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Abstract

This report is concerned with the extension of known bounds on the achievable proba-
bility of error with block coding to several types of paralleled channel models.

One such model is that of non-white additive Gaussian noise. We are able to obtain
upper and lower bounds on the exponent of the probability of error with an average power
constraint on the transmitted signals. The upper and lower bounds agree at zero rate
and for rates between a certain Rcrit and the capacity of the channel. The surprising

result is that the appropriate bandwidth used for transmission depends only on the
desired rate and not on the power or exponent desired over the range wherein the upper
and lower bounds agree.

We also consider the problem of several channels in parallel with the option of using
separate coders and decoders on the parallel channels. We find that there are some
cases in which there is a saving in coding and decoding equipment by coding for the par-
allel channels separately. We determine the asymptotic ratio of the optimum block-
length for the parallel channels and analyze one specific coding scheme to determine the
effect of rate and power distribution among the parallel channels.
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I. INTRODUCTION

The basic task of the communication engineer is to design systems to transmit infor-

mation from one point to another, and the way he goes about designing the system

depends largely on the nature of the information and the transmission channels avail-

able. The output of a physical channel is never an exact reproduction of the signal

that was transmitted; there is some distortion introduced by the channel. The system

designer must search for a way to minimize the effect of this distortion on the relia-

bility of transmission. This is done through some sort of processing at the transmitter

and receiver, where the effectiveness of the processing is reflected in the resulting

error in information transmission, as distinct from the channel distortion.

In order to speak quantitatively about the error in the processed output it is neces-

sary to define some way to measure the error. The type of measure that is used will

depend largely on the form of the information to be transmitted. If it is digital infor-

mation one usually speaks of the probability of error, which is defined as the proba-

bility that the processed output is incorrect. When the information to be transmitted

takes on a continuum of values we know that we cannot possibly hope to reproduce it

without some small error, and hence some measure other than Pe is needed. In some

cases one uses mean-square error.

[s(t) - s(t)],2

where s(t) is the correct output. The mean-square error is not the only measure that

can be applied to continuous signals, although it is probably used more often than it

should be because it is so easy to work with. In speech reproduction, for example,

mean-square error has little correspondence to any subject measure of quality.

Shannon 2 2 has considered the problem of a discrete representation of a continuous

source. For a given continuous source and any reasonable measure of distortion, he

defined a certain rate corresponding to each value of distortion, D. He found that the

continuous source could be transmitted over any channel having a capacity larger than

R with a resulting distortion equal to or less than D. Conversely, he showed that the

source could not be transmitted over a channel having a capacity less than R without

the resulting distortion being larger than D.

We can use Shannon's result to show than any continuous source can be represented

by a discrete source of rate R, such that the continuous signal can be reconstructed

from the discrete signal with a distortion equal to or less than D. To show this, we

take as the channel in Shannon's results an error-free discrete channel with capacity R.

The input (or output) of this channel is the discrete representation that we desire.

For the purpose of analysis, any continuous source can be represented as a discrete

source, with a certain distortion D. This source is then transmitted over the channel

with an arbitrarily small Pe, and the continuous signal reconstructed at the receiver
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with a resulting distortion only slightly larger than D. The problem of transmitting

continuous information can therefore be broken down into two parts: the representation

of the continuous source as a discrete source with an implicit distortion D, and the

transmission of the discrete information. In addition to the generality of the discrete

representation of continuous signals there is a growing trend in the communication

industry to convert continuous sources into discrete sources by sampling and quantizing,

primarily to facilitate multiplexing. In any event, the discrete source is an important

one in its own right, because of the recent increase in digital data transmission. For

these reasons, we shall consider only discrete sources in this report.

The case of the discrete source was considered by Shannon. 17 He showed that as

long as the rate was less than the capacity of the channel one could obtain an over-all

Pe as close to zero as one desired by coding and decoding over a sufficiently long block

of channel digits. The capacity of the channel is defined as the maximum mutual infor-

mation between the input and output of the channel per digit, and the rate, R, of the

source is the entropy of its output.

The Pe which Shannon was concerned with was the probability that at least one letter

in a block of source letters was decoded incorrectly, rather than the probability that

any single source letter was incorrect. Therefore the block Pe is an upper bound for

the individual Pe, since a block is considered to be correct only if all of the letters in

it are correct. When we refer to Pe for block coding we shall always mean the block Pe'

For rates above capacity Shannon showed that one could not make Pe small, and

Wolfowitz 2 3 showed that Pe actually approached 1 as the blocklength was increased.

Below capacity, Feinstein showed that Pe was upper-bounded by an exponentially
5

decreasing function of blocklength. Fano5 developed a sphere-packing argument to show

that Pe was also lower-bounded by an exponentially decreasing function. For this reason,

the reliability function is defined as the limit of the exponential part of Pe

-ln P
E(R) lim sup N (1)

N-oo

where N is the blocklength. The usefulness of E(R) lies in the implication of (1)

P • e -N[E(R)-E]. (2)

For every e > 0 there is a sequence of N approaching cc for which (2) is met. Upper

and lower bounds on E(R) have been calculated by Fano, and it was found that they

agreed for rates larger than a certain rate called Rcrit.

Gallager 8 has produced a simple derivation of the upper bound on Pe and improved

this bound at low rates by an expurgation technique. He has given a rigorous proof 21 of

the sphere-packing bound and Berlekampl has found that the zero-rate lower bound is

exponentially the same as the upper bound. Shannon 2 1 and Gallager found a straight-

line bound to connect the sphere-packing bound to the zero-rate bound.
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The reliability function is not limited to discrete channels. One can include amplitude-

continuous, time-discrete channels by approximating the continuous channel by a

quantized discrete channel. If the E(R) of the quantized channel converges as the quan-

tization is made finer, that limit is called the E(R) of the amplitude-continuous channel.

Rice, 16 Kelly,l3 and Ziv 2 7 have considered the amplitude-continuous channel disturbed

by Gaussian noise. They showed that one could obtain an exponential Pe by using signals

chosen from a Gaussian ensemble.

Shannon 19 derived upper and lower bounds on E(R) with additive Gaussian noise and

an average constraint that agreed above Rcrit. In order to do this, he constrained all
8

of his signals to have the same energy. Gallager considered the same problem but

constrained the signals to have energy within of the average energy. He got the same

upper-bound exponent as Shannon, but was able to get a better bound at low rates by an

expurgation technique. Shannon found that the upper- and lower-bound exponents agreed

at zero rate, and Wyner26 has found an improved bound for small rates.

Shannon 19 observed that, by the sampling theorem, a time-continuous bandlimited

channel with additive white Gaussian noise is equivalent to the time-discrete Gaussian

channel just mentioned. This concept can be made rigorous by the use of the Karhunen-

Loeve theorem, as is done in Section I. The Karhunen-Loeve theorem can also be used

to consider non-white Gaussian noise. This was done by Holsinger. 11 He introduced

the power constraint by using a multidimensional Gaussian signal with a constraint on

the sum of the variances. He derived an upper-bound exponent that was only slightly

inferior to Gallager's for the white noise bandlimited case.

The work done for the continuous-time channel indicates that Pe can be made expo-

nential in the time duration, T, of the transmitted code words; in other words, T takes

the place of N in relating E(R) to Pe. Thus in this case we define

-In P
E(R)-= lim e

TT-oo T

The tightest known bounds generally fall into one of 5 important classes; two upper

bounds and three lower bounds as shown in Fig. 1 and tabulated in Table 1. The upper

bounds are the random coding bound and the expurgated bound which together are the

tightest known upper bounds. The three lower bounds are the sphere-packing bound, the

minimum-distance bound, and the straight-line bound. Together these are the tightest

known lower bounds.

Here we are primarily interested in the problem of parallel communication

channels. By parallel channels we mean a communication system or model (similar to

that shown in Fig. 2) where the distortion introduced by each channel is independent of

the signal and the distortion in all of the other channels. Gallager 8 has considered this

problem when the channels are fixed and the same blocklength is used on all of the

parallel channels, i. e., input letters are chosen from the product alphabet of all channels.
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Fig. 1. Typical E(R) bounds.

Table 1. Five classes of bounds and references to presentations.

Time-Discrete
Channel Discrete Constant Gaussian Noise

"ower Constraint

Upper Bounds Shannon 19 Shannon2 0

Fano 5
Random-Coding Bound Gallager8Gallager

Expurgated Bound Gallager 8 Gallage r 8

Lower Bounds Fano5

Shannon 2 0

Sphere- Packing Gallager

Minimum- Distance Elias 4 (BSC) ShannonZO (zero rate)

Berlekamp (zero rate) WynerZ6

Straight- Line Shannon and GallagerZ1

4
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Fig. 2. Model to be analyzed.

We are interested in problems with an additional amount of freedom. In Sections I and

II, we analyze the combination of parallel channels, each with additive Gaussian noise.

In this case the crucial problem is the distribution of the signal power among the paral-

lel channels. By the Karhunen-Loeve theorem the time-continuous channel with additive

Gaussian noise and an average power constraint can be analyzed in this class of paral-

lel channels. We are able to find the five upper and lower bounds already mentioned

for this channel. The upper bounds are given in Eqs. 20, 21, and 30, and the lower

bounds in Eqs. 47, 61, 62, and 64.

The function E(R) gives the relationship between the blocklength and Pe, but it tells

nothing about how to implement such a coder and decoder. For practical purposes, the

amount of equipment needed to code and decode is of paramount importance. As long as

one has only a single channel, one must choose a sufficiently large blocklength to meet

the desired Pe and then must build a coder-decoder to operate at that blocklength. If

one has several channels in parallel and is willing to use different blocklengths on the

channels, one must have some relation between blocklength and cost before any analysis

is possible. For this purpose, we introduce a complexity function that is a function of

the channel, the coding scheme, the rate, and the blocklength. It relates the complexity,

or cost, in logical operations per second to all of the variables listed above. We can

then vary the rates and blocklengths on the parallel channels, subject to constant total

rate and total complexity. We find that there are many cases in which there is a small

advantage in using different blocklengths on parallel channels. It is also possible that

one does not have the opportunity to use composite coding. For example, if one is

working with networks of communication channels, the intermediate terminals are not
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able to do any decoding unless they receive the entire block. On the other hand, the

intermediate terminals cannot receive entire blocks unless separate coding is used on

each channel in the network.

We have considered in detail one particular coding and decoding scheme for which

the complexity function is known. This scheme has two stages of coding, an inner coder

with a maximum-likelihood decoder, and an outer coder using a Reed-Solomon code.

The maximum-likelihood inner coder-decoder is only practical in a limited number of

situations, but the results of the analysis may be indicative of what may be expected from

other schemes.

We have considered the problem of power distribution with fixed blocklength, and the

problem of rate and blocklength distribution with fixed power. It is possible that we may

have to choose both of these distributions at once. The formulation of this problem does

not lead to an analytic solution, bit it appears that the solution is not significantly dif-

ferent from that without blocklength freedom. This is to say that composite coding over

all the parallel is a fair first-order approximation, insofar as Pe is concerned, to

separate coding with the optimum rate distribution.
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II. CHANNELS WITH ADDITIVE GAUSSIAN NOISE

We are now concerned with channels with additive Gaussian noise. These can be

time-discrete channels or continuous channels with colored noise. By suitable manipula-

tion we can even analyze channels that filter the signal before the noise is added. The

entire analysis is made possible by the representation of signal and noise by an orthog-

onal expansion to which some recent theorems 8 ' 21 on error bounds can be applied.

We shall begin by considering a channel that has as the received signal the trans-

mitted noise signal plus stationary Gaussian noise with autocorrelation function R(T).

Suppose one is interested in the properties of the channel under the conditions that the

transmitted signal be of duration T seconds and that the receiver make its decision about

what was transmitted on the basis of an observation of the T-second interval. Then a

very convenient representation of the noise in the channel is given by the Karhunen-Loeve

theorem.2 This theorem states that given a Gaussian noise process with autocorrelation

function R(T) the noise can be represented, in the mean, by the infinite sum

00

n(t) E nifi(t),

i=l 1

where the i(t) are the eigenfunctions of the integral equation

0T R(t-T) i(T) dT = Nii(t); 0 t T

and the coefficients n. are Gaussian, independent, and have variance Ni. The eigenfunc-

tions being orthonormal also make a convenient basis for the signal. In this representa-

tion there are two problems which must be eliminated if one is to get anything other than

trivial solutions. First, the set of Si(t) should be complete in some sense. If it is pos-

sible to send signals which have finite power and are orthogonal to the noise, these are

clearly the signals to use. Thus for all interesting problems R(T) is such that the set

fi(t) is complete over square integrable functions (that is, L 2 functions). Second, we
would like to consider cases for which R(T) is not in L 2 , as required by the Karhunen-

Loeve theorem. It turns out that if R(T) is in L 2, some of the Ni are arbitrarily small

(that is, 0 is a limit point of the Ni). Therefore the corresponding eigenfunctions are

ideal signals. There are various ways out of the difficulty and the one used here is prob-

ably not as powerful as some others, but is easily visualized and analyzed. One merely

observes that if R(T) consists of an impulse minus an R' (T) in L2 , the associated integral

equation has the same eigenfunctions as R' (T) but now the eigenvalues are N - Ni., where

N is the magnitude of the impulse, and N! is an eigenvalue of R' (T). Now some of the
0 1

Ni are not arbitrarily small but instead approach No . Since in any real problem all

eigenvalues, being variances, must be positive, No must be larger than the largest

eigenvalue of R' (T). Now one only requires that R' (T) = NO,0 o(T) - R(T) be in L2. Another
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reason for using this approach can be seen from intuitive reasoning. One would expect

that a good signaling scheme would concentrate most of its power where the noise is

weakest. Therefore any representation that allows noise power to go to zero even in

remote parts of the spectrum will be self-defeating. Since the least noisy part of the

noise spectrum is the part most intimately involved in the analysis, it is a good idea to

have a simple expression for it.

Now that the noise and signal can be broken up into orthogonal parts and represented

by a discrete set of numbers, we can represent the channel as a time-discrete memory-

less channel. For any time interval T we have an infinite set of eigenfunctions that can

be used as the basis of the signal, and the noise in each of the eigenfunctions is independ-

ent.

00

n(t) = nnn(t),

n=l

oo

x(t) = xnnn(t).

n= 1

The received signal y(t) is the sum of them, or

co

y(t) = (nn+Xn ) n(t)
n= 1

Thus far, we have reduced the channel to a set of time-discrete channels each with

independent Gaussian noise and each operating once every T seconds, one for each

eigenfunction (see Fig. 2). The noises are not independent from one T-second interval

to the next, but we do not need this.

Because of the parallel channel representation we have an implicit blocklength of one.

Consequently, the parameters E and R will differ by a factor of T from those already

defined; in other words,

R = ln M

E = -ln Pe

S = TP.

There are other ways of dealing with colored Gaussian noise and frequency con-

straints on the signals, but all of them eventually reduce the channel to a set of parallel

Gaussian noise channels. Our results apply equally well to any of these cases.

Before going on to the bounds on the error probability we shall point out the other

channels that reduce to this representation. Any number of time-discrete channels in

parallel with additive Gaussian noise can be represented by making T an integral

8
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Fig. 3. Conversion of filtered channel to colored noise channel.

multiple of the period of the channels. The multiplicative integer is known as the block-

length in the standard approach. This is a more general representation of time-discrete

channels than the one considered by Shannon,20 since it allows the parallel channels to

have different noise levels.

The other case that can be reduced to this representation is that shown in Fig. 3.

This can be redrawn as in Fig. 3 and one has the original problem, except that now there

is a filter before the receiver. The filter does not change the problem because any part

of the signal that will not go through the filter will not go through the channel, and conse-

quently will not be used by an optimum coder.

2. 1. UPPER BOUND TO THE ATTAINABLE PROBABILITY OF ERROR

Gallager 8 has considered the problem of coding for the general noisy channel in which

there is a probability density of output signals, given any input signal, P(y/x).

In order to obtain a P(y/x) for our model, we need to limit the vectors x and y to a

finite dimensionality. This is also necessary for certain theorems that we shall use

later. Therefore we shall solve the finite (N) dimensional problem and then let N - oo.

It turns out that sometimes the codes only use a finite dimensional x. When x is limited

to a finite dimensionality we can ignore all coordinates of y which result from noise

only. They are independent of the signal and the other noise; thus they cannot aid in the

decoding.

The bound obtained is a random coding bound and operates as follows. The trans-

mitter has a set of M code words each of which are chosen independently and randomly

from the input space x according to a probability distribution P(x). This defines an

ensemble of codes; hence the name random code. Henceforth we shall write P(x) as P

for notational simplicity but it should be remembered that P is a function of x. One of

the M code words is selected for transmission by the source.

The receiver, knowing what all M possible code words are, lists the L most likely

9



candidates based on the received waveform (y). We define the probability that the trans-

mitted code word is not on the list as P e. In Appendix C we outline a proof that Pe

averaged over the ensemble of codes is bounded by

P < exp -[Eo(p,P)-pR] (3)e 0-

for any 0 p < L, where

M
R = in 

and

E (p,P) = -ln
0 -

1 l + p

Pp(y/x) 1+ dxp
x/

Since Pe is the average Pe over the ensemble,

ensemble with P < P
e e

There is no particular reason for making L #

ficulties and adds a little insight on how much the

L larger than 1. In our model we have

N
P(y/x) = II P(Yn/xn) =

n=l rn

there must exist some code in this

1, except that it brings in no added dif-

bound on Pe can be improved by making
e

(yn-xn)2
N exp - ZN

n
11
1=1

(5)
/2'iTrN n

The integrals in (4) are carried out over the entire input and output spaces.

In order to introduce an average energy constraint on x, we shall use a P which is

zero for IxI2 greater than S.

In order to get a strong bound on Pe, we need to eliminate many of the signals with

small energy and thus use a P that is zero for IxI2 less than S - 6, when 6 is a small

number to be chosen later. This is done by taking a multidimensional Gaussian proba-

bility density

2
x

nN exp 2Qn
P (x)= IT

g n=l Z-Q n

where the variables Qn will be determined later, then confining x to a shell by multi-

plying P (x) by (x), and renormalizing

N

-1 . x2 -S < 0o
X) n= 1

; otherwise

10
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Therefore we have

P = P (x) (x), (6)
qg 

where

q = Pg(X) (x) dx.

X

We have now obtained the shell-constrained P, but it is difficult to evaluate the inte-

gral of (4). We observe that if we have a function

w(x), > (x) (7)

for all x in the input space we can substitute -w(x) P (x) for P in (4) and still have a

bound on Pe. We therefore choose w(x) to be factorable as pg(x) is and to have a

Gaussian shape for ease of integration.

w(x) = exp r x2 _rS + r (8)
x n

in which the quantity r is an arbitrary non-negative number that will be specified later.

Equation 7 is met for any x, since w(x) 0, and for those x for which (x) = 1,

N

x, n S - .

n=1

Thus the exponent in (8) is non-negative, and w(x) a 1. Consequently, we can substitute

Eqs. 6 and 7 in Eq. 4 to get

Xn 2 (Yn-xn)2

-Sr+6r +P N n 2 n - n 

Eo(p,P) aN -n q dxn dy

Yn xn 2Q ( ) 1+p

Upon completing the square in xn , this becomes

Eo(p,P) (l+p) n q + (l+p)(S-5)r
0N 

N

- Zln 
n=1 Yn

yn( 1-ZrQ r
exp - I

2 [Qn+(1+p)Nn( 1

+p

dyn,

11



and completing the square in n', we get

N

Eo(p,P) (l+p) in q + (l+p)(S-6)r - In

n= 1
-- * r -- .. >

(9)

At this point it is best to examine the quantity (l+p)(ln q - 6r). It is necessary that this

quantity grow less than linearly with T so that when the exponent is divided by T the

effect of this term will vanish. There are several ways that this can be done, but a suf-
N

ficient condition is that the probability density of the function Z x2 have its mean
n= 1

within the range S - 6 to S, when x is distributed according to pg(x). This is accom-

plished by letting

N

Z·. S. (10)E Qn = S. (0)
n= 1

If 6 is fixed at an appropriate value it is shown in Appendix B that q decreases only

as 1/4-I.

By substituting (10) in (9), and (9) in (3) we can write

P < B exp R- % (+)Qn prn ( I~e~~ (l p)Qnr +2 In (1-2rQn) + 2-ln 1 - 2rQ + Q ]
n=l (1+p)Nn

He 6\ +pwhere B I e] . The problem has now been reduced to minimizing the quantity above,

subject to the constraints

N

Qn= S, Qn > 0, r > 0, O p L.
n= 1l

The factor B will not be included in the minimization because it is hard to handle, and,

as we have just pointed out, it does not contribute to the exponential part of P e. First

the minimization will be done with respect to r and Qn; in this case we need maximize

only

1 P QnFr(l+p) Qn +- 2 n (1-2rQn) + in 1 - rQn + (11)

We now introduce a new set of variables. Substitute n for rQn wherever it appears
14

in (11). This puts Eq. 11 in a form to which the Kuhn-Tucker theorem can be applied.

When we maximize over the sets pn and Qn we are doing so over a larger space than

12
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allowed (since pn/Qn = r for all n), but if the maximum turns out to fall within the allowed

subset, then it is still the maximum solution. Thus we wish to maximize

F(P, Qn, ) = l (1+P)n + l In (1-2pn) +-ln 2 

n =-Tucker theorem states that a jointly concave

The Kuhn-Tucker theorem states that a jointly concave

the constraints

(i+p) Nn

function is maximized subject to

N

Pn , Qn> 0, Qn = S
n= 1

if and only if

aF
aQ-F A; equality if Qn 0

aF
--aF 0; equality if p n # 0,
apn

where A is chosen to meet the constraint on the sum of the Qn' Taking these deriva-

tives, we obtain

(1+P)Nn

Qn
+ 1 - 2,

(1+p)N n

< A; for all n

1 -2 P -Z
(l+p) + + Q

2 1 - Zpn 2 Qn
+ 1 - 2pn

(1+p)N n

-< 0; for all n.

First we note that if Qn = 0, then by Eq. 13,

-2pn-z~n
(l+p) 1 2 n 

If pn 0, then we must have equality and wn = 0; consequently, pn must equal 0. Thus

if Qn = 0, then pn = 0. On the other hand, if pn = 0, (13) gives

p
(l+p) - 1 - Q 0,

+1
(1+P)N n

or

13

p
2 (12)

(13)



(1+P)N n

but since (l+p)Nn > 0, and Qn 0,'

Qn = O.

Consequently, Qn and n are either both zero or both nonzero.

Both Eqs. 12 and 13 then will be met with equality when Pn # 0. From Eq. 12 we

have

P_ 1

2 Qn
+ 1 - n

(1+P)N n

= (1+p)NnA.

Substituting this in (13), we have

1
I+P 1 2 p 2(l+p) NA = 0,

or

1 -p (1+p)(1-2N A).
1 - 2P in (12), we get

Substituting this in (12), we get

p NP Nn 1
Qn =2A 1 - 2AN = 2A

n
1 + 1 - IA)

while from (14) we get

1 1

2 (l+p)( l-2ANn )

1 1 -2(l~)1 + - 1 - 2AN 
(+p) {n

Therefore

In A
r Qn 1 + p'

and maximizing over the larger set of variables 1n and Qn yields a maximization to the

original problem. From Eq. 12 we have

1 - 2pn 2ANn(l+p) < O

or

1 - (l+p)(1-2ANn); equality if n 0.1 -2Dn

14

(14)



Because of the limitation Pn 0, 10Ž I 1, the equality can be met only when

(I+p)(l-ZANn) 1;

P
thus, for all Nn - ' , Pn = 0, and Qn = 0. If we call Nb the boundary value of Nn,

2A(l+p)
P

Nb = , we can say that for all Nn < Nb
2A(l+p)

Qn= A (1 + P 1 - 2ANl~~p 2An

(l+p) (Nb-Nn )

N
+ p - P N

Nb

A P
2Nb(l+p)2

and for all Nn Nb,

Q = 0.n

N

S= Qn =

n= 1

i ( 1(+p) (Nb-Nn)

Nn<Nb 1 + p- PNb

with Nb determined by S according to Eq. 16.

For notational convenience, we shall write the sum over all n such that Nn

the sum over the set n .
0

Using (15) and (16), we can now write

(16)

< N b as

(15)

-PN

I o

Nb + P(Nb-N n )
NN 

Nn + p - p Nb

The exponential part will be minimized over

be simplified to

ln
P 

n
0

P 1
n

0

p, for fixed R and S. The last term can

Nb
ln

n

thereby giving

Pe < B exp -E(p, NbS, R),

15
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E(p, Nb, S,R) = - I ln 1 + p- p +Nb -
(+p)b no no

b o n

Since S is to be constant, we can use the expression for S (Eq. 16)

tion between Nb and p. Then

dE aE 3E dNb
dp - ap aNb dp

Taking these partial derivatives, we have

aE -pS
aN 21p 2

aNb Z(l+p) Nb

as the defining rela-

N
n

P N2
1 b P 1

2 , N 2 N
no 1 + P P N nO

b

-pS + p (l+p)(Nb-Nn)

b 
o Nb

To be precise, we need another term in E/aNb to account for variations in n with

Nb. This term is zero, as can be seen by assuming that the summation is done over all

n but that the argument is zero for Nn > Nb. Now when we take the derivative with

respect to Nb, the zero terms contribute to nothing.

Using (16), we obtain

aEaNbaNb =

aE S

aP 2(1+p)2 Nb

N
1

N1 Nb- 1 bN_+ 1 In _ R
n l+p-p n n

o gb n

S
2 (1+p)2 Nb 2(1+p) Nb n

0 "

(l+p) z (Nb-N n )

N
1 + p - p n

b

By using Eq. 16 again, this becomes

8E 1 N
aE _= ln N- R.Op - N n

o

dEThus when one sets -- = 0 one obtains
dp 

16

N b
in Nb_ pR.

n

Nb+ - ln -R.
Nn

n
o

(17)



R=t-

n
o

In
n

Therefore

PS 1 N 
E= - - I n +P-p .

2(l+p) Nb nb
b On

For a given R

show that Eq.

is positive for

tionary point.

the stationary

dNb

dp -

and S, Nb is determined from (18), p from (16), and E from (19). To
dE19 yields a maximum for E over p, we need only show that dE (Eq. 17)

p less than the stationary point and negative for p greater than the sta-

Since (17) is monotone in Nb and passes through 0 at Nb corresponding to

dN
point, we need only show that dp < 0, where Nb and p are related by (16):

(Nb-N) + p n

(NO (1 + p - P +b n Nb N

< 0,

n
o

' 'b/

(+P)(l + P[ Nb)

+ P Nb 
(1+ _ Nnb 2

which proves that the stationary point is the maximum.

We now write (19), (18), and (16) in parametric form, these three relations being the

derived bound.

pS 1 / N\
E(Nb' P) 2 Nb

2(l+p) Nb n
o

R(Nb, p) = ln Nb
n n

o

S(Nb, P) = (l+p)2 (Nb-Nn)

no 1 + P - P N
0 Nb

(20a)

(20b)

(ZOc)

There is a restriction in Eq. 3 that 0 < p < L, and this restriction also applies to

Eqs. 20; therefore the maximization of E over p must be done with 0 < p < L and if the

17
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stationary point (Eq. 20) requires that p > L, then E is maximized with p = L. This

results in the parametric equations

E(N ) LS - 2 ln 1 + L- L Nn+ innb- LR

o o

S(Nb) = (L) ( Nb-Nn )
n

n I+L-L- n

o N~b

(21a)

(2lb)

Now consider what happens as N - oo. If we order the Nn so that Ni < Ni+l we shall

either reach a point where further increase in N just adds channels with Qn = 0, or not.

If we do, there are no problems in calculating S, E, and R, since additional Qn will con-

tribute nothing.

N
0

Nb

N.
1

_I 6IIILLI
E

i
v

S

6
N

r

Fig. 4. Figure for limiting argument.

If we never reach such a point, we can use a limiting argument to get the solution.

We use up some of the energy by setting Nb = N - E. As E - 0, S, E, and R converge

to S1 , E 1 , and R 1 for any p (see Fig. 4). An additional amount of energy S2 is uni-

formly distributed over S2/6 additional channels, where No > Nn > Nb , with No a limit

point of Nn . Each of these channels receives a signal energy 6. If we upper-bound the

18
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noise in these channels by N o, we will only increase Pe and thus still have a bound. We

can write for these channels

S2 (1+p)(N'-No)
S2 = N\ (22)

6 + P -

S N'R -
In Nb

2 26 NN 0

Z(l+p) Nb

b 6-0 o

0

We let E and 6 both approach zero, thereby making N o, with the following

results:

S= S1+ S 2 S2 = S-S 1

S2 S - S1R = R 1 +R R + =R +
2 1 2(1+p) N 1 2(1+p) N

0 0

E = E1 + E2 = E 1

2.2 EXPURGATED BOUND

At low rates, Elias, 4 Shannon, 2 0 and Gallager 8 have used various expurgation tech-

niques to lower the random-coding upper bound on the achievable probability of error.

We shall use a variation of Gallager's bound here because it is the tightest one and is

applicable to a Gaussian channel.

Gallager's bound is generalized in Appendix C to a decoded list of L signals.

-[Eo (p)-pR]
P < e , (23)e

19



for any p L, where

R = In 4eM L -- in L,
P

EO(p) = -ln

x-m -mL

(& [P(Y/m)

y

( . L/p
... P(Y/x)]L+l dY) dx ... dx

-m -mL

for any p > L.

In order to apply this

techniques as before; the

is constrained to a shell

We write

-rS+6r N
P(xi) < e II

i q n= 1

to a colored Gaussian channel, we use the same bounding

density P(x), which is the same for all P(Xm), P( )mi)

and bounded by a Gaussian function as in Eqs. 6 and 8.

exp +i, n )

12iQ n

We can replace S by Z Qn and bring the rQ n inside the product.

P(y/xi ) is a multidimensional Gaussian density as in (5). To simplify notation,

denote x by x and x by x i. Then from (24)-m -o - -
1

L+1

e L 
Pe -< )

where now

NP X
E(P) = - L 

n= l 

exp[-Ee(p)+pR]

In 

XO,n XL, n

Yn

L 2 L

exp - (Yn-Xi, n )2

i=O 2Nn(L+1) 
n dy dx0, n dL, n'

The integral over Yn in Eq. 25 is

20
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(Yn-Xi, n)2

2Nn(l+L)

e 1I dYn =

( 2rrNn)L+l

Z L
Yn Yn

ZNn (L+1)Nn i nn i=O

n

Therefore the larger integral over all x n'

XO,n XL, n

2
x.

i, n L

n- + i xZ. r
n i,n n

i=O

L

- (+L)rnQ n +

L

L Zx

i=O0

dxn ,

can be converted into the form of a multivariate Gaussian density:

L

j=OxO, n XL, n

10l
L

2101 i=o
.xi. xj, 

1,J ,n Jn dxo n dXL, n0,n** L, n

exp[-(L+l)rnQn]
L+1

(Z.rQn) 2

where is the determinant of the correlation matrix, and g i j is the cofactor of the

i, j entry. We have

L
Nn- 2L+Z;

pN (L+1)
for i j

1 - r - L + L =
Qn n pNn(L+1) pNn (L+ 1)Qnn- z n n+) 

1 _ L__ _2
- Zr +

n2'
Qn n pN (L+1)

21

L
II

i= 0S
Yn

Y
Yn

L
1

2(L+ 1)n i=On =

2n)
i,

dYn

= exp

, expt

J
Yn

NIZiTrNN
dyn .

2

leli,j 

I 9 I i = j.

I



The integral is just

1+L -(1+L)r nQn

(21r) 2[1 1[1/2 e I 1+L

(2rQ)2

consequently, we need calculate only 1/2. The expression is just the element

of the inverse matrix and, since the determinant of the inverse matrix is the inverse of
the determinant, the solution is easy. A matrix of order 1 + L with "a" on the diagonal

and "b" off, has determinant (a-b)L (a+Lb). Thus

1

rn L [ 2rj
N n (1+L

The integral becomes

-(l+L)rnQn
e n

LQ 1L/2
1

- ZrnQn + nL
nIn pN (l+L) I

L~-~ n i

[1-2rnQn]1/2

p(L+l)

Eo(P) = L -
n

rnQnn - 2rnQn + +- In (-2rnQn).
n Z (1 nn n n

nn +n 

Making the substitution n = rnQn , we have

p(L+1)
E = Eo(p) - pR = L -n In - +n LQnEI pn 2+ ~ In; ( + - I + iL n (1-2p ) - pR,

n n ( n

(26)

which must be maximized, subject to the constraints

N

pn , n > Qn >' Qn = S-
n=l

This maximization is done just as before, and gives the solution

22
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N)L - nb

n =

0;

L 2

r = 2
2p(l+L) Nb

Since

; for Nn Nb

otherwise

; for Nn Nb

otherwise

(27c)

2
rnQn = LN

2p(l+L) Nb

)B L2S

Qn Q.= +L 2

n ZpNb(1+L)'

we can substitute the solutions of (27) in (26) and write

E= LS + 
ZNb(l+L) n

0

Nb

ln 2L
n

0

ln 
N+L -pR.

+ L - L Nn _pR.
b)

Equation 28 must now be maximized over p, where Eq. 27a gives the relation

between p and Nb:

( p (+L) (Nb-Nn)
_ = _ ' N (29)

no L (1+L-LNN)
Consequently, we can write

Consequently, we can write

dE aE aE
dp Op ONb

dNb

dp

where dNb/dp is calculated from (29).

aE 1 
8p 2= 

n
o

Nb
n N

n
in + L - L # -RG~~N

23

(27a)

(27b)

(28)

I
N n

+ L -L -P"\-

ICn = 
n n

LL
-21 



N
n

aE _ LS N 

Nb nb Z(L+l)Nb no 1 +L--LNb no

The latter equality comes by substitution of the right side of Eq. 29 for S. Therefore

dE aE
dp - ap

Setting the derivative equal to zero, we have a stationary point at

R= 1 In b ln 1 + L - L n

n n
o 0 (30)

LSE
2Nb(l+L)

Again, the expression for R is independent of p and depends only on Nb.

To show that the stationary point of (30) is a maximum, we use the same procedure

as before; dE/dp is monotone in Nb.

d rdEl 1
dNbl dJ =ZNb IN

0

0,

and dNb/dp calculated from (29) is

Nb - Nn
i, N

dN no 1 + L - L N
b b < 0,

dp P

no 1 + L - L Nn

which proves that the stationary point is a maximum.

Because of the restriction that p L in Eq. 24, the same restriction applies in

Eqs. 29 and 30. This complements Eqs. 20 and 21 to fill out the entire range of p.

Detailed calculations show that the slope of the E(R) function for fixed S is -p for

all three equations (20), (21), and (30). It can be seen from the form of the equations

(3) and (23) that if a slope or dE/dR exists it must be -p, since one can operate anywhere

24



E

R

Fig. 5. Figure for derivative argument.

along the straight line of slope -p shown in Fig. 5. The optimum E(R) must lie

above this straight line in order to be an optimum and thus can only have slope -p

at R(p) and E(p).

2.3 ASYMPTOTIC EXPRESSION FOR E, R, AND S

In the bounds obtained here we have found parametric expressions for three quantities

R, S, and E, for any finite T. Because the three expressions are dependent on the set

Nn they will change as T is increased. Fortunately, as T - oo these three expressions

approach an asymptotic form. If we are to have an average power constraint, it would

be desirable if, for fixed p and Nb,

lim S = P,
TooTT-coT

and if we are to be able to transmit at some time rate Rt, it would be desirable if

lim = R
T-ooT t'

Such is the case, as indicated by the following theorem.

THEOREM: Given a noise autocorrelation function (R(T) and its Fourier transform

N(w) = (T) e- jwT dT,
-00

commonly called the noise power density spectrum, then the eigenvalue solutions (N i)

to the integral equation

25



ST
0

4i(T) A(t-T) dT = Nifi(t) 

have the property

oo

Z G(N i )
i= 1 oo

T-oo T oo
G[N(w)] dw,

if the integral exists, where G( · ) is monotone nonincreasing and bounded.

This theorem is proved in the appendix.

We observe that in the expression for R (Eq. 20b)

for x Nb

otherwise,

which is monotone nonincreasing and bounded as long as x stays away from zero; con-

sequently,

lim R 
T-o T -O

N (w) -Nb

N
ln b dw =

N(w)
Rt,

as long as N(w) is bounded away from 0. Also, in the expression for S (Eq. 20c)

G(x) =
x < Nb

otherwise

which is monotone nonincreasing and bounded; consequently,

S 1lim T= 1
T- 2oo 

N(w)-<Nb

(1+p) (Nb-N(w))

N(w)
1 +p-P Nb

bb

We have already defined the exponent as

sum over the eigenfunction channels has

G(x) =+ 

O;

Elim -
T-oo

The part of E which contains a

x Nb

otherwise

Consequently, we have

26
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n - 00

w 00

Note; S(w) = Nb - N(w) only when p = 0

Fig. 6. Solutions to the signal power-distribution problem.
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E P 1
lim =

T-oo (l+p) Nb4T--Qe 2(l+p) Nb

S (in 1 + P P N. ) dw.
N(w) <Nb

The expressions for the expurgated bound can be treated in exactly the same way,

to obtain

lim -
T-oo T - 4r

rnS 1
lim T - 2I
T-oo

N(w) -<Nb

N(w) -<Nb

In In L -L )dw,
N(w) L Nb

p(+L)2 (Nb-N(w))

/ -N(w)\
L1 + L - L- .)

b

dw = P,

E LP
lim T
T-oo 2Nb(l1 +L)

A typical solution is shown in Fig. 6.

2.4 GRAPHIC PRESENTATION OF UPPER BOUND

Thus far we have derived expressions for the functions E, R, and S in terms of

the parameters p and Nb. By varying p and Nb and using the appropriate equations

(20), (21), or (29) and (30), we are able to cover the entire ranges of S and R. Usu-

ally a family of E(R) functions is presented, each curve having a different value

of S. A typical example is shown in Fig. 7a. As an alternative we can hold R con-

stant and find E as a function of S as is shown in Fig. 7b. The latter representa-

tion is somewhat more natural for the parametric equation solution that we have

found because over most of the range a constant R implies a constant Nb, with the

result that E and S are parametric functions of p. While in the E(R) presentation

we had - = -p everywhere, in the E(S) presentation dE/dS takes on the three dif-
ferent values.

for p < L (here Nb is fixed)

for p = L (here Nb increases)

for p > L (here Nb is fixed)

28

dE
dS

P

2(l+p) Nb

L

2(1+L) Nb

L

2(1+L) Nb



E

S3

R

(a)

E

S

(b)

Fig. 7. Graphic presentation of results.

The derivative for p > L is just a constant since E is a linear function of S there.

2. 5 COMMENTS ON SIGNAL DESIGN

We have derived an upper bound on the achievable probability of error under the

assumption that the signals were to be detected by a maximum-likelihood receiver, which

is the receiver with the lowest probability of error for equally likely signals. Usually

maximum-likelihood receivers are hard to build and one has to be satisfied with a some-

what poorer but simpler receiver, and it could be true that the simpler receiver would

require an entirely different set of signals to minimize the probability of error. The

situation is not hopeless though, since the simple receiver is trying to emulate a

maximum-likelihood receiver and one would expect that the closer it comes to this goal

the more it would require signals like those used here. However, some recent work

29
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done by G. D. Forney7 shows that block length is not necessarily the all-important

parameter in receiver complexity; that one might obtain better performance by

increasing the block length and using an inferior receiver than by using fixed block

length and trying harder to emulate a maximum-likelihood receiver.

Leaving aside these considerations, the signals that we used were chosen at random

from a multidimensional Gaussian ensemble constrained to be on a shell. This ensemble

is obviously not Gaussian nor independent, but as T - co the individual density of each

component of the signal approaches Gaussian with energy Qn The signals can be gen-

erated sequentially with each coordinate distributed conditionally on those coordinates

already generated. The distribution will not be overly complicated because it depends

only on the sum of the previous coordinates squared and the noise power in the coordinate

that is being generated. It may be possible to use one of Wozencraft's 2 4 convolutional

coders to choose the coordinate value subject to the conditioning probability.

The signals needed for the expurgated bound are not so clearly defined. Besides

requiring the signals to have a certain energy we have expurgated the "bad" half of the

signals. Which signals are bad is not easily detected, since the determination of "bad"

signal is only made in context with the other M - 1 signals.
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III. LOWER BOUND TO THE AVERAGE PROBABILITY OF ERROR

3. 1 SPHERE-PACKING BOUND

We shall consider the same model that we considered in Section I but now we are

interested in a lower bound to the average probability of error. We shall calculate a

a Pe that cannot be reduced by any coder-decoder system operating over the con-

straint time T. This bound is called, for historical reasons, the "sphere-packing

bound. " The original derivation was done by packing the received signal space with

spheres, one around each transmitted signal. We now use a theorem of Gallager 2 1

which states:

Let a code consist of M equiprobable code words (X1... XM). Define f(y) as an

arbitrary probability measure on the output space and define [um(S) for each m as

m(s) =ln f(y) P(Y/xm)l- dy, s 0. (31)
all y

Let

Zm = f(y) dy,
m

where Ym is that set of y for which m is on the list. Then if s > 0 is chosen to satisfy

m 4 epm(s)+(1-s)1n(s)-(1-s ) 2 (S) (32)

the probability of error, given input m, is lower-bounded by

P a 4 exp[m(s) - sm(s) - s Zm(S ) (33)

The proof of this theorem is given in Appendix D.

We then use this theorem to bound the average probability of error by finding a lower

bound to the Pe for the worst code word and from this finding a bound on the average,

P.e
First, we shall restrict ourselves to signals with small energy, since they are the

best candidates for being poor signals. If the average energy of all possible signals is

S or less,

N M

Z E x 2 <S=TP,1 1 nm
n=1 m=1

where xnm is the value of the nth coordinate of the mth signal. Then at least aM of the

signals will have energy
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O <a <1.x 2 S
nm -a'

n= 1

We must also restrict the range of two other sums in order to obtain a bound on Pe. The

sums are

0 Xn2ml'2. (34)

n
o

and

2 N .
nm n

n
o

(35)

The set no is defined as all n such that N n < Nb'

Section II and is given by the implicit relation

N b 4S2
R =-E ln N + n 4 +2

N n naE (1-a) 2

o

where Nb is analogous to the Nb of

Z (NbNn) 2S
Zn 2 +

no Nb Nb(1-a)b

While it is true that there is no solution for Nb for some R and S, one can be assured

that if R and S grow linearly with T there will be a solution for sufficiently large T.
S S

We now observe that the sums of (34) and (35) are bounded above by a and Nl a bl-a'

respectively, and below by zero. If we split up the ranges into sections E by ENb, we
2

shall have at most 2 2 sections, each E by ENb in size. One of these E by ENb
E (1-a)

sections will have at least

aME 2(1-a)2

S2

code words and we shall constrain our analysis to this subset of code words. Now,

K 2 X, x K + E (37)
n

o

and

J x Nn XN J + ENb
n

o

32
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K and J being functions of the signal set.

aME 2(1-a) 2

Among these S2 signals there will be one signal (call it m), with

z -< LS2

m aME2 ( -a) 2

This follows from the fact that there are exactly L messages on the list for each y, and

therefore

M

m
m= 1

f(y) dy = S Lf(y) dy = L.
m=1 m

For the m above, inequality (32) will be met if

S2L

E 2(1-a)2 aM

1 ex[i () 
(S) + (1-S)1m(nS)-(l-s) S ). I

Taking the logarithm of both sides and recalling thatTaking the logarithm of both sides and recalling that-M = e , we find this equivalent to

R - m(S) - (1-S)m(S) + (l-s) 2p'L(S) + ln 4S 2

aE (1-a)'

We must therefore choose f(y) and s to meet Eq. 38. We know that

-(y -xnm)

exp
2N n

P(y/x m ) = l
n 2 rrN n

Let us choose

2

exp Qn

f(y) = 
n owQ n

By integration of (31), we have

2
xnms(-s) 1

n Qn(1-s) + N s nn n n n

in [Qn(l-s) + NnS]

+ 2 s lnN + (-s) j ln Qn+~-s n 2 1 n +
n n

33
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Then

Nn - Qn

(1-s)Q n + NnS

1 2 I [Qn(l - S ))+Nns](1- 2 ) - s(l-s)(Nn-Qn)

nm [Qn( l1-s) + Nns]

+ lin Nn -2 ln Q
n n

and

(Nn-Qn) 2

[Qn(1 - s ) + Nns]2 n

x2 - QnNn

nm [Qn( 1- s ) + NnS] '

An appropriate choice of Qn will simplify these equations significantly. Let

for N > Nb;

for Nn < Nb;'~ ~ bn

Qn =

call this set n 1

call this set no,

where Nb is given by (36). Remember that the derivatives of Jpm(S) are taken with f(y)

fixed and that Qn being a function of s does not change these derivatives. The fact that

this choice of Qn both simplifies the expression and gives. an exponentially tight bound

is indeed fortuitous. The expression becomes

-pm(S) - (-S) m(S) + (-s) 4q2'm(s)Im( ~ - m m

(l-s) 2 2
2Nb X nm

nO

s( 1-s)

22 N2
b

Nb ( -s)2
· ~- IN ___1 ln - - +

n
no n 1

x 2 N 1 Nb - Nn
nm n 2 - Nb

n
0

2
X

nm + (1-s) 4I2.L (s).N mn

By substituting (39) in (38), Eq. 38 becomes

34

'1m (S) = 2 
n

(39)

Y

W .(S) = - C

n



(1-s) 2
2N b X nm

n
o

1 ln ++ Nb(1s 2
n

n
0

s(1-s) x2 N -1 Nb Nn
2N L nm n 2 Nb

b n n
0 0~~

2
xnm 4S2

E Nn + (-s) S/2' (s)+ n aE2( -a)

nI

(40)

We observe that

(N 2
t(S) E 1 (NbNn)2

2- N(1-s) 2
n b
O

S

Nb(1-s) 2(1 -a)
(41)

2

nm n XmXInm 
n Nb( -a) bn nnl o

(42)

We now use Eqs. 41, 36, 37, and 42 to show that (40) will be met if

(1-s)2 S s(1-s) s(l-s) N N
+ nNb (K+E) - J-2 Nb

ZNb(1 -a) 2Nb 2 2N~ Nb0

(43)

n
o

To review the logic thus far, we note that if (43) is met and Nb is chosen to meet (36),

then Eq. 32 will be met and Eq. 33 will bound Pe

We now claim that (43) will either be met with equality for some 0 s 1 or will

still be true for s = O. We see that the right side of (43) must be negative

at s = 1. Therefore, since the right side of (43) is continuous in s, it must

pass through zero as s goes from 1 to 0 or still be negative at s = 0. In either

case, for some s, we have
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-ln Pem in 4 - m() + mn(s) + s 2['(s)

S2 N
= n 4 +Z2 sN

nm N 2
n bo

1
n

o

Nb - sN s
in +2 

Nb(1-s) n
o

2 X m
+ N + s /2[±"(s)

n
nI

-< n 4 + 2
ZNb

1 

n
o

Nb - sN s
n + s

Nb(l-s) nb nO~~

2 2nm + S 7
Z Nn 1- S

nn nni 0

2
(NbNn) 2S

N2 +2
N b Nb(l-a)

If inequality (43) is met at s = 0, then

-ln P ln 4.
e

Otherwise, (43) is met with equality for some s, and by using it to express J in terms

of the other parameters and by using (42), Eq. 44 becomes

-ln P 2< n 4 + 2 S ln bs (45)
2Nb( l-a) n Nb( 1 -s) Nb

Inequality (45) is met for some s between 1 and 0, but if we find the s that maximizes

the right side of (45), we can be sure that that is a bound on Pe. Setting the derivative

of the right side of (45) with respect to s equal to zero, we have

S 1 Z (1-s)(-Nn) + Nb sN 2s =

2Nb(l-a) n (1-s)(Nb-sNn) b
o

or

S = (-a) I Nb(Nb-Nn)

n (1-s)(Nb-sNn)
0

- 4(1-a) se.

This is a maximum, as the second derivative is

_ I (Nb-Nn)(Nb-SNn+Nn
(l -s ))

n (Nb-sNn) ( 1 -s)

2E

Nb
< 0 for E small enough.
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We have obtained a bound on P for one code word in any code. Therefore if weem
double the number of code words, then all of the added code words must have a Pe equal

or larger than P (otherwise we could have used one of the added code words instead
em

of m and done better). For the larger code,

E = -In Pe ( sS 2 ln b n ln8 +2
ZNb( 1 -a) n0 Nb(l-s) Nb

n

(47)

N 2
Zn-+n 8S b n ZS= z-E In Nn + In + 2 2n aEZ (1-a) N Nb(l-a)
n n b N b
o

where S is determined by

S = (-a) Nb(Nb-N) - 4 (1-a) se.

n(l-s) (Nb-sNn)

Now we show that if s takes on any other value than that determined by (46), a con-

tradiction will result. We choose a = 1/T, substitute p'/(l+p') for s, and evaluate

lim S 1 E (l+p') (Nb-Nn)

T-oo -T nno 1 + pI - PIN
Nb

E p'P I N
lim - = T nTE= _ 2T E ln +P'-P' N
T-oo 2(1+p')Nb n 

o

lim R - Nb
T-o T T Nn

n
o

The radical expression in R disappears because it only grows with T-. These are

exactly the same expressions that we obtained as an upper bound on Pe in Section II.

There we had maximized E over p and found a single maximum point. Therefore if the

lower bound E is to be equal to or larger than the upper bound E, as it must be, p'

must equal p. This means that the bound obtained by maximizing (45) over s is expo-

nentially as tight as possible.

The argument above also shows that the exponents of the upper and lower bounds are

the same for p -< L. Thus the random-coding bound derived in Section II is also expo-

nentially tight for p < L, and gives the true value of E(R). If we restrict ourselves to

the bound given by Eqs. 32 and 33 (the sphere-packing bound), we cannot hope to get an
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exponentially tighter bound than we have for any p co, even when the list size is 1. The

only way that L appears in the bound is as an In L term in the rate. Consequently the

optimization of the bound does not depend on L at all, as long as L is independent of T,

and if we have optimized it for large L < oo, we have optimized it for L = 1.

3. 2 SPHERE-PACKING BOUND FOR KNOWN SIGNAL POWER

We shall derive a bound on Pe when the average power in each channel is fixed. In

other words, the code is constrained to have

M

M xnm n'
m=l

where S is the average energy in the nth channel, and x is the nth component of the
th nm

m code word. This bound can be used to determine a lower bound on P when the
e

power density spectrum of the transmitter is known.

We now have

S =S.

n

The bounding procedure is very similar to that used before, and in order to maintain

a resemblance to the proof in 3. 1, we shall use an artifice. In section 3. 1 we

obtained a parameter Nb which was instrumental in determining the quantities S, R, and

E. Here we define a parameter Nbn which is variable over n but eventually takes the

place of Nb in the formulations

Nbn(Nbn-Nn)
S = b nn(48)

n(1 -p) (Nbn-pNn)The defining equation (48) has two values of Nbn, but we are only interested in Nbn _Nnand this Nbn is unique for any S > 0. We now define

Q&~~nN b - sNn

(l-s)

and proceed as in section 3. 1. With this modified definition of Qn' we have

-~m(S) - (l-s) ±m(S) + (l-s) 2 Lm(S)

1-s 2 nm nm n 1 bn-N
_ .

2 i Nbn 2 L N2 2 Nbn
n n bn n

+ N- In -b+ (l-s) 4/2u'm(s).
Nn mnn
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The term in this analysis that is instrumental in bounding E is the sum:

2
x
Xnm

Nbn
n

x2 (N -N )
I Xnm bn n

n Sn(l-p) (NbnPNn)

We observe that

2 (m) 2 (m)
x x

nm = nm
I Nbn I Nb n
n n n

Nbn - N n

(1 -p)(Nbn-PNn)

and at least aM of the signals have

2Z Nb-N
nm n 

Nbn (l-a)(1-p)(Nbn-PNn)n n n

S
n -

(1 -a)Nbn

Now there is only one sum that must be constrained to an E interval,

x2 N
nm n

N 2
n bn

which is bounded above by

2

nm n
n bnn bn

2x
nm <

Nbn

Consequently, there will be

-1 a
n

S
n

Nbn

aME(1-a)
some E interval with at least S signals.

Z n
n Nbn

consider only this subset of signals for which

x2 N
nm n J + E.

n bn

Gallager's theorem may then be stated: If

R2 T

n

2 2x s(l-s) x2 N
nm s nm n

Nbn 2 Nbn
n bn

1 N bn
- in + (l-s)

nn
4(2p."(S) +

1 n
n

Nbn - N

Nbn

S
4 Z n

Nbn
ln n

aE( 1-a)

then
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22 x2 N
s nm n

E 2 N2
n bn

2Z-1 
n

Nbn- sNn
ln

Nbn( 1 -s)

s N' N. -N
+ N bn -Nn + s 2 J"(s) + n 4.

n Nbn( 1 -s)

(52)

Using (49) and (50) and the fact that

"I(s) -<
n

(Nbn-Nn) 2 

(1-s) Nbn n

S
n

(1-a)(1-s) Nb

we claim that if

s(1-s)
J2

1 Nbn n
- CnNbn
n

+ (l-s)

n

+ ln
aE(1-a)

(NbnNn) 2

(1 -s) N2bn

n

S

Sn
n (1-a)(1-s) Nbn

Sn

Nbn

then (51) will be met, and Em will be bounded by (52). We now choose p so that

Nbn +2

n
n

2 Z(1-a) 

(Nb-N)

2
n bnn

S
n

Nbn
+ n 4

aE( 1-a) n

This can be done as long as R grows linearly with T by making a sufficiently small

and p sufficiently close to 1. As p - 1, Nbn - Nn

When we substitute (54) in (53), we obtain

Sn
Nbn

s(1-s)

J-2

I Nbn -Nn
2 Nbn

n

(Nbn Nn)

N 2 n +
n bn

S) n

n (1 -a)Nbn

Equation 55 is clearly met when s = 1, and since the right side is continuous in s, we
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2(1-a)

S
n

Nbn

Nbn
ln N

n
+ --

n

(53)

n

( 1 -a) Nbn

S
Nbn

Nbn
(54)

(1-s)
0 (1-a)

2(l-a)

S
n

Nbn'
E a

2(1-a)
n

(55)
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are again assured that either it will be met with equality for some s 0 or it is still

met with s = 0. Then solving (55) for J and substituting that solution in (52), we know

that either

s a Z n n Nbn - sN n
Em - Nbn

2(1-a)(1-s) n n Nb(l-s)

+2 ( + n 4 + s 2im(s))sbnn n

s / (NbN ) - a SN

n Nbn n (l-a)Nbn

for some 1 - s E O, or

Em In 4.

Bounding several of the terms and using the same argument about doubling M, we get

a bound on the whole code.

__nS n lV Nbn - sN
E _ ln n + n 8. (56)

Nbn (l-s)Nb

We again maximize (56) over s.

d 1 Sn 1 Nbn N

n bn n (1 -s)(Nbn-Nn

2 bn n (1 p) (Nbn -pN) (1-s)(Nbn -sN)]n bnbn n

This can easily be seen to be met when s = p. To verify that this is a maximum and the

only maximum,

d2 1 V bn SNn + ( s)Nn
2 2 2 2 < 

ds (1 S) (Nbn-SNn)

for all s between 0 and 1.

If we replace s by p in (56) we see that R determines p by (54), and p in turn

determines E by (56).

When Eq. 56 is written in terms of p, where

P 1 -
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we have

E < ~- +n 1
2+ E Nn _ ( + i N n n b In 8. (57)

n n

We now undertake to show that maximization of Eq. 57 over the signal power dis-

tribution results in (47) (the sphere-packing bound) and, further, that any other signal dis-

tribution will have an inferior exponent. Equation 57 must be maximized, subject to the

constraint

S =A Sn constant.

n

This maximization can be avoided by adding p times the right side and substracting p

times the left side of Eq. 54 to Eq. 57. By defining

P
r =

2Nbn(l+e) 2

and using (48), after some algebraic manipulations, Eq. 57 becomes

E (l+p) S r + n (1-2rS) - pR

n n

+P i 1 -2rn Sn ) + n8

n n

S 4 __
_+ n n

2(1-a) n aE(-a) bnn Nn

+2 (58)

Before maximizing this we can bound several of the terms:

S C N~n S

Z bn E j n Nmin min
n n n

where Nmin is the smallest value of Nn, with Sn 0,
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2
+n S/ (NbnNn) ' Sn _/2 _Sn 2 + 2

n Nbn n (l-a)Nn -a)Nmin

and finally from (54),

S
l+p E aS 4S

2N . - In
mn 2 2(1-a) Nmin aE(l-a) Nmin

The terms from in 8 on can then be bounded by functions that are independent of the dis-

tribution on S . The first four terms are exactly those considered in Section II, exceptn
that Qn is replaced by Sn . There we maximized over p, rn, and Sn, but here p and rn

are functions of S n. Nevertheless, we can ignore this dependence and obtain a bound

on E. The bound is just the lower bound to E plus the n 8, etc. terms, and the func-

tional relation between p, rn, and S is correct. Therefore this distribution of Sn is

optimum, and the upper bound differs from the lower bound only by the terms n 8, etc.

The solution given by the Kuhn-Tucker theorem is necessary and sufficient for a maxi-

mum; in other words, all maxima are given by the solution and, since we got only

a point solution, this means that this point is the only maximum. To finish the argu-

ment we must show that the maximum over p also gives only a point. From Eq. 45,

we calculate

d2E = 1 d b
2d2 =Z N dp0

dp b
n

o

which shows that the maximum is a point.

We have shown that any power distribution, Sn, which is not identical to the optimum

distribution on Qn derived in Section II will result in an inferior exponent, E, with the

In 8, etc. terms neglected. A more important question is, What happens to the

"exponent" ?

lim I e E= lir ?
T-oo T T-0TT-oo

It is clear that having the "incorrect" energy in a finite number of the Sn is not going

to affect the limit, as long as the great majority of the Sn are correct, but the limit will

be weakened if a nonvanishing fraction of the Sn do not approach Qn in the limit as

T -- o. This is the case when the spectrum of the set of input code words is incorrect.

3.3 STRAIGHT-LINE BOUND

The bound that has been obtained thus far includes a term in -In L with the rate. This
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represents a decoder that forms a list of L outputs rather than guessing at just one. The

purpose of including this term is to form a foundation upon which a tighter lower bound

can be built. We are free to break the set of parallel or eigenfunction channels up into

two groups and then use a theorem of Gallager 1:

Let Pi(B1, M, L) be a lower bound on the average probability of error for list

decoding with code words used with probability P(m), and transmitted over a set of par-

allel channels denoted B 1 . Let P 2 (B 2 , L) be a lower bound on the probability of
L

decoding error for at least one word in any code with code words transmitted over a

set of parallel channels denoted B 2. Then any code with M code words used with prob-

ability P(m) using both the sets B 1 and B 2, of parallel channels, has an average proba-

bility of error:

P 1 (B 1 , M, L) P 2 (B 2 , L/Z)
e 4 ' (59)

This theorem is proved in Appendix D.

The splitting of the set of channels into two parts and the analysis through Eq. 57

can be applied after the code is given, since it merely bounds the probability of error

and does not actually affect the decoding. Therefore one can let the way the channel is

to be split depend on the code. It is difficult to analyze this problem in its full generality,

so we shall consider a few special cases: a straight-line bound, an improved low-rate

bound, and a proof that the sphere-packing bound does not yield the tightest possible

exponent for p > 1.

In order to obtain a straight-line bound corresponding to Shannon's and Gallager's 2 1

bound for the discrete channel, we need to split the channel in a special way. First, we

pick a rational number, q, between 0 and 1. This q represents the fraction of the par-

allel channels to be in set B 1 ; therefore (l-q) is the fraction of the channels that are in

B 2. Divide the channels as follows. Pick the smallest number (V) divisible by q, then

partition the set of parallel channels into groups of V per group, starting with the par-

allel channel with the smallest Nn and working up. Therefore each group of V channels

has somewhat the same average noise power, and as T is increased the spread of Nn

within a group approaches zero. Each of these groups also has a spread of Sn, but this

spread may be very large, since we have not tried to restrict it. We observe at this

point that we can make

S = Sn a>qS

B1

by always putting the qV channels with larger Sn in the set B1, or we can make

S 1 _ qS

by always putting the qV channels with smaller Sn in the set B1 ; which of these we shall
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do will depend on the other parameters, but we do have the choice of doing either. With

either of the foregoing divisions of the channels we can write for any positive number

E and T large enough,

E Nb i In Nb T.
nf n n n

o 1 o

Using the sphere-packing bound for P 1 we write

1 Si In bYr
-ln P(B 1,M,L) +p 2 in -P + ET

2Nb(+P) n

when

q v Nb
R =2 -In N + ET.

n
n

o

Here, we have included all of the small" terms in ET, which will cover them all for

large enough T and small enough a.

For P2 we shall make use of an asymptotic bound at zero rate given by Shannon. 20

He showed that for a channel disturbed by white Gaussian noise,

e P( 4N e

for any positive E, provided that M be equal to or greater than some M e and T larger

than some TE. Certainly, one cannot do better in colored Gaussian noise if Nmin = No'

and thus we have

S
E(0) 4 N +T.

min

Equation 59 becomes

-ln Pe < in 4 + + -i n +P -P ) + + 2ET (60)
ZNb(l+p) 2 4Nmin

no

for

R =2 E In Nb + ET. (61)
n

n
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We have chosen L to be ZMC so that In L will not grow with T. Equation 60 can be written

-In P In n4 + S + 4 in p- + 2ET.
1 4N lN2)

ZNNbl+P) min n 

The multiplier of S 1 will be either positive, zero or negative, Accordingly, we restrict

S 1 to be either less or greater than qS, and then

nP I + - n + 2ET + In 4. (62)
e mi n 2Nb(l+p) b

Since (61) and (62) are both linear in q, the bound is nothing more than a straight line

between E(0) and a point on the sphere-packing curve given by p and Nb. It stands to

reason that we want to make this straight line as low as possible and thus choose the

point on the sphere-packing bound which produces a straight line tangent to the sphere-

packing curve. This, then, is the same result obtained by Shannon and Gallager for the

channel.

There are several slight improvements that can be made in this bound, although it

is unlikely that any of them represents the lowest obtainable upper bounds. First,

Wyner 6 has shown that the white Gaussian noise channel has an asymptotic bound given

by

Pe2r

Pe:exp( TPe ETPe e P ( 4N°

for any positive E when T is greater than some TE. His bound is for a time-discrete

channel with additive Gaussian noise with variance No and average transmitter power

of P. The value r is the rate per channel use. We use this bound by replacing TP with

S and determining the over-all rate by multiplying r times the number of channels in

the set B 2 , (B2).

ln-L = r (B 2 ).

If we use Nmin instead of No , the bound clearly applies also to colored Gaussian noise.

If we want to get any improvement over Shannon's zero rate bound, we must not let r

go to zero. This can be done by making (B 2) and In 2 both grow linearly with T.

Then r is independent of T, since it is the ratio of these numbers. In order to keep

J/(B2) from getting too large, we put all channels with Nn > Nb into the set B1, then

split the channels with Nn Nb as before (q into B, (I-q) into B2 ); the only difference

now is that we can only guarantee that

S qS,
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since these channels with Nn > Nb may have had some energy. Equation 60 now becomes

P e-Zr Se-2r
-In P <S 1 '-N

1 2(I+p)Nb 4 min

2+p inp +P-P- + n 4 + ZET (63)

n
o

when

N q N

R n n +in L = nn + (l-q) r+ln + T.
n n

n no no o

If the multiplier of S 1 is negative, we can overbound the right side of (63) by letting S1 =

qS.

qSp q N \ (-q) er
-lnP< - - In +P-P n + + 2ET,

e Z(l+p)N b + 4Nmin

which is just our straight line again, only now it is drawn between the sphere-packing

bound and the Wyner bound given by

-2r
Se

E 4N
min

(64)

R= r+ In 2.

n
o

E and R are functions of the parameters r and Nb, subject to the restriction that the

multiplier of S1 in (63) be negative, or

1 (I+p)Nb (65)
r - In

PNmin

In other words, the straight line can only be drawn for r satisfying (65). If Eq. 65

requires r to be less than zero, Eqs. 64 are useless.

Finally, we shall look at the bound when the signal power distribution is known. We

can find the best way to split up the channel into a sphere-packing part and zero-rate

part, the means depending only on the signal-to-noise ratio in the component channels.

The zero-rate bound for a known signal power distribution is given by an expression

of Berlekampl for the discrete memoryless channel:
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E(O) = -min E P(x 1) P(x 2 ) in E /'P 2

P x) 1 2 Y

where x and x2 range over the entire input space and are distributed according to P(x),

and y ranges over the entire output space. This can be extended to the Gaussian noise

case and the evaluation gives

1 Sn
E(I) =4 N

nn

which depends only on the signal-to-noise ratio. The sphere-packing bound was shown

in section 3. 2 to be

En 1E = In +pp + ET
2(l+p) N n

n n

1 ~ Nbn
R = ln-n + ET,

nn

bn Sn
w here i s a funct ion of th--, given by

n n

Nbn
Srate and Nsphere-packing portions, it must be done on the basis of 

N N ' Nn n n
1+p pNbn

Therefore this exponent is again depen identractable and has only on the ratio Small/N bit
Clearly, if there is to be any division of the component channels between the zero-

rate and sphere-packing portions, it must be done on the basis of Sn/Nn One possible
division is to pick some threshold signal-to-noise ratio and put all of those channels with

signal-to-noise ratio less than the threshold into the zero-rate portion and all with

signal-to-noise ratio larger than the threshold into the sphere-packing portion.

This approach has, thus far, been intractable and has only yielded the one small bit

of insight that the sphere-packing exponent cannot be attained for p > 1, for any channel

with differentiable noise power density spectrum. We have shown that there is only one

power distribution that achieves the sphere-packing bound for p - L; any other power

distribution produces an inferior bound. We now take the channels and split them up

by an arbitrary Nd such that for channels in B, Nn > Nd, and channels in B 1 , Nn < Nd.

In this case we know what Sn is, simply because the distribution must be that which gives
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the sphere-packing bound. We therefore chose Nd to be slightly less than Nb, thereby

increasing P 1. In picking a smaller energy for the sphere-packing part we must have a

larger P 1 because we know that for this particular bound

aE P
asE (66)

2( l+p)Nb

The fact that the channel over which we must transmit is now slightly inferior can only

make the loss greater. Some of the loss in exponent is brought back by the zero-rate

exponent, and this amount is given by

_E2 1

as - 4N (67)

Clearly, when (66) is larger than (67) we shall have a net loss in exponent. If p 1,

there will never be a loss, as might be expected, since we have shown that for p 1

the value of E is both an upper and a lower bound. For p > 1 there will always be some

Nd < Nb that will produce a loss. Nd must be chosen very close to Nb, since Eq. 66

has a positive second derivative and therefore can only be used as a linear approximation

for very small variations.

We have now shown that the sphere-packing bound gives the true exponential

behavior for p 1, but does not give the tightest lower bound for p > 1. There is one

exception- when the noise spectrum, and subsequent signal spectrum, is such that

choosing Nd slightly less than Nb produces no reduction in the set B 1. An example of

this is the bandpass white Gaussian channel. All exceptions are ruled out if we insist

that the noise spectrum be continuous.

3.4 NECESSARY CONSTRAINTS ON SIGNALS

We are now in a better position to comment on the kind of signals needed to com-

municate with the optimum probability of error exponent. We have shown that unless a

set of signals has the given power distribution over the component channels it will be

unable to achieve the optimum exponent. If the signal has the correct power distribution,

it can achieve the exponent, but we have no indication whether the signals must be on the

shell or not.

In any code there will be a distribution of energy over the code words. We will

define O(S) as

D(S) = M number of code words for which S > x 2

Now define RS as the rate of the code consisting of all the code words with energy S:

RS = In Mt(S) = R + In (S).

We claim that for the original code,
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-Es(R s )
Pe > (S) e (68)

for any 0 S oo, where E (RS ) is the lower-bound exponent calculated in Section III.

The proof of this is obvious; we simply have a subset of the code with MO(S) code

words, all with energy equal to or less than S, and this subset is used (S) of the time.

Suppose the code is an optimum code, then for R > Rcrit we have

Pe < exp[-ES(R)+ET], (69)

where > 0 can be made as small as one likes by making T sufficiently large, and ES(R)

is the same as the lower-bound exponent. Then using (68) and (69), we have

E-(R) - ES(R S) In D(S) - ET. (70)

Because of the convexity of E(R) in both S and R, we can write

P
ES(R) > ES(R) + (S-S)

2Nb( l+p)

and

Es(R) Es(R S) + p' In D(S).

Thus we write (70)

P
-(S-S) - p' In O(S) > In O(S) - ET

2 Nb( +p)

or

P T
In (S) -(S-S) + + 

2Nb(l+p)(l+p')

Since E can be made arbitrarily small and S is linear in T, the second term on the right

is of no consequence. The first term on the right is S - S multiplied by a nonzero nega-

tive constant; consequently, (S) must fall off at least exponentially below S with a

rate of decay that is independent of T for fixed S/T. There are certain ensembles

of random codes for which one cannot expect this exponential behavior. If, for

example, the ensemble is defined by choosing the coordinates of x independently, one

finds that the distribution function of S does not fall off exponentially near S, but falls

off as e a (SS ) 2 /T a a positive constant. Then as T gets larger with fixed S/T and fixed

(S-S), the distribution function with independent components must approach 1/2, and can-

not correspond to the optimum distribution, as seen in Fig. 8. This does not imply that

none of the codes in the ensemble has the optimum exponent (certainly some of them do),
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Fig. 8. Exponential bound on D(S) and Gaussian D(S).

but it implies that the ensemble behavior is not optimum and that the poorer codes,

with somewhat weaker exponential behavior than optimum codes, dominate the ensemble

behavior.

Now that we have found out what ensembles have poor average Pe, a comment is in

order about what ensembles besides the shell distribution have optimum exponential

behavior. In Section II we bounded the shell distribution by a function w(x) and obtained

an optimum exponent. Consequently, any P(x) -< w(x) will produce an ensemble of codes

with the optimum exponent.
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IV. VARIABLE BLOCKLENGTHS

We shall now allow ourselves the freedom to use separate coders and decoders for

the individual parallel channels. Until now the parallel-channel problem has been con-

sidered in the context of coding with a fixed blocklength over the product alphabet which

is formed by taking all combinations of one symbol from each of the parallel channels.

This problem is well defined without reference to any particular coding and decoding

system, since the blocklength is fixed; how one is to go about building a system with

the given blocklength is a separate problem. The composite-channel problem has been

solved by Gallager.8 He found that the reliability function for any discrete memoryless

channel is given by

E(R) = max Eo(p) - pR, (71)
P

where

E (p) = -n E p(x) p /xl/( +p

y x

Equation 71 is usually maximized with respect to p by setting the derivative with

respect to p equal to zero. Thus

aE o (P)
R ap (72)

If we substitute (72) back in (71), we obtain parametric expressions for E and R in

terms of p. The parametric expressions fail to give the true E(R) only when the E(R)

curve has discontinuities of slope, in which case one must ignore a range of p, that is,

the parametric expressions double back on themselves and are thus superfluous over

a range of p.

A composite channel C, made up of channels A and B in parallel, has an Eo (p)

given by c

E (p) = E (p) + E (p).
c A B

Equation 71 becomes

E (R) = max [Eo(P) + E(P) - pR]. (73)

Taking the derivative with respect to p and setting it equal to zero gives

8E A(P) E oB(P)
R - p + p (74)ap ap
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We observe that R is the sum of the parametric expressions for rate on channels A and

B; consequently, when (74) is substituted in (73), Eq. 73 is the sum of the parametric

expressions for E on channels A and B.

We therefore obtain the parametric expressions for the composite channel from

Ec() = EA(P)+ EB(P)

Rc(P) = RA(P) + RB(P).

When either channel A or B, or both, has parametric expressions that double back on

themselves, the parametric expressions for the composite channel may also do so, but

the true value of E(R) can be found by again ignoring the superfluous part of the para-

metric expressions.

One can see that, for any rate, the composite channel always has a larger E(R) than

either parallel channel. One might wonder why we would ever want to use separate coder-

decoders, since we must always use much larger blocklengths on both parallel chan-

nels than we would have to use on the composite channel to obtain a given P . In order

to see that separate coding is a reasonable possibility, we consider the example of two

identical channels in parallel. These two channels have the same input and output alpha-

bets and the same transition probabilities. Consequently, it does not matter through

which channel any given letter is sent. Suppose a coder-decoder of blocklength N and

rate R has been designed to work on the composite channel. Instead of transmitting the

signals through the parallel channels in the normal manner, we can take the first block

of signals and send it all through channel A. We send the normal signal for the first

N transmissions, then send the signal that would otherwise have gone over channel B

during the second N transmissions, thereby using up 2N transmissions. The received

signal can be decoded in the normal manner by waiting for the 2N transmissions and

treating the second N transmissions as if they had come over channel B. We have

reduced our information rate by 1/2, but this can be made up by sending the alternate

blocks on channel B. The coder and decoder will not have to operate any faster, since

we are operating at the same total information rate as before. Consequently, we have

managed to change from composite coding to separate coding and decoding on each chan-

nel without changing either the Pe or the amount of equipment needed. We have doubled

the blocklength in the change, but this increase cost us nothing in terms of equipment.

It is therefore just as reasonable, in this case, to use separate coding as com-

posite coding.

When one introduces the freedom to have separate coder-decoders on the parallel

channels one must be willing to admit the possibility of using different blocklengths on

the parallel channels. Consequently, a new constraint must replace the fixed block-

length constraint used previously. A logical parameter to constrain would be cost, since,

in practice, this is usually what prevents the use of large blocklengths. In order to

constrain cost we must have some reasonable way to measure the cost which will not
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vary from day to day as the price of computers varies. For these reasons, we shall use

a quantity that we call "complexity"; it is defined as the number of logical operations

needed per second to perform the coding and decoding. This is generally the cost param-

eter used in evaluating coding and decoding schemes. Complexity, then, is a function

of the channel, the coding-decoding scheme, the rate, and the blocklength; consequently,

we write

D = DA(RA, NA),

where the subscript A means channel A with its associated coding-decoding scheme.

One is free to weigh the various logical operations in order to bring complexity more

in line with cost. For example, a multiply could be considered as 10 logical operations,

and an add as one. If storage is a significant part of the coder-decoder, one could

include it in the complexity.

We are now in a position to state the basic questions. When one has several parallel

channels and is willing to use a certain total amount of complexity in all coder-decoders,

What is the smallest Pe attainable and how does one go about obtaining it? Does one use

composite coding over the product alphabets, or does one use separate coders on the

parallel channels? If one uses separate coders, how is the rate divided between then

and what blocklength is used for each coder-decoder? It is only fair to say at the

beginning that we do not solve these problems, but we do achieve guides to what the

solutions may be, and in some cases we are able to show an improvement over the

previous results with composite coding.

For the sake of mathematical convenience, we shall state the problem slightly dif-

ferently. If one is to obtain a given Pe at a given rate, what is the minimum total com-

plexity that is needed, and how does one decide what rates and blocklengths to use? The

questions are identical to the previous ones, if one assumes that the complexity required

increases as Pe decreases. This is an underlying assumption of the whole problem,

anyway.

In addition to finding the appropriate choice of rates and blocklengths on the parallel

channels, one may have various other parameters at one's disposal. One such example

is the choice of power to be used on each channel where the over-all power is con-

strained. We shall consider this case later on, for the channel with additive

Gaussian noise.

Most of the results obtained here are asymptotic. This is primarily due to the

difficulty of obtaining anything but asymptotic results. To get results for small block-

lengths, one must tabulate the performance of a number of known codes. This approach

is inherently limited by the number of codes that can be tabulated. On the other hand,

the asymptotic results are a great deal more general, and tend to make the relation-

ships between the various parameters clear. The results of Sections I and II are asymp-

totic, as is the whole idea behind the reliability function.

We shall be primarily interested in the way in which the complexity function
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increases with N for large N. For practical considerations, we can ignore those

coding schemes in which complexity increases with N faster than N to some small

power. If the complexity increases too fast with blocklength, the price for high relia-

bility transmission will be too large to be interesting. In particular, this rules out those

complexity functions that are exponential in N, and therefore we can be assured that

ln D(R, N)
lim N = 
N oo

for all channels at rates less than capacity.

Complexity must also increase with rate; if not, one could transmit at larger rate

and then throw away some of the information to effect a net gain. If there is a power

consideration, one can see that complexity must decrease with power, otherwise one

could just as well throw away some of the power at the transmitter. It might be argued

that as the rate increases above capacity the complexity can be made zero, since it is

impossible to decode correctly, anyway. This argument is negated by our fixing Pe at

some small value and then varying the remaining parameters.

We shall examine the over-all problem in small pieces, in order to get some insight

into what is happening at each stage. This approach is needed here because we are not

able to get any general solutions. We do get some asymptotic results (asymptotic in

blocklength) and solutions for some assumed complexity functions.

4.1 DETERMINATION OF BLOCKLENGTHS

To begin, we shall assume that separate coding is to be used for the parallel channels,

the channels are fixed, and the rates for each channel, RA and RB, have already been

chosen. All that we have to do is find the choice of NAand NB which minimizes the com-

plexity for a fixed Pe.

For each of the parallel channels we know that

-N[E (R)-EN]
P <e

e

where N is zero for the discrete constant channel and approaches zero as N approaches

oo for Gaussian noise channels. For small N, N may be quite large.

The average Pe for the two parallel channels is bounded by

RA -NAEA(RA)+NAeNA RB -NBEB(RB)+NB N B
P e <- e .R (75)e R- e

This bound is asymptotically correct when E(R) is the tightest possible reliability func-

tion. We observe from Eq. (75) that there is no point to making the Pe on one of the

parallel channels significantly lower than that on the other. To do so would not change

the bound on Pe much and would only waste complexity in the coder-decoder. For very

large blocklength, when (75) is tight, a good approximation of (75) is given by
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-NmE m (Rm )+EN mP < e m (76)
e

where

NAEA(RA)
NmEm(Rm) = min N

NE(R) lNBEB(RB),

and E is a positive number that goes to 0 as the blocklength increases. If we ignore the

E, we shall minimize the complexity for a fixed Pe by letting

NAEA(RA) = NBEB(RB) = constant, (77)

where the constant is chosen to obtain the desired over-all Pe, and is approximately

-In Pe.

4.2 DETERMINATION OF RATES

We now consider the next step in the problem, that of choosing the rates for channels

A and B. Let us assume that separate coding is to be used and the channels are fixed.

Equation (77) gives NA implicitly as a function of RA for a fixed value of Pe, and also

NB as a function of R B. Consequently, as we vary RA and RB the blocklengths will also

vary to meet (77) with a fixed Pe. From (77), the variation in NA with respect to the

variation in R A is

dNA NA dEA(RA) PANA

dRA EA(RA) dRA EA(RA)

Likewise, we find

dNB PBNB

dRB EB(RB)

RA and RB are not independent variables, since we must keep RA + RB = R a constant.

Therefore the variation of RB with respect to RA is -1. This leaves us with RA as the

only free variable, so all that we have to do is set the variation in complexity with

respect to RA equal to zero. The complexity is given by

D = DA(RA, NA) + DB(RB', NB).

We wish to minimize D by setting the total derivative of it with respect to R equal to

0; this is done by taking the partial derivatives with respect to RA, RB, NA, and NB

and multiplying each partial derivative by the variation of that parameter with respect

to R A . We have
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aDA(RANA) 8DB(RBoNB) 8 DA(RA NA) PANA 8 DB(RB NB) PBNB
OR A --= 0.

aRA aRB + ONA EA(RA) B EB(RB)

(78)

This cannot be solved without some additional knowledge of the nature of the complexity

functions. In order to get some idea of how the rates must be chosen, we shall look at

some examples of complexity functions. Let the complexity be given by

Pi(R i )
Di(R i.N i ) = ai(Ri ) Ni

This is a fairly general expression and it covers most known coding schemes.

aDi(Ri., Ni) i (Ri) Pi (Ri)
1aR 1= ai(Ri) N + ai(R) N i(Ri))
1

Pi (Ri )

aDi(Ri, Ni) ai(Ri ) Pi(Ri ) Ni

8N. N.
1 1

Therefore Eq. (78) becomes

PA (RB) a A(R A ) A(RA ) PA
NA I g) ja(RA) + aA(RA) PX(RA) In NA A(RA)

EA(RA)

[PB RB() aB(R ) PB(RB) \
=NB (RB) + agB(RB) P(RB ) In NB + EB(RB) (79)

We can see what the asymptotic solution is by observing that as NA and NB get larger

one cannot meet (79), unless either A(RA) - PB(RB) or one of EA(RA) or EB(RB) - 0.

The requirement that Di(Ri , N i ) must increase with increasing R i implies that Pi(Ri)
increases with R i . When P is strictly increasing with increasing R i there can be only

one choice of RA and RB for which

RA + R B = R,

and

PA(RA) = PB(RB).

The case in which i(Ri) is constant over some range of R i is similar to the constant- P
case which will be considered later. If one of the exponents approaches zero we must

use one channel very near capacity. This only happens when one channel is much easier

to code for than the other, even near capacity.

If one sets PA(RA) = B(RB) and then calculates the total complexity, one

has
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D = aA(RA) NA + aB(RB) NB(B

PA(RA)
NA

We can now calculate an asymptotic relation between complexity and Pe. Using

-NAEA(RA)
P =e

e

we have

DN aA(RA)

NA PA(RAA)EBEA(RA) E

(-n (RA)
(-In Pe)

We compare this to a similar expression for composite coding. Using

-NcE c (Rc )
P =ee

we have

/-Iln Pe ( R c)
DN -bEac(Rc( P (

We can see that the primary factor determining whether or not separate coding of com-

posite coding is asymptotically more complex is (R). If c C(Rc) is larger than A(RA),

then one should use separate coding for very small Pe. If Pc(Rc) is smaller, one should

use composite coding. If Pc(Rc) = PA(RA), one must look at the a(R) function to deter-

mine which alternative has the lesser complexity.

Although the complexity function mentioned above leads to a simple solution, in most

known coding schemes (R) is a constant, independent of R. It is instructive to note

that different coding schemes have different powers of N in the complexity function.

Besides the obvious observation that it is best to use a scheme with a small power if

one is going to require a small Pe, we can observe that if coding for the composite chan-

nel requires a scheme with a large power of N than coding on the channels separately,

one should code separately.

There is sometimes another reason for coding separately. The transition proba-

bilities of the separate channel are much more likely to be symmetrical than those of

the composite channel. Consequently, the separate channels are more suitable for

known algebraic codes such as the Bose-Chaudhuri or Reed-Solomon1 5 codes.

To examine the case in which (R) is a constant, we let
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Di(Ri, Ni ) = ai(Ri ) Ni'

Now Eq. 38 becomes

P 1aA(RA) PPA\ i B(RB)PPB\

NA iA(RA)+ = NB a(RB) +
EA(RA) / EB(RB)

The asymptotic solution to this is

a(RA) aA(RA) PA atB(RB) aB(RB) P
+ - = + B B

EA EA(RA E(RA E(RB) EB(RB) 

This is about as far as we can go in this case. It is difficult to make a comparison with

the composite coding case here without knowing the various a(R) functions.

One property of the asymptotic solution can be pointed out. When a complexity is a

sum of several terms, each a power of N, the term with the highest power of N is the

only important one. For example, if

DA(RA, NA) = aA(RA) NA + YA(RA) NA, > q

the only part of the complexity function that plays a part in the asymptotic solution is

that term with the largest power,

aA(RA) NA.

This can be seen because

aDA(RA, NA)
aR = a(R ) N + y (RA) N A

aDA(RA NA) -1 
ANA = PaA(RA) N - + qYA(RA) N 

In both expressions the second term is insignificant relative to the first.

4. 3 DETERMINATION OF POWER DISTRIBUTION

Up to now we have assumed that the parallel channels have been fixed. It is pos-

sible that the transition probabilities could, to a certain extent, be under the control

of the designer. The channels could have additive Gaussian noise with an average total

power constraint. This leads to another degree of freedom in the optimization procedure.

The problem can be set up in much the same way as the rate variation was. We rewrite

(77) to include the power dependencies:

NAEA(R A ' PA ) = NBEB(RB, PB ) = constant. (80)
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As PA varies, NA must vary to meet (80) and we can calculate the variation in NA with

respect to the variation in PA as

dNA NA dEA(RA, PA)

dPA EA(RA' PA) dPA

dEA(RA, P A )
The quantity dP is given in Section II. The same thing is true for channel B

A

dNB N B dEB (RB' PB)

B EB(RB, PB) dPB

Since PA + PB = P, a constant, the variation in PB with respect to PA is -1. We now

write the variation in total complexity with respect to variations in PA and set it equal

to zero, just as we did for rate

aDA(RA NA PA) aDB(RB, NBPB) aDA(RA, NA' PA) NA
aP A aPB aNP A pB aNA EA(RA PA)

(81)

dEA(RA,PA) ODB(RBNBPB) NB dEB(RB' PB)
dP + aN dP 0.
dPA NB EB(R B B) B

This equation and Eq. 78 must be solved simultaneously in order to get an over-all min-

imum.

Almost the only interesting observation that we can make about the added freedom

of power distribution is that rate and power tend to compensate for each other; once we

have optimized with respect to one of the variables, optimizing with respect to the other

does not reduce the complexity much more. This can be seen from the behavior of

E(R, P) and D(R,N, P) as R and P are varied. If one is to increase R and hold E(R, P)

constant, one must simultaneously increase P, that is, an increase in R has the same

effect on E(R, P) as a decrease in P. Likewise an increase in rate has the same effect

on complexity as a decrease in power. Therefore a nonoptimum power distribution can

be partially compensated for by the rate distribution, and vice versa. Another way of

saying this is that for fixed Pe the complexity as a function of RA and PA has a valley

running diagonally across the RA, PA plane.

4. 4 COMPARISON OF SEPARATE CODING TO COMPOSITE CODING

Even if we could get through the solutions of Eqs. 78 and 81, we could not be sure

that we had in fact minimized the complexity. There is always the alternative of com-

posite coding with its own complexity function. For composite coding the analysis is

somewhat simpler because one can calculate the E(R) function and therefore the required
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blocklength. All that we have to do is determine the E(R) function at the required rate.

This can then be used to calculate the required N. Once R and N are determined, one

can calculate Dc(R, N) and compare this value with the complexity obtained by the solu-

tion of (78) and (81).

Before we go any farther, it is instructive to look at several examples of parallel

channels and see what can be done with them. Let us first consider the example of two

identical channels in parallel which has already been described. Here the best choice

of blocklength, rate, and power is obvious. The usefulness of the example comes from

the comparison of separate coding with composite coding. We have shown that in this

case we could always code separately without changing either the Pe or the total com-

plexity.

As a second example we shall take two channels that constitute an integral multiple

of some base channel. Call the base channel Z, then channel A is VA copies of chan-

nel Z in parallel, and channel B is VB copies of channel Z in parallel. We use the

same technique as in the first example. A composite coder produces a block of length

N for VA + VB copies of channel Z. We can send all of these signals over channel A

in N(V_+_A B transmissions. The fact that this may not be an integral number of trans-
VA 

missions is of no importance. It is only a matter of bookkeeping at the receiver to keep

track of which signals from the various copies of Z are to be decoded as a block. On

channel B we do likewise, but now require N( Btransmissions. The information

VA VB /
rate of channel A is of that on the composite channel, and the information rate

VA + VB

VB
of channel B is B of that on the composite channel. As in the first example, we

VA + VB
have lost no information rate, left the Pe unchanged, and used the same coder-decoder,

but we have succeeded in coding for the parallel channels separately and increased the

blocklength on each.

In both of these examples one quantity remained constant in going from the compos-

ite coding to the separate coding for the parallel channels. This quantity was the prod-

uct of rate and blocklength. In the first example each of the parallel channels had a rate

1/2 as large as the composite channel and a blocklength twice as large. In the second
VA

example channel A has a rate of that of the composite channel and a block-
VA + VB

VA + VB
length as long; thus they have the same product of rate and blocklength. The

VA
same is true for channel B. The importance of the product rate times blocklength will

become apparent when we prove a theorem concerning this product.

When the two parallel channels are not made up of several base channels, the
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procedure used in the examples cannot be used, but it is possible that the two channels

can be transformed to bring them to a common basis. As an example of a coding

scheme in which just such a transformation is part of the coder-decoder, we shall look

into a scheme suggested by Forney. His scheme is nonoptimum because it does not try

to attain the optimum exponent but makes the probability of error small by using a

larger blocklength than necessary. The advantage is that a relatively simple coder-

decoder can be constructed for his large blocklength, rather than the complicated coder-

decoder that is probably needed to obtain anything near the optimum exponent.

Basically, Forney's system uses two coder-decoders, an inner one that transmits

and receives over the channel, and an outer one that operates on the input and output of

the inner coder-decoder (see Fig. 9). The inner coder-decoder is required to produce

a probability of error around 10- 3 have a large input-output alphabet, and have a rate

superchannel for the outer coder-decoder

f~ A- - I

outer inner inner outer
coder coder decdchanneler decoder

Fig. 9. Forney coding-decoding.

slightly larger than the required over-all rate. Because the Pe of the inner coder-

decoder is only required to be 10- 3 , one can design an acceptable inner system by trial

and error. The outer coder-decoder uses a Reed-Solomon code with large blocklength,

very small Pe' and a slight reduction of rate over the inner channel. This outer coder-

decoder works over a large blocklength with a relatively simple decoding method, for

which effort is proportional to some small power of N.

Forney observed that the essential purpose of the inner coder-decoder was to present

a "basic" superchannel to the outer coder-decoder. This superchannel must have a

probability of error around 10- 2 - 1 0 - 4 and sufficiently large alphabet, q, to permit the

use of a Reed-Solomon code on the superchannel. The blocklength of the Reed-Solomon

code is determined by the over-all Pe requirement. As the Pe requirement is lowered,

the outer coder-decoder becomes the significant contributor to the complexity. This is

true because the only change required of the inner coder-decoder is that its alphabet

size, q, increase, which can be accomplished by taking two or more successive outputs

as a single letter.

In practice one would probably build some simple system for an inner coder-decoder,

since it is only required to have a Pe around 10- 3 In the limit, for very small Pe, the

complexity of the outer coder-decoder will overshadow that of the inner system. Thus

the complexity of the inner coder-decoder plays no role in asympototic results.

In order to obtain a given over-all Pe' the outer coder-decoder must see a
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superchannel with a Pe 10 - 3 and an alphabet of q. This is true whether it is going to

operate on the composite channel or on the parallel channels individually. This situa-

tion corresponds to our second example; the only difference is that the parameters VA

and VB represent the number of basic channel uses per second. The basic channels are
in q

in a sense time-parallel; channel A has VA = R output letters per second, and chan-

ln q
nel B, VB = RB It does not matter whether the letters from the alphabet q are sent

over channel A or channel B, or over a composite coder-decoder, as long as they come

at a sufficiently high rate for the Reed-Solomon coder-decoder to operate at the required

over-all rate, R.

When one goes from a composite system to separate systems the only change in com-

plexity occurs in the inner coder-decoder. If one tries to find the optimum rate and

power distribution, one discovers that variations in rate and power only affect the com-

plexity of the inner coder-decoder (as long as one does not try to make the rate on one

of the channels greater than its capacity). As an exercise we can assume that a

maximum-likelihood coder-decoder is used as the inner system and determine the rate

distribution minimizing its complexity. In this case we have

NARA
DA= e

NBR BDB= e

NARA
This comes from the fact that the decoder must make e comparisons per block.

Each comparison involves NA letters, but we divide by NA in order to normalize com-

plexity to comparison per channel use. Evaluating Eq. 78, we have

Ai PARA RBNB PBRB 

eA A + EA(RA) B + EB(RB)'

We observe that RANA = RBNB is close to the solution to this equation. In particular,

RA NB
lim R N- by the same argument that was used in finding the optimum blocklengths.

T-.o00B A
The argument used here is an asymptotic one and, consequently, is not strictly applic-

able. One does not require a very long blocklength but only one large enough to achieve

a Pe 10- 3 The asymptotic argument was used because any nonasymptotic argument

would become involved in specific codes, which we wish to avoid.

The asymptotic expression for the rate distribution of the maximum-likelihood

decoder calls for a constant rate times blocklength. This is the same relationship that

we observed in the two earlier examples.

We shall now prove a theorem about the attainable Pe when we code separately and

select the rates by using the same rate times blocklength on both channels. We shall then

investigate when the complexity function will allow us to keep rate times blocklength fixed.
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Theorem: Let us code for two parallel channels with separate coder-decoders, with

rates and blocklengths chosen so that Pe is the same on both channels,

NAEA(RI) = NBEB(RI)

and the information per block is the same on both channels,

RkNA = RNB'

Then if we had coded for the composite channel at rate

R = R + R

and blocklength determined by

RN = R NA,

the Pe for the composite coding would be equal to or larger than for the separate coding,

NEc(R) - NAEA(RI).

Proof: The quantities shown in Fig. 10 are

R = the over-all rate

Rk , Rh = the rates for the individual channels A and B

RA, RB = the rates that satisfy the conditions for composite coding, that is,

RA(p) + RB(P) = Rc(P)

and

EA(P) + EB(P)= Ec(P)

dEA(RA) dEB(RB) dEc(R)
P dR dRA B c

It can be seen from Fig. 10 that we have chosen RX and RB so that they add up to

R, and the operating points lie on a straight line through the origin. In other words,

EA(R ~ ) E B(R) ((82)

The purpose for this will be seen presently. Let

RA = R A + A

Rh = RB - A.
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E(R)

composite

R

RAR 'A R'BRB R

Fig. 10. Figure for Proof of the theorem.

If one takes the Taylor series expansion of EA(R) and EB(R) about the points RA and RB,
one has

EA(Rk ) = EA(RA) +

EB(Rb) = EB(RB) -

dEA(RA)
A dRA + CA

dEB(RB)
6A dR + CB.

B

Adding these, we have

EA(R ) + EB(Rh) = EA(RA) + EB(RB) + CA + C B = Ec(R c ) + CA + CB.

Both CA and CB are positive because the E(R) functions are always convex.8 Thus

EA(RX) + EB(R~ ) >-Ec(Rc).

Dividing by R = R + RB yields

EA(RX) + EB(RB )

R + RB

Ec(Rc)

R

or, by Eq. 82,

EA(RX)

RX
EB(R B)

B
E (R

c
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Since we held RkNA = RBNB = RcN, we can write

NAEA(R k ) = NBEB(R ~ ) NEc(Rc),

which proves the theorem.

The theorem applies to any set of parallel channels, but it is only interesting if we

can build separate coder-decoders with RANA = RBNB = RcN without using a larger total

complexity. Thus we would like to find out when

DA(RA, NA) + DB(RB, NB) _< Dc(RcN). (83)

We claim that (83) will be met whenever both

NADA(RA, NA) - NDc(R c , N)

and (84)

NBDB(R B , NB) < NDc(Rc, N).

The quantity ND(R, N) is the blocklength times the number of logical operations per sec-

ond, or just the number of logical operations needed to code and decode one block (under

the assumption that the channel operates once per second). We define this quantity as

effort, and it represents the effort needed to code and decode one block.

We prove (83) from (84) by observing that

N RA
DA(RA, NA) D(R N) D c(R c , N).

The same thing is true for channel B. Since RA + RB = Rc, Eq. 83 is met.

We shall now summarize what we have proved. Let us code for two parallel channels

with the same Pe on both channels and choose the rates so that

RANA = RBNB.

This is equivalent to choosing

RA RB

EA(RA)- EB(RB)'

since the Pe is the same. If we had coded for the composite channel with blocklength

chosen so that

RcN = RANA,

where Rc = RA + RB we would not be able to obtain a lower Pe' Moreover, if Eqs. 84

are met, we would not be able to accomplish the composite coding with less total com-

plexity than we had used for separate coding.

Any coding scheme, for which the effort needed to decode a block depends only on
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the amount of information in the block, will meet Eq. 84 because RN is the information

in a block. It is quite reasonable to expect that there will be many decoding schemes

in which the effort is primarily dependent on the information content in the block.

The maximum-likelihood decoding that we considered meets (83) with equality if we

add a refinement to the complexity function. We must let complexity be

e in q

where q is the alphabet size. This is reasonable because the number of logical operations

needed to make a comparison is proportional to the log of the alphabet size. Equa-

tion 81 becomes

RN RBN B RN
AA B =e c in c Dc(Rc Nc)DA(RANA) + DB(RB, NB) =e In + e In q e c n 

since the composite alphabet size is the product of the alphabet sizes of channels A and

B.
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V. SUMMARY AND SUGGESTIONS FOR FUTURE RESEARCH

In Sections II and III we considered the problem of communicating over parallel dis-

crete time channels, disturbed by arbitrary additive Gaussian noise, with a total power

constraint on the set of channels. We found explicit upper and lower bounds to the achiev-

able probability of error with coding, which decreased exponentially with blocklength.

The exponents of the upper and lower bounds agreed for rates between Rcrit and capac-

ity. We were also able to find the optimum signal power distribution over the parallel

channels. The results were shown to be applicable to colored Gaussian noise channels

with an average power constraint on the signal.

Most theoretical work on the achievable error probability with the use of coding has

centered around the relationship between blocklength and error probability. Practically,

one is generally more interested in the trade-off between error probability and the equip-

ment complexity needed to implement coding. In Section IV we have investigated that

relation for parallel channels and found that both error probability and complexity are

parametric functions of blocklength. When the complexity is an algebraic function of the

blocklength (i.e., when D - No) it is possible to eliminate the blocklength from the

expression for Pe and express the reliability function directly in terms of complexity.

-ln P
E(R) = lim sup

D-boo D1/P

For practical reasons, one would only be interested in building such a coder-decoder

if P were small.

When a set of parallel channels all has a complexity-blocklength relation of

D NP

for the same , then one can combine the E(R) functions of the parallel channels into a

single E(R) for the parallel combination. This combined E(R) could result from an opti-

mum choice of blocklength and rates or from some suboptimum choice. In either case,

it gives a bound to Pe for a given total complexity.

P < e-D1/P[E(r)- E]
e

for any positive and a sufficiently large D.

The extension of this technique to channels in series seems straightforward, and,

in fact, the problem is simpler because the rate must be the same on both channels.

It also appears to be a simple extension to include series combinations of channels

that are themselves parallel combinations and vice versa. By this nesting of results

one could reduce large networks of communication channels to a single E(R) function.

Preliminary investigation indicates that a circuit-theory analogy can be constructed
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in which communication links as one-way devices are analogous to one-way circuit ele-

ments. Using this analogy, one could attack the problem of non series-parallel networks.

One possible approach would be to reverse the process of combination and break one of

the channels up into two parallel channels. One could then split a node as shown in

output

output

Fig. 11. Node splitting.

Fig. 11. One must require that no information would tend to flow between the halves

of the node if they were connected, thus the particular way that the link is split up will

depend on the over-all rate.

Finally, an extension to the case in which we have more than one information source

and sink should be possible. In this case we would look for an E(R 1 , R2, ... Rn ) that

would be a function of the various information rates between sources and sinks.

Care must be taken here when one uses the circuit-theory analogy because rates

69

input

input



flowing through a link in opposite directions do not cancel as currents do. In fact, one

would have to make two channels available, one operating in each direction. There would

be no such problem when all information flows in the same direction.

While our results on colored Gaussian noise are considerably more complete thanthe

results for variable blocklength, there are still several open problems here. The lower

bound on Pe at low rates is not the tightest possible bound. A better minimum-distance

bound would probably improve that situation considerably. Also, in all of the bounds,

we have ignored coefficients and concentrated on obtaining the exponents. The coeffi-

cients become important if one wants to use the bounds at short blocklengths, and there-

fore it is worth while to consider them. It is possible that one could use some of the

techniques of Shannon 2 0 on the white noise channel, since his coefficients are much

tighter than ours.

The basic problem of Sections II and III is the determination of a good signal power

distribution to use in coding for colored Gaussian noise channels. This problem is also

met in the analysis of statistically time-variant channels. Some of the optimization

techniques that we use may also be applicable to time-variant channels.
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APPENDIX A

Convergence of Sum over Eigenvalues to Integral

over Power Spectrum

We wish to show that

G(N) 0
lim T G[N(w)] dw, (A. 1)
T-o T j-_)

n= 1 

where the Nn are the eigenvalues of the integral equation

T
T R(x-y) i(y) dy = Nii(X), x T.

R (T) is the noise autocorrelation function, and N(w) is its Fourier transform. G(* ) is

any bounded nonincreasing function such that the right side of (A. 1) exists.

Proof: We start with a theorem of Kac, Murdock, and Szego 2 (also see Grenander

and Szego 1 0 ) that if R(T) and N(w) are absolutely integrable on -oo, 0o, and R(T) continu-

ous, then

NT(a, b)
lim T = (w,a<N(w)<b)/Z2r, (A. 2)
T-'oo

where NT(a,b) is the number of eigenvalues between a and b, and (w;a<N(w)<b) is the

measure of the set of w for which N(w) is between a and b, as long as the interval [a, b]

does not include zero, and the set of w for which N(w) = a and N(w) = b is of measure

zero.

The restriction that R(T) is integrable can be avoided by the argument used in Sec-

tion II. We can have

R(T) = NO~O(T) - R(T)

with R'(T) integrable. The only change in the theorem is that the interval [a, b] must not

include N 
o

We rewrite equation (A. 2) as

NT(a, b) 1 °°
lim T : X b[N(w)] dw,
T--oo

where

1; a < N(w) < b

ab[N(w)] 0; otherwise
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Now break up the domain of G( ) into an arbitrary set of intervals divided by the points

a < al1 < ... < a I

Then if G is monotone decreasing, we can write

NT(ail, a i )

1 G(Nij)
I oo I i=l

00 G(ai) X [N(w lim
7r )I-oo Xa-l ai T- o T

I

G(ail) Xa [N(w)]dw. (A. 3)oo i-l' i
i= 1

This is seen to be true, since for any i

G(ai) -< G(Nj) -< G(ail),

where Nj is any Ni between a i and ai- 1. Since I is finite, the sum and the integral can

be interchanged in the outer terms of (A. 3), and the sum can be taken inside the limit

in the inner term.

NT(a o, a I)

I Z G(Ni, j)

1- m i G(ai) Xai [N(w) dw lim 1 J

0-oo T-oo Ti= 1

I

2 S_ m G(ai-1 ) Xa a [N(w)] dw. (A.4)
21 1 i-l' i

i= 

The limit of the center term is independent of the subdivision, as long as [ao , a1] does

not include No , but does cover the entire range of G[N(w)] when w goes from -oo to oo.

The expressions on the right and left are the integrals of simple functions. The

simple function on the left is less than G[N(w)], and the simple function on the right is

greater. Also, any simple function will generate a finite set of a i which can be used to

generate the right and left integrals. If G[N(w)] is bounded above and below and

G[N(w)] dw (A. 5)
_00

exists, then by definition there is a monotone increasing sequence of simple functions

converging to G[N(w)] from below almost everywhere, whose integral converges to (A. 5),

and likewise for a sequence converging from above. Thus, given E > 0, there exists a

finite set of ai such that the left and right side of (A. 4) differ by less than E. To extend

this to monotone nonincreasing G(.), we need only assure ourselves that the a i can
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always be chosen so that the measure of the sets N(w) = a i is zero. This excludes only

a finite number of values taken on by G( · ) and there is no difficulty in avoiding those

values. This proves the theorem.
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APPENDIX B

Asymptotic Behavior of q

We have a sum of independent random variables each of which is the square of a

Gaussianly distributed variable with zero mean and variance Qn. Consequently, the

sum has mean

E Qn=S
n

and variance

2 2Q

n

We wish to find a lower bound on the probability that the sum lies between S and S - .

The central limit theorem states that given a sequence of independent random vari-
2

ables Zi 1 i n, with means Zi, variances ¢i, and third absolute moments

P3, i = Zi-Z'i1 3 < °,

and if G(x) is the distribution function of the normalized sum, then

CP3 ,n

where ¢(x) is the normal distribution function,

n

1 =

Zii=l3,n- 3/2

and C is a constant less than 7. 5. For our particular problem

17 3
P3, i < 2 Qi

Thus we write

n
CP3,n 17C 

i=l

4 I n 3/2

i= 
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We underbound

q = G(O) - G

by

ZCP 3 , n

\fnT

We note that
n 2
Z Qii=l

grows linearly with T. Therefore, since '(0) = , we have
\FZ-v 

for large enough T

8

4 Qi
i=l

n 3
17C Qi

i=l

4\( i Q)

n

i=l

n 3
Qi - 17C 4 z qi

1 i=l

We now use the fact, proved in Appendix A, that the sums approach a constant times

T for a solution with Qi defined in terms of Ni , Nb, and p. Let

n

i=l

n 3
Z Qi

i=l

2
Qi TD2 ,

T-2oo

-- TD 3 ,
T-oo

then for large enough T

f 6Dz - 17C T D 3
q >

4If we let

If we let

=
4\!2 rD2 + 17C r- D3 4 D2

2 3 2~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2

1then q >-
q-T'

and 1 fT.q
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APPENDIX C

Proof of Upper Bound on Pe for List Decoding

This proof closely follows Gallager's 8 proof for a single guess at the output. The

first result was first obtained by Gallager, and is similar to that obtained by Elias 4 for

the binary symmetric channel.

We start with the standard expression for Pem in the integral form for a channel

with continuous input and output and a given set of code words xi

Pem = P(Y/Xm) m(Y) dy,

where

'm(Y) =
O;

(C. 1)

if P(y/xm) P(y/xm ) for at least L distinct m. m

otherwise

The inequality

m ( Y ) -<

m m
1* z* ,m

P/L
... P(/x )1/(±+p

-M ] m m, ...L LP [ (Xml) (/x 2

P(y/x )L/( 1 +P) L!

follows, since in the numerator sum there are at least L! ways to have all the P be

those that are larger than P(y/xm). Taking the inside terms to the l/(l+p) power, and

the result to the p/L power does not affect the inequality.

We can bound (C. 1) and take the average over an ensemble of codes in which, for

each m, xm is chosen with the probability assignment P(x).

mL*m, ml ... , mL-l
PeS-< P(Y/Xm) I

Im~

[P(/m )' . P(Y/xm L+P / L) dy. (C. 2)

Since the x. are selected independently over the ensemble of codes P(y/xm) and all the

P(y/xm ) are independent random variables for any given y, and for any randomP i
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variable tp/L < Zp/L when p/L < 1, we can write (C. 2) with the average bar only over

the P(y/xm )l/(l+p) terms. Since all these averages are the same we can write
the P i

Pe " <_ (M-1iL) ! L! 

We observe that by Stirling's formula

P(x) P(y/x)1/(+P) dx

(M-1)! Me
ln - L InL

(M-1-L)! L!

Thus we can write

Pe < exp -[Eo(p)-pR],

where

E o (p) = -ln dy,

Meand R = ln L'
We derive the

particular code.

define

expurgated bound by setting p = L in the

(This is identical to (C. 2) but without

expression for Pem for any

the average bar.) Then we

which is a random variable over the ensemble of codes. Also, both sides of the inequal P dy

which is a random variable over the ensemble of codes. Also, both sides of the inequal-

ity

P 1< I..
em L! .

mLm, ... mL-
Q/ x x ... xm-m'-m11mL)

are random variables over the ensemble of random codes. Now for a given number B,

to be determined later, define the random variable

'm(code) =
{I;

if P >B
em

otherwise

The inequality

ml*m
mL .mL-

mL~m,...mL-1

Q (BL .). 

(BL!) s
0< s< 1
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follows, in that it is true for s = 1 and decreasing s makes the individual terms in the

sum that are less than 1 larger, and if any term is larger than 1 it is true anyway.

We wish to purge from our ensemble less than 1/2 of code words, and we will do this

by deleting all code words for which the random variable Pem is greater than B, and we

shall choose B so that over the ensemble less than 1/2 of the code words will be purged.

P(Pem > B) = Yn(code)

This is the probability that a given code word will be expurgated. If we make this proba-

bility equal or less than 1/2, then there exists a code with at least M/2 code words satis-

fying Pem B.em

Ym(code) 
ml*m1

I
m Lm,... mLL L-1

Qxm, ... mL)1

(BL!)s -

Then we solve for B, take the average inside the sum, and note that the average does

not depend on which m i are used, just that they be different. Also, for this reduced set

of code words, P B; thus

I.. P /La m /( i+L) di S)

all mi different (C.3)

Let s =-, pL L, then we can write (C. 3)
P

Pe < exp -[Eo(p)-pR ],

where

Eo() = -- ln
-m

P(xm )... PmL

-mL

P(Y/Xm) P(Y/XmL) 1/(+L)

and

R = n 4eM - L In L.
P

Here, we have taken into account the fact that 1/2 of the original code words have been

deleted.
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APPENDIX D

Proof of Two Theorems on the Lower Bound

to Pe for Optimum Codes

This entire appendix is a copy of two theorems and their proofs given by

R. G. Gallager 2 1 in an unpublished paper. They are presented here because of their

general unavailability and because the theorems are essential to the results of this

report.

The first theorem corresponds to that given in Section III by making the following

correspondences:

Section II

P(Y/x m )

f(y)

P em

Zm

Appendix D

r (y)

PZW

Pel

Pe2

Theorem 3

Let y =

N integers,

J, 1 n - N, represent an arbitrary sequence of
(Jl jZ'''jN)' 1 -< Jn 
1 to J, and let

N

Pl(y) = rI Pln(Jn ) ;
n= 1

N

P 2z) r 12n(n )
n= 1

be two product probability measures on the sequences y. Let Y be an arbitrary set of

sequences y and let Yc be its complement. Let

Pel= I P=lY); Pe2 2, PZ(-) (2. 2)

Ec 1 EY 1
Let s be an arbitrary number, 0 < s < 1, and defineY1

Let s be an arbitrary number, 0 < s < 1, and define

J

nL(s) = ln E Pin (Jn) P n(jn ) ; 1 n -
j =1

Assume that for each n, n(s) is finite (this cor:

for some y). Then if

=1

N. (2. 3)

responds to assuming that P 1 (y) PZ(y) 0

(2. 4)
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it must follow that

N

Pel 4exp E[(s)-sLn(s) ] - s 2 E n(S) (2.5)
=1 n

where ~n(s) and in"(s) are the derivatives of tLn(s) with respect to s.

Proof of Theorem 3

Define

N N

[J(s) = E (s) = n l ln (i) I2n( (2. 8)
n= 

n= n n= 1 n

= n p l-S(y) p2(y), (2. 9)

y

where we have used Eq. 2. 1 to go from Eq. 2. 8 to 2. 9. The sum over y in Eq. 2. 9 can
be considered to be either over all output sequences y or over all sequences in the over-

lap region where both P 1(y) and P 2 (y) are nonzero. For the rest of the proof, we shall
consider all sums over y to be only over the overlap region.

Taking the derivations of (s), we get

P (l-s() P(Y) P 2 ()
(S) = In (2. 10)

l- P1 (y p2(y,) Pl(y)

y P 1 (y) P2(y \Pl(Y)

For a given s, 0 < s < 1, defineP1 (Y) P s2(Y) 

q (Y) = 1- I (2. 12)P-S (Y) P(Y_)

P 2 (y)

D(y) =n . (2. 13)
Pl(y)

If we consider D(y) to be a random variable with probability measure qs(y), then we
see from Eqs. 2. 10 and 2. 11 that '(s) and .i"(s) are the mean and variance of D(y),

respectively. Now let Ys be the set of sequences y for which D(y) is within N standard
deviations of its mean.
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(2. 14)Ys = [: ID(y)-' (s) <2," (s) ].

From the Chebyshev inequality,

qs(Y) (2. 15)

yEY%e~ s

We can now use Eq. 2. 12 to relate P 1 (y) to qs(y) for those y in the overlap region.

P1(Y) = PP(y') P 2)= P )- (E --l--') )( qs (y)

Using Eqs. 2. 13 and 2. 9, this yields

Pel > P (y) = e (s) e-sD() q (y) (2. 16)

yEYC yEYCYeYC 1 Y eY 1

The inequality in Eq. 2. 16 comes from the fact that we are now interpreting sums

over y to be only over the overlap region where both P(y) and P 2 (y) are nonzero,

whereas in Eq. 2. 9, the sum is over all y E Yc. For any reasonable decision scheme,

of course, Yc would not include any y for which Pl(y) 0 and P 2 (y) = 0, and in this case

Eq. 2. 16 is true with equality. Treating P2 (y) in the same way as Pl(y), we get

Pe 2 > P 2 (y) = e(S) e(l-s)D(y) q( ). (2. 17)
yEY 1 yEY 1

c
Now we can lower-bound Pel by summing over only those y in both Y1 and Ys, to

obtain

Pel > e 5(s ) e- sD ( y ) qs (y) (2. 18)

YEY'Y 5

> exp[p(s)-s['(s)-s2l'(s)] C qs(y). (2. 19)

y e Y1Ys

In Eq. 2. 19, we have used Eq. 2. 14 to upper-bound D(y), thereby lower-bounding
-sD(y)e sD(y Using the same procedure to lower-bound Pe2' we get

Pe2
> exp[,((s)-(1-s)/' (s)- (1-s)2i"(sj )] qs(y). (2. 20)

EY YY s

Comparing Eq. 2. 20 with the hypothesis, Eq. 2. 4, and using Eq. 2. 8, we see that
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qs(y_) 1 (2.21)

y e Y1Ys

Combining Eq. 2. 21 with 2. 15, we get

qs(y) . (2.22)
C

y E YYs

Finally substituting Eq. 2. 22 in Eq. 2. 19, we get Eq. 2. 5, thereby proving the

theorem.

Theorem 5

Let P 1 (N 1 , M, L) be a lower bound on the average probability of list decoding error

for any code of block length N 1 with M code words and decoding list of size L on a par-

ticular discrete memoryless channel when the code words are used with an arbitrary set

of probabilities p(m). Let P 2 (N 2 , L) be a lower bound to probability of decoding error
Lfor at least one word in any code of block length N2 with - code words for the same chan-

nel. Then any code of blocklength N = N 1 + N 2 with M code words, used with probabili-

ties p(m) has an average probability of decoding error bounded by

P 1(N1, M, L) P 2 (N 2 , L/2) (4.
Pe 4

Proof:

Let 1 , ... , xM be the code words for any given code of block length N. Let y be

a received sequence and lety 1 be the first N1 letters of y, and let y 2 be the final N2 let-

ters of y. The probability that m will be transmitted andYly 2 received is, then,

P(m, Y,_y 2 ) = p(m) Pr(yl xm) = p(m) Pr(y1 Xm) Pr(y2 Ix), (4. 3)

where in the second equality we have used the fact that the channel is memoryless.

For any given received sequence y, the decoder minimizes the probability of error

by decoding that sequence m that maximizes Pr(mly), or equivalently that maximizes

P(m,_y1 ,y 2 ). Let Ym be the set of y for which Pr(my) > Pr(m' y) for all m' * m. Note

that it is possible for Pr(m y) to be maximized by several different values of m. In this

case the decoder can do no better than to choose at random between those m that maxi-

mize Pr(m y), thus making an error with probability at least 1/2 and at most 1. Thus

for a given code, decoding for minimum error probability, we have

M

ZPe Z2C C P(m,y 1 ,y 2 ) (4. 4)

m=l 1 YC
m
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M

Pe _< E

m=l yEyc
- m

P(m) P(y xm).

We can break up Eq. 4. 4 in the following way, using Eq. 4. 3 and Bayes' rule.

(m ) P() P(Y2 Xm) 

'I

Define the term in braces as Pe(Y ) ,

Pe(Yl)= E 

m-yz2 :YEYm-- m

P(m yl) P(y2 I Xm)

For notational convenience, we now consider renumbering the messages for a particular

sequence y, in decreasing order of a posteriori probability

P(m=l1Y1 ) >) P(m=21Y1 ) ... P(m=MYly). (4. 8)

Since the sum over m in Eq. 4. 7 is over all m, clearly Eq. 4. 7 is still valid after this

m
2 3 ... L,'1

3 ... L L+1 

I\x~~~

N \1
N, \

\ \ -

M-L - ..... M 

Fig. 4.1.

renumbering. Now we split

is counted at most L times

the sum over m into 2 terms in such a way that each term

(see Fig. 4. 1).

M i

i=L m=i-L+1 2 : E Y
-Y :y m

P(mly1 ) P(Y2 Ixm)

Equation 4. 9 can now be further lower-bounded by summing only over those Y2 for
which

83

Pe 2 P(Y1)Pl

(4. 5)

(4. 6)

(4. 7)

L

L+1

i =

M

(4. 9)
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P(mIY 1 ) P(Y2 I xm) -< P(m' ly 1) P(Y2 I Xm')

some m', i-L+1 m' i.

If Eq. 4. 10 is satisfied for a given Y1. Y 2 , and i, then y is certainly in Y .- -- m

1
P(Yl ) I

M i

i=L m=i-L+l y2:Eq. 4. 10valid

P(m Yl1 ) P(Y 2 Ixm)

Now define, for i-L+1 m i,

P(m IY1 )

i

m'=i-L+1
P(m' I 1 )

M

Pe(Yl ) > =L
i=L

iL+

m'=i-L+l
P(m' Iyj

m=i-L+l Y2 :Eq.
qy i (m ) P(Y I Xm

4. 10 valid -

(4. 13)

The term in braces in Eq. 4. 13 is in the same form as Eq. 4. 5. It is an upper

bound to the probability of decoding error for a code of block length N2 with L code

words with a priori probabilities q i (m) for i-L+1 •< m i. We can think of the code

words here as being the last N2 letters of each of the original code words xm. By applying

Lemma 1 (Eq. 3. 37), the probability of error for such a code is lower-bounded by

L PZ (Nz,,--) min qy 1, i(m). (4. 14)
2 2( 2 i-L+l<m<i -1'

Because of the ordering of the m, the minimum above occurs for m=i. Also, since the

quantity in braces in Eq. 4. 13 is an upper bound to the error probability for which

Eq. 4. 14 is a lower bound, we have

M i

i=L =i-L+l

M

Pe(Y1) > 2 P2(N2' ) P(iYl),
i=L

where we have used Eq. 4. 12.

Substituting Eq. 4. 16 back in Eq. 4. 6, we have

M

Pe 40 P(Yl) ) P(i Y P (Nz' )
YI1 i=L 

(4. 15)

(4. 16)

(4. 17)
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qy_ i(m)

(4. 11)

(4. 12)

_ __ � � __ I_ _I_�

(4. 10)

P(m ly L PZN,- yli- 1 2 .N2 2 y·'i



Further reducing Eq. 4. 17 by summing from i=L+l to M, we see that the term in

brackets is the probability of list decoding for a code of block length N 1 , with M code

words and a list of size L. This completes the proof of the theorem.
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