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Abstract

In this report we consider some aspects of the general problem of encoding and
decoding for time-discrete, amplitude-continuous memoryless channels. The results
can be summarized under three main headings.

1. Signal Space Structure: A scheme for constructing a discrete signal space, for
which sequential encoding-decoding methods are possible for the general continuous
memoryless channel, is described. We consider random code selection from a finite
ensemble. The engineering advantage is that each code word is sequentially generated
from a small number of basic waveforms. The effects of these signal-space constraints
on the average probability of error, for different signal-power constraints, are also
discussed.

2. Decoding Schemes: The application of sequential decoding to the continuous
asymmetric channel is discussed. A new decoding scheme for convolutional codes,
called successive decoding, is introduced. This new decoding scheme yields a bound
on the average number of decoding computations for asymmetric channels that is tighter
than has yet been obtained for sequential decoding. The corresponding probabilities of
error of the two decoding schemes are also discussed.

3. Quantization at the Receiver: We consider the quantization at the receiver, and
its effects on probability of error and receiver complexity.
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GLOSSARY

Symbol Definition

a Number of input symbols per information digit

A Voltage signal-to-noise ratioa

max
A =. max Maximum signal-to-noise ratiomax a

b Number of branches emerging from each branching point in
the convolutional tree code

C Channel capacity

f(v)
D(u, v) = n The "distance" between u and v

p(vlu)

f(y)
d(x, y) in -- - The "distance" between x and y

p(ylx)

d Dimensionality (number of samples) of each input symbol

E(R) Optimum exponent of the upper bound to the probability of
error (achieved through random coding)

E d(R) Exponent of the upper bound to the probability of error when
the continuous input space is replaced by the discrete input
set XI

f(y) A probabilitylike function (Appendix A)

g(s), g(r, t) Moment-generating functions (Appendix A)

i Number of source information digits per constraint length
(code word)

I Number of input symbols (vectors) in the discrete input space
X l

m Number of d-dimensional input symbols per constraint length
(code word)

n Number of samples (dimensions) per constraint length (code
word)

N Average number of computations

P Signal power

R Rate of information per sample

Rcrit Critical rate above which E(R) is equal to the exponent of the
lower bound to the probability of error

v
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GLOSSARY

Symbol Definition

R Computational cutoff rate (Section III)comp

U The set of all possible words of length n samples

u Transmitted code word

u' A member of U other than the transmitted message u

V The set of all possible output sequences

v The output sequence (a member of V)

X The set of all possible d-dimensional input symbols

x A transmitted symbol

x' A member of X other than x

X The discrete input set that consists of d-dimensional vec-
tors (symbols)

Y The set of all possible output symbols

!d I.-4 /The set of all possible input samples

A sample of the transmitted waveform u

i,' A sample of u'

H The set of all possible output samples

1l A sample of the received sequence v

2 The power of a Gaussian noise

vi
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I. INTRODUCTION

We intend to study some aspects of the problem of communication by means of a

memoryless channel. A block diagram of a general communication system for such

a channel is shown in Fig. 1. The source consists of M equiprobable words of length

T seconds each. The channel is of the following type: Once each T/n seconds a real

number is chosen at the transmitting point. This number is transmitted to the receiving
.th

point but is perturbed by noise, so that the 1 real number i is received as ri. Both

e and r are members of continuous sets and therefore the channel is time-discrete but

amplitude- continuo us.

SOL IK

Fig. 1. Communication system for memoryless channels.

The channel is also memoryless in the sense that its statistics are given by a proba-

bility density P(r 1, 2' . .i ) so that

P(ril 2' ' i) = P ii (1)

where

P(rili ) = P(rn1); = i' = i' (2)

and rli is independent of rj for i * j.

A code word, or signal, of length n for such a channel is a sequence of n real

numbers (1, . . n) . This may be thought of geometrically as a point in n-dimensional

Euclidean space. The type of channel that we are studying is, of course, closely related

to a bandlimited channel (W cycles per seconds wide). For such a bandlimited channel

we have n = 2WT.

The encoder maps the M messages into a set of M code words (signals). The

decoding system for such a code is a partitioning of the n-dimensional output space into

M subsets corresponding to the messages from 1 to M.

For a given coding and decoding system there is a definite probability of error for

receiving a message. This is given by

M
1 p (3)

e M =1 ei

where P is the probability, if message i is sent, that it will be decoded as a
e.

message lother than i.

1
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The rate of information per sample is given by

R = In M. (4)n

We are interested in coding systems that, for a given rate R, minimize the probability

of error, P e
In 1959, C. E. Shannon studied coding and decoding systems for a time-discrete

but amplitude-continuous channel with additive Gaussian noise, subject to the constraint

that all code words were required to have exactly the same power. Upper and lower

bounds were found for the probability of error when optimal codes and optimal decoding

systems were used. The lower bound followed from sphere-packing arguments, and the

upper bound was derived by using random coding arguments.

In random coding for such a Gaussian channel one considers the ensemble of codes

obtained by placing M points randomly on a surface of a sphere of radius A; (where

nP is the power of each one of M signals, and n = 2WT, with T the time length of each

signal, and W the bandwidth of the channel). More precisely, each point is placed

independently of all other points with a probability measure proportional to surface area,

or equivalently to solid angle. Shannon's upper and lower bounds for the probability of

error are very close together for signaling rates from some Rcrit up to channel

capacity C.

R. M. Fano has recently studied the general discrete memoryless channel. The

signals are not constrained to have exactly the same power. If random coding is used,

the upper and lower bounds for the probability of error are very close together for all

rates R above some Rcrit.

The detection scheme that was used in both of these studies is an optimal one, that

is, one that minimizes the probability of error for a given code. Such a scheme requires

that the decoder compute an a posteriori probability measure, or a quantity equivalent

to it, for each of, say, the M allowable code words.

In Fano's and Shannon's cases it can be shown that a lower bound on the probability

of error has the form

P K e (R), (5a)
e

where K is a constant independent of n. Similarly, when optimum random coding is

used, the probability of error is upper-bounded by

P >Ke -E(R)n E(R) = E (R) for R > R (5b)P e

In general, construction of a random code involves the selection of messages with some

probability density P(u) from the set U of all possible messages. When P(u) is such

that E(R) is maximized for the given rate R, the random code is called optimum.

The behavior of E (R) and E(R) as a function of R is illustrated in Fig. 2. Fano's

2
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upper-bounding technique may be extended to include continuous channels, for all cases

in which the integrals involved exist. One such case is the Gaussian channel. However,

the lower bound is valid for discrete channels only. Therefore, as far as the continuous

channel is concerned, the upper and lower bounds are not necessarily close together for

rates R > Rit

E (0)

E* (R)

Rcrit C R
crit

Fig. 2. Behavior of E*(R) and E(R) as a function of R.

The characteristics of many continuous physical channels, when quantized, are very

close to the original ones if the quantization is fine enough. Thus, for such channels,

we have E (R) = E(R) for R a Rcrit.

We see from Fig. 2 that the specification of an extremely small probability of error

for a given rate R implies, in general, a significantly large value for the number of

words M and for the number of decoding computations.

J. L. Kelly 3 has derived a class of codes for continuous channels. These are block

codes in which the (exponentially large) set of code words can be computed from a much

smaller set of generators by a procedure analogous to group coding for discrete channels.

Unfortunately, there seems to be no simple detection procedure for these codes. The

receiver must generate each of the possible transmitted combinations and must then

3

_ __��__II --

I
I
I
I
I
I



compare them with the received signal.

The sequential coding scheme of J. M. Wozencraft, extended by B. Reiffen, 5 is a

code that is well suited to the purpose of reducing the number of coding and decoding

computations. They have shown that, for a suitable sequential decoding scheme, the

average number of decoding computations for channels that are symmetric at their out-

put is bounded by an algebraic function of n for all rates below some R comp. (A channel

with transition probability matrix P(yl x)is symmetric at its output if the set of proba-

bilities P(Ylxl), P(yl x2 ), . . . is the same for all output symbols y.) Thus, the average

number of decoding computations is not an exponential function of n as is the case when

an optimal detection scheme is used.

In this research, we consider the following aspects of the general problem of encoding

and decoding for time-discrete memoryless channels: (a) Signal-space structure,

(b) sequential decoding schemes, and (c) the effect of quantization at the receiver. Our

results for each aspect are summarized below.

(a) Signal-space structure: A scheme for constructing a discrete signal space, in

such a way as to make the application of sequential encoding-decoding possible for the

general continuous memoryless channel, is described in Section II. In particular,

whereas Shannon's workl considered code selection from an infinite ensemble, in this

investigation the ensemble is a finite one. The engineering advantage is that each code

word can be sequentially generated from a small set of basic waveforms. The effects

of these signal-spare constraints on the average probability of error, for different signal

power constraints, are also discussed in Section II.

(b) Sequential decoding schemes: In Section III we discuss the application of the

sequential decoding scheme of Wozencraft and Reiffen to the continuous asymmetric

channel. A lower bound on Rcomp for such a channel is derived. The Wozencraft-

Reiffen scheme provides a bound on the average number of computations which is needed

to discard all of the messages of the incorrect subset. No bound on the total number of

decoding computations for asymmetric channels has heretofore been derived.

A new systematic decoding scheme for sequentially generated random codes is intro-

duced in Section III. This decoding scheme, when averaged over the ensemble of code

words, yields an average total number of computations that is upper-bounded by a

quantity proportional to n2 , for all rates below some cutoff rate RComp

The corresponding probabilities of error of the two decoding schemes are also dis-

cussed in Section III.

(c) Quantization at the receiver: The purpose of introducing quantization at the

receiver is to curtail the utilization of analogue devices. Because of the large number

of computing operations that are carried out at the receiver, and the large flow of infor-

mation to and from the memory, analogue devices may turn out to be more complicated

and expensive than digital devices. In Section IV, the process of quantization at the

receiver and its effect on the probability of error and the receiver complexity are

discussed.

4



II. SIGNAL-SPACE STRUCTURE

We shall introduce a structured signal space, and investigate the effect of the par-

ticular structure on the probability of error.

2. 1 THE BASIC SIGNAL-SPACE STRUCTURE

Let each code word of length n channel samples be constructed as a series of m

elements, each of which has the same length d, as shown in Fig. 3. Each one of the

m elements is a member of a finite input space X~ which consists of d-dimensional

vectors (d = n/m), as shown in Fig. 3. The advantage of such a structure is that a set

of randomly constructed code words may be generated sequentially, 4 ' 5 as discussed in

section 2. 4.

- d

II I I I I I
n

nm
d
d 2 3 ~4 5

d= n HERE x =I-- I I- ; d= 5
m

Fig. 3. Construction of a code word as a series of elements.

Two cases will be considered:

Case 1: The power of each of the n samples is less than or equal to P.

Case 2: All code words have exactly the same power nP.

2.2 THE EFFECT OF THE SIGNAL-SPACE STRUCTURE ON THE AVERAGE

PROBABILITY OF ERROR - CASE 1

In order to evaluate the effect of a constrained input space on the probability of error,

let us first consider the unrestricted channel.

The constant memoryless channel is defined by the set of conditional probability

densities p(rl1 ), where ~ is the transmitted sample, and rl is the corresponding

channel output. The output rl is considered to be a member of a continuous output

ensemble H. From case l, we have

1 e1 V P. (6a)

Let us consider the optimal unrestricted random code for which each particular message

of length n is constructed by selecting the n samples independently at random with

probability density p(S) from a continuous ensemble . Then, following Fano, it can

5
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be shown (Appendix A. 4) that the average probability of error over the ensemble of codes

is bounded by

2e nE(R) R rit < Ccrit
P 

e L e-nE(R)= e-n[E(0)-R] R R crit
(6b)

where R = 1/n In M is the rate per sample, and E(R) is the optimum exponent in the

sense that it is equal, for large n and for R a Rcrit' to the exponent of the lower bound

to the average probability of error (Fig. 2). For any given rate R, p(g) is chosen so as

to maximize E(R) [i. e., to minimize Pe].

Let us now constrain each code word to be of the form shown in Fig. 3, with the

exception that we let the set X be replaced by a continuous ensemble with an infinite,

rather than finite, number of members. We shall show that in this case, the exponent

Ed(R) of the upper bound to the average probability of error for such an input space

can be made equal to the optimum exponent E(R).

THEOREM 1: Let us introduce a random code that is constructed in the following

way: Each code word of length n consists of m elements, where each element x is

an d-dimensional vector

(7)

selected independently at random with probability density p(x) from the d-dimensional

input ensemble X. Let the output event y that corresponds to x be

(8)

Here, y is a member of a d-dimensional output ensemble Y. The channel is defined

by the set of conditional probabilities

d

P(YIX) =ATT P(il i)
i=1

Also, let

d

p(x) = TT P(i) ,
i=l

(9)

(10)

where p({i) - p(~), for all i, is the one-dimensional probability density that yields the

optimum exponent E(R). The average probability of error is then bounded by

>_ 2 exp[-nEd(R) ] ; Rcrit -< R < C

e
exp[ -nE(R)] = exp[ -n[E d(0)-R] ]; R Rrit

(11)

where

6
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Ed(R) = E(R); Ed(0) E(0).

PROOF 1: The condition given by Eq. 10 is statistically equivalent to an independent,

random selection of each one of the d samples of each element x. This corresponds to

the construction of each code word by selecting each of the n samples independently at

random with probability density p(~) from the continuous space I, and therefore by

Eqs. 10 and 6, yields the optimum exponent E(R). Q. E. D.

The random code given by (9) is therefore an optimal random code, and yields the opti-

mal exponent E(R).

We now proceed to evaluate the effect of replacing the continuous input space x by

the discrete d-dimensional input space x, which consists of vectors. Consider a

random code, for which the m elements of each word are picked at random with proba-

bility 1/1 from the set X of waveforms (vectors)

X = {Xk;k=l . ..... . (13)

The length or dimensionality of each xk is d. Now let the set X be generated in the

following fashion: Each vector xk is picked at random with probability density p(x k)

from the continuous ensemble X of all d-dimensional vectors matching the power con-

straint of Statement 2-1. The probability density p(xk) is given by

p(xk) - p(x); k = 1, . (14)

where p(x) is given by Eq. 10. Thus, we let p(xk) be identical with the probability

density that was used for the generation of the optimal unrestricted random code. We

can then state the following theorem.

THEOREM: Let the general memoryless channel be represented by the set of proba-

bility densities p(ylx). Given a set X, let Ee, d(R) be the exponent of the average

probability of error over the ensemble of random codes constructed as above. Let

E, d(R) be the expected value of E d(R) averaged over all possible sets Xa.

Now define a tilted probability density for the product space XY

eSD(x Y)p(x) p(yIx) p(x) p(y x) 1-f(y)s

Q(x, y) = = (15)

f fX eSD(x Y)p(x) p(yI x) dxdy fy f p(x) p(y x) 1 -Sf(y)s dxdy

where

[sp(x) p(y x)l-s dx 1

fly) = Q(y) p0 y s -s

fy p(x) p(y I x) dy

7
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p(x) p(y x) 1- s

fx p(x) P(Y x)l-s dx

1Part 1. E (R) > E(R) - In
, d d

exp[F 1 (R)] + - 1
(16)

s and F 1(R) are related parametrically to the rate R as shown below.

fY [fX p(x) p(yx) 1 dx]

dxdy

Q(y)2S-1 dy

1
R

Q(xl y)
fx f Q(x,y)ln p(x) dxdy >- Rcrit
x pYx

Rcrit= [R]s 2= 

Also, when R -< Rcrit

F 1 (R) = F 1 (Rcrit) = dE(O) = - ln p(x) p(y, x)1/2 dx 1dy; s= 2 
2

Part 2. E, d(R) E( + ln
d

exp[F 2(R)] + 

where F 2 (R) is related parametrically to the rate R by

0 F2 (R) = ln fX fY p(x) y I 2(1-s) Q(y)2s-1 dxdy

f [ P(x)P(ylx)l-s] Q(y)2s-1 dxdy

R= 1
d xf

Q(x y) 1
Q(x, y) ln p(x) dxdy - d ln

exp[F 2(R)d] + - 1

1 eE(0)d + _ 1
>A R -- In

11 eE(0)d + -Also, when R R -ncrit dI

F 2 (R)= F 2 (R ) = E(0) = - dln2 2 crit d fy [ p(x) p(y x)l/2

8

Then

0 < F 1 (R) = n ; 0 s 2 (17)

(18)

(19)

; s 22 (20a)

(20b)

12
dx dy. (21)

Q(x I Y = QQ(xy) =
Q YY-

2
2

p(X) p(y X) 2 -s) Q(y) 2s-1

.. s



PROOF: Given the set X, each of the successive elements of a code word is gener-

ated by first picking the index k at random with probability 1/Q and then taking xk to be

the element. Under these circumstances, by direct analogy with Appendix A, Eqs. A-46,
A-41, and A-26 with the index k replacing the variable x, the average probability of

error is bounded by

p(elX) exp[-nE(1)d(R)] + exp[-nE (R) (22)

where

E (1(R)= -R d d(tr) - rm (23)

E(2,d(R) = -d[Y ,d(S)-sDo] (24a)

TQ,d(t,r) = ln g ,d(t,r) (24b)

g d(t,r) = y kl p(k)p(k')p(yjk) exp[(r-t)D(ky)+tD(k', y)]dy; r 0; t O0

= 1 p(y1 i) exp[(r-t)D(xiy)+tD(x.y)] dy; with r 0; t 0, (24c)
fY i,1 - I

f(y)
D(ky) = D(xk,y) = n (25a)

P(YI xk)

Here, f(y) is a positive function of y satisfying fy f(y) dy = 1, and D is an arbitrary
constant.

, d() = ln g d(S) (25b)

g,d() = jf k p(k) p(ylk) esD(ky) dy; 0 s

12 -p(yIxk) exp[sD(xky) ] dy; 0 s (25c)

As in Eq. A-47, let D be such that

EM'(R) = E 2 (R) (26)

Inserting Eqs. 23 and 24a into Eq. 26 yields

-R -d [, d(t,r) - r m-= -[ ,d(s) -s (27)
-d ',d m

Thus

d m dQd(S) d id(tr) -R ] 1 (28)

9
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Inserting Eq. 28 into Eqs. 23 and 24a yields

E d(R) = E(1)d(R) = EQ )d(R)

s r d(S) r[ d d(r,t) 
s -r d + s (29)

with 0 s, r 0; t 0. Inserting Eq. 29 into Eq. 22 yields

p(elXI) 2 exp[-nE, d(R))] ,

where E , d(R) is given by Eq. 29.

We now proceed to evaluate a bound on the expected value of E , d(R) when averaged

over all possible sets X. The average value of E , d(R), by Eq. 29, is

QEd(R) )s - r d, (s)+ s ,d( r , t)+sR]

with 0 < s, r _< 0, t _< 0. Inequality (30) is not an equality,

parameters s, r, and t should be chosen so as to maximize

input set X, rather than to be the same for all sets. From

rithmic function, we have

(30)

since, in general, the

E E d(R) of each individual

the convexity of the loga-

-ln x > -n x. (31)

Inserting Eq. 31 into Eqs. 24b and 25b yields

-TJ, d ( s ) = -ln g, d(S) > -ln gQ, d(S)

-y,t d ( r , t) > -n gp , d(r, t) .

(32)

(33)

Now, since r < 0, s > 0, we have

(34)r <0; s < 0
s -r s -r

Inserting (32), (33), and (34) into (30) yields

E (R) >-r 1 In g d(S) - n s-rd , s-rd g , d ( ' s -r (35)

From Eqs. 25c and 14, we have

g, d( ) = P(x k ) d( ) dx k 18Y, x k k=l fy fx p(x) p(y I x) esD(xy) dxdy

where the index k has been dropped, since p(xk) = p(x). Thus

ge d(S) = f f p(x)p(ylx) eD(xy) dxdy.

From Eq. 24c, we have

10
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g d(t, r) = P( X ir)dxidxj (37)

1 b 

Here, by construction,

= p(x i )p (x j ) ; i

= p(x i) 6 (xi- j );
p(xi xj) 

and, by Eq. 14,

p(x) - p(x),

(38)
i=j

for all i.

Thus, from (24c), (37), (38), and (39), we have

g, d(r, t) = g, d(r, t) + g, d(r, t) ,

i j i=j

where

gQ, d(r, t)
i*j

2 i 1 = .x P(xi)P(XJ)y P(YIXi)
1 ji~j

Q2 i=1 j Y X X
p(x) p(x') P(y I x) exp[(r-t)D(x, y)+tD(x', y)] dxdx'dy

with r 0; t 0, and

g, d(t, r)
i= j

=2 i=1 Y X.
1

P(Xi) P(YI x i) exp[rD(xi, y)] dxdy

=2_1 il fy fX p(x)p(ylx) exp[rD(x,y)] dxdy;
2 i=1 Y X

r O

Inserting (25a) into (41) and (42) yields

y X ' Px p(x') P tp( y x)l-r+t pyx')- tf(y)r dxdx'dyg, d(r, t) = 2
i j

with r 0; t O;

:2 y fx p(x) p(y Ix)l-r f(y)r dxdy

with r 0.

In general, f(y) of Eq. 25a should be chosen so as to maximize E , d(R) for each

individual input set XF. However, we let f(y) be the same for all sets X and equal to

the f(y) that maximizes the exponent Ed(R) for the unrestricted continuous set X. Thus

11

(39)

(40)

(41)

(42)

g, d(r, t)

i=j

(43)

(44)

_ _ �_���_� ��__�lil__
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exp[(r-t)D(x, ytD(xj, y)] dydxdxj"



inserting Eqs. A-52 and A-53 into Eqs. 43 and 36 yields

g d(r,t) = - exp[d(r, t)] Q 1

g d(r, t) = -exp[ d(r) ] = -gd(r)

i=j

Thus, by Eq. 40,

g,, d(r, t) = gd(r, t) + gd(r)

Also, by Eqs. A-52 and 36,

g, d ( s ) = gg, d ( s ) 

Inserting Eqs. 47 and 48 into Eq. 35 yields

E (R) > r 1 In gd(s) s ln[ s R 1d s - r d s - r d - gd d s (rt) R

r 1In s gd(r)/gd(r t)s-r d in gd(s) s 1r In gd(r t) Ins 1 In[Thus -rd s-rd -
Thus

(47)

(48)

+ - 1
sS R.

E d(R) s - r d sr s-rd d(S) d -rd d(r,t) srdln
, t)] + -

(49)

Now, the exponent Ed(R) that corresponds to the unconstrained d-dimensional con-
tinuous space X is given by Eq. A-49:

Ed(R) = ds - S -m Eliminating D y l

Eliminating Do yields

Ed(R) =r 1 s 1 d (r t) r R.
d( - r d d s - r d s-rr (50)

Furthermore, Ed(R) is maximized, as shown in Eqs. A-50, A-51, A-54, A-55 and
A-56, by letting

p(x) (y x) 1- dx

f(y) =

f [f p(x) p(yj x) 1 dxl dy

r = 2s - 1; t = s -1

For R Rcrit s is such that

(51a)

(51b)

12

gd(r, t) (45)

(46)

--
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R [(s-l)H7d,()- d(s)]; 0 < s 22'2 ' (51c)

where

Rcrit= [R]s=1/ 2 .

If we let the parameters r, s, and t of (49) be equal to those of (50), we have

E d(R) >- Ed(R) s - r d1, d d s In
exp[yd(r)-d(r, t)] + 

The insertion of Eq. 51b yields

s 1 +exp[F1( R ) ] +

E, d(R) > Ed(R) 1 s d
. -1]

where

F 1 (R) = d(2s-1) - 7d(2 s-l;s-1).

Inserting Eqs. A-52 and A-53 into Eq. 54 yields

F1 (R) = In ffx p(x) p(y x) 2-2s[ f(y)]2s-1 dxdy

-In fy fx f p(x)p(x')p(ylx)lis
YX X

p(ylx)l-s f(y)2s-1 dxdx'dy.

fx P(X)p(ylx)2 (1-s)f(y)2 l-1 dxdy

F 1 (R) = In

p(x)p(yx)l-s dx]
K

(55)
f(y)2s-1 dxdy

where s and F 1 (R) are related parametrically to the rate R by Eq. A-60c, for all rates

above Rcrit = [R]s=1/2

As for rates below R crit we let

1 1
s= ; t= -; r = 0. (56)2' 2'

Inserting Eq. 56 into Eqs. 54 and 55, with the help of Eqs. A-69 and A-71, yields

[F(R)]s=1/2 = -ln fy [fx p(x)p(yjx) /2d = dEd(O) (57)

where

Ed(O) = [Ed(R)]R=O

13
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(53)

(54)

Thus
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R exp 1(R) s=12]+ - 1
E d(R) >, E(R) In

= E(R) -ln (exp[dEd(0)] + - 1)
d

for R < Rcrit From Eqs. 14 and 12 we also have Ed(R) E(R) for all rates, by con-

struction. The proof of the first part of the theorem has therefore been completed (a

simplified proof for the region R < Rcrit is given elsewhere ). Q. E. D.

In order to prove the second part, let us rewrite (49) as

E d(R) d() _ s [R + 1ln

Qs - r d s -rd( ' t st ) s [R]

r 1here s 1 [R],

where

R' = R + lnd

exp[yd(r)- yd(r, t)+ - 1

Q

(58)

exp[yd(r)- yd(r, t)] + - 1
(59)

Comparing (59) with (50) yields

E, d(R) > Ed(R') =EdR + 1 In
exp[F2 (R)] + - 1

By Eqs. 51a, 55, A-57, A-58, A-59, A-60c, and A-60b,

cally to the rate R by

F 2 (R) = in

R' = R + In
d

f fx P(x)p(yx) 2 (1-s)Q(y) 2 s -1 dxdy

fy [ p(x)p(ylx) dxj Q(y) 2s-1 dxdy

exp[F2 (R)] + - 1 Q(x1y)

- d fx f Q(x,y) ln p(x) ;

(60)

F 2 (R) is related parametri-

(61)2

0 < S 2
2 (62)

for all

R' > R' = [R']s =crit s=1/2

Inequality (63) can be rewritten

exp[F2 (R) ]+ - 1

1
R >- Rcrit -In

= n dE(O) + _ 1
= Rcrit d 

14
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1 InAs for rates below R -Incrit d
edE(O) + - 1

e , we let

1 1
s = t = -2 r= O.

Inserting (65) into (60) and (61) yields

E d(R) > E d + In + _ R R~, d d d eIcrit

(65)

(66)

From Eqs. 14 and 12, by construction, Ed(R) E(R) for all rates. Thus, the proof

of the second part of the theorem has been completed. Q. E. D.

Discussion: We proceed now to discuss the bounds that were derived in the theorem

above. We shall consider particularly the region 0 -< R -< Rcrit' which, as we shall see

in Section III, is of special interest. From Eqs. 16 and 18,

E (R) > E(R) - 1 n[edE(+ 1]
, d d I

for R < Rit.
crit '

From Eq. 6, we have

for R -- Ritcrit '

Inserting (68) into (66) yields

[dE() + -
E, d(R) > E(0) - R -d n -

Now, whenever dE(O) << 1, we have

1 ldE(O)+E d(R) E(O) - R T In

E(O) - R - In 1+ )
d 1

-E(O) - R - E(0)

E d(R) E(O) 1 -R,a, d I -,el

Thus

for R -< Rcrit.

for R -< Rcrit.

for R - Rcrit' and

dE(O) << 1.

Comparing (71) with (68), we see that El, d(0) can be made practically equal to E(R) by

using quite a small number , of input symbols, whenever E(O)d << 1. In cases in which

-max d 0 and dp(r 0 so that p(rj I) can be replaced by the first two terms
I elmax d~ d=0

dp(r 1 I )
of the Taylor series expansion, p( 1) |p(=M I0) + d= , it can be shown (by

insertion into Eqs. A-74a-d) that the optimum input space consists of two oppositely

directed vectors, ma x and - ma x ' for all rates 0 < R < C, and thatmax max'

15

E(R) = E(O) - R

(67)

(68)

(69)

(70)

(71)
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1 1 2 [=
E(0) =C = 4max do

P(,71 o)

where C is the channel capacity.

Inequality (69) may be bounded by

E(O)d

Qd d + f crit

= E(O) - R - d-ln [eE(O)d + 1] (72)

Thus, whenever dE(O) >> 1, we have from (72)

El d(R)E(. 1 E(O)d - In [EE d(R) dn In [e - In - R (73)

when

In << E(O)d

and

E ,d(R) E() R - n [ E ( ) d - l n +1]

1 -[In e-E(O)d]R (74)E(0) (74)

when

In >> E(O)
d

Comparing Eqs. 73 with 74 yields

E(R) > E, d(R) - E(R); R - Rrit dE(O) >> 1 (75)

or

E, d(R) E(R) (76)

if

-In Q > E(O) dE(O) >> 1. (77)d

In the following section we shall discuss the construction of a semioptimum finite

input set X for the Gaussian channel. [A semioptimum input space is one that yields

an exponent E, d(R) which is practically equal to E(R).] We shall show that the number

of input vectors needed is approximately the same as that indicated by Eqs. 75 and 71.

This demonstrates the effectiveness of the bounds derived in this section.

2.3 SEMIOPTIMUM INPUT SPACES FOR THE WHITE GAUSSIAN CHANNEL -

CASE 1

The white Gaussian channel is defined by the transition probability density

16
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p(r |) = _ exp ( (78)
vf r 2 2

in which, by inequality (6a),

l1 -l< I Imax \-P (79)

Let us define the voltage signal-to-noise ratio A, as

A=-. (80)

Inserting (79) into (80) yields

A A Amax (81)max a ar

We shall first discuss the case in which

dAmax << 1 (82)
max

and proceed with the proof of the following theorem.

THEOREM: Consider a white Gaussian channel whose statistics are given by Eq. 78.

Let the input signal power be constrained by (79) and by (82). Let the input space con-

sist of two d-dimensional oppositely directed vectors. Then the exponent of the upper

bound to the probability of error, E 2 d(R) is asymptotically equal to the optimum

exponent E(R).

PROOF: From Eq. 7 we have

x = 1' 2 . . .I d'

The input set X 2 consists of two oppositely directed vectors. Let those two vectors be

xl = f ' .... d (83)
1 2 d'

1 1 1
where 21 and1 = 2= = d max' and

2= 2 2 (84)

2 2 2
where t1 = ~2= *-- = - max1 2 d max'

From Eqs. 8 and 9 we have

Y = r1 72 .2' rid

and
d

p(yxI ) = rT P((i i) -

i=l

17
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Inserting Eqs. 78, 83, and 84 into Eq. 9 yields

d
p(yIx 1 ) = I

i=l

d

P(Yl X2) = 
i=l

1 exp(
(2 )d/2 Td

1

( 2 T)d/2 Td

i ( i-max)2 

20r2

(7 i + max) 2

exp 2
2- /

From Eqs. 29 and 30 we have

p(e X 2 ) 2 exp[-nE2, d(R)]

where

(R) r 1 s 1 r
2, d s - r d 2, d s - r d 2,

Let

r = 2t + 1; 1s=l+t; 0 <s 2-
2

and let
d

f(y) = p(y[ O) = 1
i=i (27r)d/2 d

( 2\

exp ri
20

and
1

p(x1 ) = P(X2 ) = 2

Inserting Eqs. 88, 89, and 90 into Eqs. 24b, 25, and 87 yields

E (R) = 1 - 2s 1 s 1 (2-1, s-) s R
2, 1 -s d2,d 1 - s 2, - 1-s

l p(y xi)l1-s p(yI O)S dy

1-s l-s 2s-1
Y2, d( 2 s-l,s-1) = n 4 p(yxi ) p(yxj

Inserting Eqs. 85 and 89 into Eqs. 92 and 93 yields

1
, d(S) = In - 1f F

rl 1 -i 

J_ 1exp
712 tr

= ln 22 exp -

exp

(

(1 -s)(- )max) +max

(1-s)(r+ )2 +max

2 2

2
max(1- s ) sd

2o-2

2

2Ž d4 ]}rl - d rl

2 -ds(1-s)<1
-- max 2o -' - 2

18

(85a)

(85b) I

(86)

t) -s s R.
S- r

(87)

(88)

(89)

(90)

2

Y2, d ( s ) = n 1 y

(91)

(92)

(93)

I d
dr17

(94)
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5'2, d(2s-1, s-1)

1zr/ 1 / 2 (1-s)(r1- )2 + (2s-1) rl2
= In f -exp 2max2 /

4 77 I~r2-7r a- 2cr

1

,\( r '
exp -

2(1-s)(+ max) 2 + (2s-1)max

2 22¢r /

d

d Y]

d]

(1-s)( -max ) 2 - ( 1-s )( +7+ max) - ( 2 s -1 ) rl 2
2

2(r 2 21S F+2 f2

= In {2 exp
4 

maxd[2(1-s)-4(1-s) 2 ] )
222

d }
d ]}

2(1-s)2 dl
+ 2 exp max

22 j

i
2

Now, since by (82) dA2
max

2
maxa<< 1, we have2
a'

2

(95)

2 d(2S-1, s-1) in 1

2
- max d[2(1-s)-r(I-s) 21

2
2

2 

maxd 2(1-s)
2 2

= n 1 max 2ds(l-s)
2m 2

2
max 2ds(l-s)= 2 (s)

2 Inserting 2, 91 yields

Inserting Eqs. 94 and 96 into Eq. 91 yields

E2, d(R)= +[ -s L-ss(-s)

2
max s R
2ff2 1 - s

2

2 1-s

A2
max S 1

=s 2 1 s R; 0 s < 

Maximizing E2 d(R) with respect to s yields

1 1 A2

for R crit 8 max2 crt8 max

s = 1 for R Rrit = Amax
crit 8 max

19
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(97)
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Thus

E ( R ) 1 A2 -R R 1A2-R; A (98a)2, d 4 max 8 max

E2, d(R) - 2 A +R; 8 max 2 max (98b)

Comparing Eqs. 98 with the results given by Shannon yields

E(R) -- E2 d(R) - E(R) (99)

Shannon's results1 are derived for the power constraint of Case 2, and are valid
also in cases where the average power is constrained to be equal to P. The set of
signals satisfying Case 1 is included in the set of signals satisfying the average power
constraint above. Thus, Shannon's exponent of the upper bound to the probability of
error is larger than or equal to the optimum exponent E(R) which corresponds to the
constraint of Case 1. Thus, from (99),

E2 d(R) E(R) (100)

for A2 d << 1 . Q.E.D.
We shall now discuss cases in which the condition of (82) is no longer valid. The

first step will be the evaluation of E , d(0) for the white Gaussian channel. From
Eqs. A-69 and A-71 we have

E~ d(0) = d n L E P(x)P(x') fy p(ylx) /2 p(y x')1/2 dy. (101)

Inserting Eqs. 9 and 78 into (101) yields

E (0) = n p(x) p(x') r , ex[ - d (102)

where x t1 f2) d and x ' 2', 1 .. , 5 Thusd 
2

1EEd(0) =- In (x)p(x) f 1 exp [ d 

d ln L Yp(x)p(x) exp L 2 (103)v' v' _XI_11_XX' 8 c

Let D be the geometrical distance between the two vectors x and x', given by

2 = [x-x' = - -d )p (104)

Then, inserting (104) into (103) yields

20



(105a)E, d(0) = - In p(x)p(x') exp- c 2

Q. d X X' ( 2)

(105b)

Here, p(D) can be found from p(x) and p(x').

When the input set X 2 consists of two oppositely directed vectors given by Eqs. 83,

84, and 90, from Eq. 103, we obtain

(2 d+ exp 21
2cr2

= -1 in 1 + exp(A max
d

For Aaxd/2 << 1, we have E d(0) Aax/4 as in (98a). For higher values

peak signal-to-noise ratio let d = 1. Then, from (106),

(106)

of

E 2 , 1(0) =in 2 ( + exp Aax

In Table I, E2 1(0), together with C 2 , 1 the rate for which E 2 , 1(R) = 0, is given. Also

given in the same table are the channel capacity C and the zero-rate exponent E(0),

that correspond to the power constraint of Case 2. (The channel capacity has been

Table 1. Tabulation of E2 1(0) and C2 12, 1 a 2, 1 vs A
max

21

or

E 2 ,d (0) = -dn 

(107)

Ab 1B~ 1(0) 2(O) C C C 2 1C
K max 22, 10) 2 (0)C1(O) 2, 1

1 0.216 0.22 0.99 0.343 0.346 0.99

2 0.571 0.63 0.905 0.62 0.804 0.77

3 0.683 0.95 0.72 0.69 1.151 0.60

4 0.69 1.20 0.57 0.69 1.4 0.43
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computed by F. J. Bloom et al.,9 and E(O) is given by Fano 2 and is also computed in

Appendix B.) The channel capacity C and the zero-rate exponent E(O) for Case 1 are

upper bounded by the C and E(O) that correspond to the power constraint of Case 2.

From Table I we see that the replacing of the continuous input set by the discrete input

set X 2 , consisting of two oppositely directed vectors, has a negligible effect on the

exponent of the probability of error because A 2 1.max

X1

- MAX

x6

Fig. 4. Semioptimum input space for the Gaussian channel.
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Let us consider, next, the case in which the input set X$ consists of one-
dimensional vectors as shown in Fig. 4.

vectors is

2 max
D =min - 1

Let

p(x) = ;1 I

The distance between each two adjacent

(108)

i= 1,.... . (109)

Inserting (108) and (109) into (105) yields

E2 1(0) -ln [+ 2 ( Q-k)
k=1

m(kDinexp - 8r 2

8 a-

Thus, since 4k < k2; k > 2, we have

E2 1() >- -ln + 2(-1) exp

-in I 2 + 2(f-1) exp(

- n 41
Now define K as

A
- 1 =max

K '

+[

min +

k - 2

Q 4kD .

2(f-2) ~ exp - 2 i
k=1 82 8r

2
D.inmn - 2(Q-2)
8rU2 )

2 exp min + 2

8 2 

exp( 4kD n/ 8a2)

exp( 4Dm2/8o2) 1

1

exp 4D . /8min ) i} 1

0 K.

Inserting (112) and (81) into (108) yields

D = 2arK.min

Inserting (113) into (111) then yields

E2 , 1(0) > In (1+KAma x) - n {1 + 2 exp -- 2 ) +22

If we choose l so that K 1, we have

E2 , 1 (0) = n (+Amax ) - In 2, 52.

From Eqs. 114b and 112, for A >> 1, we havemax

23

(110)

I
(111)

(112)

(113)

(114a)

(114b)
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E2, 1(0) In Amax (115a)

In In Ama x = E2, 1(0). (115b)

On the other hand, it can be shown (Appendix B) that

E(0) In Amax; Ama x >> 1 . (116)

Thus, by (116) and (115), we have

E2 , (R) E(R); R < Rcrit Amax >> 1 (117a)

For

In = E(0); d = 1. (117b)

Comparing Eqs. 71 and 75-77 with Eqs. 100 and 117, respectively, gives the result

that the lower bound on EQ d(R) previously derived is indeed a useful one.

2.4 THE EFFECT OF THE SIGNAL-SPACE STRUCTURE ON THE AVERAGE

PROBABILITY OF ERROR- CASE 2

For a power constraint such as that of Case 2, we consider the ensemble of codes

obtained by placing M points on the surface of a sphere of radius n-P.

The requirement of Case 2 can be met by making each of the m elements in our

signal space have the same power dP (see Fig. 3). (The power of each word is mdP= nP

and therefore Case 2 is satisfied.) This additional constraint produces an additional

reduction in the value of E, d(R) as compared with E(R). Even if we let the d-

dimensional input space Xf be an infinite set ( = o), the corresponding exponent Ed(R),

in general, will be

Ed(R) - E(R). (118)

The discussion in this section will be limited to the white Gaussian channel and to

rates below Rcrit Thus

Ed(R)= Ed(0) -R; R -< Rcrit. (119)

Let

Ed(0) = E(0) - kd(A2 ) E(0), (1 20a)

where

A
2

P
A - P (120b)

Then, from (119) and (120), we have

Ed(R) = E(0) - kd(A 2) E(0) - R; R -< Rcrit. (121)d d crit~~~~~~~~~~~~~~~~(11

24

__



We shall now proceed to evaluate kd(A2) as a function of A 2 for different values

of d.

The input space X is, by construction, a

dimensional sphere of radius dP.

I-
/11

set of points on the surface of a d-

N-

/
I

\0

/

II

N

Fig. 5. Cap cut out by a cone on the unit sphere.

Let each point of the set X be placed at random and independently of all others with

probability measure proportional to surface area or, equivalently, to solid angle. The

probability Pr(O0-<o01 ) that an angle between two vectors of the space X is less than or

equal to o01 is therefore proportional to the solid angle of a cone in d-dimensions with

half-angle 01. This is obtained by summing the contributions that are due to ring-

shaped elements of area (spherical surfaces in d-l dimensions of radius sin 0 and

incremental width dO as shown in Fig. 5). Thus the solid angle of the cone, as given

by Shannon, 1 is

) 7r(d-)/ 2 1

0
(sin 8) do. (122)

Here we have used the formula for the surface sd(r) of a sphere of radius r in d-

dimensions, sd(r) = d/2 rd-1 / r(d/2+1).

From (122), we have

25
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Pr(O-<0 1)
Q2(7)

0(- (-)/ 1

r d )

d1 ( d+2) 01

( 0
1 ( + ) 0

11 7 r JO

d d/ 2I r( )

(sin 0) dO

sin ) do.

The probability density p(O) is therefore given by

d(Od 0-< 0 1 ) 1 (2)p(o) = do

I VTr 

(sin 0)d - 2
(124)

Now, by (104), the geometrical distance between two vectors with an angle
between them (see Fig. 5) is

D = 4(dP sin2-) .

Inserting (125) and (124) into (105b) yields

(125)

7r

Ed(O) = -1n ( 2dP .2 p(O) exp -- sin2 do2o2 2

1 {n 1 ()

dln ' F d_ ) f

exp -dP sin2
22

(sin 0 )d-2 d0

ting (120b) into (126) for d 2 yields

1 
Ed(O) = - in f expI

1 Tr 0~.·

r()
V r %d-l)

V-2-)

dA2
2

exp dA)
7T

f0

sin2 (sin o)d-2 de

xdA2
exp 4 cos 0 sin Od- 2 dO

Equation 127 is valid for all d > 2. As for d = 1, it is clear that in order to satisfy the
power constraint of Case 2 the input space X must consist of two oppositely directed

26

Is

(123)

Insert

or

(126)

Ed(O)
Ed(0) = - -ln

(127a)

(127b)



vectors with an amplitude of Th.

2 2=P.A = A = .
max

Inserting (128) into (106) yields

E 1 (0) = - in + eA2

In Appendix B we show that for all d

1 2
Ed(0) - A = E(0);

Ed(0 ) _d d - 11n A 2 ;- d 2

A2 d<< 1; d 2

A2 >> 1; d 2

Thus

Ed(0) d - 1E(0)

Inserting Eqs. 129 and 130 into Eq. 120 yields, for any d,

Ed(0) = E(O) - kd(A2)E(0),

where

_ 2kd(A2) = 0; A2d << 1kd(A2 ) ; A2 >> 1.

The qualitative behaviour of kd(A2) as a function of A2 with d as a parameter is

illustrated in Fig. 6. From (127a) it is clear that Ed(0) is a monotonic increasing

Table 2. Tabulation of k1 (A 2 ) and k3(A2 ) vs A2 .
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(128)

(129)

(130a)

(130b)

(130c)

(131)

A2 k (A2 ) k3(A 2 )

1 0.01

4 0.095 0.046

9 0.28 0.095

16 0.43 0.135

100 0.7 0.2

104 0.9 0.28
- l 
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k (A 2 )

0.5

n

1 10 10 3 10 10 5

Fig. 6. Plot of kd(A2) vs A 2 .

function of A2 . The functions kl(A2 ) and k3 (A2) are tabulated in Table II.

We shall now evaluate the effect of replacing the continuous d-dimensional input

space X by a discrete d-dimensional input space X,, which consists of vectors.

Let each of the m elements be picked at random with probability 1/Q from the set

X of vectors (waveforms), X - {xk:k=l, .. }.,

Let the set X be generated in the following fashion: Each vector xk is picked at

random with probability p(xk) from the ensemble X of all d-dimensional vectors

matching the power constraint of Case 2. The probability p(xk) is given by

p(xk) (x)x=x; k = 1 ..... 

where p(xk) is the same probability distribution that is used to generate Ed(0). The

following theorem can then be stated.

THEOREM 2: Let E, d(0) be the zero-rate exponent of the average probability of

error for random codes constructed as those above. Let E , d(0) be the expected value

of EQ, d(0) averaged over all possible sets X . Then

1 e x p [d E d ( 0 ) ] + - 1
ES, d( 0 Ed(O) d + - . (132)

The proof is identical with that of Theorem 1. Inserting (131) into (132) yields
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1 exp[dEd( 0 )] + - 1 )

E d(0) > E(0) - kd(A 2 )E(0) - exd + - (133)

Thus there is a combined loss that is due to two independent constraints:

1. Constraining the power of each of the input vectors to be equal to dP; the

resulting loss is equal to k (A2 ) E(0).

2. Constraining the input space to consist of vectors only; the resulting loss is

1 exp[dEd(0)I + - 1
equal to Iln e

We now evaluate the effect of these constraints at high (and low) values of A . From

(132) we have

1 (exp dEd(0)]+ A
E d(O) Ed() n Ed(0) de - +

= Ed(0) - in exp(dEd(0)-ln)+l ) . (134)

Thus, for E(0) - In A 2 >> 1, we have

() d n << Ed(0) _ d - n 2 (135a)

E- d(°0 Ed(0); d In Q >> Ed(o) d 1 n A2 (135b)

On the other hand we always have E d(0) -< Ed(O), and inserting it into (135b) yields

E d(0) - Ed(0) = d - 1 1 n A2 (136)
fi, d d d 2

for d n >> Ed(0).

Whenever A2 d << 1, an input space X 2 that consists of two oppositely directed vectors

with an amplitude of VdP yields the optimum exponent E(R) for all rates 0 < R < C, as

shown in section 2. 3.

2.5 CONVOLUTIONAL ENCODING

We have established a discrete signal space generated from a d-dimensional input

space which consists of input symbols. We have shown that a proper selection of 

and d yields an exponent E , d(R) which is arbitrarily close to the optimum exponent

E(R).

We proceed to describe an encoding scheme for mapping output sequences from an

independent letter source into sequences of channel input symbols that are all members

of the input set X . We do this encoding in a sequential manner so that sequential or

other systematic decoding may be attempted at the receiver. By sequential encoding

we mean that the channel symbol to be transmitted at any time is uniquely determined

29
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by the sequence of the output letters from the message source up to that time. Decoding

schemes for sequential codes will be discussed in Section III.

Let us consider a randomly selected code with a constraint length n, for which the

size of M(w), the set of allowable messages at the length w input symbols, is an expo-

nential function of the variable w.

M(w) AeWRd; 1 < w < m, (137)1

where A is some small constant 1.

A code structure that is consistent with Eq. 137 is a tree, as shown in Fig. 7. There

is one branch point for each information digit. Each information digit consists of "a"

channel input symbols. All the input symbols are randomly selected from a d-

dimensional input space X~ which consists of vectors. From each branch point there

diverge b branches. The constraint length is n samples and thus equal to m input

symbols or i information digits where i = m/a.

The upper bound on the probability of error that was used in the previous sections

and which is discussed in Appendix A, is based on random block codes, not on tree

codes, to which we wish to apply them. The important feature of random block codes,

as far as the average probability of error is concerned, is the fact that the M code

words are statistically independent of each other, and that there is a choice of input

symbol a priori probabilities which maximize the exponent in the upper bound expression.

In the case of a tree structure we shall seek in decoding to make a decision only

about the first information digit. This digit divides the entire tree set M into two sub-

sets: M' is the subset of all messages which start with the same digit as that of the

transmitted message, and M" ' is the subset of messages other than those of M'. It is

clear that the messages in the set M' cannot be made to be statistically independent.

However, each member of the incorrect subset M"' can be made to be statistically

independent of the transmitted sequence which is a member of M'.

Reiffen 5 has described a way of generating such randomly selected tree codes when

the messages of the incorrect subset M" are statistically independent of the messages

in the correct subset M'.

Thus, the probability of incorrect detection of the first information digit in a tree

code is bounded by the same expressions as the probability of incorrect detection of a

message encoded by a random block code.

Furthermore, these trees can be made infinite so that the above-mentioned sta-

tistical characteristics are common to all information digits, which are supposed to

be emitted from the information source in a continuous stream and at a constant rate.

These codes can be generated by a shift register,5 and the encoding complexity per

information digit is proportional to m, where m = n/d is the number of channel input

symbols per constraint length.

Clearly, the encoding complexity is also a monotonically increasing function of 

(the number of symbols in the input space X). Thus, let Me be an encoding complexity
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measure, defined as

M= m = n- (138)e d

The decoding complexity for the two decoding schemes that will be discussed in

Section III is shown to be proportional to m e , 1 a - 2, for all rates below some

computational cutoff rate R comp
Clearly, the decoding complexity must be a monotonically increasing function of .

Thus, let M d be the decoding complexity measure defined as

dMdYE Cm2= n - (139)

We shall discuss the problem of minimizing M e and M d with respect to and d,

for a given rate R, a given constraint length n, and a suitably defined loss in the value

of the exponent of the probability of error.

2.6 OPTIMIZATION OF AND d

This discussion will be limited to rates below R rit, and to cases for which the

power constraint of Case 1 is valid. Let L be a loss factor, defined as

E(0) - El d(0)
L = ' (140)

E(0)

Now, for rates below Rcrit' from Eq. A-70, we have

E , d(R)= E , d(0) -R; R -< Rcrit.

Thus

E, d(R) E(0)(1-L) - R; R Rcrit (141)

Therefore specifying an acceptable E , d(R) for any rate R Rcrit, is equivalent to the

specification of a proper loss factor L.

We proceed to discuss the minimization of M e and M d with respect to Q and d, for

a given acceptable loss factor L, and a given constraint length n.

For dE(O) << 1, from Eq. 71, we have

E( d> a( 1 - ; dE(0)<< 1, R Rcrit. (142)

Inserting (140) into (142) yields

Tu ; E(0)d << 1; R Rcrit

Thus, by Eqs. 138 and 139, we have
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M n L E(O)d << 1 (143a)e Ld'

2
Md n 2; E(O)d<< 1 (143b)

Ld

The lower bounds to M e and M d decrease when d increases.

Thus, d should be chosen as large as possible and the value of d that minimizes

Me and M d is therefore outside the region of d for which E(O)d << 1. The choice of Q

should be such as to yield the desired loss factor L. Also, by Eq. 72,

E d(0) > E(0) ln ( E(O)d + R R Rcrit (144)

This bound is effective whenever Q >> 1. This corresponds to the region E(O)d >> 1. (In

order to get a reasonably small L, should be much larger than unity if E(O)d >> 1.)

Inserting (144) into (140) yields

L = d1 n E()d + 1).
dE(O)

Thus

eE(O)d
= e (145)

eLE(O)d

Inserting (145) into (138) and (139) yields

E(O)d
Me <n eE(O)d (146a)

eLE()d

2 E(O)d
Md <n2 e (146b)

d d2 LE(O)d
e -l

From (146a), the bound to M e has an extremum point at

E(O)d - 1 eE()d (147)

E(0)d(l-L) - 1

if a solution exists. Thus, for E(O)d >> 1,

1 eLE(O)d
1-L

or

dE(0) = ln 1L l-L'

Now, for reasonably small variables of the loss factor L, we have

dE(O) 1. (148)
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This point is outside the region of d for which dE(O) >> 1.

From (146b), the bound to M d has an extremum point at

E(O)d - 2 LE(O)d

E(O)d(l-L) - 2

if a solution exists. Thus, for E(O)d >> 1,

1 LE(O)d
1 -L

or

dE(O) In 1 L

For reasonably small variables of the loss factor L, therefore, we have dE(O) 1.

This point is outside the region of d for which dE(O) >> 1.

We may conclude that the lower bounds to M e and M d are monotonically decreasing

functions of d in the region dE(O) << 1, and are monotonically increasing functions of d

in the region dE(O) >> 1.

Both Me and Md are therefore minimized if

E(O)d 1; E(0) 1, R < Rcrit (150a)

And since d > 1, if

d = 1; E(0) 1, R -< Rcrit (150b)crithe desired loss factor L.

The number is chosen to yield the desired loss factor L.
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III. DECODING SCHEMES FOR CONVOLUTIONAL CODES

3. 1 INTRODUCTION

Sequential decoding implies that we decode one information digit at a time. The

symbol s i is to be decoded immediately after si-1 Thus the receiver has the decoded

set (... ., s1 so) when it is about to decode s . We assume that these symbols have

been decoded without an error. This assumption, although crucial to the decoding pro-

cedure, is not as restrictive as it may appear.

We shall restrict our attention to those s t that are consistent with the previously

decoded symbols.

3.2 SEQUENTIAL DECODING (AFTER WOZENCRAFT AND REIFFEN)

Let u be the sequence that consists of the first w input symbols of the transmitted

sequence that diverges from the last information digit to be detected. Let u be aw
member of the incorrect set M". Therefore u' starts with an information digit otherw
than that of the sequence uw. Let vw be the sequence that consists of the w output

symbols that correspond to the transmitted segment uw. Let

p(vw)
D (u,v) = In (151)

P(Vw luw)

We call this the distance between u and v, where

w

p(vw) =T7 P(Yi)

w

P(vwluw) = [7 P(yi xi)

Let us define a constant D j given by
W

P D(UV) < e J (152a)

where k. is some arbitrary positive constant that we call "probability criterion" and is
J

a member of an ordered set

K = {k:k.=k. + k. =E(R)n , (152b)
max

where A O0 is a constant.

Let us now consider the sequential decoding scheme in accordance with the following

rules:

1. The decoding computer starts out to generate sequentially the entire tree

set M (section 2. 5). As the computer proceeds, it discards any sequence u' of
lnt1 1 wlength w symbols (1 w m) for which the distance D(u',v) > D . (D is for

34



the smallest "probability criterion" kl).

2. As soon as the computer discovers any sequence M that is retained through

length m, it prints out the corresponding first information digit.

3. If the complete set M is discarded, the computer adopts the next larger cri-

terion k 2, and its corresponding distance D; (1 - w ' m).

4. The computer continues this procedure until some sequence in M is retained

through length m. It then prints the corresponding first information digit.

When these rules are adopted, the decoder never uses a criterion K. unless the
J

correct subset M' (and hence the correct sequence uw ) is discarded for kj_ 1 The

probability that uw is discarded depends on the channel noise only. By averaging both

over all noise sequences and over the ensemble of all tree codes, we can bound the

required average number of computations, N, to eliminate the incorrect subset M".

3.3 DETERMINATION OF A LOWER BOUND TO RCOMP OF THE WOZENCRAFT-

REIFFEN 5 , 6 DECODING SCHEME

Let N(w) be the number of computations required to extend the search from w to

w + 1. Using bars to denote averages, we have

N= N(w).
w

N(w) may be upper-bounded in the following way: The number of incorrect messages

of length w, M(w), is given by Eq. 143.

dRw
M(w) Ale

The probability that an incorrect message is retained through length w + 1 when the

criterion k. is used is given by
J

wPr[W·, v)-·Di· ij. (153)

The criterion k. is used whenever all sequences are discarded at some length Xw
J

(l/w - X m/w) with the criterion kj_1 .

Thus the probability Pr(j) of such an event is upper-bounded by the probability that

the correct sequence u is discarded at some length Xw. Therefore

p(j) -< L Pr(D w(u. v)-Dj-) (154)

Thus, by Eqs. 143, 153, and 154,

N(w) < A1 edwR E Pr(Dw(u',v) Dwj) Pr(j). (155)

j

Inserting (154) into (155) yields
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N(w) A edwR , Pr(Dw(u', v) Di; dw(u, v) D1 ) (156)

j, X

Inserting (156) into (152) yields

N < A ledR Pr[Dw(u',v) < D j D (u, v) >- D . (157)
wX, j

We would like to obtain an upper bound on

Pr[Dw(u' v)D;D J w(u, v) D J-1 ]W' Xw Xw

of the form

Pr[D(u,v) DJ; Dw ( u,v) D ]< Be-R dw (158)

where B is a constant that is independent of w and X, and R is any positive number

which is such that (158) is true. Inserting (158) into (157) yields

N L L Ke(R-R )wd (159)

w, j, X

where k= BA1 .
1 *

The minimum value of R , over all w, X, and j is called "R ." Thuscomp

R = min {R*} . (160)
comp

Inserting (160) into (159) yields

N~ 3 K exp[-(Rcomp-R)wd] 
w, j, X

For R < Romp, the summation on w is a geometric series that may be upper-

bounded by a quantity independent of the constraint length m. The summation on X

contains m identical terms. The summation on j will contain a number of terms

proportional to m. This follows because the largest criterion, k , has been made
max

equal to E(R)n = E(R)md. Thus for rates R < Romp, N may be upper-bounded by a
2 6comp

quantity proportional to m . Reiffen obtained an upper bound

R < E(0).comp

It has been shown5 that R = E(0) whenever the channel is symmetrical.comp
We proceed to evaluate a lower bound on Rcomp. From Eq. 151, we have

Xw Xw P(y.)
DX(U, V) = L d(x,y) In (161a)

i~ = 1 =1 P(YilXi)
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W W p(yi)
Dw(u', v) = d(x', y) = In

Ths 1 th 1 oC fbnP(YilXA )

Thus, by the use of Chernoff bounds (Appendix A),

Pr(D xw(U, v) > DJw) eXW((S)-sh" ( s ) )

(161b)

(162)

By Eqs. A-27, A-29, and 161a,

y(s) = In f y
XQi 

X,

P(x) p(y x) es d( x ' y) dy

P(x) p(y Ix) 1-p(y) dy; s O

and

D
,(s ) XW

Xw

Thus, by (152) and (162),

Pr [D (u, v) DJ ] eW((s)-s'YI(s)) = e kj

and

DJ w = Xwy'(s).Xw

Here, s is determined as the solution of

k.
J

XW = s'(s) - (s) .

In the same way,

Pr[D(u', v) < Dj]

By the results of section A. 3 and Eq. 161b,

L(t) = n L fy P(xl)p(y)etd(x' y) dy

= In f P(x')p(y)l+tp(y, x) - t dydx';

and

1 '(t)

t O

wXw

Xw
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(164)

for all X (165a)

(165b)

(166a)

(166b)

(166c)
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Returning to (158), we find that

Pr[Dw(u', v) DJ; Dw(y, v) DJ ] Pr[Dw(U', v) DJ] (167a)

Also,

Pr[Dw(u', v) Dj; D(u, v) DJwl] Pr[DXw(u, v) ~ D ] * (167b)

Thus, by (167), (165), and (166),

Pr[Dw(u'. v)) P Dw( (U v) Dwl] }

min {e(t) tl'(t); exp[-kj -1] (168)

Now (see 152b) k = kj + A; A > 0. Thus by (165a)

exp[-k. 1 ] eAexp[-kj] = e e(Y(s)-sy'(s))w (169a)

where

Dj

yt(s) = (169b)

and

y(s) - s't(s) = -k- (169c)w

Therefore, inserting Eqs. 169 into (168) yields

Pr[DW(u, v) S D; D (u, v) D ]

<eA min eW(Y(s)-sT'(s)); ew( 1(t)- t l '(t))} (170)

Thus, if we choose

R = max {-y(s)+sy'(s); -(t)+tL'(t)}

or

R {-(s)+sY'(s)-L(t)+t'(t)}, (171)

then Eq. 158 is valid. Inserting (171) into (160) yields

Rmp > min -- {--(s)+s-'~(s)-1 (t)+tpt(t)}. (172)

Now, by Eqs. 164 and 166,
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'Y'(s) =

,(+ =

p(y)
f P(x)p(y x) l - s p(y) n - dy

X~ Y p(y x)

fy P(x)p(ylx)l - S p(y) dy
XVY

r. I _1-+ . -+ P(Y)

2X Jy P(x)p(y)' p(ylx) n dy

fy P(x)p(y)l+tp(ylx)-t dy
Xy

If we let t = s - 1, we have

~(t)= '(s); [(t) = (s).

Hence

Rcomp min [(2s-1)-y'(s)-2(s)]

The minimum occurs at that s, for which

[(2s-1)y'(s)-2y(s)]' = 0,

which corresponds to s = 1/2. Also, [(1-2s)y'(s)-2y(s)]" = 2y"(1/2) > 0, since y"(1/2)

is the variance2 of a random variable.

Inserting (176) into (175) yields

N ow, bympEq. 163,

Now, by Eq. 163,

ly 2) Iln fy 
XI

Thus, s = 1/2 is indeed a minimum point.

(177)

P(x) p(yIx)1/2 p(y)1/2 dy, (178)

Z P(x)p(ylx). Therefore
X

2,-) =1n{f

= ln{

Z p(x)p(ylx)l/2p(y)1/2
Xo

2
dy}

where

g(y)={ P(x)p(yIx)1/2} 

By the Schwarz inequality,

g(y)1/2 p(y)l/2 dy}2

-y g(y)dy fy p(y)dy = fy
Y
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(173a)

(173b)

(174)

(175)

(176)

where p(y) =

dy)

fJY g(y)dy (180)
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Inserting (180) into (179) yields

2,2 < In f [z p(x)p(ylx) J dy. (181)

Inserting (33) into (177) yields

Rcomp in f [ p(x)p(yx)/] dy. (182)
comp 2 -I

Now, by Eqs. A-69 and A-71, we have

-in f [ p(x) P(yIX)/ dy

which is equal to the zero-rate exponent El d(0) for the given channel. By a proper

selection of p(x) and the number of input symbols, E d(0) can be made arbitrarily

close to the optimum zero-rate exponent E(0). Thus

1
R T, E (0) (183)Rcomp >2 E, d) (183)

and for semioptimum input spaces

1
R -1 E(0). (184)comp 2

We have been able to meaningfully bound the average number of computations for

discarding the incorrect subset. The harder problem of bounding the computation on

the correct subset has not been discussed. A modification of the decoding procedure

above, adapted from a suggestion by Gallager 1 2 for binary symmetric channels, yields

a bound on the total number of computations for any symmetric channel. However, no

such bound for asymmetric channels has been discovered.

3.4 UPPER BOUND TO THE PROBABILITY OF ERROR FOR THE SEQUENTIAL

DECODING SCHEME

Let us suppose that we (conservatively) count as a decoding error the occurrence

of either one of the following events.

1. The transmitted sequence [i and the received sequence v are such that they

fail to meet the largest criterion k. . The probability of this event, over the
max

ensemble, is less than m exp k.] 

2. Any element [.' of the incorrect subset M", together with the received v, satis-

fies some k. < k. when the jth criterion is used.
J imax

An element of M" picked at random, together with the received vn has a probability

of satisfying some kj equal to
3
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Pr[D (u',v) < Di; k is used]

Since the probability of a union of events is upper-bounded by the sum of the probabili-

ties of the individual events, the probability that any element of M" together with the

received signal v satisfies kj is less than

enR Pr[Dm(',V) D J ; k. is used
J M J

The two events stated above are not in general independent. However, the proba-

bility of their union is upper-bounded by the sum of their probabilities. Thus the

probability of error pe may be bounded by

m expkj ]+ emdR Pr[Dm(u, V) D; k is used] (185)

It has been shown by Reiffen 5 that for channels that are symmetric at their output,

the probability of error is bounded by e < m exp(-E, d(R)n), where E, d(R) is the

optimum exponent for the given channel and the given input space. (See Appendix A.)

We proceed to evaluate (185) for the general asymmetric memoryless channel. The

event that k. is used is included in the event that u', together with v, will not satisfy
J

the criterion kj_ 1 or Dm(u',v) > D .-1 Thus
j-1' m m

Pr[D (u, V) -< D J ; k is used ] Pr [D Dm(u'v) m Di (186)

Inserting (186) into (185) yields

dmR j ma x ]P e< m exp[kj ]+ edmR Pr m[D (u', v) D a] (187)
m

Now, by (152), D is chosen so as to makem

Pr[Dm(u, v) > DmaX] exp[-k ]

Also, by (162),

Pr[D(u, v) > D <ma em[ is(s) -s (s)] s > 0,

where

D max
m

y'(s) = 
m

Thus, we let -k. = m[y(s)--y'(s)]; therefore

exp[-kj] = em [ Y(s ) - s ' ( s ) ] ' , ( 188)

41

___I�_II____ � _C_



where

Dmax
y'(s) = m

m

From (166), we have

Pr [Dm (u , ma em([1(t)-t1'(t))

where

DmaxD
'(t) = 

m

Inserting (188) and (189) into (187) yields

p < m[em(Y(s)-s'(s))+em(dR+il(t)-t}'(t))]

where '(t) = y'(s) = D m a x
m

By (174), we find that (190b) is satisfied if we let t = s - 1.

Pe < m[em(-y(s)-s '(s))+ em(dR+y(s)-(s-l)y'(s))] 

Making y(s) - s-y'(s) = dR + y(s) - (s-1)-y'(s), we obtain

P < 2mem(y(s)-s'tY(s)) = 2m exp[-nE (R)]
e sq

where -d y'(s) = R, and

E(R) = ss s
sq(R) - (y(s)-sy'(s)).

Thus, by Eq. 174,

(191)

(192a)

(192b)

(192c)

The rate that makes E sq(R) = 0 is the one

{y(s)-sy'(s)}Is= 0 = 0. By Eq. 192b,

[R]s 0 = - 1 ''(s) 
A b13a2 s=

Also, by Eq. 173a,

that corresponds to s = 0, since

1 Y
TX l Y

p(y)
P(x) p(y x) ln dy.

p(y x)

E sq(R) - 0;sq: R -< [R]s=o ,

where
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t 0, (189)

(190a)

(190b)

d ' (Ss=O

Thus

(193a)



[R]s=0o d - jy P(x)p(ylx) in y dy. (193b)
XfY P(Y)

Comparing Eq. 193 with Eq. A-57 yields E sq(R) > 0 for the same region of rates

as E, d(R). Thus, if the input space X is semioptimal, one can get an arbitrarily

small probability of error for rates below the channel capacity C.

The zero-rate exponent Es (0) is given by

sq ~sqEsq(0) = -7(s) + s'(s) = -(s) + (s-1)7'(s), (194)

where s is the solution of -y'(s) = 0. Thus

E sq() a min 1 {-2y(s)+(2s-1)7y'(s)} . (195)

Following Eqs. 175-184 and substituting for Rcomp E sq(0), we get

Esq(O) 2 d(0)' (196)

and for semioptimum input spaces

Es () > E(0). (197)

3.5 NEW SUCCESSIVE DECODING SCHEME FOR MEMORYLESS CHANNELS

A new sequential decoding scheme for random convolutional codes will now be

described. The average number of computations does not grow exponentially with n;

for rates below some Rcomp, the average number of computations is upper-bounded

by a quantity proportional to

(1+R/Rcomp) 2
m o < m

The computational cutoff rate R omp of the new systematic decoding scheme is

equal to the lower bound on R for sequential decoding with asymmetric channels
comp

(see section 3. 3).

However, for sequential decoding, R comp is valid only for the incorrect subset of

code words: the existence of R for the correct subset has not yet been proved
comp

for asymmetric channels. The successive decoding scheme, which is different from

other effective decoding schemes such as sequential decoding and low-density parity-

check codes9 yields a bound on the total average number of computations.

A convolutional tree code is shown in Fig. 7 and has been discussed in section 2. 5.

Let us now consider the decoding procedure that consists of the following successive

operations. k

Step 1: Consider the set of b 1 paths of k 1 information digits that diverge from the

the first node (branch point). Each path consists, therefore, of k a input symbols.
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b = 2; n = 30; d = 5; a = 2; m =6;,i = 15; R =- n 8 =1- n2
30 10

Fig. 7. Convolutional tree code.

k
The a posteriori probability of each one of the b paths, given the corresponding

segment of v, is computed. The first branch of the path of length k 1 a which, given v,

yields the largest a posteriori probability is tentatively chosen to represent the corre-

sponding first transmitted digit (see Fig. 8).
k 1

Let us next consider the set of b paths of length k1 a symbols which diverges from

the tentative decision of the previous step. The a posteriori probability of each one of
k

these b paths, given the corresponding segment of the sequence v, is computed. The

first branch of the link of length kla which, given v, yields the largest a posteriori
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fp 0- 2

Fig. 8. Successive decoding procedure; k i = 2.

probability is tentatively chosen to represent the second transmitted digit.

This procedure is continued until i = m/a information digits have been tentatively

detected.
p(v)

The distance D(u 1 , v) = In ~ is then computed for the complete word u1 of
p(vlu1 )

length m input symbols thus obtained.

If D(u 1, v) is smaller than some preset threshold Do, a firm decision is made

that the first digit of u1 represents the first encoded information digit. If, however,

D(u 1 , v) a D0 , the computation procedure is to proceed to Step 2.

Step 2: The decoding procedure of Step 2 is identical with that of Step 1, with the

exception that the length k1 (information digits for k a channel symbols) is replaced

by

k 2 = k + A; A a positive integer. (198)2 1 l+a oiieitgr 18
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p(v)
Let u2 be the detected word of Step 2. If D(u 2 , v) = In ~ < D, a final decision is

p(vlu2 )

made, and the detection of the first information digit is completed. If D(u 2, v) >- D no

termination occurs and the computation procedure is to then go to Step 3, and so on.

In general, for the jth step, we have

kj = kj_ + A; A a positive integer (199)

and the detected word is u..
J

Following the detection of the first information digit, the whole procedure is repeated

for the next information digit, and so forth.

3.6 THE AVERAGE NUMBER OF COMPUTATIONS PER INFORMATION DIGIT FOR

THE SUCCESSIVE DECODING SCHEME

Let us count as a computation the generation of one branch of a random tree code at

the receiver. The number of computations that are involved in step j is bounded by

k.
N. - mb (200)

Let Cj be the condition that no termination occurs at step j.

only if there are no terminations on all the j-1 previous steps.

step j being used is

P(j) = Pr(C 1, C2 , C3 . Cj-1 ) -

Step j will be used

Thus the probability of

(201)

The average number of computations is given by

00

= NP(1) + N2 P(2)+... + NP(j)+... +N P(jmax jL NjP(j),
max j=1

where P(1) - 1, and P(j) may be bounded by

P(j) = Pr(C 1, C2 , C3 , ... Cj_ 1) Pr(Cj_ 1).

Inserting (203) and (200) into (202) yields

o k1 °, k.

N < N 1 + L NjPr(Cj_ 1 ) rn mb 1+ mn b JPr(C 1).
j=2 j l

Now let u be the code word detected at step j, and let u

word. Then

Pr(Cj) = Pr(D(uj, v) 3- D0 )

= Pr[D(uj, v) >- D; uj = u] + Pr[D(uj, v) D; .j au]

= Pr[D(u, v) > DO; u = u] + Pr[D(uj, v) - Do; uj u]

Pr[D(u, v) -- D] + Pr[uj u] .

(202)

(203)

(204)

be the transmitted code

(205)
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We are free to choose the threshold D so as to satisfy

Pr[D(u, v) D] exp(-2E d()n) (206)

Now, let e be the event that the r t information digit of u. is not the same as the

corresponding digit of the transmitted sequence u. Then

Pr(u.#u) Prl {ejr}]. (207)

The probability of a union of events is upper-bounded by the sum of the probabilities

of the individual events. Thus

i

=1
(208)

1.

There are b b paths of length k. information digits that diverge from the
th b

(r-l) t h node of u, and do not include tile r inforrmation digit of u. Over the ensemble
k.

of random codes these b b are statistically independent of the correspondingb
sergment of the transmitted sequence u (see section 2. 5). The event e. occurs when-

ever the a posteriori probability of one of these b 1 b J paths yields, given v, an a

posteriori probability that is larger than that of the corresponding segment of u. Thus,

Pr(ejr) is identical with the probability of error for randomly constructed block codes

of length ka channel input symbols. (All input symbols are members of the d-
J

dimensional input space X£ which consists of vectors. ) Bounds to the probability of

error for such block codes are given in Appendix A. Thus

Pr(ejr) exp(-E, d(R)kjad),

where

R ln b m /a =1 n/ad 1
= In b In In bn n ad

El d(R) = E, d(0) - R; R - Rrit

E, d(R) > E, d(0) - R; R Rcrit.

Inserting (209) into (207) yields

Pr(uj*u) -< mexp(-E£, d(R)kjad)

Inserting (206) and (210) into (205) yields

Pr(Cj) -< exp(-E d(0)n) + 2mexp(-E£ d(R)kjad).P (-¥2 , . -C d

Now, by (209), we have
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R E, d(0).
2 f, d

Also

n =md = iad )> k.ad.
J

Inserting (211) and (212) into (208) yields

Pr(Cj) < 2m exp(- E d(O)kjad);

Inserting (214) into (204) yields

2 1,d(

N < mb + 2m2 b exp(- E, d()kjlad ;
j=2 )

Inserting (209b) into (215) yields

4 2{m exp(Rklad) + m 2 1
j=2

exp[Rkj - E d()kl] ad};

(216)

By Eq. 199, we have

N 2{m exp(Rklad) + m 2 eARad .=
J=1

exp[R -E d(E ( [ kl+jA] ad};
ex2 , d 

Let Rcomp

(217)

be defined as

* 1
Rcomp =2 E, d(0).

Te* 1
Then, for all rates below Rcomp R -- IE d(0) < 0, and therefore

Comp-, 2 1, d

N 2{m exp[Rklad] + m 2

exp[R-R mp k ad
co- exp[R-Rmp 1

1 - exp[R-R* ] Aadcomp

ARad}

* 1R Rmp =E d(0).Comp 2 E,d (219)

The bound on the average number of computations given by (219) is minimized if we let

In R/R omp
1 (220a)

R/Rcom Rcamp camp

k 1
k = + ad (ln m) R

comp

(220b)

Equation 220 can be satisfied only if both Eqs. 220a and 220b yield positive

integers.

Inserting (220) yields
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(218)

!

1E (0) -< (R);2 f d ~ , d (212)

R- E ()
2 fi-, 

P,-<E (.2 f, d

R-' 02 Y-, dO

/

" 1 
ad



B BB/1-B i+B 
m±B. R-R ='E (0), (221)

1 -B m comp 2 , d

where B = R/R mp 1.
comp

3.7 THE AVERAGE PROBABILITY OF ERROR OF THE SUCCESSIVE DECODING

SCHEME

Let u be the transmitted sequence of length n samples. Let u' be a member of

the incorrect subset M"'. (The set M" consists of M" members.) As we have shown,

u' is statistically independent of u. The probability of error is then bounded by

Pe < Pr[D(u,v) > Do] + M"Pr[D(u', v)<D D] Pr[D(u,v): Do] +emdRPr[D(u',v)<D0 ] .

(222)

Now

p(v)
D(u, v) = in

p(v u)

where

m
p(v) = TN P(Yi )

i=l

and

m

p(vlu) = TT P(ilxi).
i=1

Thus, by the use of Chernoff Bounds (Appendix A),

Pr[D(u, v)DO] < em [ y(s )-s y'(s)] (223)

where

7(s) = in L f P(x)p I p(y) s dy; s 0

X Y

y'(s) = DO .

Also

Pr[D(u',v)<Do] < e m [l(t) - t g (t)] (224)

(t) = in f P(x) p(yx)-t p(y) l + t dy

X Y

b'(t) = DOg

If we let t = s - 1, by Eq. 174, we have

y(s)= u(t); -y'(s) = L '(t).
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Inserting (223), (224), and (174) into (222) yields

P < em[y(s)- s y'(s) ] + em[dR+ 7y(s )- (s -l)y'(s) ] (225)
e

where y'(s) = D 0.

Now, comparing (223) with (206) yields

-y(s) + sy'(s) = 1 dEd (226)

On the other hand, we have by (175) through (183)

-27(s) + (2s-1)y'(s) > dE, d(0). (227)

Thus, inserting (226) into (227) yields

-y(s) + (s-l)y'(s) >, 1dEQ d(). (228)

Inserting (226) and (228) into (225) yields

P " exp (-nE d(0)) + exp(-n[ E d(-R])

< 2 exp -[R m d(0)-R] = 2 ex n[R R omp (229)

If the input space is semioptimal, we have E, d(0) E(0). Thus

p 2 e(-[ 1/2 E(0) -R]n) ; R1comp 2 (230)

If, instead of setting Do as we did in (206), we set it so as to make y(s) - sy'(s)

= dR + y(s) - (s-l)y'(s), where y'(s) = Do, we have by (225)

Pe 2 exp[-nEs(R) ] ,

where by (191)-(193) we have (for semioptimal input spaces)

Es(O0) > 2 E(0)

Es(R)> 0; R < C.

However, following Eqs. 206-218, it can be shown that the new setting of Do yields
1E (0)

Rcomp 4 CE, d )
The fact that the successive decoding scheme yields a positive exponent for rates

above R does not imply that this scheme should be used for such rates, since
comp grws exnentially with .

the number of computations for R >- R grows exponentially with m.comp
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IV. QUANTIZATION AT THE RECEIVER

4.1 INTRODUCTION

The purpose of introducing quantization at the receiver is to avoid the utilization of

analogue devices. Because of the large number of computing operations that are carried

out at the receiver, and the large flow of information to and from the memory, analogue

devices may turn out to be more complicated and expensive than digital devices.

Our discussion is limited to the Gaussian channel and to rates below R it. The

effect of quantization on the zero-rate exponent of the probability of error will be dis-

cussed for three cases. (See Fig. 9.)

Case I. The quantizer is connected to the output terminals of the channel.

Case II. The logarithm of the a posteriori probability per input letter (that is,

p(ylxi); i = 1, ... , ) is computed and then quantized.

Case III. The logarithm of the a posteriori probability per p input letters (i. e.,

P(yPj xP); j = 1 .. , P) is computed and then quantized. x is the vector sum of p
~~j~~~~~~~ ~~~J

successive input-letters of one of the M code words; yP is the vector sum of the p

received outputs.

It was shown in section 2.3 that whenever semioptimum input spaces are used with

white Gaussian channels, E d(0) is a function of A2 the maximum signal-to-noise
B, d max'

ratio. In this section, the effect of quantization is expressed in terms of "quantization

loss" Lq in the signal-to-noise ratio of the unquantized channel.

Let Eq d(0) be the zero-rate exponent of the quantized channel. Then, by Eq. A-70,

E q (R) = E q (0) - R; R R,d P_,d crit

Therefore specifying an acceptable E q d(R) for any rate R Rcrits the same as

specifying a proper loss factor Lq.

Let Mq be the number of quantization levels that are to be stored in the memory of

the "Decision Computer" per one transmitted symbol.

Under the assumption that one of the two decoding schemes discussed in Section III

is used, it is then convenient to define the total decoding complexity measure (including

the quantizer).

M= MMq (231)

with Md given by Eq. 139. We shall minimize M with respect to and d for a fixed n

and a given quantization loss, Lq. In Section II we discussed the ways of minimizing Md

with respect to and d.

We shall show that if semioptimal input spaces are used with a white Gaussian

channel, Mq of the quantization scheme of Case III (Fig. 9) is always larger than that of

Case II and therefore the quantization scheme of Case III should not be used.
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Also, whenever E(0) -2 -ln A 2 ax>> 1, M of the quantization scheme of Case I (Fig. 9)
2 max q

is smaller than that of Case II, and therefore the quantization scheme of Case I should

be used in such cases. On the other hand, whenever E(0)<< 1 (or A2 << 1), M of
max q

Case II is smaller than that of Case I.
1

Furthermore, it will be shown that M, like Md, is minimized if we let d E(0);

E(0) << 1.

The results mentioned above are derived for the quantizer shown in Fig. 10a which

is equivalent to that of Fig. 10b.

The interval Q (Fig. 10b) is assumed to be large enough so that the limiter effect

can be neglected as far as the effect on the exponent of the probability of error is

concerned.

Thus, the quantizer of Fig. 10b can be replaced by the one shown in Fig. 10c. How-

ever, the actual number of quantization levels is not infinite as in Fig. 10c, but is equal

to k = Q/q as in Fig. 10b.

4.2 QUANTIZATION SCHEME OF CASE I (FIG. 9)

The quantized zero-rate exponent E q (0) of Case I can be lower-bounded by the

zero-rate exponent of the following detection scheme. The distance

-2yqx + x
dq(x,y) = 2 (232)

2(r

is computed for each letter x i of the tested code word. Here yq is the quantized vector

of the channel output y:

y rll,12 (233)

The distance

n

Dq(u, v ) =i dqYi, Xi )

is then computed.

The one code word that yields the smallest distance is chosen to represent the

transmitted word. This detection procedure is optimal for the unquantized Gaussian

variable y. However, yq is not a Gaussian random variable and therefore dq(x, y) is

not necessarily the best distance.

Thus, this detection scheme will yield an exponent E (0), which will be a lower

bound on E q (0).

E*(0) - E q d E (0) E d(234)d 1 d(234)

The probability of error is bounded by

Pe < (M-l) Pr[D(vq ,u')-<D(v q , u)] (235a)
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Fig. 10. Quantizers and their transfer characteristics.
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Pe M Pr[D(vq, u)-D(v, u_)0O] ,

where u represents te transmitted word, and u' some other code word.D (u, v), as well as Dq(u r, v), are sums of n independent random variables:
n

Dq(u, ) d(Yi, xi)

Dq(u ', v) =
n

Z di(y., x9,dqI,

(235b)

(236a)

(236b)
where x is the i t h transmitted letter, and x' isBy the use of the Chernoff bounds (Appendix

Pe (M-l) e- E ()T : e-n[E(0)-R]

the i t h letter of some other
A. 3) it can be shown that

code word.

and, by Eq. A-65,

= () = Tn I ; L P(x) P(x') P(Yqlx)
Yq Xe Xe

s >-0.

Now, let s = 1/2. (239)Then, by Eqs. 102a and 237,

E (0) = - ln

X Xe
where

I P(x')P(x)

yqx = qi2 + q'q + dd + ·

Thus, by Eqs. 240, 234, and 102,

exp(U ) p(y 2 x) exp (
y 

2

Edq (0) lnEf,d _ dln I

X X

I P(x)P(x') exp ( 2 L P(Yql x) exp

(242a)

dy = E ()d(0)

E qd() -lInEQ d(0d) L

X 

2 P(x) P(x') exp(
I x 2 x1- I 2

( x '- x )------ P (
fy 2 2

The complete information about the quantization effects is thereforeterm
(242b)

carried by the

_-- - - - - - - - - - - - - - - - - - - - ~ -- ~ ---------5

or

- E (0)

(238)

(241)

(237)

es[d qx, )-d q~x,, Y)

(240)
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gq(x,x')= E P(yx) exp( 2' 2 )
yq 2 

when compared with the unquantized term

(x'x,-x)
g(x, X')= i p(yIX)exp 2 dy

Y 2 cr /0

The quantizer is a memoryless device; therefore, since the channel is memoryless

as well, by Eq. 9, we have

T (yh = P(1 . ) P(. · e2) ... P '9 d)

Thus

d
gq(x, x')= TT

i=l

Two important signal-to-noise ratio conditions will be discussed.

Condition 1. a' = Ama 1. At the same time q 2r.

max

Condition 2. max = A > 1.ar max

a. Condition 1. A ma 1
max

We have

(244)

(245)

(246)

(243b)

2 i )r I 1;
for all and '

It is shown in Appendix C that whenever the quantizer of Fig. 10c is used and the input

to the quantizer is a Gaussian random variable with a probability density such as that

in Eq. 78, we have

: P(~ l51 exp (i 2 '15 1 2 T2 ji
I~~~~~(

= [ P('iii) exp ( i- i
L 7' 2a

(- 6i) q
_ sh - 2

4r.

4-

for q < 2a.

Inserting Eq. 248 into Eq. 244 yields
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gq(x, x)= [f p(y x) exp

W~- ) q

/y(x'-x) y h 4 2

i i 1Ii=l (~~i 4qJ I ~~~4. -

Thus, by Eqs. 249 and 243a,

gq(x, x) = g(x', x)

(i ) qsh 
d 42

i=1 (W-i) q

4(r2

Now

shx x 2
x exp- 6.

x

Also, for x < 1,

shx 2shx exp- .
x

Thus, by Eqs. 251a and 247,

(W'~i) q
sh 

4a2

< exp

(W-?.) q1 i
4a2

I-( ) 2 q2

96 4 /

Inserting Eq. 251c into Eq. 250 yields

d ( 2ei)
i7 exp 

4
4

i=1 \96r

or

exp i
i=l

Therefore, by Eq. 7,

(253)

Replacing Eq. 243b with Eq. 253 and inserting Eq. 253 into Eq. 242a yields

Eq d(0) > d 1 ln 

X X;

(254)P(x) p(x') exp 4 2 g(x, x ) exp '6 42
4 cr / 96cr
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(251a)

(251b)

(251c)

(1?_ )21 i 2 64 (252)
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Inserting Eq. 243b into Eq. 254 yields

x1i2 -Ix'12 /y(x'-x
exp- 2 f p(y x) exp\ 2 dy.

40 y 2 /

(255)

Inserting Eq. 78 into Eq. 255 yields

E q d() -1 In 

E q d() dln 

Xe

Z P(x)P(x')

XQ

Z P(x') P(x)

(256)

(257)

exp 96r 4 exp 8Gr2

Ix-x 12(1-q2/ 12.2)

Then, by Eq. 105a, we have

(258)E , d(°) = - In 2 P(xr)P(x) exp- 2
X X 8 

Comparing Eq. 256 with Eq. 258 shows that whenever the channel is in Condition 1
(Eq. 245), the zero-rate exponent E q d(0) of the quantized channel is lower-bounded by
the zero-rate exponent of an unquantized Gaussian channel with an average poise power
of

2
2 a-

0 = 2

q

12212o-

for q < 20.

This result does not depend on the kind of input space that is used nor on its
dimensionality, d. The effective signal-to-noise ratio of the quantized channel is given
by

2 2 / 2
A max max

q 2 2 2

Thus

A2 = Amax 122 (260)

Therefore, for a given quantization loss in the signal-to-noise ratio, let

q= V172L Lq
q

q< 2, (261)
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where Lq, the "quantization loss," is a constant that is determined by the acceptable

loss in signal-to-noise ratio,

A2

q 2
2 1 - Lq.

A
max

The number of quantization levels,

(262)

as shown in Fig. 10b, is equal to

k-Q
q

It is quite clear from the nature of the Gaussian probability density that if we let

Q= l + B ,2 max '

where B is a constant,

becomes negligible if B

Thus, inserting Eq.

then the effect of the limiter on E, d(0) (shown in Fig.

is large enough (approximately 3).

264 into Eq. 263 yields

2t + 2Bomax 1
k= 2L (261

q

max
Now, if Eqs 251-262 are valid

k = 2B (26~

Lqr~

The number of quantization levels for a given effective loss in signal-to-noise ratio is

therefore independent of Amax, for A << 1. In the following section, the effective
2k=fr max + 213aomaxloss in signal-to-noise ratio for higher values of A, and the corresponding number of

quantization levels k, are discussed.

b. Condition 2. A > 1
max

In this condition we have A > 1, and thereforemax

for some e and e'. Now, if q - 2¢-, Eqs. 251c-262 are valid.

The number of quantization levels is given by

2a + 2B¢

or Lby

or by

2A + 2B
k = max (2 7

12 L

6)

a)
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(264)
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Thus, for A >> 1,max

2A
k max q < 2. (267b)

4f1 L

In this case, again, k does not depend on the kind of input space that is used. There

are many cases, however, in which the assumption that q < 20- is unrealistic, since

much larger quantization grain q can be used and still yield the acceptable loss L .

q
The effects of quantization in these cases depend heavily on the kind of input set

which is used. This fact will be demonstrated by the following typical input sets.

Set 1. This input set consists of two equiprobable oppositely directed vectors

x 1 = x; x2 = -x, (268a)

where

P(x 1) = P(x 2 ) 2 (268b)

As shown in section 2. 3, this input set is not optimal for A > 1. A semioptimal

input space for A ma> 1, as shown in section 2. 3, is Set 2.

Set 2. This input set consists of equiprobable one-dimensional vectors. The

distance between two adjacent vectors is Amax/l, as shown in Fig. 4.

When the input set consists of two oppositely directed vectors, by Eq. 106, we have

E2 d() = - n + exp 2)]

Also, by Eqs. 242a, 243a, and 244,

Eq d(°) --d n L E P(x)P(xt)gq(x,x') ex 2 ) (269)

X2 2

In this case,

gq(x, x') = P(1| exp7 _(q exp 2 1

since by Eq. 268, j =iand f = g, for all i = 1, . d and j = 1, . d.
1 j 1..

Thus, by Eq. 269

gq(x, x ) =1; x t =x (270a)

gq(x, x' ) ( ) exp ; x x' =-x (270b)9(xi exp 2~ x* x' = -x (27 Ob)
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Now for x' x,

I 2- 12i max1
2 2 = > 12(r 22r

since Amax > 1. It is shown in Appendix C that in such a case

Z P(T1ql exp ( 2 P(nI g) exp ( 2
'9 2 a-

Thus, inserting Eq. 271 into Eq. 270 yields

or

fy(x'-x)
gq(x, ?) < f (yI ) exp 2 ) dy

expl 2 d

42
ex~(4c 2

Thus, by Eqs. 272 and 243b, we have

gq(x, x) -< g(x, x ) exp qQ- 2
4ar

Thus

gq(x, x) = g(x, x) = 1; x = x

and

x) g ) qAd 
gq(x, x ) = g(x, x ) exp ; x x.

(272)

(273a)

(273b)

Thus, inserting Eqs. 273 and 243b into Eq. 242a yields, together with Eq. 268,

Eq (0) 1 (1l A Ad qAd
2,d d2 2

The zero-rate exponent of the unquantized channel is given by Eq. 126. Let

A2 A2 q
q cr

Inserting Eq. 275 into Eq. 274 yields

E d(°) d ln (2 2 2))1
2,d d

(274)

(275)

(276)

Thus, by comparing Eq. 276 with Eq. 126, we find that the zero-rate exponent

E q (0) of the quantized channel may be lower-bounded by the zero-rate exponent of the2,d
unquantized channel (with the same input set) if the original signal-to-noise ratio A2 is

replaced with A2 , which is given by Eq. 275.q
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Let

q= L2 L a (277)q max q max (277)

where L is the "quantization loss" factor determined by the acceptable loss in the
q

effective signal-to-noise ratio.

A 2 -(L2/ r-A)+ A 2

q q 2
1 - L A =- (278)

A2 A2 q

Inserting Eqs. 277 and 264 into Eq. 263 yields

2 + 2B- 2 + 2B/A
k 2 2

L2q Lq
q q

Thus, for A >> 1,

k = 22. (279)2 '
L

q

The number of quantization levels, for a given quantization loss in signal-to-noise

ratio, is therefore independent of Ama x for A ma>> 1. Comparing Eq. 279 with Eq. 267b

shows that for reasonably small Lq, the number of quantization levels needed for a

given loss in signal-to-noise ratio is higher for Ama x >> 1 than it is for A ma <<1.

The binary input set does not yield the optimum zero-rate exponent because more

than two letters are needed for Ama x > 1. It was shown in section 2.3 that an input set

that consists of one-dimensional vectors, yields a zero-rate exponent that is very

close to the optimum one if the distance between two adjacent vectors is

f maxma 2 or Ama 

The zero-rate exponent of this input set is given by Eq. 110.

(0 l(i+2f-exp(_4A a f-2 2 16A2

E, 1(0) -In 1 + 2 ex exp + 2 2 2 a2/ 2 exp - +

A
Since max = 1, from Eq. 111, we obtain

E, 1(0) -Iln (+ 2 exp2 exp 

In other words, only adjacent vectors with a distance I '-[ = 2a- are considered.

For all such vectors we have

I e'-e1
=1 I(280)
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Following Eqs. 247 through 265 gives the result that the number of quantization levels is

2ma x + 2Bomaxk=
.25 LqT

or

2A + 2B
k max (281)

4-2 Lq

Thus

2A
k max >> 1 (282)
,~_1 L max4ThLq

The number of quantization levels in this case therefore increases with the signal-to-

noise ratio.

The zero-rate exponent E q d(0) of the quantized channel of Case I (Fig. 9) may be

lower-bounded by the zero-rate exponent of the unquantized channel with the same input

space if the signal-to-noise ratio, A2 , is replaced with A q with

A2

q 2
1 -L

A2

The quantization loss L2 is a function of the number of quantization levels, k. The

number of quantization levels for a given loss L 2 is constant for all A << 1, for all input
q

sets. However, the number of quantization levels does depend on the input space when-

ever A ma> 1. Two typical input sets have been introduced. The first input set con-

sisted of two letters only, while the second input set was large enough to yield an

Ei, d(0) that is close to the optimum exponent E(O).

It has been shown that for both input spaces discussed in this section the number of

quantization levels for a given loss Lq is higher for A << 1 than it is for A >> 1.

In the case of the semioptimal input space shown in Fig. 4, the number of quantization

levels increases linearly with Ama x (for Ama x >> 1). The results are summarized in

Table 3.

4.3 QUANTIZATION SCHEME OF CASE II (FIG. 9)

The logarithm of the a posteriori probability per input letter is computed and then

quantized. The a posteriori probability per input letter, by Eq. 78, is

exp 2 _ 2xy + x2 t

P(Yl x)= exp 2 (283)2w
(27)d/2 od 2T2

where

xy = ~lrll + 2T12 + + d'ld
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Thus

2 22xy - x y d/22d
in p(ylx) = 2 - 2 + In (27r)d(a2)

2o2 22

The only part of Eq. 284 that carries information about x is

Ix12 - 2yx
d(x, y) 2

2 2

Thus,

tation

(284)

(285)

the computation of In p(yI x) may be replaced by the somewhat simpler compu-

of d(x, y) with no increase in the probability of error. The decoding scheme for

Table 3. Quantization scheme of Case I - Results.

the unquantized channel is discussed in Appendix A. 2, with d(x, y) of Eq. 285 replacing

d(x, y) of Eq. A-18. The corresponding probability of error is bounded in section A. 3:

P ee
-[E, d(0)-R] n

; R -~- Rcrit'

where E d(0) is given byI,d

64

(286)

Input A2 k q

Space Signal-to-noise Ratio No. of Quantization Quantization
Levels Grain

All A << 1 2B q - ' L 

Binary A 1 for q 2 q 2 d

_ _ _
2 A 

Optimal A max - 2Lq
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EQ d() - d ln E P(x) P(x') p(ylx)' / 2 exp[d(x, y)-d(x', y)] dy

Xn Xh Y
or

E d(O) = dln P(x) P(x') g(x,x') (287)

X2 Xi

where

g(x', x) = y p(y x) exp [d(x,y)-d(x',y)]} dy

Now, comparing Eqs. 287 and 285 with Eq. 242b yields

(x-x') 2

g(x',x) = exp 2 1. (288)

Let the input to the quantizer be d(x, y) given by Eq. 285 and let the output be dq(x, y).

(According to Eq. 285 the quantity x2/2 2 should be added to -2yx/2Z Z at the input to

the quantizer rather than at its output. If each 1 x/u- is equal to one of the k quanti-

zation levels exactly, one can add the quantity 2 -xi/cr at the output to the quantizer,

and the bounds will still be the same as those derived below.) The zero-rate exponent

E, d(0) of the quantized channel in Case II can be lower-bounded by the zero-rate

exponent E (0) of the following detection scheme: The distance di(xi, yi ) , given by

Eq. 285, is computed for each letter x. of the tested code word and then quantized to

yield dq(x, y), the quantized version of di(x, y). The distance

m

,u·) = d(x.,yi) (289)D (u
i=l

is then computed. The one code word that yields the smallest distance Dq(u, v) is then

chosen to represent the transmitted code word. Thus

E*(0) <EEq(0 ) Ed( (290)

Following Eqs. A-65 and A-70, we have

E *(0) = - ) P(yx) P(x') [d (xy) -d q(xy)] dy; t 0 (291)
xi YX[ X}

and if we let t

E *(0) = - In P(x) p(x') gq(x',x), (292)

XI Xi

where
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g(x, x') = p(y lx) exp{ [d (x, y)-dq(x' , y)] } dy. (293)

Now,

Ixl2 - 2yx
d(x, y) 2

2 a

where y is a d-dimensional Gaussian vector that, for a given x, consists of d indepen-

dent Gaussian variables, each of which has a mean power of a2. Thus, d(x, y) is a

Gaussian variable with an average variance

4,2 x12 jx
d(x, y) - (dd(xx y)) 2 2 = / (294)

Let

d(x, y) d(x, y) (295)
Z (295)

ar d(x, y) lxl

a-

d(x', y) d(x', y)
_ ZI

a- d(x', y) ixl 

Thus, by Eqs. 294 and 295, z and z' are normalized Gaussian variables with a unit

variance.

Inserting Eq. 295 into Eq. 293 yields

gq(x, x')= p(z, z' x, x') exp ) ,( l]dz dz', (296)

Z Z'

since the product space Z Z' is identical with the space y for given x and x'. Then

(z[x)q = dq(xy) = d(x, y) + nq

where nq is the "quantization noise." Thus

' a

or

z~ I (zq I z+ (297)
Lo-
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where

nq dq(x, y)

Ixl
a'

x

ar

Thus, zq is equivalent to the output of a quantizer with z as an input and with a quant-

ization grain that is equal to

q
q = . (298)

Ixl

o'

Here, q is the quantization grain of the quantizer d(x, y).

Eq. 296 yields

Inserting Eq. 297 into

g(x,x')= P(zq, z'q I x, x') exp{I[xi z IxI zq}dz q q.

Z q Zq

Both z and z' are Gaussian random variables, governed by the joint probability density

1p(z, zx, x') = exp [
-(z-2)2 + Z(z-f)(z'-P) - ('-z') 2

2(1- 2)

= (z-z)(z'-'). (301)

It is shown in Appendix C that for such a joint probability density such as that in

Eq. 301, we have the following situations.

1. When 1 1 = 1 (x=ax'):

gP(x, x') = [g(x, xt)]

sh(lxl-lx' I) qz
4 

( Ixl Ix' )
; for qz < 2. (302)

By Eq. 296,

g(x, x') = p(z, z'lx, X')
Z Z'

exp{ [lxi _, zI } p(ylx) exp{Ld(x, y)-d(x', Y1} dy
Y

(303)

Also, it is assumed that

q q'
q =-= q,

where q is the quantization grain of the quantizer of d(x, y), and qIx'l is the quaization

where q is the quantization grain of the quantizer of d(x, y), and q' is the quantization
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grain of the quantizer d(x', y). In other words, it is assumed that both d(x, y) and d(x', y)

have the same normalized quantization grain. (The quantization grain of each of one

of the quantizers of Case II (Fig. 9) is assumed to be proportional to the variance of
the Gaussian variable di(s,y) fed into that quantizer. The quantizers are therefore

not identical.

2. When 1i < 1:

h1xjq\ /sh Ix' Iq2
gq(xx') x= [g (x, x)]Z ) for q < 2(1-2). (305)

4 - 4a

3. When I5, = 1 and q > 2:

9 p 4 (r f or q = q . (306)

4. When kgi < 1 and q > 2(1_-2):

(ix lq + x' q A
gq (x, x') - g(x', x) exp 4~ ( (307)

Study of Eqs. 205-307 shows that the effects of quantizations depend on the kind of
input space that is used. The effect of quantization for three important input spaces

will now be discussed.

a. Binary Input Space

The binary input space consists of two oppositely directed vectors

x1 = x; x2 = x, (308a)

where

P(x1 ) P(x2 ) = - (308b)

This corresponds to x = -1.

The first signal-to-noise condition to be considered is

Ixl
4 - =1; q < 2. (309)

By Eq. 302, we have

sh x qz

gq(x,x') = [g(x,x')] 2cr (310a)
Ixlq

2o

and
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x = X.

Now, inserting Eqs. 301 and 293 into Eq. 310 yields

Eq d(0) - 1nf,d d

I- shjq 1
/ 2 \ z

I+ - exp x 2cr
I Z 2 rI I xlqz

L 2

q < 2. (311)

Inserting Eq. 304 into Eq. 311 yields

Eqd(0) >d - In

+1ep- shq

I + exp 2 q ;

Inserting Eq. 251a into Eq. 312 yields

Eq d(°) )- d ln + exp - ( e 1;, d(0 > - 4+ep

q < 2. (312)

q < 2.

Let

lxl
q= 12 L q c

Inserting Eq. 314 into Eq. 313 yields

(315)Eq d(0) - 1n
-,d d

Comparing Eq. 315 with Eq. 106, we have

E d(0) = ln + exp (316)

(313)

(314)

Thus, the zero-rate exponent Eq d(0) of the quantized channel is lower-bounded by

the zero-rate exponent of an unquantized channel with an effective signal-to-noise ratio

A/A2A = Lq where L is the "quantization-loss" factor.

Now the mean value of the Gaussian variable d(x, y) is, in general, different from

zero. Thus, Eq. 264, which was derived for the Gaussian variable y that has a zero

mean, is replaced by

2 2
Q = (wy) max d(x ,y)min + 2B d (x y) - (d(x , y))2 (317)

Now y = + x, where 4 is a Gaussian vector that consists of d independent Gaussian

variables with a zero mean and a variance r. Thus, by Eq. 285
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d(x', Y x =

d(x',y)min

Ixl2 + 2 Ixl x 3 Ixl2

22o.
- 2
2cr

l 2 2- 2 2 2
2 220. 2c. 2

Inserting Eqs. 318 and 294 into Eq. 317 yields

21xl ~ lxl
Q= -2 +B 0.

Cr

Inserting Eqs. 319 and 314 into Eq. 263 yields

2 Ixl + 2B
k=

q

xi
Thus, for AN-= << 1,

2B
k =

q

Equation 315 is valid also for

(321)

cases in which - = > -1,
0cr

as long as qz < 2 (or

Thus, by Eq. 320,

xlI
2

k= 'ff
N/1 L

2A4 .

/12 L

Ixl 21zxl
ANI'= >> 1, q <- 

. I.

However, there are cases in which much larger grain may be used.

(322)

2x I lxI
where q > and >> 1, Eq. 306 should be used.

4-W 4-W

gq(x,x') = 1;

Therefore, by Eq. 306,

X =X

gq(x, x') = g(x, x')
xl qz)

exp ; X
I

-X.

Inserting Eq. 298 into Eqs. 323 yields

gq(x,x') = 1; X =X'
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(318a)

(318b)

(319)

(320)

q<21X1)
0.

and

In such cases,

(323a)

(323b)

(324a)
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and

gq(x x) g(x,x) eq/2; X = -x.

Inserting Eqs. 324 and 268b into Eq. 292 yields

Eqd(0) n In + 

Let

1x12

q=L2 L2Ad.
q q 2 q

Then

exp( 2 - ) e.2)

exp(- 2
2 a

( -L )) (327)

Comparing Eq. 327 with Eq. 316 yields

E d(0) > - 1 + exp ( 2 ) (328)

The number of quantization levels, for a given loss of signal-to-noise ratio, is deter-

mined by inserting Eqs. 326 and 319 into Eq. 213. Thus

2 Ixl + 2B x
2 0

l- 0

q
2

a-

Ix[
For A d - >> 1, we have

0'

2k 2 . (329)

q

b. Orthogonal Input Set

The binary input space is
1optimal input space for A << d
d

x.x.= 0;1 J
i j

Xi X. X X = IXI ;

an optimal one, for A < 1, as shown in section 2.3. Another

is the orthogonal input space. In this case

(330a)

i = j (330b)

for all i = 1, ... ,l;

(324b)

(325)

(326)

j= 1, ... ,
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Inserting Eqs. 330 into Eq. 105a yields

Ed(0)- In + exp ?f:) (331)f, d(O d I e 4 a-

Now, since the input signals are orthogonal, it can be shown that = 0. Following

Eqs. 309-330, with (305) replacing (310), (331) replacing (106), and with Eq. 318

replaced by

31x2 IxI2
d(x', y) 2- d(x', y) 2 - (332)Ymax 2 2 min2'2o 2o-

it can be shown that the number of quantization levels is

2B IxI
k la; A 4d -<< 1 (333a)la L a-

q

____ A NGl xl2Allra ZXk = A'd 1; < (333b)12 ' -
q

2 AN 2 Ix II 21x(2 .'$a- >> 1; q> -k =L2, A = 1 > (333c)

L
q

c. Optimal Input Space

Both the binary and the orthogonal input spaces are nonoptimal for A >> 1. An input

set that is semioptimal for A >> 1 is shown in Fig. 4. Now, if d = 1, it can be shown

that E q (0) of the quantization scheme of Case II is equal to that of Case I.

The results of this section are summarized in Table 4. From Table 4 we conclude

that in Case II, as in Case I, the number of quantization levels for a given "quantization
2 2

loss" increases with the signal-to-noise ratio, which in this case is equal to Ad/o-

4.4 QUANTIZATION SCHEME OF CASE III (Fig. 9)

In this case the logarithm of the a posteriori probability per p input letters is com-

puted and then quantized.

Let xP be the vector sum of p input symbols. One can regard the vector sum xp

as a member of a new input space with dp"dimensions. Equations 283-307 are there-

fore valid in Case III, once x is replaced by xp.

It has been demonstrated that, in Case I and Case II, the number of quantization

levels increases with the signal-to-noise ratio. If the signal-to-noise ratio in Case II

is A2d, the signal-to-noise ratio in Case III is then AZdp.

Thus, given a quantization loss L and given an input space X,q
k ase II _< k Case III. (334)
kcase II ' kcase III.
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Table 4. Quantization scheme of Case II - Results.

4.5 CONCLUSIONS

Let Mq be the number of digits to be stored in the memory of the decision computer

per each transmitted symbol.

Let MqI and kI be Mq and k of Case I.

Let MqII a n d k I I b e Mq and k of Case II.

Let MqII and kII be Mq and k of Case III.

Therefore

M qI = kId

MqII = kII

(335a)

for a binary input space (only one "matched filter" should be used
for both signals) (335b)

MqI I = kII

qIII p i

(for any input space other than binary)

(335d)
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Input A2 - k q
Space

Signal-to-noise ratio No. of Quantization Quantization
Levels Grain

Binary A2d < < 1 A

2 2A 2"2 ; q > 2A, 7d L2A2d
Binary Ad >> 1

Orthogonal A2d << 1 'A

7F2l2
2 2 ; > 2Ai' L2 d
2 L

Orthogonal A2d >) 0 ; q 2A' lA '

d 1 See Table 10.1

._.
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Inserting (334) into (335d) yields

qIII p II

Then p 2 ;

MqIII a kIIt;

f 2. Thus

2

(336)

(337)

Comparing (337) with (335d) and (335c) yields

MqIII a MqII .
(338)

Thus, we conclude that the quantization scheme of Case III should not be used.

Comparing Table 3 with Table 4, we find that kI = kII; d = 1. Thus, by Eqs. 335,

MqI - MqII ; d = 1. (339)

We therefore conclude that the quantization scheme of Case I should be used when-

ever d = 1.

Tables 3 and 4 show that for the binary input space, kI = kI for A2d < 1. Thus, by

Eqs. 335, we have

MqI = kid kII = MqII

or

MqI > MqII ; (binary input space; A d U 1). (340)

We therefore conclude that whenever the signal-to-noise ratio is low enough (A2d<< 1),

the quantization scheme of Case II should be used.

As shown in Table 4, the number of quantization levels for a given Lq is not a func-

tion of d (as long as A2d << 1). Thus, the complexity measure, M, defined in section 4.1,

minimized by letting

1
E(O) E(O) A A <<.4 T

From the results of sections 2.3 and 2.5 it is clear that the binary input space is

the best semioptimal input space (for A2d 1), since it yields the optimum exponent,

and the number of input vectors is kept as small as possible (that is, = 2).

If E(0) 2 in A >> 1, by section 2.2, ni =2 E(0) >> 1. Thusmax d

> 2nf >> d. (341)

On the other hand, one should expect kII to be larger than kI because the signal-to-noise

ratio A2d of Case II is larger than that of Case I (which is A 2 ) when d > 1. Thus

kI _< kII; d> 1. (342)
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Inserting (341) and (342) into (335a) and (335c) yields

M qI < MqII; d> 1; E(O) >> 1.

We conclude that whenever E(O) in A >> 1 and d > 1, the quantization schememax
' of Case I should be used.

If an orthogonal set is used, and at the same time A2d << 1, we find from Tables 3
and 4 that k kI= k Thus, by Eqs. 335,

IMq > Mli; Ad << 1; t < d.

4.6 EVALUATION OF E d(0) FOR THE GAUSSIAN CHANNEL WITH A BINARY

INPUT SPACE (=2).

Methods have been derived to lower-bound Eq d(0). In this section the exact value
of ~~~~q k~,

of E d(0) is evaluated for a binary input space (see Eq. 83). Let us first discuss the
case for which d = 1 and the output of the channel is quantized as follows: (Case I; k=2).

For ally > 0; yq = 1 
q = -1 i (343)

For all y < 0; yq = -1

Here, yq is the output of the quantizer. The channel is converted into a binary sym-

metric channel, described by the following probabilities:

P(x 1 ) P(x2 ) 1 max 2 (344a)Xl = fmm = max

P(1 l) = P(-1 x2 ) = exp dy (344b)

1 ((y+x 1) 2
P(l xz) = P(2 jIx) = exp dy. (344c)

By Eqs. A-71 and A-69,

E q 1(0) =ln P( px') P(yq x) /2p(yq x,) /2 (345)

Yq X2 X2

Inserting (344) into (345) yields

t 1 F 1 2 d Sx 1 2 ( )2
E q 1(0) = ln 2 2 o I exp (Y-x 1 (+X d

(346)
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Now

exp- 2/ dy - +

Inserting (347) into (346) yields

Eq 1(0) In {2+ 2

Thus, by Eq. 98a, we have

E2, 1(0 ) 2
iT'

E2, 1(0)

2 2
L 1-q iT

2 X1
r 2 

2Tr 2/

Ama << 1; k=2
Amax

A < 1;k=2.
max

2
2 1 2
I 402 T

A2

max
4 '

A << 1;max k = 2 (348)

(349a)

(349b)

1

1

4T7; 0.

(y-x) z
exp 2 /2 dy 1;

2a

exp(
f (y-x) 2

2 - dy
- exp(-

xlI
ar

>> 1, x> O (350a)

Ix 2
1, x>O 0

0.

(350b)

Inserting (350) into (346) yields

Eq , 1(0 ) - in

= - ln ; k = 2, A >> 1.max

Comparing Eq. 107 with Eq. 351 yields

2

L= A >>1;k=2q 2; max 1; k = 2

If three quantization levels are used, (k=3), it can be shown that

(351)

(352)
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Eq 1()
(0) 0.81;

Eq, 1(0)

L2 = 0.19;
q

A <<1, k= 3max

A << l,k= 3
max

(35 3a)

(353b)

If four quantization levels are used, (k=4), it can be shown that

Eq 1(0 )
= 0.8;

E2 , 1(0)

2
L = 0. 14;

q

Amax << 1; k=4
max (354a)

A << 1, k = 4.max (354b)

Eqs. 348, 349, 352, 353, and 354 are valid also for the quantization scheme of

Case II, if A2 is replaced by A2 d.max max
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V. CONCLUDING REMARKS

The important features of this research are

1. It presents a method of sending data over a time-discrete, amplitude-continuous

memoryless channel with a probability of error which, for R > Rcrit, has an exponent

that can be made arbitrarily close to the optimum exponent E(R). This is achieved by

using a discrete input space.

2. It presents a decoding scheme with a probability of error no greater than a quan-

tity proportional to exp [-n (1 E(O)-R)] and an average number of computations no greater
2

than a quantity proportional to m . The number of channel input symbols is roughly

equal to In E(O) when E(O) >> 1, and is very small when E(O) << 1 (for the Gaussian channel

we have = 2). The dimensionality of each input symbol is d = 1, when E(O) >> 1 and is

equal to d v E whenever E(O) << 1.E(O)
3. It presents a method of estimating the effects of quantization at the receiver, for

the white Gaussian channel. It has been shown that the quantization scheme of Case I

is to be used whenever A2 >> 1. The quantization scheme of Case II is the one to be
max

used whenever A << 1.max

Suggestions for Future Research

A method has been suggested by Eliasl for adapting coding and decoding schemes

for memoryless channels to channels with memory converted into memoryless channels

by "scrambling" the transmitted messages. Extension of the results of this report to

channels with memory, using scrambling or more sophisticated methods, would be of

great interest.

Another very important and attractive extension would be the investigation of com-

munication systems with a feedback channel. One should expect a further decrease in

the decoding complexity and, probably, a smaller probability of error if feedback is

used.
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APPENDIX A

BOUNDS ON THE AVERAGE PROBABILITY OF ERROR-SUMMARY

A. 1 DEFINITIONS

Following Fano, 2 we shall discuss here a general technique for evaluating bounds

on the probability of decoding error when a set of M equiprobable messages are encoded

into sequences of m channel input events.

Let us consider a memoryless channel that is defined by a set of conditional proba-

bility densities p('1| 5), where is the transmitted sample, and is the corresponding

channel output (p(rl] i) is a probability distribution if nr is discrete). We consider the

case in which each input event x is a d-dimensional vector, and is a member of the (con-

tinuous) input space X. The vector x is given by x = 1' 2 ' ... d'

The corresponding d-dimensional output vector y is a member of the d-dimensional

continuous space Y, with y = 1 l' 12 .. ' I1d' The number of dimensions d is given by

d = n/m, where n is the number of samples per message. The channel statistics are

therefore given by

d
p(yIx) = - p(]i i) , where p('iJ ni) = P(1I ); Si = ' '1 =i-

i=l

The mth power of this channel is defined as a channel with input space U consisting

of all possible sequences u of m events belonging to X, and with output space V con-

sisting of all possible sequences of m events belonging to Y. The i th event of the

sequence u will be indicated by yi. Thus

1 2 3 m 1 2 3 m
u=x ,x , ,..., x , v=y ,y ,y ,....y , (A-1)

where x may be any point of the input space X, and yi may be any point of the output

space Y.

Since the channel is constant and memoryless, the conditional probability density

p(v I u) for the mth power channel is given by

m
p(vIu) = T p(yil xi), (A-2)

i=l

where

p(yi Ix l ) = p(ylx); y = , x = x. (A-3)

We shall assume in the following discussion that the message space consists of M equi-

probable messages ml, m 2, ... , mM.

A.2 RANDOM ENCODING FOR MEMORYLESS CHANNELS

For random encoding we consider the case in which the input sequences assigned

to messages are selected independently at random with probability density p(u), if U is
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a continuous space, or with probability distribution p(u) if U is discrete. The average

probability of error corresponding to any such random assignment of input sequences

to messages depends, of course, on the probability density p(u). We set

m
p(u) = TT p(x), (A-4) '

i=l

where

i i
p(x ) = p(x); x = x. (A-5)

Here, p(x) is an arbitrary probability density whenever X is continuous, and is an arbi-

trary probability distribution whenever X is discrete. Eq. A-4 is equivalent to the

statement that the input sequence corresponding to each particular message is con-

structed by selecting its component events independently at random with probability

(density) p(x).

We shall assume, unless it is mentioned otherwise, that the channel output is

decoded according to the maximum likelihood criterion; that is, that any particular

output sequence v is decoded into the message m i that maximizes the conditional prob-

ability (density) p(vI mi). Since messages are, by assumption, equiprobable, this

decoding criterion is equivalent to maximizing the a posteriori probability p(mi v),

which, in turn, results in the minimization of the probability of error.

Let us assume that a particular message has been transmitted, and indicate by u

the corresponding input sequence, and by v the resulting output sequence. According

to the specified decoding criterion, an error can occur only if one of the other M-1 mes-

sages is represented by an input sequence u' for which

p(v u') ¢> p(v u). (A-6)

Let F(v) be an arbitrary positive function of v satisfying the condition

SF(v) dv = 1 (A-7a)

or

Z F(v) = 1 (A-7b)

if v is discrete.

Also, define

F(v)
D(u, v) = In (A-8)

p(vI u)

as the "distance" between u and v. In terms of this measure of distance the condition

expressed by Eq. A-6 becomes
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D(u', v) D(u, v). (A-9)

For any arbitrary constant Do , the average probability of error then satisfies the

inequality

Pe MP1 + P2' (A-10)

where

P 1 = Pr[D(u, v) < Do , D(u', v) < D(u, v)] (A-1l)

and

P 2 = Pr[D(u, v)> Do]. (A-12)

The bound of Eq. A-10 corresponds to the following decoding scheme: D(u, v) of

Eq. A-8 is computed for each one of the M sequences of the input space U and the one

given output sequence v. The only distances D(u, v) that are taken into further consider-

ation are those for which D(u, v) Do , where Do is an arbitrary constant. The one

sequence u, out of all of the sequences for which D(u, v) < Do , which yields the smallest

distance D(u, v) is chosen to represent the transmitted signal. If no such sequence u

exists, an error will occur.

If the decoding procedure above is carried out with an arbitrary distance function of

u and v, Dq(u, v), other than the D(u, v) of Eq. A-8, then the average probability of

error satisfies the inequality

P < MP + P, (A-13)e

where

P 1 = Pr[Dq(u, v) < Do; Dq(u ' , v) Dq(u, v)] (A-14)

P 2 = Pr[D (u, v)> Do]* (A-15)

However, one would expect the bound of (A-13) to be larger than that of (A-10), if

Dq(u, v) is not a monotonic function of the a posteriori probability p(u v).

A. 3 UPPER BOUNDS ON P 1 AND P 2 BY MEANS OF CHERNOFF BOUNDS

The m events constituting the sequence u assigned to a particular message are

selected independently at random with the same probability p(x). If we let

m
F(v) = f(y), (A-16)

i=1

where

[f(yi)]i f(Y); S f(y) dy = 1,
y =y
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or

E f(y)= , (A-17)

when y is discrete, it then follows from Eqs. A-2, A-3, and A-16 that the random var-

iable D(u, v) defined by Eq. A-8 is the sum of m statistically independent, equally dis-

tributed, random variables:

m

D(u, v) = d(x i , y i
) , (A-18a)

i=l

where

f (Y) i i
d(x, y ) = d(x, y) = ln -; x = x; y = y. (A-18b)

p(ylx)

In cases for which an arbitrary distance Dq(uv) other than D(uv) of Eq. A-8 is used,

the discussion will be limited to such distances Dq(uv) that may be represented as a sum

of m statistically independent, equally distributed, random variables.

m

Dq(u, v) = dq(xi,y) (A-19)

i=l

where

dq(x yi,) = dq(x,y); xi = , yi y. (A-20)

The moment-generating function of the random variable D(u, v), is

G(s) = p[D(u, v)] esD(u, v) dD(u, v), (A-21)

D(u, v)

where p[D(u, v)] is the probability density of D(u, v). Thus

G(s)= X p(u) p(vu) eSD(u, v) dudv. (A-22)

uv

From Eqs. A-18, A-4, A-5, A-2, and A-3, we get

G(s) = TI 5 p(x) p(yIx) e s d(xY) dxdy [gd(s)]m, (A-23)
i= xy

where

gd(s)= 5 p(x) (yx) esd(xy) dxdy. (A-24)

xy
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For the P 2 of Eq. A-12 we are interested in the probability that D(u, v) is greater than

some value D .
0

esD(uv) > e

For all values of D(uv) for which D(u, v) > Do ,

sD
o for s >0.

Using this fact, we may rewrite Eq. A-21 as

sD
G(s) >- e °

D(u, v) >Do

p[D(u, v)] dD(u, v).

Using Eq. A-23, we have

Pr[D(u, v) >Do] -< exp(myd(s)-sDo),

where

d(S) = In gd(s)= in p(x) p(ylx) esd(xy) dxdy.
X Y

Equation A-26 is valid for all s 0.

is minimized.

yields

We may choose s that is such that the exponent

Differentiation with respect to s and setting the result equal to zero

Pr[D(u, v) >Do] < exp{m[yd(s)-SYd,(S)]};

where s is the solution to

dyd(s) D0

'd ( ) ds = m'

In the same way,

Pr[Dq(u, v) >Do] -< exp(my q(s)-sD),

where

yd(s) = in gq(s) = In 5
X Y

p(x) p(y I x) exp[sDq(x, y)] dxdy.

The exponent of Eq. A-30 is minimized if we choose s that is such that

dy q(s) D

d ( s) -ds m

Thus

Pr[Dq(u, v) >Do] -< exp{m[y (s)-syd' (s)]}.

For P1 we desire an upper bound to the probability (A-11)
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(A-25)

(A-26)

(A-27)

s >- 0, (A-28)

(A-29)

(A-30)

(A-31)

(A-32)

(A-33)
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P 1 = Pr[D(u,v)<Do , D(u', v)<D(u, v)].

For this purpose, let us identify the point uu'v of the product space UU'V with the point

a of a space A, the probability (density) p(uu'v) = p(u) p(v') p(vfu) with the probability

(density) p(a), the random variable D(u, v) with (a), and the random variable D(u', v) -

D(u, v) with the random variable (a). Inserting O(a) and (a) into Eq. A-1 yields

P1 = Pr[O(a)<Do, (a)<0]. (A-34) 

Let us form the moment-generating function of the pair ((a), 0(a)).

G(r, t) = p(a) er $ (a)+t0(a) da. (A-35)

Now, for all values of {a: (a)<Do ; (a)O},

rD oer( a) + t ( a) >Ž e for r < O; t < 0.

By using this fact, Eq. A-35 may be rewritten as

rD
G(r, t) > e p(a) da

rD
G(r, t) >-e OPr[(a)_<Do, (a)<0O]. (A-36)

Thus

-rD
P = Pr[$(a)a<Do, 0(a)<0] < G(r, t) e o r O; t 0.

$(a) = D(u, v), (a) = D(u', v) - D(u, v),

and

p(a) = p(uu'v) = p(u) p(u') p(vlu).

Thus, from Eqs. A-18, A-4, A-5, A-2, A-3, and A-35, we get

G(r, t) = [gd(r, t)] m ,

where

gd(r, t) = y P(x) p(x') p( Ix) e(r-t) d(x, y)+td(xl, Y) dxdx'dy

YX' X

Inserting Eq. A-38 into Eq. A-36 yields
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P1 = Pr[D(u, v)<Do, D(ut, v)<D(u, v)] < exp(myd(r, t)-rD);

r 0; t 0,

where

Yd(r, t) = In gd(r, t)

= In S S p(x) p(x') p(y x) e(r-t) d(xy)+td(x, y) dxdx'dy.

Y XX'

(A-40)

(A-41)

We may choose r and t in such a way that the exponent of the right-hand side of (A-40)

is minimized. Differentiating with respect to r and setting the result equal to zero and

then repeating the same procedure with respect to t, we obtain

P = Pr[D(u, v)< Do , D(u', v)< D(u, v)] < exp{m[yd(r, t)-ry' d (r, t)]} 
r

where

aYd(r,t) Do
Y (r,t) ar - m

r

and

ay(r, t)
y'(rt) = 0.

In the same way,

Pr[Dq(uv)<Do, Dq(u'v)<Dq(uv)] < exp{m[ydq(r, t)-rDo/m]}

where

(r, t) n gt) = In g (r, t) = n p(x) p(y x) exp{(r-t) dq(xy)+td (x'y)} dxdy.

Y X

Inserting (A-40) and (A-30) into (A-13) yields

Pe 4 exp{m[yd(s)-sDo/m]} + exp{m[n/m R+yd(r, t)-rDO/m]},

where R, the rate of information per sample, is given by

R = 1 1n M.n

From Eqs. A-11 and A-12, the

with D in the opposite directions.

minimized by the value of Do for

Therefore, let D be such that

(A-42)

(A-43)

(A-44)

(A-45a)

(A-45b)

(A-46a)

(A-46b)

two probabilities, P1 and P2 , vary monotonically

Thus, the right-hand side of (A-45) is approximately

which the two exponents are equal to each other.
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Yd(S) - s = nR + (rt) - rYd s sr bYdr r m

The insertion of (A-47), (A-44), and (A-43) into (A-46a) yields

Pe - 2exp{m[yd(s)-sD/m]} = Zexp[-nEd(R)],

where

1. R) = -[( - s =-R +

D
2. (s) = y (rt)= s >-0,

s r

d (r, t) - r m

t 0, r 0.

3. y (r,t) = 0; r < 0; t < 0.

Now, from (A-25) and (A-18) we have

Yd(s) = n 5 p(x) p(yIx) esd(xy) dxdy
Y X

= n jj p(x) p(yx) - s f(y)S dxdy.

Y X

Also, from (A-39) and (A-18) we have

Yd(r,t) = n S P(X) (x') p(yIx)l-r
y x' x

It can be shown14 that

1. Eq. A-44 is satisfied if we let

1 - r + t = -t; r6O, t0

t p(y1x')-t f(y)r

r = 1 + 2t; t s<d-.

2. Eq. A-50 is satisfied by letting

[ p(x) p(yx) dx] 1/1

f(y)= /-s
p(X) (yIx) - s dx dy

and
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(A-48)

(A-49)

(A-50)

(A-51)

(A-52)

or

(A-53)

(A-54)

(A-55a)
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1s = 1 +t; 0 <s-<.
Z' (A-55b)

3. Equation A-49 is then satisfied if we let

R =-d[(s-1) koY) s 2 d dsl)y(s)-Yd(s) 2 'c~c (A-56a)

We should notice, however, that Eqs. A-44, A-50, and A-49 are satisfied if, and

only if, R is such as to make 0 s 2' It can be shown 4 that this is for the regionR .~~~~~~~~~~2

c rit

where

(A-56b)

I = & p(x) p(yIx )
Y X

p(y x)
in dxdy = [R]s=o

P(Y)

Rcrit = [R]s= 1/2

Let us now define the tilted probability (density) for the product space XY.

(A-56c)

(A-56d)

Q(x, y) =
eSD(X' Y) p(x) p(yIx)

S es D (x ' Y) p(x) p(y I x) dxdy
YX

p(x) p(ylx)l-s fS(y)

p(x) p(x) p(yIx)-s f(y) dxdy

Q(y) = f(y) = XSp(x) p(yx) - s dx/-s

S [s p(x) p(yIx)-s dx]
Y X

1-; S 

dy

Q(x,y) p(x) p(ylx)l s

Q(Y)

X

p(x) p(y x)l-s dx

1

Using Eqs. A-52, A-53, A-54, A-56, A-57, A-59 yields

P < Ze-nE(R);
e R <R I.crit

and

where

(A-57)

Q(xly) =

(A-58)

(A-59)

87

(A-60a)

_ ----·----- - ---------- - __._ ___



Here, the exponent E(R) is related parametrically to the transmission rate per sample
R, for R R I, by

CE(R) r Q(x,y)0 E(R) = -d Q(, y) In - dxdy
Y X p(x) p(yx)

(A-60b)

IX Y
xY

Rcrit = [R]s 1 / 2 ;

Q(xly) 1
Q(x, y) In R ; 0 < s -<-

P(x) crit
(A-60b)

(A-60d)I = [R]s= = d p(x) p(ylx) ln -.
XY p(y)

Whenever R< R rit there does not exist a Dcrit' o
A-50, and A-51.

be bounded by

that simultaneously satisfies Eqs. A-49,
However, the average probability of error may always, for any rate,

(A-61)Pe < MPr[D(u'v)i<D(uv)].

This is equivalent to setting Do = D(u, v) in Eqs. A-11 and A-12. Thus

P 1 = Pr[D(u'v)-<D(uv)]; P2 =0.2 (A-62)

In the same way,

P e MP 1 = MPr[Dq(u'v)-<Dq(UV)]. (A-63)

The evaluation of P 1 under these conditions proceeds as before, except for setting
r = 0 in (A-42) and (A-45a). Therefore

P < exp{m[n/m R+yd(O, t)]};eR+d t <0, (A-64a)

where

Yd(O, t) = y(t)

S p(x')p(x)
X'

P(yjx) et[d(x'y) - d(xy)] dx'dxdy; t -< 0 (A-64b)

Pe exp{m[n/m R+yq(o, t)]};

where

q(0, t) = yq(t)Yd d

= ln
Y

t 0,

p(x) p(x') p(y Ix) et[d q (x 'y)- d q ( x y )] dx'dxdy;
X X'

= ln X

Y X

and

(A-65)

t < 0. (A-65a)
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Thus

Yd(0, t)= n , p(x) p(yIx) 1- t p(ylx') t t 0. (A-66)
X Y

Here, Yd(0, t) may be minimized by choosing a proper t. Differentiation with respect

to t and setting the result equal to zero yields

t = - (A-67)2' (A-6)

Yd(0-2) = Yd(2) = n 55 p(x) p(x') p(y x)l/2 p(y x')1/2 (A-68)
Y XX'

or

Yd('2) = ln [ p(x) p(yx)L/2 dx (A-69)
Y

The insertion of Eq. A-67 into Eq. A-64 yields

e < exp{-n[Ed(O)-R]}, (A-70)

where

E (0) = -1 (0, 1) (A-71)
d() =-dd 2

1 1From Eq. A-60 for R = Rcrit we have s = , t = and r = 0. Thus, by Eq. A-49,

Ed(R)I R 1 E ) (A-72)
Ed(R)I Rcrit crit '2 dd) - Rcrit

and the exponentials of (A-70) and (A-49) are indeed identical for R = Rcrit.

It can also be shown that dEd(R)/dR IR = -1, so that the derivatives of the two
crit

exponents with respect to R are also the same at R = Rrit'

The average probability of error can therefore be bounded by

-n[Ed() -R]
e ; R < Rcrit

(A-73a)

-n[Ed(R)]
2e , Rcrit -< R < I

where

Ed(O) - Rcrit = Ed(R)IR (A-73b)

and
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R = -1. (A-73c)
d[EdR R dR R

crit crit

A. 4 OPTIMUM UPPER BOUNDS FOR THE AVERAGE PROBABILITY OF ERROR

The upper bound of Eq. A-73 may be optimized by choosing p(x) that is such that,

for a given rate R, the exponent of the bound is minimized.
i i i th

Let d = 1 and m = n. x is then identical with ai, where is the i input sample

that is a member of the (continuous) one-dimensional space. y is identical with i,

where is the output sample that is a member of the (continuous) one-dimensional

spaceH.

It can be shown that there exists an optimum probability (density) p(x) p(,) defined

on ,± that minimizes the upper bound to the average probability of error, so that, for

large n and for R 3 Rcrit, it becomes exponentially equal to the lower bound on the prob-

ability of error.

The characteristics of many continuous physical channels, when quantized and thus

converted into a discrete channel, are very close to the original ones if the quantization

is fine enough. Thus, for such continuous channels there exists one random code with

an optimum probability density p(x) = p(a) which yields an exponent E(R) that is equal

to the exponent of the lower bound of the average probability of error, for n very large

and for R Rcri
crit'
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APPENDIX B

EVALUATION OF Ed(0) IN SECTION 2.3, FOR CASES IN WHICH

EITHER A d << 1 OR A > 1

We shall evaluate lower bounds to the exponent Ed(0) which is given by Eq. 127.

Ed(0 = nt 1 F i)~ exp( A
E (0) 0 -- - x sin d n f 2 2

sin od-2dO}

When d = 2 we have

0 exp(A cos O)0~~··B
1 AE2(0) 2= - n exp

2 1 n{exp )2

E 2 (0) = - In exp2 l2 (

f
?T

27r o2
exp Cos
Ix\

IO V}

1, we have

E2() -ln exp(A ) AE 2(0) = 2 In exp 2 _ 4 '

1, we have

E 2 (0) = - n {exp ( 2

1 2 1=-lnA +- In
4 4

1

A 2

2

exp (+2)}

r 1 ln A2)1 / 2

Now, for d = 3 we have, from Eq. 127,

exp ( A ) 7 expf A2

0
cos sino d

= - ln exp(- 3 A2) 4 f0 d (3A 2
fO2 -- expA

3A 7

Thus
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dO}

de}

A 2

For 2 <<

(B-l)

A2

For 2>>

(B-2)

E (0) = -ln

(B-3)

cos ) dO

- I --



E3 (0) = - In3 3 {exp ( 4 A 2
sh A

43 2

For 3A<< 1, we have

E 3 (0) - n exp A2) 4

3 2
For -A2 >> 1, we have4

E 3 (0) = n in A= n A 2 + 1n i

1 2 1 (22/3
i =n A 3 ,

In general, for an d > 3, we have

1 A2

Ed(O) = ; A2d << 1

Ed(0) = 1 n (A2)(d-1)/d d 1 E( A2 >> 1,

where

E(O) =Ed(O)Id 1 In A ) ; A2 >> 1.
PROOF: Frd=nom Eq.>> 127 we have, for A

PROOF: From Eq. 127 we have, for A2d << 1,

Ed(0) - lnd ld ( dA)/,'" G4
cos sin ed- 2 dO

=1 ln (1 dA2) A2
d 4 4

Thus

2 A2

Ed() = 4 ; Ad << 1.

We now proceed to prove Eqs. 130b and 130c.

Eq. 127. We have, then,

Ed(0) -d In 1

'f-i-r

Q. E. D.

Let x = sin2 and insert x into2

2
d - 3 I (B-9a)

where
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(B-4)

(B-5)

(B-6)

(B-7)

(B-8a)

(B-8b)
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I= p(-dA2 x) x( d - 3 )/ -x) ( d- 3 ) 2I= f exp2-- x (1 -x) " dx.
0

Now

-x1 - x - e

Inserting (B-10) into (B-9b) yields

1 exp
exp -ldA+

d - 3
2

A2d
d - 3

] d-3 11 2 x(d-3)/2 dx

(d-l)/2

+1)]

Inserting (B-ll) into (B-9a) yields

Ed( A2] (d - l )/1 \%/ d- 32
- - (d-1)/2

2 )

The first term on the right-hand side of inequality (134) is bounded by

d In 2 d-3
7 (d(d-1)/2

\2J

1 n 2d-3- In 2d

d - 3 n 2 .
d

Thus, for A2 >> 1, we have

d-ll A2

d 2

Now, let

E(O) = Ed=n(0)n>> 1dnn>In 1

(B-12)

(B-13)

Inserting d = n >> 1 into (B-12) yields

1 A2

E (O) > 1 n 

From the convexity of the exponent E(R), when plotted as a function of R, we have

E(O) C,

where C is the channel capacity, given by Shannon, 1

(B-14)
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(B-9b)

(B-10)

(B-11)

2

,(d-1

- -I -

d() > d

+ ' In d-3



1 2 2C -n A; A >> 1 .

Thus, by (B- 13) and (B- 14),

E() = C 1In ; A >> 1. (B-15) 

Inserting (B-15) into (B-12) yields

Ed() dd 1 InA 2 d - 1 E(O)
d 2 d~ 
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APPENDIX C

MOMENT GENERATING FUNCTIONS OF QUANTIZED GAUSSIAN VARIABLES

(after WIDROW9 )

A quantizer is defined as a nonlinear operator having the input-output relation shown

* in Fig. 10c. An input lying somewhere within a quantization "box" of width q will yield

an output corresponding to the center of the box (i. e., the output is rounded off to the

center of the box).

Let the input z be a random variable. The probability density distribution of z, p(z),

is given.

The moment-generating function (m. g. f.) of the input signal is therefore

g(s) = f p(z)e - s z dz. (C-l)

Our attention is devoted to the m. g. f. of the quantized signal z q , given by

gq(s) = S p(z q ) e- s z d z q (C-2)

Z q

where p(z q ) is the probability density of the output of the quantizer, z q , and consists of

a series of impulses. Each impulse must have an area equal to the area under the

probability density p(z) within the bound of the "box" of width q, in which the impulse is

centered. Thus the probability density p(z q ) of the quantizer output consists of "area

samples" of the input probability density p(z). The quantizer may be thought of as an

area sampler acting upon the "signal," the probability density p(z).

Thus, p(z q ) may be constructed by sampling the difference (z +) - t(z -2), where

(z) is the input probability distribution given by

z

(z) = f p(z) dz . (C-3)
-00

This operation is equivalent to, first, modifying p(z) by a linear "filter" whose transfer

function is

e(sq)/2_ -(Sq)/2 sh qs
= q (C-4)

qs qs
2

and then impulse-modulating it to give p(zq).

Using "A" notation to indicate sampling, we get

gq(s)h= 1g(s ) s
gs) g(s) q2 =F (s), (C-5a)

[ 2s
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where

sh qs
F(s) = g(s) q s (C-5b)

qT-

Now, let the function F(s) be the transform of a function f(z).

F(s)= f f(z)e- sz dz . (C-6)
z

Then

F A(S) = f (z) e dz, (C-7)
z

where f (z) is the sampled version of f(z).

Thus

fA(z) = f(z) c(z), (C-8)

where c(z) is a train of impulses, q amplitude units apart. A Fourier analysis may be

made of the impulse train c(z). The form of the exponential Fourier series will be

1 ikS2z 27rc(z) = eikQz = 2 (C-9)
k=- q

Inserting (C-9) into (C-7) yields

FA(s) = I F(s-ikQ). (C-10)
k=-oo

Inserting (C-10) into (C-5) yields

sh q (s-ik)
gq(s)= L g(s-iko) 2 ] (C-ll)

k=-oo (s-ikQ)
2

Now, if the input is a Gaussian variable governed by the probability density

1 (z-x)2p(zlx) = -- ex(-(z x )) (C-12)

it can be shown that

sh qs
gq(s) g(s) s; q < 2r, (C-13)qs

where

g(s) = exp( 2 + . (C-14)
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Let z and z' be two random Gaussian variables governed by the probability density

1 -(z-z) + 2(z-z)(z'-z) - (z 2)
p(z, z') = 1 exp 2

27r(1-2) 1/2 2(1- )

where

(C-1 5a)

(C-15b)

Let the corresponding m. g. f. be given by

g(r, t) = f
f (z, I rz+tz'
Ip(z,z')e

dzdz' . (C-16)

Now let z and z' be quantized by the quantizer of Fig. 10c, to yield z q and z ' q .

gq(r, t) = fzq f q p(zq z q ) e r z - t z d z q d z q .

Thus

(C-17)

It can then be shown (as was shown in the derivation of (C-13)) that

sh qr sh qt
gq(rt) = g(r, t t) =2 2

qr qt '
2 2

Also, if z = z' ( = 1), we have

sh -(r+t)
gq(r, t) = g(r, t) 2

q (r+t)2

q < 2(1- 2) .

q<2.

Now, if z = -z' (I =-1), we have

gq(r, t) = g(r,
sh q (r-t)

t)
q (r-t)
2

We now proceed to derive upper bounds to g(s) and g(r, t) to be used whenever the

quantization grain q is large, so that (C-13), (C-17), (C-18), and (C-19) are not valid

any more.

Let z q = z+nq(z), where nq(z) is the "quantization noise."

gq(s) = f p(z) exp[-s(z+nq(z))] dz.
Z~~~~~

Now, Inq(z)l .

gq(s) < fZ

Thus, by Eq. C-2,

Therefore

p(z)e- s y dz expls-l

= g(s) exp s q.
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(C-19)

q < 2. (C-20)

(C-21)
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In the same way, let

z q =z+n(z) z + nq(Z); q =z' + n(Z).

Thus, by (C-17),

gq(r,t) = f f, p(z,z')exp[-r(z+nq(z))-t(z'+nq(z'))] dz'dz.z Z, ~~q q
Now

Inq(z)| I< q; Inq(z')l < qq 2 q 2'

Thus

gqrt p(z,z' exp-r-t'dz'dz exp

(C-22)
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ERRATA

(added in press)

Page 1, line 25. Change to read "and rTi is independent of .i for i ¢ j."

Page 6, lines 30, 31. e s d (x ' y) should read esD(xiy)

Page 9, line 15. D(k,y) should read d(k,y)
D(k',y) should read d(k',y)

line 18. D(xi,y) should read d(xi,y)

D(xj,y) should read d(xj,y) f(s)

line 21. Should read d(k,y) = d(xk,y) = In

p(yI xk)
line 27. D(k,y) should read d(k,y)

line 30. D(xk,y) should read d(xk,y)
Page 10, lines 35 and 38. D(x,y) should read d(x,y)

Page 11, line 16. D(xi,y) should read d(xi,y)

line 19. D(xj,y) should read d(xj,y)

line 24. D(xi,y) should read d(xi,y)

line 27. D(x,y) should read d(x,y)

Page 13, line 1. Add prime. R = [(s-I) y

Page 16, line 17. The inequality should be a.

line 25. Replace with

E[,d(R) ' E(R); R Rcrit, dE(O) >> 1 (75)

line 28. Replace with

E(R) E ,d(R) - E(R) (76)

line 29. Should read "with probability one if"

Page 20, line 7. Replace with

E2 d(R) =~E*(R) (E (R) is Shannon's upper-bound exponent) (99)

Page 22, line 5. Add "exponent of the probability of error as long as ma 1."max
Page 23, line 12. Change E 2 1 (0) to E, l(0)

line 14. Should read "Thus, since 4(k-1) k ; k 2, we have"

line 16. Change E2, 1 (0) to El 1(0)

line 20. Should read

~> -in 1-2 + 2(1-1) exp + 2(2-2) x; -4kDmin/8 ) 
2 l \8in exp (4kDmin/8 2 ) 

lines 33 and 34. Change E2, 1 (0) to E 1(0)

Page 24, line 1. Change E 2 , 1(0) to E 1(0)

line 11. Should read "Comparing Eqs. 72 and 75-77..."

Page 26, line 15. (r) should read 

Page 27, line 13. Should read

Ed( ) d 1 E(0); A2 >> 1 (130c)d(O) d
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ERRATA

(added in press)

Page 29, line 15. Should read "Thus, for A 2 >> 1, we have"

Page 31, line 22. Should read "Now, from Eq. A-70, we have"

line 23. Should read

E, d(R) E d(0) - R.

line 24. Should read "Thus, by Eqs. 69 and 140, we haves

line 25. In Eq. 141 change equality sign to 

lines 34 and 38. Delete "R < R crit"

Page 32, line 39. Change "variables" to values

Page 33, line 20. Should read "And, since d > 1 always, if"

Page 35, line 18. Add equation number (153)

line 21. Change "143" to 137.

line 27. Change equation number to (154)

line 33. Change equation number to (155)

line 35. Should read "Thus, by Eqs. 137, 153, and 154,"

line 37. Change equation number to (156)

Page 36, line 1. Change equation number to (156a)

line 3. Should read "Inserting (156a) into (152) yields"

line 4. E should read E

w,j,k w,k,j
line 18. Change lower-case k to capital K

Page 40, line 2. Should read 2

2,Y(1) n 1/2 dyp(x) ply x) 1 d

X

Page 41, lines 18-21. Replace lines 18-21 with "Summation on j will
contain a number of terms proportional to m.
Thus

E Pr[D (u',v) Di; k is used]

• Km Pr[Dm(u,v) D max
In m

line 24. Change to

P <Kmexp[-k ]+ edmR Pr[Dm
e m

line 26. Change Dj to D m a x
m m

j j
Page 42, line 6. Change d max to D maxm m

lines 13 and 19. Should read "Pe - Km[... "

line 22. Should read "P < 2Kmem .
e

Page 73, Table 4. Last row should read "See Table 3"

(u',v) <Dmxm a ]}
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