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Abstract

An investigation of frequency-compressive feedback FM systems has been made,
with emphasis placed on threshold behavior.

In Part A, following a survey of the existing noise analysis of FM systems, use is
made of a recent evaluation of the impulsive noise component which is due to Rice. It
is shown that this excess-noise component predominates in the threshold region of most
conventional FM systems. A new analytical expression (which agrees with experimental
evidence) has been found for the location of the noise threshold.

In Part B, two possible mechanisms causing noise threshold in a feedback FM sys-
tem are examined. It is shown that the feedback threshold results in an abrupt break-
down of system performance, and therefore should not be approached too closely. It
is therefore recommended that feedback systems be designed with the conventional
threshold predominant. In this case, the analysis of feedback systems approaches that
of conventional systems. Some modified formulas for feedback FM system performance
at threshold are proposed; new bounds on the performance of the systems with optimum
feedback filters are derived. The maximum obtainable threshold power-bandwidth trade-
off implied thereby is also determined. Experimental results with certain feedback FM
configurations are reported. The experimental investigation verifies some synthesis
rules and certain of the analytical results, but some aspects of the system threshold
behavior still require further investigation.
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PART A: CONVENTIONAL FM SYSTEMS

1. Noise Performance

Ultimate limitations in the performance of communication systems are imposed by

random noise at the receiving end. In the first part of this report we shall present an

analysis of conventional FM systems disturbed by additive fluctuation noise. In the sec-

ond part, we consider the frequency-compressive feedback case.

In order to analyze an FM system, we shall use an idealized mathematical model.

The model (Fig. 1) consists of a symmetrical narrow-bandpass filter, an ideal broad-

band limiter with zonal filter, and an ideal frequency detector that operates in quasi-

stationary fashion and is followed by a lowpass filter.

Under certain plausible assumptions2 the input noise can be considered to be

derived from a white Gaussian noise source, and the input to our frequency demodulator

to be the sum of an FM signal and narrow-band Gaussian noise. The analysis is then

reduced to differentiation in time of the phase angle of the composite wave.

After the detector output wave has been expressed as an implicit time function, the

Fourier transform of its correlation function yields the spectrum of the demodulated

noise. A straightforward filtering operation then gives the output spectrum and the total

output noise power.

A great deal of information has resulted from analyses of this sort by Rice, 3

Stumpers,4 and Wang 5 with regard to the rectangular and normal-law bandpass filter

cases. Extended analysis by Middleton 6 - 8 has also covered more general cases of

nonideal amplitude limiting and several different filter structures.

The nonlinear interaction between signal message and noise has been carefully inves-

tigated, in this same way, but leads to prohibitively complicated mathematical expres-

sions. Some important cases have been evaluated by numerical computation and shown

in graphs of input-output relations. 4 '7 ' 8 The analysis of limiting cases has always been

quite well advanced; thus a general picture of the whole area emerges as a composite of

several different regions, each characterized by different components of output noise.

For this reason, different definitions of the noise threshold are also possible. 2'9

Early attempts to translate the analysis into system-oriented signal-to-noise ratio

formulas and charts 7 ' 1 0 were adequate to meet some needs of conventional FM

SIGNAL FREQUENCY DEMODULATOR
e.i

INP

NOISE n (t)

Fig. 1. Model of the FM receiving system.
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engineering until the advent of feedback FM systems. New problems are now arising

from new system principles and, thanks to phenomenological investigations, more insight

into the physical character of output noise has been gained. Therefore a strong trend

toward modifying the conventional (correlation function) analytic approach - which is

more suitable for linear-modulation systems - parallels the research on hitherto unex-

plored (or unsatisfactorily explored) areas. As a result, important new contributions

that are concerned with the structure of the nonlinearly processed noise are beginning

to appear.

In this report, we shall first survey and explore certain new results of an analysis

which facilitate the resolution of output noise into different components. Looking upon

the input-output relations in an additively disturbed FM system, we propose consider-

ation of the following regions of interest (Fig. 2):

(a) Strong carrier, weak noise: The output noise is nearly Gaussian, and linear

superposition with message holds. This is the only region of unrestricted practical

usefulness.

(b) Region of noise threshold: Two sharply rising components (quasi-Gaussian and

impulsive) of output noise are superimposed on the output signal. Practical interest is

confined to the boundary between regions 1 and 2.

Below the threshold, superposition does not hold any more; a pronounced fall in out-

put signal power occurs until the message is fully captured by the disturbance. The

well-defined limiting case of noise alone (no carrier) is sometimes used as a reference

point (cf. the noise-quieting sensitivity).

For the model considered above, the input carrier-to-noise power ratio (CNR) is

the only major parameter influencing the system performance. Conventionally, the

latter has been expressed in terms of the output signal-to-noise power ratio (SNR). But

it does not seem meaningful to cover both regions of interest with this single measure

of performance.

w
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INPUT CARRIER-TO-NOISE POWER

RATIO [db]

Fig. 2. Input-output relation in an FM system.

2

___I�_



Additional hazard is also involved in plotting the signal-to-noise ratio over a wide

range of variables, when the available numerical results are, in fact, limited to small

ranges of values. For example, exploiting the analysis and computations by Rice, 3

Skinner in an unpublished memorandum 10 aimed at graphical presentation of the system

performance over a wide range of CNR. Unfortunately, his plot was obtained by fairing

together the different available graphs for fragments of the individual regions. In the

important region of threshold, the necessary accuracy was missing. As a result, the

threshold curve derived therefrom by Replogle 1 is far from accurate and can be mis-

leading, as we shall see in Fig. 5.

This report will, in general, be confined to the analysis of regions 1 and 2 described

above, both of which are characterized by the absence of first-order interaction between

noise and signal. After recapitulation of known data, some extension of the existing

noise analysis will be presented. The effective disturbance in these regions can be

attributed to an additive noise rather than involving nonlinear distortion of the message

also.

2. Simplified Analysis of the Strong-Carrier Case

Consider our idealized FM system in Fig. 1 to be disturbed by white Gaussian noise

with spectral power density equal to N so that, after bandpass filtering, narrow-band

Gaussian noise of the form

n(t) = nc(t) cos wct - ns(t) sin Oct (1)

enters the frequency demodulator. The FM signal at the same point may be expressed

as

e(t) =Q cos [ct + (t)] (2)

where the carrier amplitude Q and the carrier frequency oc = 2Zfc are constants. The

message is bandlimited and is contained in the time derivative of the signal phase

angle, ' (t).

Assuming that the filtered noise is weak relative to the carrier, and denoting the

demodulator input sum as

e(t) + n(t) = V(t) cos [ct + (t) + e(t)], (3)

we are interested first in determining the additive disturbance 0'(t) at the output of the

demodulator. Assume that part of the output filter suffices to pass all the message, but

sharply cuts off the higher frequency components of 8'(t), in order to improve the out-

put SNR. We shall evaluate the effect of this filtering in terms of output noise spectrum

and power.

Let us further denote the (positive frequency) power density spectrum of the I-F

noise by w(f) which (within a multiplicative constant) equals the squared magnitude

response of the bandpass filter. With the demodulator input average CNR denoted by r,

3
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we have the obvious relation

Q2/2 Q2
r = _ - (4)

z(t) z JO w(f) df
n t)

which holds with arbitrary modulation (and also for O = 0).

We first state that region 1 is characterized by r >> 1 so that the noise magnitude

Fig. 3. Phase relations between carrier and
inS noise.

In(t) is nearly always much smaller than Q. In the simplest case of an unmodulated

carrier, the input signal and noise combine as visualized in Fig. 3, and we easily find

that

-1 n(t) ns(t)e(t) = tan Q (5)
Q + n (t)

Rigorously, this approximation holds true within an additive multiple of 2r.

When the filter response is symmetrical about fc, the power density spectrum of

nc(t) and ns(t) has been found 3 to be Zw(fc+f). Therefore the normalized* power den-

sity spectrum of the derivative ns(t) equals f . 2w(fc+f), and the power density spec-

trum, W(f), of the disturbance '(t) ns(t)/Q can be expressed approximately as

W(f) f2 X 2w(fc+ f)/Q 2 , (6)

provided that r >> 1.

The above-mentioned treatment of FM noise was initiated by Crosby,l2 who con-

sidered the simplest case of rectangular filters and white noise. Denoting the input

(intermediate-frequency) filter passband by B and the output lowpass band by fa, we

may repeat Crosby's integration in order to find the output power N of the (weak)

Gaussian noise. We obtain

f f3

N = W(f) df =a (7)3rB

Here normalization consists in assuming that the demodulation constant and the load

4

resistance are unity and dimensionless.

--- - - -
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Fig. 4. Linear model for noise transmission.

in normalized units.

It is clear that the noise output (7) from an FM system in region 1 is identical to

that produced at the output of the three linear filters shown in Fig. 4, in which the

demodulator has been replaced by a differentiator weighting the original spectrum by

(f-fc)2. Thus, as far as noise analysis (with large CNR) is concerned, we can replace

the actual nonlinear receiver of Fig. 3 by the linear model of Fig. 4, operating upon a

white spectrum of input noise.

Although a rectangular bandpass filter may be regarded as a rough approximation

for a chain of double-tuned intermediate-frequency filters (used in most conventional

systems), it is not the only good noise-filtering arrangement. Let us define the equiv-

alent noise bandwidth B of the input filter as

B 0 w(f) df, (8)
w(f c )

and consider a family of different symmetrical narrowband input filters characterized

by varying w(f) under the constraint that B remains fixed. It is conjectured from FM

distortion theoryl 3 that over a broad class of reasonable variations, the message trans-

mission does not undergo significant changes. On the other hand, it is easy to see that

a slow roll-off filter spreads the energy of FM noise outside of the output band, and thus

contributes to the decrease of output noise power.

One convenient measure of the noise-power transfer through the first two units of

the filter chain in Fig. 4 can be conceived 2 in terms of p, the radius of gyration about

the symmetry axis, defined by

2 I (f-fc) w(f) df
p = (9)

fo w(f) df

Here, the denominator describes the noise entering the demodulator, and the numerator

5
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the noise output from the demodulator.

In the complete filter chain of Fig. 4, the effect of the sharp-cutoff output filter is

to chop off the output spectrum at fa' This, however, can also be accounted for by

imposing a finite limit of integration in the numerator of Eq. 9. We therefore define

for the baseband analog another coefficient Pa, describing the noise transfer in the

entire chain:

f
2 foa 2f 2 w(fc + f) df
D= . (10)

a 0 w(f)df
0

All of these definitions apply to the output of any symmetrical bandpass filter. They

have been introduced primarily because the output noise power of the system can then be

expressed by means of the simple relation

N = p2/2r, (11)

which follows directly from (7), with appropriate substitution of (4), (6), and (10). Notice
1that for f >> -B we have in the limit Pa p; more important is the case of narrow-a2 a

band lowpass filtering with fa << 2 B because, then, to a first-order approximation, the

noise output does not depend greatly on the shape of the bandpass spectrum w(f), pro-

vided that the former is symmetrical and flat in the middle.

It will prove useful in the sequel to present in Table 1 a compilation of the properties

of some filtering arrangements. The normal-law filter has been included as a good

approximation to the cascade of many identical single-tuned filters; the single-tuned

filter was evaluated because of its importance for the feedback FM systems. With our
1

interests limited to the region fa < 2 B, we have a well-defined Pa and the output power

is bounded, even for the single-tuned filter. Also, the single-tuned filter really has

good filtering capability in FM systems, as can be observed by comparing the values

of Pa' Or, still better, consider the ratio pa/B, which is one figure of merit for the

filtering of noise, provided that B is regarded as a measure of the bandwidth required

for tolerable transmission of the signal message.

3. Simple Approach to the Threshold Problem

The exact graphical representation of noise output power as a function of input CNR
3-8

(see, for instance, the work of several authors ) clearly exhibits a relatively sharp

break region. The question arises whether we can sensibly describe the location of the

break, called the threshold, in the linear input-output characteristic of the system by

one discrete value of input CNR. This approach, although mathematically questionable,

nevertheless has important advantages in the analysis and synthesis of systems, and

therefore seems to be worth following.

We are therefore in search of a border line to the linear (weak-noise) region. Recall

6



that the approximated linear equation (5),

0(t) ns(t)/Q,

holds in region 1, provided that r >> 1. Actually, three simplifying steps (corresponding

to various excess-noise components) have been made in the approximation:

tan 1 n(t) ns(t)/Q, if and only if n << Q ns << Q
Q + nc(t)

The first approximation consists of neglecting the relatively small summand in the

denominator; the second replaces the arc tangent function by its argument - without

adding the multiple of 2r, which is the third approximation. The usual procedure would

be to determine the most restrictive of these three approximations, and to find its region

of validity. All three simplifying approximations may be significant, and considering but

one of them may be misleading.

Let us, for the moment, follow the classical approach, disregarding the multivalued-

ness of the arc tangent function. In order to find a significant departure from linearity,

we shall choose an expansion for which the right-hand side of (5) represents the leading

term. Such a result may be derived in terms of the mean-square values from Rice's

asymptotic expansion3 of the autocorrelation function of , given in 1948. This expan-

sion is expressed in terms of the autocorrelation function of the noise waveform

n(t) n(t+T); at the origin (T = 0), by virtue of (4), we have

n2 = n2 = n2 Q2/2r (12)

in terms of the average carrier-to-noise power ratio r.

Evaluating Rice's equation (his Eq. 7.3) at the origin, we have in our notation:

(n2)2
82n 1 +n +8 +

or

The same result can be obtained from the expansion of the arc tangent function in a power

The same result can be obtained from the expansion of the arc tangent function in a power

series, whereby the argument itself is represented by an expansion (compare also Eq. 10

in a recent paper by Baghdady14). Note that if the input is Gaussian, the first term of

(13) represents Gaussian output noise. The first-order correction term is an important

component of excess noise; it is not Gaussian, but we may call it quasi-Gaussian. Obvi-

ously, this noise term (when significant) will cause the input-output relation to depart

from linearity. Now a simple inequality can be used to define the border of the linear

7
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region, or the threshold caused by the quasi-Gaussian excess noise, say

1 1
1 >> 2 or rT > -c, (14)

where c is an arbitrary constant parameter, and the subscript "T" marks the threshold

as a point rather than a region. A reasonable value for c, whereby (14) is satisfied, is

c = 0.1; then we obtain rT = 5.

In accordance with this choice of c, a carrier-to-noise power ratio of approximately

5 times, or 7 db, would be needed to pass the threshold. The reader may be skeptical

that such a low value will suffice, but it must be borne in mind that (13) does not neces-

sarily show all sources of excess output noise. When entering the threshold region from

the linear region, we do, of course, encounter this first-order nonlinear term, derived

from Gaussian noise; however, another noise term of quite different character will also

appear, which we shall now discuss.

4. Analysis of the Impulsive Noise

A very important contribution by Rice 1 5 has recently provided a different approach

to the analysis of noise in FM systems. In order to justify the significant conclusions

drawn from Rice's argument, let us briefly summarize his new results.

Even well above the threshold, it sometimes occurs that over a short interval of

time the magnitude of the random-noise vector in Fig. 3 exceeds the length of the car-

rier vector and, simultaneously, the noise phase angle (tan-1 [nc(t)/ns(t)] ) passes through

+1r. We can then expect that the sum of carrier and noise will encircle the origin, and

that the phase angle will rapidly be increased by ±+2r. Thus an impulse is produced

in the 0'(t) waveform with an area of approximately ±2rr radians per second. After low-

pass filtering, broadened impulses of either polarity appear in the output and are heard

as clicks in the audio band, or seen as lengthy spots on the screen of an FM television

system. Noise of this sort is related to the multivalued nature of the arc tangent func-

tion (which has been neglected in section 3).

Rice succeeded in determining the expected number of "clicks" per second in terms

of the input carrier-to-noise power ratio and of the parameters of the input filter.

Assuming a Poisson distribution of the arrival times of the pulses, Rice also computed

the corresponding power spectral density and the output power in the output band.

Above the threshold region, the two excess output-noise components (quasi-Gaussian

and impulsive) seem to be uncorrelated. This being the case, a comparison with earlier

results obtained by autocorrelation analysis could be performed by addition of noise

terms on the power basis. This reasoning has been checked by Rice with numerical

computations extending slightly into the threshold region. It must, however, be borne

in mind that the impulsive noise is very specific in character and spectral distribution.

On the other hand, it appears that Rice's evaluation of impulsive noise can be

explored in another way, and leads to a new measure of noise threshold. The

8



fundamental formula1 6 of Rice

2 00r 2
v = p(1-erf4 Tr) = p eY dy, (15)

where p is the radius of gyration defined by Eq. 9, gives the expected total number, v,

of (upward and downward) clicks per second in the threshold region and above it, with

unmodulated carrier. The gyration radius of the symmetrical bandpass filter is, in

general, proportionally related to its noise bandwidth (Table 1) so that, for a given fil-

ter, v/B depends only on the carrier-to-noise power ratio, r.

The random succession of upward and downward impulses has a spectrum that is

substantially flat at lower frequencies, whereas the Gaussian output noise spectrum is

proportional to the square of the baseband frequency. In order to stress this difference,

Rice denoted the constant power spectral density of the impulsive noise by W(O), and

by straightforward reasoning obtained the result

W(O) z 2v = 2p(1-erf4J). (16)

With sharp-cutoff frequency of the output filter denoted by fa' the output power of the

impulsive noise is evidently

-r
N i 2Pfa( l-erfrr ) 2pfa e (17)

with no modulation present. Note, by comparing (17) with (13), that the impulsive

excess-noise component differs substantially from the quasi-Gaussian one, which

changes with input CNR as 1/r 2

In a further step, Rice computed the effect of modulation on the impulsive noise, and

found a significant interaction between message and noise. The number of clicks

increases considerably with the signal-frequency deviation. Rice made an approximate

evaluation for the case of sinusoidal modulation, whereby the frequency is deviated over

the entire band of a rectangular bandpass filter. Simplifying Rice's result (his Eq. 2.26),

we find that a first approximation to the value of impulsive-noise output power is given

by

Ni 2 e rBfa, (18)

provided that r >> 1. A small correction term, diminishing the quasi-Gaussian noise in

the same case, is also given by Rice. 15

We shall now consider the location of the threshold in terms of the parameters of

the impulsive noise. It will be shown that even with the noise power as a measure of

For the mathematical model of the single-tuned circuit we have a singularity because
the gyration radius increases without bounds; no method of overcoming this difficulty
has been found (S. O. Rice, private communication, 1963).

9
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disturbance, the impulsive component is very significant, and, in fact, determines the

extent of the linear region.

5. Evaluation of Threshold

Rice's results facilitate the physical interpretation of the threshold as being caused

by the exponentially increasing impulsive component of output noise. As the first-order

quasi-Gaussian excess-noise component is generally proportional to 1/r2 , it will be pre-

dominant with a very strong carrier. As r decreases into the threshold region, how-

ever, we find that the impulsive contribution imposes a more severe limitation on the

extent of the region of linearity. Also, its character is especially annoying with some

types of messages.

Let us examine the simplest case of rectangular input filter and unmodulated carrier.

We shall first determine that value of r for which the power of the impulsive noise is no

longer negligible in comparison with the linear Gaussian noise (11).

The threshold inequality, approximated by setting

1-erfrz 1 e - r (19)

now is

2
1 -r P

2pfa I- e r<< (20)

For the rectangular filter, we find from Table 1 that

f3

B 2 2 a (21)
P - a 3B' (21)

so that the condition of Eq. 20 becomes

er (B Z 2- >> f (T_) B B ~~~~~~~~~~~~~(22)

The inequality can be treated similarly to (14), and this yields

r 2
c er . a) (23)

With c = 0.1, as before, we obtain a transcendental equation determining the threshold

CNR:

2rT 
e f j/rT B (24)

a

11
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with the rectangular bandpass filter.

Note, first of all, that the location of the impulsive-noise threshold is now a mono-
B

tonically increasing function of B/fa . For the lowest practicable value, B = 2, we find
a

that rT(2 ) = 4.35, which is actually below the bound imposed by the over-simplified

argument (14). With B/fa as small as 2.58, however, the two terms of excess noise
B

have equal power (cf. Eq. 14). It follows that (with customary values of f > 3) prac-
a

tically every FM system of interest will be limited by the impulsive-noise threshold.

For certain types of messages, the noise power is not the best measure

of disturbance, especially if the noise consists of two components of different

character. It is then not meaningful to manipulate with SNR below the threshold

of an FM system.

This argument defines the threshold in terms of the departure from the linear power

relation caused by the impulsive noise. As the masking effect of impulsive noise may

be very annoying, even if the corresponding noise power is still low, 14 it may also be

sensible to define the threshold in terms of the average number of clicks per second.

Observe that Eq. 24 can be used for this purpose, and defines threshold as vT =fa/60rB

clicks per second.

The analysis for the rectangular filter can also be carried out for the normal-law

filter. From Table 1 we have

B 2 2 a 3 a
p = Pa = 3 B (25)

Neglecting the correction term in parentheses, we find to a first-order approximation

1
'2rT B200r Tfe r -2OOr_ (26)

a

Both Eqs. 24 and 26 have been numerically solved by the author; the result is plotted

in Fig. 5. (The threshold curve by Reploglel2 is also shown for purposes of compari-

son.) Our curves are believed to be quite accurate over the entire range of values rT 5;

below this region, that is, near the origin, our simplified analysis yields only a rela-

tively crude estimate of the location of threshold.

Perhaps the most significant result is the threshold curve derived from the

sinusoidal-modulation case, as given by Eq. 18. Using Eqs. 18 and 7 [or (11)], we

obtain for the threshold condition with a rectangular bandpass filter

f 3

e -rBfa < Br a (27)Then, from reasoning identical to that leading to EBr

Then, from reasoning identical to that leading to Eq. 24, we have

12
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1

e2 T TB . (28)
Tf

It is interesting to note that in this case rT exceeds 5 for any value of f 2, and is
~~~~~~B a

very close to 10 for -f = 10. Thus, the widely held belief that approximately 10 db CNR
a

is needed to pass the threshold in a conventional FM system finds confirmation.

In the sequel we shall use the solution of Eq. 28, shown in Fig. 6, as the location of

the noise threshold in conventional FM systems. By itself, however, Eq. 28 does not

facilitate a direct algebraic approach to the evaluation of the performance of such sys-

tems, and some further approximations will be needed.

6. Performance Analysis of Conventional FM Systems

It seems reasonable to assume that no FM system can satisfactorily operate below

its (impulsive) noise threshold, since a sharp performance degradation is immediately

noticed both with regard to the noise output power and to the appearance of noise clicks.

Thus the performance of FM systems at and above threshold, as well as the location of

the threshold in terms of received signal-power and noise-power spectral density, is of

great interest. Since the minimum output signal-to-noise ratio, say, Rmin ' is usually

specified for the system, it seems reasonable to compare Rmin with the performance

of the system at threshold, denoted here by RT. Other quantities of importance that

must be specified in advance are: the message bandwidth fa' the system noise figure

or noise power density No . The principal unknowns to be determined in system syn-

thesis are: the modulation index m for the signal design, the minimum carrier power

C for the transmitter design, and the filter bandwidth B for the receiver design.

The filter design will always be a compromise between minimizing the message dis-

tortion and obtaining the best noise filtering. Without entering the controversial area

of nonlinear message distortion in linear FM systems, we shall confine our attention

to the relation between the FM signal bandwidth and the filter bandwidth. Specifically,

the maximum signal bandwidth will be considered to be determined by the modulation
D

index m = f-, where D denotes the maximum signal-frequency deviation with modu-
a

lating frequency fa' For purposes of engineering, it appears that the Van der Pol-

Carson formula for the signal bandwidth,

B s 2fa(m+l), (29)

is accurate enough.

*For the sake of precision, (29) may be extended as proposed by Manayev 17 so that it
will account for all sidebands with amplitude exceeding 1 per cent of the unmodulated

carrier amplitude. Then Bs = 2fa(1+m+ 4m).
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With large modulation index (m>> 1), the term 1 in Eq. 29 can be neglected. Assume

as a first measure for relatively undistorted signal transmission that the bandwidths of

the signal and the bandpass filter are equal: B = B. Note also from Fig. 6 that, for

large B/f a , a fixed value is a good approximation for the threshold CNR in the range

7 < fB < 17, which corresponds to a modulation index in the range 2.5 m < 7.5. We
a

therefore take

r T : 10. (30)

With actual systems, usually the input-noise power density No is fixed, rather than the

power of noise filtered by the bandpass filter. We then have

CT
rT = N B = 10, (31)

o

where CT denotes the value of signal power C at the threshold. It is sometimes con-

venient to refer the CNR to the baseband width, fa' in which case we define

C B
ra Nfa - (32)

Observe that in the linear region the normalized signal-output power is

S = D2, (33)

and with (7) we arrive at the well-established formula for the output signal-to-noise ratio

RS = 3 rBD 3 2 (34)
2f3 2 a

a

Thus, for the broadband FM system with nearly rectangular filters "matched" to

the signal bandwidth (so that B = 2m), we have
a

3 ZB 3 2R -m2r m r 2m,
2 3 2

a

and at the threshold with (31),

RT 30m 3 . (35)

The "zero-order" solution of our system problems will then be

(36a)

(36b)

(36c)

15

m = RT/30

C T = 20Nomfa

B = 2mf
a
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Such a system exhibits a well-known inherent limitation of output performance, if

carrier-power and noise-power density are fixed. From (31) and (32), we find

C
ra = N f - constant, (37)

oa

so that the maximum value of

C Cm Nf r C f (38)
oaT oa

is also limited. Consequently, for the maximum value of output SNR, we have

R 3 ( C \) 0 . 0 3 ( (39)max 3 Nf Nf

This bound may be exceeded only by decreasing the noise-power density or by increasing

the signal power.

For other systems, in which the modulation index is not necessarily much larger

than one, say m < 5, we must take into account two corrections. The first must account

for the significant fall in the threshold curve (Fig. 6); the second must allow for the sig-

nal bandwidth being larger than the full frequency swing 2D = 2mfa . In this case we use

Eq. 29 without neglecting the unity term.

The transcendental character of the threshold equation (28) impedes a straightforward

analytic approach. In looking for algebraic fits, it is convenient to select an expression

leading to a manageable system analysis along the lines presented in Eqs. 30-36. We

therefore suggest the following algebraic approximation for use in place of Eq. 28 in the

range - ~ 8:
a

25B 2
r 25 B( a ) (40)
T - 32 fa B +

Hence, substituting Eq. 29, after simplification we have

(m+2)2

25 _(41)
rT 16 m + 1 '

which is valid with m 3.

The threshold CNR measured in the baseband width fa according to (32) is

r 25 (m+2)2, (42)
ra,T =-8

and the (linearized) output SNR at threshold (34) becomes

R=3 -2 I 75 m2(m+2). (43)
RT m ra,T 16 (43)
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The following system equations follow immediately:

(44a)

(44b)

In addition, as usual, the filter bandwidth equals the signal bandwidth (29), so that

B = Zfa(m+l) = Zfa + 5 4RT/3 (45)

In order to represent all matched (B=B s ) systems in the wide range of modulation

indices by one graph, we combine both approximations: (35) for m > 3, and (43) for

m < 3. In our plot the input is represented by ra, and the output R(ra,m) by a family

of straight lines with m as a parameter (Fig. 7). They are cut off by the threshold

locus (36b) or (44b), respectively, for m <> 3.

The results, thus far, have been obtained under the assumption that the filters are
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TABLE 2. Correction factor for noise-power output.

Ratio of B
Bandwidths fa 2 4 6 12 22

ModulationModulation m 0 1 2 5 10
Index

Normal-Law Filter 0. 67 0. 90 0. 95 0.988 0. 996

Single-Tuned Filter 0.44 0.75 0.86 0. 92 0. 988

Noise-power output of rectangular filter assumed to be unity for each B/fa.
Correction factor equal to (pa/Pa )2

rect

nearly rectangular. As a final step, we should proceed to the general case for arbitrary

filter shape. We have already investigated the noise-power output as influenced by the

bandpass filtering (section 2). With the matching of bandwidths, B = B, still assumed

to be valid, we do not introduce any significant changes in the signal-output power. Thus,

modification of the gyration radius suffices to provide necessary correction terms for

evaluating the output power of Gaussian noise, as well as the output SNR above the

threshold.

Table 2 presents some results for cases of practical interest. Note that, in general,

the correction factors are not very significant, except for the hypothetical limit B = 2,
a

which corresponds to m - 0. Therefore, most conventional systems can be analyzed in

accordance with (40), (41), (42), (43), and/or Fig. 7. For FM systems with a single-

tuned bandpass filter, a check with the aid of Table 2 is recommended, since the cor-

rection factor in some cases of small modulation index may be important.

18
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PART B: FEEDBACK FM SYSTEMS

7. The Concept of Frequency-Compressive Feedback

The idea of a tracking FM system is not new; it originated, curiously enough, as a

substitute for amplitude limiting in an FM receiver.18 But important noise-combating

properties were soon noticed, 1 9 ' 2 0 and some successful applications were reported.2 1 - 2 3

Later, realistic bounds on system performance were introduced 2 4 ' 1 4 by taking into

account the deficiencies inherently existing in a stable feedback loop.

The most important variety of a tracking FM system is the frequency-compressive

feedback loop, which somewhat resembles a well-known feedback frequency-dividing

scheme. In this report our interest will be strictly confined to the frequency-

compressive FM demodulator as a device for decreasing the noise threshold in an FM

system. Its mechanism is capable of reducing the bandwidth of threshold-causing noise

without affecting the signal transmission and the output signal-to-noise power ratio. Thus

an exchange between the power and the bandwidth of the input FM signal, or an increase

in the usable range of a long-distance communication system with fixed signal power,

is possible.

The frequency-compressive feedback loop of the usual type (see Fig. 8) has been

looked upon either as a "frequency demodulator," 2 4 ' 14 ' 2 5 or an "FM receiving

system." 2 ' 2 6 ' 2 7 Less customary varieties have sometimes been mentioned in the liter-

ature, for instance, a loop without any amplitude limiterl8 or a loop driven from an

amplitude limiter.l4 But these have been reported as being substantially inferior to

their conventional counterpart.

Within the general structure of the frequency-compressive feedback loop (Fig. 8)

some modifications are possible with respect to the location and the form of the output

filter. It seems that it is most convenient to have the output filter independent of the

feedback filter; both can be connected across the output of the frequency demodulator.

AMPLITUDE AND
ANGLE- MODULATED

SIGNAL

INI

F
SIGNAL 

'UT

Fig. 8. Block diagram of a frequency-compressive feedback FM system.
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Alternative arrangements introduce only a trivial difference in analysis and can be dis-

regarded.

Even with the well-established form of the system under consideration, its analysis

presents many essential difficulties. These are due partly to the general complexity

of exponential modulation, which is a nonlinear transformation. Also, various regen-

erative phenomena exist within the loop, and affect its stability and the noise threshold

of the system. It is, therefore, easy to understand why the analysis of this system has

been less successful than its engineering applications, which were revealed in 1958,21

1960, 2 2 and 1961.23 Important analytic progress by using linear approximations was

initiated in 1962. 2414

It seems advisable to point out again that the validity of the linear analysis, in which

a baseband analog is utilized, is restricted to cases of approximately linear modulation.

Small rms index angle modulation resulting from a useful message or a weak noise dis-

turbance is nearly linear and can be rigorously treated with the aid of the linear model.

On the other hand, the linear model is invalid for the analysis of the message distortion

in a practical feedback system, because the I-F signal - in spite of the frequency com-

pression - is not small-index-modulated.

One more word of caution might be of use at the beginning of a study of this system.

The noise threshold in the frequency-compressive feedback loop may be caused by two

entirely different mechanisms: the conventional threshold, and the feedback threshold.

Any system as a whole never exhibits more than one of these two noise thresholds. The

question arises whether systems should be designed in which the feedback threshold

dominates. In our opinion, the answer is no, since in this case it has been found

experimentally that anomalies occur as a result of which the system performance is

sharply degraded. Furthermore, when the conventional threshold does dominate, the

behavior of the feedback system is, in fact, similar to the behavior of the same system

with open loop, that is, of a conventional system with a specific type of bandpass filter.

Therefore, an approach to the analysis of feedback systems, whereby the areas of

validity of the conventional theory are determined and the feedback threshold is branded

as an anomaly to be avoided, is recommended here. This contention is largely backed

up by our experiments. Our analysis concentrates on the optimum design of the feed-

back filter and on the determination of the obtainable power-bandwidth trade-off. How-

ever, an important area is still not covered by analysis: i.e., the regeneration of

impulsive noise with strong feedback, although we have obtained some interesting experi-

mental evidence regarding this phenomenon.

8. Noise Threshold in the Feedback System

It is now fully recognized that the random noise injected at the input to the frequency-

compressive feedback loop (Fig. 8) can affect the system output in two different ways.

Let us recall the normal behavior, common to all FM systems whether with or without

feedback. We shall consider the case in which the input consists of a carrier wave and
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a band of Gaussian noise.

If the feedback system is above its noise threshold with the loop open and certain

gain-phase conditions for proper noise tracking are met, then closing the loop will reduce

both the output signal and the output noise in the same way, that is, by the compression

factor F for the instantaneous values. Therefore, the output signal-to-noise power

ratio remains unchanged as the feedback factor F increases from 1 up to a certain limit.

When the input carrier power is diminished, some excess terms of the output noise

begin to appear in addition to the linear Gaussian term. Ultimately, the impulse excess

noise (which appears as impulsive "clicks") predominates and produces a sharp noise in

the noise output: the point at which this occurs is defined as the conventional threshold.

This threshold occurs at a specific value of the demodulator input CNR; it depends

on the bandwidth B of the bandpass filter, but does not depend upon the feedback factor

F (at least not up to a specific value Fmax ; see section 11). On the other hand, since

the frequency compression in the feedback system allows us to make the I-F filter nar-

rower than it is in the conventional FM system with the same input signal, a reduction

of the threshold is possible. This is the main adavantage of the feedback system.

From the argument above, we shall see that the conventional theory of noise in FM

systems, specialized for the case of the single-pole filter with a relatively narrow band-

width, is sufficient to predict the performance of the feedback system above the conven-

tional threshold. This is obvious for small values of the feedback factor; it will be

shown, partly by experimental evidence, that the same type of behavior characterizes

the frequency-compressive systems with stronger feedback. This occurs up to a cer-

tain value Fmax , at which there is a rapid break of performance. Very pronounced

bursts of impulsive output noise appear and at once degrade the message quality. The

mechanism of this feedback threshold is not yet completely understood, but it appears

that a cumulative action launches self-regenerating noise in the loop.

As in the conventional case, the precise definition of the threshold as a point rather

than as a region is arbitrary: It can be approximately located as a specified departure

from the linear input-output relation.

It should be clear from our description that any practical feedback system should

not be brought up to the edge of breakdown; that is, the amount of feedback should be

bounded by F ma x in order not to enter the detrimental region of the feedback threshold.

In other words, a well-designed frequency-compressive system will not exhibit the

closed-loop threshold, since (by design) its conventional threshold predominates, simi-

larly to the situation in a conventional system. Thus, a unified approach to all FM sys-

tems appears to be justified.

At present, the bound imposed by the noise regeneration in the feedback loop is

known and has been roughly determined by analysis. 24,14 Let us briefly recall Enloe's

argument 2 4 pertaining to the loop of Fig. 8, which is excited by a carrier wave and a

band of weak Gaussian noise with spectral power density equal to No . After the band-

pass filtering, the noise n(t) becomes narrow-band and can be represented by two
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orthogonal components, say, nc(t) and ns(t).

Enloe's fundamental result, shows that the phase of the resultant wave at the fre-

quency demodulator is

t) [s(t)-D(t)] - n(t I, (46)

where (t) denotes the phase fluctuation (caused by the input noise, and normalized by

the carrier amplitude) of the feedback oscillator output. The circumflex stands for the

filtering operation in the I-F path (that is, for convolution with the bandpass filter

impulse response). Observe that the bracketed term denotes the quadrature noise com-

pressed by the feedback action, and that the last term is excess noise derived from the

in-phase component of input noise. Enloe24 presents arguments substantiating the fact

that this last term is the most significant among second-order terms, and that the fluc-

tuation of the envelope of demodulator input wave, which produces additional zero

crossings, is negligible in the region of interest.

Under these conditions, it is the mean square of the VCO phase, 2(t), which deter-

mines the significance of the additional noise component, and hence the closed-loop
1 2

threshold. Enloe has observed empirically that threshold occurs when g > _ 31 rad2 ,

which we may approximate by the condition (D2 1/10 rad2 . This is equivalent to the con-

dition that the normalized mean square of the oscillator phase (caused by noise) is no

longer small compared with unity. Enloe succeeded in translating this condition into a

corresponding carrier-to-noise power ratio at the mixer input, whereby the amount of

noise is determined by the closed-loop noise bandwidth. This makes the feedback thresh-

old dependent on the feedback factor. Thus, the noise threshold of the system can be

degraded by the feedback action. The primary objective of our analysis is to describe

the different consequences - positive as well as negative - of feedback in the loop.

9. Analysis of the Feedback Threshold

The linear analysis of a compressive-feedback FM system is based upon a conven-

tionally constructed baseband analog. Transforming the system in Fig. 8, we make the

following substitutions:

A phase and/or frequency subtracter replaces the mixer;

A lowpass (analog) filter replaces the bandpass filter;

A differentiator replaces the frequency demodulator; and

An integrator replaces the variable oscillator.

We assume that our original FM signal is represented by its instantaneous phase

as a time function, and that the input Gaussian noise is already narrow-band filtered.

Thus it can be represented by its in-phase and quadrature components referred to the

carrier frequency fc; that is

n(t) = nc(t) cos wct - n (t) sin ct . (47)
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The linear baseband model shown in Fig. 9 is valid when the composite angle mod-

ulation (by message, noise or both) is characterized by a small modulation index (rms).

This enables us to represent an exponentially modulated wave by the modulating wave

(cf. Eq. 5 in Part A). Specifically, we can use the linear model for the analysis of the

weak noise disturbance and for determining the border of the linear weak noise region.

Following Enloe's argument, we shall write the open-loop transfer function of the

model in Fig. 9 as

Ho(s) = KdKmA(jw) H(jo), (48)

and then define the closed-loop transfer function for the transmission from signal input

to the oscillator output

Ho(s)
Hc(s) = (49)

1 + Ho(S)

Note that this will reduce to the usual input-output closed-loop transfer function, as

defined in linear feedback theory, only if the feedback filter is also used as the output

filter.

The feedback factor F, as usual, is related to the loop gain at the lowest frequencies;

then with A(O) - H(O) 1 we obtain

F 1 + H (0) = 1 + KdK, (50)

and we immediately find that

H (0) = F- 1 (51)
c = F

The two-sided noise bandwidth B c of the closed loop is defined in the usual way, with

the squared magnitude at the origin taken as the reference level:

1/z2rj jco
Bc 3(O)12 jo Hc(s) Hc(-s) ds. (52)

Substituting (50) and (51) in (52), we have

F2 ]KdKmA(jw) H(jw)B (F 2= & d m i |df. (53)
c _F- T -)o 1 + KdKmA(jw) H(jw)

The main finding of Enloe determines C F, the carrier power at the mixer input below

which the noise regeneration in the loop begins to degrade performance:

NB
C = o c F-1)2

2
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Fig. 9. Linear baseband analog of the frequency-compressive feedback system.

Z
We have found it convenient to use the defining value = 0.1, and to refer the input

carrier-to-noise power ratio at this "feedback threshold" to the baseband width fa. Then

obviously

A CF
(CNR)f = Pa Nf '(55)

a oa

or

B

P= 5 LL 2 C(56)
a

Equation 56 locates the feedback threshold for a fictitious system without any conven-

tional threshold. The structure of this expression resembles somewhat the structure

of Eq. 32 in Part A.

In every real system, of course, the threshold occurs because of the mechanism

that requires the higher value of comparable input CNR, measured at the same point

and in the same bandwidth. With the linear model, transfer of the CNR from mixer input

to demodulator input is straightforward, provided that the filtering is taken into account

and a fixed reference bandwidth (preferably fa ) is conserved. Under these conditions,

we can compare the effects of the two threshold-causing mechanisms on a frequency-

compressive feedback system.

We have shown (section 5) that the conventional threshold of an FM system ra T

defined in terms of the demodulator input CNR in the baseband, depends uniquely on the

noise bandwidth of the (broader) bandpass filter, B, normalized by the baseband width.

On the other hand, the feedback threshold Pa depends primarily on the feedback factor

F, its dependence on B being of quite secondary importance. These very slightly inter-

related effects can be visualized by referring to Fig. 10, which shows also the crossover
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point defined by the value Fcr. The interrelation, if any, is expected to occur in the

vicinity of this crossover.

The actual noise threshold in the system is found experimentally to be nearly inde-

pendent of the feedback factor up to a value Fma x < Fr. From Fma x on, the feedback

begins to degrade the actual threshold; with F = Fcr the system threshold is exclusively

controlled by the excess closed loop noise that causes bursts of clicks in the output. We

consider this threshold to be different from the normal behavior of FM systems, and

much evidence for this claim will be shown. It was also predicted by an interesting

analysis of Baghdadyl4 (see his Eq. 111).

The main implication of this argument is a recommendation to design and operate

the feedback system in the region F < F ma x where the threshold is not degraded by feed-

back. In order to establish a proper setting for Fmax = c Fr, the crossover Fcr of

the two functions Pa and ra must be examined. Of particular importance is the depend-

ence of the feedback threshold on the parameters of the feedback filter, and this will

be discussed first.

10. Analysis and Catalog of Feedback Filters

It has been concluded by independent investigators 14 ' 27 ' 2 8 that the bandpass filter

in the feedback loop cannot have more than one pole, for stability reasons. In order

to obtain a stable feedback loop with finite noise bandwidth, it is then necessary to inter-

relate the number of poles and the number of zeros in the transfer function Ho(s), for

the loop consisting of the two filters (shown in Figs. 8 and 9). In compliance with linear

feedback theory, we can envisage two alternatives: the number of poles exceeds the

number of zeros by one (this gives a better stability margin), or by two (this still gives

stability, although with a smaller margin). Here, the chain of broadband amplifiers

is not taken into account, mainly because it really should be avoided inside of the loop:

otherwise, the parasitic time delay tends to destroy the stability of the system and proper

noise tracking. Accordingly, it seems desirable to have high gain in the stages before

the loop mixer.
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Nonsingular zeros are not desirable in the bandpass filter. As for the low-pass feed-

back filter, its zeros play an important role either in canceling the bandpass filter pole

(the "canceling" zero) or stabilizing the feedback loop without increasing its noise band-

width (the "stabilizing" zero). Practical considerations with respect to parasitic circuit

elements show that the accuracy of the cancellation is always poor, and that attempts to

cancel usually cause the appearance of some spurious time delays, with the deleterious

effect just discussed.

It seems, therefore, reasonable to recommend no more than one canceling zero; thus

the total number of poles around the loop seems to be restricted (in actual engineering

implementation) to no more than three. Accordingly, the following structures of the

feedback filter can be envisaged: 1 pole; 1 pole and 1 zero (stabilizing); 2 poles and

1 zero (canceling); 2 poles, 1 canceling zero and 1 stabilizing zero.

We note that all of these cases can be described by one general type of the open-loop

transfer function:

Ho(s) = (F-1) X a X bX s + c (57)o s+a s+b c

where a is the complex frequency of a pole in the feedback filter, b is the complex fre-

quency of a pole in the bandpass filter analog or in the feedback filter, and c is the com-

plex frequency of the stabilizing zero in the feedback filter. (There is no need to account

for the canceling zero located at cIF, as long as it coincides with the pole of the I-F fil-

ter.) In practical calculations it may be convenient to normalize a, b, c, as well as s,

the baseband width a = Z2rfa.
a a

For the closed loop, we consider the transfer function (49) between the two inputs

of the mixer:

H (s)
Hc(s) =

1 + Ho(S)

With some algebraic manipulation we obtain from (57) the general expression for the

closed-loop transfer function:

ab(F-1)(s+c)/c
Hc(s) = (58)

2 ~ ab(F-1)
s + a+ b + - s + abF

The closed-loop noise bandwidth B c defined by (53) is presented below in a form that

stresses the influence of the zero in the feedback filter, and is easily reducible to the

no-zero case:

ab 2
B= F c + abFB _ X (59)

c 2(a+b) 2 abc
c + (F-b )

a +b
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It is easy to see from the denominator of (59) that with

F
c > F - l (a+b)

the zero added in the loop for stability can also diminish the closed-loop noise bandwidth,

and thus reduce the feedback threshold. More interestingly, it appears that for any given

value of the feedback factor F there is one position copt of the stabilizing zero which

produces a minimum in the noise bandwidth.

Differentiating (59) with respect to c, we find this optimum value to be

Copt = F [a+b+/a2+bZ+ab(F+ )1. (60)
Copt -F - 1 

The corresponding minimum of Be is

abF 2
B

cmin (F-1)cp t

abF
(61)

a + b +/ a+b+ab(F+)

This simple but general result is of considerable interest in feedback-system syn-

thesis. Observe that a minimum always exists for any choice of a and b in the left

half-plane. The independent choice of a and b is secured only with the "2 poles and

2 zeros" structure of the feedback filter, so this class is expected to be the most prom-

ising one.

Further investigation of the minimum-noise-bandwidth feedback loop can be carried

out by perturbing - for a fixed value of F and with an optimum zero located by (60). In

this optimizing procedure, necessary constraints must be established from bandwidth

consideration of the open loop, which has to provide for nearly uniform feedback over

the entire baseband.

Let us consider a family of different two-pole open loops (57) with the optimum zero

(60), requiring first that the open-loop noise bandwidth be kept fixed. If the closed-loop
a a

noise bandwidth (61) is minimized as a function of , an optimum value of a = 1 can

be found. This defines the so-called binomial filter: its simplest realization calls for

two cascaded, real poles a = b.

For the binomial filter with (negative) real poles we obtain

copt a F + (62)

and
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B = a - (63)
cmin (-F+ 1 )2

Note that for large values of the feedback factor F the noise bandwidth increases only

proportionally to the square root of F; without the (optimum) zero it would increase

proportionally to F, as shown in Table 3.

Another possible optimization procedure would call for a fixed half-power bandwidth

of the open loop. We then rigorously find that the Butterworth filter with = j exhibits

a minimum value of the noise bandwidth. Besides being maximally flat in frequency

response, this filter also has the remarkable property of smallest possible noise band-

width with a second-order transfer function of fixed half-power bandwidth (in particular,

smaller than the noise bandwidth of a binomial filter with equal half-power bandwidth).

The second-order Butterworth filter has two conjugate poles:

A A
a = A (l+j) b = (l-j).

It then follows that

c opt ( F÷FNf N) (64)

and

B AF (65)
Cmin ,/F 2 +1 + NZ

Again, for large F the noise bandwidth increases proportionally to NI.
There is considerable numerical evidence for the superiority of the Butterworth filter

over the binomial filter in the feedback path. This writer, for instance, has evaluated

the frequency compression of the FM signal, under the assumption that the post mixer

rms modulation index remains smaller than unity. The message compression factor at

the highest modulation frequency fa was compared for the two above-mentioned filter

types with optimum stabilizing zero and equal noise bandwidth. The difference was

immaterial for lower values of feedback factor F; however, the advantages of the

Butterworth filter were clearly shown for F > 5. They are attributed mainly to the fact

that the optimum stabilizing zero for the Butterworth filter, as located by Eq. 64,

is much closer to the poles than for the binomial filter (Eq. 62). Therefore, it seems

justified to claim that the maximally flat feedback-filter response leads to the minimum

of the closed-loop bandwidth.

We thus consider our survey of feedback-filter types to be completed and list the

appropriate entries in Table 3.

11. Synthesis of the Feedback System

For the synthesis of a feedback FM system we have to specify the quantities

that we shall consider as given: the message bandwidth fa' the lowest value of output
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signal-to-noise ratio RT, and the noise figure or the noise power spectral density No.

Then the following characteristics of the system are still to be found: the (lowest) car-

rier power CT, the signal modulation index m, the feedback factor F, and the bandwidth

B of the I-F filter. Also, after some additional assumptions have been made, the struc-

ture of the feedback filter and its parameters have to be chosen.

For practical calculations it is convenient to establish the input CNR as a measure

of the carrier power CT; we will use the value at threshold, referred to the baseband

width

CT

ra, T N f -oa
(66)

A very general method of synthesis results if one assumes that the linear model is

valid for the (not narrow-band) signal transmission, as well as for the noise filtering. 2 9

One obtains two threshold equations in terms of the closed-loop transfer function, under

the constraint that the bandpass filter width is matched to the (not fully compressed) I-F

signal at the highest baseband frequency. After Hc(j a ) has been found, we next deter-

mine the open-loop transfer function, break it down into two factors, and synthesize the

feedback filter from its transfer function.

A more careful approach, however, restricts the validity of the linear model (even

for the compressed post-mixer signal) to the evaluation of weak noise-processing only.

Table 3. Catalog of feedback-filter structures.

Filter Structure

Case Filter Poles Zeros Clcsed-Loop Noise Bandwidth RemarksType

1 Ip a - -z} n

General

2 bF c 2 + abF Expressions
2 lp - z(st.c a c a IF 4aF

4 2p- Iz(c) aF
binomial aI , IF 2

A
Zp - lz(c) a1 (l AF

Buttrwotha * A cIF
Butterworth a1 F(l-j) F

Noise
bandwidth

S 2p ·- ~z Cope aF--F minrnied
binomial aI m a2 IF 

6 Zp-Zz IY 2 opt AF4'-

Butterworth a2 ' _ (l"Ij) + CIF
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Then the synthesis procedure must rely upon some previous knowledge of the closed-

loop transfer function, as specified by its poles and zeros location (58). Just as we have

no freedom to change the structure of the bandpass filter, the possible selection of feed-

back filter types is also restricted. Thus, with a catalog of the allowable filters in mind,

we should not deviate far from the best Butterworth structure known (the second-

order'Butterworth, cf. Table 3).

In order to determine the main parameters of both the bandpass and feedback filters,

we must meet two requirements, which seem to be generally agreed upon. 24 '2 9 31

(a) the open-loop transfer function should be essentially uniform over the baseband

in order to have the post-mixer frequency deviation evenly compressed for all modulation

frequencies;

(b) the closed-loop noise bandwidth should be minimized (as explained in Sec. 9) in

order to reduce the excess-loop noise that causes the feedback threshold.

One more relation is needed to fully specify the problem, namely, the relative posi-

tion of the feedback threshold. In Enloe's 8 approach, it should coincide with the con-

ventional threshold. That is, the bandpass filter is required to be wide enough to pass

the compressed I-F signal without, however, allowing the conventional threshold to pre-

dominate. As we have pointed out, we are inclined to modify this condition slightly, and

to require that the conventional threshold predominate by 1-2 db.

There is also some justification (cf. Part A) in matching the bandwidth of the I-F

signal B s to the noise bandwidth of the I-F filter B. (Enloe proposes that the half-power

filter bandwidth be matched to the full frequency swing 2DIF; this is somewhat optimistic

for narrower I-F signals with lower m/F index.) We shall use again Carson's formula,

B = 2f a( + 1) (67)

with appropriate account taken of the frequency compression in the I-F path. Denoting

the baseband location of the pole in the bandpass filter by b, we have for the noise band-

width of the single-tuned structure

B = rb, (68)

and the proposed matching yields

-b = 2fa( + 1). (69)

From Eq. 40, the conventional threshold in low-modulation-index systems is found

to occur at

r 25 (f) a +1 (70)
Combining (70) with (68) and (69), we obtainf B

Combining (70) with (68) and (69), we obtain
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25 (m +2) (71)
a,T 8 F

In the frequency-compressive feedback system, the output SNR at and above threshold

is given by the unmodified relation,14 '2 7

R= mr 
(72)

so that at threshold (using Eq. 71), we have

RT = 6 m2(m+z) 
(73)

Equation 73 involves the two unknowns m and F; we must therefore introduce our

additional constraint upon the location of feedback threshold to solve the synthesis prob-

lem. Numerical machine computations or graphical methods described by Enloe for the

condition of equal thresholds could certainly be adapted to our assumptions. We are,

however, first inclined toward a very simple cut-and-try method, which is based upon

some choice of maximum permissible value of the feedback factor, say, Fmax . This

might be determined by previous experience, or by experiments with loop stability.

Assuming a value of F < Fmax' we observe from (28) that

m(+2) = 4 ] 3. (74)

Consequently,

m = F( -) (75)

and it follows that

B=Zfa + R(76)

raT = + 2 t (77)

Now, a test is needed in order to ascertain that we do not approach too close to the

critical value of Fcr; otherwise the system would be vulnerable to regenerative noise,

with an intolerable ,probability of high-level noise spikes. For this purpose, we evaluate

the theoretical location of the closed-loop threshold Pa and compare it with (77),

requiring (for example) that

Pa < 0. 8 ra, T.(78)

Here, the factor 0.8 is chosen as the highest possible value of a safety margin, leading

to the maximum system sensitivity.

If relation (78) is not satisfied, it is necessary to resort to another, lower value of
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F and to redesign the system.

If Eq. 78 is satisfied, it is easy to determine the power saving, as compared with

the conventional (no-feedback) system. Assume as a constraint that the two systems

to be compared have equal performance RT at the noise threshold. We also assume in

both cases that the signal is accommodated within the (respective) noise bandwidth of the

bandpass filter. For the conventional system, the "zero-order" approximation in Part A

shows that a threshold is attained with the input carrier-to-noise ratio equal to

ra = 20 RT/30. (79)

The example that follows illustrates the simple sequence of computations outlined

above. Assume that a threshold performance of RT = 3 X 104 is required, and that a

conventional system is therefore designed with

3/RT 3X10 4

m 30 30 30 10

r = 20m = 20 X 10 = 200.
a,o 0

Assume next that for the feedback system, F = 10 is known as a value not exceeding the

condition for loop stability. Then we compute

m = 10 + 5 X = 20,

m 20and with mF F 2 we have

B = 2fa( +l1) = 6 fa

Finally,

'9

ra, T 8 1 +
1 +4 RT/3 = 5 + 1 + 54l---O) = 50.

It seems that the power saving amounts to 6 db (4 times). However,

feedback threshold is necessary. Our choice for the feedback filter

Butterworth structure; with A = 21rfa and Be computed from Eq. 65.

5 X 2F

Pa 
a F + + -22/\ F"

a check for the

will be the optimal

Then

10l X 103.18 + 1.41= 68 > r
3.18 + 1.41 a, T'

Thus the threshold in the system would be caused by the predominating effect of noise

regeneration in the feedback loop. Accordingly, we have to reduce the feedback factor,

and design for a smaller value, say, F = 7. We obtain
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m= 17.7

Pa = 53.7

r T= 66.5.

Observe that the necessary closed-loop threshold relation (78) is now preserved.

For this corrected design we have approximately

a,o 200
raT 66.5

and the threshold extension by a factor of three (4.8 db) is obtained. It occurs at the

expense of an increase in signal bandwidth which equals

+ m 1+17.7 0,
l+m 1+10

o

or 70 per cent.

This example shows the simplicity of the proposed cut-and-try synthesis method.

We shall, however, also investigate the feasibility of a straightforward synthesis of the

system with optimum power-bandwidth trade-off.

12. Optimization of the Feedback FM System

Apart from the cut-and-try synthesis procedure, it is interesting to examine quan-

titatively the limitations imposed on the feedback system by the requirement of loop and

noise stability. The main objective here will be the determination of the maximum allow-

able value of the feedback factor, and also the maximum obtainable power saving in com-

parison with a conventional FM system.

If we restrict our attention to the second-order Butterworth structure, we can obtain

from Eq. 65 a single formula for the closed-loop threshold in terms of a, the mixer

input CNR referred to the baseband width:

(F-1)2

Pa. (80)

/F + F + F

For the conventional threshold, measured in the same way, from (70), we have

r = (m +) 

In accordance with (78), we feel that the maximum system sensitivity can be obtained

with

08ra,T Pa (81)

This yields the condition
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(F-1)2

(82)
%F +F+ 2FZ '

wherefrom we obtain

m = 24
(F-1) F

- 2F. (83)

/ + F+ XF

Equation 83 expresses m in terms of F, whereas our objective is to determine m(RT)

and F(RT). Combining (74) and (83), we obtain the implicit relation

1 + F RT/3 - F = 2
F 2 - F

2F. (84)

i/F+ 3 F+ F+ /2F 2

The optimization procedure can now be stated as follows: Given RT, solve (84) for F

and substitute it in (74) to obtain m.

FEEDBACK FACTOR F

m

10

3O

70

E

O

0 zz
zO
o
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0
o
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0

MINIMUM REQUIRED OUTPUT SIGNAL-TO-NOISE POWER RATIO, RT (db)

Fig. 11. Optimum parameters of the feedback FM system.

34

16

14

12

10

8

6

4

cr
0
-
0

LL

C,

0
Lii

W
LL

2

2.5( F +2 = 1 On



After numerical evaluation in the region of interest, we obtain the two relations

shown in Fig. 11. It is now easy to observe that m/F in an optimum system does not

vary much with RT. It follows that the signal bandwidth B s of Eq. 67, when equated to

the I-F bandwidth B, yields

B= 2f(- + 1) (85)

which is also fairly insensitive to RT.

It is of interest to evaluate - with optimal values of m and F - the threshold location

ra, T and compare it with that of the conventional system, under the constraint of a fixed
RT. This is shown in Fig. 12, from which the power saving can be found directly in db.

a

mr

0
z
_J

()

I

a
I
0
0

0

U,

.:
I-

10 20 30

THRESHOLD INPUT CARRIER-TO-NOISE

POWER RATIO, ra,T (db)

Fig. 12. Comparison of a feedback FM system with the conventional FM system.

The figures differ somewhat from those obtained with Enloe's synthesis procedure.

Finally, since the power consumption (proportional to r a ) is traded off against the

signal bandwidth

B s = Zfa(m+l), (86)

the efficiency of this trade-off might be of interest. In Fig. 13 we plot
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r B
a,o s,o

r *Ba,F s,F

as a function of RT, for the sake of comparison of an optimal feedback system (indicated

by the subscript "F") with a properly designed conventional system (indicated by the

3.U

2.5

2.0

1.5

1.0

ra,o Bs,o (CONVENTIONAL SYSTEM)

ra,FBs,F (FEEDBACK SYSTEM)

I I I I I I I I I I
10 15 20 25 30 35 40 45 50 55 60 RT

MINIMUM REQUIRED OUTPUT SIGNAL-TO-NOISE POWER RATIO (db)

Fig. 13. Power-bandwidth trade-off in an optimum feedback FM system.

subscript "o"). It is interesting to point out that the last relation runs relatively flat,

showing not much change in the efficiency of power-bandwidth exchange.

13. Experimental Program and Apparatus

We shall now report on the experimental research on feedback FM systems which

was undertaken in order to check some analytical inferences, to examine some prop-

erties of the systems not amenable to analysis, and to verify some assumptions made

in connection with the synthesis procedure.

Because of time limitations, it was not feasible to design and construct an optimized

feedback system and thereby investigate directly the maximum obtainable amount of

power-bandwidth trade-off. Nevertheless, the experiment contributed to an understanding

of the system behavior, and resulted in significant modifications of the design procedure.

Much of the instrumentation arrangement originated in earlier research by

W. Wilson. 3 1 The main part of the system under study was composed of a commercial

high-quality FM tuner, in which the local oscillator was replaced by an external FM signal

generator and one of the I-F filters was shunted by a highly selective single-tuned circuit.

Different feedback filters were added between the discriminator output and the modulation

input to the signal generator. The output of the system was preceded by an independent

variable sharp-cutoff filter. The over-allblock diagram of the system is shown in Fig.14.

For the most part, the system was excited with an input composed of a cw (or an FM)
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FISHER 200 B FM TUNERI

INI

Fig. 14. Block diagram of the experimental feedback FM system.

signal and a strong Gaussian noise added together. A high-quality FM signal generator

was used as the signal source, and the noise was generated by a tungsten filament noise

diode which was amplified by a wideband amplifier so that a wide band of constant density

Gaussian noise was available.

Provision was made for monitoring carrier and noise power before the demodulator

input. The frequency response of the single-tuned circuit was also visually monitored

by the sweep-generator method. Throughout, it was extremely difficult to obtain precise

measurement in the I-F strip, and therefore the resulting data are often presented in

relative rather than in absolute form.

The output characteristics of interest were monitored by a switched-beam wideband

oscilloscope, and measured by means of a highly sensitive true rms voltmeter. For

extraction of the sinusoidal message buried in noise a wave analyzer was used. A

medium-speed pulse counter was utilized to count the "clicks" of impulsive noise; the

level of counting was controllable over as wide a range as necessary. Figure 15 also

shows certain other equipment that is customarily used in experiments of this type.

The feedback loop was constructed by using standard commercial FM equipment

wherever possible and, accordingly, did not meet the more stringent requirements of

a well-designed feedback system. The primary objective of having enough gain around

the loop without much parasitic phase shift was, in fact, barely met. Since the inter-

mediate frequency of the commercial tuner was the standard value, 10.7 kc, and the I-F

amplifier was of standard structure, it was necessary to resort to a Q-multiplier in order

to obtain a sufficiently narrow single-pole filter. Not much, however, could be done to

decrease the parasitic phase shifts by reducing the gain and selectivity of the broadband

I-F amplifier and the frequency demodulator: otherwise the output signal level would

have been too low not to be corrupted by the residual noise of the low-frequency amplifier

at the system output.
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Therefore, the amount of feedback was sharply limited to approximately 16 db by

the inherent phase shift of the broadband I-F stages and the demodulator inside the loop.

Closing of the loop (as expected) reduced the usable baseband to approximately 5 kc for

Fig. 15. Measurement and auxiliary apparatus used in these experiments.

stability reasons. The sensible way out of this trouble, of course, would be to construct

a double conversion-receiving system, with most of the gain and some selectivity before

the loop and with a low-noise I-F amplifier of higher selectivity in the forward path of

the loop.

The program of experiments was partly determined by the deficiencies of the system

under test. Specifically, it was recognized that the system stability was far from opti-

mum, and not much could be done by a judicious choice of the feedback filter. Some

quantitative evidence of the improvement of noise threshold is already available,2 3 '2 9

but this certainly could not be matched by standard commercial apparatus, as the earlier

research had shown. 3 1

On the other hand, even this unsatisfactory apparatus was capable of supplying infor-

mation on certain specific features of the feedback systems, some of which were not

mentioned heretofore in published analyses or experimental data. In particular, it was

possible to show distinctly the existence of the feedback threshold, and to investigate

the differences of system behavior with the two types of threshold; the postulated simi-

larity of the conventional threshold with the loop open and closed was also evidenced.

The system noise threshold as a function of the feedback factor was examined and it

checked qualitatively with predictions resulting from our discussion in Section 10 and
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other analyses. 14'Z4,8 Finally, some observations were made with respect to the com-

position of output noise and occurrence of noise clicks.

In spite of the limitations in the experimental apparatus, it was still possible to obtain

data confirming the analytical inferences, and to isolate certain aspects that require

further investigation.

14. Summary of Experimental Results

After preliminary investigation of the stability of the system, it was found that a

stabilizing zero in the feedback filter would be of value. The structure utilized in the

experiments was, for the most part, of the "1 pole-i zero" type (see Table 3). The pole

location was determined by the time constant of the lowpass filter in the ratio detector,

and was found to be located below 8 kc.

The bandpass I-F single-tuned filter bandwidth was made variable over the range

3 kc < b < 30 kc, where b/2rr denotes the (baseband negative real axis) location of its
2r

pole. The half-power bandwidth is then b/r, varied in the range between 6 kc and 60 kc.
b

The corresponding noise bandwidth is B = , so that we have 9.4 < B < 94 kc. A ref-
b

erence value of 2- = 8.5 kc, with B = 27 kc, was chosen in many of the experiments.

As for the output filter, electronically tuned sharp cutoff units with 24-db/oct slope

were used, usually with two of them in tandem. The cutoff frequency corresponded to

-I I B I fn

-- 0

0

-I0' -10

o
-20

_J
-o

> -30

_
I--

o -40

Cn

0 -
z -50
C,
5;
a: 10 100 1000

INPUT VOLTAGE [p.V]

0.24 24 2400 240,000

INPUT-CNR REFERRED TO THE BASEBAND ra

Fig. 16. Noise-quieting curves in open-loop (conventional) systems.
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Fig. 17. Conventional threshold in open-loop systems.

the baseband chosen for reference, and was varied from 3 to 5 kc. The general plan

of the experiments with corresponding values of parameters is presented in Table 4.

Experiment A. The first series of experiments was supposed to indicate the general

behavior of conventional FM systems, both with the original arrangement of broad I-F

filters and with the narrow single-tuned filter of variable width. Both the noise-quieting

curves (Fig. 16) and the SNR-performance curves (Fig. 17) show a well-pronounced,

sharp knee, indicating the conventional threshold. The location of the threshold

expressed in terms of the input carrier power, CT (or the corresponding CNR in a fixed

band, ra, T) depends, as expected, on the I-F filter bandwidth. This relation is stronger

than linear in accordance with the analysis presented in Part A. On the other hand, the

threshold location expressed in terms of the demodulator input carrier-to-noise ratio,

rT, should show only a slight dependence on the bandpass-filter width; evidence of this

was not clearly observed, probably because of inaccuracies in the determination of the

bandwidth, B.

Experiment B. In the second series of experiments, feedback systems exhibiting only

the conventional threshold were carefully investigated with the loop open and closed. It

was repeatedly shown (with three different combinations of bandpass and feedback fil-

ters) that the system performance as measured by the SNR does not depend on the feed-

back factor (up to a certain value, Fmax, as expected) (see Fig. 18). On the other hand,
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Fig. 18. Conventional threshold with open loop and closed loop.

there is some change of shape below the threshold of both the noise plot and the signal

plot after the loop has been closed. One of the examples (Fig. 19) shows interesting

evidence for the conjecture of Baghdady,l4 that the feedback augments both the weak

signal and the strong noise in the threshold region. Thus, even with the threshold loca-

tion unshifted and the SNR below conventional threshold unchanged, we can distinguish

some differences in the behavior of the system: specifically, the below-threshold signal-

to-noise ratio is now formed as a ratio of two quantities, each of which changes faster

than it does with the loop open.

Experiment C. Subsequently, the closed-loop or feedback threshold was examined in

systems in which it predominated over the conventional threshold. In qualitative agree-

ment with Enloe's results, the system threshold in this case was degraded by the feed-

back (Fig. 20). The amount of degradation was found to be somewhat larger than

expected; this can be attributed to deficiencies in both the analysis (second-order effects

neglected) and in the instrumentation (parasitic phase shifts increasing the closed-loop

noise bandwidth).

Experiment D. It was clearly observed that the performance breakdown at the feedback

threshold is much more abrupt than at the conventional threshold, Thus, the measure-

ment of output noise power with the loop open and closed suffices to determine what type
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Fig. 21. An experimental method of recognizing the type of threshold in a feedback
system. (O denotes the knee on the SNR performance curve.)

of threshold predominates in any feedback system. This is distinctly visualized by refer-

ring to Fig. 21, in which the sharp breakdown corresponds to the feedback threshold.

The onset of the feedback threshold is also clearly visible when the output noise is moni-

tored on the screen of an oscilloscope. Much larger relative amplitude of the noise

spikes as compared with the Gaussian-noise background seems to confirm the conjecture

about regeneration of at least one noise component in the loop.

Experiment E. It appears, therefore, that the onset of the impulsive noise is a good

indication of closed-loop threshold in the feedback system. In fact, this onset is still

sufficient to indicate the location of threshold with a smaller feedback factor, one not

large enough to make the feedback threshold predominate. To supplement this obser-

vation, we made a rough estimate of the threshold as a function of the feedback factor,

where threshold is defined by the occurrence of one noise impulse per second (on the

average). No other parameter of the system was changed during this experiment, and,

accordingly, we should have expected (and, in fact, observed) two distinct regions: one

of substantial independence, and the other of pronounced dependence. Moreover, the

transition region is of great interest for the system synthesis, and is also observable

in the plot of Fig. 22.
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Experiment F. The final part of the experimental program was concerned with the

character of noise in the vicinity of the threshold. In order to show quantitative evidence

of the character of output noise, we need a time or magnitude measure to define that

o

O1

IF

2 3 4 5

FEEDBACK FACTOR F

Fig. 22. Dependence of the location of threshold on the feedback factor.

which we choose to call an impulse. A level (amplitude) selection was chosen in order

to separate the impulsive component. Since the measurement of the total power of out-

put noise cannot tell the distinction between different types of noise, some measure is

also needed to indicate the intensity of the impulsive noise. In accordance with Rice's

analysis, the average number of noise clicks per second is a convenient measure for

the intensity because this number is directly proportional to the average impulsive noise

power: This relation holds, provided that the probability of clicks is small enough to

insure the independence of the individual impulses in the train.

A proper amplitude selection was obtained by adjusting the counting level with the

counter so that the contribution from the Gaussian and quasi-Gaussian output noise would

be negligible. In accordance with the customary procedure, this selection level was

related to the standard deviation aC of the Gaussian component, as determined from the

true rms voltage measurement. The above-threshold Gaussian output noise level was

linearly extrapolated below the threshold and the rms value 3 was chosen for

counting level. Since the speed of the available counter exceeded by far the I-F filter

bandwidth, all noise clicks with amplitude above the 3- level were counted (during a

10-sec interval). In order to indicate the striking difference in the onset of impulsive
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noise, this experiment was performed with the system exhibiting the feedback threshold,

and then with the same system with the loop open. The results are shown in Fig. 23,

and lead to the conclusion that the frequency-compressive system cannot operate satis-

factorily near its feedback threshold. The regenerative feedback impulses are very

sharp, and therefore contribute little power to the total amount of output noise. But the

number of clicks per second in the closed-loop case becomes objectionable at a carrier-

to-noise ratio a few decibels above the knee of the SNR curve (see Fig. 23).
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