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ABSTRACT

The application of unitarity to multiparticle production processes 1is
studied and relationships between production and scattering amplitudes are

derived.
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1. INTRODUCTION

—-— -—

wave amnlitndaec ccowa voostoe T Lo wwmie ropuri, lne appllication o uunitary
propaerties of the ceattering matrix s Investigated to ascertain how much

information 1s provided by the principle of unitarity. From standard testis
such as Blatt and Weisskopf (1952), as applied bv Kibble (1960), the unitary

condition may be written:
+
SS =1

from which one gets:

1 %y 57 JF * =
21 (Afi B Afj) h 7? dgn Afh Ani """ (i)
where Af. = <f/T/i> is the transition amplitude between states of 1 and t
i
particles respectively,
T = +the transition matrix
= 1/2i (1I-8), where
S = the scattering matrix,
dgn = the volume element of all degrees of freedom in intermediate

states of n particles.
The theorem of reciprocity further states that:

= L 2
Tes Toiog (2)

Only cases where the interacting particles have no spin are dealt with, and then

Afi is simply a scalar complex number, and both sides of Equation 1 are real.

z. INTEGRATION OVER INTERMEDIATE STATES

If the partial wave expansion of the general vertex describing transitions
from a state with i particles to a state with f particles were known, it would
prove possible to carry out the integrations on the right-hand side of Equation 1

and so obtain algebraic relationships between the partial wave amplitudes for

production and scattering. As in the previous paper, we write:
+ hrd
Afi = Z (eL £ 1) \yf (LM',0") afi(L,W) DI\L/I'M (wfi) \Ifi(LM,Q), ..... (3)
L Jyamw

where Wf, Wi are multiparticle statesg of orbital angular momentum L

and z component M for f and i1 particles respectively,

L . .
DM‘M (Wfi) is the rotation group operator,

LIy Dol Liils wors (onok 1Yog) the possible structures o mauny varticle part’



A is the partial wave amplitude,

i
NE N e LYl a3 cnal Aemmymcn 22 Prmandaw vmamtiyrad 4o S*‘eﬂltb final and
S gue 12 Y A T T PN - J$
tlitial couilguravions respeciively.
The integrated product in (1) is evaluated as follows. After elimination

of the kilnematical constraints we obtain:

* ' "
\/\&z AS AL = den” E: EZ Ve (LM'30) a (L'3W) X v_(L'M"50")
~n fn ni ~n AR il n

L 1

o (Wo ) Dy (W) ¥ (D30 a  (LiW) X ¥ (LM50) . ... (4)

an) M'M ni n ~

D

The phase space factors Jr incorporated into the wn and dQ”n will cancel,

and following from the orthogonality of the Wn, that is,

fdﬂ"n v (L'M'50") ¥ (IM3Q") = 8(L',L)d(M' M)

as well as the addition theorem for the rotation group operators (Edmunds 1957),

ZZJ L L _ L
vl DM'M“ (wfn) DM”M (wni) = Dy (wfi) ’
one obtains:
[\dQ A* A = :{: v, (LM';Q") a* (L,W) a (L W) DL (W_.)
J ~n fn ni \ £ '~ fn ’ ni ’ M'M ‘i
L M'M
X wi (IM3Q) . (5)

Now we select co-ordinates in initial and final states such that the z-axis lies
in a plane perpendicular to L in each case, hence M' =M = 0. The rotation

group operators obey the property (Rose 1957),

) Ll L2 _ 8772 1 1 ~
/ dw DMlM.‘l (W) DM2M'2 (W) - 2Ll -+ l 6(Ml )ME) 6(M13M2) 6(Ll )L2) > s (b)
while it is assumed that Wn(LO;g) is a real function. Using these rules, we can

project out the M = M' = 0 states in (5), and the left-hand side of (1), to

obtain:
1 * B :{: *
51 <afi(L,W) - A (L,W?> = . o (L,W) a s (L.w . L. (7)
Any scalar amplitude may be written:
id .
_ o fi
#ri Pri )

—-—-—
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and substituting this form into (7), we get:

Ima. (LW = }. 0.
o P

(T o (1T oF

L Ll . \O}

The left-hand side of Equation 8 1is a real number, and the right-hand side

must therefore satisfy:

2; Pen Ppg SI0 By -8, ) =0 (9)

where subscripts (L.W) have been dropped for convenience.

One simple way to satisfy the stringent condition (9) is to introduce an

equiphase principle. We assume:

Sen = B4 for all (f,n,i)

S (10)
and explore the consequences.

3. PARTTAL WAVE AMPLITUDES IN THE EQUIPHASE ASSUMPTION

If pfi 1s regarded as an n X n matrix, where up to n initial, final, or
intermediate particles are kinematically possible, then in the equiphase

assumption, Equation 8 states:

- p = psind |, (11)

The partial wave projections from the T matrix elements can be written
_ id
I = p e o (12)
Since e 1s a real symmetric matrix, it follows from (11) that:

n n-1 n-1

£ = (sind) p = simd p

When the determinant of boith sides of (11) is taken, one finds:
(det p)® = (sind)" det p ,

that is, either det p = 0 or (sind)"™,

The second result corresponds to the trivial solution:

p =sind. I |

but for the first solution, the physically interesting one, p is a singular

matrix. Its characteristic equation:

detlp - AI] =0

>

has n-1 zero roots with one root equal tc sind. Therefore g is of unit rank




and all principal minors of order grester than unity vanish.

-4 -

It follows from

the expansion of the characteristic equation and the Cayley-Hamilton theorem

(Mirsky 1933) that:

hal

(-sin0)’

- R
+ (-siné)“ - trace p = U, SO
trace p = sind
id
trace T = sin® e~ , and
Lol (13)

det T

Thus p and T DOSSess no iluverse.

id

S=I-Zipe ]

-— pu——

+
fulfils the conditions S S = 1 ,

det S

+
det S det § =1

+

S =28

e

210

-1

o also has the curious property that

(trace p

)t'l

n
= trace p .

4. BRANCHING RATIOS

The condition

that every minor of p of order greater than unity should

vanish leads to the condition that all 2 X 2 minors should vanish.

Hence:
Pes Pr1 = Pey P (14)
For example Cag = P22 P33
We define branching ratios Pfi by:
: 15)
= , (
Ffi pri/51n ,
and from (13) we find:
=/, Do, (18)
i
Also, Equation 14 relates all off-diagonal elements to diagonal ones by the
relation:
=T __T.. . (17)
Peg = FMep Tyy
Since Pf. appears in total cross sections as a factor of proportionality, we
j ap.

-5 -

chose the positive roots of (17).  The matrix:

(1) Bfi = Pfi/F = Dfi/SiHS
satisfies (ii) B® = B
(iii) trace B = 1

(iv) det B =0

..... (18)
5. CROSS SECTIONS AND PHASE SHIFTS
The total cross section for a particular reaction is defined by
- 2
ofiULg) = degf lAfi |=. (19)
This expression can be evaluated by substituting (3) into (19) to obtain
00 (W,0) = ar . (2L + 1) oo (LW I, (Los) 12 . (20)
With the equiphase assumption we get:
}Z I 2(L,W)
= o] 2 . 2
00; (W, Q) = ar - (21+1) L sin S(L,w)lwi(Lo,g)l ,
I (L,W) T',.(L,W)
£ iiv
= 47 Ez 2L+ , in® Q) |2
..... (21)

For a two-particle initial state:

V2 (L03Q) = 1/4372

S (22)
where J> is the phase space factor for the state. The inelastic cross
sections obtained from a two

(21) to obtain:

-particle state are found by substituting (22) into

- (L) Tpp(L,W)

J2

T
(21+1) —LL

Ofe(w) =
L I2(L,W)

sin® &(L,W)

Now the scattering amplitude is usually represented in terms of a complex phase

shift (@ + iB) such that in each eigenstate of L:

a (LW) =sin (@+ ) SL@*® (24)
i By equating (24) to the polar form, one finds:
E (i) poz = (1 + e_48 - 2 cosQ e—ZB)%
;% and (ii) & = tan © <l _-§°ZBCOS a%> C (25)
% e " sin2x
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The inverse transformations are
. 1. -1 (apgg cosd 1
(1) a = :Lan ~ L T c\( b
= e .
5 L f B - (26)
and (ii) B = 1 In 1} + 4 co2 (fo22 -sin | S
The absorption coefficient:
-28(L,W
aw = e P
ic enn that in ezch eigensigio:
1 -4
czo(simd® - p22) = 1 (1 - e B) ,
that is,
22 o) so2s -1 ] _ .2
T <? - T > sin 7 ( %) .

The total »roduction cross section from an initial state of 2 particles

n
E: o, Jg Ez Ez (2L+1) pgp” (LW)

o
prod,e £=3 =3 L

becomes:

EE: 2L+1) poz(L,W) [DBS(L>W) + paa(L,W) + ~---]
L
(21+1) —112—2—%%— < —152—%%2 sin26(L,W)>

(21+1) [1 - &% (L,W)I. . (27)

o5
S g Y It B Il SR

For single level apvroximations, one may put:

cot & = 2(E_ - E)/T ,
where Er = the energy at resonance,
E = +the initial particles' total energy, )

which yields the Breit-Wigner (19) form in (23) for the partial cross sections.

6. A SIMPLE COUPLING SCHEME

In the matrix B of the branching ratios, given by Equation 18 (i), the

diagonal elements are unrelated. The reciprocity theorem (2) leads to the result:

Pes T Pyr

- 7 -
If we assume that this assumption may be generalized in such a way that:

Pa: = P . = 0 3 oy |
£5 f-r,i+r Sy qer !1-? > 1+’1I z e, e o)
N N

M=

the diagonal elementc henama wal < Cuilseyl '
2 +se vulseguence or the postulate (28) is

[l

§ 1y

-~ ~
-

that the total cross sectionsg (21) integrated over the initial configuration
- b

become invariant under the complex Lorentz transformations which change a

particle from an initial state incoming to a final state outgoing configuration

That is:
if cfi(w) = J/\dgi ofi(w,n)
= 4T Z(2L+1) 6.2 (L,W),
L
then o_. (W =
fl( ) Of+r, i—r(w)' """ (29)

The diagonal elements of B become related by

£ =I'g3/T = T"44/T
as/T22 24/Tas P /Pl 1,i-1° (30)
in which case
B = L22 ' g-—
= T
trace B = L2z 1 - §2(n ) = ]
= I'\ l - EZ ..... (31)
_ i+f-4
and Pry = (E) P22 . (32)

In this way all production amplitudes are related to scattering and the

. 2 .
entire set of n® reactions are specified by two parameters such as (p22,8) or

(T'22,0) per eigenstate of L.

Using the above theory, similar results are derived for different types of

(2-52) or (i- f) reactiouns. In these cases we simply subdivide I'ss into

Subsets:

I'e2 = Tzz(a) + Too(b) + --

r = T

£1 pi(@8) + T

fi(b) toos

to obtain branching ratios for reactions (a), (b) etc. respectively.
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