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AUSTRALIAN ATOMIC ENERGY COMMISSION

RESEARCH ESTABLISHMENT

LUCAS HEIGHTS

MULTIPARTICLE COLLISIONS

II. APPLICATION OF UNITARITY

J.L. COOK

ABSTRACT

The application of unitarity to multiparticle production processes is

studied and relationships between production and scattering amplitudes are

derived.
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1. INTRODUCTION

7r. ?a.rt I of ..his worts. (Jook 1966) the possible structures o;' many parti cU' ivi:-

wavp RTnpi -i -H-I^OC- -..̂ v̂  ---.-;-:,- :. j,. ^hlc i'cpui'L, tne application of unitary

proper+i^s of the scattering matrix is investigated to ascertain how mud:

information is provided by the principle of unitarity. From standard tests

such as Blatt and Weisskopf (1952), as applied by Kibble (1960), the unitary

condition may be written:

S+S = I .

from which one gets:

i y r
7TT~ (-"•,-,. "" •"• rt * / ~ i \ \ I ^^ / rv H. . . . . .2i fi fi '— ^ ~n :n ni

n

where A , = <f/T/i> is the transition amplitude between states of i and f

particles respectively,

T = the transition matrix

= 1/21 (I-S), where

S = the scattering matrix,

dfi = the volume element of all degrees of freedom in intermediate
~n &

states of n particles.

The theorem of reciprocity further states that:

Only cases where the interacting particles have no spin are dealt with, and then

A . is simply a scalar complex number, and both sides of Equation 1 are real.

2. INTEGRATION OVER INTERMEDIATE STATES

If the partial wave expansion of the general vertex describing transitions

from a state with i particles to a state with f particles were known, it would

prove possible to carry out the integrations on the right-hand side of Equation 1

and so obtain algebraic relationships between the partial wave amplitudes for

production and scattering. As in the previous paper, we write:

Afi = - *f (LM',2
1) a (L,W) D (Wf.) ̂(LM̂ ) , ..... (3)

L V27T

where tf, t. are multiparticle states of orbital angular momentum L

and z component M for f and i particles respectively,

D , (W ) is the rotation group operator,
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A is the partial wave amplitude,

r> t n
-1. ^ " -. VI O Q V* r

LI com igurai/.L oiis respec L

The integrated product in (1) is evaluated as follows. After elimination

of the kinematical constraints we obtain:

dfi A^ A .
~n fn ni

dft' n
L I T "

W DM'M < W ni> *n

r f ( L ' M ' ; n ) a f n ( L ' ; W ) X

.(L;W) X \|r.(LM;fl) .ni i ~ (4)

The phase space factors J incorporated into the t and dQ" will cancel,TL n n
and following from the orthogonality of the t , that is,

/ dfl11 1r (L 'M 1 ; * ! 1 1 ) ^ n (LM;f i" ) = o ( L ' , L ) S ( M ' , M ) ,^/ n n ~ n ~

as well as the addition theorem for the rotation group operators (Edmunds 1957) ,

one obtains

DM"M = DM'M

r
Ani = +f ani DM'M

X (5)

Now we select co-ordinates in initial and final states such that the z-axis lies

in a plane perpendicular to L in each case, hence M' = M = 0. The rotation

group operators obey the property (Rose 1957),

dw Qu2

MiMi I,M^) 5(Li,L2), ..... (6)

while it is assumed that ̂  (L0;fi) is a real function. Using these rules, we can

project out the M = M' =0 states in (5) , and the left-hand side of (1) , to

obtain:

*$T a^(L,W) - a,, (L,W)Uf.
n

afn (L'W) ani (7)

Any scalar amplitude may be written:

afi Pfi e
15fi

and substituting this form into (7), we get:

Im .
ni

!L,W) - 5

n

The left-hand side of Equation 8 is a real number, and the right-hand side
must therefore satisfy:

n
Pfn pni Sln

(9)

where subscripts (L,W) have been dropped for convenience.

One simple way to satisfy the stringent condition (9) is to introduce an
equiphase principle. We assume:

-fn ni for all (f,n,i;
(10)

and explore the consequences.

3. PARTIAL WAVE AMPLITUDES IN THE EQUIPHASE ASSUMPTION

If p . is regarded as an n X n matrix, where up to n initial, final, or

intermediate particles are kinematically possible, then in the equiphase

assumption, Equation 8 states;

£. £ = £ sin 5 ,

The partial wave projections from the T matrix elements can be written

i°I = p e

-Cll)

Since p_ is a real symmetric matrix, it follows from (11) that:

n f . ,- v n-1 . R n-1P_ = (sino, £ - sino £

When the determinant of both sides of (11) is taken, one finds:

(det £)2 - (sin5)n det p ,

that is, either det £ = 0 or (sin5) .

The second result corresponds to the trivial solution:

£ = s in5 . I_ ,

but for the first solution, the physically interesting one, £ is a singular

matrix. Its characteristic equation:

detjp - XI | = 0 ,

has n-1 zero roots with one root equal to sin5. Therefore £ is of unit rank

,(12)

•ft
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and all principal minors of order greater than unity vanish. It follows from

the expansion of the characteristic equation and the Cayley-KamiIton theorem

(Mirsky 1355) that:
TI n —1

(-sin6)' + (-sin6) " ̂ race £ - 0, so

trace £ = sino

trace T = sino e , and

det T = 0. (13)

Thus p and T possess no inverse; on the other hand, the matrix:

S_ = I_ - 2i £ eA~ »

+
fulfils the conditions S S_ = I_ ,

det S - e215

det S det S = 1

£ also has the curious property that

tl \n 4. n

(trace pj = trace £

4. BRANCHING RATIOS

The condition that every minor of £ of order greater than unity should

vanish leads to the condition that all 2 x 2 minors should vanish.

Hence:

pfi pkl = pfl Pki" (14)

For example Pa = P22 P33 •

We define branching ratios P . by:

rf . = rPf .

and from (15) we find:

r = / rV ii'

(15)

(16)

Also, Equation 14 relates all off-diagonal elements to diagonal ones by the

relation:

Since P . appears in total cross sections as a factor of proportionality, we

- 5 -

chose the positive roots of (17) . The matrix:

(i) Bf. = P f./P = p / s i n 5f. f.

satisfies (ii) B2 = B

(iii) trace B = 1

(iv) det B = 0 .

5. CROSS SECTIONS AND PHASE SHIFTS

The total cross section for a particular reaction is defined by

A I2.

(18)

(19)

This expression can be evaluated by substituting (3) into (19) to obtain

fiafi(W,Q) = 47T A (2L + 1) P
2(L,W)

(20)

With the equiphase assumption we get:

(2L+1)afi(W,n) = 47T

= 47T

For a two-particle initial state:

rfi
2(L,W)

r" (L,W)

P f f (L ,W) r (L,W)
sin2 5 (L,W) |\|r.

(21)

,(22)

where Js is the phase space factor for the state. The inelastic cross

sections obtained from a two-particle state are found by substituting (22) into
(21) to obtain:

f12
(W) =

P (L,W) P (L,W)
(2L+1) -ii ^ Sin2 5(L?W) .

P2(L,W)
,(23)

Now the scattering amplitude is usually represented in terms of a complex phase

shift (a + i£) such that in each eigenstate of L:

an(L,W) = sin (a + tf) e
i(a 4 ip) . (24)

By equating (24) to the polar form, one finds:

(i) P22 = i(l + e"4^ -- 2 cosa
-2P

and (ii) 8 = tan-1 /I - e 2o:
-3e K sin2o;

,(25)
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The inverse transformations are

1 -1 fee?? coso \
(i) a = - tan -i -, r0 „ T T 7 ~ ^ f

and (ii 4 p22 (P22 -sin 5) (26)
J

The absor t ion coefficient:

P22(sin& - pas) = (1 - e ) ,

that is,

1 - 2S =sin

The total production cross section from an initial state of 2 particles

becomes: n

a , (W) = L
prod,2 f=3

n

f=3 L

(2L+1) Pf2
2 (L,W)

P33(L,W)

(L,W)J. (27)

L

For single level approximations, one may put:

cot 5 = 2(Er - E)/r 5

where E = the energy at resonance,

E = the initial particles' total energy, '

which yields the Breit-Wigner (19) form in (23) for the partial cross sections.

6. A SIMPLE COUPLING SCHEME

In the matrix B of the branching ratios, given by Equation 18 (i), the

diagonal elements are unrelated. The reciprocity theorem (2) leads to the result

Pfi = Pif -

If we assume that this assumption may be generalized in such a way that:

Pfi Pf-r,i+r ~ Hf+r,i-r '

the diagonal elernpn-f-c: -hoorvr.e relate:!. TIic consequence 01' trie postulate (28) is

that the total cross sections (21) integrated over the initial configuration,

become invariant under the complex Lorentz transformations which change a

particle from an initial state incoming to a final state outgoing configuration.

That is:
P

if a~

= 47T p

then a f . ( W ) = a (W) .
^ -p

(29 )

The diagonal elements of B become related by

(30)

in which case

B =

trace B =

r
i -

r i - = i (31)

and
(32)

In this way all production amplitudes are related to scattering and the

entire set of n2 reactions are specified by two parameters such as (p2a,o) o

) per eigenstate of L.

Using the above theory, similar results are derived for different types of

(2 -» 2) or (i -4 f) reactions. In these cases we simply subdivide P22 into

subsets:

rfi = rf i^ a) + rf
to obtain branching ratios for reactions (a), (b) etc. respectively.
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