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Abstract

Two procedures for decoding linear systematic codes, majority decoding and a pos-
teriori probability decoding, are formulated. The essential feature of both methods is
a linear transformation of the parity-check equations of the code into "orthogonal parity
checks." The decoding decisions are then made on the basis of the values assumed by
these orthogonal parity checks. For binary codes, the principal component required
in the circuitry for instrumenting these decoding rules is an ordinary threshold logical
element. For this reason, we refer to these. decoding rules as forms of "threshold
decoding. n

It is shown that threshold decoding can be applied effectively to convolutional codes
up to approximately 100 transmitted bits in length over an interesting range of rates.
Very simple decoding circuits are presented for such codes. However, it is also shown
that the probability of error at the receiver cannot be made as small as desired by
increasing the length of the code that is used with threshold decoding, rather this prob-
ability approaches a nonzero limit as the code length is increased indefinitely. A large

- number of specific convolutional codes, suitable for threshold decoding, are tabulated.
Some of these codes are obtained by hand construction and others by analytical tech-
niques.

It is shown that threshold decoding is applicable to certain low-rate block codes,
and that a generalization of the method is applicable to several other classes of block
codes. It is shown that simple decoding circuits can be used for such codes. The theo-
retical limits of threshold decoding with block codes are still not clear, but the results
presented here are promising.
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GLOSSARY

Symbol Definition

Ai An orthogonal parity check on some noise digit, say em

Bi Sum of the received digits, r m excluded, checked by Ai

D Delay operator

G(j)(D) Code-generating polynomial in a convolutional code

J Number of orthogonal parity checks

k Number of information symbols in a code word

ko Number of information symbols per time unit in a convolutional code

L Number of steps required to orthogonalize a block code

m Degree of code-generating polynomials

n Number of symbols in a code word

no Number of symbols per time unit in a convolutional code

nA Actual constraint length of a convolutional code

nE Effective constraint length of a convolutional code

ni Number of symbols checked by Bi

p0 Pr[em=l], where em is the bit to be determined by decoding

pO Transition probability of a binary symmetric channel

Pi Probability of an odd number of errors in the bits checked by B i

p Erasure probability of a binary erasure channel

Pl(e) Error probability in determining set of first information symbols of a

convolutional code
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GLOSSARY

Definition

Number of elements in a finite field or GF(q)

Threshold

Weighting factor

Binomial coefficient

Greatest integer equal to or less than I

Least integer equal to or greater than I

Set of all elements Xi., where the index i runs over all elements in the

set

Polynomial obtained from f(D) by dropping all terms with power of D

greater than m.
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I. THE CONCEPT OF THRESHOLD DECODING

In 1948, Shannon first demonstrated that errors in the data transmitted over a noisy

channel can be reduced to any desired level without sacrificing the data rate. His

"Noisy Coding Theorem" stated that such a channel is characterized by a quantity C,

called the channel capacity, so that the error probability at the receiver can be made

arbitrarily small by proper encoding and decoding of the data when, and only when, the

rate R of information transmission is less than C. With the goals and limitations of

their art thus clearly delineated, communication engineers have since focused consid-

erable, and often ingenious, effort on the dual problems that stand in the way of full

exploitation of Shannon's theorem, along the following lines:

(i) the construction of good codes that are readily instrumented, and

(ii) the development of simple and efficient decoding apparatus for such codes.

The first of these problems constitutes, by itself, no real obstacle. Let us for con-

venience confine our discussion at the moment to binary codes and transmission through

a memoryless binary symmetric channel. A mathematical model of such a channel is

shown in Fig. 1. When either a "one" or a "zero" is transmitted over this channel, it

is received correctly with probability qo and incorrectly with probability po = 1 - q.

The channel capacity can be shown to be 1 - H(p ) bits per transmitted symbol, where
2

H(x) = -x log 2 x - (l-x) log 2 (1-x) is the entropy function. Each message to be trans-

mitted over this channel will be encoded into a block of n binary digits. The number

of allowable messages is 2 nR where R is the rate of information transmission in bits

per transmitted symbol when the input messages are all equiprobable.

In proving his "noisy coding theorem" for the binary symmetric channel, Shannon

showed that when R is less than C, the average error probability vanishes with

increasing n for the ensemble of binary block codes in which each of the 2n R message

sequences is chosen at random with equal probability from the set of 2n binary sequences

of length n. Since a code taken at random from such an ensemble has probability less

than 1/N of having error probability more than N times the ensemble average, one can

quite reasonably select a good code at random. The encoding apparatus would, however,

be prohibitively complex since each of the 2n R code words, of n bits each, would have

to be stored.

qo
u

1

U

1
qo

Fig. 1. Binary symmetric channel.
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Elias 3 has shown that the much smaller ensemble of sliding parity-check codes has

the same average probability of error as the ensemble when all the code words are

selected at random and, furthermore, that this error probability decreases exponentially

with the block length n with the optimum exponent for rates near C. Fano 4 has shown

that a linear sequential network containing only n - 1 stages of shift register can serve

as an encoder for a sliding parity-check code. Recently, Wozencraft 5 has found an even

smaller ensemble of codes, which we shall call the randomly shifted codes, that again

have the same ensemble average probability of error as the other random codes.

Wozencraft's codes can be encoded by a linear sequential network containing the max-

imum of Rn or (l-R)n stages of shift register (cf. section 2. 5). From either the

ensemble of sliding parity-check codes or the ensemble of randomly shifted codes, it

is thus quite feasible to select a good, and readily instrumented, code by a random

choice. However, at present, no way is known to solve the second coding problem for

these ensembles, that is, the construction of a simple and efficient decoder. (The com-

plications of the general decoding problem will be discussed below.)

Remarkably, efficient decoding procedures have been found for certain ensembles of

randomly selected codes. The sequential decoding technique of Wozencraft was devised

for the ensemble of convolutional codes. Wozencraft and Reiffen have demonstrated

that for this method an exponential decrease in error probability can be attained by a

decoder whose complexity and average number of computations increase by only a small

power of the code length. Gallager has found a similar result to apply to his iterative

procedure for decoding the ensemble of parity-check codes that are constrained to have

a low density of "ones" in the parity-check matrix. For both of these schemes, the

decoding effort is small only when the information transmission rate is less than some

"computational rate" which is less than channel capacity. These two decoding procedures

(and the modified forms of sequential decoding recently proposed by Ziv9 and Fano 1 0 )

are the only known general solutions to the dual coding problems described above. Both

of these methods have the disadvantages that the amount of computation per decoded

digit is a random variable, and, for short codes, the decoders are more complex than

those that can be constructed for certain specific codes by using other techniques.

A second approach to the coding problems stands in sharp contrast to the probabi-

listic approach taken by Wozencraft and Gallager. Based on the pioneering work of

Hamming and Slepian, the algebraists take as their starting point a formal math-

ematical structure that is demonstrated to have metric properties that are desirable

for coding purposes. Often the decoding methods are found after the codes have been

known for some time, as is illustrated most strikingly by the Reed algorithm for the

Muller codes,l4 and the Peterson algorithm for the Bose-Chaudhuri codes.l6 Because

of the systematic structure of the codes obtained by the algebraic approach, the decoding

procedures usually require a fixed amount of computation. Very likely, for the same

reason, the codes of any one known type always become poor as the code length is

increased with the rate held constant. (The single exception to this statement is the
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iterated coding of Elias7 which does succeed in making the error probability vanish,

but more slowly than the optimum exponential rate with block length, and only for rates

that are substantially less than channel capacity.)

1. 1 THRESHOLD DECODING OF LINEAR CODES

Against this background, we can describe how the concept of threshold decoding which

will be introduced in this report is related to the previous approaches to the coding prob-

lems. As in the probabilistic approach, we shall begin with a decoding algorithm rather

than with specific codes. However, our algorithm will be primarily algebraic and will

require a fixed amount of computation per decoded symbol. Because of the special alge-

braic code structure which it requires, the algorithm will not be applicable to whole

ensembles of codes; rather, specific codes to which it applies will have to be con-

structed. Finally, and most important, we choose as our algorithm a procedure that

lends itself to simple machine implementation. Before outlining the decoding procedure,

we shall present some preliminary remarks on linear, or group, coding.

a. Linear Codes and the Decoding Problem 1 8

We shall be concerned primarily with linear codes in systematic form. The set of

code words for such a code is a subset of the set of n-tuples of the form

(tlt2, ... ,t ), (1)

where each t i is an element of GF(q), the finite field of q elements (cf. Appendix A).

The symbols t l , t 2 , ... , tk are chosen to be the information symbols. The remaining

n-k symbols are called the parity symbols and are determined from the information

symbols by a set of linear equations

k

tj = Ecjiti = k+l, k+2, .. , n (2)

i=l

where the set of coefficients, cji, are elements of GF(q) specified by a particular code.

(All operations on these symbols are to be performed in GF(q) unless expressly stated

otherwise.)

We assume now that after transmission through some channel, a received n-tuple

(r, r 2 , .. ., r n) is obtained which differs from the transmitted n-tuple (tl,t 2,.., tn) by

a noise sequence (e l e 2, .. , en), that is

r. = t. + e. i = 1,2,.. .,n, (3)
1 1 1

where again r i and ei are elements of GF(q), and all arithmetic operations are carried

out in this field. It then follows from Eq. 3 that knowledge of the received sequence

and the noise sequence suffices to determine the transmitted sequence.

It can be readily verified that the set of transmitted code words form an additive
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Abelian group of qk members (cf. Appendix A for the defining axioms of such a group).

There are qk code words, since each of the k information symbols can have any one of

q values. Let (t1 , t, ... , tn) and (1, t, ... , t) be any two code words. Then, by

Eq. 2, their sum is the n-tuple (tl+tl, t +t2, ... , tn+t), where

k

t + t = c(ti+t )
i ji

i=l

j = k+l, k+2, ... , n (4)

and this is the same n-tuple as is obtained by encoding ti+ti , i = 1, 2, . . , k as informa-

tion symbols. Thus the first group axiom is satisfied, and the other axioms are satis-

fied trivially.

We shall always use the notation, an (n, k) code, to mean a linear systematic code

as defined by Eq. 2.

Equation 2 may be rewritten as

k

cjit i - t = O
i=l

j = k+l,k+2,...,n (5)

and we say that each of these n-k equations defines a parity set for the code, that is,

some weighted sum of code symbols which is zero for all code words.

We shall define a parity check to be the sum in Eq. 4 formed at the receiver, that

is,

k

S = cjiri - r
i=l

j = k+1l,k+2, .. , n.

Using Eqs. 3 and 5, we may rewrite the parity checks as

k

s= c..e. - e.

i=l

j = k+l,k+2,...,n

from which we see that the {sj} constitute a set of n-k linear equations in the n unknowns

{ei}. (We shall use the notation {ai} to mean the set of objects a i , where i ranges over

all indices for which the objects are defined.) The general solution of Eq. 7 can be writ-

ten immediately as

k

ej = jiei - Sj

i=l

j = k+l, k+2,.. ., n. (8) -

This general solution has k arbitrary constants, namely the values of e l , e 2 , ... , ek.

Each of these arbitrary constants can be assigned any of q values, and thus there are
kq distinct solutions of Eq. 7.

4

(6)

(7)



We have not yet considered the mechanism by which the noise symbols {ei} are gen-

erated. The {ei} can be considered as sample points from the random process described

by the communication channel. For instance, it is readily seen that the binary sym-

metric channel in Fig. 1 is fully equivalent to the model in Fig. 2 for which the noise

NOISE
SOURCE

e. Fig. 2. Noise-source model of the Binary Symmetric
Channel.

t. c ', To r.

MOD - 2
ADDER

source is an independent letter source that has probability po of giving a "one" output,

and probability q of giving a "zero" output. In this case, a noise sequence of n bits
w n-wthat contains w "ones" has a probability of occurrence of powqo and this is a mono-

tonically decreasing function of w, the number of errors in the received set of n bits

(we assume po )

The general decoding problem for linear codes is to find that solution of Eq. 7 that

is most probable from consideration of the channel. For example, when binary data

are transmitted over a binary symmetric channel, the problem is to find that solution

of Eq. 7 that contains the smallest number of "ones." In practice, it is generally not

feasible to find the most probable solution of Eq. 7 for an arbitrary parity-check pattern

{si}, simply because of the enormous number of possibilities. An efficient solution of
the decoding problem depends on finding a simple method for determining the most prob-

able solution of Eq. 7 for a high probability subset of the set of all possible parity check

patterns.

b. Orthogonal Parity Checks

We shall now consider a procedure by which the parity checks {sj} of Eq. 6 can be

transformed into another set of quantities that will be found more convenient for decoding

purposes. We begin by considering linear combinations of the {sj}. We define a com-

posite parity check, A i, to be a linear combination of the {sj}. That is, each Ai is given

by an equation

n

Ai = E bijsj, (9
j=k+l

where the coefficients, bij, are again elements of GF(q).

From Eqs. 7 and 9, we have
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n

Ai = E bij Cjheh e (10)
j=k+l h=1

which may be written

n

Ai aije j , (1
j=l

where

n

E7 bih~hj j = 1 , 2,...,k

h=k+l
a.. = (12)

b.. j = k+l, k+2,..., n.

It is now convenient to make the following definition.

DEFINITION: A set of J composite parity checks, {Ai}, is said to be orthogonal on

em if in Eq. 11

a. = 1 i = 1,,...,J (13)
im

and

a.. = 0 for all, but at most one, index j (14)
1J different from m for any fixed i.

In other words, a set of J composite parity checks is called orthogonal on em if em

is checked by each member of the set, but no other noise digit is checked by more than

one member of the set. Thus em is able to affect all of the equations in the set, but no

other noise bit can affect more than a single equation in the set.

c. Majority Decoding

We shall now give the first of two algorithms that can be used to determine em from

a set of J parity checks {Ai} orthogonal on em. We shall use the notation LIJ and Il to

mean the greatest integer equal to or less than I and the least integer equal to or greater

than I respectively, and we shall say that a noise bit is checked by some parity check

if and only if it appears with a nonzero coefficient in the equation for that parity check.

THEOREM 1: Provided that [J/2J or fewer of the {ej} that are checked by a set of

J parity checks {Ai} orthogonal on em are nonzero (that is, there are LJ/2J or fewer

errors in the corresponding received symbols), then em is given correctly as that value

of GF(q) which is assumed by the greatest fraction of the {Ai}. (Assume em = 0 in the

case for which no value is assumed by a strict plurality of the {Ai}, and 0 is one of the

several values with most occurrences.)

6
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PROOF 1: Suppose em = V and assume initially that all other e that are checked

have value 0. Then from Eqs. 11 and 13 it follows that

A. =V i=1,2,...,J. (15)

Now suppose V = 0 and the conditions of the theorem are satisfied. The LJ/2] nonzero

noise digits can change at most the same number of the equations in Eq. 15 and hence

at least [J/2z of the {At} are still zero. Thus zero is either the value with most occur-

rences in the set {Ai} or one of the two values with the same largest number of occur-

rences; in both cases the decoding rule of the theorem gives the correct value of em.

Conversely, suppose that V 0. Then since em = V 0, it follows that fewer than

LJ/2] of the other noise digits checked by the {Ai} are nonzero, and hence that more than
[J/21 of the equations in Eq. 15 are still correct. Hence the decoding rule of the theorem

is again correct, and the theorem is proved.

If J = 2T is an even number, it follows from Theorem 1 that em can be correctly

determined whenever T or fewer of the received symbols are in error. Similarly if

J = 2T + 1 is an odd number, then again em can be found whenever T or fewer errors

occur, and in addition T + 1 errors can be detected by saying that a detectable error

has occurred when the value assumed by the greatest fraction of the {Ai} is nonzero and

has exactly T + 1 occurrences. These considerations imply that any two code words

with different values of tm must be at least distance J + 1 apart. (We shall use distance

to mean always Hamming distance, that is, the number of symbols in which the code

words differ.) Hence, Theorem 1 has the following corollary.

COROLLARY: Given a linear code for which it is possible to form a set of J parity

checks orthogonal on e m , then any two code words for which tm differs are separated

by a Hamming distance of at least J + 1.

We shall refer to decoding performed according to the algorithm given in Theorem 1

as majority decoding of orthogonal parity checks. It should be clear from the preceding

discussion that majority decoding is a form of minimum distance decoding; that is, when

decoding em, majority decoding assigns the value to em that it takes on in the noise

sequence of minimum weight that satisfies Eqs. 11. It is important to note that this

noise sequence does not in general coincide with the noise sequence of minimum weight

that satisfies Eqs. 7, since the mapping from the {sj} to the {Ai} need not be one-to-one.

d. A Posteriori Probability Decoding

Majority decoding is inefficient in the sense that it does not take into account the

details of the channel statistics, that is, of the probability distributions of the noise bits.

We shall now give a decoding algorithm that makes the best possible use of the informa-

tion contained in a set of J parity checks orthogonal on em in arriving at a decision on

the value of em

We assume the noise sequence is additive and is independent from digit-to-digit,

but is not otherwise restricted. This means that the channel must be able to be put in

7



the form of the model in Fig. 2 in which the noise source is an independent letter source
and the adder operates in GF(q).

Taking average probability of error as the criterion of goodness, we seek a decoding
algorithm that will assign to em that value V for which the conditional probability

Pr(em=V {Ai}) (16)

is a maximum. Using Bayes' rule, we have

Pr(e=V {Ai}) Pr({A =V) Pr(em=V) (17)
Pr({Ai})

Because of the orthogonality on e m of the Ai} and the digit-to-digit independence of
the noise sequence, it follows that

J
Pr({Ai}l em=V) = I Pr(Ai em=V). (18)

i=l

Substituting Eqs. 17 and 18 in Eq. 16 and taking logarithms, we can phrase the decoding
rule as follows: Choose em to be that value V for which

J

log [Pr(em=V)] + E log [Pr(Ailem=V)] (19)
i=l

is a maximum. For emphasis, we state this result as a theorem.

THEOREM 2: Given a set {Ai} of J parity checks orthogonal on em, and that the
noise sequence is additive with digit-to-digit independence, then the decoding rule based
on {Ai} which determines em with the least average probability of error is: Choose em
to be that value V of GF(q) for which

J

log [Pr(em=V)] + log [Pr(Ailem=V)]

i=l

is a maximum.

We shall refer to decoding performed according to the algorithm of Theorem 2 as
a posteriori probability decoding of orthogonal parity checks, or, more simply, as APP
decoding.

e. Threshold Decoding

Let us now consider the specialization of the majority decoding and APP decoding
algorithms to the binary case. Let po = 1 - q be the error probability for bit em, that
is,

Pr(em=l) I po (20)

8



If Pi = 1 - qi denotes the probability of an odd number of "ones" among the noise bits

exclusive of em that are checked by Ai, the ith parity check orthogonal on em, then it

follows that

Pr(Ai=O em = 1) = Pr(Ai=1l em=0) = Pi (21)

and

Pr(Ai=1 em=) = Pr(Ai=O I em =O)= qi

Since em can have only two possible values,

rule is simply: Choose em = 1 if, and only if,

J

log (po) + log [Pr(Ailem=l)] > log (qo)
i=l

(22)

0 or 1, it follows that the APP decoding

log [Pr(Ai I em=0)]. (23)

Using Eqs. 21 and 22, we can reduce (23) to

or

J

t (2Ai-1) log (qi/Pi) > log (qo/Po)
i=l

J J

Ai[2 log (qi/pi)] > log (qi/Pi ),
i= i=0

(24)

(25)

where the {Ai} are treated as real numbers in (24) and (25). We summarize these results

in the next theorem.

THEOREM 3: For a binary memoryless channel with additive noise, the APP

decoding rule becomes: Choose em = 1 if, and only if, the sum of the members of the

set {Ai} of J parity checks orthogonal on e m , treated as real numbers and weighted by

the factor 2 log (qi/Pi), exceeds the threshold value

J

log (qi/pi ) ,
i=O

where p0 = 1 - qo = Pr(em=l) and Pi = 1 - qi is the probability of an odd number of errors

in the symbols, exclusive of e m, that are checked by the it h orthogonal parity check.

In a similar way, Theorem 1 for the binary case reduces to the following theorem.

THEOREM 4: Given a set {Ai} of J parity checks orthogonal on em, then the major-
ity decoding rule is: Choose em = 1 if, and only if, the sum of the A. (as real numbers)

m 1

exceeds the threshold value 1/2 Ji.
Because of the similarity of the decoding rules of Theorems 3 and 4, and because

these decoding rules can be instrumented by means of a simple threshold logical

9



element, we use the generic term, threshold decoding, to describe either majority

decoding or APP decoding of orthogonal parity checks. For convenience, we shall use

the same nomenclature for nonbinary decoding.

1.2 SUMMARY

By considering only orthogonal parity checks rather than the entire set of ordinary

parity checks, the general decoding problem described in section 1. la can be reduced

to the simple forms given by Theorems 1-4. The reasons for this simplification are:

In general, there is a very complex relationship between the values of the s. in Eq. 6

and the corresponding most probable noise sequence ei , i = 1, 2, ... , n. However, if

the s are linearly transformed into a set of parity checks orthogonal on e m , there is

a very simple relationship between the set {Ai) of orthogonal parity checks and em -

the A. conditioned on em are a set of independent random variables. Thus the factor-

ization of Eq. 18 can be carried out, and this permits each of the orthogonal parity

checks to be treated separately in the process of computing the most probable value of

e m
It remains to be shown that there exist codes for which the mapping from the ordinary

parity checks to the set of orthogonal parity checks can be carried out in an efficient

manner, that is, that the most probable value of em obtained by one of the threshold

decoding algorithms will coincide with the most probable value of em with respect to the

entire set of ordinary parity checks for a high probability subset of possible values of

the ordinary parity checks. The rest of this report will be devoted to this task.

In formulating the concept of threshold decoding, we have not restricted the choice

of a finite field for the coded symbols. We shall hereafter restrict ourselves almost

exclusively to the binary field, for two reasons: because this is a case of practical

interest, and because, as we shall point out, there are difficulties in applying the method

of threshold decoding to nonbinary codes in an efficient manner.

10
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II. CONVOLUTIONAL ENCODING AND PARITY CHECKING

We shall now give a brief discussion of convolutional encoding that will include alge-

braic properties of such codes, bounds on code quality, and circuits for encoding and

parity checking. Although this section is intended primarily to serve as a background

2 o-

k
o

- 1
- 2

Fig. 3. General convolutional encoder.

1- n
o

for the following ones, some of the material presented is new. Sections 2. 2, 2.4, and

2. 7 represent original work. The random-coding bound of section 2. 5 was first derived

by Elias 3 (who introduced convolutional coding at the same time), and we present merely

a different method of proof. The Gilbert bound in section 2. 3 was shown to hold for

binary convolutional codes with rate /n o by Wozencraft 9; we give a proof that applies

to nonbinary codes and to codes with arbitrary rate. The encoding circuit of section 2.6a

was first described by Wozencraft and Reiffen, but the circuit of section 2. 6b appears

to be new.

2.1 CONVOLUTIONAL ENCODING

A general convolutional encoder is shown in Fig. 3. Each unit of time, an informa-

tion symbol enters each of the k input lines, and an encoded symbol leaves each of the

n o (niko ) output lines. The symbols can be elements in any finite field, GF(q), and

the rate R = k /no then has the units of log 2 q bits per output symbol. All operations

on the symbols are assumed hereafter to be carried out in GF(q) unless it is expressly

stated to the contrary.

Using the delay operator, or D-notation, introduced by Huffman, 2 1 we can represent

the k input sequences by the set of polynomials

I(j)(D) = i(j) + i (j)D + i2(j)D2 + . . j = 1, 2, ,k, (26)= io 1 . . . O2 o

where iu(J) is the information symbol that enters the input line of the encoder at time

u. Similarly, the n output sequences are denoted
0

TJ(D) = to) + tl(j)D + t2()D + j = 1, 2, ... , no, (27)

where t
where tu(J) is the symbol that leaves the jth output line at time u.

We assume, without loss of generality, that the code is in systematic form, that is,

11
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that the first ko output sequences are identical to the input sequences. In the D-notation,

this property can be expressed as

T(J)(D) = I(j)(D) j = 1, 2, *, k (28)
0

The defining property of a convolutional code is that the remaining n - k output

sequences, or parity sequences, be linear combinations of the input sequences. That is,

T(j)(D) = G(J)(D) I(1)(D) + H(J)(D) I(2)(D) + .. + z(J)(D) I(k °)(D)

j = k o + , k o + 2 ,..., n o . (29)

Each transmitted parity digit is thus a linear combination of preceding information digits.

The set of ko(no-ko) polynomials

G(J)(D), H(J)(D), . . . Z(J)(D), j = k + 1, k0 + 2, . . ., n

comprises the code-generating polynomials, and their choice specifies the code.

Let m be the largest of the degrees of the code-generating polynomials, that is, the

largest power of D which multiplies any of the input sequences in Eq. 29. Then any

particular information symbol can affect the output sequences over a span of, at most,

m + 1 time units. During this time span, a total of (m+l)no symbols leaves the encoder,

and hence the code is said to have a constraint length, nA, of (m+l)no symbols.

In the D-notation, the code-generating polynomials will be represented as

G(J)(D) = g(j) + gl(J)D + . gm()Dm, (30)

where the coefficients are again elements of GF(q).

We define an initial code word of a convolutional code to be the first set of nA sym-

bols output from the encoder. We shall use the notation

T (J)(D) =t (j ) +t D + +t D j = 1,2,...,no (31)m o 1 m o (

to represent the symbols in a first code word. Similarly, we shall use the notation

I (j)(D ) = i + iD + + imDm j= 1,2,..., k0 (32)

to represent the transmitted symbols over the same time span.

With this definition, the set of initial code words of a convolutional code forms a

systematic linear code, or (n, k) code, as defined in section 1.1. In making the cor-

respondence with the notation of that section, nA is identified with n, and RnA = (m+l)k o -

is identified with k. In other words, there are nA symbols in an initial code word and,

of these symbols, RnA are information symbols.

These concepts are best clarified by giving an example. Consider the R = 1/2

binary convolutional code for which the code-generating polynomial is

G(2)(D) = 1 + D + D 3 . (33)

12



For an arbitrary information sequence, I(1)(D), the encoded parity sequence, from

Eq. 29, is given by

T(2)(D) = (+D+D 3 ) I(1)(D) (34)

from which we see that any transmitted parity digit is the sum of the information sym-

bols occurring at the same time and at one and three time units earlier. Hence if the

input sequence were

I(1)(D) = 1 + D2 + 6 +(35)

the output parity sequence is

T(2)(D) = 1+D+D + D +D +... . (36)

The manner in which the parity bits are formed can be seen from Fig. 4. As the infor-

mation bits move through the four-stage shift register, the fixed connections to the adder

insure that each formed parity bit is the sum of the current information bit and the infor-

o.. 1000101

. . . 1000101o TT(1)
i(1)

T( 2)

. . 1100111

Fig. 4. Encoder for the example.

mation bits one and three time units earlier which are stored in the second and fourth

stages of the shift register.

Since the code-generating polynomial has degree m = 3 in this example, the initial

code word is

T3( = 13( = 1 + D2 ,

and (37)

(2) 1 + D + D2 .

From the preceding example, it should be clear that the initial code word defined

by Eq. 31 can be obtained from (28) and (29) simply by dropping all terms in D with

exponents greater than m. Hence, we can write

T (D) = I (j)(D) j = 1, 2,... , k (38)
andm 

and

13



0) r) (·) j (k )Tm()(D) G()D) ( Im()(D) + ... + Z(J)(D) I °(D)

j = ko + 1,k +2,..., n o (39)

Here and hereafter we use the brace notation to enclose polynomials that are to be

expanded under the constraint that all terms in D with exponents greater than m are

to be dropped from the resulting expressions. (The operation of Eq. 39 is exactly the

same as specifying that the polynomial on the right be taken to be the minimum degree

polynomial in the residue class containing the polynomial within braces modulo the ideal

generated by F(D) = Dm+l. The terms in this statement are defined in Appendix A.)

2.2 ALGEBRAIC STRUCTURE

We shall now make a closer investigation of the set of initial code words of a con-

volutional code as given by Eqs. 38 and 39. Our purpose is to derive certain properties

of these code words which can be used later as a basis for proving the Gilbert bound

and the random-coding bound for the class of convolutional codes. We begin by proving

a lemma which seems quite abstract at this point, but whose utility will later become

apparent.

LEMMA 1: Given an arbitrary polynomial I (j)(D) of degree m or less such that

ioJ) is nonzero, for all qm+l choices of G(D) as a polynomial of degree m or less, the

polynomial

{ G(D) Im(J)(D)

m+l
is distinct, and hence takes on once, and once only, the identity of each of the q

polynomials of degree m or less.

PROOF: Suppose there exists some polynomial G (D) of degree m or less which

is such that

{G*(D) Im(j)(D)} = {G(D) Im(J)(D)}. (40)

Then, it follows that

{[G*(D)-G(D)] Im j(D)} 0. (41)

Equation 41 states that the polynomial on the left can have no terms of degree m or

less. Since i (J), the zero-degree term of I (j)(D), is nonzero, there will be a term
o0~ m 

of degree m or less if G (D) - G(D) has such a term. Since both G (D) and G(D) are

of degree m or less, it follows from (41) that G* (D) = G(D). Thus each choice of G(D)

yields a distinct {G(D)Im()(D)) and this proves the lemma.

We have seen that a convolutional code is specified by the choice of (no-ko)no code-

generating polynomials. Since a polynomial of degree m or less can be chosen in any

of qm+ ways, there are exactly qm nkk distinct convolutional codes with rate

14



R = ko/no and constraint length nA = (m+l)no' (We allow any generating polynomials of

degree m or less, and do not require that any of the generating polynomials have a non-

zero term in D .) The utility of Lemma 1 is that it permits one to determine in exactly

how many convolutional codes a specified initial code word can appear, and this, in turn,

can be used as a basis for proving that the class of convolutional codes meets the Gilbert

and random-coding bounds.

It is convenient to use the following nomenclature: The set of k symbols input to

(ko)the encoder at time zero, namely i o(), i . i0 will be called the set of first

information symbols. Since, according to Eq. 28, to) for j = 1, 2, ., k, the

following theorem gives the number of distinct codes in which some initial code word,

with a specified set of first information symbols, appears.

THEOREM 5: Given an initial code word Tm ()(D), j = 1, 2, . no , for which at
(j) ( ,least one of the symbols to (j=l, 2,. . ,ko) is nonzero, this first code word appears

in exactly q m+l)(n°k )(k0-) distinct convolutional codes with rate R = ko/no and con-

straint length nA = (m+l)no .

PROOF 5: The assumption that at least one of the t j , , ko, is non-

zero implies that at least one of the set of first information symbols is nonzero. With-

out loss of generality, we can assume that io(1) 0.
From (38), it follows that prescribing an initial code word fixes the polynomials

Im{)(D), j= 1, 2, ... , ko . Consider the parity sequences that are given by (39).

Equation 39 can be written in the form

T (j)(D) - {H()(D) I 2 (D) + ... + Z (D) I ° (D)} = {G(i(D) I (D)}

(42)

for j = k + 1, k + 2, ... , no . Now for any fixed choice of the polynomials H(J)(D),

... , Z(j)(D), the left-hand side of this equation is a fixed polynomial. It then follows

from Lemma 1 that this equation will be satisfied for one and only one choice of G(j)(D).

Since each of the (k-l1)(n-ko) ) polynomials H(J)(D), ... , Z(J)(D), j = k + 1, k + 2,
0 m+l

.. , no , can be chosen in any of q ways as a polynomial of degree m or less, it
(m+l)(ko-1 )(n -k )

follows that the specified code word appears in exactly q distinct codes

and this proves the theorem.

We shall now show how Theorem 5 can be used to prove the Gilbert bound for con-

volutional codes.

2.3 THE GILBERT BOUND

The minimum distance, d, of a convolutional code is defined to be the smallest num-

ber of symbols for which two initial code words differ that do not have identical sets

of first information symbols. Since the set of initial code words forms a linear code
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and hence forms a group, it follows that the minimum distance is also equal to the min-

imum weight (that is, the number of nonzero symbols) of an initial code word that has

at least one nonzero first information symbol. (Minimum distance d does not imply

that there exists two infinitely long transmitted sequences, with different sets of first

information symbols, that are distance d apart; but rather there are two such sequences

whose first nA symbols are distance d apart.) We now prove a lower bound on minimum

distance for convolutional codes.

THEOREM 6: Given a rate R = ko/no and a constraint length nA = (m+l)n o , then

there exists at least one convolutional code with minimum distance d, where d is the

largest integer for which

d-1n n(1-R)

I j ) (q-)J < q (l - R ) 43)
j=1

PROOF 6: A convolutional code has minimum distance at least d if it has no initial

code word of weight d - 1 or less for which some first information symbol is nonzero.

Thus, if in the set of all codes of length nA, we count the total number of initial code

words with some nonzero first information symbol which have weight d - 1 or less, and

if this total is less than the number of codes, then there must be at least one code with

minimum distance d or greater.

Since there are nA symbols in an initial code word, it follows that when

number of nonzero maximum number of distinct total
nA-tuples with codes in which each initial number
weight d- 1 or less code word with at least one < of (44)

nonzero first information distinct
/ d symbol can appear codes

then there must exist at least one code that has minimum distance d or greater. From

the fact that the (no-ko)ko polynomials that specify a distinct convolutional code can each

be chosen in qm+ ways as polynomials of degree m or less, it follows there are exactly
(m+l)(n -k )k0

q convolutional codes. Thus with the aid of Theorem 5, (44) can be writ-

ten

(cj ("nA) (q- l)j (q l)(no-k )(k 0 - )) qn 0 kk + (45)

j=l

or

_ (A) (m+l)(n -k nA(lR)
A(q-) j < qm = q (46)

j=l

and this is the result stated in the theorem.

The bound of Theorem 6 is equivalent to the Gilbert bound on minimum distance for
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block codes with the same rate and constraint length. 2 2

COROLLARY: There exists at least one binary convolutional code with rate R and

constraint length nA with minimum distance at least d, where d is the largest integer

for which

H(d/nA) < 1 - R, (47)

where H(x) = -x log 2 x - (l-x) log2 (l-x) is the entropy function.

PROOF: For q = 2, (43) reduces to

(nA nA( l-R)
j=1

The summation on the left can be overbounded 2 3 as

d- n A nAH(d/nA)
E j )< 2 . (49)

j=l

Hence if

2 nAH(d/nA) nA( - R)
<2 (50)

or

H(d/nA) < 1 - R, (51)

then (48) is satisfied, and there exists at least one convolutional code with minimum

distance d or greater as was to be shown.

Inequality (47) is the usual assymptotic form of the Gilbert bound and will be used

in Section III as a measure of quality for specific convolutional codes.

2.4 AN UPPER BOUND ON MINIMUM DISTANCE

In a manner similar to that used by Plotkin 2 4 for block codes, we can compute the

average weight of an initial code word for which at least one of the first set of informa-

tion symbols is nonzero, and then use the average weight to bound the minimum distance.

We proceed as follows.

Since the set of initial code words of a convolutional code forms a linear code, and

hence forms a group (cf. sec. 1.1), it follows that each element of GF(q) appears in a

given code position in exactly 1/q of the code words. (We assume that for each j, at

least one of the symbols g(j), h , ... , () is nonzero. This is a necessary and

sufficient condition that none of the positions in an initial code word will contain only

"zeros" for all code words, that is, there is no "idle" position.) This fact can be veri-

fied as follows: Adding any code word that has the element - in the given position to

all of the code words must reproduce the original set of code words in some order,
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because of the closure property of a group. There will then be as many code words with

zero in the given position as there were originally with P in that position. Since is

arbitrary, it follows that all elements of GF(q) must appear in the given position the
RnA

same number of times in the set of code words. Thus, since there are q code words

in the set of initial code words and each has nA positions, it follows that the total number
Rn A

of nonzero positions in the entire set of initial code words is [(q-l)/q]nAq A

The set of all initial code words for which all of the first information symbols are

zero form a subgroup because the sum of any two such words is another such code word.

From Eq. 39, it follows that t) = 0, j = 1, 2, ... , n, for these code words. By the

same argument as that given above, each element of GF(q) will appear in any given one

of the remaining nA - no code positions in exactly 1/q of this set of initial code words.
R(nA-no)

Since this subgroup contains q members, it follows that there is a total of

[(q-1)/q(nA-no) ] q A ) nonzero entries in the set of all such initial code words.

The average weight of a code word for which at least one of the set of first informa-

tion symbols is nonzero is given by

number of nonzero positions number of nonzero positions\
in the set of all initial code - in the set of all code words
words for which all first informa-

tion symbols are "zeros"
d =

avg /number of initial code words\
(number of initial code words) - for which all first informa-

tion symbols are zero

Using the preceding results, we can write this equation

q RnA q R(nA-no)
q-l nAq - q- (nA-no) q

d = (52)
avg RnA R(nA-no)

q -q

Equation 52 can be reduced to

q-1 (n
d (53)

avg q Rn(53)
q

Finally, since the minimum weight code word with some nonzero first information

symbol must have integer weight, which in turn must be no greater that the average

weight, we have the following result.

THEOREM 7: The minimum distance, d, of a convolutional code satisfies the ine-

quality

dL nA R (54)

q -1
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COROLLARY: The minimum distance, d, of a binary convolutional code with R =

1/n o satisfies

d < [ (~·n J.(55)
d A +no)j.

The corollary is obtained by substituting q = 2 and Rn = 1 in (54). Inequality (55)

is the form of the upper bound on minimum distance which will be useful in Section III.

Inequalities (54) and (55) do not give good upper bounds on minimum distance for

arbitrary nA because, for large nA, these bounds are roughly independent of the rate R.

We are interested in these bounds for the following reason. In section 3. 6 we shall dem-

onstrate the existence of a class of codes with prescribed values of nA and no for which

(55) is satisfied with the equality sign.

2.5 RANDOM-CODING BOUND

We turn our attention now to the task of computing what sort of error probabilities

can be attained at the receiver when data are transmitted over a binary symmetric chan-

nel after convolutional encoding. Rather than handle the problem directly, we shall

prove a more general random-coding bound that can be applied to the ensemble of con-

volutional codes, as well as to several other ensembles of linear codes.

Let us focus our attention on binary (n, k) codes. For any such code the set of 2 k

possible information sequences forms a group, the group of all binary k-tuples. We

define a group partition to be a mapping of this group of k-tuples into any subgroup and

its proper cosets (cf. Appendix A). As an example, take the case k = 2. One possible

group partition is then

H = [00, 01]

C 1 = [10, 11].

Here, we have taken the subgroup H to be the 2-tuples whose first bit is a zero, in which

case there is only a single proper coset, C 1' which is the set of 2-tuples whose first

bit is a one.

Next we observe that when the parity sequences are added to the information places,

the resulting n-tuples may still be assigned to a subgroup of the group of code words and

its proper cosets, with the information sequences being mapped in the same manner as

was done in the original group partition. If we continue the example above by setting

n = 4 and specifying that the first parity bit be equal to the first information bit and that

the second parity bit be equal to the sum of the two information bits, then we obtain

HI = [0000, 0101]

C' = [1011, 1110].

The group partition of the information sequences is nothing more than the "standard

array" of a subgroup and its cosets, which was first introduced into coding theory by
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Slepian. We use a different nomenclature for the following reason. In Slepian's stand-

ard array, the subgroup is the group of code words, and the parent group is the group

of all n-tuples. When the parity sequences are attached to the information sequences

in a group partition, the subgroup is the set of code words whose information sequences

formed the subgroup in the original group partition, and the parent group is the group

of all code words.

We are interested in group partitions for the following reasons. First, the set of

distances between members of a proper coset is the same as the set of weights of the

members of the subgroup. This follows trivially from the definition of a coset given in

Appendix A. Second, the set of distances from any member of one coset to the members

of a second coset is the same as the set of weights of the members in some fixed proper

coset, and does not depend on the particular choice of the member from the first coset.

Again, this follows from the fact that the members in any coset differ from each other

by the members in the subgroup. For example, in the code used in the previous example,

the members of a coset are distance 2 apart, but any member of Ci is distance 3 from

any member of H', since all code words in the only proper coset have weight 3.

In Appendix B, we prove the following lower bound on the error probability that can

be achieved in deciding to which coset of a group partition the transmitted information

sequence belongs when the code words are transmitted through a binary symmetric chan-

nel.

THEOREM 8: Given an ensemble of equiprobable binary (n, k) codes and a group

partition of the information sequences with the property that an information sequence

in any proper coset has equal probability of being assigned any of the 2 k possible par-

ity sequences, after transmission through a binary symmetric channel at any rate R =

k/n less than the channel capacity C, the coset to which the transmitted information

sequence belongs can be determined with an average error probability, P(e), that sat-

isfies

-na
P(e) <K 2 , (56)

where K and a are the coefficient and exponent, respectively, in the usual random-

coding bound. (See Appendix B for precise values.)

The first error probability of a convolutional code, P l(e), is defined to be the aver-
0)

age error probability in decoding the set of first information symbols ii , i = 1, 2,

... , ko, given the first set of nA received bits. With this definition we have the fol-

lowing corollary as an immediate consequence of Theorem 8.

COROLLARY 1: The average error probability, P l(e), for the ensemble of binary

convolutional codes satisfies (56), with nA replacing n.

PROOF: We have seen (Section II) that the set of initial code words of a convolutional

code form an (n, k) code, where n = nA and k = (m+l)k o . Consider now the following

group partition: Take as the subgroup the set of all information sequences for which

the set of all first information symbols are zero, that is, i = 0, j = 1, 2, . .. , ko.
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k
This subgroup has 2 o - 1 proper cosets in which each proper coset contains all of the

information sequences that have the same set of first information symbols, not all of

which are zeros. Given this group partition, Theorem 5 implies that over the ensemble

of all convolutional codes, any information sequence in a proper coset has equal prob-

ability of being assigned any possible parity sequence. Thus all the conditions of The-

orem 8 are satisfied, and (56) applies to the ensemble of binary convolutional codes.

We have thus established the fact that for the ensemble of convolutional codes,

there must be at least one code for which the set of first information sym-

bols can be determined with an error probability that satisfies (56). It will

be shown in section 4.1 that decoding for convolutional codes can be done sequen-

tially by using the same decoding algorithm to determine the subsequent sets

of information symbols as was used to determine the set of first information

symbols. Thus if all previous sets have been correctly decoded, the next set

of information symbols can also be determined with an error probability that

satisfies (56).

Although this report is not primarily concerned with other ensembles of codes, we

shall apply Theorem 8 to Wozencraft's ensemble of randomly shifted codes (cf. Section I)

to illustrate its general usefulness in proving the random-coding bound for ensembles

of linear codes.

COROLLARY 2: The block error probability, P(e), for the ensemble of randomly

shifted codes satisfies (56).

PROOF: The randomly shifted codes can be described in the following manner. Con-

sider any maximal-length shift register of N stages, where N is the maximum of k

and n - k. If any nonzero initial conditions are placed in this shift register and it is

then shifted some number of times, say M, a distinct nonzero N-tuple will remain in

the shift register for each choice of M = 1, 2, ... , 2 N - 1. Coding for the randomly

shifted codes is done as follows: The k information bits are placed in the k lowest

order positions of the shift register which is then shifted some fixed number of times,

M. The contents of the n- k lowest order positions of the shift register are then

attached as the parity sequence. Since the encoding circuit is linear, the code is a true

(n, k) code. There are 2N codes in the ensemble, one for each choice of M = 0, 1, ... ,

2 - 1; here we define the case M = 0 to be the case for which the shift register contains

only zeros. Now consider the following group partition of the information sequences:

The all-zero sequence is the subgroup and each proper coset contains a single distinct

nonzero information sequence. Clearly any nonzero information sequence has equal

probability of being assigned any parity sequence if all choices of M are equiprobable.

Thus the conditions of Theorem 8 are satisfied, and hence the transmitted information

sequence can be determined with an error probability that satisfies (56). (This ensemble

of codes is interesting in that it contains the fewest codes of any ensemble to which the

random-coding bound has yet been shown to apply.)

It is interesting that the same basic theorem can be used to prove the random-coding
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bound for the ensemble of convolutional codes and an ensemble of block codes. The-

orem 8 can also be used to prove that the ensemble of sliding parity-check codes and

the ensemble of all systematic codes satisfy the random-coding bound. The proofs for

these last two ensembles is very similar to the proof of Corollary 2 and hence will not

be given here.

2.6 ENCODING CIRCUITS

We stated in Section I that the first coding problem is the construction of good codes

that are readily instrumented. The class of convolutional codes satisfy both the Gilbert

and random-coding bounds, and hence can certainly be classified as a "good" class of

codes. We shall show also that they satisfy the requirement of being readily instru-

mented.

One of the principal advantages for the polynomial approach to convolutional encoding,

which we have adopted in this section, is that it leads naturally to the specification of

encoding circuits. The encoding equations, (28) and (29), are already in convenient

delay operator form.

a. RnA-Stage Encoder

A circuit for carrying out the operations of Eqs. 28 and 29 can be synthesized as

shown in Fig. 5. In this circuit, each of the ko information sequences, I(J)(D), j = 1,

2, ... , ko, is fed into a separate shift-register chain of m stages, as well as being

fed directly to one of the output terminals. The no - k parity sequences, T(J)(D),

1(1) OT(1)

Fig. 5. RnA-Stage encoder.
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j = k + 1, k + 2, ... , no , are formed by the adders outside the feedback chain. Since

there are m stages in each of the k shift-register chains, there is a total of mko =

R( nA-no) stages, or approximately RnA stages, of shift register in this encoder. We

shall refer to this type of encoder as an RnA-stage encoder.

The output of the nAR-stage encoder can be verified to conform to Eqs. 28 and 29

in the following manner: Assume that i (1) 1 and that all other input symbols are zeros.

Then the output on line j is readily checked to be G(J)(D) for j = k + 1, k + 2, ... , no

and these are the polynomials that multiply the first information sequence in (29). Sim-

ilarly, a single "one" input on any other input line gives as outputs the polynomials asso-

ciated with that input sequence in (29). The linearity of the circuit then guarantees that

the output will be correct for arbitrary input sequences.

b. (-R)nA-Stage Encoder

A second circuit that performs the operations of Eqs. 28 and 29 is shown in Fig. 6.

This circuit has a shift-register chain of m stages for each of the n - k parity

sequences, and thus contains a total of m(no-ko) = (-R)(nA-no), or approximately

(l-R)nA, stages of shift register. We shall refer to this circuit as the (l-R)nA-stage

encoder. The adders in this circuit are placed between stages of the shift-register

chains, and hence no adder has more than k + 1 inputs. This can be an important

i(1)

I(ko )

D DELAY
IONE UNIT 0 MULTIPLY BY D GF (q) ADDER

CONSTANT C G F(q)ADDER

Fig. 6. (-R)nA-Stage encoder.
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feature in high-speed digital circuits in which delay in the logical elements becomes

important.

The output of the (l-R)nA-stage encoder can be verified to conform to Eqs. 28 and 29

in exactly the same manner as was described for the RnA-stage encoder.

c. Serializing of Symbols

The output symbols of both the RnA-stage and the (l-R)nA-stage encoders occur in

sets of no symbols each time unit, one on each of the n output lines. When it is desired

. . _ CAD ~~~~~EIl A! 171-- r ¢/bA Dll l 1"1T 
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btKIALIZtU YMUIV L UIrU I

THE SAMPLING SWITCHES OPERATE
SIMULTANEOUSLY EVERY TIME UNIT.
EACH STAGE OF SHIFT REGISTER HAS
DELAY /n TIME UNITS.

(n )

Fig. 7. Commutating circuit.

to transmit these symbols over a single communication channel, they must be serialized

to occur at the rate of one symbol every 1/n o time units. This symbol interlacing can

be accomplished by a commutating circuit such as the one shown in Fig. 7, which con-

sists principally of a sampling circuit and a shift register of no - 1 stages.

d. Remarks on Encoding Circuits

The RnA-stage encoder described above is essentially the same as the canonic-form

encoder developed by Wozencraft and Reiffen. The (I-R)nA-stage encoder for con-

volutional codes is not believed to have been described previously.

Since RnA is the number of information symbols within the constraint length of the

convolutional code and (l-R)nA is the number of parity symbols within the constraint

length, a convolutional code can be encoded by a linear sequential network containing

a number of storage devices (that is, stages of shift register) equal to either, and hence

to the minimum, of these two quantities. Peterson has proved this same result for

block cyclic codes. Interest in this parallelism stems from the fact that, as shown in

sections 2. 3 and 2. 5, convolutional codes satisfy both the Gilbert and random-coding

bounds, whereas little is known about the behavior of cyclic codes of arbitrary length.

2.7 PARITY CHECKING

In section 1. la we defined the parity checks of a linear code to be
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k

Si= cjiri -r.

i=l

and we saw that the parity checks furnished a set of n - k equations in the n noise vari-

ables el, e 2 , ... , en. We call the process of forming the parity checks, given by Eq. 5,

parity checking.

Before illustrating the manner in which parity checking can be performed for a con-

volutional code, we shall first prove a more general statement.

THEOREM 9: The parity checks for an (n, k) code may be formed by subtracting

the received parity symbols, rj, j = k + 1, k + 2, ... , n, from the parity symbols

obtained by encoding the received information symbols, rj, j = 1, 2, ... , k.

PROOF 9: According to Eq. 2, encoding of the received information symbols will

give the set of parity symbols, t, where
I

k

tj = c..jir
i=l
i=l

j = k+l,k+2,...,n. (57)

Subtraction of the received parity symbols then yields

k

t - r. = E c..r. - r.
3 J j1 1 1

i=l

and this coincides

the theorem.

j = k+l,k+2,...,n

with the definition of the parity checks given by Eq. 4, which proves

R( 1)

R(2)

R(ko)

R(ko + 1) S(ko + 1)

D7 DELAY ONE UNIT

Q MULTIPLY BY CONSTANT C

GF (q) ADDER

Fig. 8. Parity checker for convolutional codes.
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We have already seen that the set of initial code words of a convolutional code forms

an (n, k) code and hence Theorem 9 may be applied to such a code. It follows from this

theorem that the circuit of Fig. 8 can be used to compute the parity checks of a convo-

lutional code. The encoder in this circuit may be any convolutional encoder such as the

nAR-stage or the nA(1-R)-stage encoders which have been described.

The received sequences, R(J)(D), j = 1, 2, ... , n, may be written in the D-notation

as

Ri)l(D) = r(J) + r D + r2(j)D 2 + j = 1,2,... n, (59)R(JD = 1 2..

where r. ( ) is the symbol received on the jth input line at time u. With this notation,

the noise sequences, E(j)(D), j = 1, 2, ... , no , are given by

E(W (D) = ) + e()D+ e2(J)D + j = 1,2, ... ,n o , (60)e 1 .2

where eu() is the noise in the symbol received at time u in the jth received sequence,

that is,

R(j)(D) = T(J)(D) + E(J)(D) = 1, 2,..., n. (61)

Then it follows from Theorem 9 that the parity-check sequences, S (D), j = k + 1,

ko + 2, ... , n, are given by

s(D) [G(J(D)R(l)(D)+. .+Z(j)(D)R °(D)] R(J)(D)

j = ko+ l,k o + 2,..., n (62)

Upon substitution of Eq. 29, Eq. 62 reduces to

S j)(D) = [G(J)(D)E( 1)(D)+. . .+Z((D)E (k)(D)] - E()(D)

j = ko+ l,ko +2, ... n . (63)

In the parity-checking circuit of Fig. 8, it is assumed that the received symbols

enter in sets of no symbols each time unit. When the transmitted symbols have been

serialized for transmission over a single channel (cf. section 2. 6c), it is necessary

to restore the original parallel timing by a de-commutating circuit such as the one

shown in Fig. 9. This circuit operates by storing the received symbols until n such

symbols are received; at this time, the stored symbols are sampled to form the no

synchronous received sequences. As was the case for the commutating circuit of

Fig. 7, this circuit for restoring the original timing consists principally of a sampling
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Fig. 9. De-commutating circuit for serialized symbols.

circuit and no - 1 stages of shift register. It is of interest to note that the shift registers

in the encoder and decoder are shifted once per time unit, only the shift registers in the

commutating and de-commutating circuits are required to shift at the channel-symbol

rate of once per 1/n o time units.
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III. CONVOLUTIONAL CODES FOR THRESHOLD DECODING

3. 1 INTRODUCTION

The concept of threshold decoding which was formulated in Section I will now be

applied to convolutional codes and this will be continued in Sections IV and V. We shall

construct codes for which the threshold decoding algorithms can be efficiently applied

and present decoding circuits for these codes and data on code performance over several

communication channels.

3.2 DECODING PROBLEM FOR CONVOLUTIONAL CODES

We shall present those features of the decoding problem for convolutional codes

that are necessary for understanding the principles of code construction for threshold

decoding.

In section 2. 2, it was shown that the initial code words of a convolutional code (i. e.,

all possible sets of the nA symbols transmitted from time 0 through time m) form a

linear or (n, k) code. Thus the remarks of section 1. 2 concerning the decoding problem

for linear codes apply to convolutional codes. In addition, there is an important special

feature of convolutional decoding, namely the fact that only the set of first information

symbols (i (i), j = 1, 2, ... , k) need be determined by the decoding algorithm from

the nA symbols in the received initial code word. One could, of course, use fewer, or

more, than nA received symbols in decoding the set of first information symbols. If

fewer are used, a shorter code would suffice. If more are used, the error probability,

P1(e), in decoding the set of first information symbols can be reduced; but, as pointed

out by R. Gallager (private communication), the reduced error probability can be

obtained more simply by using a code with greater nA to begin with.

Let us assume that we have an algorithm that permits us to decode the set of first

information symbols from the nA symbols in the received initial code word. We shall

denote the decoded estimates of the set of first information symbols as io()* to empha-

size that these quantities may differ from the true values. Now consider the altered

received sequences R)*(D) given by

R()*(D) = R(J)(D)- i (j) j = 1 2, . . . k (64)
0 0

and

R() (D) R((D) io(1) G()(D)+.. +io Z((D) j = k + 1, k° + 2 .. no

(65)

From Eqs. 28 and 29, it follows that if the decoding were correct, that is, if i (j)* = io(j)

for j = 1, 2, ... , ko, then the effect of the set of first information symbols has been

removed from the transmitted sequences and hence from the received sequences. Thus

the decoding of i1 , for j = 1, 2, ... , ko, can be performed by using the same algorithm
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on the nA symbols from time 1 through time m + 1 of the altered received sequences,

R(j) (D), as was used to decode io(i), for j = 1, 2, ... , k, from the nA symbols from

time 0 through time m of the original received sequences, R ()(D). By continuing this

procedure, the decoding can proceed sequentially with a new set of k information

symbols being decoded each time unit.

An obvious difficulty arises when a decoding error is made. For, suppose that the

set of first information symbols is incorrectly decoded, then the operation of Eq. 65

introduces a spurious pattern of symbols into the received parity sequences, namely

(1i ) G -iZ (D) n oiolil Gi(D) + . . . + [i io ]Z(D) j = k +1, ko+2, n

(66)

These spurious symbols affect the decoding algorithm in much the same manner as a

burst of channel noise of length nA, and hence it can be expected that successive sets

of information symbols will have a high probability of being incorrectly decoded. This

is the familiar "propagation effect" of errors made in decoding convolutional codes.

The two basic methods by which this effect can be circumvented, namely "resynchro-

nization" and "error-counting," will now be explained.

In the "resynchronization" method, arbitrary information symbols are encoded for

only a fixed number, N, of time units. "Zeros" are then encoded for the next m time

units. Since no digits more than m time units in the past are used in the decoding

process, the decoding can be carried out independently on the symbols received in the

corresponding N+m time units, after which the decoder is cleared and the decoding

process is started anew on the next received symbols. Thus any propagation of error

is confined within N+m time units or (N+m)n received symbols. The resynchronization

method reduces the information rate to R' given by

R' N R, (67)N+m

where R = k/no is the nominal rate of the convolutional code. If N >> m, the rate

decrease is not substantial.

The "error-counting" method is a more refined manner of combating propagation

error. This method was proposed by Wozencraft and Reiffen (in a slightly different

form than that given here) to turn error propagation to useful advantage in a two-way

communication system.26 Briefly, the method operates as follows: When the decoding

algorithm is "correcting more errors" over some span of received bits than the code

itself can reliably correct, it is assumed that a decoding error has been made, or that

the channel has temporarily become too noisy for reliable operation. In this event, the

receiver asks that the data be re-transmitted from some point before that at which the

high incidence of errors began. This method will be considered in more detail in

section 4. 2c.

The main point of the preceding discussion is that the threshold-decoding algorithm

29

�



(j)need be tailored only to give the decoded estimates of e() , j= 1, 2. ko, the

error in the set of first information symbols. The remainder of the decoding process,

namely the altering of the received sequences to remove the effect of the first symbols

and the controlling of the error propagation effect, can be handled in routine fashion.

Thus the problem of convolutional code construction for threshold decoding reduces to

finding codes for which the mapping from the ordinary parity checks to the sets of
(j) 1 parity checks orthogonal on eo0 , j = 1, 2, ko, can be carried out in an efficient

manner, since these are the only noise digits that must be determined by the decoding

process.

3.3 PARITY-CHECK STRUCTURE

From the foregoing remarks, it is clear that a careful investigation of the parity-

check structure of convolutional codes will be needed. In Eq. 58, it was seen that the

parity-check sequences are given by

S J)(D) [G(J)(D)E(1)(D)+. .. +Z (D)E (D) ]- E(D)

j = k + 1, k + 2 ... n . (68)

In our usual manner, we represent these sequences by the notation

(J) = so ()D + s 2(J)D2 + .... (69)

where s (j) is then the parity check in sequence S(J)(D) that is formed at time u by the

circuit of Fig. 8. From Eq. 68, we have

Su(J) [gu() eo (1)+gu l(J)e (1)+. ( J)e (1)] +

+ (J)e (k0 (J)e (k O ) k +z (j)ee . (70)
o e u-1 1 + o u u

Since gu ( ) = 0 for u > m, no parity check will check noise digits more than m time

units in the past.

In matrix form, Eq. 70 may be written for the parity checks from time 0 through

time m as
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+ 1)

s 1

8

(ko + 1)

(ko + 1)

m

s
o

S ' O'

(no)
m

- [HA : Im(n -ko )]

e (1)
o

e
m

e
o

(1)

(no)

e(n )
° _

(71)

where I (n-k o ) is the unit matrix of dimension m(no-ko), and H is the matrixm o 0 o 0' A

(ko+l)

(ko+ 1)
1

g(k +l)
80

(ko+l)

(ko+ l )

. .
0 Z(ko+l)

0
0

*(ko+l) (ko+l)
8 8m-1

(n )
go

g(no)
11

(no)
o

(n0)
m-1

(n )°m

(k o+l)
g 0
0

*(ko+l) (ko+l)
m m-1

(no)

O

z(n o )

.

0

. . . g( no )

(n0)

z(no)
O

(k0j)
(

o+ l )

O

0

z (no) (no)
m m-1

(n0o)

The nonzero entries of H A are seen to lie entirely within the

submatrices to which we shall refer as the parity triangles.

parity triangles in HA , and ko columns of parity triangles.

set of (no-ko)ko triangular

There are n - k rows of
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The structure of the parity triangles will be of considerable utility in con-

structing codes for threshold decoding. Each parity triangle has the following

general form

1 gog! go

82 81 go

83 2 gl81 80

gm g-1 ' 81 80go

In other words, each parity triangle has a structure that is determined by one of the

code-generating polynomials. The entire parity triangle is determined uniquely by the

first column, or the last row.

An example at this point will be helpful in clarifying the parity-check structure.

Consider a binary convolutional code with rate R = ko/n = 2/3 and nA = (m+l)n = 9.

We choose the code-generating polynomials to be G(3)(D) = 1 + D and H(3)(D) = 1 + D2

Then Eq. 71 becomes (-I = +I in the binary number field, since 1 + 1 = 0 implies

1 = -1)

8 (3) 1 1
82(3) 0 1 1

1

0 1

1 0

1

1

1 1

which is the matrix representation of the following equations:
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e (1)
o

e (1)
1

e (1)
2

e (2)
o

e (2)1

e2(2)
e2
e (3)

o

e (3)
1

e(3)
- 2

(73)
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s (3)= e (1) + e (2) +e (3)
o o o o

(3) (1) (1) e (2) e (3)
s1 1 1

(3(1) (1) = (2) + e(2) (3)
s e() e2 + +e2 + e2 (74)

From (74) and (73), it is easily seen, by comparison, that the manner in which the noise

bits enter into the parity checks can be read directly from the matrix [HA:-I]. Each

row of [HA:-I] gives the coefficients of the noise bits in one parity check.

It should be noticed that s(3) and s (3) form a set of two parity checks orthogonal
0 1

(1) (1)on e() , since both check e ( , but no other noise bit is checked by both. Similarly,

(3) (3) (2)S and 2 can be seen to form a set of two parity checks orthogonal on e It
now follows from Theorem 1 that the noise bits in the first set of information symbols,

namely e(l) and e (2), can be correctly determined by the majority decoding algorithm

provided that there are one or fewer errors in the first nA = 9 received symbols. Thus,

as we have explained, this same majority decoding algorithm can be used to correct all

errors in the received sequences, provided that the 9 symbols received in any 3

consecutive time units never contain more than a single error.

We shall now show how the concepts in this example can be generalized to yield an

interesting and useful set of codes. In the rest of this section, we shall consider binary

codes only.

3.4 BOUNDS ON CODES

It is convenient to introduce the following definitions at this point. Let {Ai} be a

set of J parity checks orthogonal on e(1) for a binary convolutional code with rate

R= 1/n o.

The number of noise bits, exclusive of e (1), which are checked by some Ai, will

be called the size of A. and will be denoted n..
1 1

The total number of distinct noise bits checked by the {Ai} will be called the

effective constraint length of the code and will be denoted nE.

From this definition, it follows immediately that

J

nE = 1 + Z n i (75)
i=l

and, of course,

nE nA, (76)

since nA is the total number of distinct bits checked by the parity checks, su(), which

are combined to form the {Ai}.
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THEOREM 10: For any rate R = 1/n o and any integer J, there exists a convolutional

code for which a set Ail of J parity checks orthogonal on e(l) can be formed in such a
manner that the effective constraint length satisfies

n 1 R J2 +1J+ 1 + 2 r1-r R (77)
E 2 1 -R 2 1l-R

where r J mod(no-1).

The proof of Theorem 10 is given in Appendix C. This theorem is proved by showing

that it is possible to construct a convolutional code so that there are J parity checks,

s (j) which check e(1) and are such that these parity checks themselves form a set of

parity checks orthogonal on e . In this construction, the sizes, n i , of these parity

checks are as stated in the following corollary:

COROLLARY: For any rate R = 1/n o and any integer J, there exists a binary
(1)convolutional code for which J parity checks orthogonal on e ) can be formed so that

no - 1 of these parity checks have size j for each j from 1 through Q, and are such

that r have size Q+ 1, with

J = Q(no-1) + r, 0 r < n - 1. (78)

For rates R = k/no, where ko 1, Theorem 10 can be generalized in the following

manner: The effective constraint length, nE, is defined as the maximum over j of the

number of distinct noise bits that appear in the set of J parity checks orthogonal on

e(J) for j = 1, 2, k . With this definition we have the following theorem, the
o o

proof of which is also given in Appendix C.

THEOREM 11: For any rate R = ko/no and any integer J, there exists a convo-

lutional code for which J parity checks orthogonal on e for j = 1, 2, ... , k can be

formed so that the effective constraint length, nE, satisfies

E-2 1 -RRnE 1 R j2 I+ 1 r[k R (79)nE 2 R 2 o

where r- J mod(no-k ).

For ko = 1, Theorem 11 reduces to Theorem 10 as expected.

An estimate of the quality of the codes which satisfy (79) or (77) can be obtained as

follows. The Gilbert bound, Eq. 47, states that the ratio, d/nA, of minimum distance

to constraint length can be made to satisfy H(d/nA) = 1 - R. Minimum distance d

implies that the first set of information symbols can always be correctly decoded when-

ever L(d-1)/2J or fewer errors occur among the nA symbols within the constraint length.

On the other hand, we have seen that e (1) can be correctly decoded by majority decoding

whenever J/2J or fewer errors occur among the nE symbols within the effective

constraint length. Thus the ratio J/2nE ought to be at least as great as the ratio

(d-1)/2nA as guaranteed by the Gilbert bound if threshold decoding is to be efficient.

In Fig. 10, we compare the ratio J/2nE guaranteed by Theorems 10 and 11 to the

ratio (d-1)/2nA guaranteed by the asymptotic Gilbert bound of Eq. 47. (Comparison
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Fig. 10. Ratio of number of orthogonal parity checks, J, to twice the
effective constraint length, nE, as given by Theorems 10 and
12 and by comparison with the asymptotic Gilbert bound.

with the nonasymptotic bound of (43) is the proper choice but is difficult to present

graphically. However, the comparison is hardly affected since for nA 100, d/2nA

is nearly the same for the asymptotic and nonasymptotic bounds. For example, at

nA = 100 and R = 1/2, the former gives .055 and the latter gives . 060.) For a wide

range of rates, the ratio J/2nE does not fall below the Gilbert bound until the effective

constraint length becomes on the order of 100 to 150 bits. It is for codes up to these

effective constraint lengths that threshold decoding can be expected to be efficient.

Clearly, for codes that satisfy Theorem 10 with the equality sign, the J/nE ratio must

eventually become poor, since J increases only as the square root of nE ' whereas the

Gilbert bound shows that it is possible to make d grow linearly with nA.

We have not been successful in finding codes for which the ratio J/2nE is sub-

stantially smaller than the bounds implied by Theorems 10 and 11 for rates 1/10 and

greater. On the other hand, we have been unable to prove that it is impossible to find

such codes except for the particular case R = 1/2. In this case we have been able to

show that the bound of Theorem 10 is also a lower bound on nE.

THEOREM 12: For rate R = 1/2 and any integer J, it is possible to find a convo-

lutional code which is such that J parity checks orthogonal on e(1) can be constructed

and for which
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121
nE = 2 + 2 J 1 (80)

Conversely, it is impossible to find such a code for which nE is smaller than this

number.

PROOF 12: The proof that it is possible to make nE at least as small as the number

in Eq. 80 follows by substituting R = 1/2 in (77). The proof that it is impossible to do

better than this bound proceeds as follows.

The first step in the proof is to place a lower bound on the number of "ones" that

must be contained in certain sums of columns of HA . In the same manner that Eq. 71

was derived from Eq. 68, it can be readily shown that for an R = 1/2 code, the parity

sequence Tm (2)(D) is given in terms of the information sequence I()(D) by the matrix
product

product

t (2)
0o

t (2)
1

t (2)mm

= [HA]

-i (1) 
o

1

(1)
mm

(81)

The parity sequence as a vector is then the sum of the columns of HA corresponding to

the information symbols that are "ones." Suppose there is some sum of C columns of

H., including the first column which contains N "ones." Equation 81 then implies that

there is an initial code word, for which i (1) 1, which has C nonzero information
o

symbols and N nonzero parity symbols. The weight of this initial code word is then

C + N and must be at least d, the minimum distance of the code. Hence we must have

N d - C, that is, any sum of C columns of H., including the first column, must have

at least d - C ones.

For R = 1/2, the matrix HA consists of a single parity triangle, namely

(2)
go

(2) (2)
l 81 o

2(2) 9(2) 0 (2)

(2) (2) (2) g (2)
g3 2 gl g o

g(2) .. 2) (2) (2) (2)2)

36



The second step in the proof is to notice the row-column equivalence of HA. Specifi-

cally, we observe that if only the first four rows of HiA are retained, then the sum of the

second and fourth rows contains exactly the same number of "ones" as the sum of the

first and third columns since the same terms are added together. In general, there is

a one-to-one correspondence between sums of rows that include the last row and sums

of columns that include the first column. Thus we can conclude, from the previous

paragraph, that any sum of C rows of HA, including the last row, must have at least

d - C ones.

Assume now that we have an R = 1/2 code for which a set Al, A2, ... , AJ of parity
(1) 1' 2 . of parity

checks orthogonal on e has been formed. The coefficients in each A. correspond,

as we have seen, to the sum of selected rows of the matrix [H,:I]. We assume that the

parity checks have been ordered so that if i < j, then the lowermost row added in forming

Aj is beneath the lowermost row added to form Ai. Now consider the R = 1/2 convo-

lutional code for which the last row in its parity triangle is the lowermost row added to

form Ai . The minimum distance, di, of this code must be at least i + 1 according to

the corollary of Theorem 1. 1 since it is possible to construct i parity checks orthogonal
(1)on e , namely A 1, A2, .. , Ai. Finally, suppose that Ci rows of [HA:I] were added

to form A i . Then the size, n i , of this parity check must satisfy

n i _ [(di-Ci)-l] + C i
(83)

as we can see in the following way. The number of information noise bits checked by A.
~~~~~~~~~~~(1) ~~~~~~1

exclusive of e (1), is one less than the number of "ones" in the sum of the C rows of

HA. Since this sum includes the last row, it must have at least d i - Ci "ones." The

last term on the right of (83) is accounted for by the fact that the sum of C i rows of the

identity matrix, I, always contains C i "ones," and this is the number of parity noise

bits checked by A i.

Since di is at least i + 1, (83) becomes simply

n. i. (84)
1

Substituting (84) in (75), we obtain

J
nE - Li + 1 =J +J + 1 (85)E 2 2

and this is the statement of the theorem.

The fact that, for R = 1/2, Theorem 10 gives the smallest possible value of nE

tempts one to conjecture that the same result might hold for other rates. This con-

jecture is not valid. In the following sections, many codes will be constructed for which

nE is somewhat smaller than the upper bound of Theorem 10 when R # 1/2.
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3.5 SELF-ORTHOGONAL CODES

We now consider in more detail those convolutional codes for which the set of

parity checks orthogonal on e(i) is of the simplest kind. We define a self-orthogonal

convolutional code to be a code in which the set of all parity checks, s (), that check

e(i) for i = 1, 2 ko , is itself a set of parity checks orthogonal on e (i)

With this definition, the codes used in the constructive proof of Theorems 10 and 11

are self-orthogonal codes. Let us restrict our attention to these codes and to rate

R = 1/2. In this case there is only a single parity triangle, Eq. 82, corresponding to

the single code-generating polynomial G(2)(D). The construction used to prove

Theorem 10 gives the code for which the nonzero terms in G(2) (D) are

g i- 1 (2) = 1 i = 1,2 . J. (86)
2 -1

The degree of G(2)(D) then is m = 2 J- 1 - 1. The set of J parity checks that check
(1)on e(1), namely

s (2) i= 1,2 ..... J, (87)
2 -1

(1)
is a set of J parity checks orthogonal on e ,having an effective constraint length

1 2 1nE =2 +1. (88)

On the other hand, the actual constraint length, nA, is

nA - no(m+l) = 2J (89)nA (89)

from which fact we see that, for even moderate values of J, nA is much greater than nE.

A large ratio of nA to nE is generally undesirable for two reasons. First, both

encoder complexity (cf. sec. 2. 7) and decoder complexity (cf. sec. 4. 2c) are directly

proportional to nA rather than to nE. Second, the resynchronization period may be

unacceptably long (cf. sec. 3. 2) and thus may not provide an effective safeguard against

the propagation of a decoding error. This latter fact can be seen best from an example.

It follows from Eq. 67 that N = 9m is a reasonable choice if the actual information rate

is not to be substantially less than the nominal rate R = 1/2. The resynchronization

period, N + m, is then 10m time units. For J = 10, we have m = 2 J- 1 - 1 = 511 and

thus the resynchronization period is 5110 time units. On the other hand, m E = 56 for

this code, and hence if nA and nE were equal (which would imply m = 27) the resynchro-

nization period would be only 270 time units.

It is an interesting fact that self-orthogonal codes can be constructed with nA much

smaller than for the codes used to prove Theorem 10. We shall illustrate the technique

for R = 1/2. The method is, for increasing j, to choose g (2) = 1 when, and only when,

the parity check sj(2) contains no noise variable except e in common with the
J o
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preceding parity checks on e .(l) Thus, for example, the J = 5 code formed in this

manner has the parity triangle

1 - 1
2 - 1

0
3 -1

0
0
0

0
0
0
0

5 -1

1 1

10
0 1
00
00
10
01
00
00
00

W
1
0
1
0
0
0
1
0
0

1
1 1
01 1

0101 1
00101
00010
10001
0m 0 0

1
1 1
011
0 1 1II O lf M

(90)

Here, we have adopted the convention of using a numbered arrow to indicate an orthogo-

nal parity check and its size, ni, and of placing a box about each nonzero coefficient

(except the coefficient of e (1)) of an information noise bit in an orthogonal parity check.

This convention renders the orthogonality of the set of parity checks readily visible.

In Table I, we list the set of codes for even values of J up to J = 14 that are obtained

by the preceding construction. The constraint length 2J of Eq. 89 is listed for compari-

son. From Table I, we see that a great improvement in the nA/nE ratio is obtained for

this second class of self-orthogonal codes, but the ratio is still large enough to require

many additional storage devices in the encoder and decoder beyond those that would be

required when the nA/nE ratio is almost unity.

Table I. Self-orthogonal codes for rate 
2 '

code

2 4 4

4 11 16

4

16

6 22 42 64

8 37 90 256

10 56 162 1024

12 79 238 4096

14 106 356 16384

(2) (2)

add g ( 2 ) g ( 2 ) 1
(2) (2)

add 812 g 20

add g ( 2 ) g44 ( 2 ) . 1

(2) (2) 1add g6 5 ' 80O

(2) (2) . 1
add g96 gl18

add (2) (2) 1
add 143 'g 1 7 7 1

("add" means that the code-generating polynomial is the same
as for the previous code with the additions indicated.)
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3.6 TRIAL-AND-ERROR CODES

The fact that the nA/nE ratio is much greater than unity for most self-orthogonal

codes, fortunately, does not imply that this must always be the case for other convo-

lutional codes. By trial-and-error techniques, it has been found possible to construct

codes for which nE meets or is smaller than the upper bound of Eq. 77 and for which

nA/nE is almost unity. An extensive list of such codes is given in Table II for rates

1/2, 1/3, 1/5, and 1/10.

An example will serve both to indicate how Table II is to be read and to give some

idea of how the codes were constructed. Consider the R = 1/2, J = 6 code in Table II.

The code is listed as (0, 6, 7, 9, 10, 11)2 which is our short notation for indicating

that the code-generating polynomial G(2)(D) has as its nonzero coefficients

(2) g (2) g (2) g9(2) (2) (2) 1 (91)g . 6 g 7 g9 g1 0 = g 1 1 = '

The parity triangle (Eq. 82) then becomes

1--1
u I
00
00
00
00

2 -- 1 0
3 --- 1 []

01
4 - 1 0C
5 -- 1 1

1 I I

Here, in addition to the convention used in Eq. 90, we have indicated with the lines to
the right of the triangle which rows are added together to form the orthogonal parity
checks. The rules for forming the orthogonal parity checks are listed in the table as
o2, 62, 72, 92, 1232102, 4282112 which is short notation for

A = (2)A =s1 o

A (2)2 6

(2)
A4 = 2)

A6 s4(2) + (2)+ Sll(2) (93)
6 4 8 11
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and this set of 6 parity checks orthogonal on e(1) corresponds to the parity checks

constructed in (92). The sizes (n i) of these parity checks are given in the table as

1, 2, 3, 4, 5, 6 which indicates that A1 has n1 = 1, A2 has n 2 = 2, etc. The effective

constraint length is given in the table as nE = 22. For comparison, the bound of Eq. 77

is listed, and is also nE = 22. The actual constraint length, nA = 24, is also listed.

The manner in which this particular code was found is as follows: By beginning the

second through the sixth rows of the parity triangle with "zeros," noise bits e 6

through ell can have a nonzero coefficient in only one row of the parity triangle of

(92). Moreover, the second through the sixth rows can then be used to eliminate one

nonzero coefficient for each of the variables e through e (1) as is evident from the

(1)thh ec sis n o theparity triangle. The first row gives a parity check on e (1) which checks no other infor-
0

mation noise bit. Thus the problem reduces to choosing the last six rows of the parity

triangle so that they can be combined to give a set of five parity checks that check e (l)

but have the property that none of the variables el(l) through e 5 (l) are checked more

than twice in the set. The choice made in Eq. 92 fulfills these requirements.

The rest of the codes in Table II were hand-constructed by using this and numerous

other techniques to exploit the parity-triangle structure. The simplicity of the concept

of orthogonal parity checks makes it possible to construct codes of substantial length by

hand.

A few more remarks on the trial-and-error codes are in order. Consider the code

word in a rate R = /no code for which i(1) is the only nonzero information bit. From

Eqs. 28 and 29, it follows that the weight of this code word is one plus the number of

nonzero terms in the code-generating polynomials G)(D), j= 2, 3, . . .n Thus

there must be at least d-l such nonzero terms, where d is the minimum distance of

the code. On the other hand, the existence of J parity checks orthogonal on e (l)
o

implies that d is at least J + 1, and hence that there must be at least J nonzero terms

in the code-generating polynomials.

The trial-and-error codes in Table II (with the few exceptions marked by an

asterisk) have the property that the number of nonzero terms in the code-generating

polynomials is exactly J, which is the minimum number possible. This has the

desirable result, as can be seen from Figs. 6 and 5, of reducing the number of inputs

to the adders in the encoding circuits to the minimum number possible. Moreover, the

minimum distance of these codes is exactly J + 1, since there is a code word with

i (1) = which has this weight.

We shall say that a convolutional code with minimum distance d and rate R = 1/n

can be completely orthogonalized if d-l parity checks orthogonal on e( can be formed.

In this case, e(l) will be correctly decoded by majority decoding for any error pattern

that has weight [(d-1)/2] or less. In other words, any error pattern that is guaranteed

to be correctable by the minimum distance of the code is also correctable by majority

decoding when the code can be completely orthogonalized. With this definition, the
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Table II. Trial-and-Error Codes.

RATE J nE nE nA CODE RULES FOR SIZES
E ORTHOGONALIZATION

(Eq.3-14)

2 4 4 4 (0,1)2

4 11 11 12 (0,3,4,5)2

6 22 22 24 (0,6,7,9,

10,11)2

8 37 37 44 (0,11,13,16,

17,19,20,21)2

10 56 56 72 (0,18,19,27,

28,29,30,32,

33,35)2

12 79 79 104 (0,26,27,39,

40,41,42,44,

45,47,48,51)2

2 3 3 3 (0)2(0) 3

4 7 7 9 (0,1)2(0,2) 3

6 13 13 15 (0,1)2

(0,2,3,4)

8 20 21 24 (0,1,7)2

(0,2,3,4,6)

2,12

2,32 ,42,1252

2 2 22
02 ,62,72,92,

1 3 10 ,4 8 11

02 ,112,132,162

172 ,223262192
421422 2

125282152212

02 ,182,192,272

1292282,102202292

112302312
13222213 21 23 32

142 332342

2232162242262352

0 ,262,272,392

12 132402 ,14228412

152422432,

172292312442,
22 2

182452462

2232202322342472

212352482492502

242302332362382512

2 302 ,0

0 ,0 ,1 ,2

0 2,03,12,23,
333,22431 3 ,2 4

0 ,03,12,23

1333, 2243 72
32526263

42

1/2

1/3

1,2

1,2,3,4

1,2,3,4,

5,6

1,2,3,4,

5,6,

7,

8

1,2,3,4,

5,6,

7,

8,

9,

10

1,2,3,4,

5,6,

7,

8,

9,

10,

11,

12

1,1

1,1,2,2

1,1,2,2,

3,3

1,1,2,2,

3,3,3,

4



Table II. (continued).

RATE J nE nE

(Eq.3-14)

CODE RULES FOR
ORTHOGONALIZATION

1/3 10 30 31 33 (0,1,9)2

(0,1,2,3,

5,8,9)3

12 40 43 54 (0,4,5,6,7,

9,12,13,16)2

(0,1,14,15,16)3

14 55 57 69 (0,4,5,6,7,9,

12,13,16,19,

20,21)2

(0,1,20,22)3

16 68 73 108 (0,4,5,6,7,

9,12,16,17,

30,31)2

(0,1,22,

25,35) 3

2 3 2 230 0,1,2 2
22 332 23

9 ,3 4,325 5

13426263

8283,7 739310

02 031213 423

5 2 362 ,143

7 10 11 11

335392,638312

33163173

43103123162

02 ,03,1213,42

52 ,2362

7 10 11 11

335392,19 203

223,638312

43103123162

327313315 192

93132143182

202212213

02 ,03 ,1213,42

52 ,2362 ,223

32253,335392,

63831227 10 11 11

73142172182183
93162192202203

143 153353,

123213282312322

103133193263293302

43

SIZES

1,1,2,2,

3,3,3,

4,

5,5

1,1,2,2,

3,3,3,

4,

4,5,

5,

6

1,1,2,2,

3,3,

4,

4,4,

4,5,

6,

7,

8

1,1,2,2,

3,3,3,

4,

4,4,

5,

5,

6,

7,

8,

9

I .



Table II. (continued).

RATE J nE nE
(Eq. 3-14)

1/5 4 5 5

6 9 9

8 13 13

10 18 19

13 27 29

14 30 33

16 37 41

18 47 51

n
A

CODE

5 (0) 2(0) 3(0)4(0) 5

10 add (1) (1)3

15 add (2) (2)4

20 add (3) 2(3)5

30 add (4)2(5)4(5)5

35 add (6) 4

45 add (8) (7)4

55 (0,1,2,3,5,6,

8,10) 2(0,3,5,

6,8)3(0,1)4

(0,2,10)5

20 55 61 65 add (10) 4(12) 3

22 65 73 80 add (11,13,14)

(15)5

1/10 9 10 10 10 (0)2(0)3 (0) 4

(0)5(0) 6(0) 7

(0)8(0)9(o)10

14 20 20 20 add (1)6(1)7

(1)8(1)9(1) 10

18 28 28 30 add (2)2(2) 3

(2)6(2) 9

RULES FOR
ORTHOGONALIZATION

02 ,03,04,0

1214,1 31

222 ,2 25

35,3233

344244, 55,435354

4564

83,52637274

02 ,03,04,05
2 24 3 45

1 ,2 2 ,3 ,1 1
232 3242 345242 2, 3 4,3 5 5

9 10210 ,5,3 6,

105,13446264,

72748292

4355738384

6595123

104115124125

45134142143,

13514 4154155

02 03 04
5 ,O6 ,07

08,09,010

1216 131 7

1418,1619,110

22 ,2324

2 2 ,2 2

44

SIZES

1,1,1,1

2,2

2,2

2,3

3,3,3

3

3,4

1,1,1,1,

2,2,2,2,

2,3,3,

3,3,3,

3,4,

5,

5

4,

4

4,

6

1,1,1,

1,1,1,

1,1,1

2,2,

2,2,2

2,2,

2,2



Table II. (continued).

nE nE nA
(Eq. 3-14)

RULES FOR
ORTHOGONALIZATION

1/10 23 39 43 40 add (3)2(3)4

(3) 8(3)9(3)10

26 48 52 50 add (4)2(4)8 (4)9

33 69 79 70 add (6) 2(5) 5

(5,6) (5,6) 9

(6)10

38 88 101 90 add (7) 6(7,8) 9

(8)7(8) 8

3233 ,3 38
3639 2535310

48410 21042,

43444749

5 646
5 ,4 5 5
455259,576566,

586469,53610

62636768

51076710 87

72757779

73748589
7883848588

Codes marked with an asterisk have J + 2 nonzero terms in the code-

generating polynomials; all other codes have the minimum possible num-

ber of nonzero terms, namely J.

The symbols used in Table II have the following meanings:

J = number of parity checks orthogonal on e(l).

nE = effective constraint length of the code.
nA = actual constraint length of the code.

45

RATE J SIZES

2,2,2,

2,3

2,3,

4

2,3,

3,3,

3,3,

4

3,3,

4,

4,

5
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codes of Table II (with the possible exceptions of those codes marked with an asterisk)

can be completely orthogonalized.

3.7 UNIFORM CONVOLUTIONAL CODES

In contrast to the codes of the previous section (which were constructed by cut-and-

try procedures) we shall next study some classes of convolutional codes for which a

systematic formulation can be given and which can be completely orthogonalized. In

this section, we show the existence of a class of convolutional codes that satisfy the

distance bound of Theorem 7 with the equality sign, and which can be completely

orthogonalized.

For any integers L and M, we consider the set of L2 M-1 binary (M+1)-tuples

formed as shown below for L = 2 and M = 2.

0011
0 1

2 --- 10110 1 1-2 1 0 12 - 1 1 1

2--l W] 1
2 1 1 1 (94)

That is, there are L sets of rows formed, and every row has a "one" in the last, or

M+1 th , position. The first L-1 sets of rows each contain the set of all 2M M-tuples

in the first M positions. The last set contains all 2 M- 1 nonzero M-tuples in the first

M positions.

Now suppose that the rows in (94) are the last rows in a set of L2 M-1 parity

triangles. The complete parity triangles then must be

1
0 1
001
1
1 1
0 1 1
1
0 1
1 0 1
1
1 1
1 1 1

1 1

1 1
0 1
1 0 1
1
1 1
1 1 1
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and these are the parity triangles corresponding to the matrix HA of a code with rate

R = /n o , where n = L2M . We now determine the number of parity checks orthogonal

on e (1) which can be formed for this code.o
The last rows in the parity triangles can be added as shown in (94) to produce

M-1 (1)L2 M 1 parity checks of size two orthogonal on e l) That the last rows can always be

so combined is proved as follows: There are L-1 sets of last rows each having 2M rows.

These rows all have "ones" in the last position and have the set of all 2M M-tuples in

the first M positions. In each such set of rows, for every row beginning with a "one"

there is a unique row beginning with a "zero" that is otherwise identical. The sum

(modulo-two) of each such pair of rows corresponds to a parity check that checks e(l)

and no other information noise bits. The size of the parity check is two because two

parity checks are added and this implies that two parity noise bits are checked. Thus

2 M - 1 parity checks of size two orthogonal on e(l) can be formed from each of these

L-1 sets of last rows. Finally, there is one set of last rows all of which have "ones" in

the last position and have the set of all 2M-1 nonzero M-tuples in the first M positions.

The parity checks in this set can be combined as before, except that because the row

0 0 ... 0 1 is missing the 1 0 ... 0 1 must be used alone. This row corresponds to a

parity check on e(1) and eM( 1 . Thus an additional set of 2 M 1 parity checks orthogo-

nal on e (1) can be formed from this set of last rows. In all, L2M - 1 parity checks0 (1)
orthogonal on e ) can be formed by using only the last rows of the parity triangles,

and e () is the only information noise bit, exclusive of e (), that is checked.
M i1

The same process can then be repeated for the next-to-last rows of the parity

triangles. If the last rows are as given in (94), then the next-to-last rows are

0 1
1

0 1
1 1

0 1
1

1 1 (95)

and this is another set of rows of the same type as (94) with L' = 2L and M' = M - 1.

Thus another set of L'2 M 1 = L2M - 1 parity checks of size two orthogonal on e(1) can

be formed from the next-to-last rows of the parity triangle. The union of this set with

the set of parity checks formed from the last rows is a set of 2 L2 M 1 parity checks

(1)orthogonal on eo(), since the only information noise bit, eM,(1), checked by the formerset, is distinct from the only information noise bit, eM , checked by the latter set.

This same process can be repeated for the third-to-last, the fourth-to-last, etc.,

rows of the parity triangles, until the first rows are reached. The process is thus

performed a total of M times, giving ML2M 1 parity checks of size two in all. The
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first rows each correspond to a parity check that checks e (1) and no other information
M 0 (1)

noise bit. Thus an additional L2 -1 checks of size one orthogonal on e can be

formed from these rows.

The total number of parity checks orthogonal on eo(l) that can be formed from the

parity triangles then is

J = (M)L2 M -1 + (L 2 M-1) = L(M+2)2 M - l - 1. (96)

Using Eq. 75, we find the effective constraint length to be

nE 1 + 2(M)L2M-1 + (L 2 M-1) = L(M+1)2M. (97)

M
For this code, we have m = M and n = L2M , hence

nA = (m+l)n = L(M+1)2M = nE. (98)

By the corollary to Theorem 1, the minimum distance, d, must be at least J + 1 or

L(M+2)2 . On the other hand, from Eq. 53, we find that

davg = (nA+no) = L(M+2)2 M - 1 (99)

Thus the minimum distance must be exactly L(M+2)2 M- 1 since it cannot exceed the

average distance.

We summarize these results in Theorem 13.

THEOREM 13: For any integers L and M, there exists a convolutional code with

R = 1/no and n = L2 M and with constraint length nA= nE = L(M+1)2 M which is such

that the minimum distance d satisfies

d=d = L(M+2)2 M - 1
avg

and so that the code can be completely orthogonalized.

We call a convolutional code with d = davg a uniform code. It seems probable that

there are no uniform binary convolutional codes with R = 1/no other than those given by

Theorem 13. In Table III we list the set of codes with L = 1 for M up to 6.

Table III. Some uniform binary convolutional codes.

M R nA d

1 1/2 4 3
2 1/4 12 8
3 1/8 32 20
4 1/16 80 48
5 1/32 192 112
6 1/64 448 256
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3.8 "REED-MULLER-LIKE" CODES

Another class of convolutional codes that can be completely orthogonalized will now

be presented. The method of construction is best understood through an example.

Consider the array

v2 v3 Vlv3 V1V2 V3 v2 v1 vo

4 - 1 1 1 1 1 1 1
0 0 1 0 1 1 1
0 1 0 1 0 1 1
0o 0 0 0 1 1

4---1 0 0 1 1 0 1
0 0 0 0 1 0 1-
0 O 0 1 0 1 (100)

which is formed by taking v1 , v 2 , and v 3 in such a way that the set of 3-tuples in their

rows is the set of all nonzero 3-tuples, and then adding the all "one" column vector to the

list and the column vectors formed by taking all vector inner products of v1 , v 2 , and v 3

taken two at a time. Again suppose these are the last rows in a set of n -1 parity tri-

angles. Then, as shown above, we can add these rows to form a set of 232 = 2 parity

checks orthogonal on e(), each of size ni=22=4. Except for e(l), the only information

noise bit checked is e 6 (1) The same process can be repeated in the second-to-last

and third-to-last rows of the parity triangles. The remaining rows of the parity triangle

are the same as those for the L = 1, M = 3 uniform code in section 3.7. Thus, in all, for

this code: (3)2 32 parity checks of size 22 , plus ( 3 )z 3 -1 parity checks of size 21, plus

(3)2 -1 parity checks of size 20, all orthogonal on e 1 , can be formed.

When this example is generalized so that the array contains all vector inner

products of vl, v 2 , ... , vM taken K or fewer at a time, we obtain Theorem 14.

THEOREM 14: For any integers M and K with the property that K _ M, there exists

a convolutional code with R = 1 / 2 M and nA = nE =L (M) 2 M so that

d= ; (rM) 2M (101)

and so that the code can be completely orthogonalized.

PROOF 14: The proof involves two steps. First, we must show that the number, J,

of parity checks orthogonal on e(l) is one less than the sum in (101). Second, we must

show that the minimum distance of the code is exactly equal to this sum.

We begin by noting that if a lowermost row of 0 0 0 0 0 0 1 is added to the array

in (100), it becomes the transpose of the generating matrix for a second-order (K = 2)

Reed-Muller code. (This is the reason for which we have referred to the codes in this

section as "Reed-Muller-like codes.") Reed has shown 2 that, for the generating matrix

of the Kth -order code, the columns can be grouped into 2 M-K sets of 2 K columns each,

in such a manner that the sum of the columns in each set has a "one" only in the first

row. (Reed's proof is quite lengthy and will not be reproduced here.) Thus the rows in
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the transposed matrix can be grouped into 2M - K sets, of 2K rows each, in such a

manner that the sum of the rows in each set has a "one" only in the first column. If the

row 0 0 ... 0 1 is omitted from the transposed matrix, one set of rows will contain

2K-1 rows, and the sum of these rows will be 1 0 ... 0 1. Thus, if the rows in the

transposed matrix, with the row 0 0 ... 0 1 omitted, are the last rows in a set of
M-K checks orthogonal on e (1)parity triangles, it is possible to form 2M - K parity checks orthogonal on e , each of

size ni = 2 , and such that there is a single information noise bit, excluding e (l), that

is checked by these 2
M - K parity checks.

The same process can be carried out on the second-to-last, the third-to-last, etc.

rows of the parity triangles. After (M) rows have been processed, the remaining rows

reduce to the K-l order code. The union of the sets of orthogonal parity checks, formed

from each set of rows of the parity triangles, itself is orthogonal on e (1), since there

is only one information noise bit checked by the set formed from each set of rows, and

these bits are all distinct.

The total number, J, of parity checks orthogonal on e (l) that are formed in this

manner is

K
E ( ) M (102)

j=0

which is one less than the sum in Eq. 101, as claimed.

It remains to show that the minimum distance is given exactly by (101). The mini-

mum distance is at least J + 1, and hence must be at least as large as the sum in (101).

It suffices, then, to show that there is some code word with i (1) = 1 which has exactly

this weight. We recall that there is an initial code word, with i 1, whose weight

is one plus the number of "ones" in the code-generating polynomials. This last number

is just the number of "ones" in the first columns of the parity triangles and, by the

symmetry of each triangle, this is equal to the number of "ones" in the last rows of the

parity triangles. Since the Reed-Muller generating matrix has one more "one" than the

set of last rows of the parity triangles (it includes an extra column 0 0 ... 0 1), it

follows that there is a code word with i (1) = 1 that has weight equal to the number of

"ones" in the generating matrix of a Kth -order Reed-Muller code. But any vector inner

product of vl, v 2, ... vM taken j at a time contains exactly 2 M - j "ones." The number

of "ones" in the generating matrix then is

J.2 () 2 M- (103)
j=0

and thus there is an initial code word, with i (1) = 1, having this weight. This equals
0

the sum in Eq. 101, which was to be shown.

In Table IV, we list the Reed-Muller-like convolutional codes for M up to 5. The

M, K code, where K = 1, is the same as the M, L uniform code (in section 3. 7), where

L= .
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There are important differences between the codes in this section and the ordinary

Reed-Muller codes besides the obvious one that the former are convolutional codes and

the latter are block codes. With fixed M, the block length of the Reed-Muller codes is

2M , and adding the higher order vector products to the generating matrix increases the

rate but reduces the minimum distance. On the other hand, for the Reed-Muller-like

convolutional codes, it is the rate R = 1 / 2 M that is fixed, and adding the higher order

vector inner products increases both the constraint length and the minimum distance.

Table IV. Reed-Muller-like convolutional codes.

M K R nA nE d

1 1 1/2 4 3

2 1 1/4 12 8
2 16 9

3 1 1/8 32 20
2 56 26
3 64 27

4 1 1/16 80 48
2 176 72
3 240 80
4 256 81

5 1 1/32 192 112
2 512 192
3 832 232
4 992 242
5 1024 243

3. 9 SUMMARY

We have constructed a fairly extensive set of codes, suitable for threshold decoding,

by both cut-and-try and analytical procedures. For the case R = 1/2, we have been able

to show that the effective constraint length must grow as the square of the number of

constructed orthogonal parity checks, and to form codes that achieved this bound. For

other rates, we have not been able to derive a good lower bound on effective constraint

length, but we conjecture that a similar bound applies as the number of orthogonal

parity checks increases indefinitely.

The upper bound of Theorem 10 was found to give the smallest possible value of nE

for R = 1/2, but not for lower rates. For example, in the limit as M - oo, the uniform

codes with L = 1 have an effective constraint length that is approximately 2/M times the

bound of Theorem 10, but these are very low-rate codes. The effective constraint length

of the Reed-Muller-like codes is also much smaller than the bound of Theorem 10, for

the very low-rate codes.
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The construction used to prove Theorem 10 gave codes for which the effective

constraint length, nE, was much smaller than the actual constraint length, nA. On the

other hand, the trial-and-error codes were formed so that nE and nA were approxi-

mately equal. For both the uniform codes, and the Reed-Muller-like codes, nE and nA

were identical. We have already emphasized the importance of having nA as small as -

possible.

A final remark on the trial-and-error codes of Table II seems to be in order.

These codes were all hand-constructed, by using techniques of the nature described in

section 3.6. For several reasons, it does not seem feasible to make a computer search

for such codes. The special technique by which each code was constructed was developed

after a careful study of the appropriate parity triangles, and no systematic set of rules

was found which would enable the construction of all codes in Table II, or even of all of

the codes of a fixed rate. Many of the codes required somewhat "ingenious" tricks in

their construction which would not be readily programmable. At best, it seems that a

computer could be used for making searches for some of the longer codes with a high

degree of operator control of the program.

In Section IV we shall give threshold-decoding circuits that can be used with any of

the codes in Section III. Following that, we shall give numerical and analytical results

for the error probabilities that can be obtained when the codes in Section III are

threshold-decoded.
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IV. THRESHOLD-DECODING CIRCUITS FOR BINARY CONVOLUTIONAL CODES

We shall present digital circuits that can be used to instrument the threshold-

decoding algorithms for binary convolutional codes.

It is convenient at this point to state and prove a lemma that will be used frequently

in the following sections.

LEMMA 2: Let e, e 2, ... en be a set of ni statistically independent, binary-
n. 1

valued random variables for which Pr[ej=l]= 1 - Pr[e =0] = yj. Then the probability,

Pi,' that an odd number of these random variables are "ones" is

1

+ II (-2yj. (104)

PROOF: The technique of "enumerating, or generating, functions" 2 7 is useful here.

The enumerating function, gj(s), for the jth random variable is yjs + (1--yj), that is, it

is the polynomial in s for which the coefficient of s is the probability that the random

variable takes on value v. Since the random variables are statistically independent,

the enumerating function, g(s), of their sum as real numbers is

n. n.
1 1

g(s) = II g.(s) = fI [pys+(l-y. (105)
j=1 j=1 j

The desired probability, Pi, is then the sum of the coefficients of odd powers of s in

g(s), hence

Pi = [ g ( 1 ) - g ( - )]. (106)

Substituting (105) in (106), and noting that g(1) = 1, we obtain Eq. 104.

Before proceeding to a specification of actual decoding circuits, we shall first

restate the threshold-decoding algorithms of Theorems 3 and 4 in their specific form

for binary convolutional codes with rate R = 1/n o . For this case, given a set {Ai} f J
(1)parity checks orthogonal on e , the threshold-decoding algorithms can be stated thus:

Choose e () = 1 if, and only if,

J
wiAi > T. (107)

i=l

Here,

(a) {Ai} are treated as real numbers in this sum;

(b) wi are the weighting factors and are given by

qi
w i = 2 log- for APP decoding; (109)
1i = 2 lg p.
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Pi = 1 - qi is the probability of an odd number of "ones" in the n. noise bits, exclusive

of e which are checked by Ai; and

(c) T is the threshold and is given by

T =21 for majority decoding, and (110)

J
T = wi for APP decoding, (111)

i=O

where p = 1 - q = Pr[eo(1)=l], and we set w = 2 log Po
p0

This algorithm is just a rewording of the decoding rules of Theorems 3 and 4, and

we shall now consider specific circuits for its implementation. For convenience, we

shall restrict the discussion to rates R = 1/no, and indicate afterwards how the general

case, R = k/n o , is handled.

4. 1 DECODING FOR THE BINARY SYMMETRIC CHANNEL

We begin with the simplest case for which the noise probability is the same for all

received bits, that is, Pr(eu(J)=l) = p0 for all u and j. The only channel that meets

this specification is the binary symmetric channel discussed in Section I. The decoding

circuits for APP decoding are especially simple in this case because the weighting

factors {wi} and the threshold T are all constants. (They are, of course, always

constants for majority decoding, and hence the circuits presented in this section can

be used for majority decoding with any binary channel.) For example, consider a par-

ticular parity check, Ai, of size n i . Applying Lemma 2, we have

1 n.

pi = 1 - qi =- [1- (112)

and this depends only on n i , since p is a constant. Thus the {wi} of (109) and the T

of (111) are all constants.

a. Type I Decoder

The first circuit that we shall present for implementing (107) is shown in Fig. 11.

That this circuit is a proper threshold decoder can be seen in the following manner.

The parity-check sequences, S(j)(D) j = 2, 3, ... no , are first formed by encoding

the received information sequence, R(1)(D), and adding the parity sequences so formed

to the received parity sequences, R(J)(D) j = 2, 3, . . . no , as explained in section 2. 7.

(Binary addition and subtraction are identical, since 1 + 1 = 0 implies that 1 = -1.) The

n -1 parity-check sequences are then stored in as many shift registers. The outputs
o (1)

of the storage. devices at time m, when the decision on e ° is to be made, are as

shown in Fig. 11.

The {Ai} are then formed by the set of J modulo-two adders below the shift regis-

ters in Fig. 11. The inputs to the it adder are just the set of parity checks s (j) that
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Fig. 11. Type I decoder.

are added to form Ai. The outputs of these J adders are then treated as real numbers

and weighted by the factors wi of (108) or (109). This weighted sum is then compared

with the constant T given by (110) or (111). Thus the output of the threshold device is

e()* the decoded estimate of e (l) This output is then added modulo-two to r(l)

which at time m is just emerging from the delayed input terminal of the encoder, to
(1)* (1)produce i(1), the decoded estimate of i

Finally, consider the altered parity-check sequences given by

S(j ) * ( D ) = S(J)(D) - [eo(l)] G(J)(D) . (113)

From Eq. 63, it follows that if decoding has been correct, that is, if e = e(1

then the effect of e (1) has been removed from the altered parity-check sequences.
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Moreover, terms from time 1 through time m + 1 have exactly the same structure with

respect to e as the original terms from time 0 through time m had with respect to

e0 ()1 The decoding for el(l) can then be performed by using exactly the same algo-

rithm on the altered parity-check sequence from time 1 through time m+ 1 as was used

in decoding e(1) from the original parity-check sequences from time 0 through time m.

Thus, barring a decoding error, the Type I decoder will continue to operate correctly

at successive time instants when the parity-check sequences are modified according to

Eq. 113. This is seen to be accomplished in Fig. 11 by feeding back the output, e (1),
o

of the threshold element to the modulo-two adders between stages of the shift registers

that store the parity-check sequences. The connections to the adders correspond to the

code-generating polynomials, G(j)(D).

A few more remarks concerning the Type I decoder are in order. First, the shift

registers used to store the parity-check sequence contain (no-ko)m = (nA-n)(l-R) stages

in all. The encoder section contains an additional (nA-no)R stages. Thus there is a

total of nA -n o stages of shift register in the Type I decoder. Second, since the all-

zero sequences form a legitimate initial code word in any convolutional code, it follows

that the received sequences can be fed into the decoder, beginning at time zero, without

any need to disable the threshold decision element until time m when the decision on

e (1) is to be made. On the other hand, the information symbols output from the decoder

up to time m must all be zeros if the decoding is correct. The decoder output should

then be monitored over this time span, and any "one" output taken as indication of an

error pattern that is likely to cause e(l) to be decoded incorrectly.

b. Type II Decoder

A second circuit that implements the threshold-decoding algorithms is shown in

Fig. 12. Since this circuit applies the algorithms in a form that is quite different from

that given above, it will be necessary at this point to present the theory behind the

circuit in Fig. 12.

Each one of a set Ai) of parity checks orthogonal on e (1) can be written as a sum
(1)(

of noise bits, one of which is e , that is,

ni (j )

Ai = e(1) + e , i = 1,2, . J. (114)
j=l j

Since Ai is a parity check, (114) can also be written

(1) ()
Ai= r() + r , i = 1,2, .. J (115) -

j=1 J

We now define the quantity B i to be the sum of the received bits, excluding r),

which appear in the expression for Ai , that is,
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57



ni (pj

Bi = 2, (116)
j=1 J

Recalling that r(1) i (1) + e (1) and substituting (114) and (115) in (116), we obtain

B i = i(1) + e i = 1, 2, J (117)
j=l J

For convenience, we define B as

B =r(1) i (1) +e (1) (118)
o o o o

From Eqs. 118 and 117, it can be seen that the {Bi} form a set of j+l equations (but

not parity checks) each of which is the sum of i (1) and a set of noise bits that are such
0

that no noise bit enters into more than one equation. By a development exactly parallel

to that of section 1. 1, we find that the threshold decoding rules become:
(1)Choose i( 1 if, and only if,

J
w.iBi > T, (119)

i=O

where the {Bi} are treated as real numbers in this sum, and the {wi} and T have the

same meanings as in Eqs. 108-111. When J is odd, the majority decoding rule given

here is not exactly the same as that of (107). For a full equivalence in this instance,

the rules of (119) should be stated: Choose

(1) = (1) when J + 1i r when Bi 2
i=O

This algorithm performs the same decoding operation as the algorithm stated in

(107), the only difference being that the former gives i (1) (the decoded estimate of

i (1)) directly, whereas the latter gives e (1)* from which the decoded estimate of i (1)

can be found as i = r - e

The operation of the Type II decoder shown in Fig. 12 can now be readily explained.

The received sequences are stored in n shift registers so that the received bits are

available for the formation of the {Bi}. The {Bi} are formed by the set of adders

beneath the shift registers, the inputs to the ith such adder being the set of n. received

bits in Eq. 116 whose sum is B i . The adder outputs are then the {Bi}, and these are

weighted and compared with the threshold in accordance with (119). The output of the

threshold element is then i 1 . Finally, the circuit is prepared to operate correctly

at successive time instants by altering the received sequences according to Eq. 65.

This is accomplished by feeding back the output, i o(, of the threshold device to the

modulo-two adders between stages of the shift register, with the connections to the
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adders corresponding to the code-generating polynomials G(j)(D).

The Type II decoder contains n shift registers of m stages each for a total of

mno = nA - no stages of shift register. This is the same total number as for the Type I
decoder. Moreover, as for the Type I decoder, the fact that the all-zero sequences are

valid code words means that the threshold element need not be disabled from time zero

when the inputs are first applied to time m when the decision on i(1) is made. How-

ever, unlike the Type I decoder, the Type II decoder cannot also serve as an encoder

without modification.

c. Summary

The material of the preceding discussions can be summarized in a theorem.

THEOREM 15: A binary convolutional code with rate R = 1/n o and constraint length

nA can be majority-decoded for any binary output channel, or APP-decoded for the

binary symmetric channel, by a sequential network containing nA - no stages of shift

register and one threshold logical element.

It is interesting to note that the components in both Type I and Type II decoders work

at the rate of one operation per time unit, whereas the received bit rate is n bits per

time unit. This fact permits the use of lower speed components in construction of the

decoders.

Also, it seems plausible that these decoders contain the minimum storage possible

for a convolutional decoder. This can be shown in the following manner. Since nA

received bits are required for making the decision on e (1) and n bits are received at
o o

any time instant, at least nA - no received bits (or their equivalents) must be stored in

the decoder.

Finally, it should now be clear that for the case R = ko/no the Types I and II

decoders would be modified to include a total of ko threshold devices, each with its own

set of adders to form the set of parity checks orthogonal on e() for j = 1, 2, . k
(j)* 0 

The outputs of the threshold elements would then be e J in the Type I decoder, or

io()* in the Type II decoder. Thus for the case R = ko/n o , Theorem 15 would be

unchanged, except that the last phrase would read "ko threshold logical elements."

4.2 DECODING FOR TIME-VARIANT CHANNELS

We now consider the case in which the received bits do not all have the same error

probability, but these probabilities are known at the receiver. In other words, the

quantities Pr[eu(J)=l ] are known, but may vary with u and j.

An example of such a channel would be one that adds a voltage pulse whose ampli-

tude is Gaussianly distributed to the transmitted waveform, which is assumed to be

either a pulse of +S volts for a "one" or a pulse of -J volts for a "zero." The

receiver then uses the polarity of the received pulse to assign to the received bit the

more probable value of the binary number transmitted. The amplitude of the received

pulse can be used to compute the probability that this assignment was wrong. (See

sec. 5. 3 for more details concerning this channel.)
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q Another example is the binary erasure

channel shown in Fig. 13. When a "one" or

"zero" is transmitted, it is received correctly

E with probability q and is erased with proba-

bility p. Then, at the receiver, any received
1 of b---~c~----o o l "one" or "zero" has zero error probability,

whereas any erased symbol can be assigned

Fig. 13. Binary Erasure Channel. as a "zero" and has error probability one-half.

(See sec. 5. 2 for more details concerning this

channel.)

We shall now show how APP decoding can be instrumented for the class of time-

variant binary-output channels.

a. Weighting Factors

The application of APP decoding to time-variant channels requires the calculation

of the weighting factors {wi} and the threshold T of Eqs. 109 and 111, and these

quantities are now functions of time.

Consider the set {Ai} of parity checks orthogonal on e .(1) Let yj be the error

(Pj) .th (1)
probability of e , the j noise bit, exclusive of e which is checked by a par-

ticular Ai. Then, from Lemma 2, we have
1

Pi = [- (1 -2,j)= 1 - qi. (120)

Hence, it follows that

ni

1 + rI (1- 2 yj.)

qi j=l .. i .j=1 (121)
Pi ni

1 - j (1 -2y.j)
j=1

It is more convenient to write (121) as follows. Let

(P.)
= - loge(1-2j) . (122)

J

Then (122) may be written

i coth( c 'j (123)
where coth (x) = (ex) is the ordinary hyperbolic cotangent function. Then,

where coth (x)logari (e+ethms)/(e-e - x) is the ordinary hyperbolic cotangent function. Then,

with natural logarithms used, the weighting factor, wi , of Eq. 109 becomes
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Wi 2 log [coth (2 c )]; (124)
j=1 j

and also, since we always have p = Pr(eo(1)=l), we obtain

w = 2 loge (q/Po) = 2 loge [coth( c . (125)

b. Analog Circuit for Computing Weighting Factors

A circuit that calculates the {wi} and the threshold, based on (124) and (125), can

C(1) A

C

m

c(2) A

C(n) A_.c (2m

C ()

7'] UNIT
I I (ANA

ANAL
ADDE

x \y NON
FUNC

y= 2 LOG
e w1 w2 ° WJ w

Fig. 14. Analog circuit for computing time-variant
weighting factors and threshold.

now be obtained. Such a circuit is shown in Fig. 14.

The inputs to the circuit shown in Fig. 14 are assumed to be the n sequences

C(i)(D) = C) + cl(J )D + 2()D + . j = 1, 2.. nO (126)
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where c ( j ) is the input on line j at time u and has the value
u

c (j) = -log -2Pr eu(j)=1
U

(127)

The weighting factors {wi) are computed (Fig. 14) as follows: The ith analog adder,
(j) (j)beneath the analog shift registers that store the c (), has as inputs the set of c 

corresponding to the noise bits e (), exclusive of e(), which are checked by A i .

The output of this analog adder is fed to a nonlinear device that has an output of

2 loge [coth ( x)] for an input of x. From (124), it follows that this is the correct

weighting factor for parity check Ai. The threshold T is formed by taking half the

sum of all the weighting factors as called for by Eq. 111.

Since the analog circuit of Fig. 14 computes the correct set of weights {wi} and

the threshold T at every time instant, it can be combined with either the Type I or

the Type II decoder to give a complete APP decoding circuit for a time-variant

channel. In Fig. 15 we show the complete decoding circuit for the R = 1/2, J = 4,

DECODER
OUTPUT

Fig. 15. Complete decoding circuit for the R = 1/2, mE = 11
trial-and-error code.
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trial-and-error code of Table I, in which we have coupled a Type I decoder to the

analog circuit of Fig. 14.

4.3 SUMMARY

We have presented circuits that may be used to threshold-decode any binary convo-

lutional code. The decoding circuits are quite simple, containing what is apparently the

minimum possible number of storage devices and using a simple threshold logical ele-

ment as the decision component. The decoding circuits make only one operation per

time unit (during which n bits are received), and it is certainly feasible to construct

such circuits for real-time decoding on channels for which the input bit rate is in the

megacycle region. The fact that there is no variance in the decoding time per received

bit is also desirable, in that it eliminates any queueing problems for the received bits.

All of these features of the decoding circuits are quite attractive to the communi-

cation engineer. The central question, however, remains unanswered. What error

probabilities can be obtained at the receiver? Answers to this question will be given in

Section V.
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V. PERFORMANCE DATA FOR THRESHOLD DECODING

OF CONVOLUTIONAL CODES

We shall conclude our treatment of convolutional codes with a presentation of the

error probabilities that can be attained by using threshold decoding. We shall consider

several communication channels and our interest will always be in the quantity P 1 (e).

P l (e) was defined in section 2. 5 as the average probability of incorrectly decoding the

set of first information symbols. Since nearly all of the codes constructed in Section III

had rates of the form R = 1/no , we shall restrict ourselves to such codes. In this case
(1)P 1 (e) becomes simply the average probability of incorrectly decoding io

There are two main points concerning threshold decoding of convolutional codes that

will be made here: on the one hand, its lack of generality; on the other hand, its excel-

lent performance in particular cases. As a specific example, recall the binary sym-

metric channel of Fig. 1. The random coding bound of section 2. 6 shows that when

R < C, the average of P1 (e) over the ensemble of convolutional codes approaches zero

exponentially with the constraint length, nA. In sharp contrast to this result, we shall

show that when threshold decoding is used, P(e) always exceeds some positive constant

no matter how large nA becomes (at least when the codes satisfy the corollary of

Theorem 10). On the other hand, we shall see that, for codes of moderate length, the

performance of threshold decoding compares favorably with the random-coding bound

and to the error probabilities that can be obtained by using other available decoding sys -

tems.

5.1 THE BINARY SYMMETRIC CHANNEL

The major portion of this section will be devoted to the study of Pl(e) for the binary

symmetric channel of Fig. 1. We place our emphasis on this channel for two reasons.

First, it is the channel that has been studied most thoroughly by communication the-

orists, and is now familiar to all communication engineers. Second, it is reasonable

to infer that the performance of threshold decoding on this channel should be typical of

its performance on a broader class of binary output channels.

a. A Bound on Error Probability

We wish to show that P 1 (e) cannot be made to vanish by using threshold decoding.

The demonstration will be facilitated by making use of the log-likelihood-ratio, L,

which we define as

Prleo(1)= 1 {Ai}]

L = log . (128)

PrE ( 1 )=e 1 A

Using Eqs. 14 and 15, we can write Eq. 128 as
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J Pr Ai eo (1,] Pr[eo"1)]

L log elog(129)
i=l Pr[A e(1)=0e P(1)=0]

Finally, using Eqs. 18 and 19, we can reduce Eq. 129 to

J

w.A. - T, (130)

i=l

where the {Ai} are treated as real numbers in this sum, and the weighting factors {wi}

and the threshold T have the values that were assigned in Eqs. 109 and 111. Equa-

tion 130 expresses the interesting fact that the log-likelihood-ratio is just the difference

between the weighted sum of the orthogonal parity checks and the threshold when APP

decoding is used.

The log-likelihood-ratio is a useful quantity; when L is known, the error probability

in decoding i(1), P 1 (e L), can be determined from

e-IL
Pl(e I L) = . (131)

1 + eL

Equation 131 follows directly from (128) when it is noted that for L > 0 we have PI(e L) =

Pr[eo(l) = 0{Ai}], while for L-0 we have P l(e L)= Pr[e o(1)= I{Ai }]

We are now in a position to prove that when the codes are constructed to satisfy the

corollary of Theorem 10, the probability of error cannot be made arbitrarily small if

threshold decoding is used.

THEOREM 16: Given a binary convolutional code with R = 1/no for which a set {Ai}

of J = I(n-l) parity checks orthogonal on el) are formed. Suppose that no - 1 of these

parity checks have n = j for j = 1, 2, ... I; then for any J, Pl(e) obtained by threshold

decoding satisfies

1 (P]o) [2P+no-1] (132)
P ( e ) > T Zp (I 3

when the code is used on a binary symmetric channel with transition probability po =

1 -qo'

PROOF 16: For threshold decoding, P(e) is a minimum when APP decoding is

used. Moreover, P (e) must monotonically decrease as J increases, since APP

decoding always makes best use of the information in the set {Ai} and the set {Ai},

for a longer code constructed in accordance with the theorem always includes the

set {Ai} of each smaller code as a subset. Thus we need to show that as J- oo,

P (e) satisfies (132) when APP decoding is used. We begin by showing that LI

is bounded.

Using Eq. 111, we may write Eq. 132 as
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J J

L= iA i- Wi (133)

i=l 1i=O

from which it follows that IL max is obtained when all of the {Ai} are zeros," that is,
when all of the orthogonal parity checks are satisfied. Thus

J J
1 !L =-E = I log (134)max 2 L wib l Pi

i=O i=O

Substituting Eq. 112 in (134), we obtain

I i
I + (1-2po) i qo

Lmax =(n -1) Eloge +12p loge p (135)
i= 1 - (1-2Po) 

Using the series expansion for the logarithm,

loge 1 + x 0 x <, (136)

we can write (135) as

00

li ILlmax = loge + (n-1)(2) (1-2po)i+ 1 (1-Zp)3i+ (137)
J-0o0 ]

Since the series in brackets converges absolutely, the summation on each term may

be carried out separately as a geometric series and gives

qo (1-2 1 (1-Zp) 3
lim ILImax = loge + (n 1) 0 + (138)
J-o 0~oo - (-P) 1 - (-ZPo) 0

We can overbound the series on the right to give

q0 on - 1 1 3lim L < log e _ + l(2)12p)+( (139)

We recognize the series on the right as the expansion of

1 + (1-2p ) q0
log - = log e (140)

01 - (1-2Po) P

and hence Eq. 139 becomes

<po + no - 1 q o
lim ILma 2p loge P (141)
J-From Eq. 131, it follows that Pe is a minimum when is a maximum and that

From Eq. 131, it follows that P(eIL) is a minimum when ILI is a maximum and that
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1 -ILI max
this probability is greater than -e m Substituting (141), we find that Pi(e I L)

must satisfy

Pp+n -1 q0
00 log -

Pl(e )>1 e L 2p epJ (142)

But since Pl(e) is the average over all values of L of P 1 (e L), P(e) must certainly

be greater than the minimum value of P 1 (e IL), and hence greater than the right-hand

side of Eq. 142. This is the result stated in the theorem.

From Theorem 16 we see that P 1 (e) cannot be made to vanish by using threshold

decoding with the class of codes that satisfy the corollary of Theorem 10. We saw in

Theorem 12 that for R = 1/2 this class of codes is the best that can be constructed for

threshold decoding. Thus for R = 1/2 it is impossible to make Pl(e) arbitrarily small

by threshold decoding. We can conjecture that it is also true that for other rates, Pl(e)

cannot be made arbitrarily small when threshold decoding is used, but we have not been

able to prove this.

We have actually proved more than Theorem 16 states. Inequality (142) shows that

for the class of codes considered in Theorem 16, there is never a decoding decision

made which has error probability smaller than the right-hand side of (142) or (132).

Even in the most favorable case (when the entire set of orthogonal parity checks is sat-

isfied) the probability of a decoding error exceeds the bound on the right-hand side of

(132). For this reason, (132) does not give a good lower bound on P 1 (e), but it does give

a good bound on the minimum value of P 1 (e IL).

b. Data for the Trial-and-Error Codes

Having established the lack of generality of threshold decoding, we turn next to the

task of computing Pl(e) in particular cases. For this purpose, we choose the trial-and-

error codes of Table III. These codes have the properties that nA and nE are nearly

equal, and that nE is never greater than the bound in Theorem 10.

Before expressing Pl(e) in the form best suited for the binary symmetric channel,

we shall give the general expression that applies to any binary output channel, whether

time-variant or not. As usual, let p = 1 - qo = Pr(e(1)=1) , po is then a random var-

iable in the case of a time-variant channel. The general expression for Pl(e) is

P1 (e) = qoPr[ wiA1i > Tl eO(1)= 0 + PoPr wiA i < Tle 0 1) = (143)

in which the bar indicates that the average is to be taken over all values of the weighting

factors, wi = 2 log (qi/Pi), i = 0, 1, 2, ... J. Equation 143 states the obvious fact that

an error is committed when either of the mutually exclusive events - that the threshold

is exceeded when e (1) = 0, or is not exceeded when e (1)=1 - occurs. But since the
o o
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{Ai} conditioned on e(l) are the complements of the {Ai} conditioned on e (1) =0, we have

Pr wiAi
< T Ie = = Pr W wAi wi - TIe > = 0 (144)

=1 =1 i=l

Hence, (143) may be rewritten as

Pl(e) = qPr wiA. > Tie (1) = + pPr[ wiA i > wi - Tle ) 0

=1=1 i=l

(145)

and we see that only the probability distributions of the Ai} conditioned on e(1) = need

be considered. For the binary symmetric channel, the bar in (145) can be ignored

because the weighting factors are constants.

We have seen (section 1. d) that the {Ai} conditioned on e(l) are a set of J sta-

tistically independent random variables for which Pr(Ai=l) = Pi = 1 - Pr(Ai=0). We

define the random variable X. as
1

k. = w.A. i = 1, 2, ... J, (146)
1 11

where the Ai are treated as real numbers. Equation 145 may then be written

Pl(e) = qPr hi > T +PoPr i i T (147)

where the X. are a set of J statistically independent random variables for which
1

Pr( wi=wi) = Pi and Pr( i= 0) = q.

The determination of Pl(e) from Eq. 147 reduces to the classical problem of calcu-

lating the probability that a sum of statistically independent random variables exceeds

some fixed number. However, we have been unable to obtain a closed-form expression

for Pl(e), or even a good lower bound, for the following reasons. Since, by Eq. 112,

for the binary symmetric channel

1

the .i are not equidistributed in the general case. Moreover, since ni grows in direct

proportion to J (at least for codes that satisfy the corollary of Theorem 10), Pi

approaches 1/2 as J increases; this means that the weighting factors approach zero

in APP decoding. For large J, the distribution of the sum of the k i is determined

almost entirely by the first several Xi with small values of n i . For these reasons, the

standard procedures for handling sums of independent random variables, such as the

Chernov bound, or the Central Limit Theorem, cannot be applied.

A numerical evaluation of Eq. 147 is facilitated by use of enumerating functions that
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were mentioned in section 4. 1. The enumerating function, gi(s), for . for the binary

symmetric channel is

w.

g i (s) Pi + qi. (149)

Since the X.i are statistically independent, the enumerating function, g(s), of their sum

is just the product of the gi(s), or

J

g(s) = i s 1 + qi). (150)

Then, since each coefficient in an enumerating function is the probability that the random

variable is equal to the exponent of s in that term, (147) can be stated

P l (e) = qo[sum of coefficients in g(s) of terms with exponents > T] +

Po sum of coefficients in g(s) of terms with exponents > wi - T . (151)

Equation 151 was used as the basis for a machine calculation of P 1 (e) for the trial-

and-error codes of Table III. For majority decoding, since w i = 1 for all i, g(s) in

(150) is an ordinary polynomial with J + 1 terms. The calculation of Pl(e) is quite

simple in this case. For APP decoding, the wi can all be different, and g(s) then

contains as many as 2J terms, making machine calculation mandatory in all but the

simplest cases.

In Figs. 16, 17, 18, and 19, we have plotted P 1 (e) versus nE for the trial-and-error

codes with rates 1/2, 1/3, 1/5, and 1/10, respectively. (These data were all obtained

by machine calculation, and each figure required approximately three minutes of time

on the IBM 7090 computer in the Computation Center, M. I. T.) Five different channels

were used with the codes at each rate and were chosen so as to give a wide range of

P1 (e).

Several features of the data in Figs. 16-19 are immediately evident. First, P(e)

does not decrease exponentially with nE for either majority decoding or APP decoding.

P l (e) does decrease monotonically with nE for APP decoding, for the reason that was
stated at the beginning of the proof of Theorem 16. However, for majority decoding,

P1 (e) has a minimum for some value of nE and increases thereafter, for the channels
with large po . The reason for this is that Pi is almost 1/2 for the parity checks with

large ni in the longer codes, but these "bad" parity checks are being given the same

weight in the decision on e(l) as the "good" parity checks with small ni. Ultimately1
P1 (e) would approach 1/2 as nE increased indefinitely for majority decoding with any

value of po.

As a first basis for evaluating the performance of the trial-and-error codes with
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threshold decoding used, we have plotted the upper bound on Pl(e) as given by the random

coding bound of Eq. B-10 for one channel in each of Figs. 16-19. (The rate in each case

is slightly less than Rcrit for the channel chosen.) We have used nE rather than nA when

plotting the random coding bound, for the reason that nE is the number of bits on which

the decision on e(l) is made with threshold decoding used, whereas all nA bits are used - -

in maximum-likelihood decoding as assumed in deriving P(e) in the random-coding

bound. For all four rates, Pl(e) for the trial-and-error codes equals Pl(e) for the

random-coding bound for nE 70. For the longer codes, Pl(e) obtained by threshold

decoding of the trial-and-error codes exceeds this upper bound to the average error

probability of the ensemble of convolutional codes, with maximum-likelihood decoding

assumed.

Since the practical considerations pointed out in section 1. la generally make

maximum -likelihood decoding infeasible, a more realistic criterion for evaluating the

performance of the trial-and-error codes is the error probability that can be attained

by using other practical encoding and decoding procedures. For this comparison, at

rates 1/2, 1/3, and 1/5 we have chosen the nearest Bose-Chaudhuri codes, 16 for which

the Peterson decoding algorithm 2 8 can be used to correct any error pattern of weight

(d-1)/2 or less, where d is the minimum distance. At rate 1/10, we have assumed

the existence of block codes for which d is equal to the average weight of a nonzero

code word. In computing P(e), the block probability of error, we assumed that in every

case an error pattern was correctable if and only if it had weight (d-l)/2, or less.

Finally, since at n = 63 there were no Bose-Chaudhuri codes close to the desired rates,

we shortened the code with rate just exceeding the desired rate by dropping information

symbols until the shortened code had rate equal to or less than the desired rate. In

Table V, we list the complete set of block codes that were used for comparison with

the trial-and-error codes.

P(e), the block probability of error, and P(e)/k, where k is the number of infor-

mation symbols, is given in Table VI for the codes of Table V and the trial-and-error

codes of Table II. The same channel was used at each rate as was used for the

Table V. Block codes used for comparison with trial-and-error codes.

n k d R Type of Code

31 16 7 .517 Bose -Chaudhuri
54 27 11 .500 "shortened" Bose-Chaudhuri (63, 36) code

31 11 11 .355 Bose-Chaudhuri
58 19 15 .328 "shortened" Bose-Chaudhuri (63, 24) code

31 6 15 .194 Bose-Chaudhuri
58 11 23 . 190 "shortened" Bose-Chaudhuri (63, 16) code

30 3 17 . 100 average distance code
60 6 31 .100 average distance code
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random-coding bound in Figs. 16-19, and n was equated with nE.

Although no method of comparing error probabilities for block decoding and convolu-

tional decoding is entirely satisfactory, the best basis seems to be comparison between

P 1 (e) and P(e)/k. The reasoning behind this choice is the following: Let Pk(e) be the

probability of making any error in decoding the first k received information bits. Then

if Pk(e) = P(e), the average number of information bits decoded correctly before the

first error is made will be approximately the same for convolutional decoding and block

decoding. On the other hand, Pk(e) is conservatively bounded as

Pk(e) 4 k P 1 (e) (152)

in which we overbound the probability of a union of events by the sum of the individual

probabilities. Thus a comparison between P(e) and k P 1 (e), or (that which is the same)

between P(e)/k and P 1 (e), seems a reasonable choice for comparing block decoding and

convolutional decoding.

From Table VI it can be seen that threshold decoding of the trial-and-error codes

compares quite favorably with the block decoding used for comparison. There is little

difference in the performances at the higher rates. The marked superiority of threshold

decoding at R = 1/10 stems from the fact that at such a low rate it is important to cor-

rect a sizeable percentage of error patterns with weight greater than (d-l)/2. Even

majority decoding will correctly decode eo(l1) for many such error patterns. For

example, in the R = 1/1 0, J = 26, d = 27 trial-and-error code, a decoding error is made

when e(1) = 0 only when 14 or more of the orthogonal parity checks are "ones." Thus

with a pattern of 14 errors among the 48 bits in the orthogonal parity checks, an error

is made only in the unlikely event that each bit in error is checked by a different one

of the 26 orthogonal parity checks (with e(1)=0 assumed); and if two of the bits in error

are in the, same parity check, no decoding error will be made unless the error pattern

has weight at least 16.

c. Tolerances for the Weighting Factors and Threshold

The performance of threshold decoding with the trial-and-error codes of Table II

used is quite creditable, and the simple decoding circuits for implementing threshold

decoding may render it of considerable practical value for codes of these lengths. But,

whereas for the decoding circuits and the calculations for Pl(e) it is assumed that it is

possible to set the weighting factors and the threshold at precisely their correct values,

it is of considerable engineering import to know what effect inaccuracies in these quan-

tities will have on decoding performance.

It is easy to see that tolerance requirements are not strict. From Eq. 130, it fol-

lows that in the critical instance in which the weighted sum of the orthogonal parity

checks is approximately equal to the threshold, L is approximately zero and the error

probability of the decision is approximately 1/2 according to Eq. 131. Thus it makes

little difference whether the decoder assigns e(1) equal to "one" or "zero." In Fig. 20a
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Table VI. Comparison of performance of the trial-and-error
convolutional codes with the block codes of Table V
on the binary symmetric channel.

RATE nE or n BLOCK CODES CONVOLUTIONAL CODES

P(e) P(e)/k P1 (e)

1/2 31 6.8x10'4 4.3x10 5 2.4x10 5

54 7.3x10'5 2.7x10 6 6.6x10 6

1/3 31 3.4x10'4 3.0x10 5 3.8x10 5

58 1.3x10 5 7.0x10 7 9.3x10-6

1/5 31 1.6x10-4 2.7x10 5 1.9x10 5

58 4.1x10 5 3.7x10 6 3.4x10 6

1/10 30 3.7x10 '3 1.2x10-3 7.7x10-5

60 6.0x104 1.0x10 4 1.3x10- 5

Pl(e) for the convolutional codes was found by extrapolating the data

given in Figs. 16-19 for Pl(e), with the use of APP decoding assumed.

The transition probabilities that were used are:

Po = .0130 for R = 1/2

Po = 0310 for R = 1/3

Po = .0530 for R = 1/5

Po = . 1100 for R = 1/10.
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we give numerical results, for a typical case, which illustrate the effect of inaccuracies

in the threshold setting. Even a 5 per cent maladjustment does not severely degrade

performance. Minor inaccuracies in the weighting factors have the same effect.

A more interesting question concerns the effect of errors in estimation of the chan-

nel. According to Eq. 112, the weighting factors, and the threshold also, are set

according to the estimate of po, which we shall denote po. Fortunately, a very accurate

estimate is not required. This could be inferred from Figs. 15-19, in which it is clear

that even the equal weighting of all parity checks prescribed by majority decoding does

not severely degrade performance in most instances. In Fig. 20b, we give numerical

results for a typical case which show the minor effect on Pl(e) of moderate inaccuracies

in the channel estimation.

Finally, we observe that majority decoding can be thought of as the limiting case
*

of APP decoding when p - 0. For, consider two parity checks, one of size n i = a, the

other of size n i = b. The ratio of the weighting factors wa and wb is, according to

Eq. 112,

s * a
1 + 1-2p )

log

I -1- 2pow
a aw~~~~~~ _________________~ ~(153)
wb 1 + (1-2po 

log b

1- (1-2po*)

As po - 0, both weighting factors approach infinity, but their ratio approaches a limit

that can be evaluated by two successive applications of l'Hopital's rule and is found to

be

w
lim __a= 1 (154)

o Wb
Po0

independently of a and b. In this case all parity checks are weighted the same, which

is the distinguishing feature of majority decoding. Thus one expects the performance

of APP and majority decoding to be nearly the same on channels with small po. From

Figs. 16-19, this is indeed seen to be the case.

d. Modifications of Threshold Decoding

There are two basic ways in which the threshold decoding algorithms can be modified

to improve decoding reliability on the binary symmetric channel (or any other channel)

equipped with a feedback provision. (The basic concept of this section - improving reli-

ability by decoding only the most likely error patterns and requesting retransmission

in all other cases - was first suggested by Wozencraft and Horstein.2 9 )
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The first method is to equip the threshold device with an alarm zone of width 2A

centered about the threshold. That is, whenever Z wA. - T < A, an alarm is sounded
i=l 1 1

and a repeat of the data is requested. From Eq. 131, it follows that for APP decoding

the error-alarm method is equivalent to making a decoding decision when and only when

the error probability is less than e- /(l+e- ).

The alarm zone is useful with majority decoding also. Specifically, let M be any

integer that is such that J - M is an even number. Then e (1 ) will be correctly decoded

whenever there are M or fewer, errors among the nE symbols checked by the {A.},
(1) J+M and no incorrect decision on e will be made when no more than 2 errors occur

among these symbols, when the decoding rules are: Choose e (1) = 1 if J+M or more

of the {A have value "one"; choose e = when M or less of the A have value
"one"; andi or less of the (A) have value
"one"; and otherwise signal the presence of a detected error. The proof of this state-

ment is a trivial modification of the proof of Theorem 1.

The second method of improving reliability when a feedback channel is available will

be called random supplementation of the convolutional code. This method is designed

for use in conjunction with the error-count technique described in section 3. 2. The idea

behind this method is to cause a decoding error to propagate so that it may subsequently

be detected by the error-count procedure, and a repeat then requested. This can be

accomplished by adding terms with degree greater than m to the code-generating poly-

nomials of Eq. 65, the coefficients in the extra terms being chosen independently as

"one" or "zero" with probability one-half. (Since nA is increased in this process, the

encoder and decoder complexities are increased in the same proportion.) Suppose that

L additional terms are added to each code-generating polynomial. From Fig. 11 it can

be seen that when a decoding error is made, the effect of the random supplementation

is to add a burst of L(no-l) random bits into the parity-check shift registers. As these

bits advance into that section of the parity-check shift register which is being used for

decoding, that is, into the last m stages of shift register in each chain, the probability

is increased that the error will propagate. (A similar analysis applies to the Type II

decoder shown in Fig. 12.) By choosing L sufficiently large, the probability of an unde-

tected error can be made as small as desired. However, since the number of bits that

must be repeated grows as L, the amount of time that is spent in requesting repeats

increases. (We shall not consider here such important questions as how the data for

repeats is stored, how many bits are repeated, etc. The reader is referred to the paper

of Wozencraft and Horstein2 9 for a full treatment of these matters. Our purpose here

is merely to point out those features for implementation of feedback strategies which

are peculiar to threshold decoding.)

Finally, in order to implement the error-count procedure, it is necessary to have a

means for counting all of the errors corrected in the received sequences. The output of

the threshold device in the Type I decoder is a "one" each time an error is corrected in

the information sequence. The number of errors corrected in the parity sequences can

be obtained by modifying the Type I decoder as shown in Fig. 21. The code-generating
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Fig. 21. Circuit for counting all errors in received sequences.

polynomials are always selected with go(j) = 1, j = 2, 3, ... n; otherwise, there is

an idle position in the first code word, that is, a position that contains only zeros for

all first code words. Thus from Eq. 70, it follows that

(J) = e(1) + eo j = 2, 3,...n o. (155)

Hence, e ()*, the decoded estimate of e ), can be obtained by adding e(l)* modulo-two

to soJ . This is done in Fig. 21; the adders in this circuit then have a "one" output

each time an error is corrected in the corresponding parity sequences.

5.2 THE BINARY ERASURE CHANNEL

A very powerful decoding method for convolutional codes has been developed by

Epstein for this channel.30 Epstein's method results in an exponential decrease in error

probability at any rate less than channel capacity and with a finite average number of

computations per decoded bit independent of code length.

In this section we shall very briefly treat APP decoding for the binary erasure chan-

nel of Fig. 13. This channel has capacity C = q and is characterized by the fact that a

received bit may be ambiguous, but can never be in error. 1 In section 4. 2, we saw

that this channel may be reduced to a binary output channel by assigning the value "zero"

to all erased bits and giving these bits error probability one-half. The expression for

P 1 (e) may be written directly as

Pl(e) =- p Pr Each A checks at least one bit that has been

erased, not including e(1)]. (156)

Equation 156 can be seen to hold as follows: e(1) can be determined immediately from

any parity check in which no other erased bit appears; on the other hand, if there is
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another erased bit, such a parity check gives no information about e (1) Thus an error

will be made with probability one-half when, and only when, e (1) corresponds to an

erased bit and every one of the parity checks orthogonal on e ( checks one or more

erased bits in addition to e . Equation 156 may be written in the formeraed itsin ddiionto °

(157)Pl(e) 2P rI (I -q )i=l

in which we use the fact that no bit, except e(1), appears in more than one of the orthog-

onal parity checks.

Using (157), we have computed Pl(e) for two binary erasure channels in Fig. 22.

Since the general features are the same as those for the binary symmetric channel, we

(nE = 106 CODE IS FROM TABLE I)

= .20

p= .10

(p = PROBABILITY OF ERASURE)

20 40 60 80
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shall not discuss them further.

As was the case for the binary symmetric channel, Pl(e) cannot be made arbitrarily

small when the codes satisfy the corollary of Theorem 10. Specifically, we have the

following theorem.

THEOREM 17: Given a binary convolutional code with R = /n o for which a set {Ai}

of J = I(n-l) parity checks orthogonal on e0 ) are formed in such a manner that n -

of these checks have n i = j for j = 1, 2, ... I, for any J, Pl(e) obtained by threshold

decoding satisfies

M .n -1
P(e) -p I (lqo (158)

where

M = log2 p-log 2 (no-1)- 1 ]/log 2 q (159)

when the code is used on a binary erasure channel with erasure probability p = 1 - q.

PROOF 17: For the codes in Theorem 17, Eq. 157 becomes

I n -1
P1(e) n(-q (160)

j=1

and this clearly decreases monotonically with I. We also have

co .n - M
T-1 (I-q i) 0 (no-1) = I - (no-1)( . (161)

i=M
i=M

When M is chosen to satisfy (159), (n -1) and (161) becomes

o .n -1
i (-q 1 (162)

i=M'

From (162), it follows that the product of all of the terms in (160) cannot be smaller

than one-half the product taken up to i = M, and this is the result stated in the theorem.

5.3 THE GAUSSIAN CHANNEL

The last channel that we shall study here is the Gaussian channel that was described

briefly in section 4.2. The transmitted signal is a pulse of +' volts for a "one," and

a pulse of -_IN volts for a "zero." The received pulse differs from the transmitted

pulse by the addition of a noise pulse that is gaussianly distributed with zero mean and

variance N. Now we shall show how the probability inputs, cu(j), to the analog circuit
of Fig. 14 can be obtained for this channel. We shall also give some indication of the

improvement in decoding performance that can be realized by use of the time-variant

weighting factors, as opposed to constant weighting factors for this channel.

From section 4. la, we recall that the probability inputs to the circuit for calculating
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the weighting factors were defined as

c (j) = -log [1-2Pr(eu() = 1)] (163)

for all u and j. These probability inputs can be obtained as follows. When a pulse of

v volts is received, the corresponding received bit is assigned as a "one" or "zero"

according as v is positive or negative. The log-likelihood-ratio, Li , for this decision is

1 2N
Pr [eu(J)=o N/Z e

L.log i = loge =2 (164)
Pr [eu(J)= e ( +v)

1 ZN
e

and this reduces to

L = 2 IvI. (165)

Equation 165 states that L i is directly proportional to the magnitude of the received

voltage. Using Eq. 131, we obtain

-L.

Pr [eu()] = -L (166)
l+e

Using (165) and (166), we can rewrite (163) as

-L.

cu -= -log e =1 coth [ N .v (167)
1 +e 1

From Eq. 167, it follows that the c(J) can be obtained by passing the received pulses

through the circuit of Fig. 23. The nonlinear device in this circuit is exactly the same

type as those in the analog circuit of Fig. 14.

In principle, the computation of Pl(e) for the Gaussian channel can be carried out by

v FULL-WAVE C = .(i)
RECEIVED RECTIFIER N

PULSES

NONLINEAR DEVICE
X-V-Yy = 2 LOG e COTH (x/2)

Fig. 23. Circuit for computing c() for a Gaussian channel.
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using Eq. 145. However, since the average must be taken over the distribution of the

weighting factors, and since the weighting factors are nonlinear functions of the

gaussianly distributed received voltages, the expression is not analytically tractable

in the general case. There is one simple case, however, for which P1 (e) can be found

directly, and which will serve to illustrate how much advantage is gained by using the

time-variant weighting factors. This simple case is the code for which each of the

no - 1 parity symbols is a repeat of the single information symbol in the constraint span;

such a block code can be considered as a degenerate case of a convolutional code. (A

thorough treatment of this channel including computations similar to Eqs. 172-174 is

available in a paper by Bloom et al. 3 2 )

In this case, it is convenient to use the {Bi} as defined in section 4. lb, for we have

B. = r (i) i = 1,2,...n (168)
1 0 

and

Pi = Pr [eo( )=1] i = 1,2,.. no . (169)

Using Eqs. 164, we find that the weighting factors are

qi -
w. =2 loge = 4 N evil i = 1,2,. . no (170)

1 ePi

where v is the received pulse for bit r ). Then since r is assigned as a "one"

when v. is positive, or as a "zero" when vi is negative, the APP decoding rule of
1 (1)

section 4.lb becomes: Choose i =1 if, and only if,

n

vi >0. (171)
i=l

Without loss of generality, we may assume that a "one" is transmitted. Then the sum

on the left side of (171) is a Gaussian random variable with mean n 'f and variance

noN, since it is the sum of n statistically independent Gaussian random variables with

mean v and variance N. Since an error is made whenever this sum is negative, we

have

1 . (X-no ) 2)
PI(e) exp 2n N dX (172)

which reduces to

P1 e) = / (noe (o exp dX. (173)P1 e 2- . .2
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For example, if n = 10, and if Pl(e) = 1.38 X 10- 3 , then Eq. 173 gives 4V7N = 0.98.

From Fig. 19, we find that the same code (nE=10) gives the same Pl(e) when used on a

binary symmetric channel with transition probability po = 0.110. This binary symmetric

channel can be considered as derived from a Gaussian channel in a manner such that

only the polarity of the output pulse can be observed, and such that

0.110 = 2r exp(-( x i dX. (174)

The solution of Eq. 174 gives 47N = 1.24. Thus, we can obtain a signal-to-noise

advantage of 20 log1 0 (1.24/0.98) = 2.3 db as compared with the use of constant weighting

factors in the example considered.

5.4 SUMMARY

The most striking result in this section is a negative one, namely that Pl(e) is

bounded away from zero when threshold decoding is employed with convolutional codes

on the binary symmetric channel or the binary erasure channel, at least when the codes

satisfy Theorem 10 and its corollary. Since it is impossible to construct better R = 2
codes for threshold decoding than those that satisfy Theorem 10 and its corollary, it fol-

1
lows that this result is rigorously true for any code at rate R = 2 -, and it probably applies

also to all other rates. Not withstanding this failure of threshold decoding to exploit

the full potential of convolutional codes, it is clear from Table VI (and Figs. 16-19)

that the error probability attainable by threshold decoding of convolutional codes com-

pares favorably with that of other known decoding systems for codes of moderate length.

The simplicity of instrumentation for threshold decoding may render it of considerable

practical value for codes of such length.

It was also shown here how modification, such as an alarm zone around the thresh-

old, can be, made to improve the reliability of threshold decoding. Moreover, from an

engineering point of view, the important fact that tolerance requirements in the thresh-

old element are lenient, was demonstrated. This result applies to the accuracy of

setting of the threshold and the weighting factors, and to the accuracy of prior estima-

tion of the channel.
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VI. THRESHOLD DECODING OF BLOCK CODES

6. 1 INTRODUCTION

In the preceding sections, we have seen how the concept of threshold decoding can be

applied to the class of convolutional codes. We shall now study its applicability to the

more familiar class of block linear codes. This class of codes is distinguished from

the class of convolutional codes by the fact that each set of k information symbols is

independently encoded into n symbols for transmission. Hereafter, we use the notation,

an (n, k) code, to mean a linear block code in systematic form (systematic form implies,

as explained in section 1.1, that the first k transmitted symbols are identical to the

information symbols).

According to Eq. 2, the parity symbols, tk+l, tk+2, ... t n , are determined from

the information symbols, tl, t2, ... tk, by the following set of linear equations

k

tj= jiti
i=l

j = k+l, k+2,...n

which may be represented in matrix form as

tk+l 1

tnk+2_tn

Ck+l, 1

_Cn, 1

* * Ck+l, k

n, k

where

parity

[P] is the (n-k)xk matrix of coefficients [cjiJ. It

checks are given by the matrix equation

k+ 

Sn

= [P:-Ij

now follows from Eq. 5 that the

(177)

where [I] is the identity matrix of dimension n-k.
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tl

tk

tl

t2

tk

[Pj (176)
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The matrix

H = [P:-I] (178)

is called the parity-check matrix of the code. From (177), it can be seen that each row

of H gives the coefficients of the noise digits that appear in one of the parity checks.

We call e 1, e2 , ... ek the information noise digits, and we call ek+l, ek+, . .. en the

parity noise digits. Then from (177) it can be seen that the rows of [P] give the coef-

ficients of the information noise digits appearing in the parity checks; moreover, each

parity noise digit is checked by one and only one parity check. It should be clear, by

reference to the material in section 3.2, that the task of forming a set of parity checks

orthogonal on e. reduces to finding disjoint sets of rows of [P] for which some linear

combination of the rows in each such set has a "one" in the j position, but no other

position has a nonzero entry in more than one of these linear combinations of twos.

For example, consider the binary (6,3) code for which the parity check matrix is

0 1 1 1 0 0

H = [P:I] = 0 1 0 1 0 (179)

1 0 : 0 1

The first row of H gives the coefficients of the noise bits in parity check k+l = s 4 .

Thus s 4 checks e2 , e 3 , and e4 . Similarly, s 5 checks e, e 3, and e 5; and s 6 checks el,

e 2 , and e6 . We observe that s5 and s 6 are a set of two parity checks orthogonal on el.

Similarly, s4 and s 6 are orthogonal on e2; and s 4 and s 5 are orthogonal on e 3. From

Theorem 1, it now follows that e 1, e 2 , and e 3 can all be correctly determined by major-

ity decoding, provided that there is no more than a single error in the six received bits

in a block. The transmitted information bits can then be found by adding e 1 e 2 and e 3

modulo-two to the received information bits.

Before making a systematic investigation of orthogonal parity checks for block codes,

we shall first generalize some of the definitions given in Section III to the case of block

codes.

The minimum distance, d, of a block (n,k) code is customarily defined as the

smallest number of positions in which two code words differ. Since the set of code

words form a group, d is also the weight of the nonzero code word with the fewest non-

zero positions.

We say that a block (n,k) code can be completely orthogonalized if d-l parity checks

orthogonal on each e can be formed, for j = 1, 2, ... k, that is, on each of the informa-

tion noise digits.

Only the information noise digits need to be found by the decoding process, since the

entire set of transmitted information digits can be found from them by using the relation

tj = rj - ej, j = 1, 2, ... k. (The transmitted parity digits can, of course, be recon-

structed from the information digits by using Eq. 175 if these parity digits are required
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at the receiver.) From Theorem 1, it follows that each of the k information noise digits

will be correctly decoded, provided that there are no more than d-1 or fewer errors

in a received block, if majority decoding is used with a code that can be completely

orthogonalized. Thus the entire set of information tioise digits will be correctly decoded

in this case. In other words, any error pattern that is guaranteed correctable by the

minimum distance of the code is correctable by majority decoding when the code can be

completely orthogonalized. Many error patterns of greater weight may also be cor-

rected, as will be shown by a specific example in section 6.2b.

Given a set {A} of J parity checks orthogonal on some ej, we say that the size, n i ,

of each such parity check is the number of noise digits, exclusive of ej, checked by that

parity check.

6.2 MAXIMAL-LENGTH CODES

In section 3.7, it was shown that the class of uniform binary convolutional codes could

be completely orthogonalized. These codes had the property that their minimum distance

coincided with their average distance. It seems natural then to begin our investigation of

block codes with that class of codes for which the minimum distance between code words

coincides with the average distance, namely the maximal-length codes. These codes

derive their name from the fact that the code word can be considered as the first q k-1

output symbols of a maximal-length k-stage shift register having the k information sym-

bols as initial conditions, 3 3 where all the symbols are elements of GF(q).

One may consider a block (n,k) code to be the special case of a convolutional code for

which nA = n0 = n and k = k. It then follows from Eq. 53 that the average distance

between code words in a block (n,k) code is

k-1
q

da - (q-l) n. (180)
avg k_ 1 n

k
For the maximal-length codes, since n = q - 1 and d = davg, we have, from Eq. 180,

d =q (q-l).

The parity-check matrix, [P:-I], for the maximal-length codes is such that P has
k

as rows the set of all q - k - 1 nonzero k-tuples, excluding the k that are all zero

except for a single "one" in some position. This fact can be seen in the following way:

For any nonzero initial conditions, the first qk-1 output digits of a maximal-length

shift register contain each nonzero k-tuple in some set of k successive positions (with

cycling from the last digit to the first allowed). Each shift of such an output is also a

possible output and hence also a code word in a maximal-length code. The set of code

words can then be considered the row space of the matrix [G], where the first row of

G is any nonzero output sequence, and the remaining k - 1 rows are each the cyclic shift

of the preceding row. Every set of k successive positions in the first row then is the

same as some column of G, hence the qk-1 columns of G must be the set of all nonzero
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k-tuples. This is still true after elementary row operations are performed on G to put

G in the form [I:P*] (this can be seen by noting that the set of k-tuples, formed from

the set of all nonzero k-tuples by leaving all positions unchanged, except the first which

is the sum of the first and second positions in the previous set, is again the set of all

k-tuples). Thus P must have as columns the set of all nonzero k-tuples, excluding

the k unit vectors. But if the code is the row space of [I:P*], then the parity-check

matrix is [P* t:-I], where t indicates the transposed matrix. 3 4 Thus P*t must have

as rows the set of all nonzero k-tuples excluding the unit vectors, and this is the prop-

erty that was to be shown.

For example, the binary (7,3) maximal-length code has the parity-check matrix

1 0 

0 1 1 
H = I (181)

1 1 1 

1 0 1 

and this is of the form H = [P:I], where the rows of P are all the nonzero 3-tuples

excluding the unit vectors.

a. Number of Orthogonal Parity Checks

We shall now determine the maximum number of parity checks orthogonal on e 1 that
k

can be formed from the parity-check matrix of a maximal-length code. Let the q - k - 1

rows of [P] be decomposed into two sets of rows, S 1 and S2, such that

(i) S 1 contains all q-Z rows of weight one with the first position nonzero, and all k-l

rows of weight two with a "one" in the first position; and otherwise all zero except for

a single position that contains a "minus one."

(ii) S2 contains the remaining qk - q - k + 2 rows of [P].

The set of rows in S 1 correspond to a set of parity checks orthogonal on el because,

except for e 1', no information noise digit is checked by more than one of the parity checks.

Moreover, for each row in S2 that has first digit , there is a unique row in S2 that has

first digit (-p) and for which the digits in the remaining positions are the negative of

those in the former row. The sum of these rows then corresponds to a parity check that

checks e 1 and no other information noise digit. All of the parity checks formed in this

way can be joined to those corresponding to the rows in S 1 and the entire set is orthogo-

nal on e 1 . The number, J, of parity checks orthogonal on e that are formed in this

way is

J = #(S 1 ) + #(S2), (182)

where #(S) is the number of elements in the set S. Equation 182 gives
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J = q(qk- +1) - 2. (183)

It can be seen that this is the maximum number of parity checks orthogonal on e

which can be formed because

(i) no row of [P] can be used more than once in forming parity checks orthogonal

on e,

(ii) the rows in S1 are the largest number of single rows of [P] that can be used in

a set of parity checks orthogonal on el,

(iii) the remaining rows of [P] must be combined at least in pairs to produce addi-

tional parity checks orthogonal on e 1 .

From the symmetry of P, it follows that the entire process can be iterated for

j = 2, 3, ... k in order to obtain the same number of parity checks orthogonal on each ej.

b. Complete Orthogonalization

Since the maximum number, J, of parity checks orthogonal on any information sym-

bol in a maximal-length code is given by (183), it follows that the code can be completely
k-i

orthogonalized if and only if J = d - 1, where d = (q-1) q Using (183), the difference

between d- and J is found to be

1 k-l)
(d- ) -J = (q (q 1). (184)

From Eq. 184 we are able to make the conclusions stated below.

THEOREM 18: The binary maximal-length codes can be completely orthogonalized.

PROOF 18: Substitution of q = 2 in Eq. 184 gives d - 1 = J.

THEOREM 19: The nonbinary maximal-length codes can be completely orthogonal-

ized when, and only when, k = 1, that is, when there is a single information symbol.

PROOF 19: For q * 2, the right-hand side of (184) will be a positive number except

when the last factor vanishes. This factor vanishes if and only if k = 1. Thus only in

this case does d - 1 = J.

Theorem 18 establishes the important result that the class of binary maximal-length

codes can be completely orthogonalized. These are (2k-l,k) codes with minimum dis-

tance 2k - . For large k, the rate, k/n = k/(2k-1), is very small.

The fact that threshold decoding is not limited to correcting only the error patterns

of weight [ 1], or less, is especially important for such low-rate codes. As a specific

example, consider the (1023,10) maximal-length code with d = 512. Suppose that this

code is used on a binary symmetric channel with transition probability po = 0.25. The

average number of errors in a received block is then (1023)p o , or approximately 256.

On the other hand, [d-2] = 255. Thus, the probability of error would be approximately

1/2 for a decoding algorithm that was capable of correcting only errors of weight L 2J
or less. Suppose now that majority decoding is used to determine each of the 10 infor-

mation noise bits from the set of d - 1 = 511 parity checks orthogonal on each such bit.
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The total probability of error is approximately 5 X 10- 7 . The reason for this drastic

reduction can be seen. Suppose that e 1 = 0, then el will be incorrectly decoded only

when more than 256 of the 511 parity checks orthogonal on e are "ones." Since each

of these parity checks includes two noise bits exclusive of el, the probability that such

a check is "one" can be found from Lemma 3 to be 0.375. The probability that more

than 256 of these 511 parity checks are "ones" can then be calculated to be less than

3.1 X 10 - 8 . In a similar manner, the probability that e is incorrectly decoded when

e 1 = 1 is found to be less than 1.0 X 10 7 . The average error probability in decoding

e l is thus less than (.750)(3.1X10 ) + (.250)(10 ) = 4.9 X 10 8 . The probability of any

decoding error among all 10 information noise bits is certainly less than 10 times the

probability of incorrectly decoding el, or less than 4.9 X 107.

Theorem 19 emphasizes the remark made in section 1.2 to the effect that there are

difficulties in applying threshold decoding to nonbinary codes in an efficient manner.
1

For large k, it follows from (183) that J 2 n, independent of q, whereas from Eq. 180
q - 1

we have d -- n. This indicates the fundamental difficulty that we have encountered
q

in trying to orthogonalize nonbinary codes, namely that the number of orthogonal parity

checks that can be formed is about the same as can be formed for a binary code with

the same n and k. This means that full advantage is not being taken of the higher order

alphabet of the nonbinary codes. On the other hand, although complete orthogonalization

is not possible for the nonbinary maximal-length codes, the simplicity of the threshold-

decoding algorithms might make them reasonable choices for decoding these codes and,

perhaps, other nonbinary codes also; but we shall not pursue the matter further. Here-

after, we shall consider only binary codes.

6.3 THRESHOLD-DECODING CIRCUITS FOR CYCLIC CODES

The maximal-length codes are cyclic codes, that is, a code for which a cyclic shift

(tj-tj_1 with t 1-t) of any cyclic code is again a code word. Peterson has shown that

any (n,k) cyclic code can be encoded by a linear sequential network containing either k

or n-k stages of shift register. 2 5 The cyclic structure of these codes also makes pos-

sible simple threshold decoding circuits as we shall now show.

A cyclic code can be completely orthogonalized if, and only if, d-l parity checks

orthogonal on e can be formed. This follows from the fact that the parity checks on

e 2 must be able to be put into the same form as the parity checks on el, but with all

indices increased by one cyclically. If J parity checks orthogonal on e 1 can be formed,

then J parity checks orthogonal on e 2 can be formed, and conversely. A similar argu-

ment applies for e 3 , e 4 , ... ek. This feature of cyclic codes makes possible the use of

threshold decoders very similar to the Types I and II decoders for convolutional codes.

We call these circuits the cyclic Types I and II decoders and we shall illustrate their

construction by using, as an example, the (7,3) maximal-length code having the parity

check matrix of Eq. 181.

The cyclic-Type I decoder for this code is given in Fig. 24. The received bits are
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BUFFER STORAGE
flFCflDFp

r7 . .r2 , r1

MAJORITY ELE

"ONE" IF 3 IN
"ERROR ALARM
"ZERO" IF 1 C

OUTPUT

Fig. 24. Cyclic Type I decoder for (7,3) maximal-length code.

fed simultaneously into n stages of buffer storage and into an (n-k)-stage encoding cir-

cuit. After n shifts, the (n-k)-stage register contains the modulo-two sum of the

received parity bits and the encoded received information bits. By Theorem 9, this sum

is just the set of parity checks. The parity checks are then combined to produce the set

of parity checks orthogonal on e1 , after which the set of orthogonal parity checks is

weighted and compared with the threshold. The output of the threshold element is el,

the decoded estimate of e 1 . This is added to r 1 which is just emerging from the buffer

to give tl, the decoded estimate of tl. Since the code is cyclic, the circuit as shown

(without the dotted connection) will continue to operate correctly at successive time

instants, the output after the next shift being t Z , and so forth.

The cyclic Type I circuit is of the type originally proposed by Meggitt 3 5 for decoding

an arbitrary cyclic code. Meggitt specified the main decision element in the circuit

only as a combinatorial element that has a "one" output for all parity-check patterns

in the (n-k)-stage register corresponding to error patterns with a "one" in the first posi-

tion. In general, there seems to be no way to construct a simple combinatorial element

for this circuit, the difficulty may be seen as follows. There is a single error pattern

of weight one with a "one" in first position, but there are n-l of weight two, (n-l)(n-2)

of weight three, etc., with "one" in the first position. Each such error pattern must

give a distinct parity-check pattern if it is correctable. Thus, if the decoder is to be able

to correct any combination of T or fewer errors, the combinatorial element must be

able to recognize approximately n parity-check patterns. It is not practical to

attempt a synthesis of such a combinatorial element, by the standard minimization tech-

niques used in logical design, when T is greater than approximately 2. The only hope

is to find some specific structural properties of the code that will suggest a practical

form for the combinatorial element.

When the cyclic code can be completely orthogonalized, then threshold decoding sug-

gests the form of the combinatorial element, namely a threshold logical element with

the necessary modulo-two adders needed to form the orthogonal parity checks. In such

a case, Meggitt's theoretically general circuit becomes a practical decoding circuit.

Meggitt included the connections shown dotted in Fig. 24 with his general cyclic

decoder. This causes the contents of the (n-k)-stage shift register to contain the parity
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checks corresponding to the received symbols as altered by the decoding process. After

decoding is complete, this register will contain only "zeros" if the output is a valid code

word. The presence of any "ones" indicates that an uncorrectable error has been

detected. Finally, it should be clear from Fig. 24 that the buffer storage can be reduced

to k stages when, as is usual, the decoded parity symbols are not of interest. When

this is done, the cyclic Type I decoder contains a total of n stages of shift register.

The cyclic Type II decoder for the same (7,3) maximal-length code is shown in

Fig. 25. This circuit uses the threshold-decoding algorithms in the form specified in

section 4. lb. In this case the set {Bi} of equations used in the decoding decision are

given by

B =r 1 (185)

and

B i = (sum of the received bits, exclusive of rl, whose noise

bits are checked by the i parity check orthogonal on el). (186)

The manner in which these equations are weighted and compared with the threshold is

exactly the same as described in section 4. lb.

The cyclic Type II decoder is the essence of simplicity. The received bits are first

stored in an n-stage shift register. The {Bi} are formed by adding the appropriate

received bits. The output of the threshold element is i1, the decoded estimate of i ..,
Since the code is cyclic, the same circuit gives 12 as its output after the shift register

is cycled once, and so on.

The manner in which the weighting factors and the threshold are calculated is exactly

the same for the cyclic Types I and II decoders as for the convolutional Types I and II

decoders, and no further explanation will be given here. The set of weights and the

threshold are constants for the binary symmetric channel when APP decoding is used,

and are always constants for majority decoding.

The main features of the cyclic Types I and II decoders can be summarized in the

following theorem.

r7 . . .r2 , r1

DECODER
> I ITPI IT

MAJORITY ELEMENT OUTPUT:
"ONE" IF 3 OR 4 INPUTS ARE "ONE";
"ERROR ALARM" IF 2 ARE "ONE";
"ZERO" IF 1 OR 0 ARE "ONE."

Fig. 25. Cyclic Type II decoder for (7,3) maximal-length code.
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THEOREM 20: Given a cyclic (n,k) binary code that can be completely orthogonal-

ized, any combination of [d- 2 ] errors, or fewer, in a block can be corrected by a

decoding circuit containing n stages of shift register and one threshold logical element.

In Theorem 20, we assume that majority decoding is used on the set of orthogonal

parity checks that can be formed on el. We have underlined part of the statement of

this theorem to emphasize the fact that the code must have a structure that permits the

formation of d-l parity checks on e if the cyclic Types I and II decoders are to be effi-

cient and practical decoding circuits. There is no reason to suspect that such a struc-

ture is a general property of cyclic codes.

When APP decoding is used to determine e from the set of parity checks orthogonal

on el, it becomes necessary to use weighting factors on each of the input lines to the

threshold element of the cyclic Types I and II decoders. For the binary symmetric chan-

nel, these weighting factors are constants as explained in section 4.1. For a time-

variant binary output channel, the weighting factors and the threshold can be computed

by an analog circuit similar to that of Fig. 14. Such a circuit for the (7,3) maximal-

length code is shown in Fig. 26. The inputs to this circuit are cl, c2 , ... c 7 where

Ci = -loge[l-2 Pr(ei=l)]. The operation of this circuit is so similar to that of the circuit

in Fig. 14 that no further explanation is required.

c 7 . . .c 2 'cl

NOTE: SYMBOL!

FIGS. 24 AND 26

THE SAME AS IN

11 AND 14.
T

Fig. 26. Analog circuit for computing weighting factors and threshold.
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6.4 BOSE-CHAUDHURI (15,7) CODE

Except for the maximal-length codes, we have been unable to find classes of good

block (n,k) codes that can be completely orthogonalized. However, in certain isolated

cases we have found good codes that can be completely orthogonalized. One such code

is the (6,3) code of Eq. 179. A more interesting case is the (15,7), d = 5, binary Bose-

Chaudhuri code.1 6 This code has the parity-check matrix H = [P:I] for which the rows of

P are

3-1 10 0 0 0
0 1 1 01 0 0

0 0 110 1 0
00011011
3-1 1 0 1 1 01 0(187)3-1 1 0 11 1 0
0 1 1 0m I I

3-1 1 1 00 1 1
3-1 0 0 0 0 W

and d - 1 = 4 parity checks orthogonal on e1 can be formed as shown. (The same con-

vention for indicating the formation of the orthogonal parity checks is used here as was

described in sections 3.5 and 3.6.) Since this is a cyclic code, it follows that the code

can be completely orthogonalized and can be decoded by either the cyclic Type I or cyclic

Type II decoders.

Aside from the fact that the (15,7) Bose-Chaudhuri code is a useful code, this example

is interesting in that this code is one for which Peterson 3 6 attempted a computer mini.

mization of the logical expression, defining the truth table for the combinatorial element

in a Meggitt decoder, and was unable to find a simple logical circuit from this approach.

The orthogonal parity-check approach leads naturally to a simple logical circuit for the

combinatorial element in the Meggitt decoder for this code, namely a majority logic

element and two modulo-two adders.

6.5 A SUFFICIENT CONDITION FOR COMPLETE ORTHOGONALIZATION

We have not been able to formulate a good set of conditions sufficient to establish

whether or not a binary (n,k) code can be completely orthogonalized. Our only result

in this direction is the following theorem whose proof is given in Appendix D.

THEOREM 21: Any binary block (n,k) code with k 3 can be completely orthog-

onalized.

Theorem 21 establishes the maximum value of k for which a block (n,k) code can

always be completely orthogonalized. The simplest nontrivial k = 4 code is the Hamming

(7,4) d = 3 code for which the parity-check matrix is

0 1 1 1
H = 1 1 1 0 I (188)

o 1 1 1 
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and it is readily verified that there is no way to form d-l parity checks orthogonal on

el. Since this is a cyclic code, it follows also that there is no way to form d-l parity

checks orthogonal on any of the information noise bits.

6.6 SUMMARY

We have seen how threshold decoding can be applied to block (n,k)-codes. For cyclic

codes, we have shown that the threshold-decoding circuits can be made quite simple.

However, for the most part, it appears that efficient use of threshold decoding for block

(n,k) codes is confined to binary low-rate codes such as the maximal-length codes. This

consideration is reinforced by Theorem 21 which stated that complete orthogonalization

of a binary code is always possible only when the number of information symbols is 3

or less. In order to by-pass this limitation on the class of codes to which threshold

decoding can be applied in an efficient manner, we shall, in Section VII, generalize the

manner of application of the threshold-decoding algorithms in such a way that they can

be applied to an enlarged class of block codes in an efficient manner.
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VII. GENERALIZED THRESHOLD DECODING FOR BLOCK CODES

In Section VI we were able to establish that the threshold-decoding algorithms could

be applied efficiently to the binary maximal-length codes, a class of low-rate codes.

The effectiveness of the basic algorithms appears to be limited to such low-rate codes,

in the sense that complete orthogonalization of a code is usually not possible for high-

rate codes. We now extend the procedure for forming orthogonal parity checks to

enlarge the class of codes for which threshold decoding can be efficient. We limit our

treatment to binary codes. (It is not yet clear to what extent the generalized procedure

is applicable to nonbinary codes.)

Before describing the generalized procedure, we shall illustrate its use by an

example. Consider the Hamming (7, 4), d=3, code for which the parity-check matrix,

H = [P:I] is given in Eq. 188. We have seen that this code could not be completely

orthogonalized. For this code, the rows of P correspond to parity checks s 5 , s6, and

S7, and are

1 0 1 1

2 - F] 1 1 1 0
2 - 0 1 1 1.

(As in Section III, we use a numbered arrow to indicate an orthogonal parity check and

its size, and we place a box about each nonzero coefficient of an information noise bit,

other than those in the sum, appearing in the parity checks orthogonal on that sum.)

As shown, s6 and s7 form a set of d - 1 = 2 parity checks orthogonal on the sum, e 2 + e 3 .

Provided that no more than a single error is in the received block, majority decoding

can be used to determine this sum correctly. Let us call this decoded estimate (e 2 +e 3 )

Similarly, s5 and s 7 form d-1 = 2 parity checks orthogonal on e3 + e 4 , and we can find

(e 3 +e4) by majority decoding.

Now consider modifying the original parity checks to form a set s and s given by

s = s 5 + (e 3 +e4 )

and (189)

= S + (e 2 +e3 ) .

From Eq. 189, it can be seen that if the sums were correctly decoded, then s and s'

are parity checks corresponding to the parity-check matrix H' = [P':I] where the rows

of P' are

1 0 0 0 (190)
1000

and d-1 = 2 parity checks orthogonal on e can now be formed. The entire decoding

process will be correct provided that no more than a single error is present in the

received block. Since the code is cyclic, e 2 , e 3 , and e 4 can all be determined in a

similar manner.
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7. 1 L-STEP ORTHOGONALIZATION

The generalized orthogonalization procedure can now be described. Starting with

the original set of parity checks corresponding to the parity-check matrix H, suppose

that we can form sets of at least d-1 parity checks orthogonal on selected sums of

information noise bits. (If the code cannot be L-step orthogonalized, one might wish to

use the decoding algorithm by forming as many orthogonal parity checks at each stage

as possible.) These sums are then assumed to be known (threshold decoding is used to

estimate each of these sums) and are treated as additional parity checks, that is, as

known sums of noise bits. These additional parity checks are then combined with the

original parity checks to produce a set of parity checks corresponding to a parity-check

matrix H'. Provided that all the sums were correctly decoded, H' will be a true parity-

check matrix. H' is then transformed to H" by a similar process. Ultimately, some

H(L) is produced from which d-1 parity checks orthogonal on e can be produced. If

this procedure can be carried out for all ej, j = 1, 2, ... k, then we say that the code

can be L-step orthogonalized.

According to this definition, one-step orthogonalization is the same as complete

orthogonalization as defined in section 6. 1. We see that the Hamming (7, 4) code can be

2-step orthogonalized.

If majority decoding is used as the decision rule at every stage of the orthogonal-

ization procedure, then any combination of Ld2 J, or fewer, errors in the received

block will be corrected when the code can be L-step orthogonalized. This follows from

the fact that the set of sums at the first stage will then be correctly decoded and H' will

be a true parity-check matrix. By the same reasoning, H", H"' ... H(L) will be true

parity-check matrices, and hence the majority decision on e will be correct for

j=l 1, 2, ... k.

It is plausible that better results could be obtained by using APP decoding at each

stage. This must be true at the first stage because the APP decoding rule must give at

least as small an error probability as majority decoding in estimating the sums from

the sets of orthogonal parity checks. However, after these sums are combined with the

original parity checks to form parity checks corresponding to the modified matrix H,

the set of orthogonal parity checks formed from H' no longer have the strict statistical

independence which they would have if H' were the original parity-check matrix. It

seems reasonable, however, to treat these orthogonal parity checks as though they

enjoyed the proper independence needed for application of the APP decoding rule because

if H' were incorrectly formed and hence were not a true parity check matrix, then the .

decoding process would probably fail anyway.

7.2 FIRST-ORDER REED-MULLER CODES

As a first example to illustrate how the generalized orthogonalization procedure can

be applied, we prove the following theorem.

THEOREM 22: For any M, there exists a binary(2M , M+1) block code with d = 2 M-l
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that can be 2-step orthogonalized.

PROOF 22: Consider the parity-checkmatrix [P:I], where the rows of P contain all

(M+l)-tuples of odd weight three and greater. There are exactly 2M - M - 1 such rows

and hence n - k = 2M - M - 1. This can be seen from the fact that half of the set of

all 2 M+l (M+l)-tuples have odd weight, and P has as rows all these (M+l)-tuples

except the M+1 unit vectors. Since k = M + 1, we have n = 2M as stated in the theorem.

We now show that such a code has minimum distance d = 2
M - 1 and can be two-step

orthogonalized.

Consider the number of parity checks orthogonal on e + e2 which can be formed.

For each row of P beginning with "'1 0", there is a unique row beginning with "0 1"

that is otherwise the same. The sum of these rows gives a parity check on el + e2 and

no other information noise bits. Also, for each row of P beginning with "1 1" and

having weight 5 or more, there is a unique row beginning with "0 0" that is otherwise

the same. The sum of these rows again gives a check on e + e 2 and no other infor-

mation noise bits. Finally, the rows of P beginning with "1 1" and having weight three

all have the third "one" in disjoint positions. Each of these gives a check on e + e 2

and one other distinct information noise bit. Using this procedure, we can form as

many parity checks orthogonal on e + e 2 as there are rows of P with a "one" in the first

column, and this number is 2M - 1 - 1.

From the symmetry of P, which has as rows all vectors of odd weight three and

greater, it follows that 2
M - 1 - 1 parity checks orthogonal on any sum of two information

noise bits can be formed. We can then form a modified parity-check matrix [P:I] by

assuming that e 2 + e 3 , e 3 + e 4 , ... , ekl + ek are now known and can be used to elimi-

nate variables from the original parity-check equations. We observe that any sum of

an even number of the variables e2 , e 3 , ... , ek can be formed from the assumed known

sums (for example, e 2 + e4 = (e 2 +e 3 ) + (e 3 +e 4 )). But since all the rows of P have

odd weight, all of the parity checks on e 1 check an even number of the variables

e 2 , e 3 ... . ek and these can all be eliminated by using the assumed known sums. Thus,

using the rows of P beginning with a "one," we can form a P' with 2M - 1 rows of the

form 1 0 0 ... 0, and hence 2
M - 1 - 1 parity checks orthogonal on e can be formed

from the modified parity-check matrix. Again, from the symmetry of P, it follows

that a similar process can be applied to e 2 , e 3 , ... ek.

It remains to show that d = J + 1 = 2M . The minimum distance must be at least

this great. On the other hand, d can be at most one greater than the number of "ones"

in any column of P (cf. Lemma D. 1) and there are J "ones" in each column. Hence d

must be exactly J + 1 which proves the theorem.

The codes described in the proof of Theorem 18 are equivalent to the first-order

Reed-Muller codes,37 that is, they differ from the latter codes only by a permutation

of the code positions. However, the codes as we have used them are in systematic

form which means that the first k encoded symbols are identical to the information

symbols. This simplifies encoding, and is also usually desirable for other reasons
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(for example, some receiving stations may not have decoding circuits but may still wish

to extract some data from the received messages). The Reed-Muller codes are not

usually given in systematic form because the Reed decoding algorithm13 does not apply

directly, that is, without a prior linear transformation.

Finally, it should be observed that the threshold-decoding procedure can be stream-

lined in the following way. After all k-1 sums, (e 1+e 2 )*, (e 2 +e 3 )*, (ek-+ek have

been determined and e has been determined from the modified parity-check matrix,

the remaining variables e 2 , e3 , ... ek can all be found directly by combining these

known quantities. For example, e3 = e + (e+e 2 + (e 2 +e 3 ). Thus a total of only k

threshold-decoding decisions need to be made in the entire decoding process.

In general, when threshold decoding with L-step orthogonalization of a code is

possible, it is never necessary to make more than k threshold-decoding decisions in

the entire decoding process. This follows from the fact that each decision gives the

decoded estimate of some sum of the variables e1 , e 2 , ... ek. Since there are only k

of these variables, there can be at most k linearly independent sums formed from them.

If k + m estimates of sums are formed by threshold decoding in the decoding process,

then at least m of these estimates could have been found by taking linear combinations

of the other estimates. Conversely, fewer than k threshold-decoding decisions can

never suffice for the entire decoding process, since there are k independent quantities

to be estimated.

7.3 HAMMING CODES

We have shown that the (7, 4), d=3, Hamming code can be 2-step orthogonalized.

This code is one in a class of d=3 codes, having n = 2M - 1 and k = 2M - M - 1, which

were discovered by Hamming. ll These codes are cyclic codes. They are also "sphere-

packed" codes, which means that all 2n possible received n-tuples are distance d- = 1

or less from some code word. Any decoding algorithm that corrects a single error in

a block is then a maximum-likelihood decoding algorithm for these codes on the binary

symmetric channel (see Appendix B). Majority decoding with 2-step orthogonalization

is thus a maximum-likelihood decoding algorithm for the (7, 4) code.

We shall now show that all of the Hamming codes can be L-step orthogonalized for

some L, and hence that majority decoding with L-step orthogonalization is a maximum-

likelihood decoding procedure for these codes on a binary symmetric channel. We do

not suggest that threshold decoding with L-step orthogonalization is a desirable way to

decode this class of codes, since very simple decoding procedures may be employed

such as the original procedure suggested by Hamming, 11 or the procedure advanced by

Huffman. 3 8 Our purpose is only to show that it is possible to apply the generalized

threshold decoding procedure to at least one class of high-rate codes. We conjecture

that the same result will apply to other classes of high-rate codes.

THEOREM 23: For M = 2, 3, 4, ... , the Mth-order Hamming (2M - 1, 2M -M - 1),

d = 3, codes can be L-step orthogonalized for L no greater than M - 1.

100



PROOF 23: The Mth-order Hamming code has the parity-check matrix [P:I], where

the columns of P contain all distinct nonzero M-tuples of weight two and greater. The

M=2, or (3, 1), code can be 1-step orthogonalized according to Theorem 21. The M=3,

or (7, 4) code can be 2-step orthogonalized as we have shown. We now show by induction

that the Mth-order code can be (M-1)-step orthogonalized.

Suppose, first, that e appears in an odd number of the original M parity checks,

that is, that the first column of P has odd weight. Then let r i be the ith row of P, and

Yi be the sum of the remaining M-1 rows of P. i and r i both have "ones" in those
positions, and only those, corresponding to columns of P with even weight and a "one"

in the i t h row. Thus i and r i form a set of d -1 = 2 parity checks orthogonal on the

sum of the information noise bits in these positions. M such pairs of orthogonal parity

checks can be formed. The assumed known sums can then be used to eliminate all

"ones" from columns of even weight in P. The only nonzero columns are the original

set of 2
M - 1 - (M-1) - 1 columns of P with odd weight. Then by omitting the last row

and the all-zero columns, P is transformed into P' corresponding to the parity-check

matrix of the M-lth-order Hamming code. e is still checked by the modified parity-

check matrix, since its position corresponded to a column of P with odd weight.

Conversely, suppose that e appears in an even number of the original M parity

checks, that is, the first column of P has even weight. Consider now the set of M

assumed-known sums described in the preceding paragraph. These sums contain a

total of 2 M - 1 - 1 distinct noise bits, namely those information noise bits in positions

corresponding to columns of P with even weight. These sums, by themselves, corre-

spond to a modified parity-check matrix made up of all of the columns of even weight in

P. Omit any row of this matrix (unless there are only two modified parity checks on

el, in which case omit a row that does not check on el), that is, discard one of the sums.

The remaining M-1 sums then correspond to a modified parity-check matrix which is

that of an M-1 order Hamming code. The modified parity bits are the M-1 information

noise bits that were checked in the omitted row and only one other row.

After performing this process a total of M-3 times, we reach the parity matrix of

the third-order Hamming code, and e1 is still checked. This code can be 2-step

orthogonalized. Thus d-1 = 2 parity checks orthogonal on e can be formed after an

(M-l)-step orthogonalization procedure. (We have not proved that this is the minimum

number of steps required.) Clearly, the same argument applies as well to e 2, e3 , ... ek

and this proves the theorem.

7.4 BOSE-CHAUDHURI CODES

The Hamming codes can be considered as a special case of the more general class

of cyclic codes known as the Bose-Chaudhuri codes.l6 (These codes were discovered

independently by Hocquenghem. 3 9 ) Although we have been unable to prove that this

entire class of codes can be L-step orthogonalized, we have verified the fact that the

codes of length 15 or less can be so orthogonalized. There are four such codes. The
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(7, 4) and (15, 11) codes are Hamming codes and can be 2-step and 3-step orthogonalized,

respectively, according to Theorem 23. The (15, 7) code can be 1-step orthogonalized

as shown in section 6. 3. The remaining code, the (15, 5), d=7, code can be 2-step

orthogonalized, as we now show.

The (15,5), d=7, Bose-Chaudhuri code has the parity-check matrix H = [P:I], where

the rows of P are

1 0 1 0 1
-- 1 1 1 1 1

1 1 0 1 0
-01 1 011

- 0 0 1 i (191)
--0 1 1 [ 0

0 0 1 1 1

-0 1 0 1 1

corresponding to the information noise bits that are checked by parity checks s6 through

s15' respectively. For this code, d-1 = 6 parity checks orthogonal on e 2 + e3 can be

formed as shown in (191). Since the code is cyclic, d-1 = 6 parity checks orthogonal

on e3 + e4 and e4 + e5 can also be formed, and this is easily verified directly. Thus

we may assume that these sums are known and use them to eliminate variables in the

original parity-check equations. From these sums, any sum of an even number of the

variables e2 , e3 , e4 and e5 can be formed. This permits all other information bits to

be eliminated from the d-l1 = 6 parity checks in Eq. 191 which check on e. This

process transforms H into an H' from which six parity checks orthogonal on el can be

formed. Since the code is cyclic, the same procedure can be carried out for e2 , e 3 , e 4 ,

and e 5 . Hence, the code can be 2-step orthogonalized.

To illustrate how L-step orthogonalization can be instrumented, we show in Fig. 27

the combinatorial element that would be used in the cyclic Type I decoder for the

Bose-Chaudhuri (15,5) code. The remainder of the decoding circuit is the same as for the

cyclic Type I decoder described in section 6.3 for cyclic codes that can be one-step

o rthogonaliz ed.

The upper three majority elements in Fig. 27 are used to form the decoded

estimates of e2 + e3 , e 3 + e4 , and e4 + e 5 . These quantities are then treated as

additional parity checks and are combined with the original parity checks to

form a set of d- 1 = 6 parity checks orthogonal on e. These latter checks

are then operated on by the fourth majority element to produce the decoded

estimate of e. It should be observed that two levels of majority logic are

required in this combinatorial element. In general, with L-step orthogonal-

ization, L levels of threshold logic will be required. However, as explained
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in section 7. 2, no more than k majority elements are ever required in the combina-

torial element. Thus, a number of majority elements growing exponentially with

PARITY CHECKS s6 THROUGH s5

CORRESPOND TO ROWS 1 THROUGH 10

RESPECTIVELY IN Eq. 27.

s7 s10 8 s14 13 s15 6 s10 58

OUTPUT OF EACH MAJORITY

ELEMENT IS "ONE" WHEN FOUR

OR MORE INPUTS ARE "ONES".

511 s9 S15 6 s14 s7 Sll s9 s12

(e )*

Fig. 27. Combinatorial element of a Cyclic Type I decoder for the
(15, 5) Bose-Chaudhuri code.

L is not required, as would be the case when the L levels of majority elements

had the structure of a full tree.

7.5 NONAPPLICABILITY TO CONVOLUTIONAL CODES

At first glance, it might appear that the L-step orthogonalization procedure could

be used to enlarge the class of convolutional codes that can be threshold-decoded

efficiently. Such is not the case as we now show, at least for the important cases for

which the rate is one over an integer, that is, R = 1/n o .

The parity-check matrix, [HA:I ] for an R = 1/n o convolutional code (cf. section 3. 3)

is such that the rows of HA are given by
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g (2)

(2) (2)
8g go

(2) g1(2) go(2)
82 gi go

(2) (2) (2) (2)
gm ... g2 1 g0

(192)

s (no )
0

gl(n o)(n o )

(n) (n) (no )

gm(no).. g2 (no)gl(no'go(no)

Here, the g's. are the coefficients in the (n-l1) code-generating polynomials. Now

suppose that it is possible to construct a set of J parity checks orthogonal on some sum
(1) (1) (1)of information noise bits, say on ea (1) + e (1) + ... + e (1) This means that it is

possible to find J subsets of the rows of H such that the sum of the rows in each subset

has a "one" in each of the j positions corresponding to the information noise bits

e (), ea (), . . e (), but any other position has a "one" in at most one of the J
a1 62 2j

sums of rows. Assume that al < a 2 < ... < a,. Now consider discarding all of the left-
1 3 (1)

most columns of HiA up to the column corresponding to e . The rows of this modified

3 (1)
matrix could then be combined to produce a set of J parity checks orthogonal on e

a
But, because of the symmetry of each parity triangle, the array of coefficients in this

modified matrix is exactly the same as for the matrix formed from HA by discarding

the same number of rows at the bottom of each parity triangle as columns that were

discarded in the previous construction. It must then be possible to construct J parity

checks orthogonal on eo(l) directly from these rows of HA.

In other words, it is always possible to form directly as many parity checks

orthogonal on e (1) as can be formed on any sum of information noise bits. Thus, if

L-step orthogonalization is possible, one-step, or complete, orthogonalization is also

possible. Hence there is no advantage in the more general orthogonalization procedure

for convolutional codes with rate R = 1/n o .

7.6 SUMMARY

By extending the manner in which orthogonalization of parity checks is performed,

we have seen that it is possible to apply threshold decoding in an efficient manner to at
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least one high-rate class of codes, as well as to low-rate codes. We have called this

generalized procedure L-step orthogonalization.

The ultimate capability of L-step orthogonalization has not yet been determined,

but the results obtained thus far have been most encouraging. We have not yet investi-

· gated a block (n, k) code for which it could be shown that L-step orthogonalization is

impossible. Unfortunately, this may be due to the fact that the codes that we have

studied were necessarily of short length, rather than to the generality of the method.

Although the circuitry required to implement threshold decoding with L-step

orthogonalization is more complex than that required when one-step orthogonalization

is possible, the circuits are still simple enough to be of practical interest (especially in

the case of cyclic codes). The set of n-k parity checks can always be formed by a replica

of the encoding circuit (cf. section 2. 6). These parity checks can then be considered as

the inputs to a combinatorial network having k outputs, namely el, e 2, ... ek, the

decoded estimates of the information noise bits. These quantities can then be added

(modulo-two) to the received information bits to form the decoder output.

If the code can be L-step orthogonalized, the complete combinatorial network need

contain no more than k threshold elements and at most (d)(k) modulo-two adders, as

can be seen in the following way. From section 7. 2, we conclude that no more than k

threshold elements are needed. Enough adders are needed to form the set of orthogonal

parity checks for each threshold element, and to combine the output of these devices to

form the decoded estimates of the k information noise bits. Since no more than d-l

inputs are required for each of the threshold elements in order to be able to correct

any combination of Id-1 or fewer errors, no more than a total of k(d-l) adders will be

required to form these inputs. Since the decoded estimate of each of the k information

noise bits is the sum of the outputs of some set of the threshold elements, one adder

suffices for the formation of each of these quantities. Thus a total of (d-l)k + k = dk

adders always suffices in the complete combinatorial network.
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VIII. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

8.1 SUMMARY OF RESEARCH

In Section II we reviewed the properties of convolutional codes and proved some

generalizations of known results for this class of codes. With this exception, allof this

report has been devoted to the investigation of a decoding procedure for linear codes,

which we have called " threshold decoding."

In Section I, two forms of threshold decoding were formulated: majority decoding,

and APP decoding. These are both methods by which some noise bit, say em, can be

estimated from a set of parity checks orthogonal on that noise bit. The majority decoding

rule is based entirely on minimum distance, that is, it assigns to em the value that it

has in the noise pattern of minimum weight that satisfies the set of orthogonal parity

checks. The APP decoding rule, on the other hand, is based on a probability metric,

that is, it assigns to em the value that is most probable, given the particular values

of the orthogonal parity checks. Although these decoding rules are ordinarily distinct,

we have seen (Sec. 5. c) that majority decoding can be considered as the limiting case

of APP decoding when the channel is estimated to have vanishingly small error proba-

bility.

In Sections III, IV, and V threshold decoding was applied to the specific task of

decoding convolutional codes. First, it was necessary to construct codes to which the

threshold decoding rules could be efficiently applied. Bounds on code quality were

formulated to guide this search. Actual codes were then constructed both by trial-and-

error and analytical techniques. This research is reported in Section III. In Section IV,

simple decoding circuits were developed for the implementation of threshold decoding

with convolutional codes. Finally, in Section V, data on error probability for thres-

hold decoding of convolutional codes were presented for the binary symmetric channel,

the binary erasure channel, and the Gaussian channel. This concluded the treatment

of convolutional codes.

The application of threshold decoding to block linear codes was studied in

Sections VI and VII. In Section VI we saw that the basic threshold decoding algo-

rithms could be applied efficiently only to a small number of interesting block codes.

To obviate this difficulty, a more general procedure for forming sets of orthogonal

parity checks was introduced in Section VII. This generalization permitted efficient

decoding of a somewhat larger class of block codes by the iterating of threshold-

decoding decisions.

8.2 CONCLUSIONS

Based on the research reported in this report, the following conclusions with regard

to threshold decoding can be stated:
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a. Convolutional Codes

(i) Threshold decoding is easily instrumented (when applicable)

The decoding circuit need contain only nA-no stages of shift register, which appears
to be the minimum one can hope to achieve in a reasonable decoding network. More-

over, the only nonlinear elements in the decoding circuit are of a very simple type,

namely threshold logical elements. Even the necessary circuitry to compute the time-

variant weighting factors (when applicable) for the threshold elements is not prohibi-

tively complex.

(ii) Decoding performance is satisfactory for codes up to 100 bits in length

For very low rate codes (cf. secs. 3.6 and 3. 7) good error-correcting performance

can be obtained for long codes. However, over the range of rates of most practical

interest at present, good error-correcting performance is limited to codes of approx-

imately 100 transmitted bits in length. For such codes, the error probabilities that

can be attained by threshold decoding are competitive with those obtained by other known

error-correcting means.

(iii) The error probability cannot be made arbitrarily small at the receiver for a

fixed rate of data transmission

This negative result establishes the lack of generality of threshold decoding for

convolutional codes. We were able to show rigorously that this negative result obtains
1for the case R = 2, but it seems plausible that it also applies to all other rates. In

particular, for both the binary symmetric channel and the binary erasure channel, we

have demonstrated the impossibility of making the decoding error probability arbitrarily

small when R = 12'

b. Block Codes

(i) Threshold decoding is easily instrumented (when applicable)

No more than k threshold logical elements are required in the complete decoding

circuit for a block (n, k) code. The remainder of the decoding circuit contains a

modest amount of linear components, namely a replica of the encoding circuit and

no more than (k)(d) modulo-two adders, where d is the minimum distance of the

· code. In the important special case for cyclic codes, even simpler decoding circuits

are possible.

(ii) Several interesting classes of codes can be efficiently decoded

The maximal-length codes, the first-order Reed-Muller codes, and the Hamming

codes can all be L-step orthogonalized. This means that for these codes any error

pattern of weight Ld- or less is correctable by majority decoding. It was shown in
Sections VI and VII that several isolated, but interesting, codes could also be L-step
orthogonalized.
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c. General Remark

(i) Threshold decoding is limited primarily to binary codes

In section 6. 2 we saw that the manner in which orthogonal parity checks are formed

from the original parity checks of the code is such that full advantage cannot be taken of

the higher-order, or nonbinary, alphabets.

(ii) Error-correction is not completely restricted by the minimum distance of the

code

In general, the threshold-decoding algorithms permit the correction of many error

patterns of weight greater than [d21. This is a very important feature in low-rate

codes.

(iii) Error-correction can be improved when the a posteriori error probabilities of

the received bits are known

In contrast to purely algebraic decoding procedures, the APP decoding rule makes

use of the a posteriori probabilities of the received bits to decrease the probability of a

decoding error. This feature of threshold decoding can be expected to be of special

importance when decoding for a fading channel. This feature of threshold decoding is

similar to that for Gallager' s low-density parity-check decoding, which is also a com-

posite of algebraic and probabilistic techniques. 8

8.3 RECOMMENDATIONS FOR FURTHER RESEARCH

Further research in continuation of that reported here is especially recommended

in the following areas:

(i) Construction of good systematic classes of convolutional codes for random-error

correction

40
Aside from certain classes of codes constructed for burst-error correction, the

only systematic classes of convolutional codes known are the uniform codes and the

Reed-Muller-like codes that were found in the research for this report. Unfortunately,

these are both classes of low-rate codes. It would be desirable to have several classes

of good codes that might be used with threshold decoding (or other decoding algorithms).

(ii) Investigation of error-propagation with convolutional codes

It does not seem worth while to expend additional effort on the study of the general

properties of threshold decoding with convolutional codes. The essential features are

quite clear from Theorems 10-12. Similarly, it does not seem likely that simpler

decoding circuits can be found. On the other hand, certain other features warrant

additional research, and chief among these is the question of error propagation.

Two methods of controlling error propagation, resynchronization and error counting,

were discussed in section 3. 1. There is also a third possibility, automatic recovery by
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the decoder after a short burst of erroneously decoded symbols. This automatic recov-

ery seems to be possible with sequential decoding, at least at high rates. 41 42 However,

the large increase in decoding computations which accompanies a decoding error with

sequential decoding limits the practical use of automatic recovery to combat error pro-

pagation. However, threshold decoding does not share this limitation, since the com-

putation effort is always fixed. It seems advisable to make a simulation study by using
1a fairly long code (e.g., the nA = 104, R =-2 code of Table II) to determine whether

automatic recovery from an error is possible. If so, then an analytic effort would be

in order to prove that the burst of erroneous symbols has some small average length.

(iii) Study of other nonlinear functions for use in decoding convolutional codes

Any combinatorial element which can form the decoded estimate of e (1 ) can be used
o

as the decision element in the Type I decoder of Fig. 11, by replacing the threshold

element and its associated adders. It might be possible to find other simple nonlinear

functions that could be used to decode certain classes of convolutional codes efficiently,

but this will doubtless be a very difficult area for research.

(iv) Investigation of the generality of L-step orthogonalization for block linear codes

This is the most important area for additional research. Theorems 21 and 23 sug-

gest the possibility of a general theorem of the nature that " any binary code of length

2M-1 or less can be (M-l)-step orthogonalized." Such a result, if it were true, would

be extremely important. It would mean that any block code could be decoded at least up

to its minimum distance, that is, correction of any error pattern of weight Ld-- -I or less,

in one operation by a combinatorial circuit consisting of no more than k threshold ele-

ments, an encoder, and no more than (k)(d) modulo-two adders. Research to prove this

conjecture, or to provide a counterexample, could be of considerable value.
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APPENDIX A

BASIC DEFINITIONS AND PROPERTIES OF MODERN ALGEBRA

An Abelian group is a set of elements and a rule of composition (which we write

here as addition) such that for any three elements a, b, and c in the set the following

axioms are satisfied: (1) a + b is in the set. (2) (a+b) + c = a + (b+c). (3) There is

a unique element, 0, in the set which is such that a + 0 = a. (4) There is a unique ele-

ment, -a, in the set which is such that a + (-a) = 0. (5) a + b = b + a. We shall use

the term "group" to mean always an Abelian group.

A subgroup is a subset of the elements of a group which itself forms a group with

respect to the same rule of composition.

If H is a subgroup of a group G, and if a is any element of G, then the coset con-

taining a modulo H is the set of all elements b of G so that a - b is in the subgroup H.

The coset containing 0 is the subgroup itself. Any other coset will be called a proper

coset.

A ring is an additive Abelian group for which a second rule of composition (which

we write as multiplication) is defined in such a way that for any elements a, b, and c

of the group, the following axioms are satisfied: (1) ab is in the group. (2) a(bc) =

(ab)c. (3) a(b+c) = ab + ac. (4) (b+c)a = ba + ca. The ring is commutative if ab = ba.

A field is a ring in which the nonzero elements form an Abelian group with respect

to multiplication. For q = p , where p is any prime number, it can be shown that there

exists a field containing q elements. This field is called the Galois field of q elements

and is denoted by GF(q).

The set of all polynomials in a single indeterminant, D, and with coefficients in

GF(q) forms a commutative ring called the ring of polynomials with coefficients inGF(q).

The ideal generated by a polynomial f(D) is the set of all polynomials of the form

h(D)f(D), where h(D) is any polynomial.

The residue class containing g(D) modulo the ideal generated by f(D) is the set of

all polynomials h(D) such that g(D) - h(D) is in the ideal.

The set of residue classes modulo the ideal generated by f(D) form a ring called the

residue-class ring modulo the ideal. (This property implies that the sum, or product,

of polynomials from two residue classes is always in the same third residue class re-

gardless of the particular choice of those polynomials.

(The definitions and properties given here can be found in any text on modern algebra

such as Garrett Birkhoff and Saunders MacLane, A Survey of Modern Algebra,

Macmillan Company, New York, 1941.)
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APPENDIX B

PROOF OF THEOREM 8 (RANDOM-CODING BOUND)

A group partition of an (n,k) code was defined in section 2.5 as a mapping of the code

words into a subgroup H' and its proper cosets C', CI , ... C corresponding to a

mapping of the set of 2k information sequences into a subgroup H and its proper cosets

C1, C2' ... CN' We assume the existence of an ensemble of (n, k) codes in which each

information sequence in a proper coset has probability 2- (nk) of being assigned any

of the 2n - k possible parity sequences.

Let I be any information sequence. A code word with this information sequence

will be denoted I. Suppose that a particular code is used over a binary symmetric

channel with transition probability po < 1/2. Then, given a received sequence R', the

probability P(I' | R') that I was transmitted is
J 00 J

P(I]I R') = Po qo v(B-)

where w is the number of positions in which I and R' differ. The maximum likelihood

rule is to choose that I as the transmitted information sequence for which the probability

P(IjI R') is greatest. Since the probability in Eq. B-1 decreases monotonically with w,

the maximum likelihood rule reduces to choosing that I as the transmitted sequence

for which I and R' differ in the fewest positions.

We shall now calculate P(e), the average probability of error in deciding to which

coset the transmitted information sequence belongs, with maximum likelihood decoding

assumed. Because the set of distances from any code word to the code words in all other

cosets is just equal to the set of weights of the code words in the proper cosets, without

loss of generality we may assume that the all-zero sequence, Io , was transmitted.

Let I be any information sequence in a proper coset, and assume that a noise pattern

of weight W' has occurred on the channel. Let Wj be the number of information positions

in the noise pattern that differ from Ij, and let Wt be the total number of positions in
, 3J

which I differs from the noise pattern. Since the all-zero sequence was transmitted,
J

the received sequence differs from the transmitted sequence in W' positions. Over

the ensemble of codes, the probability P(Wj_.W') that I' is closer to the received se-

quence than is I is given by

W'-W.

P(wjW') = 2 -(n-k) C (n-i) (B-2)

i=O

as can be seen from the fact that the summation gives the total number of parity se-

quences that, when attached to I, form code words differing in W' or fewer positions

from the noise pattern, and each of these parity sequences has probability 2 - (n-k) by

assumption.

The probability of error P(e I W'), given that the noise pattern has weight W', is the

probability that some code word in a proper coset has W3 less than or equal to W', and
J
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this probability is overbounded by the sum of the probabilities that each W' is less than
J

or equal to W'.

P(e I W') 

all W. in the
J

proper cosets

W'-W.

2 -(n-k) (n-k)
i=O

(B-3) -,

The right-hand side is overbounded by summing over all possible Wj,

k

P(e I W')2 k n k'.n-)
W.=O J

J

W'-W. W

(nk) = 2-(n-k) ( ).

i=O i=0

(B-4)

Also, P(e W') is always overbounded by unity, since it is a probability. Thus, the

average probability of error P(e), which is given by

P(e) = I P(W')P(e| W') = (W ) p q P(e W,')

all W' W'=O

can be overbounded as

n W'

(e) ( W ) o n-W min-I , 2-(n-k) n)]

W'=O i=O

(B-5)

(B-6)

Inequality (B-6) is the usual form of the random-coding bound.

Several authorsl' 3 4 have derived asymptotic bounds on (B-6). The tightest such

bounds are those given by Wozencraft, 6and we shall now state his results without proof.

The bounds are stated in terms of the parameters Pt' Pcrit' and Rcrit' where

R = 1 - H(pt),

Pcrit

1 - Pcrit

(B-7)

(B-8)
Po

Rcrit = 1 - H( crit).

With this notation, (B-6) can be expressed in asymptotic form as

-nE . -nE
P(e) < A - crit + nEt R

crit tcrit'

(B-9)

(B-10)

-nEt
P(e) < (Ar+At)2 Rcrit R < C = 1 - H(Po),
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where

Ecrit = H(p ) + H(Pt) - ZH(Pcrit ) + (Pcri log (qo/p), (B-l Z)

Et = H(Po) - H(Pt) + (pt-Po) log Z (qo/Po), (B-13)

1 PoqtA = (B- 14)
t 42trnpt - P o

I PtA =1 t (B-15)
crit - t/q crit q crit

and

A= (B-16)
r (p 1 -t) ((q/Po)(pt/qt) 2 ZmnPtqt

The first derivation of asymptotic forms for (B-6) was given by Elias 3 who showed

that the exponent in (B-ll) was the same as the exponent in the lower bound on P(e) ob-

tained by "sphere-packing" arguments. This exponent can be obtained geometrically

by the construction shown in Fig. B-1. In this figure, Pcrit is that value for which the

P Pt

6 ,1 I H(x) = -xog2x- (-x) 1og2(1-x)
.8 I - E_--- t
.6 

.4 

.2 i Prit

0
0 .1 .2 .3 .4 .5

x

Fig. B-i. Geometric interpretation of exponent in expression for P(e).

tangent to the entropy curve has a slope that is one-half that at p. Elias 3 credits

Shannon with this interesting geometric interpretation of the exponent in the expression

for P(e).
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APPENDIX C

PROOF OF THEOREMS 10 AND 11

1. Proof of Theorem 10
I

Consider the parity-check matrix [HA:I] of a rate R = /n o convolutional code. HA

consists of a column of no - 1 parity triangles each of which corresponds to one of the

code-generating polynomials. We have

HA =

(2)
0
( 2)

1
(2)
0 0

(2) (2)
1 go

(n )
go

(n0) (n0)
go oo

0 0

(n) (n) (n)
% I 0~o

(C -1)

Suppose, for example, that g (2), g (2 ), .. ga( 2 ) are all of the nonzero coefficients
(2) a, a2 N

of G (D) in increasing order. Then from Eq. C-1 it can be seen that the parity checks

(1) (2) (2) (2)
in the first parity triangle which check on e) are s(, s , ... s2) and these parity

checks acheck on the following noise bits:
checks check on the following noise bits:

checks on

checks on

e( 1) e (2)
o a1

e(), e (1) e (2)
o a2-a1 a2 (C-2) 0

e(1) e (1)
o aN-aN_ 1

e (1) e (2)
aNia 1 aN

The manner in which the information noise bits enter into these parity checks can be

interpreted geometrically as shown in Fig. C-1. In Fig. C-1 a l , a 2, and a 3 represent

the first three nonzero terms in G(2)(D). X and Y correspond to the information

positions, excluding the first position which corresponds to el), that are checked by
O
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s (2)
a 2

s (2)
aN

checks on
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s (2) We observe that by choosing a 3 sufficiently large the noise bit corresponding
a 3

to X can be made to have as large a subscript as desired, and all of the other noise

bits checked will have larger subscripts.

a N

a2 Oc--
\ \ Fig. C-1. Geometric interpretation of

X\ \\ parity-check structure.

a3 o-- --. --
\ X \Y\

From (C-2), we see that the it h parity check on e( 1 ) in each parity triangle checks

a total of i noise bits with e0o) excluded; thus a total of

N N(N+1 )

L i= 2 (C-3)
i=l

noise bits are checked by the parity checks on e 1 ) in a parity triangle corresponding
o

to a code-generating polynomial with N nonzero coefficients.

The construction of J parity checks orthogonal on e 1 ) can proceed in the following
(n o )

manner. One nonzero term at a time is placed into G(2)(D), G(3)(D), ... G (D), in

that order, until a total of J nonzero terms have been so placed. The jth term is placed

into G(i)(D) in such a way that the lowest order information noise bit checked by s (i),

(1) ainamely ea(1) , has subscript one greater than any information noise bit that is checked
aj-lj_ 1

by any of the parity checks already formed that check e ). This can always be done as
0 (1)

explained above. In this manner, the set of J parity checks formed that check on e )

consititute a set of J parity checks orthogonal on e (O) .
0

The effective constraint length, nE, is one plus the number of noise bits with e 1

(1)excluded that are checked by these parity checks on e 1 ) . Leto

J = Q(no-1) + r 0 - r < n - 1. (C-4)

Then there are Q + 1 parity checks on e 1 ) in each of the first r parity triangles, after

our construction, and Q in each of the last no - 1 - r parity triangles. Thus, using

(C-3), we find that the effective constraint length is given by

(Q+1)(Q+2) (Q)(Q+1 )
nE- 1 = (r) 2 + (no-l-r) 2(C-5)

Finally, using (C-4) and the fact that R = 1/no , we can reduce (C-5) to
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nE = 2 R + 1- + 2 1 r [-rRl

which is the statement of the theorem.

2. Proof of Theorem 11

(C -6)

For the case R = ko/n o , we seek a construction that will produce J parity checks

orthogonal on e(J) for j = 1, 2, ... k . For this case, the parity-check matrix [HA:I]

is such that HA consists of an (no-ko)xko array

code-generating polynomials, as shown in Fig.

of parity triangles, one for each of the

C-2. The construction technique is very

-kk .,k

nO- i X 

I l h ; - J

Fig. C-2. Arrangement of parity triangles in H.

similar to that described above. Again, we shall place one nonzero term at a time into

each of the code-generating polynomials, following the order shown in Fig. C-2, until

J parity checks on e (j have been formed for j = 1, 2, ... k. The manner of choosing
0 (j) O

terms will be such that each of these sets of J parity checks is orthogonal on e j for

j = 1, 2, ... k.

The manner in which the information noise bits enter into a parity check on e ( ) can
0

be shown geometrically as in Fig. C-3. To be specific, we have drawn Fig. C-3 to cor-

a \

Q \

X1\ Y X Y X X4\o\, 2 \ \ 3

Fig. C-3. Geometric interpretation of parity-check structure.

respond to the case in which the second nonzero term is placed in the third parity tri-

angle in some row of Fig. C-2 for a code with k o = 4. This forms a parity check on
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e( 3 ) and the information noise bits corresponding to positions X1 , Y1 , X2 , Y2, X3 and

X4 . In addition, a single parity noise bit is also checked, namely sa Clearly, by
2

choosing a large enough, all of the information noise bits checked by this parity check,
(3)

with e 3 ) excluded, can be made to have subscripts greater than any that appears in the

parity checks already formed on e 3 ). Thus, by proceeding in this way, the J parity
0

checks formed on e ) for j = 1, 2, ... k are orthogonal on e Clearly, from Fig. C-3,
(ko)

the set of parity checks on e will check the greatest number of other noise bits. By

definition, nE is one plus this number.

If we let

J = Q(no-k o ) + r 0 r <n o - ko (C-7)

(ko)
then our construction places Q + 1 parity checks on e in each of the first r rows

(ko) 0
of parity triangles, and Q parity checks on e 0 in each of the last n - k - r rows.

.th (k o)From Fig. C-3, we see that the i parity check on e in any parity triangle will check
(ko) 

exactly koi noise bits, exclusive of e ° . Thus, using Eq. C-3, we find that

nE- 1 = k °
(Q + 1) (Q + 2 ) Q(Q+I)t lnE- = k -1 2 + (no-ko-r) 2 (C-8)

Finally, using the fact that R = ko/n 0 and using Eq. C-7, we can reduce Eq. C-8 to

nE = J i 2 R + k +1 + r (C-9)nE J 1 - R o 2 +- 0-kirR

which is the statement of the theorem.

9 m
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APPENDIX D

PROOF OF THEOREM 21

1. Preliminary Considerations

It will be convenient to represent the parity-check matrix, H = [P: I], of a block

(n, k) code in the following form:

P = [hlh2 ... hk], (D-1)

where h, h, ... hk are column vectors of dimension n - k. We use the notation IIhj II
to denote the weight of hj, and we write hj @ h i to denote the vector formed by adding

the components of hj and hi mod-two.

The two following lemmas will be needed in the proof of the main theorem.

LEMMA D. 1: Given a block (n, k) code with minimum distance d, then

1 ha E h ... ha N > d - N (D-2)

for any distinct indices al, a 2, ... aN in the set 1, 2, ... k.

This is a well-known result and states simply that the sum of any N columns of P

must have weight at least d - N. The proof is very similar to that used for the corre-

sponding result with convolutional codes (cf. proof of Theorem 11) and will be omitted

here.

We shall write hlh2 ... h i to mean the vector inner product of h1, h2, ... h i , that

.th .th
is, the vector whose j component is the product of the j components of h i , h 2 , ... h i.

With this notation, we have the following lemma.

LEMMA D. 2:
N

1Ieh 2( ... hN11 = , 2ii- h ha .. h . (D -3)
j=1 all distinct 2

sets of indices
al<a2<. ..aj

PROOF D. 2: Since this result does not appear to be generally known, we shall give

a proof. Clearly, it suffices to prove that (D-3) holds for the mod-two sum of the binary

scalars b, b2 , ... bN.

For N=2, Eq. D-3 gives

b l (D b2 = b I + b2 - 2blb 2 (D-4),

Here, we use 0 to indicate mod-two addition and "+" (and Z) to indicate ordinary real

number addition. Equation D-4 is readily verified by testing all four possible values

of b 1 b 2.

We now assume that the lemma holds for N = M, and we wish to show that it holds

also for N = M + 1. Using the associative law, we have
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b 1 b 2 ... bM+ 1 = (bl ... b bM ) bM+1 .

Applying (D-4) to the two terms on the right of (D-5), we obtain

b1 ... bM+l = (b 1 ... b M ) +bM+1 - M+ 1 (b 1 ... bM). (D-6)

Using the inductive assumption, we can write Eq. D-6 as

M

b b j- ~b~l=Z1 b bbM+ = L (- 2 ) E Jal2 b a
j=1 distinct

indices

M

+ bM+ + (- )bM+1 E (-2)j- b lb ... b. (D-7)

j= 1 distinct 1 2
indices

But Eq. D-7 is the same as

M+1

b1 ... ( bM+,, = (-2)j- 1 balba2 ... ba (D-8)
j= 1 distinct

indices

which is the statement of the lemma. By induction, the lemma is true for all M.

2. Proof of Theorem 21

We wish to prove that when k is 3 or less, any block (n, k) code can be completely

orthogonalized, that is, d- 1 parity checks orthogonal on e can be formed for

j = 1, 2, ... k. We shall prove this result by showing that when k is three or less the

necessary conditions for minimum distance d coincide with the sufficient conditions

for complete orthogonalization. (At this point, we observe from (D-1) that Ilhl 11 is the

number of parity checks that check e l , 11h1 I - 11hlh 2 11 is the number of parity checks

that check on e but not on e 2, etc.)

Case 1: k = 1, H = [hl:I].

A sufficient condition for d - 1 parity checks orthogonal on e is

., Ih 1 > d- 1. (D-9)

Whereas, from Lemma D. 1, a necessary condition for minimum distance d is

[[h 1 > d - 1 (D-10)

and this coincides with the sufficient condition for complete orthogonalization.

Case 2: k = 2, H = [hlh2 :I] .

If e 2 appears alone in enough parity checks to eliminate e 2 from all but at most

one of the parity checks in which it appears with e, then the case reduces to the
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previous case. Otherwise, at least as many parity checks orthogonal on el can be

formed as there are checks on e alone (that is, no other information noise bits) plus

checks on e 2 alone plus one. Thus a sufficient condition for d - 1 checks orthogonal

on e is

(i 11h 1- 11hIhz211) + ( Ilh 2 ll-llhlh2zll-1) d - 1 (D-11)

or

IIhlhl + h2 1 h d - 2. (D-12)

By symmetry, (D-1Z) is also a sufficient condition for d - 1 parity checks orthogonal

on e2 , and hence is a sufficient condition for complete orthogonalization. Applying

Lemma D. 1 to the first two columns of H and with the aid of Lemma D. 2, we find that

(D-12) is also a necessary condition for minimum distance d.

Case 3: k = 3, H = [hlhZh 3:I].

If the number of parity checks on e 2 and e 3 alone is no greater than the number

on e and e2 and e 3, then this case reduces to the previous case. Otherwise, at least

as many parity checks orthogonal on e can be formed as there are checks on e alone

plus checks on e 2 alone plus one plus checks on e3 alone plus one plus checks on el

and e 2 and e 3. This follows from the fact that when the latter condition is satisfied,

there are enough checks on e 2 and e 3 to eliminate these variables from all of the

parity checks on e and e 2 and e 3 , and from the fact that e 2, as well as e 3, can

appear in one of the parity checks on e after orthogonalization. Thus, a sufficient

condition for d - 1 parity checks orthogonal on e is

(11h1II - Ihlh 2 II- 11hlh311 + lhlh2h3 11) + (11h2 II- 1hlh 211 - 1h2h 3 + lhlhzh3 11 + 1)

+ (11h3 11 - hlh 3 11 - IIh2h 3 II + Ih l h2 h 3 11 + 1) + 11hlh 2h 3 11 >-d - 1 (D-13)

or

Ilh1 II + 11 h21 + 11h3 11 - 2 (Ihlh2 10 + 11hlh 3 11 + 11h2h3 11) + 4 11 hlh 2h 3 11 > d - 3.

(D-14)

Again, by symmetry, (D-14) is also a sufficient condition for d- 1 parity checks

orthogonal on e 2 or e 3 , and hence is a sufficient condition for complete orthogonal-

ization. Applying Lemmas D. 1 and D. 2 to the first three columns of H, we find that

(D-14) is also a necessary condition for minimum distance d.

This proves the theorem.
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