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Abstract

In this report we consider some aspects of the general problem of encoding and
decoding for time-discrete, amplitude-continuous memoryless channels. The results
can be summarized under three main headings.

1. Signal Space Structure: A scheme for constructing a discrete signal space, for
which sequential encoding-decoding methods are possible for the general continuous
memoryless channel, is described. We consider random code selection from a finite
ensemble. The engineering advantage is that each code word is sequentially generated
from a small number of basic waveforms. The effects of these signal-space constraints
on the average probability of error, for different signal-power constraints, are also
discussed.

2. Decoding Schemes: The application of sequential decoding to the continuous
asymmetric channel is discussed. A new decoding scheme for convolutional codes,
called successive decoding, is introduced. This new decoding scheme yields a bound
on the average number of decoding computations for asymmetric channels that is tighter
than has yet been obtained for sequential decoding. The corresponding probabilities of
error of the two decoding schemes are also discussed.

3. Quantization at the Receiver: We consider the quantization at the receiver, and
its effects on probability of error and receiver complexity.
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GLOSSARY

Symbol Definition
a Number of input symbols per information digit
3
A= - Voltage signal-to-noise ratio
A _g_m_ax_ Maximum signal-to-noise ratio
max - "% axim gnal-to- a

b Number of branches emerging from each branching point in
the convolutional tree code

C Channel capacity

f(v)
D(u,v) = 1ln The "distance" between u and v
p(v|u)
f(y)
d{x,y) = In——— The "distance" between x and y
p(y|x)

d Dimensionality (number of samples) of each input symbol

E(R) Optimum exponent of the upper bound to the probability of
error (achieved through random coding)

El d(R) Exponent of the upper bound to the probability of error when

' the continuous input space is replaced by the discrete input

set X ¢

f(y) A probabilitylike function (Appendix A)

g(s), g(r,t) Moment-generating functions (Appendix A)

i Number of source information digits per constraint length
(code word)

[ Number of input symbols (vectors) in the discrete input space
Xy

m Number of d-dimensional input symbols per constraint length

{code word)

=]

Number of samples (dimensions) per constraint length (code
word)

Average number of computations
Signal power

Rate of information per sample

How oy 2

Critical rate above which E(R) is equal to the exponent of the

erit lower bound to the probability of error




Symbol

comp

GLOSSARY

Definition

Computational cutoff rate (Section III)

The set of all possible words of length n samples
Transmitted code word

A member of U other than the transmitted message u
The set of all possible output sequences

The output sequence  (a member of V)

The set of all possible d-dimensional input symbols

A transmitted symbol

A member of X other than x

The discrete input set that consists of £ d-dimensional vec-
tors (symbols)

The set of all possible output symbols
The set of all possible input samples

A sample of the transmitted waveform u
A sample of u'

The set of all possible output samples

A sample of the received sequence v

The power of a Gaussian noise

vi
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I. INTRODUCTION

We intend to study some aspects of the problem of communication by means of a
memoryless channel. A block diagram of a general communication system for such
a channel is shown in Fig. 1. The source consists of M equiprobable words of length
T seconds each. The channel is of the following type: Once each T/n seconds a real
number is chosen at the transmitting point. This number is transmitted to the receiving
point but is perturbed by noise, so that the ith real number Si is received as ;- Both
£ and n are members of continuous sets and therefore the channel is time-discrete but

amplitude-continuous.

SOURCE t n SINK
— + | ENCODER CHANNEL DECODER |—»

Fig. 1. Communication system for memoryless channels.

The channel is also memoryless in the sense that its statistics are given by a proba-

bility density p(nilg‘l, 52’ cees Ei) so that

p(nllgl, 82,..-)€i)= p(r'llgl)) (1)
where

p(n;|&) = pn|&); &=&,n=n;, (2)

and ny is independent of nj for i #j.

A code word, or signal, of length n for such a channel is a sequence of n real
numbers ('g"l, e ‘g‘n). This may be thought of geometrically as a point in n-dimensional
Euclidean space. The type of channel that we are studying is, of course, closely related
to a bandlimited channel (W cycles per seconds wide). For such a bandlimited channel
we have n = 2WT.

The encoder maps the M messages into a set of M code words (signals). The
decoding system for such a code is a partitioning of the n-dimensional output space into
M subsets corresponding to the messages from 1 to M.

For a given coding and decoding system there is a definite probability of error for
receiving a message. This is given by

, M
Po=M L Pe. - (3)
i=1 i

where Pe is the probability, if message i is sent, that it will be decoded as a

message 'other than i.




The rate of information per sample is given by
R=2InM (4)
5 .

We are interested in coding systems that, for a given rate R, minimize the probability -
of error, Pe.

In 1959, C. E. Shannon1 studied coding and decoding systems for a time-discrete
but amplitude-continuous channel with additive Gaussian noise, subject to the constraint
that all code words were required to have exactly the same power. Upper and lower
bounds were found for the probability of error when optimal codes and optimal decoding
systems were used. The lower bound followed from sphere-packing arguments, and the
upper bound was derived by using random coding arguments.

In random coding for such a Gaussian channel one considers the ensemble of codes
obtained by placing M points randomly on a surface of a sphere of radius I\/ndP (where
nP is the power of each one of M signals, and n = 2WT, with T the time length of each
signal, and W the bandwidth of the channel). More precisely, each point is placed
independently of all other points with a probability measure proportional to surface area,
or equivalently to solid angle. Shannon's upper and lower bounds for the probability of

error are very close together for signaling rates from some Rcr up to channel

it
capacity C.

R. M. Fan02 has recently studied the general discrete memoryless channel. The
signals are not constrained to have exactly the same power. If random coding is used,
the upper and lower bounds for the probability of error are very close together for all
rates R above some Rcrit'

The detection scheme that was used in both of these studies is an optimal one, that
is, one that minimizes the probability of error for a given code. Such a scheme requires
that the decoder compute an a posteriori probability measure, or a quantity equivalent
to it, for each of, say, the M allowable code words.

In Fano's and Shannon's cases it can be shown that a lower bound on the probability
of error has the form
*e—E (R)n,

P 2K

e (5a)

where K is a constant independent of n. Similarly, when optimum random coding is
used, the probability of error is upper-bounded by -

P < Ke—E(R)n-

. . E(R)=E (R) for R = R (5b)

crit ’
In general, construction of a random code involves the selection of messages with some
probability density P(u) from the set U of all possible messages. When P(u) is such
that E(R) is maximized for the given rate R, the random code is called optimum.

The behavior of E (R) and E(R) as a function of R is illustrated in Fig. 2. Fano's




upper-bounding technique may be extended to include continuous channels, for all cases

in which the integrals involved exist. One such case is the Gaussian channel. However,
the lower bound is valid for discrete channels only. Therefore, as far as the continuous
channel is concerned, the upper and lower bounds are not necessarily close together for

=
rates R Rcrit'

I
|
|
|
I
1
I
1

R C R

crit

Fig. 2. Behavior of E*(R) and E(R) as a function of R.

The characteristics of many continuous physical channels, when quantized, are very
close to the original ones if the quantization is fine enough. Thus, for such channels,
we have E (R) = E(R) for R > R___..

We see from Fig. 2 that the specification of an extremely small probability of error
for a given rate R implies, in general, a significantly large value for the number of
words M and for the number of decoding computations.

J. L. Kelly3 has derived a class of codes for continuous channels. These are block
codes in which the (exponentially large) set of code words can be computed from a much
smaller set of generators by a procedure analogous to group coding for discrete channels.
Unfortunately, there seems to be no simple detection procedure for these codes. The

receiver must generate each of the possible transmitted combinations and must then




compare them with the received signal.

The sequential coding scheme of J. M. Wozencraft,4 extended by B. Reiffen,5 is a
code that is well suited to the purpose of reducing the number of coding and decoding
computaﬂtions.6 They have shown that, for a suitable sequential decoding scheme, the
average number of decoding computations for channels that are symmetric at their out-

. (A channel
comp
with transition probability matrix P(ylx)is symmetric at its output if the set of proba-

put is bounded by an algebraic function of n for all rates below some R

bilities P(ylxl), P(y| X,), ... is the same for all output symbols y.) Thus, the average
number of decoding computations is not an exponential function of n as is the case when
an optimal detection scheme is used.

In this research, we consider the following aspects of the general problem of encoding
and decoding for time-discrete memoryless channels: (a) Signal-space structure,

(b) sequential decoding schemes, and (c) the effect of quantization at the receiver. Our
results for each aspect are summarized below.

(a) Signal-space structure: A scheme for constructing a discrete signal space, in
such a way as to make the application of sequential encoding-decoding possible for the
general continuous memoryless channel, is described in Section II. In particular,
whereas Shannon's Worl«:1 considered code selection from an infinite ensemble, in this
investigation the ensemble is a finite one. The engineering advantage is that each code
word can be sequentially generated from a small set of basic waveforms. The effects
of these signal-spare constraints on the average probability of error, for different signal
power constraints, are also discussed in Section II.

(b) Sequential decoding schemes: In Section III we discuss the application of the
sequential decoding scheme of Wozencraft and Reiffen to the continuous asymmetric
channel. A lower bound on Rcomp for such a channel is derived. The Wozencraft-
Reiffen scheme provides a bound on the average number of computations which is needed
to discard all of the messages of the incorrect subset. No bound on the total number of
decoding computations for asymmetric channels has heretofore been derived.

A new systematic decoding scheme for sequentially generated random codes is intro-
duced in Section III. This decoding scheme, when averaged over the ensemble of code
words, yields an average total number of computations that is upper-bounded by a
quantity proportional to n2, for all rates below some cutoff rate Rcomp’

The corresponding probabilities of error of the two decoding schemes are also dis~
cussed in Section III.

(c) Quantization at the receiver: The purpose of introducing quantization at the
receiver is to curtail the utilization of analogue devices. Because of the large number
of computing operations that are carried out at the receiver, and the large flow of infor-
mation to and from the memory, analogue devices may turn out to be more complicated
and expensive than digital devices. In Section IV, the process of quantization at the
receiver and its effect on the probability of error and the receiver complexity are

discussed.




II. SIGNAL-SPACE STRUCTURE

We shall introduce a structured signal space, and investigate the effect of the par-

ticular structure on the probability of error.

2.1 THE BASIC SIGNAL-SPACE STRUCTURE

Let each code word of length n channel samples be constructed as a series of m
elements, each of which has the same length d, as shown in Fig. 3. Each one of the
m elements is a member of a finite input space X£ which consists of £ d-dimensional
vectors (d = n/m), as shown in Fig. 3. The advantage of such a structure is that a set
of randomly constructed code words may be generated sequentially,4’ S as discussed in

section 2. 4.

| TR T | | 1 | | | |
P ' ] L | ] T 1 1
- n Lt
_n
m=—
d GE283lals
d

_n HERE x=p4+—+—+— ; d=5
m

Fig. 3. Construction of a code word as a series of elements.

Two cases will be considered:
Case 1: The power of each of the n samples is less than or equal to P.

Case 2: All code words have exactly the same power nP,

2.2 THE EFFECT OF THE SIGNAL-SPACE STRUCTURE ON THE AVERAGE
PROBABILITY OF ERROR — CASE 1

In order to evaluate the effect of a constrained input space on the probability of error,
let us first consider the unrestricted channel.

The constant memoryless channel is defined by the set of conditional probability
densities p(n|£), where £ is the transmitted sample, and n is the corresponding
channel output. The output 75 is considered to be a member of a continuous output

ensemble H. From case 1, we have
lel <s/P. (6a)

Let us consider the optimal unrestricted random code for which each particular message
of length n is constructed by selecting the n samples independently at random with

probability density p(§) from a continuous ensemble E. Then, following Fano,2 it can




be shown (Appendix A.4) that the average probability of error over the ensemble of codes

is bounded by

2 ME(R). g <Rr<C
’ crit
P, < (6b)
o~NER) _ -n[E(0)-R] . 0<SR<R .
crit
where R = 1/n1ln M is the rate per sample, and E(R) is the optimum exponent in the

sense that it is equal, for large n and for R = R to the exponent of the lower bound

to the average probability of error (Fig. 2). Forc‘:rz‘alrgy given rate R, p(£) is chosen so as
to maximize E(R) [i. e., to minimize Pe].

Let us now constrain each code word to be of the form shown in Fig. 3, with the
exception that we let the set Xﬂ be replaced by a continuous ensemble with an infinite,
rather than finite, number of members. We shall show that in this case, the exponent
Ed(R) of the upper bound to the average probability of error for such an input space
can be made equal to the optimum exponent E(R).

THEOREM 1: Let us introduce a random code that is constructed in the following
way: Each code word of length n consists of m elements, where each element x is

an d-dimensional vector

x=§1,§'2,...,’§d (7)

selected independently at random with probability density p(x) from the d-dimensional

input ensemble X. Let the output event y that corresponds to x be
Y=MqsMgs--esng- (8)

Here, y is a member of a d-dimensional output ensemble Y. The channel is defined

by the set of conditional probabilities

d
plylx) = ]'T1 p(nilfs’i) (9)
1:
Also, let
d
p(x) =TT p('é'i), (10)
i=1

where p(‘g“i) = p(g), for all i, is the one-dimensional probability density that yields the
optimum exponent E(R). The average probability of error is then bounded by

2exp[-nE (R)]; R _ ., SR<C
P = pl d 1 crit , (11)
e
exp[-nE(R)] = exp[-n[E (0)-R]]; R <R_.,

where




-

Ed(R) E(R); Ed(O)EE(O). (12)

PROOF 1: The condition given by Eq. 10 is statistically equivalent to an independent,
random selection of each one of the d samples of each element x. This corresponds to
the construction of each code word by selecting each of the n samples independently at
random with probability density p(£) from the continuous space £, and therefore by
Egs. 10 and 6, yields the optimum exponent E(R). Q.E.D.
The random code given by (9) is therefore an optimal random code, and yields the opti-
mal exponent E(R).

We now proceed to evaluate the effect of replacing the continuous input space x by
the discrete d-dimensional input space x, which consists of £ vectors. Consider a
random code, for which the m elements of each word are picked at random with proba-

bility 1/2 from the set X, of £ waveforms (vectors)

)
X, = {xk=1,...,4}. (13)

The length or dimensionality of each X is d. Now let the set XJZ be generated in the
following fashion: Each vector X is picked at random with probability density p(xk)
from the continuous ensemble X of all d-dimensional vectors matching the power con-
straint of Statement 2-1. The probability density p(xk) is given by

p(xk)E p(x); k=1,...,4 (14)

where p(x) is given by Eq. 10. Thus, we let p(xk) be identical with the probability
density that was used for the generation of the optimal unrestricted random code. We
can then state the following theorem.

THEOREM: Let the general memoryless channel be represented by the set of proba-

bility densities p(y|x). Given a set X,, let E, .(R) be the exponent of the average

£ 2,d
probability of error over the ensemble of random codes constructed as above. Let

E, d(R) be the expected value of E, d(R) averaged over all possible sets X .

Now define a tilted probability density for the product space XY

sD(x, y) _
e p(x) p(y|x) p(x) ply| x)l St(y)S
Qx,y) = = (15)

sD(x, y) 1-s.,_,\s
e p(x) p(y|x) dxd p(x) ply|x)” “f(y)” dxd
fY fx | x) dxdy fY fX x) ply|x y)? dxdy

where

1/1-s
f p(x) p(y|x)1 s dx]
X 1
f(y) = Qly) = : OSSS—z—
1/1-s
f f p(x) p(y|x) dx dy
Y| X




7/
Mpa

1-s
QUx,y) _ p(x) p(.')’l x)
Qx|y) = — ;. 0<s
W) pw piyl0 1
X

Then
exp[Fl(R)] +2 -1

Part 1. 1 d(R) =z E(R) ——- 1n N

s and F,(R) are related parametrically to the rate R as shown below

2

[ [ e ply] 0217 Q)27 axay
0s < %

0$F1(R)=ln
1-s 2s- 1
p(x) p(y|x) dx| Q(y)
fY[fX x) ply | ]

R=<1
7 L,
- -1
Rcrit B [R]s T2
Also, when R<R__.,
crit
F.(R)=F. (R )=dE(O)=-1nf f p(x) p( x)l/zdx d s=+.
crit vl ’'x Yo M 2

1 exp[Fz(R)] + 4 - 1)
2 3

Part 2. d(R) 2 E([(R+

where F_(R) is related parametrically to the rate R by

.
2

[ [ px p(y| 02175 ()25 axdy
0ss = %

°= FZ(R) - 1-s 2 2s-1
f [ [ px) pty|x) ] Q)" dxdy

exp[Fz(R)d] +4-1

Qx|y)
1
R== f f Qx,y) In—7—+— () dxdy -3 1In 7
E(0)d
1 e + 2 -1
ZRepit —3In ] :
1 SE(0M |, 1
d £ ?

Also, when R <R __.
crit

F,(R) = Fy(R__.) = E(0) = -+1n fY [fX p(x) ply| x)!/ dx:l dy

(16) -
(17)
(18)
(19)
(20a)
(20b)

(21)




PROOF: Given the set Xg’ each of the successive elements of a code word is gener-
ated by first picking the index k at random with probability 1/£ and then taking x, to be
the element. Under these circumstances, by direct analogy with Appendix A, Egs. A-46,
A-41, and A-26 with the index k replacing the variable x, the average probability of

error is bounded by

ple[x ) < exp[—nE(l) (R)]+ exp[—nE(2) (R)] (22)
where

E(ld(R) - (—li-['yﬂld(t,r) - r%(:-] (23)

E(z)(R) - d[U 4(8)-sD_] , (24a)

7g qtr) = In gy 4(tr) (24b)

gﬁ,d(t,r) = fY kZl kZ;l p(k) p(k") p(ylk) exp[(r-t)D(ky)+tD(k', y)] dy; r<0; t<o0

f 2 Z p(ylx ) exp[(r—t)D(x y)+tD(x y)]dy; withr <0; t<0, (24c)
Y i=1 j=1

f(y)
D(ky) = D(xk,y) =pn—— (25a)
P(YI Xk)

Here, f(y) is a positive function of y satisfying f f(y)dy = 1, and D is an arbitrary

constant.
Tg,q(s) =Ingy 4(s) (25b)
gy g(s) = fY 2, P(k) ply| k) eSPEY) gy. o<

f Z p(ylx ) exp[sD(xk,y)] dy; 0ss (25¢)

As in Eq. A-47, let Do be such that
B (R) = EZNR) (26)

Inserting Eqs. 23 and 24a into Eq. 26 yields

1 Do 1 Do
R-q|veatr) c T T g e s | (27)
Thus
1P 1 1 1
dm =[H’Y£,d(s) -ayl,d(t’r)-R]s -r (28)




Inserting Eq. 28 into Eqs. 23 and 24a yields

(2)

_ (1) _
Ey) glR)=E,; R =E"

(R)

(29)

1 v, d(s) Yy, d(r, t)
s - r[— a d * sR

with 0 € s,r < 0; t < 0. Inserting Eq. 29 into Eq. 22 yields

p(elXﬂ) < 2exp[—nE£’d(R))] ,

where E d(R) is given by Eq. 29.

We now proceed to evaluate a bound on the expected value of E, (R) when averaged

4,d
over all possible sets X. The average value of E, d(R), by Eq. 29, is

= () 1 r s
E,Q’ d(R) = _S_—I:[_ayi,d(S)+a’Y£, d(r, t)+ SR] (30)

with 0 € 5,r € 0,t < 0. Inequality (30) is not an equality, since, in general, the
parameters s, r, and t should be chosen so as to maximize Eﬂ d(R) of each individual
input set Xﬂ, rather than to be the same for all sets. From the convexity of the loga-

rithmic function, we have

~lnx = ~In x. (31)

Inserting Eq. 31 into Egs. 24b and 25b yields

—'y!,d(s) = -ln gﬂ,d(s) Z ~ln gﬂ.,d(s) (32)
-7, d(r,'c) 2-lng, d(r,t). (33)

Now, sincer <0, s = 0, we have

' <0, - S . <o. (34)
sS~—-r S —-T

Inserting (32), (33), and (34) into (30) yields

1 s

= 7o r — s 1 —
E,ﬂ,d(R) > Z—=In gﬂ,d(s) -s—<gl gﬂ’d(r,t) s—F R. (35)

=T

From Eqgs. 25c and 14, we have

g, &= [ px)e, (&) dx =2 Y [ [ pply|x P axay
? X ? k=1 'Y X

where the index k has been dropped, since p(xk) = p(x). Thus

gy d(s) = fY fX p(x) p(y|x) eSPGY) dxdy . (36)

From Eq. 24c, we have

10

-




g, ¢t 1) = fX fX plx;, X)) gy glt, T) dxgdx;. (37)
i3

Here, by construction,

= p(xi) p(xj); i#]

p(xi, xj) o (38)
= p(xi)é(xi—xj); i=j

and, by Eq. 14,
p(x) = p(x), for all i. (39)

Thus, from (24c), (37), (38), and (39), we have

gy glmt) =g g+ g, ENOR (40)
i#j i=j
where
g, 4. t) :%Z [ pxp(x) [ plylx,) exp[(r-t)D(x;, yHtD(x,, y)] dydx;dx,
> 2921 =1 "X, "X, Iy ! J J
i#]j i#] i ]

1
=== p(x) p(x") p(y| x) exp[(r-t)D(x, yH+tD(x’, y)] dxdx'd
22 121 jzl fY fx fx' x") p(y| ) exp| X,y y)] dxdx'dy

(41)
with r < 0; t <0, and
gy gt 1) =—12 Z f f p(x;) P(YIXi) exp[rD(xi,y)] dxdy
g 22551 Y X,
1
== p(x) p(y|x) exp[rD(x,y)] dxdy; r <0 (42)
122121 fY fX |
Inserting (25a) into (41) and (42) yields
1) 1-r+t —to T
gy d(r,t) = D) f f f p(x) p(x') ply| x) p(y|x") “f(y) dxdx'dy (43)
AP £ Y "X X!
i#]
with r<0; t=<O0;
gy d(r,t) = '% f f f p(x) ply]| x)l—r f(y)r dxdy (44)

i'= ] £° 7Y "X X!
with r < 0.
In general, f(y) of Eq. 25a should be chosen so as to maximize Eﬂ, d(R) for each
individual input set X[ However, we let f(y) be the same for all sets Xp_ and equal to
the f(y) that maximizes the exponent Ed(R) for the unrestricted continuous set X. Thus

11




inserting Eqs. A-52 and A-53 into Eqs. 43 and 36 yields

g, d(r,'c) = g -1 exp['yd(r t)] = gd(r t) (45)
i#]
gy glr.t) = exp['yd(r)] vl gd(r) (46)
i=]j

Thus, by Eq. 40,
gf,d(r t) = ﬂ gd(r t) + = ) gd(r) (47)

Also, by Egs. A-52 and 36,

gﬂ, d(S) = gle’ d(S) . (48)

Inserting Eqs. 47 and 48 into Eq. 35 yields

F=a—r— r 1 S -1 1
By qB)>5T7gngyls) - =—3 1“[ 7 gg(rt+gey(r) -2 R
-—r 1 _s 1 s 1 gd(r)/gd(r ty+2-1 <
_s—rdlngd(s)-s-rdlngd(r’t)-s—rdln[ “s-r it
Thus
_ r s 1 l—exp Tglr)vglr, t) + £ - 1-|
B, g®) > 5o §vg(s) - g5 g 0) - s-rd 2 i
(49)

Now, the exponent Ed(R) that corresponds to the unconstrained d-dimensional con-
tinuous space X is given by Eq. A-49:

_ 1 Do 1 Do]
Ed(R)——E 'yd(s)-s-;n— = -R + = 'yd(r t) - r—

Eliminating DO yields

E4(R) = - =3 vd(S) 573 vd(r t) - R. (50)

-r

Furthermore, Ed(R) is maximized, as shown in Eqs. A-50, A-51, A-54, A-55 and
A-56, by letting

1/1-s
[ & p(x) ply]x)1 ™S dX] /

f(y) = - 71 (51a)
f f p(x) p(y, x) dx dy
Y X
r=2s-1; t=s8-1 (51b)
For R=2R__..,, s is such that

crit’

12




R=L[s-Dygt)-rge)]; 0<s<

(51c)
where

o=

- Rerit = [R]s=1/2'

If we let the parameters r, s, and t of (49) be equal to those of (50), we have

s 1 exp['yd(r)-'yd(r,t)] +42 -1
Eﬂ,d(R)ZEd(R)-S-r‘Eln[ 7

(52)
The insertion of Eq. 51b yields
—_— s 1 exp[Fl(R)] + 0 -1
= - —_
Eﬂ,d(R) Ed(R) T-=gn 7 s (53)
where
FI(R) = 'yd(Zs—l) - 'yd(2s—1;s—1). (54)
Inserting Eqs. A-52 and A-53 into Eq. 54 yields
F,(R) = 1n f f p(x)p(ylx)2-2s[f(y)]2$-1 dxdy
Y X
' 1-s nl-s 2s-1 '
-n [ [ pe)px)plylx) T py]x) e ST dxdx'dy .
Y X' X
Thus
[ [ ptply| 0219 g(5)25 7 gxay
F.(R) = In X , (55)
1 1-s . 28-1
[ ) =) plylx)' ™ x| 1% dxdy
YL X

where s and Fl(R) are related parametrically to the rate R by Eq. A-60c, for all rates
above R_ .\ = [R]s=1/2‘

As for rates below Rcrit’ we let

s=%; t=-3; r=0. (56)
Inserting Eq. 56 into Eqs. 54 and 55, with the help of Eqs. A-69 and A-71, yields
2
[F ()], /g = ~In fY [fX p(x) ply|x) 1/ 2 dx] = dE (0) (57)
where

E4(0) = [Ej(R)z_,

13




exp[Fl(R)l / ]+ -1
s=1/2

. (R) L
E, 4(R) = E(R) - 71n

£
1 exp[dEd(O)] +42-1
= E(R) --d—ln 7
for R <R_,,- From Egs. 14 and 12 we also have Ed(R) = E(R) for all rates, by con-

struction. The proof of the first part of the theorem has therefore been completed (a

simplified proof for the region R < R is given elsewhere7). Q.E.D.

crit
In order to prove the second part, let us rewrite (49) as

[R L1 exp[-yd(r)—'yd(r,t)+£ —1]

By o 2 5 i 34 -5 i - gin 7
= v4(8) - (r,t) - (58)
“s-r d d s-r d 74
where
i exp['yd(r)—'yd(r,t)] +4-1
R'=R +-a—1n ) (59)

Comparing (59) with (50) yields

1 exp[Fz(R)] +L0-1
(R) E4R") = E (R +51In 7 . (60)

By Egs. 51a, 55, A-57, A-58, A-59, A-60c, and A-60b, F2<R) is related parametri-
cally to the rate R by

[ [ pplyl0® 7 Q)27 axay

F,(R) = In Y X 5 ; 0$s<—;— (61)
[ [f p(x) ply|x)! 7 dx] Q%571 axay
v |’x

exp[F,(R)] + £ - 1 Qlxly)

1 1 1
"= Y =4 —_— <Sg <=
R'=R+=1 Z df [ Qx,y)1n o 0S8 <3 (62)
X Y
for all
' ' - '
R'2R' . [R ]s=1/2 (63)
Inequality (63) can be rewritten
exp FZ(R)I +4-1
1 s=1/2
R=2R __. =< 1n -
crit d 0
dE(0)
_ _1 ., e £ -1
=Repit “q ln 7 (64)

14




dE(0) _
In & [2 l,welet

As for rates below Rcrit ]

s:%, t=-=, 1r=0. (65)

Inserting (65) into (60) and (61) yields

E(0)d
1. e + 4 -1},
Eﬁ’ d(R) = Ed <R +3 In 7 ), R = Rcrit (66)

From Eqs. 14 and 12, by construction, Ed(R) = E(R) for all rates. Thus, the proof
of the second part of the theorem has been completed. Q.E.D.
Discussion: We proceed now to discuss the bounds that were derived in the theorem

above. We shall consider particularly the region 0 € R € R which, as we shall see

crit’
in Section III, is of special interest. From Egs. 16 and 18,
dE(0) ]
— 1. |e +4-1 R <
Eﬂ, d(R) = E(R) 3 ln[ 7 for R Rcrit' (67)
From Eq. 6, we have
= -— S
E(R) = E(0) - R for R <R _ .. - (68)
Inserting (68) into (66) yields
dE(0)
=5 1 e + 4 -1
E, 4(R) = E(0) -R -5 ln[ 7 ] for R < R_ ;- (69)
Now, whenever dE(0) « 1, we have
— S 1+dE(OH-2-1
E,Q,d(R) = E(0) -R-FIn (————-———ﬂ )
o~ _p -+ dE(0)
=~ E(0) - R 51n (1+ 7 )
~ E(0) - R ~ 20, for R < R
- L crit -’
Thus
N 1
EJZ,d(R) = E(O)[l—fi]— R, for R € Rcrit’ and (70)
dE(0) « 1. (71)

Comparing (71) with (68), we see that E, d(O) can be made practically equal to E(R) by

using quite a small r|1umber £, of input symbols, whenever E(0)d « 1. In cases in which
dp(n| &)

lglmax_> 0 and aE # 0 so that p(n| £) can be replaced by the first two terms

dp(n| &)
of the Taylor series expansion, p(n|£&) = p(n]0) + —aE , it can be shown (by

£=0

insertion into Eqs. A-74a-d) that the optimum input space consists of two oppositely

£=0

directed vectors, Emax and _gmax’ for all rates 0 € R < C, and that

15




[ap(n|s>
2 f dg

max

]2
g=0) o,

1 1
BO)-+tc=-1Le¢
27 4 p(n|0)

>

where C is the channel capacity.

Inequality (69) may be bounded by

(R) > E(0) -R -+1n [&ﬂ]

Ey a q 7 S Rt
= E(0) - R ~+1n [H(O0d7In L, 4 (72)

Thus, whenever dE(0) » 1, we have from (72)

—_— 1 E(0)d -1nfy _ 1

Eﬂ’d(R)BE(O)—R—-a-ln [e ]:d—lnﬂ—R (73)
when

1

a—ln 2 « E(0)
and

—_— s 1 E(0)d-1n £

E,Q,d(R) > E(0) -R-7In [e +1]

~ E(0) —é e~lin £-E(0)] _ (74)

when

1

5 1n 2 » E(0)
Comparing Eqgs. 73 with 74 yields

>E. (R) = . <

E(R) = Eﬂ’d(R) ~ E(R);: R Rcrit,dE(O) » 1 (75)
or

E, 4(R) = E(R) (76)
if

L1n 2 = E(0) dE(0) » 1. (77)

d

In the following section we shall discuss the construction of a semioptimum finite
input set Xﬂ for the Gaussian channel. [A semioptimum input space is one that yields

an exponent E, d(R) which is practically equal to E(R).] We shall show that the number

of input vectors £ needed is approximately the same as that indicated by Egs. 75 and 71.

This demonstrates the effectiveness of the bounds derived in this section.

2.3 SEMIOPTIMUM INPUT SPACES FOR THE WHITE GAUSSIAN CHANNEL -
CASE 1

The white Gaussian channel is defined by the transition probability density

16




p(n| &) =

exp |-

in which, by inequality (6a),

L&l <l

Let us define the voltage signal-to-noise ratio A, as

A=,

o

max

\P.

Inserting (79) into (80) yields

=

max

Elmax 4B

o

We shall first discuss the case in which

and proceed with the proof of the following theorem.

(78)

(79)

(80)

(81)

(82)

THEOREM: Consider a white Gaussian channel whose statistics are given by Eq. 78.

Let the input signal power be constrained by (79) and by (82).

Let the input space con-

sist of two d-dimensional oppositely directed vectors. Then the exponent of the upper

bound to the probability of error, E2 d(R) is asymptotically equal to the optimum

exponent E(R).

PROO¥F: From Eq. 7 we have

x= 8,8, ..

The input set X2

el el
Xl"gl;g2)‘~'

1

where E}=§’ =...

2

_ 22 g2
X2—§1,§2,...

2

where S? = 52 =,

- 8q-

consists of two oppositely directed vectors.

From Eqs. 8 and 9 we have

y:nllnz"'

and

-:nd

a
p(y|x) = ﬂ; p(n,| £).
1:
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Inserting Eqgs. 78, 83, and 84 into Eq. 9 yields

2
d (n.-§ )
ply|x,) =] ———— exp| - ——F*%— (85a)
L d/2 d 202
(27)
2
d (n.+& )
ply|x,) =T1 S S exp |- 128X (85b)
A d/2 d 202
(27)
From Egs. 29 and 30 we have
p(e[X ) < 2exp[—nE2 d(R)] (86)
where
Ey g(R) = 55557, o8) ~g 2537, g 1) 525 R. (87)
Let
r=2t+1l; s-1+t; 0<s<— (88)
and let
d n2
1) = ply|0) =TT —L—exp (- (89)
=1 (5md/2 d 20
and
plx,) = plx,) = & (90)

Inserting Eqgs. 88, 89, and 90 into Egs. 24b; 25, and 87 yields

) = =TT Gy () - 725 Gy gesLs-1) -T2 R (91)
2 1 1 s
Yq d(s) = 1n Z f 3p(ylxi) S ply| 0)° dy (92)
’ i=1 'Y
2 1 1-s 1-s 2s5-1

g g(2s-1,8-1) = 1In A fY T Ply]x,) p(ylxj) pl(y| 0) (93)

Inserting Eqs. 85 and 89 into Egs. 92 and 93 yields

d
2 2
(1-s)(n-& )+ n’s
Vg d(s) = ln-é- f 1 exp | - mgx dn
’ n Vre 20
d
. (1-s)n+g__ )%+ n%s
+ f exp |- 5 dn
n V2rno 20
2 2
& (1-s) sd £ ds(1-s)
=1n% Zexp(——rnﬂ-———— = - -max . 0<s <L (94)
2 2 2
20 20

18




-1t
g, q(2s-1,8-1) = In5 fn

dn
A 27 o 2

) 2(1-s)(n-€__ )%+ (25-1) n°
exp | -
20

d

2 2
2(1-s)(n+§ )"+ (28-1) n
+ f 1 exp (_ max dn
n

AMeno 20‘2

( (1-s)(n =, )?~(1-8)n+E__ )~(2s-1)n°
exp| ~

dn
202

+2| [
n

2w o

2 2 2
L 2 exp |- smaxd[zu s)-4(1-s)°] + zexp |- 2(1-s) & .d .
4 20'2 20'2 / ’

1
< = 0ss =
53

N

1
0 2

) (95)

. 2 _ ’max
Now, since by (82) dAmax ————————02 « 1, we have

2 2
(2s-1,s5-1) = In+ |4 --2—5;@—}5-(1[2(1—8)—r(1—s)2] ——2—511‘33‘-d 2(1-s)
Y2,d ’ =0y a2 502

2
] - —max

20'2

=1n 2ds(1-s)

2

'z_lz’_a_)g. - = &
=~ 202 2ds(1-s) 272,d(s). (96)

Inserting Eqs. 94 and 96 into Eq. 91 yields

€
_ .| 1=2s_ 2s L.y omax s
By, aR) = +[1~s " 1—s:ls(1 92 TT-sR

1
—R: 0 < < -
3 S 9

_max __S np. <g <-4
5 - R; 0ss<+5. (97)

Maximizing E, d(R) with respect to s yields

-1 < 1,2
553 for R Rcrit -8 Amax
/2R 1,2
s=1 iy for R = Rcrit = 8Amax
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Thus

~Lla2  _p. L a2
EZ, d(R) 4 Amax R; R 8 Amax (98a)
~dl A2 _ R .o L2 <R <d a2
E, ®)=1A 2A/;+R, FAL . SR<LaAZ (98b)
Comparing Eqs. 98 with the results given by Shannon yields
E(R) = E, 4(R) = E(R) (99)

Shannon's resultsl are derived for the power constraint of Case 2, and are valid
also in cases where the average power is constrained to be equal to P. The set of
signals satisfying Case 1 is included in the set of signals satisfying the average power
constraint above. Thus, Shannon's exponent of the upper bound to the probability of
error is larger than or equal to the optimum exponent E(R) which corresponds to the
constraint of Case 1. Thus, from (99),

E, 4(R) = E(R) (100)
for A2 d« 1. Q.E.D.
max

We shall now discuss cases in which the condition of (82) is no longer valid. The
first step will be the evaluation of E£ d(0) for the white Gaussian channel. From
Eqs. A-69 and A-71 we have

E, d(O) = —%ln Z Z p(x) p(x’) f p(ylx)l/2 p(y[x')l/2 dy . (101)
’ XL XQ Y

Inserting Eqgs. 9 and 78 into (101) yields

2 2
(77 1—51) - (T’ 1—§{)

1 . 1
E, (0)=-=1n p(x) p(x') n exp| - d (102)
£,d d é ;(' i=1 j:; Vore 402
where x=’g°1, 52,...,§’d, and x' = g!, "2,5('1 Thus
. d (g, -gn?
Eﬁ,d(o) = --Cll-ln Z Zp(x)p(x’)U exp[—-—12;
X X! i=1 8o i
d (g -g1)?]
= -%m Z Zp(x) p(x') exp —.Z —1——21— . (103)
X X! i=1 8o _J

Let D be the geometrical distance between the two vectors x and x', given by
2 2 d 2
DT = bex'l = 3 (5-€p°. (104)

Then, inserting (104) into (103) yields

20




| x—x|?

Eﬁ)d(o) = "Tli' 1n Z Zp(x)p(x’) exp -——8—-2—— (105a)
X XI o
or
E, .(0)=-+1 ' p(D) D2 (105b)
2,d "EHZZP expl-—>5 |- 5
X X' 8o

Here, p(D) can be found from p(x) and p(x').

When the input set X2 consists of two oppositely directed vectors given by Eqgs. 83,
84, and 90, from Eq. 103, we obtain

2
£ d
=11 - _max
Ez,d (0) = d1n21+exp 22>
o
1 1 Arznaxd
= —a'ln—2~ 1+ exp| - 5 . (106)

2 ~ A2 . .
For Amaxd/z « 1, we have Ez’ d(0) = Amax/4 as in (98a). For higher values of
peak signal-to-noise ratio let d = 1. Then, from (106},

2
1 Amax
EZ, 1(0)— —Ingl1+exp|-—5 . (107)
In Table I, Ez 1(0), together with C2 e the rate for which E2 1(R) = 0, is given. Also

given in the same table are the channel capacity C and the zero-rate exponent E(0),

that correspond to the power constraint of Case 2. (The channel capacity has been

Table 1. Tabulation of Ez’ 1(O) and C2, 1 Vs Am

ax’
5,1 1
x| B2, 1@ £(0) o - c s L
1 0.216 0.22 0.99 0.33 0.346 | 0.99
2 0.571 0.63 0.905 0.62 0.804| 0.77
3 0.683 0.95 0.72 0.69 1.151] 0.60
4 0.69 1.20 0.57 0.69 1.4 0.43
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computed by F. J. Bloom et al.,9 and E(0) is given by Fano2 and is also computed in
Appendix B.) The channel capacity C and the zero-rate exponent E(0) for Case 1 are
upper bounded by the C and E(0) that correspond to the power constraint of Case 2.
From Table I we see that the replacing of the continuous input set by the discrete input

set X,, consisting of two oppositely directed vectors, has a negligible effect on the

2,

exponent of the probability of error because Afnax % 1.
T ¢ MAX

X

X2

X3

X6

_gMAX_j

L

Fig. 4. Semioptimum input space for the Gaussian channel.
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Let us consider, next, the case in which the input set Xﬂ

dimensional vectors as shown in Fig. 4.

vectors is

consists of £ one-

The distance between each two adjacent

2€ max
Diin * 7 -1 (108)
Let
p(xi):—;;; i=1,...,2. (109)
Inserting (108) and (109) into (105) yields
1 ﬂ\ (kDmin)Z
E, (0)=-ln—=5| 2+ 2 (£-k) exp | -—2J | (110)
2,1 2 2
£ k=1 8o
Thus, since 4k < k%; k = 2, we have
2 2
D2 . £ 4kD? .
E, (0)> -In—L| 0+ 24-1) exp(-—22) 4 5(5-2) ) exp| - —in
2,1 2 2 2
fe 8o k=1 8o
2 2
, sznin exp(—4kDmin/8<r )
> - 1n =] 0+ 2(0-1) exp| -—2I2] _ 2(p-2)
22 8o2 2 2
¢ exp(—4D . /8¢ ) -1
min
1 D2 in 1
Z-Inyql+f 2exp|-—75—]+ 2 (111)
8o exp(4Dr2nin/8tr?') -1
Now define K as
_ 1 - _max <
£ -1 K 0 =K. (112)
Inserting (112) and (81) into (108) yields
Dmin = 20K. (113)
Inserting (113) into (111) then yields
KZ) 2
> - B e
E2, 1(0) In (1+KAmaX) In {1+ 2exp|-5 )+ Ton? (114a)
-1
If we choose £ so that K =2 1, we have
(114b)

E2, 1(0) = 1n (1+Amax) -1n 2,52.

From Eqgs. 114b and 112, for A » 1, we have
max
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E2, 1(0) =~ In Amax (115a)

In £ =1n Am = E2, 1(O). (115b)

ax
On the other hand, it can be shown (Appendix B) that

~nr
< «
E(0) <ln A ;A » 1. (116)

Thus, by (116) and (115), we have

Ez, 1(R) =~ E(R); R< Rcrit’Amax »1. (117a)
For

In £ = E(0); d=1. (117b)

Comparing Eqs. 71 and 75-77 with Eqgs. 100 and 117, respectively, gives the result
that the lower bound on Eﬂ d(R) previously derived is indeed a useful one.

2.4 THE EFFECT OF THE SIGNAL-SPACE STRUCTURE ON THE AVERAGE
PROBABILITY OF ERROR - CASE 2

For a power constraint such as that of Case 2, we consider the ensemble of codes
obtained by placing M points on the surface of a sphere of radius 4[1-‘55

The requirement of Case 2 can be met by making each of the m elements in our
signal space have the same power dP (see Fig. 3). (The power of each word is mdP =nP
and therefore Case 2 is satisfied.) This additional constraint produces an additional
reduction in the value of Eﬂ,d(R) as compared with E(R). Even if we let the d-
dimensional input space X, be an infinite set (£ = =), the corresponding exponent Ed(R),

in general, will be

Ed(R) < E(R). (118)

The discussion in this section will be limited to the white Gaussian channel and to

rates below Rcrit' Thus

Ed(R) = Ed(O) -R; R= Rcrit' (119)

Let

E,(0) = E(0) - k (A% E(0), (120a)
where

A2 - % ) (120b)

o
Then, from (119) and (120), we have
_ k(A2 R
Ed(R) = E(0) kd(A JE(O) -R; R s R it - (121)
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We shall now proceed to evaluate kd(Az) as a function of A2 for different values
of d.
The input space X 1is, by construction, a set of points on the surface of a d-

dimensional sphere of radius 4/dP.

Fig. 5. Cap cut out by a cone on the unit sphere.

Let each point of the set X be placed at random and independently of all others with
probability measure proportional to surface area or, equivalently, to solid angle. The
probability Pr(OSGSGI) that an angle between t{wo vectors of the space X is less than or
equal to 6, is therefore proportional to the solid angle of a cone in d-dimensions with
half-angle 0,- This is obtained by summing the contributions that are due to ring-
shaped elements of area (spherical surfaces in d-1 dimensions of radius sin 6 and
incremental width de as shown in Fig. 5). Thus the solid angle of the cone, as given
by Shannon,l is

(d-1) w(d—l)/z )

Q(e,) = [ 1 (sin 0092 ge. (122)
1
r d+1) 0
2
Here we have used the formula for the surface sd(r) of a sphere of radius r in d-
dimensions, sd(r) = 1rd/2 rd—l/l"(d/ 2+1) .

From (122), we have
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(o) (@

Pr(0se<g,) =

0
_l)ﬂ(d—l)/z{) 1 (sine)d72 qe

Qm)

d

dﬁ(r d+

)

)

2

2

r 4,
d—l( B

)

() ety
)

f 1 (sin G)d_2 de
0

6

[ ! (sine)@2 qo.

(123)
0

The probability density p(e) is therefore given by

p(e) =

dPr(0se< 91) 1 (r

4
2

de

1 VT

(124)

(sin e)d-2 .
d-1
F(T)

Now, by (104), the geometrical distance between two vectors with an angle 6

between them (see Fig. 5) is

20
9).

D2 = 4(dP sin

Inserting (125) and (124) into (105b) yields

7
Ed(O) —%lnfo p(6) exp

i

V7 r(55)

-1
d

Inserting (120b) into

< r{s)

r(s)

A
VT oo

_(d—_g_l)

lln

Ed(0)=—d

1
Kl
or

1
Ed(0)=-31n<

\

Equation 127 is valid for all d = 2.

(126) for d =

(125)
(—% sin2 g de

20

T 2 0 d-2

f exp (———2- sin 5 (sin 8) de (126)
0 20
2 yields

T 2
[ exp(— 42 sin g>(sin 0972 g6 (127a)
0

exp (—

2 T 2
Q—?—) f exp(-c-i—?— cos e) sin 8972 gg
0
(127b)

As for d = 1, it is clear that in order to satisfy the

power constraint of Case 2 the input space X must consist of two oppositely directed
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vectors with an amplitude of 1[1_5 Thus

A2 _aA%-p,
max

Inserting (128) into (106) yields

2
~A%/2
l+e
El(O) = -1n (——2—-—-)

In Appendix B we show that for all d
E,(0) =L A%-R0); Afd«1; a2

~4d-11
Ed(o) )

A2, A251; da=2

Thus

~4d-1
Ed(O) :——&—-E(O)

Inserting Eqgs. 129 and 130 into Eq. 120 yields, for any d,

B L (A2
Ed(O) = E(0) kd(A ) E(0),
where
kd(Az) -0; A2q«1

Ao) ~. L. 2
kd(A2) =3 A% » 1.

(128)

(129)

(130a)

(130Db)

(130¢)

(131)

The qualitative behaviour of kd(A2) as a function of A with d as a parameter is

illustrated in Fig. 6. From (127a) it is clear that Ed(O) is a monotonic increasing

Table 2. Tabulation of kl(Az) and k3(A2) vs A

a2 k, (%) k3(?')
1 0.01
4 0.095 0.046
9 0.28 0.095
16 0.43 0.135
100 0.7 0.2
104 7 0.9 0.28
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Fig. 6. Plot of k(A% vs A%

function of A2, The functions kl(Az) and k3(A2) are tabulated in Table II.

We shall now evaluate the effect of replacing the continuous d-dimensional input
space X by a discrete d-dimensional input space Xg, which consists of £ vectors.

Let each of the m elements be picked at random with probability 1/£ from the set
Xﬂ of £ vectors (waveforms), Xﬁ = {xk:k=1, e, 2}1,

Let the set X2 be generated in the following fashion: Each vector Xy is picked at
random with probability p(xk) from the ensemble X of all d-dimensional vectors

matching the power constraint of Case 2. The probability p(xk) is given by

POG) = POy 5 K= Lt

where p(xk) is the same probability distribution that is used to generate Ed(O). The
following theorem can then be stated. .
THEOREM 2: Let E, d(O) be the zero-rate exponent of the average probability of

-

error for random codes constructed as those above. Let E, d(O) be the expected value

of E, d(O) averaged over all possible sets X,. Then

exp[dEd(O)] + 4 - 1)
. (132)

1

The proof is identical with that of Theorem 1. Inserting (131) into (132) yields
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exp[dE (0)] + £ - 1) (133)
. 133

— 2 1
Eﬁ,d(o) = E(0) -k (A%) E(0) _Eln( N

Thus there is a combined loss that is due to two independent constraints:

1. Constraining the power of each of the input vectors to be equal to dP; the
resulting loss is equal to kd(Az)E(O).

2. Constraining the input space to consist of £ vectors only; the resulting loss is
exp[dEd(O)] +42-1

L

We now evaluate the effect of these constraints at high (and low) values of A2. From
(132) we have

equal to Eln

- 1 exp| dEd(O)] + 4
Eﬁ,d(o) = Ed(O) ——aln 7

=E 0 -1 (exp(dEd(O) “In o)+ 1) . (134)

Thus, for E(0) ~1n A% » 1, we have

——

3
—_— 1. 1 _d-11nA
Eﬂ’d(o)zdmﬁ, d1r1£<< Ed(o)_—d — (135a)
E__(0) ~ E (0); lanz»E(O)e————d"l————lnAz (135b)
g, al® = E40) 3 O =g

On the other hand we always have E£ d(0) < Ed(O), and inserting it into (135b) yields

~ _d=-11. .2
E, 4(0) =E4(0) = n A

£+ (136)

1
for 3 In £ » Ed(O).

Whenever Azd « 1, an input space X2 that consists of two oppositely directed vectors
with an amplitude of //dP yields the optimum exponent E(R) for all rates 0 € R < C, as

shown in section 2. 3.

2.5 CONVOLUTIONAL ENCODING

We have established a discrete signal space generated from a d-dimensional input
space which consists of £ input symbols. We have shown that a proper selection of £
and d yields an exponent Eﬁ, d(R) which is arbitrarily close to the optimum exponent
E(R).

We proceed to describe an encoding scheme for mapping output sequences from an
independent letter source into sequences of channel input symbols that are all members
of the input set XB' We do this encoding in a sequential manner so that sequential or
other systematic decoding may be attempted at the receiver. By sequential encoding

we mean that the channel symbol to be transmitted at any time is uniquely determined
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by the sequence of the output letters from the message source up to that time. Decoding
schemes for sequential codes will be discussed in Section III.

Let us consider a randomly selected code with a constraint length n, for which the
size of M(w), the set of allowable messages at the length w input symbols, is an expo-

nential function of the variable w.

Mw) < A " 1 <wsm, (137)

where A1 is some small constant = 1.

A code structure that is consistent with Eq. 137 is a tree, as shown in Fig. 7. There
is one branch point for each information digit. Each information digit consists of ''a"
channel input symbols. All the input symbols are randomly selected from a d-
dimensional input space Xﬂ which consists of £ vectors. From each branch point there
diverge b branches. The constraint length is n samples and thus equal to m input
symbols or i information digits where i = m/a.

The upper bound on the probability of error that was used in the previous sections
and which is discussed in Appendix A, is based on random block codes, not on tree
codes, to which we wish to apply them. The important feature of random block codes,
as far as the average probability of error is concerned, is the fact that the M code
words are statistically independent of each other, and that there is a choice of input
symbol a priori probabilities which maximize the exponent in the upper bound expression.

In the case of a tree structure we shall seek in decoding to make a decision only
about the first information digit. This digit divides the entire tree set M into two sub-
sets: M' is the subset of all messages which start with the same digit as that of the
transmitted message, and M is the subset of messages other than those of M'. It is
clear that the messages in the set M’ cannot be made to be statistically independent.
However, each member of the incorrect subset M' can be made to be statistically
independent of the transmitted sequence which is a member of M’.

Reiffen5 has described a way of generating such randomly selected tree codes when
the messages of the incorrect subset M' are statistically independent of the messages
in the correct subset M/’.

Thus, the probability of incorrect detection of the first information digit in a tree
code is bounded by the same expressions as the probability of incorrect‘;e:c_ection of a
message encoded by a random block code.

Furthermore, these trees can be made infinite so that the above-mentioned sta-
tistical characteristics are common to all information digits, which are supposed to
be emitted from the information source in a continuous stream and at a constant rate.
These codes can be generated by a shift r'egister,5 and the encoding complexity per
information digit is proportional to m, where m = n/d is the number of channel input
symbols per constraint length.

Clearly, the encoding complexity is also a monotonically increasing function of £

(the number of symbols in the input space X). Thus, let Me be an encoding complexity




measure, defined as

M =f{m=n
e

Qs

(138)

The decoding complexity for the two decoding schemes that will be discussed in
Section III is shown to be proportional to m®, 1 € a < 2, for all rates below some
computational cutoff rate Rcomp'
Clearly, the decoding complexity must be a monotonically increasing function of £.

Thus, let Md be the decoding complexity measure defined as

Md=£m =n" . (139)

We shall discuss the problem of minimizing Me and Md with respect to £ and d,
for a given rate R, a given constraint length n, and a suitably defined loss in the value

of the exponent of the probability of error.

2.6 OPTIMIZATION OF ¢ AND d

This discussion will be limited to rates below Rcrit’ and to cases for which the
power constraint of Case 1 is valid. Let L be a loss factor, defined as

B E(0) - Eﬁ’ d(O)

L= - (140)
E(0)
Now, for rates below Rcrit’ from Eq. A-70, we have
= _- . S
E!Z, d(R) EL d(O) R; R Rcrit'

Thus

E, (R)=E(0)(1-L)-R; R <R

£,d (141)

crit

Therefore specifying an acceptable Eﬂ d(R) for any rate R € R is equivalent to the

specification of a proper loss factor L. erit
We proceed to discuss the minimization of Me and Md with respect to £ and d, for
a given acceptable loss factor L, and a given constraint length n.
For dE(0) « 1, from Eq. 71, we have

B d® 7o
- crit”

1 —7>; dE(0)« 1, R <R (142)
E(0)

Inserting (140) into (142) yields

2 < E(0)dd« 1; R <R

1.
L’ crit *

Thus, by Egs. 138 and 139, we have
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M <:2. EOOMd«]1 (143a)

e Ld
02

My S—; E(Od«!1. (143b)
Ld

The lower bounds to Me and Md decrease when d increases.

Thus, d should be chosen as large as possible and the value of d that minimizes

M, and M, is therefore outside the region of d for which E(0)d « 1. The choice of £

should be such as to yield the desired loss factor L. Also, by Eq. 72,
I 1 eE(O)d
= - = = . <
Eﬂ,d(o) = E(0) d In 7 —+t1); R Rcrit' (144)

This bound is effective whenever ¢ » 1. This corresponds to the region E(0)d » 1. (In
order to get a reasonably small L, £ should be much larger than unity if E(0)d » 1.)
Inserting (144) into (140) yields

E(0)
L =—2t 1:1(’31Z +1).
dE(0)

Thus

JE(0)d
g=— (145)
SLE(0)d _

Inserting (145) into (138) and (139) yields

eE(O)d

M <
e

o

(146a)

JLEOMd _

2 E(0)d

n__e "
Md$ 2 . (146b)
d eLE(O)d _1

From (146a), the bound to Me has an extremum point at

= e .

(147)
E(0)d(1-L) -1

if a solution exists. Thus, for E(0)d » 1,
1__ LE(0)M
1-L 4
or

1
1-L~

dE(0) =ﬁ-1n

Now, for reasonably small variables of the loss factor L, we have

dE(0) = 1. (148)
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This point is outside the region of d for which dE(0) » 1.

From (146b), the bound to Md has an extremum point at

E(0)d - 2

= (LE(0d, (149)
E(0)d(1-L) - 2

if a solution exists. Thus, for E(0) » 1,
1 _ eLE(O)d
1 -L ’
or

1
1-L~

dE(0) = I%m

For reasonably small variables of the loss factor L, therefore, we have dE(0) = 1.
This point is outside the region of d for which dE(0) » 1.

We may conclude that the lower bounds to Me and Md are monotonically decreasing
functions of d in the region dE(0) « 1, and are monotonically increasing functions of d
in the region dE(0) » 1.

Both Me and Md are therefore minimized if

~ - < <
E(0)dd ~1; E(0)<1, R Rcrit (150a)
And since d = 1, if
d=1; E0)¥1, R<R (150b)

crit ’

The number £ is chosen to yield the desired loss factor L.
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III. DECODING SCHEMES FOR CONVOLUTIONAL CODES

3.1 INTRODUCTION

Sequential decoding implies that we decode one information digit at a time. The
symbol 54 is to be decoded immediately after Si_1- Thus the receiver has the decoded
set (..., S—l’ so) when it is about to decode S;- We assume that these symbols have
been decoded without an error. This assumption, although crucial to the decoding pro-
cedure, is not as restrictive as it may appear.

We shall restrict our attention to those 5y that are consistent with the previously

decoded symbols.

3.2 SEQUENTIAL DECODING (AFTER WOZENCRAFT AND REIFFEN)

Let u be the sequence that consists of the first w input symbols of the transmitted
sequence that diverges from the last information digit to be detected. Let u")V be a
member of the incorrect set M. Therefore u"” starts with an information digit other
than that of the sequence u. Let Ve be the sequence that consists of the w output
symbols that correspond to the transmitted segment ug - Let

p(vw)

Dw(u,v) =1n (151)

p(leuw)

We call this the distance between U and Vo where

W
p(vw) =TT p(yi)

i=1
w
p(vw‘uw) = H p(y-llxi)

Let us define a constant D'lv given by

. k.
P(Dw(u,v)aww) <e J, (152a)

where kj is some arbitrary positive constant that we call "probability criterion' and is
a member of an ordered set

K = {k:kak._

oAk =E(R)n}, (152b)

max
where A = 0 is a constant.

Let us now consider the sequential decoding scheme in accordance with the following
rules:

1. The decoding computer starts out to generate sequentially the entire tree

set M (section 2.5). As the computer proceeds, it discards any sequence u‘:v of
length w symbols (1 < w < m) for which the distance D_(u’,v) > D.. (D is for
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the smallest ""probability criterion" k).

2. As soon as the computer discovers any sequence M that is retained through
length m, it prints out the corresponding first information digit.

3. If the complete set M is discarded, the computer adopts the next larger cri-

terion k., and its corresponding distance ng; (1 <w < m).

4. ’I%he computer continues this procedure until some sequence in M is retained
through length m. It then prints the corresponding first information digit.

When these rules are adopted, the decoder never uses a criterion K. unless the
correct subset M’ (and hence the correct sequence uw) is discarded for kj-—l' The
probability that u is discarded depends on the channel noise only. By averaging both
over all noise sequences and over the ensemble of all tree codes, we can bound the

required average number of computations, N, to eliminate the incorrect subset M'.

3.3 DETERMINATION OF A LOWER BOUND TO R
REIFFEN®’® DECODING SCHEME

COMP OF THE WOZENCRAFT-~

Let N(w) be the number of computations required to extend the search from w to
w + 1. Using bars to denote averages, we have

N-Y N,
w

N(wr) may be upper-bounded in the following way: The number of incorrect messages
of length w, M(w), is given by Eq. 143.
M(w) < A eTRY

The probability that an incorrect message is retained through length w + 1 when the

criterion kj is used is given by
[ < il
Pr[Dw(u , V) DW|J:|. (153)

The criterion kj is used whenever all sequences are discarded at some length \w

(1/w < X\ € m/w) with the criterion k. ..
j-1

Thus the probability Pr(j) of such an event is upper-bounded by the probability that

the correct sequence u is discarded at some length \w. Therefore

NAY > j-1
p(j) ; Pr(D)\W(u,vPD)\w) . (154)
Thus, by Egs. 143, 153, and 154,

N < &, "R % Pr<Dw(u',v)$D1vij) Pr(j) . (155)

Inserting (154) into (155) yields
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o) dwR ¥ ' i, j-1
N(w) < Ale Z Pr(Dw(u ,V) $DW, d)\w(u, v) ZD)\W ) . (156)
LA

Inserting (156) into (152) yields

S< Vv wdR r oyl > i1
N % j Ae Pr[DW(u ,v)SDL;D, (u,v)ZDJ 0 (157)
WA,

We would like to obtain an upper bound on
D (' v)<DI >pil
Pr _Dw(u ,V) < Dw’ D)\W(u, V)= Diw

of the form

~

' < . > -1 <
Pr-DW(u,v) Dw’D)\w(u’V)>D)\w] Be

R d
v, (158)

where B is a constant that is independent of w and \, and R is any positive number
which is such that (158) is true. Inserting (158) into (157) yields

*
W, Jj, A
where k = BAl'
*
The minimum value of R , over all w, \, and j is called “Rcomp'" Thus
. *
Rcomp = ;mvrvl {rR"}. (160)

Inserting (160) into (159) yields

T < _ _
N ) Kexp[ (Romp R)wd] .
W, A
For R < Rcomp’ the summation on w is a geometric series that may be upper-
bounded by a quantity independent of the constraint length m. The summation on X\
contains m identical terms. The summation on j will contain a number of terms

proportional to m. This follows because the largest criterion, k. , has been made
max

equal to E(R)n = E(R)md. Thus for rates R < Rcomp’ N may be upper-bounded by a

quantity proportional to m2. Reiffen6 obtained an upper bound

R < E(0).
comp
It has been shown® that Rcornp = E(0) whenever the channel is symmetrical.
We proceed to evaluate a lower bound on Rcomp' From Eq. 151, we have
AW AW
p(y;)
D, (u,v) = Z d(x,y) = Z In —2— (161a)
w e £

i=1 i=1 p(yilxi)
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D _(u',v) = Z d(x',y) = Z In—>3—
w i=1 i1 p(y;x!
i1
Thus, by the use of Chernoff bounds (Appendix A),
I ) < AW(y(s)-sy(s))
Pr(D)\w(u,v)ZD)\w) <e )
By Eqgs. A-27, A-29, and 161a,

v(s) = 1n Z fY P(x) p(y|x) eSd(x’ y) dy

\Y%

=1nz f P(x)p(y!x)l—sp(y)S dy; =20
Y

and
DJ

y(s) =%

AW

Thus, by (152) and (162),
>pl | < AW(Y(S)=sY'(s)) _ -kj
Pr[D)\w(u, v) = D)\w] e e
and
I '
Dy, = AWy (s).
Here, s is determined as the solution of

K]
v sy'(s) - vy(s).

In the same way,
PT[D (u’,v) < Dj] < ew(ﬂ(t)“tp'(t))
W ’ w .

By the results of section A.3 and Eq. 161b,

1]

pt) = In Z fY P(x') ply) etd(x', y) dy

!
Xy

ny f P(x") ply) U ply, x0Tt dydx’; ¢
XI Y
£
and
DJ
]J»'(t) = _M .
AW

37

<

for all

0

(161b)

(162)

(163)

(164)

(165a)

(165b)

(166a)

(166b)

(166¢)




Returning to (158), we find that

' < . > j-1 < ? < J
Pr[Dw(u , V) Dw’ D)\W(y,v) = wa ] Pr[DW(u , V) Dw]'

Also,

[ ’ < .] . = J—l < =
Pr_DW(u , V) Dw’ D)\w(u, V) D)\w ] Pr[Dkw(u, v)=D

Thus, by (167), (165), and (166),

b (0 v <Dl > j-l]
Pr Dw(u ,V) S Dw’ D)\W(u,v) = D)\w

< 3 ' < il ' > i-1
mm{Pr[Dw(u ,V) Dw], Pr[D)\w(u , V)= wa J}

- ]
min{e“(t) te (t); exp[-kj_l]}
Now (see 152b) kj = kj—l + A; A = 0. Thus by (165a)
. - !
exp[—kj_l] = eAexp[ -kj] =e e('Y(S) SY (S))W,
where
pi
Hs) = —X¥
v'(s) = -
and
kI
_ ' S Sl
v(s) - sy'(s) o
Therefore, inserting Eqs. 169 into (168) yields
Pr{D_(u,v)<DJ;D. (u,v)=DI1
w7 w AW AW
= eA min {e
Thus, if we choose
sk
R™ = max {—y(sHsy'(s); —p(tHtp'(t)}

or
R* = —;—{—vy(s)+s'y'(s)—p(t)+t|¢'(t)} s

then Eq. 158 is valid. Inserting (171) into (160) yields
= min%{~y(s)+s'y'(s)—p(t)+tp'(t)} .

R
comp

Now, by Eqgs. 164 and 166,
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(167a)

(167Db)

(168)

(169a)

(169b)

(169¢)

(170)

(171)

(172)




p(y)

Y [ P(X)p(ylx)l_s p(y)° 1n dy
ey - XL~ bl (173a)
y'(s) = — a
Y [ PGyt px)® dy
Xy, Y
- p(y)
. LS P(x) p(y)  ply|x) 7 1n dy
) = hi Pyl (173b)
M = .
Y [ P ey ay
XQ Y
If welet t =8 -1, we have
pl(t) = v'(s);  plt) = y(s). (174)
Hence
Reomp > min[(2s-1)y/(s)-2(s)] . (175)
The minimum occurs at that s, for which
[(2s-1)y"(s)-2v(s)]' = O, (176)

which corresponds to s = 1/2. Also, [(1-2s)y'(s)-2v(s)]"” = 2¢4"(1/2) = 0, since y"(1/2)
is the variance2 of a random variable. Thus, s = 1/2 is indeed a minimum point,
Inserting (176) into (175) yields

1
Rcomp > —’Y(?) : a7

Now, by Eq. 163,

Y(%) =1n fY 2 P(x)p(ylx)l/?‘p(y)l/2 dy, (178)
Xy

where p(y) = Z P(x) p(y|x). Therefore
X

2
27(-12-) =1n {f Z p(x)p(ybc)l/zp(y)l/2 dy}
Y Xy

2
- m{fY g 2pt/? dy} , (179)

where

2
gy)={), p(X)p(ylx)l/z} .
X

By the Schwarz inequality,

1/2 ,.\1/2 }2 < B
(y) (y) d < gly)dy ply)dy = gly)dy (180)
{fY g(y)" “ply y fY fY y fY y
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Inserting (180) into (179) yields

P
2y(i)<1n f Zp(x)p(ylx)l/z dy . (181)
2 Y| %,

Inserting (33) into (177) yields

R > -1 f z ( 1/2 2
> -3 p(x) p(y|x) dy . (182)
Y X

Now, by Egs. A-69 and A-T71, we have

2
-1n f [Z p(x)p(ylx)l/z] dy

YXﬂ

which is equal to the zero-rate exponent E (0) for the given channel. By a proper

£,d
selection of p(x) and the number of input symbols, E, d(0) can be made arbitrarily
close to the optimum zero-rate exponent E(0). Thus

1
Rcomp >3 Eﬂ, d(o) (183)

and for semioptimum input spaces

R = =E(0). (184)

We have been able to meaningfully bound the average number of computations for
discarding the incorrect subset. The harder problem of bounding the computation on
the correct subset has not been discussed. A modification of the decoding procedure
above, adapted from a suggestion by Gallaager12 for binary symmetric channels, yields
a bound on the total number of computations for any symmetric channel. However, no

such bound for asymmetric channels has been discovered.

3.4 UPPER BOUND TO THE PROBABILITY OF ERROR FOR THE SEQUENTIAL
DECODING SCHEME

Let us suppose that we (conservatively) count as a decoding error the occurrence
of either one of the following events.
1. The transmitted sequence p and the received sequence v are such that they

fail to meet the largest criterion Kk, . The probability of this event, over the
max
ensemble, is less than mexp[—k. .
Imax
2. Any element p' of the incorrect subset M, together with the received v, satis-

fies some k. < k. when the jth criterion is used.
max
An element of M'" picked at random, together with the received Vo has a probability

of satisfying some kj equal to
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Z Pr[D (u’,v) < D:j ; k. is used].
- m m" ]

J
Since the probability of a union of events is upper-bounded by the sum of the probabili-

ties of the individual events, the probability that any element of M'’ together with the

received signal v satisfies kj is less than
SRy Pr[D (u',v) <DJ; k. is used].
i m m’ 7]

The two events stated above are not in general independent. However, the proba-
bility of their union is upper-bounded by the sum of their probabilities. Thus the
probability of error p, may be bounded by

< R mdR ’ > j. .
P mexp[ Kj ]+ e Z Pr[Dm(u ,V) Dm, kj is used] (185)
max j

It has been shown by Reiffen5 that for channels that are symmetric at their output,
0 d(R) is the
optimum exponent for the given channel and the given input space. (See Appendix A.)

the probability of error is bounded by p_ < mexp(—EQ d(R)n), where E

We proceed to evaluate (185) for the general asymmetric memoryless channel. The
event that kj is used is included in the event that u’, together with v, will not satisfy

the criterion k. ,, or D_(u',v) = D37l Thus
- m m

j-1
' < i. 3 < J > ' > j-1
Pr[Dm(u ,V) Dm, kj is used] Pr[Dm Dm(u ,V) Dm ] (186)

Inserting (186) into (185) yields
i
P < mexp|-k. + edmR Pr[D (u',v)<D max]. (187)
e Imax m m

Now, by (152), Dr:'in is chosen so as to make

jmax]
< —
Pr[D (u,v)=D exp[ K, ax].

Also, by (162),

B0,y (093 DLpe¥] < PHEE s

where

D‘]max
yHs) = 22—
m

Thus, we let —kJ. = m[y(s)—y'(s)]; therefore

exp[-k;] = emlvs)-sve)l; 55, (188)
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where
J
p max

v'(s) -m
m

From (166), we have

i it
Pr'ED (@', v) < d max} < -ty < (189) -
m m
where
Djmax
w'(t) = _m
m
Inserting (188) and (189) into (187) yields
P < m[em(’y(s)-sy '(S))+ em(dR+|~L(t)—t}l’(t))] (1903)
e 2
Imax
where p'(t) = v'(s) = Dm ; (190b)
By (174), we find that (190b) is satisfied if we lett = s - 1. Thus, by Eq. 174,
P < m[em((8)-sv/(s)), m(dR+v(s)~(s-10y'(s))] (191)
o .
Making v(s) = sy'(s) = dR + v(s) - (s-1)y'(s), we obtain
- !
P, < ome™(Y(8)=s7 () _ 5 exp[—nESq(R)] , (192a)
where —é—'y'(s) =R, and (192b)
1
Esq(R) =3 (v(s)-svy'(s)). {(192¢)
The rate that makes Esq(R) = 0 1is the one that corresponds to s = 0, since
{’Y(s)—s'y'(s)}lszo - 0. By Eq. 192b,
[R]__, = -L+%s)
s=0_ ~27 _
s=0
Also, by Eq. 173a,
p(y)
—cll—‘y'(s) = —% Z f P(x) p(y|x) In dy .
s=0 X, Y p(ylx)
Thus
= : S
Esq(R) =20; R [R]s=0’ (193a)
where
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p(y|x)

[R]._ Ly P(x) p(y|x) In
s=0 d}%z fY p(y)

dy . (193b)

Comparing Eq. 193 with Eq. A-57 yields Esq(R) 2 0 for the same region of rates
as EQ d(R). Thus, if the input space X is semioptimal, one can get an arbitrarily
small probability of error for rates below the channel capacity C.

The zero-rate exponent Esq(O) is given by
Esq(O) = —y(s) + sy'(s) = —y(s) + (s-1)v'(s), (194)

where s is the solution of v'(s) = 0. Thus

Ego(0) > min"lz-{-zy(s)+(25—1)'y’(s)} . (195)
Following Egs. 175-184 and substituting for R E_ (0), we get
comp ~ sq
1
Esq(o) ) EJZ, d(O), (196)

and for semioptimum input spaces

1
Esq(O) ZE-E(O). (197)

3.5 NEW SUCCESSIVE DECODING SCHEME FOR MEMORYLESS CHANNELS

A new sequential decoding scheme for random convolutional codes will now be
described. The average number of computations does not grow exponentially with n;
for rates below some Rf:omp’ the average number of computations is upper-bounded
by a quantity proportional to

S
(1+R/Rcomp) < m2

m m

The computational cutoff rate RZomp of the new systematic decoding scheme is

equal to the lower bound on R for sequential decoding with asymmetric channels

comp
(see section 3. 3).

However, for sequential decoding, R is valid only for the incorrect subset of

code words: the existence of Rcomp for (‘iﬁrengorrect subset has not yet been proved
for asymmetric channels. The successive decoding scheme, which is different from
other effective decoding schemes such as sequential decoding and low-density parity-
check codes9 yields a bound on the total average number of computations.
A convolutional tree code is shown in Fig. 7 and has been discussed in section 2. 5.
Let us now consider the decoding procedure that consists of the following successive
operations. Kk
Step 1: Consider the set of b 1 paths of kl information digits that diverge from the

the first node (branch point). Each path consists, therefore, of kla input symbols.
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Fig. 7. Convolutional tree code.

k
The a posteriori probability of each one of the b 1 paths, given the corresponding

segment of v, is computed. The first branch of the path of length kla which, given v,
yields the largest a posteriori probability is tentatively chosen to represent the corre-

sponding first transmitted digit (see Fig. 8).
k

Let us next consider the set of b 1 paths of length kla symbols which diverges from

the tentative decision of the previous step. The a posteriori probability of each one of
k

these b 1 paths, given the corresponding segment of the sequence v, is computed. The

first branch of the link of length kla which, given v, yields the largest a posteriori
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®

Fig. 8. Successive decoding procedure; ki = 2.

probability is tentatively chosen to represent the second transmitted digit.
This procedure is continued until i = m/a information digits have been tentatively

detected.
p(v)
The distance D(ul, v) = In ——— is then computed for the complete word u, of
p(vlul)
length m input symbols thus obtained.

If D(ul,v) is smaller than some preset threshold D,, a firm decision is made

O)
that the first digit of uy represents the first encoded information digit. If, however,
D(ul,v) P DO’ the computation procedure is to proceed to Step 2.

Step 2: The decoding procedure of Step 2 is identical with that of Step 1, with the
exception that the length l«:1 (information digits for kla channel symbols) is replaced

by

k, =k, +A; A a positive integer. (198)
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p(v)
Let u2 be the detected word of Step 2. If D(u2, v) =1ln —-l—— < DO’ a final decision is
p(viu,)
2

made, and the detection of the first information digit is completed. If D(uz, v) = DO’ no
termination occurs and the computation procedure is to then go to Step 3, and so on.

In general, for the jth step, we have

kj = kj—l + A; A a positive integer (199)

and the detected word is u,.
Following the detection of the first information digit, the whole procedure is repeated

for the next information digit, and so forth.

3.6 THE AVERAGE NUMBER OF COMPUTATIONS PER INFORMATION DIGIT FOR
THE SUCCESSIVE DECODING SCHEME

Let us count as a computation the generation of one branch of a random tree code at

the receiver. The number of computations that are involved in step j is bounded by

k.
Nj < mb J. (200)

Let C. be the condition that no termination occurs at step j. Step j will be used
only if there are no terminations on all the j-1 previous steps. Thus the probability of

step j being used is

P(j) = Pr(Cl,Cz,CS,...,CJ._I). (201)

The average number of computations is given by

N = N,P(1) + N,P(2) + ... + NjP(j) 4+ ... +N, PG ) S oi NjP(j), (202)
max =1
where P(1) =1, and P(j) may be bounded by
P(j)) = Pr(C,,Cy, Cy, ..., C, ) S Pr(C_y). (203)
Inserting (203) and (200) into (202) yields
. o l{l 00 K.
N <N, + j;z N.Pr(C;_)) € mb " +m 3251 b JPr(cj_l). (204)

Now let u, be the code word detected at step j, and let u be the transmitted code

word. Then
Pr(Cj) = Pr(D(uj,v)ZDO)

i

Pr[D(uj, v) = D; u, = ul + Pr[D(uj, v) = D uj #u]

Pr[D(u,v)=D ujzu] + Pr[D(uj,v)ZD -ujrﬁu]

0’

Pr[D(u,v)BDO] + Pr[ujiu] . (205)

46




We are free to choose the threshold D, so as to satisfy

0

Pr[D(u, v) > D] < exp(——é—Eﬂ d(o)n) . (206)

Now, let ejr be the event that the rth information digit of uj is not the same as the

corresponding digit of the transmitted sequence u. Then

i
Pr(u.#u) = Pr[U {e. }] : (207)
j 21 Cir

The probability of a union of events is upper-bounded by the sum of the probabilities

of the individual events. Thus

i
Pr(uj;eu) < r; Pr(ejr). (208)

k.
= 1 b J paths of length k. information digits that diverge from the

There are
(r—l)th node of u, and do not include tie i information digit of u. Over tne ensemble

k,
of random codes these b ; L b J are statistically independent of the corresponding

segment of the transmitted sequence u (see section 2.5). The event ejr occurs when-
k.
ever the a posteriori probability of one of these b ; L b J paths yields, given v, ana

posteriori probability that is larger than tiiat of the corresponding segment of u. Thus,
Pr(ejr) is identical witi the probability of error for randomly constructed block codes
of length kja channel input symbols. (All input symbols are members of the d-
dimensional input space Xﬁ which consists of £ vectors.) Bounds to the probability of

error for such block codes are given in Appendix A. Thus

< - .
Pr(ejr) exp( Eﬁ, d(R)kjad) , (209a)
where
R=Linp™a-Ljgpn/ad_ Ly (209b)
n n ad
= - . < <
Eﬂ,d(R) Eﬁ,d(O) R; R Rcr‘it (209c)
E,@,d(R) = Ef,d(o) -R; R= Rcrit' (2094)
Inserting (£09) into (207) yields
< - 1
Pr(ujaéu) m exp( Eﬁ’d(R)x\jad) (210)
Inserting (206) and (210) into (205) yields
1 5
Pr(Cj) < exp(--z—Eﬂ’ d(O)n) + 2m exp(—Ef’ d(R)kjad)' (2i1)

Now, by (209), we have




1 . Ll
3Eﬂ’ MU Ef,d(R)’ R<SE, 0. (212)

Also
md = iad = kJad (213)

Inserting (211) and (212) into (208) yields

-1 . <Ll .
Pr(Cj) < 2m exp( 5 Eﬁ, d(o)kjad) ; R ZE,Q, d(O) . (214)
Inserting (214) into (204) yields

. k, 2 v K .

N <mb "+ 2m Z b exp(—gEQ’d(O)kj_lad); R < 2 E d(O) (215)

=2
Inserting (209b) into (215) yields

2 1 1
N < Z{m exp(Rklad) + m Z exp[Rkj --?:EB, d(O)kj—l] ad}; R s?Eﬂ d(0).

3

(216)
By Eq. 199, we have

>

= 2 _ARad 1
N = Z{m exp(Rklad) + m©“e Z expl: -5 1 d(0)][k +ja] ad} R stﬁ d(O)

(217)
Let R* be defined as
comp
* 1
comp 2E1, d(o)' (218)
*
Then, for all rates below Rcomp’ R - 2 £ d(0) < 0, and therefore
*
_ ) exp[R-Rcomp] k,ad ARad
N <2 mexp[Rklad] + m e
1- exp[R—Rcomp] Aad
R <R =1r (0 (219)
comp 2 £,4°77°

The bound on the average number of computations given by (219) is minimized if we let

. 1n R/Rcomp .
A=ad RIR ' (220a)
/ comp comp

1

_ 1 .
k —A+ad(1nm) (220b)

1
comp
Equation 220 can be satisfied only if both Eqs. 220a and 220b yield positive
integers.

Inserting (220) yields
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pB/1-B

—_— 1+B . < * —..L
N = -5 ™ H R\Rcomp_2Eﬂ,d(o)’ (221)
where B R/RCo o 1

3.7 THE AVERAGE PROBABILITY OF ERROR OF THE SUCCESSIVE DECODING
SCHEME

Let u be the transmitted sequence of length n samples. Let u' be a member of
the incorrect subset M'". (The set M'" consists of M"" members.) As we have shown,
u' is statistically independent of u. The probability of error is then bounded by

mdR

P, < Pr{D(u,v)>D,] + M"Pr[D(u’,v)<Dy] < Pr[D(u,v) =D ] +e Pr[D(u’, v)<D,].

(222)
Now

p(v)

D(u,v) =1n ,
p(v|u)

where
m
p(v) E p(y;)
and

m
p(v|u) = ﬂ; ply;lx;) -
1:

Thus, by the use of Chernoff Bounds (Appendix A),

Pr[D(u,v)BDO] < em[-y(s)—s'y'(s)] s (223)
where

y(s) = 1n Z f P(x)p(y|x)1'-s p(y)’dy; s=0
Xy

v'(s) = DO .
Also

Pr[D(u’, v)<D,] < emlrt)-tp ()] (224)

wt) =1n ) f P(x) ply|x) "t py) 1t ay
Xy Y

' =
p'(t) = Dy .
If welet t=s -1, by Eq. 174, we have

v(s) = p(t); ~'(s) = u'(t).
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Inserting (223), (224), and (174) into (222) yields

p < em['y(s)—s—y'(s)] + em[dR+')((s)-—(s-—l)’y'(s)] (225)
e E]
where v'(s) = DO'
Now, comparing (223) with (206) yields
1
_ ' U
v(s) + sy'(s) = dEQ’d(O). (226)
On the other hand, we have by (175) through (183)
-2v(s) + (2s-1)v'(s) = dE, ,(0). (227)
Thus, inserting (226) into (227) yields
1
- - ' > &
v(s) + (s=1)v'(s) = 5 dEQ’d(O). (228)
Inserting (226) and (228) into (225) yields
1 L -
Pe < exp ('—z-nEﬂ,d(O)) + exp(-—n[2 E,Q,d(o) R])
gL -Rr1) = -nlr™ r1): <Rr"
< Zexp( [2E£,d(0) R]) = 2exp( n[Rcomp R]), R Rcomp (229)
If the input space is semioptimal, we have Eﬁ d(0) =~ E(0). Thus
(-[1/2E(0) -R]n) % 1
< . < =4
Pe 2e ; R Rcomp ) E(0). (230)

If, instead of setting D0 as we did in (206), we set it so as to make +¥(s) - sy'(s)

= dR + y(s) - (s-1)y'(s), where v'(s) = D,. we have by (225)

< -
P, <2 exp| nES(R)],
where by (191)-(193) we have (for semioptimal input spaces)
L
ES(O) =3 E(0)
ES(R)> 0; R<C.

However, following Eqs. 206-218, it can be chown that the new setting of D0 yields
o2 dlg o)
comp 4 4,477
The fact that the successive decoding scheme yields a positive exponent for rates

above Rzo does not imply that this scheme should be used for such rates, since

mp

the number of computations for R = R

comp grows exponentially with m.
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IV. QUANTIZATION AT THE RECEIVER

4.1 INTRODUCTION

The purpose of introducing quantization at the receiver is to avoid the utilization of
analogue devices. Because of the large number of computing operations that are carried
out at the receiver, and the large flow of information to and from the memory, analogue
devices may turn out to be more complicated and expensive than digital devices.

Our discussion is limited to the Gaussian charnel and to rates below Rcrit' The
effect of quantization on the zero-rate exponent of the probability of error will be dis-
cussed for three cases. (See Fig. 9.)

Case I. The quantizer is connected to the output terminals of the channel.

Case II. The logarithm of the a posteriori probability per input letter (that is,

p(yl xi); i=1, ..., £)is computed and then quantized.
Case III. The logarithm of the a posteriori probability per p input letters (i.e.,
p(yp| XJP); j=1, ..., ﬂp) is computed and then quantized. x? is the vector sum of p

successive input-letters of one of the M code words; yp is the vector sum of the p
received outputs.
It was shown in section 2. 3 that whenever semioptimum input spaces are used with

white Gaussian channels, E d(O) is a function of A?nax’ the maximum signal-to-noise

£
ratio. In this section, the effect of quantization is expressed in terms of "quantization

loss" Lq in the signal-to-noise ratio of the unquantized channel.

Let E% d(0) be the zero-rate exponent of the quantized channel. Then, by Eq. A-70,

q = 14 -R- <
Eﬁ, d(R) EL d(O) R; RSR_ -

Therefore specifying an acceptable EE d(R) for any rate R <R is the same as

crit’
specifying a proper loss factor L. .

Let Mq be the number of quantization levels that are to be stored in the memory of
the "Decision Computer' per one transmitted symbol.

Under the assumption that one of the two decoding schemes discussed in Section III
is used, it is then convenient to define the total decoding complexity measure (including

the quantizer).

M = Md'l\/[q (231)

with Md given by Eq. 139. We shall minimize M with respect to ¢ and d for a fixed n
and a given quantization loss, Lq' In Section II we discussed the ways of minimizing Md
with respect to £ and d.

We shall show that if semioptimal input spaces are used with a white Gaussian
channel, Mq of the quantization scheme of Case III (Fig. 9) is always larger than that of

Case II and therefore the quantization scheme of Case IIl should not be used.
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Also, whenever E(0)= -;—111 Afnax

is smaller than that of Case II, and therefore the quantization scheme of Case I should

»1, Mq of the quantization scheme of Case I (Fig. 9)

be used in such cases. On the other hand, whenever E(0) « 1 (or A?nax « 1), Mq of
Case II is smaller than that of Case I.

Furthermore, it will be shown that M, like M
E(0) « 1.

The results mentioned above are derived for the quantizer shown in Fig. 10a which

is minimized if we let d = —1_.

d’ E(0)°

is equivalent to that of Fig. 10b.

The interval Q (Fig. 10b) is assumed to be large enough so that the limiter effect
can be neglected as far as the effect on the exponent of the probability of error is
concerned.

Thus, the quantizer of Fig. 10b can be replaced by the one shown in Fig. 10c. How-
ever, the actual number of quantization levels is not infinite as in Fig. 10c, but is equal
to k = Q/q as in Fig. 10b.

4.2 QUANTIZATION SCHEME OF CASE I (FIG. 9)

The quantized zero-rate exponent Eg d(0) of Case I can be lower-bounded by the

zero-rate exponent of the following detection scheme. The distance

—qux + x2

dx, y) = 5

(232)

20
is computed for each letter X, of the tested code word. Here yq is the quantized vector
of the channel output y:

Q=09 09 .. . 9. (233)

The distance
n
Du,v) = ), ddy;xp)
i=1

is then computed.
The one code word that yields the smallest distance is chosen to represent the
transmitted word. This detection procedure is optimal for the unquantized Gaussian

q

variable y. However, y* is not a Gaussian random variable and therefore dYx, y) is

not necessarily the best distance.
K
Thus, this detection scheme will yield an exponent E (0), which will be a lower
q
bound on EL d(O).

* q
E (0) < Eﬂ’d(o) < ELd(O) . (234)

The probability of error is bounded by

P_ < (M-1) Pr[D(v%, u")<D(v%, w)] (235a)
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Fig. 10. Quantizers and their transfer characteristics.
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or

Po <M PrD(vY, u)-pvd, u’)=0] (235b)

n
Dy, v) = ¥ dil(y;, x,) (236a)
i=1
n
DY, v) = 3 Ay, %), (236b)
i=1

Where X, is the ith transmitted letter, and x{ is the ith letter or Some other code word.
By the use of the Chernoff boundg (Appendix A, 3) it can be shown that

“E" (Ol _ _-n[E¥(0)-
P, < (M-1) "E (O o -n[E7(0)-R] (237)
and, by Eq. A-85,

* * . ) . q -39
~E(0) = 4 (s) =dl1n D Y ), P(x) P(x') p(yd[x) e3[d7(x, y)-a%x 2 (238)
q
Y x, x
s = 0. (239)

Now, let s = 1/2. Then, by Eqs. 102a and 237,

. 2 442 Qror_ )
sk 1 \ \ ' IXI ’X , . 2 y (X *
E (0) = -Fln Z Z P(x") P(x) exp s Z p(y°| x) exp . (240)
Xﬂ Xz 4q yq 20
where
q. . .9 q q
yx ”151*"252*--- g8y - (241)
Thus, by Egs. 240, 234, and 102,
2 2
q 1 \ , EEY : q yUx’ —x)
Eﬁ d(O)Z—a In Z Z P(x) P(x') exp R Z p(y ™| x) exp 5
’ X X, 40 q 20
2 %y M
(242a)
! ‘ [x[? -] xr 2 (x!x)
Eg g0 = “gin Z Z P(x) P(x') exp — f ply|x) exp T dy = E, 400
’ X X! 4a Y 20 ?
£ 2
(242pb)
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q yQ(xr_x)
gdx, x") = Z p(y*|x) exp — (243a)
va 20

when compared with the unquantized term

y{x'-x)
gx,x") = [ ply|x) exp|\=—| dy (243b)
Y 20
The quantizer is a memoryless device; therefore, since the channel is memoryless

as well, by Eq. 9, we have

Py x) = p(n?l'é’l) p(ngl§’2) p(nglsd) :
Thus

d nd(gl-£.)
glx,x") =TT Z p(n?l_Si) exp —1———1-2—1- (244)
i=1 ng 20

1

Two important signal-to-noise ratio conditions will be discussed.

§
Condition 1. ——I?r—ai= Amax < 1. At the same time q € 2¢. (245)
3
Condition 2. —r—f?l= max > 1 (246)
a. Condition 1. Amax <1
We have
(§.-&1)
—37—1 <1 for all £ and &' (247)

It is shown in Appendix C that whenever the quantizer of Fig. 10c is used and the input
to the quantizer is a Gaussian random variable with a probability density such as that
in Eq. 78, we have

Qrer_
n;(§-€,)

), P ("?lgi) exp 2

n? 20
(S;—Si)q
n(E1~E) sh =
= f p(nil'g"i) exp | ———5— dni —_— for q < 2¢. (248)
n 20 (§-8,))q
40

Inserting Eq. 248 into Eq. 244 yields
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y{x'-x) d 4g2
g9Ux, x') = f ply|x) exp 5— /| dy T —.
Y 20 i=1| (§{-§)q
2
4o

Thus, by Eqgs. 249 and 243a,

— '- =
g
d 4(,_2
gUx!, x) = gix' ,x) T | —F—
40’2 J
Now
2
shx o (_x_
= Sexp 6)’
Also, for x <1,
2
shx _ X
X exp( 6)'
Thus, by Egs. 25la and 247,
[ .
L ErEa ) 5
452 (§i-8,)"q )
—_—— K ex
~ P 4
r—
40'2

Inserting Eq. 251c into Eq. 250 yields

d (g1-£,)?
gdx’, %) s g’ %) TT exp| —5—
i=1 960

or

d q°
gQ(x', x) g g(x', x) exp< Z (53"51)2
i=1

9664

Therefore, by Eq. 7,

2 2
q q“|x-x'|
g (x, x') g glx, x') exp —
96¢

Replacing Eq. 243b with Eq. 253 and inserting Eq. 253 into Eq. 242a yields

. x)? - x| q
EE 4(0 = -3 1n Y, ), P(x)p(x") exp\——5— | g(x, x') exp
’ ' 40

4
Xy %
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(250,

(251a)

(251b)

(251¢)

(252)

(253)

|2
; (254)




Inserting Eq. 243b into Eq. 254 yields

2, 2 2 12 '
q 1. "] x=x'| |x|7 -1 y(x'=x)
Eﬁ,d(o) >-3n Z Z P(x) P(x') exp y exp 5 j};p(y X) exp 5 | dy.

Xﬂ X}_ 960 40 20
(255)
Inserting Eq. 78 into Eq. 255 yields
o*|xx'[? | x=x'|?
q 1 '
E; 400> -=1n ) 3 P(x)P(x') exp|———— | exp|- ——— (256)
2,d d 4 2
X X! 96 8o
2 e
. . lx-x'|%(1-%/1262)
- ' ! -
Ej (0> -31n ) ) P(x')P(x) exp 3 . (257)
X, X!
2
Then, by Eq. 105a, we have
. fx-x'|?
B, 40 =-51n ) ) Px)P(x) exp|- ) (258)
14
Xy %y

Comparing Eq. 256 with Eq. 258 shows that whenever the channel is in Condition 1

(Eq. 245), the zero-rate exponent EE d(O) of the quantized channel is lower-bounded by

the zero-rate exponent of an unquantized Gaussian channel with an average poise power
of

2 o’
o = for q < 20. (259)
q 2
) q
1202

This result does not depend on the kind of input space that is used nor on its
dimensionality, d. The effective signal-to-noise ratio of the quantized channel is given
by

2 2 2
A2 _ gmax _ Emax _ a
e e =] B [,
q 2 2 2
o o 120
q
Thus
Cl2
A2 - A% f1- s (260)
a 120

Therefore, for a given quantization loss in the signal-to-noise ratio, let

q-= 4/12chr q< 2¢, (261)
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where Lq, the "quantization loss,' is a constant that is determined by the acceptable

loss in signal-to-noise ratio,

AZ

7~ 1- L2 (262)
A a

max

The number of quantization levels, as shown in Fig. 10b, is equal to

-Q
= (263)

It is quite clear from the nature of the Gaussian probability density that if we let

%zm + Bo, (264)

max

where B is a constant, then the effect of the limiter on E, d(O) (shown in Fig. 10b)
becomes negligible if B is large enough (approximately 3).
Thus, inserting Eq. 264 into Eq. 263 yields

2§max + 2Bo
k = 15 L o - (265)
a
gmax
Now, if =AK1,
" 2B (266)

L VT2 '

The number of quantization levels for a given effective loss in signal-to-noise ratio is

therefore independent of A for Am < & 1. In the following section, the effective

max’ a
loss in signal-to-noise ratio for higher values of A, and the corresponding number of
quantization levels k, are discussed.
b. Condition 2. Amax> 1

In this condition we have Amax > 1, and therefore

|5i - &
20

> 1

for some £ and £'. Now, if q € 20, Egs. 251¢-262 are valid.

The number of quantization levels is given by

" 2§max + 2Bo
A/12 Lo
or by
2A + 2B
k= —2ax (267a)

A/12 L
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Thus, for Amax » 1,

2Amax
g =——MaX. o cop (267b)

J12 L

In this case, again, k does not depend on the kind of input space that is used. There
are many cases, however, in which the assumption that g < 2¢ is unrealistic, since
much larger quantization grain q can be used and still yield the acceptable loss L(zl.

The effects of quantization in these cases depend heavily on the kind of input set
which is used. This fact will be demonstrated by the following typical input sets.

Set 1. This input set consists of two equiprobable oppositely directed vectors
Xy = 7X, (268a)
where

P(x,) = P(x,) =—§—. (268b)

As shown in section 2. 3, this input set is not optimal for Amax > 1. A semioptimal

input space for Am X > 1, as shown in section 2. 3, is Set 2.

a
Set 2. This input set consists of f equiprobable one-dimensional vectors. The
distance between two adjacent vectors is Amax/z’ as shown in Fig. 4.

When the input set consists of two oppositely directed vectors, by Eq. 106, we have

2
A d
R SRS I N _.max
Ez,d(O) =3 1n o+ 2exp( 2 ):|

Also, by Eqs. 242a, 243a, and 244,

2 2
(xI2 -] '
ES (0)= -t P(x) P(x") g¥x, x') exp| ———— (269)
2,d d 2
’ X X' 20"
£ £
In this case,
qqer
n (§'-§)
glx,x") =| ), pn?| &) exp{———
q 20
n
since by Eq. 268, §i=§j=§’ and E£=§J'.=:t§, foralli=1, ..., dand j=1, ..., d.
Thus, by Eq. 269
gq(x,x') =1; x'=x (270a)
q d
n (§'-§)
gq(x, x') = Z p(nql £) exp — ;o x#Ex'=-x (270b)
qu 20
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Now for x' # x,

el 28,
20 20 ’

since Amax> 1. It is shown in Appendix C that in such a case

\ ngr-¢) (8"-8)n | a(g’-8)]

Z p(n?] &) exp ] = E p(n| &) exp — ) |exp{——=—/ - (271)
q 20 n 20 40

n

Thus, inserting Eq. 271 into Eq. 270 yields

e-om\1¢  flaE-old
gq(x, x') < Z p(n| &) exp _2 _"2 exp\ 2‘ -
2

n 40

y{(x'-x) |a(&'-8)|a
gq(x, x") < f p(y| x) exp —2—2—" dy ex s - (272)
o

y 40

or

Thus, by Egs. 272 and 243b, we have

| a(g’-8)|d
gq(x, x') < g(x, x") exp e —
40

Thus
eUx, x") = g(x',x)=1; x'=x (273a)
and

gAd
gx, x') = glx, x") exp( - ); x'# x. (273b)

Thus, inserting Eqs. 273 and 243b into Eq. 242a yields, together with Eq. 268,

2 qAd
q I S X __)
E2,d(0) = 3 ln(2 + > exp( 3 ) exp( e . (274)

The zero-rate exponent of the unquantized channel is given by Eq. 126. Let

2
q

5 4
A=A --;A. (275)

Inserting Eq. 275 into Eq. 274 yields
q Lo p L exp|-——
4(® = -51n 5+ 5 exp . (276)
Thus, by comparing Eq. 276 with Eq. 126, we find that the zero-rate exponent
Eq cl(0) of the quantized channel may be lower-bounded by the zero-rate exponent of the

unquantlzed channel (with the same input set) if the original signal-to-noise ratio A

replaced with Aq’ which is given by Eq. 275.
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g=L"§& =L°&; & =&, (277)

where Lq is the '"'quantization loss' factor determined by the acceptable loss in the

effective signal-to-noise ratio.

A2 —w%g/0n)+ AZ
4@ =1-12 A-E (278)
AZ A2 q’ o

Inserting Eqs. 277 and 264 into Eq. 263 yields

2 + 2Be 2 + 2B/A

k — =
L2 L2
q q
Thus, for A» 1,
k = % . (279)
L
q

The number of quantization levels, for a given quantization loss in signal-to-noise
ratio, is therefore independent of Amax for Amax » 1. Comparing Eq. 279 with Eq. 267b
shows that for reasonably small Lq’ the number of quantization levels needed for a
given loss in signal-to-noise ratio is higher for Amax » 1 than it is for Amax «1.

The binary input set does not yield the optimum zero-rate exponent because more
than two letters are needed for AmaX > 1. It was shown in section 2.3 that an input set
that consists of £ one-dimensional vectors, yields a zero-rate exponent that is very
close to the optimum one if the distance between two adjacent vectors is

28

_M: 20- or A :ﬂ.
£ max

The zero-rate exponent of this input set is given by Eq. 110.

2 2
- 4A - 16A
By, (00 = ~In |+ 255 expl -— B3] 4 2 S L exp| - —Ba%] 4
’ L 84 . 84
Arnax
Since—=— =1, from Eq. 111, we obtain
2
4A
1 2 -1 max
E, (0) =-1n|5+2 exp| - —Bax
£,1 £ 42 822

In other words, only adjacent vectors with a distance |&'-£| = 2¢ are considered.

For all such vectors we have

| gr-g|
20

=1 (280)
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Following Eqgs. 247 through 265 gives the result that the number of quantization levels is
28 + 2Bo
Kk max

4/1_2 qu—

or
2A + 2B
kK =—2Hax (231)
Ai2 L
q
Thus
2A
k max . »1. (282)

R — A
m Lq max

The number of quantization levels in this case therefore increases with the signal-to-
noise ratio.

The zero-rate exponent E;l’ d(O) of the quantized channel of Case I (Fig. 9) may be
lower-bounded by the zero-rate exponent of the unquantized channel with the same input

space if the signal-to-noise ratio, Az, is replaced with A(zl, with

~1-12

A q’

The quantization loss L2 is a function of the number of quantization levels, k. The
number of quantization levels for a given loss Li is constant for all A « 1, for all input
sets. However, the number of quantization levels does depend on the input space when-
ever Amax > 1. Two typical input sets have been introduced. The first input set con-
sisted of two letters only, while the second input set was large enough to yield an
El, d(0) that is close to the optimum exponent E(0).

It has been shown that for both input spaces discussed in this section the number of
quantization levels for a given loss Lq is higher for Amax « 1 than it is for Amax » 1.
In the case of the semioptimal input space shown in Fig. 4, the number of quantization
levels increases linearly with Amax (for Amax » 1). The results are summarized in
Table 3.

4.3 QUANTIZATION SCHEME OF CASE II (FIG. 9)

The logarithm of the a posteriori probability per input letter is computed and then

quantized. The a posteriori probability per input letter, by Eq. 78, is

2 2

1 y —2xy +x

ply|x) = exp| - 5 , (283)
(21r)d/2 Ud 2¢

where

Xy = &mg +Egng £ ... T Egng.
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Thus

2 2
2xy - X y
1n ply| %) = ——s— - == + In 2mY 2(sH)Y/ 2. (284)
20

20
The only part of Eq. 284 that carries information about x is

lxl2 - 2yx

d(x,y) = — . (285)
20

Thus, the computation of 1n p(y|x) may be replaced by the somewhat simpler compu-
tation of d(x,y) with no increase in the probability of error. The decoding scheme for -

Table 3. Quantization scheme of Case I — Results.

Input Az k q
Space Signal-to-noise Ratio No. of Quantization | Quantization
Levels Grain
All A <L 1 L—%?- q={1Z 1,6
q
2 o 12
= 9% 1 {na
Lq
Binary A >51
> 2A for q<2¢ |q= 12 L&
L Su’
q
1 e - 171
Optimal AL, > = max q qd
q

the unquantized channel is discussed in Appendix A. 2, with d(x, y) of Eq. 285 replacing
d(x,y) of Eq. A-18. The corresponding probability of error is bounded in section A. 3:

Pe <e ’ ; R = Rcrit’ (286)

where EI d(O) is given by

64




d(O) = -—ln Z Z P(x) P(x'") S p(ylx)l/z exp[d(x, y)-d(x', y)] dy

or

El, d(0) = ln Z z P(x) P(x') g(x,x") (287)

where

gx',x) = \ ply|x) expii[d(x,y)-dx', )]} dy
¥ 2

Now, comparing Eqs. 287 and 285 with Eq. 242b yields

2
(x=x")
g(x', x) = exp - (288)
8¢
Let the input to the quantizer be d(x,y) given by Eq. 285 and let the output be dq(x,y).
(According to Eq. 285 the quantity x2/2crz should be added to —?.yx/Z«r2 at the input to
the quantizer rather than at its output. If each-l—x.z/ o2 is equal to one of the k quanti-

zation levels exactly, one can add the quantlty X, /tr at the output to the quantizer,
and the bounds will still be the same as those derlved below.) The zero-rate exponent

l d(0) of >:Ehe quantized channel in Case II can be lower-bounded by the zero-rate
exponent E (0) of the following detection scheme: The distance di(xi’yi)’ given by
Eq. 285, is computed for each letter X, of the tested code word and then quantized to
yield d?(x,y), the quantized version of di(x,y). The distance

m
DYy, v) = Z d?(xi, ;) (289)
i=1

is then computed. The one code word that yields the smallest distance Dq(u, v) is then
chosen to represent the transmitted code word. Thus

E¥(0) SE%’d(O) <E, 40 (290)

Following Eqs. A-65 and A-70, we have

E*(0) = - é—z z P(x) P(x') SY piylx) eld i y=d6e 3] 4 t<0 (291)
X %p
and if we let t = -,
E%0) = -Lm ) ) e pix g, ), (292)
X,Q X!
where
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gx, x) = S‘y p(y %) exp{5[d%x, y1-a%x, y)]} d. (293)

Now,

x| % - 2yx .
dix,y) =—————,
20

-

where y is a d-dimensional Gaussian vector that, for a given x, consists of d indepen-
dent Gaussian variables, each of which has a mean power of o-z. Thus, d(x,y) is a

Gaussian variable with an average variance

———  ao® x[* |
Td(x, y) =J(d(x,y)) - (d(x, y)° = B (294)
Let
d:lx, y) i d(x, y) . (295)
g (X,Y) 'EI_
[

d(x', y) d(xY y)
o d(x', y) =

= z!
Ix'|

1
[
Thus, by Eqs. 294 and 295, z and z' are normalized Gaussian variables with a unit

variance.
Inserting Eq. 295 into Eq. 293 yields

aE le q e lel q ' .
gq(x, x') = S‘ S‘p(z, z'lx, x") expy5 |\ 5 - - dz dz', (296)
zZ Z!

since the product space Z Z' is identical with the space y for given x and x'. Then

zlxlq-dq( )= d(x,y) +n
P - X,y = ;y q:

where n_ is the "quantization noise." Thus

() )
g

0

2

It

q

or

i
Ne]
|

q n
z = |XI z?) = ’XI z+ 4 , (297)
a o ‘XI
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where

q Ty dlx,y)
zZ'=7Z +— = "
x| —_
_— o
[¢2

Thus, 29 is equivalent to the output of a quantizer with z as an input and with a quant-
ization grain that is equal to

q =—. (298)

Here, q is the quantization grain of the quantizer d(x,y). Inserting Eq. 297 into
Eq. 296 yields

gq(x, x') = S g p(zq, z'qlx, x') exp{%t% 2P - I);'l z'qJ} dz%dz' . (299)
Zlq zq

Both z and z' are Gaussian random variables, governed by the joint probability density

. ~(z-5)% + 2L(z-2Z)(2'~-7") - (z'-2')°
p(z, z1x,x') = exp

2
21T(l_gz)l/z 2(1-t“)

(300)

where

t = (z-z)(z'-Z"). ' (301)

It is shown in Appendix C that for such a joint probability density such as that in
Eq. 301, we have the following situations.
1. When lt| =1 (x=ax'):

sh ( Ix|— Ix!) q,
40

gp(x, x) = [g(x, xY] ; for q, <2. (302)
(Ixl=Ix'])
T 9z
By Eq. 296,
glx, x") = S' S p(z, z'lx, x) exp{—; [% z— |§_'| Z'J} dzdz'= S\p(ylx) exp{%—[d(x, y)-d(x', yﬂ} dy
yAVA Y
(303)

Also, it is assumed that

1
z _ q _ q .
=—=—=gq.,
Ix| Ix!|
[+ o

where q is the quantization grain of the quantizer of d(x,y), and q' is the quantization

67




grain of the quantizer d(x',y). In other words, it is assumed that both d(x,y) and d(x', y)
have the same normalized quantization grain. (The quantization grain of each of one

of the £ quantizers of Case II (Fig. 9) is assumed to be proportional to the variance of
the Gaussian variable di(s,y) fed into that quantizer. The { quantizers are therefore

not identical.

2. When ,LI <1:

shlxlqz shlx'lqé

q n o ' 40 40 2
g (x,x") = [g(x, x"] %, %Tq, | for 9 < 2(1-t). (305)
40 40
3. When lgl =landgq, >2:
q (Ix|-[x'ra,
gi(x,x") <g(x,x') exp P for q, = q;. (306)
4. When |t <1 and q, >2(1-t%):
x|q +|x'
gq(X.X') < g(x', x) exp (uqz—‘ilx—'q—z) (307)

Study of Egqs. 205-307 shows that the effects of quantizations depend on the kind of
input space that is used. The effect of quantization for three important input spaces
will now be discussed.

a. Binary Input Space

The binary input space consists of two oppositely directed vectors

X 5% X, = X, (308a)
where

P(x,) = P(x,) = 5 - (308b)
This corresponds to x = -1.

The first signal-to-noise condition to be considered is

2 Ixl

A™d = = 1; q<2. (309)

a

By Eq. 302, we have

g3(x, x") = [glx, x")] (310a)

and
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gq(x,x') =g(x,x") = 1; X = x'.

Now, inserting Eqs. 301 and 293 into Eq.

2

310 yields

sh|x|q,
20

Ez d(0)2 —é—ln —;+—;—exp<-— xl
’ 20

-

Inserting Eq. 304 into Eq. 311 yields

2
q S S R 0 S § X2,
Ei,d(o) Z -3 In|>+5 exp( 2) ; q<2.

20

Inserting Eq. 251a into Eq. 312 yields

|xla, |
20

shq

2

a
2

2

2 q
q il 1 X -1
Eﬁ.d(O)z—dln 2+zexp( N 2) exp( 24) ;

Let

[x|

q-= IZLq -

Inserting Eq. 314 into Eq. 313 yields

2
q il el (mAd( 42
E!Z,d(o) Z dln + < (1 Lq)) .

2 2 2

Comparing Eq. 315 with Eq. 106, we have

2
q o -1 1.1 _Ad
Eﬁ,d(o)" dln[2+2exp( 2)]

Thus, the zero-rate exponent E% d(0) of the quantized channel is lower-bounded by

q<2.

(310b)

(311)

(312)

(313)

(314)

(315)

(316)

the zero-rate exponent of an unquantized channel with an effective signal-to-noise ratio

Aé/Az = LZ, where Lq is the "quantization-loss" factor.

Now the mean value of the Gaussian variable d(x,y) is, in general, different from
zero. Thus, Eq. 264, which was derived for the Gaussian variable y that has a zero

mean, is replaced by

Q=dlx"y), .~ axLy) 0+ ZB.\/dz(x'y) - @', yn?-

(317)

Now y = ¢ + x, where ¢ is a Gaussian vector that consists of d independent Gaussian

variables with a zero mean and a variance o.
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, [« + 2fx|[x| _3lx[?
dlx"y oy = 52 = 2o 2 (318a)
— xPealklls] P
d(x ,Y)min = » 2 = P (318b)
o 20

Inserting Eqs. 318 and 294 into Eq. 317 yields

2
2|x| |x|
Q=—5 +2B— (319)
o

Inserting Eqs. 319 and 314 into Eq. 263 yields
2 _x_l +2B

ke —0/— (320)
N12 L,

x|

Thus, for A'\]E—‘- —0_—(( 1,

2B

k = ———-.
Ni2 Lq

(321)

||
Equation 315 is valid also for cases in which Azd = > 1, as long as q, < 2 (or

2 |x]
q< = ) Thus, by Eq. 320,
, 2! Wl 2l
—_— X X
k= —2 =2A“rd_; A’\/_=T»1,q< (322)
Ni2 L N1z L
However, there are cases in which much larger grain may be used. In such cases,
2[x| x|
where q > and —» 1, Eq. 306 should be used. Therefore, by Eq. 306,
o a
gq(x,x') = 1; xX'=x (323a)
and
q x|a,
g%, x') = g(x, x') exp\~—5-"/; x''= -x, (323b)

Inserting Eq. 298 into Egs. 323 yields

gq(x,x') = 1; X = x!' (324a)
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and

gq(x,x') = g(x,x") eq/z; X' = —-x. (324Db)

Inserting Eqs. 324 and 268b into Eq. 292 yields

2
E] 4(0) > ——é In % + % exp(— ,:('r ) /2| (325)
Let
2 xlz 2,2
q= Lq =z = LqA d. (326)
Then
E] 4(0) > —%m [% ty exp(- ?TZ% ( 1—LZ ))} (327)
Comparing Eq. 327 with Eq. 316 yields
1, 1.1 A%
Eﬁ.d(O)B—[aln 5+ 5 exp (— ;f):l (328)

The number of quantization levels, for a given loss of signal-to-noise ratio, is deter-

mined by inserting Eqs. 326 and 319 into Eq. 213. Thus

2 [* + 28 Xl

2 o
o

LZ lez
q

2
1y

|x|
For A d= —U—» 1, we have

K =3-2—. (329)
L

q
b. Orthogonal Input Set

The binary input space is an optimal one, for A < 1, as shown in section 2.3. Another
optimal input space for A « (li is the orthogonal input space. In this case

X, Xj= 0; i#] (330a)
X, X. = X. X, = [x[z' i=j (330Db)
i~i 75 i

for alli=1, I j=1, c.0 L.
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Inserting Eqs. 330 into Eq. 105a yields

2
E, (0)=-2mn(d+ELex i
g,a =T\t U 7)) (331)

Now, since the input signals are orthogonal, it can be shown that { = 0. Following
Eqs. 309-330, with (305) replacing (310), (331) replacing (106), and with Eq. 318
replaced by

— 3)x|?
d(x',y) ;

= —; d(x',y) = - ) (332)
max 20_2 2

min ~

it can be shown that the number of quantization levels is

x|

_2B . -
k = lati AN = 7 « 1 (333a)
q
_2ANT _Ix 2|x|
k=351 ANd = —>» 1; q - (333b)
q
2 Ix, lel
k ==5; ANd = — » 1; q> (333c)
L o
q

c. Optimal Input Space

Both the binary and the orthogonal input spaces are nonoptimal for A » 1. An input
set that is semioptimal for A » 1 is shown in Fig. 4. Now, if d = 1, it can be shown
that Ezl' l(0) of the quantization scheme of Case II is equal to that of Case I.

The results of this section are summarized in Table 4. From Table 4 we conclude
that in Case II, as in Case I, the number of quantization levels for a given "quantization

loss" increases with the signal-to-noise ratio, which in this case is equal to Azd/o'z.
4.4 QUANTIZATION SCHEME OF CASE III (Fig. 9)

In this case the logarithm of the a posteriori probability per p input letters is com-
puted and then quantized.

Let xP be the vector sum of p input symbols. One can regard the vector sum xP
as a member of a new input space with "dp"dimensions. Equations 283-307 are there-
fore valid in Case III, once x is replaced by xP.

It has been demonstrated that, in Case I and Case II, the number of quantization
levels increases with the signal-to-noise ratio. If the signal-to-noise ratio in Case II
is Azd, the signal-to-noise ratio in Case III is then Azdp.

Thus, given a quantization loss L and given an input space X 0’

d (334)

Kcase 11 < ¥case 111
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Table 4. Quantization scheme of Case II — Results.

2
Input Az - E’-él; k q
Space
Signal-to-noise ratio | No. of Quantization Quantization
Levels Grain
2 2B
Binary A“d << 1 niva 1Zald
2
2 izz ; q> 2Ald’ 122
Binary ATd >> 1
d o
B a< ul J1afd
2 2B
Orthogonal ASd <1 i 12'Ald
2,2
2 LA°d
EZ' 3 9> ZAE 2
2
Orthogonal Ad > 1
£ dL } 9 < ZAK—d-‘ 12’ AKT
d=1 See Table 10.1

4.5 CONCLUSIONS

Let Mq be the number of digits to be stored in the memory of the decision computer
per each transmitted symbol.
Let MqI and kI be Mq and k of Case I.

Let M qll and kII be Mq and k of Case II.
Let MqIII and kIII be Mq and k of Case III.

Therefore

M. = kId (335a)

o= kII for a binary input space (only one "matched filter" should be used
a for both signals) (335b)

MqII = kH£ (for any input space other than binary)

=1 p
MqIII *p kIII . (335d)
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Inserting (334) into (335d) yields

1 p
MqIII = pka. . (336)
1,.p N
Then 5!& = {; L= 2. Thus
MqIII = kHQ; =2 (337) °

Comparing (337) with (335d) and (335¢) yields

Mot ® Marr (338)

Thus, we conclude that the quantization scheme of Case III should not be used.
Comparing Table 3 with Table 4, we find that k. = k..; d = 1. Thus, by Egs. 335,

O
< ; = 1.
MqI qu, d=1 (339)
We therefore conclude that the quantization scheme of Case I should be used when-
everd = 1.
Tables 3 and 4 show that for the binary input space, kI = kII for Azd < 1. Thus, by
Eqgs. 335, we have
Mg = kd k= My
or
. 2
> . ] . < .
MqI MqII’ (binary input space; A"d < 1) (340)

We therefore conclude that whenever the signal-to-noise ratio is low enough (Azd «1),

the quantization scheme of Case II should be used.

As shown in Table 4, the number of quantization levels for a given Lq is not a func-
tion of d (as long as Azd « 1). Thus, the complexity measure, M, defined in section 4.1,

minimized by letting

1
I

U T ~1a2
d”E(O)’ E(0)~4A «

From the results of sections 2.3 and 2.5 it is clear that the binary input space is
the best semioptimal input space (for Azd « 1), since it yields the optimum exponent,
and the number of input vectors is kept as small as possible (that is, £ = 2).

If E(O) ~4nA___» 1, by section 2.2, +4nf = E(0) » 1. Thus

£ > 4nf » d. (341) .

On the other hand, one should expect k;, to be larger than kI because the signal-to-noise

1I
ratio Azd of Case II is larger than that of Case I (which is Az) when d > 1. Thus

k. <k d>1. (342)
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Inserting (341) and (342) into (335a) and (335c) yields

MqI < MqII; d>1; E(0) » 1.

We conclude that whenever E(0) = {n Amax » 1 and d > 1, the quantization scheme

* of Case I should be used.
If an orthogonal set is used, and at the same time Azd « 1, we find from Tables 3

* and 4 that k; = kII' Thus, by Eqgs. 335,

Ma1 > M, A%« 1; g <d.

I’
4.6 EVALUATION OF EZ‘ 4(0) FOR THE GAUSSIAN CHANNEL WITH A BINARY

INPUT SPACE ({=2).

Methods have been derived to lower-bound EE d(O). In this section the exact value

of Eﬁ d(0) is evaluated for a binary input space (see Eq. 83). Let us first discuss the
case for which d = 1 and the output of the channel is quantized as follows: (Case I; k=2).

For ally > 0; yd=1
(343)
For ally < 0; yq = -1
Here, yq is the output of the quantizer. The channel is converted into a binary sym-
metric channel, described by the following probabilities:
=L - -
P(Xl) - P(XZ) -2 X = grnax’ Xy = gmax (344a)
P(1x,) = P(-1]x,) Sm ! b)) d (344b)
x,) = P(-1}x,) = exp|- y
1 2 0 N2no 20’2
2
P( [x,) = Plzf = {2 (‘ml)) d (344c)
X,) = X.) = exp |- —5—/ dy. 344c
2 1 0 N2rno 20’2
By Egs. A-71 and A-69,
EJ (0)=-1n Z Z z P(x) P(x") P(yqlx)l/zp(yqlx')l/z (345)
yd Xz X3

Inserting (344) into (345) yields

1/2
2 2
q 1 1 b 1 (Y‘Xl) © 1 (y+X1)
E, ((0)=-Iny5+3 exp{-———/ dy exp \~————/ dy
’ 0 N2wo 20 0 N2n o 20

(346)

»
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Now
2
Sm L exp (—(y X)) dy ~ 2+ —L X1 (347)
0 N2w o 20'2 2 N2rm o v

Inserting (347) into (346) yields

2 2 2
X t1 A . -
Ed (0) %~ In _1+i ) -2 1 ~2 -2 max Amax« 1; k=2 (348)
2,1 22 ™ 2 ™ 2 4
20 40
Thus, by Eq. 98a, we have
q
P21 2, A _«1; k=2 (349a)
m’ max ’
Ez, 1(0)
and
L2=1-2 A _«l;k=2 (349b)
q n’ max PR e
Also,
2
00 1 (y—=x) ,X,
S exp (- > dy = 1; - 1, x>0 (350a)
0 21 o 20
2
o0 (y—x) 2 |x|?
S‘ — expl- 5 dy = exp - »1, x>0 (350b)
0 N2no 20 20 o
Inserting (350) into (346) yields
2
*1
1+ exp(———z)
q - 40
Ez, l(O) = - 1ln
2
2
1 + expl- rzax
=-1n ; k=2, A » 1. (351)
5 max
Comparing Eq. 107 with Eq. 351 yields
2 _1, R
Lq =35 Amax »1; k=2 (352)

If three quantization levels are used, (k=3), it can be shown that
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Z’ = 0.81; A <1, k=3 (353a)
E; 1(0)
L% = 0.19; A _«l,k=3 (353b)
q max

If four quantization levels are used, (k=4), it can be shown that

E3 1(0)
— ) = 0.8~ Amax «1l; k=4 (354a)
EZ, 1(0)
2 . -
Ly = 0-14; A, <1 k=4, (354b)

Eqgs. 348, 349, 352, 353, and 354 are valid also for the quantization scheme of

Case II, if A2 __ is replaced by A% __d.
max max
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V. CONCLUDING REMARKS

The important features of this research are

1. It presents a method of sending data over a time-discrete, amplitude-continuous
memoryless channel with a probability of error which, for R > Rcrit’ has an exponent
that can be made arbitrarily close to the optimum exponent E(R). This is achieved by
using a discrete input space. .

2. It presents a decoding scheme with a probability of error no greater than a quan-
tity proportional to exp [-—n(—;-E(O)-R)] and an average number of computations no greater
than a quantity proportional to m~. The number of channel input symbols is roughly
equal to In E(0) when E(0) » 1, and is very small when E(0) « 1 (for the Gaussian channel
we have { = 2). The dimensionality of each input symbol is d = 1, when E(0) » 1 and is
equal to d ¥ 'E%-) whenever E(0) « 1.

3. It presents a method of estimating the effects of quantization at the receiver, for
the white Gaussian channel. It has been shown that the quantization scheme of Case I
is to be used whenever A?nax » 1. The quantization scheme of Case II is the one to be

2
used whenever A « 1.
max

Suggestions for Future Research

A method has been suggested by Elias11 for adapting coding and decoding schemes
for memoryless channels to channels with memory converted into memoryless channels
by "scrambling" the transmitted messages. Extension of the results of this report to
channels with memory, using scrambling or more sophisticated methods, would be of
great interest.

Another very important and attractive extension would be the investigation of com-
munication systems with a feedback channel. One should expect a further decrease in
the decoding complexity and, probably, a smaller probability of error if feedback is

used.
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APPENDIX A
BOUNDS ON THE AVERAGE PROBABILITY OF ERROR-SUMMARY
A.1 DEFINITIONS

Following Fano,2 we shall discuss here a general technique for evaluating bounds
on the probability of decoding error when a set of M equiprobable messages are encoded
into sequences of m channel input events.

Let us consider a memoryless channel that is defined by a set of conditional proba-
bility densities p(n’ £), where £ is the transmitted sample, and m is the corresponding
channel output (p(nl £) is a probability distribution if n is discrete). We consider the
case in which each input event x is a d-dimensional vector, and is a member of the (con-
tinuous) input space X. The vector x is given by x = gl, gz, e §d.

The corresponding d-dimensional output vector y is a member of the d-dimensional
continuous space Y, with y = Mo Nyo v e s Ny The number of dimensions d is given by
d = n/m, where n is the number of samples per message. The channel statistics are
therefore given by ‘

d
ply|x) = ;Wl p(n;| £,), where p(n,| €)= p(n|€); £ =€ n=n,.
The mth power of this channel is defined as a channel with input space U consisting
of all possible sequences u of m events belonging to X, and with output space V con-
sisting of all possible sequences of m events belonging to Y. The ith
sequence u will be indicated by yi. Thus

event of the

u=x1,x2, x3,...,xm, v=y1,y2, y3,...,ym, (A-1)

where x' may be any point of the input space X, and y1 may be any point of the output
space Y.

Since the channel is constant and memoryless, the conditional probability density

p(v‘ u) for the mth power channel is given by

m .
P(Vlu) = ﬂl p(yl| <), (A-2)
i=
where
P(yilxi) = ply|x); yi =y, <= x. (A-3)

We shall assume in the following discussion that the message space consists of M equi-

probable messages m,, m,,

1 Mgs -ees Mpp
A.2 RANDOM ENCODING FOR MEMORYLESS CHANNELS

For random encoding we consider the case in which the input sequences assigned

to messages are selected independently at random with probability density p(u), if U is
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a continuous space, or with probability distribution p(u) if U is discrete. The average
probability of error corresponding to any such random assignment of input sequences
to messages depends, of course, on the probability density p(u). We set

= g
p(u) = ﬂ; p(x), (A-4) -
1=
where ®
p(xi) = p(x); X = x. (A-5)

Here, p(x) is an arbitrary probability density whenever X is continuous, and is an arbi-
trary probability distribution whenever X is discrete. Eq. A-4 is equivalent to the
statement that the input sequence corresponding to each particular message is con-
structed by selecting its component events independently at random with probability
(density) p(x).

We shall assume, unless it is mentioned otherwise, that the channel output is
decoded according to the maximum likelihood criterion; that is, that any particular
output sequence v is decoded into the message m; that maximizes the conditional prob-
ability (density) p(vl mi). Since messages are, by assumption, equiprobable, this
decoding criterion is equivalent to maximizing the a posteriori probability p(mil v),
which, in turn, results in the minimization of the probability of error.

Let us assume that a particular message has been transmitted, and indicate by u
the corresponding input sequence, and by v the resulting output sequence. According
to the specified decoding criterion, an error can occur only if one of the other M-1 mes-
sages is represented by an input sequence u' for which

p(v| u') = p(v| u). (A-6)

Let F(v) be an arbitrary positive function of v satisfying the condition
g F(v) dv = 1 (A-7a)
or

z F(v)=1 (A-7b)

if v is discrete.
Also, define
F(v)
D{u,v) = ln ——— (A-8)
p(v| w)

as the "distance" between u and v. In terms of this measure of distance the condition

expressed by Eq. A-6 becomes
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D(u', v) < D(u, v). (A-9)

For any arbitrary constant Do’ the average probability of error then satisfies the

inequality

P_<MP, +P,, (A-10)
where

P, = Pr[D(u,v) <D, D(u',v) < D(u, v)] (A-11)
and

P, = Pr[D(u,v) > D_]. (A-12)

The bound of Eq. A-10 corresponds to the following decoding scheme: D(u, v) of
Eq. A-8 is computed for each one of the M sequences of the input space U and the one
given output sequence v. The only distances D(u, v) that are taken into further consider-
ation are those for which D(u, v) < Do’ where Do is an arbitrary constant. The one
sequence u, out of all of the sequences for which D(u, v) < Do’ which yields the smallest
distance D(u, v) is chosen to represent the transmitted signal. If no such sequence u
exists, an error will occur.

If the decoding procedure above is carried out with an arbitrary distance function of
u and v, Dq(u, v), other than the D(u, v) of Eq. A-8, then the average probability of
error satisfies the inequality

P_<MP, +P,, (A-13)
where
P, = Pr[D%uy,v) < D_; DYu',v) < D, (, v)] (A-14)
P, = Pr[DYu,v) > D] (A-15)

However, one would expect the bound of (A-13) to be larger than that of (A-10), if

Dq(u, v) is not a monotonic function of the a posteriori probability p(ulv).
A.3 UPPER BOUNDS ON Pl AND P‘2 BY MEANS OF CHERNOFF BOUNDS

The m events constituting the sequence u assigned to a particular message are

selected independently at random with the same probability p(x). If we let

m .
F(v) = T t(yh, (A-16)
i=1

where

el i =ik S‘ fly) dy = 1,
y =y
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or

Z ty) = 1, (A-17)

when y is discrete, it then follows from Eqs. A-2, A-3, and A-16 that the random var- -

iable D(u, v) defined by Eq. A-8 is the sum of m statistically independent, equally dis-

tributed, random variables: .
m
D(u, v) = Z d(x;, ;) (A-18a)
i=1
where
ii fly) i i
dix',y)=d(x,y) = 1n i X =x3y5 =Y. (A-18b)

ply|x)

In cases for which an arbitrary distance Dq(uv) other than D(uv) of Eq. A-8 is used,
the discussion will be limited to such distances Dq(uv) that may be represented as a sum

of m statistically independent, equally distributed, random variables.

m
DYu, v) = Z aded, vh, (A-19)
i=1
where
dq(xi,yi) = dYx, y); x = X, yi =y. (A-20)

The moment~generating function of the random variable D(u, v}, is

G(s) = S p[D(u, v)] eSPW V) 4py, v), (A-21)
D(u, v)

where p[D(u, v)] is the probability density of D(u, v). Thus

G(s) = SS‘p(u) p(vlu) eSD(u’ v) dudv. (A-22)
uv

From Eqs. A-18, A-4, A-5, A-2, and A-3, we get

= sd(x, y) m
G(s) = TI ﬂpm p(y|x) €T axdy = [g4(s)]™, (A-23)
i=1 Xy
where
_ sd(xy)
gqls) = ) ) () p(y|x) e dxdy. (A-24)

XYy
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For the P2 of Eq. A-12 we are interested in the probability that D(u, v) is greater than
some value Do' For all values of D(uv) for which D(u, v} = Do’

sD
eSD(uV) = e O, for s = 0.

Using this fact, we may rewrite Eq. A-21 as

sD
G(s)ze °© g p[D(u, v)] dD(u, v). (A-25)

D(u, v) >Do

Using Eq. A-23, we have

Pr[D(u, v) >Do] < exp(myy(s)-sD), (A-26)
where
Y4(s) = In g4(s) = In Sg p(x) p(y|x) eSAXY) gygy. (A-27)
XY

Equation A-26 is valid for all s 2 0. We may choose s that is such that the exponent
is minimized. Differentiation with respect to s and setting the result equal to zero
yields

Pr[D(u, v)>Do] < exp{m[yd(s)—syd'(s)]}; s =0, (A-28)
where s is the solution to

dy.(s) D
\('d(s)=~———§ls =— (A-29)

In the same way,

Pr[Dq(u, V) >D0] < exp(myg(s)—sDo), (A-30)
where
yg(s) = 1ln gg(s) =1n gg p(x) p(ylx) exp[qu(x, y)] dxdy. (A-31)
XY

The exponent of Eq. A-30 is minimized if we choose s that is such that

dyds) D
v?{(s)= éis =2, (A-32)
Thus
Pr[D%u, v)>D, ] < expfm[yX(s)-syd (s)]}. (A-33)

For P1 we desire an upper bound to the probability (A-11)

83




P, = Pr[D(u, v)<D,, D(u', v)<D(u, v)]

For this purpose, let us identify the point uu'v of the product space UU'V with the point

a of a space A, the probability (density) p(uu'v) = p(u) p(v') p(v[u) with the probability

(density) p(a), the random variable D(u, v) with ¢(a), and the random variable D(u', v) -

-

D(u, v} with the random variable 6(a). Inserting 6(a) and ¢(a) into Eq. A-11 yields

p, = Pr[¢(a)<D_, 6(a)<0].

Let us form the moment-generating function of the pair (¢(a), 6(a)).

G(r, t) = S p(a) eTP(2)FO(2) 4

Now, for all values of {a: ¢(a)$Do; e(a)$0},

rD
TP(a)ttd(a) S -~ 7o forr <0; t<0.

By using this fact, Eq. A-35 may be rewritten as

rD

G(r,t) = e o p(a) da

{fa: #(a)<D_; 8(a)<0}
or

rD
G(r,t)=e © Pr[¢(a)SDo, 8(a)<0].

Thus

-rD
o

P, = Pr[¢(a)sD,, 6(a)<0] <Glr,t) e , r<0; t<o.

Now

$(a) = D(u,v), 6(a)= D(u', v) - D(u, v),
and

p(a) = p(uu'v) = p(u) p(u') p(v|u).

Thus, from Eqs. A-18, A-4, A-5, A-2, A-3, and A-35, we get

G(r, t) = [gy(r, )],

where

gq(rst) = S 5 S p(x) p(x') ply|x) e!F7t) X YA Y) gyq0qy,

Y X' X

Inserting Eq. A-38 into Eq. A-36 yields
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p, = Pr[D(u, v)<D,, D(u', v)<D(u, v)] < exp(myd(r, t)-rDo);

r<0; t<o0, (A-40)
where
Yq(rst) = 1n g (r, 1)
1 {0 poo pxn) piy [0 78 Q9IHAEN ) gyapaay, (A-41)
Y XX

We may choose r and t in such a way that the exponent of the right-hand side of (A-40)
is minimized. Differentiating with respect to r and setting the result equal to zero and
then repeating the same procedure with respect to t, we obtain

P, = Pr[D(u, v)<D_, D(u', v)<D(u, v)] < exp{m[yd(r, t)—ry'dr(r, )]} » (A-42)
where

var(r.t) = aY—%(r{'—f-) = ?r? (A-43)
and

oy(r, t)
Y:it(r,t) ==y — = 0. (A-44)
In the same way,

Pr[Dq(uV)sDo, DY(u'v)< Dq(uv)] < exp{m[ydq(r, t)—rDO/m]}, (A-45a)

where

yg(r, t)=1n gg(r,t) =1ln S‘S‘ p(x) p(ylx) exp{(r-t) dq(xy)+tdq(x'y)} dxdy.
Y X

(A-45b)
Inserting (A-40) and (A-30) into (A-13) yields
P, < exp{m[yd(s)—sDo/m]} + exp{m[n/m Rty y(r, t)—rDo/m]}, (A-46a)
where R, the rate of information per sample, is given by
R=+InM. (A-46b)

From Eqgs. A-11 and A-12, the two probabilities, p 1 and Py, vary monotonically
with Do in the opposite directions. Thus, the right-hand side of (A-45) is approximately
minimized by the value of Do for which the two exponents are equal to each other.
Therefore, let D0 be such that
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D D,
== SR+ yy(r,t) - r (A-47)

n
Yd(s) - sm E

The insertion of (A-47), (A-44), and (A-43) into (A-46a) yields

P, < zexp{m[yy(s)-sD_/m]} = zexp[-nE4(R)], (A-48)
where
m DO m DO
1. Ed(R) = -K Yd(S) - S;n— =-R + B—(yd(r, t) - r_l’IT . (A-49)
D0

2. vy (s)=vyy (rt)==; 20, t<0, r<0. (A-50)
S r

3. yy(rt)=0; rs<o;ts<o. (A-51)
t

Now, from (A-25) and (A-18) we have

In S‘S p(x) p(ylx) esd(xy) dxdy
Y X

Yd(S)

ln S.S p(x) P(ylx)l_S f(y)® dxdy. (A-52)
YX
Also, from (A-39) and (A-18) we have

y.(r,t) = In p(x) p(x") p(y| )1 Tt piy[x) 7t £y)T. (A-53)
d

y x' x

It can be shown14 that
1. Eq. A-44 is satisfied if we let

l-r+t=-t; r<0,t<o0

or

r=l+2t; t<-j. (A-54)
2. Eq. A-50 is satisfied by letting
l/l—s
U p(x) ply|x)' 7% dx}
f(y) = ——2= ) 7S (A-55a)
5 § p(x) p(y|x) ™% dx dy
Y (X

and
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.

s=1+t; 0<ss<3 ( A-55b)
3. Equation A-49 is then satisfied if we let
1 1
R = 3[(s-1) vjls)-v4(s); 0 <s <5 (A-56a)

We should notice, however, that Eqs. A-44, A-50, and A-49 are satisfied if, and
only if, R is such as to make 0 <s S"é‘. It can be shown14 that this is for the region

Rcrit <R <], ' (A-56Db)
where
! p(y|x)
I=3 Sg p(x) ply|x) In dxdy = [R]s=0 (A-56c)
Y X p(y)
and
Bopit = [R]s=l/2' (A-56d)

Let us now define the tilted probability (density) for the product space XY.

*P ) p(x) ply|x)
Qx,y) =
S.§ eSD(x: ) p(x) p(y|x) dxdy
Y X
p(x) ply| )75 £5(y)
= (A-57)
{ {0 bty |17 (5 axay
Y X
where
1/1-s
|:§ p(x) p(y|x) ™S dX]
Qy) = f(y) = X i v ; 0<s s-é—, (A-58)
-S
[f p(x) ply|x) ™ dx] dy
Y LXx
Qxy) ) ply|x)' .
Q(x]y) = ; 0<s<s (A-59)
Q(y) l-s
g P(x) ply|x) " dx
X
Using Eqs. A-52, A-53, A-54, A-56, A-57, A-59 yields
P <2¢ PE(R), L <R<L (A-60a)
e crit
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Here, the exponent E(R) is related parametrically to the transmission rate per sample
R, for RC <R <], by

Q(x,y)
0 <E(R) = % 5 S. Qx,y) In —m8 — dxdy {A-60b)
Y X p(x) p(y|x)
cr<l Q(X|y)> _ 1
d Q(x, y) ln = Rcrit’ 0<s< > (A-60b)
P(x)
. ) S*g p(y|x)
R it = [R]S=1/2, I=[Rl_o=7 p(x) p(y|x) In — (A-60d)

Whenever R< Rcrit’ there does not exist a Do that simultaneously satisfies Eqs. A-49,

A-50, and A-51. However, the average probability of error may always, for any rate,
be bounded by

P, < MPr[D(u'v)<D(uv)]. (A-61)

This is equivalent to setting D0 = D(u, v) in Eqs. A-11 and A-12. Thus

= Pr[D(u'v)<D(uv)]; P, = 0. (A-62)

In the same way,
< = ty)< . -
P, <MP MPr[Dq(u v) Dq(uv)] (A-63)
The evaluation of Pl under these conditions proceeds as before, except for setting
r = 0 in (A-42) and (A-45a). Therefore

Pe < exp{m[n/m R+yd(0, ]k t <0, (A-64a)

where

Y4(0:t) = y(t)

= In 5 g S' p(x") p(x) ply]x) eAEIAN] gigays  t<o0  (A-64b)
Xl
and
P, < exp{m[n/m R+vJ(0, t)]} t<o, (A-65)
where
30, ) = vt
q q
=1n 5 § S p(x) p(x') ply|x) td ('Y= (xy)] dx'dxdy; t<o (A-65a)
Y X X

88




Thus

N

v4(0,t) = In §§ p(x) p(yIX)I't p(y1x')t; t <o. (A-66)
XY

Here, yd(O, t) may be minimized by choosing a proper t. Differentiation with respect
to t and setting the result equal to zero yields

L

t= (A-67)
1 1/2 1/2
vd(o,—g) vd(— = In § 5§ p(x) p(x") ply|x)/2 py|x1)"/ (A-68)
Xl
or
2
1 1/2
Yd(O,'?_') =1n S‘ [yp(X) p(y|x) / dX] . (A-69)
Y
The insertion of Eq. A-67 into Eq. A-64 yields
P, < exp{-n[E4(0)-R]}, (A-70)
where
=1 1
Ed(o) - _dyd(o’ 2)- (A'71)
From Eq. A-60 for R = Rcrit’ we have s = %. t= —%, and r = 0. Thus, by Eq. A-49,
d(R)lR = Repit t de(o’ Z) Eq0) - Ry i (A-72)
crit
and the exponentials of (A-70) and (A-49) are indeed identical for R = R rit
It can also be shown that dEd(R)/dR IR = -1, so that the derlvatlves of the two
crit
exponents with respect to R are also the same at R = Rcrit'
The average probability of error can therefore be bounded by
-n[E4(0)-R]
e ; R<R __.
crit
Pe < (A-73a)
—n[Ed(R)]
2e ; R .. <R<xI
crit

where

Ed(O) - Rcrit = Ed(R) R . (A-73b)
crit

and
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d[Ed(O)—R] ) dE ((R)

dR dR
crit crit

= -1. (A-73c)
R

A.4 OPTIMUM UPPER BOUNDS FOR THE AVERAGE PROBABILITY OF ERROR

The upper bound of Eq. A-73 may be optimized by choosing p(x) that is such that,
for a given rate R, the exponent of the bound is minimized. -

Letd =1 and m = n. xi is then identical with gi, where éi is the ith input sample
that is a member of the (continuous) one -dimensional spaceE. yi is identical with ni,
where ni is the ith output sample that is a member of the (continuous) one -dimensional
spaceH .

It can be shown15 that there exists an optimum probability (density) p(x) = p(£) defined
onEthat minimizes the upper bound to the average probability of error, so that, for
large n and for R = Rcrit’ it becomes exponentially equal to the lower bound on the prob-
ability of error.

The characteristics of many continuous physical channels, when quantized and thus
converted into a discrete channel, are very close to the original ones if the quantization
is fine enough. Thus, for such continuous channels there exists one random code with
an optimum probability density p(x) = p(§) which yields an exponent E(R) that is equal
to the exponent of the lower bound of the average probability of error, for n very large

and for R=R__ ...
crit
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APPENDIX B

EVALUATION OF Ed(O) IN SECTION 2.3, FOR CASES IN WHICH
EITHER Azd « 1 OR A2 >1

We shall evaluate lower bounds to the exponent Ed(O) which is given by Eq. 127.

T 2
1 ~dA® . 20) . _d-2
Ed(O)— nln ————-——fo exp( 5~ sin z)sme de

E2(0>

I I
| |
rof— DO
o —
jo] =]
— (_/IH
S 2
o ol
|
M|:>N
~—
o
3
[}
b
/’_O\
>
Ml -
o
o
w
\Q/
o
—o

2 27 2
i%—) 51; f exp(—AZ— cos 6) de} .
0

Thus
2 2
— _L _é—. .A_ -
EZ(O)_ 2ln{exp( 2)10(2)} ) (B-1)
2
For—%-« 1, we have

2 2
~ -1 ATV LAT
EZ(O) =y 1n exp( ) =

2 (B-2)
2
For A7» 1, we have
2 1 2
~ -1 ATy A~
E2(0) = -3 In {exp( 2) - exp<+ 5 )}
o B
L)
1/2
1 2 1 1 2 _a
~41nA +41n7r~21n(A) . (B-3)

Now, for d = 3 we have, from Eq. 127,

o1 i (s a2) o7 (3,2 -
ES(O)_ 3ln{2 exp<4A) f(; exp(4A cose)smede}

0
o101 -3 a2) & d 3 a2
= 31n{2 exp( 4A) 3A2 j;r J6 exp(4 A cose) de

Thus
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2

1 3 ) Shyh
E3(0) =-31n exp(—z A ) 3 2 (B-4)
4
2
For 3% « 1, we have
1 3.2\ A2
EB(O) = -3 In exp(‘zA) =3 - (B-5)
For %Az » 1, we have
Ly .3_ 2_1 2,1, 3
E(O) 3 4A —31nA +31n4
2/3
~iima%-1i, (Az) . (B-6)
3 2
In general, for an d = 3, we have
E,(0) = 1A%, A2d«1 (B-17)
(d-1)/d -
E.(0) = + In (Az) -94-1w0); a»1, (B-8a)
d 2 —d
where
~ 1 2 2
E(0) = Ed(O)l =5 1In (A ) ;0 A°» 1, (B-8b)
d=n» 1
PROOF: From Eq. 127 we have, for A2d «1
d
r(g)
2 2\ 27 2 _
Ed(0)=—l1n L (1—1%—) f (l—dﬁ)cosesin ed 2de
NT r(d-l) 0
2
2 2
- -1 _dA") _A°
=g (1 4 ) rak
Thus
N 2
Ed(O)zT; Ad« 1. Q.E.D.

We now proceed to prove Egs. 130b and 130c. Let x = sin2 % and insert x into

Eq. 127. We have, then,
r($)
0d-3

==

E4(0) = —% 1n 1), (B-9a)

where
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2
(_d_z;_ X) Ld-3)/2_ d=3)/2

1= [ exp (B-9b)
0
Now
. 1-x<e X, (B-10)
Inserting (B-10) into (B-9b) yields
-
1
A°d d-3 (d-3)/2
Igj(; exp([d 3+1] 5 x)x d
d-1
d ( =)
= . (B-11)
(d-1)/2
d-3({A°d
[ 2 (d 37" 1)]
Inserting (B-11) into (B-9a) yields
r(3)
2 _ _ (d-1)/2
E (0) > ~+1n{ L ——— 2973 +%1n[¥ +A2]
VT pg\d-1)/2
(5
The first term on the right-hand side of inequality (134) is bounded by
5)
-t L ——— 997 < L9y o973
V| g(d-1)/2
(5)
_d-3
= 3 In 2
Thus, for A2 » 1, we have
(d-1)/2
1o, (A2 d-11 2 )
d(0) gl (A ) =g S InA". (B-12)
Now, let

E(0) = (O)I (B-13)
n» 1

Inserting d = n» 1 into (B~12) yields

. E(0) 3 é— A2,

From the convexity of the exponent E(R), when plotted as a function of R, we have
E(0) < C, (B-14)

where C is the channel capacity, given by Shannon,1
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C=%1nA2; A2y 1.

Thus, by (B-13) and (B-14),

E(0) = Cz—%-lnAz; Ax» 1.

Inserting (B-15) into (B-12) yields

_d-11 2 _d-1
E4(0) = S5=751n A” = S5

E(0).

94

(B-15) =




APPENDIX C

MOMENT GENERATING FUNCTIONS OF QUANTIZED GAUSSIAN VARIABLES
(after WIDROWQ)

A quantizer is defined as a nonlinear operator having the input-output relation shown
» in Fig. 10c. An input lying somewhere within a quantization "box" of width q will yield
an output corresponding to the center of the box (i.e., the output is rounded off to the
center of the box).
Let the input z be a random variable. The probability density distribution of z, p(z),
is given.

The moment-generating function (m. g. f.) of the input signal is therefore
g(s) = [ plz)e ®% az. (C-1)
Z
Our attention is devoted to the m. g.f. of the quantized signal zq, given by

g |
gUs) = [ plzhHe % dz1, (C-2)
Zq

q, and consists of

where p(zq) is the probability density of the output of the quantizer, z
a series of impulses. Each impulse must have an area equal to the area under the
probability density p(z) within the bound of the "box" of width q, in which the impulse is
centered. Thus the probability density p(zq) of the quantizer output consists of "'area
samples' of the input probability density p(z). The quantizer may be thought of as an

area sampler acting upon the ''signal," the probability density p(z).

Thus, p(zq) may be constructed by sampling the difference q)(z +-§L> - <|>( —%), where
¢#(z) is the input probability distribution given by

z

o(z) = f pl(z)dz. (C-3)

-0

This operation is equivalent to, first, modifying p(z) by a linear "filter" whose transfer

function is

S
J(sa)/2 _ ~(sq)/2 i sh%—
S

. - q —qi‘ (C-4)
and then impulse-modulating it to give p(z%).
Using ""A'" notation to indicate sampling, we get
qs A
gUs) = | ats) SZS = FA(S), (C-5a)
2
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where
gs
sh =5
S
a% "

F(s) = g(s) q (C-5b)

Now, let the function F(s) be the transform of a function f(z).

F(s) = f f(z)e 5% dz. (C-6)
Z
Then
FoGs) = [ %(z)e 5% dz, ' (C-7)
7z

where fA(z) is the sampled version of f(z).
Thus

£8(z) = (z) c(2), (C-8)

where c(z) is a train of impulses, q amplitude units apart. A Fourier analysis may be

made of the impulse train c(z), The form of the exponential Fourier series will be

[> )

1 ikQz | _ 27

c(z) iy 2 e ;0 =T (C-9)
k==c0

Inserting (C-9) into (C-7) yields

FA(s) =

% k_z_ F(s-ike) . ‘ (C-10)

Inserting (C-10) into (C-5) yields
sh [q (s-zikﬂ)]

-ikQ
q (s i )

glts) = ) gls—ikn)

==—00

(C-11)

Now, if the input is a Gaussian variable governed by the probability density

2
1 _(z—x)
WEXP(TZ) , (C-12)

it can be shown that

p(z|x) =

g
gls) = gle)—3=; a<zo, (C-13)
2
where
2 2
g(s) = exp(S 2'" + xs) . (C-14)
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Let z and z' be two random Gaussian variables governed by the probability density

. ~(z-2)2 + 28(z-2)(z'-Z) - (z'-21)°
plz, z') = exp 5 , (C-15a)
27r(l_,;,z)l/z 2(1-¢°)

where
¢ = (z—z)(z'-2"). (C-15b)

Let the corresponding m. g. f. be given by
g(r,t) = f f plz, 21) " 72 qudz0 (C-186)
AR

Now let z and z' be quantized by the quantizer of Fig. 10c, to yield z9 and 2’4, Thus

q

- P |
glr, 1) = fq f q p(z%, 21 Y e T2 2" 42929 (C-17)
yANA

It can then be shown (as was shown in the derivation of (C-13)) that

sh qr sh at
gXr, 1) = glr, 1) q:z- 332 . g<2(1-t?). (C-18)
A 2
Also, if z = 2' ({=1), we have
q
sh-(r+t)
gt = gle, ) —2—; q<2. (C-19)
g (r+t)
Now, if z = -z' ((=-1), we have
shd (r-t)
gUr, t) = glr, t)q—f—)—' q<2. (C-20)
—2- r-t

We now proceed to derive upper bounds to g(s) and g(r, t) to be used whenever the
quantization grain q is large, so that (C-13), (C-17), (C-18), and (C-19) are not valid

any more.

Let z9 = z+nq(z), where nq(z) is the "'quantization noise." Thus, by Eq. C-2,

g9s) = fé p(z) exp[-s(z+nq(z))] dz.

+» Now, ,nq(z)l s%' Therefore

g(s) < '& p(z)e Y dz expls—g—l

= g(s)expls%[. (C-21)
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In the same way, let
z4=27+ nq(z); 219 =g 4 nq(z').
Thus, by (C-17),
Ur, t) = (z,z') exp[-r(z+n (z))-t(z'+n (z'))] dz'dz .
g Xr, éfz'pz, xp[-r q q ] dz'dz

Now
’nq(z)IS%; Inq(z')IS%.
Thus

p(z, z') exp(-rz-tz') dz'dz exp,r —g—l + |t g—l

1

Ur, 1) <
S0l

= g(r,t) exp

r%|+ It %I (C-22)
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ERRATA

(added in press)

Page 1, line 25. Change to read "and v, is independent of f_E, fori# j."
Page 6, lines 30, 31. eSY%Y) should read 5P+

Page 9, line 15. D(k,y) should read d(k,y)
D(k',y) should read d(k',y)

line 18. D(xi,y) should read d(xi,y)
" d ‘s
D(xJ y) should rea d(XJ y) £(s)

line 21. Should read d(k,y) = d(xk y) =1In

line 27. D(k,y) should read d(k,y)
line 30. D(xk,y) should read d(xk,y)
Page 10, lines 35 and 38. D(x,y) should read d(x,y)
Page 11, line 16. D(xi,y) should read d(xi,y)
line 19. D(xj,y) should read d(xj,y)
line 24. D(xi,y) should read d(xi,y)
line 27. D(x,y) should read d(x,y)
Page 13, line 1. Add prime. R =~§1— [(s-1) v4(s) —yd(s)]

p(y|x,)

Page 16, line 17. The inequality should be 2.
line 25. Replace with
Ez,d(R) ZE(R); R<R
line 28. Replace with
E(R) 2E, 4‘R) = E(R) (76)
line 29. Should read "with probability one if"

epits GE(0) » 1 (75)

Page 20, line 7. Replace with
Ez,d(R) E’E*(R) (E*(R) is Shannon's upper-bound expgnent) (99)
Page 22, line 5. Add "exponent of the probability of error as long as Amax < 1"
Page 23, line 12. Change E (0) to E 1(0)
line 14. Should read "Thus, smce 4(k-1) <k =2, we have"
line 16. Change Ez,l(o) to Eﬂ,l(o)
line 20. Should read

2 2 2
-D* . exp (—-4kD . /8¢ )
> -ln— | £ + 2(4-1) exp |—TR) 4 2(g-2) min
£ 8¢ exp(—4kD2 . /8<r2) -1
min

lines 33 and 34. Change Ez,l(o) to Eﬂ_,l(o)
Page 24, line 1. Change Ez’l(o) to El,l(o)

line 11. Should read "Comparing Eqs. 72 and 75-77..."
Page 26, line 15. (I"-g-) should read I"(%)
Page 27, line 13, Should read

E4(0) ¥ d-1g0); a2 51 (130c)
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Page 29,
Page 31,

Page 32,
Page 33,
Page 35,

Page 36,

Page 40,

Page 41,

Page 42,

Page 73,

ERRATA

(added in press)

line 15. Should read "Thus, for AZ » 1, we have"
line 22. Should read "Now, from Eq. A-70, we have®
line 23. Should read

Ep,al®) =Ey 4(0) -
line 24. Should read "Thus, by Eqs 69 and 140, we have"
line 25. In Eq. 141 change equality sign to =
lines 34 and 38. Delete "R < Rcrit"
line 39. Change "variables" to values
line 20. Should read "And, since d = 1 always, if"
line 18. Add equation number (153)
line 21. Change "143" to 137.
line 27. Change equation number to (154)
line 33. Change equation number to (155)
line 35. Should read "Thus, by Eqgs. 137, 153, and 154,"
line 37. Change equation number to (156)
line 1. Change equation number to (156a)
line 3. Should read "Inserting (156a) into (152) yields"
line 4. should read

W:j:)\ W,)\,j
line 18. Change lower-case k to capital K

line 2. Should read 2
1 1/2
2v(3)m | ) o piy'?) o
Y\x
[’}

lines 18-21. Replace lines 18-21 with "Summation on j will
contain a number of terms proportional to m.
Thus

Z Pr[D (u',v) ZDj ; k. is used]
m m’ j
J .
J
<Km Pr[D (u',v) <D ma"]
m m
line 24. Change to

dmR ' Imax
P, < Km{exp[-kj l+e Pr[Dm(u wv) <D ¢ ]}

max
i
line 26. Change DJ to D max
J
line 6. Change d - Jmax toD max

lines 13 and 19. Should read "Pe < Km|..

line 22. Should read "Pe < 2Kme™ ...n
Table 4. Last row should read "See Table 3%
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