10-point Gauss-Legendre approximation,

and in the last interval we have used a 15-point Gauss-Laguerre approximation so that

we have a 45 X 45 matrix. The Gauss-Laguerre approximation is used when the inte-

gral to be approximated is over the semi-infinite interval and is similar to the

Gauss-Legendre, except that it is specified that the approximation be exact for
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-t - -t 2n-1 -t 65£(t) - . e , ... , x e . The remaining operations are then the same as before.

5.2 THE COMPARISON OF NUMERICAL RESULTS WITH A KNOWN SOLUTION

In order to check the accuracy of the program, we have used it to compute the solu-

tions of an example the results of which are known analytically. We have used as a

kernel

K(s, t)= Tr e2 s-t

The eigenfunctions and eigenvalues for this kernel have been given in section 3.7 but

are repeated here for convenience. The eigenfunctions are:

Ck cos b kt

ck(t) =
c sin bkt

k odd

k even

where the ck's are normalizing constants, and the bk's are the solutions of the trans-

cendental equations

bk tan bkA = 2r k odd

bk cot bkA = -2T k even.

The eigenvalues are given by

4wr2
Xk =b- + 4

The transcendental

k = 1, 2, 3, 6, and

X1 = 0. 7105

X2 = 0. 3392

X3 = 0. 1632

X6 = 0. 0367

X10 = 0.0120

equations were solved and the eigenvalues and eigenfunctions for

10 were found to be:

4l1 (t) = 0. 830 cos 1.003t

+ 2(t) = 0.907 sin 2. 193t

43 (t) = 0. 952 cos 3. 558t

4k6 (t) = 0. 989 sin 8. 047t

10 (t) = 0. 996 sin 14. 247t.

The eigenvalues computed by the program for n = 20 were:

X1 = 0.7136

X2 = 0. 3426
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X3 = 0.1655

X6 = 0.0399

X10 = 0.0160

and those for n = 40 were:

X1 = 0.7113

X2 = 0.3400

X3 = 0. 1640

6 = 0. 0375

X10 = 0.0128.

The sample points for the computer eigenfunctions over one-half of the interval are

shown plotted with the true eigenfunctions in Fig. 15. The first two eigenfunctions cl(t)

and +2 (t) are not shown because there was no discernible difference between the actual

and the computed.

5.3 THE EXPERIMENTAL COMPARISON OF EIGENFUNCTIONS AND LAGUERRE

FUNCTIONS FOR THE EXPANSION OF THE PAST OF A PARTICULAR

RANDOM PROCESS

The optimum set of functions for expanding the past of a signal can, in some cases,

do much better than Laguerre functions. To show this we have taken a sample function

of a random process generated in the laboratory and expanded it by means of the digital

computer. We chose a zero-mean random process with correlation function

R(T) = exp [- T ] cos 3T.

and used a weighted norm with weighting function W(t) = exp [-t/4]. (We use the ter-

minology of section 3.9.) The process has power density spectrum

S(f) = 1 + 1

1 + 42f+ 1+ 4T2[ff

The autocorrelation function and power density spectrum are shown in Figs. 16 and 17.

Such a process was generated by passing white noise through a filter with system

function

s + IT
H(s) = X 2

s + 2s + 10
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R (r)

1.0,

(S)f

Fig. 16. Autocorrelation function of the
process that is to be represented
experimentally.

i=l i=2

i=5 i=6

-1.0 -0.5 0 0.5 1.0

f (SEC - ')

Fig. 17. Power density spectrum of
the process that is to be rep-
resented experimentally.

i=3 i=4

i=7 i=8

i=10

Fig. 18. Eigenfunctions of R(t) as computed on the IBM 704 computer.
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(Of course, the actual circuit that was used was scaled up in frequency and impedance

level, but this is irrelevant here.)

The first ten eigenfunctions computed by the program for the integral equation

exp [-- 4 -1s-tl] cos 3(s-t) +(t) dt = X(s).

are shown in Fig. 18.

The scale factor that was used for the Laguerre functions was chosen by minimizing

the weighted error for the first Laguerre function in a manner similar to that used in

section 3. 10. The scale factor found on this basis was a = 4.5.

The approximations of a sample function of the process over a period of 7. 5 seconds

by using the eigenfunctions and Laguerre functions in a straight orthogonal expansion

for n = 1, ... , 10, 15, and 20 terms is shown in Fig. 19. It is seen that the eigenfunc-

tions do much better, especially in approximating the higher frequency portions than

the Laguerre functions. This is, as we pointed out in section 3. 10, because the

Laguerre functions have Fourier transforms of the form

n

1 (j21f- )
! i 2n+n = 0, 1, 2,...

(j 21Tf n+l

so that most of their energy is near the origin. As we see from Fig. 17, however, most

of the energy in the random process is not near the origin, so that the performance of

the Laguerre functions is not expected to be near optimum.

72

1



APPENDIX A

PROOF OF THEOREM I

THEOREM: The sum

n

i=l

maximized with respect to the orthonormal set of functionswith cl b c 2 > ... > c n, is

{4i(t) } by the choice

qi(t) = yi(t) i = 1,2 ... , n

and this maximum value is

c.X.
11

n

i= 

PROOF: First, the eigenfunctions are the solutions of

i= 1,2, . . .

arranged so that 1 a X2 ... . Since L is self-adjoint, the yi(t) form an orthogonal

set. If the yi(t) are normalized, we see that

n

i=l

n

ci<i' L[i > = Ci ,I Yi ( t ) L[yi(t)]dt
i=l

n

= I ciki
i=l

Now we shall show that this is the maximum.

set {i(t)} for which

Suppose we have some other orthonormal

4i(t) Yj(t) dt

(t) L ijYj(t) dt

i=l

Then

00

S i(t) Y X..jijYj(t) dt =

j= 1

00

j 

2
J 1j
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, Q�il

Q- i(t)] : kiyi(t)

Ci i (t ) L yillt> = S



00 n
2 (2

= n ij ( -n) A.. 
+

j=l j=l

o00

(kj_ n) ij

j-n+l

n

< kn + (kj kn) o..

2Since .. = 1, all i, and 2- 0 allj > n+ 1, then
j=l I J n

n n n

(t) L[4i(t)] dt n + (Xj-X) oj
1 ,,ill L n lj- n i iil

n n

=nXn + (j-n)+ (

j=1 j~l

Therefore,

n

X -
j=l

Now, since X.

n

0 <

i=l

then

Lj-Xn) I ] - I
-j I

n n

i $ 4Si(t) L[4i(t)] dt4 1
i=l j=l

- Xn 0, j 1, ... , n, and

2 \~ 2
w.2 o. 12j< Z j= 

i=l

n n

i=l j=l

and this true for any n. Now consider

Cl1X + C2X2 + ... + CnXn = Cn(Xl+. . .+ n )

+ (Cn-l-cn)(Xl+... +Xn 1) + ... +

+ (c 1 -C2 )(X1 )

If we set a i f= I4.(t) L[+i(t)] dt, we know that

X1 +* +X n a + ... + an

X1 +.l + ..' '+ + ' an-

.X, aI
1 l
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If we multiply consecutively by c n, Cn-1 - cn, ... c1 - c 2 a 0 and add, we get

n n n

ECi i >= Cjai ci $ 4i(t) L[i(t)] dt
i=l 1 i=l i=l1

which was to be proved. The proof of the second case is similar.
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APPENDIX B

PROOF OF THEOREM II.

18
We shall first state the following theorem of Kac, Murdock, and Szego which will

be used to prove Theorem II.

THEOREM. Consider the integral equation

p(s-t) i(t) dt = ii(s) -A s A
"A

with eigenvalues X1 2 > .... If we define

F(f) = p(t) exp(-jrft) dt (B-l1)

then

lim 2A NA(a,b ) = i[f;a<F(f)<b] (B-2)
A-o A

Here, NA(a, b) is the number of eigenvalues of the integral equation having values falling

within (a, b), and 4L[E] denotes the measure (or length for our purposes) of the set E.

The limit (B-2) is true provided that (a, b) does not contain zero, and the sets with

F(f) = a or F(f) = b are of measure zero.

If Rx(t) = p(t) in the theorem above, F(f) is then Sx(f), the power density spectrum

of the process x(t), and is therefore even and everywhere positive. Let us assume that

Sx(f) is continuous and monotonically decreasing for positive arguments. We then sub-

divide the interval (ao, bo) in the range Sx into n subintervals, denoting the subdivision

by (a 0 , al, . anl , an=bo) where a = Sx(fo) and bo = Sx(0). The corresponding subdi-

vision of the positive domain is (fn=0, fn-l' ' fl' fo ) ' where ai = Sx(fi). We now observe

that from the theorem

2ai-l(fi l-fi) lim 2A x k ai(_ -fi)
A-o D

Di1

where Di = ;ai_l < X ai], and from this it follows that

n n

2 ai-l(fi--fi) lim 2A k 2 a i (fi_l-fi)
i= A-o D i= 

where D = [; Xk >ao]. This is true for any subdivision and, by the definition

of the Riemann integral, 5 if Sx(f) is integrable, thenx
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n

l.u.b. 2 7 ai-l(fi--fi) =

i= 1

= o
· S'

and we have

n

g.l.b. 2 7 ai(fi-l fi)
i=l

Sx(f) df
sf

-f 0

Sx(f) df

lim 2A . =
A- oo D

Placing fo = k/2, we get

lim 
A-oo D

D

f

-f

k/2

i =-k/2

where D = [i; Xi .> Sx(k/2)]. We then observe that from the theorem

lim 2A NA(Sx(k/z), o) = k
A-ocZA A

or NA(Sx(k/2), oo) = n 2 ZkA, so that we have finally

n

lim n k
no

i=l

Sk/2
X. = Sx(f ) df1 ,-k/2

A similar result can be obtained for monotonic spectra subject to the conditions of

the theorem. It amounts to adjusting a in such a way that

4[f; Sx(f) > ao] = k

We then have

nk 
lim k 
n-coo

i=1
Xi = Sx(f) df

where E = [f; Sx(f) >- ao], and this result is used in section 3. 5.
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APPENDIX C

THE ERROR INCURRED BY SAMPLING AND RECONSTRUCTING

BY MEANS OF sn xFUNCTIONSx

Let x(t) be a random process with autocorrelation function R(t) and power density

spectrum S(f). We sample the process at the rate 2 samples per second and recon--22W sc
struct with sm x functions and obtain a new process,

x

oo

y(t)= 
n=-co

sin .(t-nT)T
X(nT) -

(t-nT)T

1where T = 2W We want to find the error
2W 

E[e (t)] = E[(y(t)-x(t)) 2]

= E[y(t)] + E[x2(t)] - 2E[x(t)y(t)]

= E[x 2(t)] + R(nT-m'T)
oo

n=--o m=--o

sin (t-nT) sin (t-mT)
T T

T t-nT) (t-mT)T T

00 Z sin (t-nT)
- 2 R(t-nT) ( - (O

- 2 Rn -(t-nT)
n=-oo T

The second term may be reduced in the following manner (which is due to Slepian).

n -m= 

-c

I=

sin -(t--T-mT) sin T(t-mT)
R(mT) - T -T

m=- Io -(t- T-mT) (t -m T)m= -.W T 

C-l)

Let

(C-2)

Since sinx is bandlimited, we have the identity
X

sin T (x-a)
Tx-a)

- (x-a)T

T Tsin 
moo

- (mT -a)
T

-(x-mT)

and letting a = t and IT = t - x, we get

sin (t-mT)
T

-(t-m T)

so that expression (C-2) becomes
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m= co

sin Tr
T 

T

sin- (t-iT-mT-r)

T (t-T-mT)T



R(T) =sin R(O) = E[x (t)]
w~7

2=-oo

We now have for the series (C-l)

E[e2(t)] = 2E[x2(t)] - 2
00 sin -r (t-nT)

R(t-nT) T __ _
ntI 0 Tr 4(t-nT)n= -oo T

Now the last term is periodic of period T, so we average over a period

E[e2 (t)] dt = 2E[x 2 (t)] -

= E[x2 (t)] 
T

ST/2 0

)T/2 n- v

sin v (t-nrT)
R(t-nT) dt

- (t-nT)

Here, we make use of the identity

T/2 00

n=--oo

f(t-nT) dt = 5

According to Parseval's theorem, we have

-00 -t
T

= T x (f) df

so that

2
-. W

= 2E[x2 t)] - 2 -w Sx (f ) df
-W

Sx(f) df - 2

= 2[ sx(f) df +

W

_Sx(f) df

,00-

Iw S(f) d

which was to be proved.
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00 sin T t

-~00 -dt
T

(C-3)

f(t) dt

T/2
7 -T/2
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APPENDIX D

DETERMINATION OF THE EIGENVALUES AND EIGENFUNCTIONS

OF A CERTAIN KERNEL

We shall find the eigenvalues and eigenfunctions of the kernel

- s 2_Pt 2-a (s -t)2
K(s, t) = e

First, we shall need two identities. The first is

-at 2 -j2wft d

-at 2 -j 2 ft
e e dt =

Te2)

= a 71exp( f)

-S00
exp( a f2) dt

exp(- w f2)

and since the integrand is entire,

= exp(- af) i 0 e
-at 2

dt = - exp(-2f2)a a

The second identity is

at 2 -j 2 rfte fdt =

1 2 2dn

b-a exp -- f2 dn
a(b-a)

exp( a (b-a)

I =
-o

fdn

ldtn

= ey2 /4a
--00

-bt 2 } at2
e e-jyt dt

2 

rdn -bt e [a't j
den exp

Since the integrand is entire,

80

-00

We have

(D-I1)

-o0

(D-2)

0+

-O +j f
a

-at 2
e dt

o0

V-0oo

-bt2} edn e
•dt n

Consider

f2)}

(D-3)

exp -a~t + j '



I=eY/4a S

= e n

' -T'-

exp-t + 2a}eatn 2aj~lj

dn

dyn

0oo

V-oo

eat2exp -b t + a dte dt

= ey/4a 2an dn
= [-rj dy n

eby 2 /4a 2 S'_
e~2, exp jbyt) 

exp(-(b-a)t ) exp( -j-a ) dt

ey2/4a [a n dn

dyn exp 2

[a n r eY2/4a
INI /-a

dn

dyn

y 2 ) ep (-

exp(- b
k 4a(b-a)

If we let y = 2f, then we have the identity.

Now we want to show that

kt 2 dn -2kt
a(t) = e edtn

are solutions of

oo -Z-t2 Z-a (s-t)2
S e tn(t) dt = X n(n(s)
for some scale factor k. Substituting (D-4) in the left side of (D-5), we have

for some scale factor k. Substituting (D-4) in the left side of (D-5), we have

I P2 30
I = e - 0f

cO0

(k-p)t2 d -2kte e
Ldt 

dt

but since

| f(s) g(t-s) ds = e fF(f) G(f) df

where F and G are the Fourier transforms of f and g, we have

I=e -ps 2 S 00
j2T[rfs[ / e / 2 2.e J1L, ~ exp a- f2)

vk* + exp (k f2 )

2 2
b -a)

4a2(b-a))

2

(D-4)

(D-5)

exdn p (
2kTr2

k2 2_ 2
f2)} df

81
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exp - a (S-t)

j(k-p) n

Tr



[ j(k-p)] /- 2 Os2

wi / a(k+p)

d exp (-

Soo

-oo00

j2rrfs exp 2 fe e .xp - a f

2krr 
Zk2 2 f2 df

k -

Here, we have applied the identity (D-3). If we apply it again and simplify, we get

I = [1-2(kP)] a + 2(k+P) exp 1 2-
k - a

2kas2

dn

dsn }
If we set k = /p(a+[3), after some manipulation we see that

I= _ 2_ _1_2 ( /P(a+P) -_3)
/ a + 2NJ3(a+F) + 2a

ekS2 dn -2ks 2

dsn

so that the eigenvalues and eigenfunctions are

kn \ a + 2'(a+p) + 2 2n ' + a{3 -

2 dn -2i ( 2a+p)t2

qn(t)= An e 4e P)t 
at n

for n = O, 1,2 ..... In our case a = p = 1 and the kernel was multiplied by ,- so that

= T - (3-24-2)

3 + 2

zt2 dn -242 t2

*(t) = Ae - en n dtn

for n = 0, 1, 2, ....
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APPENDIX E

THE SOLUTION OF A CERTAIN INTEGRAL EQUATION

We want to find the yn(t) that solves the equation

42 t 2 dnA e - e
n dtn

= e t
o-O

e(+1)t z dn -242 t2 ,AnZ'- e = e
n -dtn oo

If we take the Fourier transform of both sides, using the identity (D-3), we get

2
Ar

[ j(2+1)n 2+1
n - , T2 - +1

fdn

Ydfn
e-242 r2f = NFrie r (f)

where rn(f ) is the Fourier transform of y(t). We then see that

T42 2f2

jZrn(f)- 1)n -1 e+ 
1 

dn -22wf 2

d enf

Taking the inverse Fourier transform of both sides and simplifying, we get

l +4Z-t2
1+=- 2

yn(t) = A(#2+2z)n 1 e 2+(z
Yn n -,~~~' I (Z - AT2r)

dn -42 t z
e

dtn
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