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Abstract

The transmission of digital information over a fading dispersive channel is con-
sidered, subject to a bandwidth constraint on the input signals. A specific signaling
scheme is proposed, in which information is transmitted with signals formed by
coding over a set of smaller basic signals, all of which excite approximately inde-
pendent and orthogonal outputs. The problem is then modeled as one of block coding
over successive independent uses of a diversity channel.

Upper and lower bounds to the minimum error probability attainable by such a
scheme are derived. These bounds are exponentially decreasing in terms of the
time available for information transmission, and agree asymptotically for a range
of rates. These bounds are used to interpret the significance of different signal
and channel parameters, and the interplay between them.

Some conclusions are drawn concerning the nature of good input signals, the
major one being that any basic signal should be transmitted at one of a small num-
ber of discrete voltage levels. Several numerical examples are included, to illus-
trate how these results may be applied in the estimation of performance levels
for practical channels.
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I. INTRODUCTION

Channels that exhibit both fading and dispersion are often used for communication

purposes. Perhaps the best known examples of such channels are fading ionospheric

radio links, and tropospheric scatter systems. More recently, communication has

been achieved by reflection from the lunar surface and through plasmas, and fading-

dispersive channels have been artificially created as in the case of Project West Ford.

Our main concern is the use of such a channel for digital communication when the

input signals are bandwidth-constrained. We wish to obtain estimates of performance

for such a communication system, and to use these to determine how the interaction

between input signals and channel statistics affects the ultimate error probability. Our

tools for this study consist of the techniques of communication theory and information

theory, and we shall rely heavily on the use of bounds on the attainable error

probability.

1. 1 COMMUNICATION SYSTEM

By digital communication, we refer to transmission of one of M equiprobable input
1

signals, at a rate R = -ln M nats/sec. The signal is corrupted by the channel, and we

choose to decode at the channel output for minimum error probability. We shall use the

notation Pe to stand for the minimum attainable error probability, minimized over all

sets of input signals and decoders (subject to such constraints as bandwidth, average

power, etc.). We wish to determine in what fashion R and the channel characteristics

affect P
e

We envisage the channel as composed of a large number of point scatterers, each

with its own time delay, Doppler shift, and reflection cross section. Subject to certain

restrictions on the input signals and assumptions about the scatterers, the channel

characteristics may be summarized by the scattering function r-(r, f), where o-(r, f) drdf

is the average energy scattering cross section of those scatterers with time delays

between r and r + dr and Doppler shifts between f and f + df.

We consider constructing the M input signals by modulating N smaller basic sig-

nals designed so that each is independently affected by the channel (that is, no inter-

symbol interference or memory). Each of the M signals will consist of a set of N

modulation levels, one for each basic signal, and the problem then reduces to coding

over the N basic signal modulation levels. The bandwidth constraint enters into the

determination of N.

Such a model describes many actual systems for communication over fading-

dispersive channels, although usually no attempt is made to exploit the possibilities of

coding. For this type of scheme our analysis will provide ultimate performance limits.

Moreover, our results should be indicative of the manner in which the signal and channel

parameters interact for more general communication systems.

1
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1. 2 HISTORY OF THE PROBLEM

There is a large body of previous work concerning this kind of problem. We make

no attempt to give a complete listing of results, but try to mention earlier work that

seems most pertinent to the present analysis.

For digital communication, with specified input signals, the optimum receiver is

defined as the one that minimizes error probability. The determination of the optimum

receiver has been considered by several authors in recent years. Price,1,2 Price and

Green, 3 and Kailath4 have studied problems involving M-ary signaling over Gaussian

multipath channels, and Middleton, 5 Turin, 6 and Bello7 have considered the binary-

signal situation. The result of these studies is that the form of the optimum receiver

is known (it can be interpreted as an "estimation-correlation" operation ).

Although the form of the optimum receiver for an arbitrary set of M input signals

is known, little can be said of the resulting system performance. For example, we

would like to vary the set of input signals (subject to the constraints), consider each

set with the corresponding optimum receiver, and choose the combination that results

in an error probability smaller than all the others. This set of signals and receiver,

or decoder, would then be defined as the optimum combination for communication over

the particular channel under consideration. Unfortunately, because of the complicated

form of the optimum decoder, exact error probabilities have been calculated only in

special cases.

There is, however, another method for attacking this problem, one that avoids some

of the complexities just mentioned. This method by-passes the exact calculation of

error probabilities in favor of the determination of bounds to the probability of error

that may be achieved by transmitting over such a channel. It is frequently possible to

derive upper and lower bounds to the achievable probability of error which agree expo-

nentially. For our purposes, this will be nearly as satisfactory as an exact error prob-

ability because our primary interest is not merely the determination of a minimum error

probability but the study of how the interaction between input signals and channel sta-

tistics affects the error probability.

These bounding techniques have been widely applied to discrete memoryless channels

(see for example, Shannon, 8 Fano, 9 and Gallager 0), and have recently been used by

Holsinger and Ebert 1 2 to study the problem of communication over a deterministic

colored Gaussian noise channel. Pierce1 3' 14 has derived bounds for the binary case

with slowly fading channel and variable data rate, and for a special M-ary transmission

case with linear filtering at the decoder. Jacobs 15 first showed that the capacity of an

infinite bandwidth fading channel is the same as that of an equivalent Gaussian channel.

The problem considered here is quite similar to that analyzed by Kennedy, 1 6 who

treated fading dispersive channels with M-ary orthogonal signals, and derived both upper

and lower bounds to the attainable error probability. There is one most important dif-

ference, however, in that orthogonal signals require a large amount of bandwidth, and

2
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we assume that the input signals must be bandwidth-constrained. This turns out to be

a major distinction, making the problem more difficult to solve, and in many cases,

physically more meaningful.

The reader who is interested mainly in the nature of our results might choose at

this point to glance at the first sections of Section IV, where some of the major points

are summarized and discussed.

1.3 SUMMARY OF THIS RESEARCH

In Section II, we derive an approximate mathematical model of the channel, and dis-

cuss the problems involved in using a fading dispersive channel for digital communica-

tion of one of M arbitrary input signals. Then we enumerate several specific types of

signaling schemes, and mention briefly the problems involved in signal design.

Section III is devoted to determination and evaluation of bounds to error probability,

by using the channel statistics derived in Section II. It is highly mathematical in nature

and provides the abstract results necessary for the evaluation of performance levels.

In Section IV, we discuss the physical significance of the results of Section III, and

relate these results to the communication problem set forth in Section II. We illustrate

possible applications through some numerical examples, and return to the question of

signal design.

3
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II. DIGITAL COMMUNICATION OVER FADING CHANNELS

2. 1 CHANNEL MODEL

The problem under consideration is the transmission of information over a linear,

time-continuous, fading, dispersive channel. The channel is envisioned as a collection

of a large number of independent point scatterers, such as the ones that made up the

West Ford belt, for example. Any input signal s(t) will be a narrow-band signal cen-

tered at some nominal high carrier frequency, o, so that

s(t) = R e u(t) e }, (1)

where u(t) is known as the complex lowpass modulation of s(t). By narrow-band, we

mean that the bandwidth of s(t) is much less than . Consider a particular scatterer

with range r sec and Doppler shift f Hz. If 2rrf << CO, then the signal returned by that

scatterer will be approximately

y(t) = Ree u(t-r) e[ ( )oo r]}, (2)

where A is an attenuation factor. It is unlikely that the value of r could be specified

within 2r/o sec, so that it is reasonable to consider the quantity 0 -wOr as a random

variable distributed uniformly over (0, 2).

Let us partition the set of possible ranges and Doppler shifts into small cells, and

consider one particular cell centered on range r and Doppler shift f, containing a num-

ber of scatterers. If the dimension of the cell in r is small compared with the recip-

rocal bandwidth of u(t), and the dimension in f is much less than the reciprocal time

duration of u(t), then the contribution to the total received process from all the scat-

terers in that cell will be

y(t, r, f) = Re (r, f) ejo(r ' f) u(t-r) e } (3)

where A and 0 describe the resultant amplitude and phase from all scatterers in the

cell.

With a large number of independent scatterers in the cell, each with random phase

and approximately the same reflection coefficient, A(r, f) will tend to have a Rayleigh

distribution, while 0(r, f) will become uniform on (0, 2). 17 In that case, the real and

imaginary parts of A(r, f) ej O(r ' f) will be statistically independent, zero-mean, Gaussian

random variables with equal variances. Note that the number of independent scatterers

in a cell does not have to be particularly large for this to be true; in fact, as few as six

may give a good approximation to Rayleigh amplitude and random phase. 1 8

With the previous assumptions, the total signal y(t) received from all of the cells

for a given input u(t) will be a zero-mean Gaussian random process, and thus the

4



statistics of y(t) may be completely determined from the correlation function

Ry (t, r) = y(t) y(T). (4)

If it is assumed that scatterers in different cells are uncorrelated, and that the cells

are small enough so that sums may be replaced by integrals, the expectation may be

carried out, with the result that

Ry u() = Re (r) u(t-r) u*(-r) ej 2 f(T -t) drdf} (5)

The quantity -(r, f) equals A (r, f), and is known as the channel scattering function. It

represents the density of reflecting cross section, that is, (r, f) drdf is the average

energy scattering cross section of those scatterers with ranges between r and r+ dr sec

and Doppler shifts between f and f + df Hz. If we assume that there is no average energy

loss through the channel (this is no restriction, since any average attenuation may be

accounted for by a normalization of the input signal level), then

S Sn (r,f) drdf = 1. (6)

A typical scattering function is illustrated in Fig. 1. The most important charac-

teristics of a(r, f) are B, the frequency interval in f outside of which o-(r, f) is essen-

tially zero, and L, the time interval in r outside of which (r,f) is effectively zero.

The quantity B is called the Doppler spread, and represents the average amount

that an input signal will be spaced in frequency, while L is known as the multi-

path spread, and represents the average amount in time that an input signal will

be spread. Table 1 lists approximate values of B and L for some practical cases.

The exact way in which B and L are defined is unimportant, since these will only

be used as rough indications of channel behavior.

( r, f)

Fig. 1. A typical r-(r,f).

5
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Table 1. Values of B and L.

Channel B(Hz) L(sec)

Ionospheric Scatter 10 10 4

Tropospheric Scatter 10 10

West Ford Belt 10o 10

Chaff Clouds 102 5 X 10- 6

Moon Scatter 10 10 2

If -(r, f) is well-behaved and unimodal as shown, then an input of a single sine wave

will result in an output whose correlation time or fade duration will be approximately

1/B sec; that is, the fading of any two points on the received process should be essen-

tially independent if they are separated by 1/B or more seconds. If the input consists of

two sinusoids, they should fade independently if their frequency spacing is at least of the

order of 1/L Hz. It has been shown elsewhere,l 6 that if the input signal has duration T

and bandwidth W, the received waveform will have a number of degrees of freedom (the

total number of independent samples in the output process) approximately equal to

r(i+BT)(I+LW), if BL < 1 or TW = 1
K = (7)

(T+L) (W+B), otherwise

We emphasize the roughness of relation (7). The channel will later by treated as a

diversity channel with K paths, and (7) is used only to estimate K. The validity of this

channel model will not depend on the accuracy of (7), although any numerical results will

be approximate to the extent that it gives a good approximation of K.

n(t)

st (t) - r(t)

INPUT SCATTER SIGNAL ADDITIVE TOTAL
SIGNAL CHANNEL PORTION OF NOISE OUTPUT

OUTPUT SIGNAL

Fig. 2. The channel model.

We also assume that any signal that we receive is corrupted by the addi-

tion of additive, white, zero-mean Gaussian noise (such as front-end receiver

noise) with density No/2 watts per Hz. A block diagram of the over-all chan-

nel model is shown in Fig. 2.

6

-- � ct __



2. 2 DIGITAL COMMUNICATION

The basic problem to be considered is digital communication over a fading, dis-

persive channel, accomplished by sending one of a set of M equiprobable signals and

decoding at the output for minimum average error probability, Pe. These input signals

are assumed to be time-limited to (0, T), and we shall be interested mainly in the

asymptotic case, where M and T are large. We also require that the signals all lie

essentially within a bandwidth W, and that the average transmitter power be less than

or equal to Pt. Ideally, our procedure would be to choose an arbitrary set of M input

signals that satisfy the constraints, determine the optimum receiver for these signals,

evaluate the resulting Pe' and then choose the set of M signals that result in minimum

Pe for the particular fading channel under consideration.

The first step is to find the optimum receiver for an arbitrary set of M signals.

This problem has been previously considered by several authors, with the result that

the form of the optimum receiver is known. Perhaps the simplest description is that

given by Kailath,4 who shows that the optimum receiver may be interpreted as a bank

of "testimator-correlator" operations. That is, one element of the receiver takes the

channel output, assumes that a particular input signal was sent, computes a minimum

mean-square error estimate of the signal portion of the output (before the noise is

added), and correlates this with the actual output signal. Unfortunately, except in a

few very special cases, it is practically impossible to use the previous results for the

computation of error probabilities for a given set of M signals, because of the com-

plicated expressions that must be evaluated. This is hardly surprising, for even in

the simpler case of the nonfading, additive Gaussian noise channel, exact error proba-

bilities cannot usually be computed for large numbers of input signals.

In the case of the additive Gaussian noise channel, one approach is to use bounds

on Pe, rather than to attempt to compute actual error probabilities. This has been

done successfully by various authors, 10 ' 11 , 12 1 9 who have found upper and lower

bounds to Pe which in many cases agree very well for large M and T. This allows

one to design signals that minimize the bound on Pe' which has proved much simpler

than the minimization of Pe itself, and yet has often yielded useful results. When

a fading channel is considered, however, the more severe nature of the channel

variations makes even computing bounds to Pe a major problem.

In order to illustrate the difficulties, and obtain results that will be useful later,

we consider an input signal, xs(t), where s(t) is a unit energy signal, and x is an

amplitude modulation. It is possible to expand the output signal in a Karhunen-

Loeve orthonormal expansion,20 using the eigenfunctions of Ry (t, T) to obtain

00

r(t) = rkk(t) (8)
k=1

7
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rk = r(t) kI(t) dt (9)

k APk(t) = 0 R0R(t, T) k(T) d. (10)

Properties of the solutions to the integral equation given in (10) have been enumerated

by several authors. 1 0 ' 11,12,19,21 If Wo is very large, it has been shown that the

eigenfunctions fk(t) will approximate conjugate pairs, with both functions of any pair

having the same eigenvalue. Thus, for any particular eigenvalue Itk' if Tk(t) is a solu-

tion to (10), then lk(t) is orthogonal to Ik(t) and is also a solution. Moreover, it may

be shown that

rirk (x k+ 1No) ij (11)

rirk = 0, (12)

provided the additive noise is white. Thus each rk is a zero-mean complex Gaussian

random variable, and they are all statistically independent.

Because of our normalization of the channel and input,

o o002 k = Lk E 1kk(t) 4k(t) dt = X Ry(t,t) dt = 1. (13)
k=1 k= 1 

For later convenience, lump each pair of tLk together and call the result kk' so that Xk=
2 Bk; then, there will be half as many X's as 's, and

co

kk = 1 . (14)

k=1

Each Xk may be interpreted as the fraction of total received energy contributed by the

kth diversity path, on the average. The total number of significant k will be approxi-

mately equal to K, as given by (7).

If one of two input signals is sent, we can make use of the fact that any two sym-

metric, positive-definite matrices can be simultaneously diagonalized, 2 2 to find one

(nonorthogonal) expansion that results in independent components of r, regardless of

which signal was sent. The eigenvalues will no longer have the same simple interpre-

tation as before, however, and more importantly, if both signals are simultaneously

modulated and transmitted, they cannot be separated at the output because they will

each excite the same output components and hence result in crosstalk. For M arbi-

trary signals, there is no one output expansion that results in independent signal

8
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components, regardless of what signal was sent.

Due to the fact that we cannot separate the components received at the channel output

from many different arbitrary input signals, the general communication problem seems

insurmountable, at this time. If, however, we start with a set of basic input signals

that can be uniquely separated at the channel output, with output components that are

all statistically independent, then we could consider coding over this signal set and have

some hope of computing error probabilities. In particular, the problem could be formu-

lated as one of communication over a time-discrete, amplitude-continuous memoryless

channel.

Unfortunately, such a restriction to a specific basic input set would preclude any

general determination of ultimate performance limits. Coding over a specific set will

certainly result in an upper bound to the minimum attainable Pe. Moreover, for reasons

of simplicity, many existing fading dispersive systems employ basic signal sets of the

type just described, and thus analysis would yield bounds on the best possible results

for systems of that class. Finally, an analysis of this type of scheme will still allow

us to obtain a greater understanding of the performance limits of bandwidth-constrained

fading dispersive channels than has been previously available. We shall return to some

of these points.

2.3 SIGNALING SCHEME

We choose a set of input signals that have the desirable properties mentioned above,

namely a set of time and frequency translates of one basic signal, with sufficient guard

spaces allowed so that the output signals are independent and orthogonal. In the first

subsection we consider the output statistics for an arbitrary choice of basic signal and

derive an equivalent discrete memoryless channel. In the second, some aspects of sig-

nal design are discussed. The problem is so formulated that existing bounds on error

probability may later be applied.

2. 31 Input Signals and Output Statistics

Consider a unit energy input signal that is approximately time-limited to T s seconds

and bandlimited to Ws Hz, but is otherwise arbitrary. Time- and frequency-shifted

replicas of this signal with sufficient guard spaces in time and frequency left between

them will then yield approximately orthogonal and independent channel outputs. As we

have said, separating the input signals by more than L seconds in time will make the

output signals approximately orthogonal, and an additional 1/B will make them inde-

pendent, too. Similarly, in the frequency domain, a spacing of B Hz will make the out-

put signals approximately orthogonal, and an additional 1/L will make them independent.

We take our basic input signals to be the (say) N time and frequency translates of the

given (Ts, Ws) waveform that satisfy these independence and orthogonality conditions

and exhaust the available time-bandwidth space (see Fig. 3). The outputs resulting

from these N basic signals will be independent and orthogonal.

9
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BAN DWI DTH

. * 0

TIME

Fig. 3. Basic input signals.

Suppose we construct our M input signals by simultaneously amplitude-modulating

the N basic signals. In this case, the mth input signal may be expressed as x =
th -m

(xml xm 2 , . ,mN ), where xmn is the modulation on the n t h basic signal. Since each

basic input signal is assumed to have unit energy, we require

M N

M E Emn ~ TPt, (15)

m=1 n=1

in order to satisfy the average input energy constraint.

Consider one basic signal, with scalar amplitude modulation x. This is just the

situation that we considered in section 2. 2, and the resulting output random process

r(t) may be transformed into a vector r, whose components are statistically independent,

zero-mean, complex Gaussian random variables. The kth component of r may be split

into its real and imaginary parts,

rk = rkre + jrkim ' (16)

where each part is a real zero-mean Gaussian variable with variance1 (x 2Xkk+No), and

the two are independent, so that

10
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1 rkre + rki

(rkre,rkimlX) = exp ( . (17)

2 2
The components of rk enter the density in the form rkre + rkim, so, for the purpose of

estimating x, it is only necessary to record this sum, and not the individual terms.

Define

1 = (kre2 +rim ) (18)Yk N ko

then it can be shown2 3 that

Ix) = (l+x 2 k/N - exp 1 + k 2 ). (19)

Recall that the properties of Xk ( l, k 2,... K) depended on the assumption that the

channel was lossless, and that any average attenuation should be absorbed into the

energy constraint. From (19), we see that No can also be absorbed into the energy con-

straint, provided that we redefine the constraint on the input to be

N M

M X x mn N* (20)
n=1 m=1 0

The quantity P is the average output signal power, and the value of xmn in (20) is

/ t times the actual channel input signal level. Now

P(Yk Ix) 1 exp
1 + X k

so that the density

K

Plx) IIP(Y IX) k=l 
exp 

9, (21)

(22)

governs the output vector y, given x. Note that y is a sufficient statistic for the esti-

mation of x, and is thus all the receiver needs to record.

Until now, except for noting the over-all power constraint in (20), we considered

transmission of one amplitude modulated input signal, modeled as one use of an

amplitude-continuous channel. Since the N basic signals were chosen to be independent

and orthogonal, this is easily generalized to simultaneous modulation and trans-

mission of each signal, thereby reducing the problem to N uses of a memoryless,

11
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amplitude-continuous, time-discrete channel, where on each use the input is a scalar x,

and the output a vector y.

Let Tg and Wg denote, respectively, the guard space between adjacent signals in

time and bandwidth. Then it is easy to see that

N TW (23)
(Ts+Tg) (Ws+Wg)

The rate of information transmission is usually defined as

R - T in M nats/second (24)

but the rate that will prove most useful in Section III is

RN - N In M nats/channel use. (25)

The energy constraint may be written

N M

mn Na (26)
n=l m=1

P
a N (T s+Tg) (Ws+Wg). (27)

As we have noted, the number of positive k will be approximately given by

(l+BTs)(l+LWs) if BL < 1 or T W s = 1

K = (28)f(Ts+ L)(Ws+B), otherwise

Note that, as W goes to infinity (the bandwidth constraint is removed), a will go to zero,

provided Ts, Ws and the guard spaces are kept finite.

2. 32 Signal Design

We consider now several obvious questions that arise with respect to the signaling

scheme just described. The N basic signals were chosen to be time- and frequency-

shifted replicas of one original signal, and we could conceivably do better by using the

same type of time and frequency spacing, but allowing each of the N basic signals to

be different. Before evaluation of Pe,' this question cannot be answered, but it seems

likely that nothing would be gained by such a scheme. For our model, the density

p (y lx) will be the same for a given input signal, no matter how it is shifted in the

allotted T, W space. Thus, if a basic signal is in some sense "good," it should be

"good," no matter where it is placed in the space. If we find one "good" signal, then

we can make them all as "good" by replicating the original in time and frequency. This

12
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is quite vague, but in Section IV we shall present some results that reinforce these

statements. In any event, it is clearly a simpler mathematical problem to consider just

one X in place of a set of vectors, so we shall continue to suppose that the N basic sig-

nals all have the same p(ylx).

When the basic signals are all replicas of one signal, what should that signal be?

Referring to Eq. 1, we are free to specify u(t), but it appears in the analysis only

through Ts, Ws, and X. Although Ts and W s can usually be satisfactorily defined for

reasonable signals, there is no simple relationship between u(t) and ; indeed, finding

X, given u(t), consists of finding the eigenvalues of an integral equation, in general, a

very difficult problem. The inverse problem, of finding a u(t) that generates a particu-

lar , is even harder. Since X is the important quantity in the mathematical model,

one reasonable approach would be to find the "best" X, Ts, Ws, and ignore the problem

of transforming X into a u(t). This would provide a bound on the performance of this

type of system, and would give systems designers a goal to aim at. For further dis-

cussion of this problem, in the context of an orthogonal signal, unconstrained bandwidth

analysis, see Kennedy. Even in this simpler case, however, no definitive answer to

this design question could be obtained.

In Section III, when we compute bounds to Pe, it will develop that there are

formidable mathematical obstacles to evaluation of the bounds for arbitrary , so even

this approach appears to be lost to us. In the infinite bandwidth case, however, it was

found that equal-strength eigenvalues, where

1
kk- K' k = 1, 2,..., K, (29)

minimized the bound to Pe, and in that sense, were optimum. Furthermore, by varying

K in an equal-strength system, a good approximation to the performance of a system

with arbitrary could often be obtained. When X is given by (29), we find 2 3 that

K

PX(y/x) = (1+x 2/K)- K exp k= (30)
1 + x2/K

K
Thus y = Z Yk is a sufficient statistic, with conditional density

k= 1

K-1 / YK
y exp_

PK(Y1 x) = K (31)
r(K) (+x /K)

Therefore, in the special case of an equal-eigenvalue signal, the channel model becomes

scalar input-scalar output. Note that if K is presumed to be given by (28), the speci-

fication of T s and W s provides a complete channel description. These are compelling

reasons for restricting the analysis to equal eigenvalues, but in Section III will be

13

--- L ~ I r - -·11-- 1 1- 1 I-- -1 1



kept arbitrary until the need for (and further justification of) the equal eigenvalue

assumption becomes apparent.

One other question can be considered at this time. We have remarked that T should
g

be at least L + 1/B, and Wg should be at least B + 1/L to ensure orthogonality and inde-

pendence at the output. In some instances, this can result in a large amount of wasted

guard space. For example, if B (or L) becomes large, an input signal will be spread a

large amount in frequency (or time), and a large guard space is required to separate

adjacent signals at the channel output. On the other hand, if B (or L) is very small,

there are no orthogonality problems, but a large guard space is required to obtain inde-

pendent output signals. In the former instance, there is no obvious way of circumventing

the need for guard space, in the latter there is.

In particular, one can artificially obtain independence by means of scrambling. Con-

sider several sequential (in time) uses of a (T,W) block of signals. We could now use

up any guard space resulting from the 1/B and 1/L terms by interleaving signals from

another, or several other (T,W) blocks. Thus, signals could be placed in a (T,W) block

with guard spaces of only B in frequency and L in time, while independence can be

obtained by coding over signals in different blocks that were all independent. Thus for

the same rate R, given by (24), the coding constraint length, N could be increased to

TW
N = (32)

(Ts+L) (WS+B)

while

N
sc M

x - < a N (33)M mn sc sc
n=l m=l

P
asc - N W (Ts+L)(Ws+B) (34)

o

1

RN N InM, (35)
Nsc Nsc

which would allow (we expect) a decrease in error probability.

Of course, we have in a sense changed the problem because we are no longer coding

over a block of (T, W), but over several blocks. While this should be a practical method

of lessening the guard-space requirements, it is not applicable to the problem of using

one (T, W) block for communication. We shall outline a "rate-expanding" scheme that

does not have this drawback.

In one block, there will be N (given by (23)) basic signals whose outputs are inde-

pendent and orthogonal, but Nsc basic signals whose outputs are orthogonal. Thus if

we packed in Nsc signals with Tg = L and Wg = B, there would be Nsc/N a sets of

14



N basic signals, where

(T s+L+1/B)(Ws+B+ 1/L)
(36)

(T s+L)(Ws+B)

The elements within any one of these sets would be orthogonal to and independent of each

other, but the elements of different sets would, in general, only be orthogonal, not inde-

pendent. But if N is large, we expect reliable communication when any set is trans-

mitted, so we could consider sending information over all sets simultaneously. This

would increase our data rate to

R a R,

where the constraint length N is again given by (23), and now

N M

M, 1
n=1 m=l

(37)

(38)x2 Na = N)
mn re a

If Pe is the average error probability for one set (with constraint length N), and Pre

is the probability of an error occurring in at least one of the a sets, then if Pe is small,

P aPre e (39)

Since we expect Pe to be decreasing exponentially in N, the difference between Pre and

P should be negligible.e

Xml I K

I K PATHS

N USES

XmN I K
Fig. 4. Equivalent diversity channel.
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The model just derived may be considered as N independent uses of a classical
thdiversity channel, with K equal-strength paths, as illustrated in Fig. 4. When the m

code word, consisting of xm = (Xml,Xm2,... xmN) is transmitted as shown, each input

component will excite K independent, identically distributed outputs, which may be

summed to produce a random variable y, governed by the conditional density function

of (31).

The description of the channel and its use just presented is, to be sure, an approxi-

mate one. This has been necessitated by the complex manner in which the channel oper-

ates on the input signals. We once again emphasize the roughness of the characterization

of (r, f) by just B and L. Although this may be reasonable when a-(r, f) is smooth and

concentrated as shown in Fig. 1, if cr(r,f) is composed of several disjoint "pieces"

(typical for HF channels, for example), such a gross simplification obviously omits

much information about scattering function structure. We shall return to this point in

Section IV.

On the other hand, this channel model is essentially a simple one (particularly when

the equal-eigenvalue assumption is invoked), and for the first time, provides an explicit

means of taking into account a bandwidth constraint on the input signals. We shall find

that this simplified model will still provide some insight into the communication prob-

lem, and a useful means of estimating system performance.

16
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III. BOUNDS TO ERROR PROBABILITY

We consider block coding over N uses of the amplitude-continuous, time-discrete

channel model derived in Section II. We discuss both upper and lower bounds to Pe, the

minimum attainable error probability, making use of many results presented in

Appendices. Each bound is found to involve an arbitrary probability density function

that must be chosen so as to obtain the tightest bound. The central problem considered

here is the specification of the optimum density and the resulting bound. The expurgated

random-coding upper bound to error probability is presented first, since it is func-

tionally simplest and yields results that are typical of all of the bounds. Then the stand-

ard random-coding upper bound is discussed, along with the sphere-packing lower

bound. These two bounds are found to agree exponentially in N for rates between Rcrit

and Capacity, and hence determine the true exponential behavior of Pe for that range

of rates.

Some novel aspects of the present work should now be noted. The optimum density

just discussed consists of a finite set of impulses. This corresponds to a finite num-

ber of input levels, an unexpected result for a continuous channel. The normal sphere-

packing bound cannot be applied to a continuous channel because the number of possible

inputs and outputs is unbounded. For this channel, however, the optimality of impulses

allows derivation of the lower bound, although with extensive modification. The results

presented in this section are in terms of quantities defined in Section II, plus an addi-

tional parameter (p or s) that simplifies the analysis. In Section IV, these parametric

results will be converted into forms suitable for obtaining performance estimates for

some practical systems. The reader who is mainly interested in the applications may

skip to Section IV.

3. 1 EXPURGATED BOUND

Our point of departure is the expurgated upper bound to error probability derived

by Gallager. That bound is directly applicable only to independent uses of a contin-

uous channel whose input and output are both scalars. The generalization to a scalar

input-vector output channel such as the one considered here, is straightforward (for

an example, see Yudkin 24), so the details will be omitted. When applied to this

channel model, the bound states: If each code word is constrained to satisfy
N 2NRN

x Na, then for -any block length N, any number of code words M = e any
mn 2

p a 1, r 0, and any probability density p(x) such that f; x2p(x) dx = a < o, there exists

a code for which

P < exp - N{[p, p(x), r]-P[RN+AN]} (40)

O o r(- 2a+x 2 +x 2 )dxdx

ex[p,p(x),r] = -p n p(x) e xp(x lx) e H/ dxdx (41)

17
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(l+kx2) 1/2 (l 2 1x )l/2
HX(X,X1 ) = p(YX)1/2 P0(YJx)/2 dy = Xx1 ( (42)

k=l 1+ 2 k(x+x)

00 1+X x

k=1 1+ +kx

2 3

where the quantity AN -- as N - oo, provided f0 p(x) Ix2-a 3 dx < oo. All of the proba-

bility functions to be considered here will satisfy this constraint, so if N is large, the

AN term can be neglected. This parametric (on p) formulation of the bound is the usual
10

one, and the reader unfamiliar with its properties should consult Gallager. We recall
00

that k > 0, Z kk = 1. The difficulty lies in determining the r, p(x) combination that
k= 1

results in the tightest bound to Pe for a given X, p, a, that is,

Ex(P,a,X) =-p n min i0 p(x) p(x1 ) e( I H(x,xl ) /p dxdx1j,
Lr, p(x) ]

(44)

subject to the constraints

r > O0, p(x) 0, p(x) dx 1, p(x) dx = a (45)

In general, it is possible for a number of local minima to exist, so that the problem

of minimizing over p(x) and r is a difficult one. Fortunately, for the particular channel

model under consideration here, H(x,xl ) / P is a non-negative definite kernel (see
Appendix A, Theorem A. 2, for a proof), and these possible difficulties do not arise. In

Theorem A. 1 it is shown that a sufficient condition on r and p(x) to minimize

S O o r( 2a+x2+x2 p(x) p(x1 ) er H(x,x1 ) 1/p dxdx 1 ,

subject to the constraints (45) is

00 r(x2+x 2 00 r x2 ±x 1p(x 1 ) H(xl/P d p p(x (X x 1/ dx p(x) (l) e H(XXl)

(46)

for all x 0, 0 < p < o, with equality when p(x) > 0. At this point it is possible that (46)

may have many solutions, or none but, because of the sufficiency, all solutions must

18
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result in the same (maximum) value of exponent for the given X, p, a. It may also be

shown that condition (46) is necessary as well as sufficient, but the proof is lengthy and

tedious. Since we shall later exhibit solutions to (46), we can afford to dispense with a

proof of necessity.

Unfortunately, the determination of the p(x) and r that satisfies condition (46) is a

very difficult matter. In practice, the usual method of "solution" is to take a particular

r and p(x), and plug them into (46) to see if the inequality holds. If it does, then r, p(x)

solve the minimization problem for the p, a, X under consideration. We are now faced

with the prospect of doing this for arbitrary X, for all values of p and a of interest.

Since the purpose of this study is to arrive at a better understanding of communica-

tion over fading channels, it is worth while to make use of any reasonable approximation

that simplifies the analysis. Even if the most general problem could be solved, it seems

likely that the essential nature of the channel would be buried in a maze of details, and

one would have to resort to more easily evaluable special cases in order to gain insight

into the basic factors involved.

3. 11 Equal Eigenvalues

The simplest possibility to consider is that of equal eigenvalues,

1
k k= - k= 1,2,...,K. (47)

In this case, define

ErKn pX x pX1 r( 2a+x +x) H(XX /P dxdx
Exe(P, a, K) _=-p n in ,p(x) P P0 H(Xl)P dxdx (48)

HK(x, x1) = ( K)_1+ _ 1

1 + K (x+

, (49)

where r, p(x) satisfy constraints (45), and the subscript e denotes "equal eigenvalues."

A simple change of variables proves that

Exe(P, a , K ) = K Exe ' K' (50)

Thus, as far as the minimization is concerned, we may set K = 1, compute Exe(p, a, 1),

and use (50) to obtain the result for arbitrary K. The only change is that we must loosen

the range 1 p < o to 0 < p < oo to allow for K > 1. This involves no additional effort,

since our theorems on minimization are valid over the whole range 0 < p < oo. Thus, when

the eigenvalues are equal, X may be completely absorbed into the parameters p and a
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for the purposes of minimization on p(x) and r, a pleasant bonus.

As we have mentioned, this simplification is a good reason for restricting the anal-

ysis to equal eigenvalues, but in addition, Theorem B. 3 in Appendix B states:

1, (51)

where

o00

b - 2 k (52)

k= 1

00

d X3 (53)

k= 1

and inequality (51) is satisfied with equality for any equal eigenvalue system. Thus, an

exponent that results from arbitrary k may be lower-bounded in terms of an exponent

with equal eigenvalues, thereby resulting in a further upper bound to Pe. This bound
is very similar to one derived by Kennedyl 6 for the infinite-bandwidth, orthogonal sig-

nal case. The b2/d multiplier on the right-hand side of (51) may be interpreted as an

efficiency factor, relating the performance of a system with arbitrary eigenvalues to

that of an equal eigenvalue system with an energy-to-noise ratio per diversity path of

ad/b. The orthogonal signal analogy of this bound was found to be fairly good for many

eigenvalue sets, thereby indicating that the equal eigenvalue assumption may not be as

restrictive as it may at first appear. In any event, with equal eigenvalues we may set

K = 1, and condition (46) may be simplified and stated as follows:

A sufficient condition for r, p(x) to minimize

r(-2a+x 2+x 2) /
Jo Jo p(x) P(xl) e H1(X, xl)l/p dxdx Il,

subject to constraints (45), is

r x 2 +x2) 000 rx 2 +x 1 /0 P(xl) e I Hl(X, xP) /dx s p(x) p(xl) e H1 (X,xl) dxdxl

(54)

for 0 < p < oo, with equality when p(x) > 0. In Appendix B, Theorem B. 1, it

is shown that, if r, p(x) and rl, Pl(x) both satisfy (54), then r = r, and
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0 px] dx = 

S0 [p(x)-Pl(X)2 dx = 0,
(55)

so that for all practical purposes, if a solution exists, it will be unique.

We shall digress and consider the zero-rate exponent, attained when p = oo. The

previous results are invalid at this point (although correct for any p < oo), so this point

must be considered separately. We choose to do it now because the optimization prob-

lem turns out to be easiest at p = oo, and yet the results are indicative of those that will

be obtained when p < o.

3. 12 Zero-Rate Exponent

When the limit p - oo is taken, it is easy to show that r = 0 is required for the opti-

mization, and

Ex(oo, a,) = -min p(x) P(x 1) ln H(x,x 1 ) dxdx1 (56)

00

Ex(o, a,) = x -m in o p(x) p(x 1 ) ln H 1(xNk, x1 k) dxdx. (57)

p(x) k= 0

In the equal-eigenvalue case,

I00 .O00

Exe(O, a, 1) = -min 
p(x) o o

p(x) P(x 1 ) n H 1 (x,x 1) dxdx 1,

where now

E(ooa,K) KExe(, K) .K Exe

We may change variables in (57) to obtain

00

Ex(oo, am) -min q k(x) qk(X) ln Hl(x, xl) dxdxl,
p(x) k=l 

where qk(x) p= 1 _x , a probability density function with

§ x qk(x) dx = akk.

(58)

(59)

(60)

(61)

The minimum in (60) may be decreased by allowing minimization over the individual

qk(x), subject to (61), so that
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00 00

E(oo, a,) - min qk(x) qk(Xl) In Hl(x, x) dxdx1 = Exe(0o, ak, 1)
X k- i q(x) 0 k1) 1

(62)

with equality when X consists of equal eigenvalues. This, together with (51), shows that

00

2 E x(0- abd, 1) Ex(o, a,) E a, 1) (63)
d x Exe(3

k= 1

with equality on both sides when X consists of equal eigenvalues. Thus at zero rate,

we have upper and lower bounds to the expurgated bound exponent for an arbitrary eigen-

value channel in terms of the exponent for a channel with one eigenvalue. Of course, at

this point, before evaluation of Exe (co, a, 1), we do not know how tight these bounds are.

The derivation of the conditions on the p(x) that optimizes (56) is complicated by the

fact that n Hk(x, Xl) is not non-negative definite. The derivation, however, only requires

that n H\(x,xl) be non-negative definite with respect to all functions f(x) that can be

represented as the difference of two equal-energy probability functions. In Theorem A. 2

it is proved that this is indeed the case. Utilizing this, the same theorem states a con-

dition on p(x) sufficient for the maximization of Ex(o, a, X). When simplified for one

eigenvalue, this becomes a sufficient condition for p(x) to optimize E xe(o, a, 1), subject

to constraints (45):

S p(x 1) n H 1 (X,X l ) dx 1 > i 5 p(x) P(x 1) n Hl(x,xl) dxdx + o(x 2 -a) (64)

for some Xo, with equality when p(x) > 0. We dispense with the question of necessity,

since we shall now exhibit a p(x) that satisfies the sufficient condition and thus maxi-

mizes Exe(00, a, 1).

In Theorem B. 2, it is shown that the probability function

p(x) = P 1uo(x) + P2 Uo(X-Xo) (65)

satisfies condition (64) for all a when the parameters pi, P2 , and x are correctly

chosen. Therefore, at zero rate, the optimum p(x) consists of two impulses, one of

which is at the origin. In Appendix B, expressions are presented relating pi, P2 , and
2

a as functions of x . This was done because it was simpler to express the results in
o

terms of x instead of a. Here we return to the more natural formulation, and in

Figs. 5 and 6 we present graphically the optimum distribution in terms of a. The
1

resulting exponent is presented in Figs. 7 and 8. Note that E xe(, a, 1) is a decreasing

function of a, and so

E e(oo, a, 1)lim E (0 a, 1) E 0. 15. (66)
a e a-0 a xe 00
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This is the same zero-rate result that Kennedy found for this channel when an infinite

bandwidth was available and orthogonal signals were used. Since a - 0 is the equiva-

lent of W - oo, this is the expected result. In addition, we find that, as a - o,

Exe(c, a, 1) - ln a.xe 4
Returning to the bound of (63), we see that

-(b2FZe- i) a r (- < akk < Eoo (67)
d a~~(d a k ak

b k= 

where the last inequality may be approached by a channel with K equal eigenvalues, as

K - o. We shall defer discussion and interpretation of these results, except to note

that, if we consider coding over N channel uses (at zero rate), and were free to choose

K independently of anything else, then K should go to infinity, and the infinite bandwidth

exponent would result.

Consider the two inequalities on either side of-E (a, a, X) in (67). When con-a 
sists of any number of equal eigenvalues, the inequalities will be satisfied with equality,

and are thus as tight as possible. As a second example, let x= (, 4) and a = 1.

Numerical evaluation of the bounds shows that 0. 119 Ex(oo, a,\) - 0. 133, and the

bounds are fairly tight. We expect, however, that any system with a small number of

nonzero eigenvalues should be well approximated by some equal-strength eigenvalue

system, so a more severe test of our bounds should be with a system with an infinite

number of positive Xkk A channel with a Gaussian-shaped scattering function, when
k- 

excited with a Gaussian modulation, can be shown to have the eigenvalues Xk = (-c) c k 1
1Let c = 1 and a = 1 for the sake of another numerical example. The lower bound is easy2

to evaluate, and the upper bound involves an infinite sum, which can in turn be bounded

by computing the first K - 1 significant terms and noting that all of the rest contribute,
o00

at most, Eoo 2 kk . This results in 0. 102 < Ex(oo, a, X) 0. 135, not as tight as we
k=K

would like, but still a reasonable set of bounds.

3. 13 Positive Rates

We now return to the more general problem of optimization of r and p(x) for values

of p in the range 0 < p < o. Once again, we restrict K = 1, since other values may be

obtained by suitable trade-offs between p and a. Recall that condition (54) is sufficient

for maximization of the exponent when K = 1. In Appendix D, it is shown that, for any

0 < p < oo and a > 0, condition (54) must be satisfied by some r, p(x) combination, where

0 - r 21 and p(x) consists of a finite number of impulses. To be precise, p(x) =2p
N

Z PnUo (X-Xn), where N is a finite integer, and 0 < x2 < z , where z is a function
nand a, and is finite for 0 < p < and a > p.

only of p and a, and is finite for 0 < p < and a > 0.
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Even when armed with the knowledge that a finite set of impulses provides an opti-

mum, it is still a very difficult problem to actually solve for the optimizing p(x) and r.

There are some special cases, however, for which simplifications can be made. The

first is in the limit as a goes to zero.

a. Small a

In this case, it can be shown (Theorem B. 4, Appendix B) that a two-impulse p(x),

when combined with a suitable value or r, will asymptotically satisfy the sufficient con-

dition (54) in the limit as a goes to zero. To be specific, the optimizing combination

is

p(x) = (1 Zo uo(X) + u ( ) (68)

1 in Hi( 0 Z (-To)

r n H (O , N) (69)

where z = 3. 071. The resulting exponent is the same as the low-rate infinite-bandwidth

exponent, that is,

Exe(p,a, 1) - af1 (z 0 ) = aEO (70)

f1(z) =z iln 1+ ) ln (1+z)J (71)

where z is the value of z that maximizes f(z). Thus as a - 0, the same exponent is

obtained for all values of p, thereby confirming the known 1 6 result that when an infinite

bandwidth is available, expurgation does not improve the bound.

When p is specified, it is also possible to show that for some small, but nonzero,

a, a two-impulse p(x) will exactly satisfy condition (54), so that a p(x) consisting of two

impulses is more than just asymptotically optimum. The proof amounts to specifying

values for p and a, under the assumption of a two-impulse p(x), solving for the optimum

probabilities, positions, and r, and then numerically verifying that the resulting p(x)

does satisfy (54). Because of the computational difficulties, no general proof for arbi-

trary p and a has been found, but some specific examples have been verified. These

same computational problems have made it impossible to analytically specify the best

r, p(x) combination for given values of p and a, so that we are forced to consider a

numerical solution to the optimization problem.

b. Numerical Solution

Let us suppose that a value of r in the range 0 r -2p and a set of2p
impulse positions {xn}, n = 1, 2, ... , N1, have been specified. We are then

left with the discrete problem:
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N 1 N 1 r(2axx2 )

1 1 - ~~r (2a-x-x2H1 i x j) ,/m piPj H 1 (xix) /p (72)
{Pn} i= j=I

subject to the conditions

N1 N1

p >_0 p n 1 ' £ x 2a. (73)Pn ° 0 Pn = 1, PnXn =
n= 1 n= 1

The kernel H(xXl) 1/P is non-negative definite, so that the matrix whose ijth entry

r(-2a+x2+x 2)
is e r H(xix)/P is also non-negative definite, and thus the quadratic formI J!lXiX j)
(72) is a convex function of {pn}. This type of minimization problem is known as a qua-

dratic programming problem, and with the convexity property just mentioned, numerical

techniques for solution are well known 2 5 ' 26 and are conceptually straightforward.

Unfortunately, if a joint minimization over {pn}, {xn}, r is attempted, difficulties

are encountered because the function to be minimized is not a convex function of {xn}.

This means that several local minima could exist, and hence the over-all minimization

is a much harder problem. Since the problem of minimizing over {pn}, given {xn} and

r, is readily adapted for numerical solution on a computer, however, the obvious

approach is to specify a grid of {xn}, and minimize over {pn} for a range of values of r.

As remarked earlier, we need only consider 0 r I and 0 < xn < z so that all2 p n p
variables lie within a bounded region.

Any permutation of the xn will result in the same minimum (this is just a renum-

bering) and making two xn the same is redundant (two impulses at the same position may

be condensed to one). Thus the xn may be spaced out as distinct points on the real line

between 0 and Az, and for each selection of {xn} the minimization should be performed
p

for a range of r between 0 and 1/2p. As the grid spacing becomes very small

(involving a large number of possible impulses), we expect to get very close to the true

minimizing p(x) and r. If the minimizing p(x) were a continuous function of x, we would

expect that, as the grid spacing was reduced, more and more impulses should be used

with smaller and smaller probabilities, to approximate the continuous solution. Since

it is known that the optimum p(x) consists of impulses, however, the smaller grid

spacing should be used merely to find better locations for the impulses that are used,

and we would expect that the optimizing {pn} for a given grid spacing should contain many

zero probabilities. This was confirmed when the computations were performed.

In order to carry out the minimizations just described, the author modified a multi-

purpose FORTRAN minimization program obtained elsewhere, 7 and ran the problem

on the M. I. T. Computation Center's IBM 7094 digital computer. The procedure used

to approximate the minimizing p(x) and r was not quite as described above, for the fol-

lowing reasons: (i) The program could not accept a large number of possible xn as
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inputs, and (ii) great savings in running time could be obtained if a good guess as to the

optimizing {pn} for a given r, {Xn} could be specified in advance. The first makes it

impossible to feed in an extremely fine grid of {Xn}. This is no real restriction, since,

as has been pointed out already, only a small number of xn will have nonzero pn after

the minimization is performed, so that once the approximate locations of the best

impulses are known, the grid spacing need only be reduced in the vicinity of these loca-

tions. Thus each problem was run twice, once with a coarse grid to get an approximate

solution, and again with a finer grid to get a more accurate answer.

The only disadvantage to this method is that, theoretically, if the approximating

grid is too coarse, we might wind up in the neighborhood of a local, but not universal,

minimum. For a given value of p, however, the minimization was performed with a

as a variable, starting near a = 0 (where the solution is known) and gradually increasing

a. As might be expected, for the same p, when values of a are not too far apart, the

optimizing r, {Pn} and {xn} were not very different. Thus the minimizing p(x) and r

were "tracked," always starting with a previously known minimum. Moreover, there

is always the option of plugging any p(x) and r into (54) and confirming whether or not

it represents a minimum. This amounts to computing many points of a fairly compli-

cated function, and thus was done sparingly. One other point to be noted is that the expo-

nent is relatively insensitive to changes in {Pn}, {xn} and r in the vicinity of the

optimum, so even if the p(x) and r are only approximately correct, the exponent will

still be reasonably accurate.

c. Results

We shall now present and discuss some of the numerical results obtained from the

procedure just mentioned. As a first example, the minimizing p(x) and r are presented

graphically as functions of a for the case K = 1, p = 1, in Figs. 9, 10, and 11. With

regard to Fig. 9, x1 = 0 for all a (an impulse at the origin) and hence does not show

up on the logarithmic scale. The other xn are numbered in the order in which they

appear, as a is increased from zero. Drawing a vertical line at any value of a allows

one to read off the minimizing impulse positions for that a. Figure 10 presents the

probabilities corresponding to the positions shown in Fig. 9, numbered accordingly.

Figure 11 shows the optimizing value of r for K = 1 and several different values of p,

including p = 1, as a function of a.

From a study of the solutions to condition (54) of which the previous figures repre-

sent a typical set, the following general properties have become apparent.

1. The optimum p(x) always contains an impulse at the origin, and this impulse has

the largest probability associated with it. It is reasonable to expect that some proba-

bility would be concentrated at the origin because the variance of the output y is

smallest when the input, x, is zero. Therefore this input results, in some sense,

in a less spread output distribution than any other, and should be good for information

communication. Moreover, the energy constraint tends to force probability at

30



i
-S

I .. .. ' '' I . I I _ . T I I I I

xr 1:1it

H !

1-o -

E H-
x -

AR iiiiiiiii1Th+H+H-H-4-id-iii i 

, CICC~"- gXX , i II i lil lll I I II I II
i10 1X 111 W l i iM 11 1 1 1 1 I I 1 I I I llill!!i i ! I Iii!lllilll H i I I II III I I I I

IIi !il llill ilIII

oCH

31

0o
.0

0

0 -
H 11

Q-

11

oI

~4

©r-
"-.4

H .0

[.

H1 -QPri
O4

Hlo
0
H4

E .=

4-4 ...I I . .... .. . . . . . . . . . .. - ..I .. ...... .. .I .I . . . .... .-.. . . . . - . - .

imt
··~~~·~~~·: ·~~·i· ~·· ; ·:!~~·~~~··~~·· I .· I . . .· ~ · - I ..... 1. ... ~~:.. ~ - .1 ... .....I...~c

. . - . . -I . . .. . -. . . . . . ..-. .. . . . - 1. . .I .

P,
II

-

i

3

I

I-

iiM

T lTiiiTTTI
H'

X-



.- r -~.:..-Ii TTt

i4:

i ~ ~~~~~~~~~ I I'

IL ! ! I[ II ! I II I l I i 1 I' I l I' I _ L il II 4 I 1 I4 II

-,--- =

1E7

LC
I'-:

I I

A
:u 

4-�4..4.II

IH L- L L J

ll III It7 1,'fIT II 1Lltl~lifltt I!14Ht

-t

IIiIHI]
C

L TW LLT IW

4
Il I IIit l 1 II I i IrI I I I I i

32

1

r i , !!
7- ii

1. ..1 1 o1!

.;zr t

-t-- Si'

7=F 7 -
.7:

0
0
a
P-.'

0
O
H4

0
H4

H-

II

II

Q

CL11

co,S
*

,-I

Oi

! T r71m I rl - l -

H

it

C)0

- �-Tf ·- I :LfT ffI - i� If ` L --�-'-L�F�-� ---- -- ' `-- �-�-·----. ·--- r:-- -- "-- ----- ---- ------ - --- -L: ·----- _-_ --- --
'-` -�- �-'- �-�� -- � �-� ----.- --.- -' -.-- � r:.-·- ---- ---· ----�- '- ·- · - -·--�--- ------ ·-··- i�'l�i�-�-��li'-�:l' ��--- -a -�-·--- i-t�.: --·- I --· ---- ---- ----- ---- ·---- ---- ·--- ·----------r- --- ·---- ---- ---- ---- ·---- t--- - --···---

�c�- "� --- ---- -- -- ---- ·-- I�
·--- --- --- ---- · --·: -·-- ------ ---· ---· --·

-· --- -- --· --t--·1·----;---- ---- .- -ec. rrr_
·- ---- -- - ----- --- ·---- ---- -·--- j,ii--. , �TL-L�YL- _-_.�-7�-1 .*L -.-I

ilL-l ___.-. --- ·'�T---' ------- --- ---- ---- -- ·--- -- -I ---- · --- -=r ---· ·- _ .___· _�-- ---- ---· ------` ·� ��- - --�- -�.�-.-L -.-· -- i-- -- ---- ·--- ·- --- -·-· - ------� -·C I�LI�--�'--C-- ii -�-� -��- -- ��--�C�-�� S-I- -��- r=-_ .-. ._�- --� '�-- --- �'-L·-- -�- --
--- -I

L�r '- :
f-- -- ·

ii - -- ·-----. to._ __ �.___
--;-�-7�5= -'C �T;r __ ,,,- , a,

� z Z��-

r i i~ ri i r r!; i ; i [ r~ -i...., r , l,- -rr lT ?r-

._ --4 - *-=._ t = >. t- _ t- = . t _o _ __.1: =3---�--

--
:i��

:��- 9ff
E,

-- t -_1� -;-
- __._Z�

7---- -MT-41.7

--·-
-· --------

---- ·-

--
--- -
f---e

. m7

_ _=

___

_ _

! =. _

't

.-

_

I ;

L;:-
I

i=Li~~CU _T~jC~-- , -r -t- W- j-ji.- - C

I I H I I I I I I I I I I I I I ' l I 1 1 1 1 i I I I I I I I4��- :7 � 1- � 1 1 1 I-+ 1--1--,-4-+
EL:

_._ i __

:-_

i

i

1�

r,

Pt ._

: 7~

t
4

7 7

.-t

t,

Z =
T- ,F-Z:1

T-7;
_ _ .

IE

LI-

i

JE - -
- - - -

:t:--t.'--

i Wt-
i S a=-t zF C.w=

!

I I

I11, '11- ! 1 i 1 1, l IIII I I 

-

----
- � =-� �7-- :,7--Z�

Hif-

) `LD

r 

-: = _-~-

_ _.lE-

-- 



�i f -rMK44�4�L'4

tI I

I'

P-LL14:~r- -T 4__V11±` L ~~~-t3 I 4-, 

rJi I

it-

t= 

m 

I
4- i

Iq

L F T-:- ;

A --np_
E a z t -.. I.S= .

FtP` ;"4Tlr--tzt4c=-t 

'R?!,i

4 II
CIL F-

Zi 

. Ii lI I ! ! I ! [

Z. PiV
I

LI4d�4�4

4-1

Fgl

T

I:fEIEtiW 

LiLH
CN

0
,-!

0

33

- TF TT

0Zs

0
H-t

IN
H

.el

0o0 11. H 

$4

E

.
0

. 1-

.,I

fl

H,I
I0
H

-D

N

- 0
-

0
H4

-t

o4

Ff,~nLr ;~=-=-^i -

y_ t_. ; t g ,, ;. .. .-- t _-:-- -· .-'--r----;S=--t .t =.te- t .=L---t- .r--
:._ [., .X .q:. .p .- i

:·-
,^

. 11 I-trH

. UME I.

: ;f~-·w-. -I -r. -a -r--r- _lt r33el .:. ' *LtL .

· -, - :.* I

e e sh. rt~-'tcrte Frh ·iY r+t-l~ , rt

t -1-M=_t_ 1 - :--

t

-_ 

in4.

_ 
'i·

;7-

1�y

--Ali

Z

T
!! F.

- I I
r =

�m -

-- -i

Z ��
n:=

.- z

. F-.

.

Ti
Wl

2-4]

iv--

: : :.i

: 7 7
.-, .1
.I :
i - �i

"XI.,
J,

-i ' r --i

:1 j.t

- I+st+-̂-X -E

_T ! - LE r .

-'I- ~, [4i4 t ,:

!.:: V, ti -F/ t i-EaEHL-l I F 

iij
-
ir

-E ,, -A _-; fal , t _.- .t-+4_4 t_ _ ,q X __ p _ _

- . - - -- --- I~tj77- -- , - - t n-t~it~t-~ ~ r: _ _
-l }>89
-t 'tt-r rPtrs 

r -s 1~~7--T~~~-i--T*~~~~- ~ _~

L� ,- --_-

V'

7f

I l

I

:N_---; -$- t 2 -~F- i -E L 4 :;~-~~~7-~--~~

I1- -P �:�,�-.i4Il 7H� _- -:-I
--- ; :-.1Tz-l- -

I I l li1l '',f. ' ,,W 
.1Ii

I

TTT 7

I T



small values of x.

2. For any given K and p, the solution starts with two impulses when a is near

zero. As a is increased, the impulse not at the origin gets relocated to larger values

of x, while its probability decreases. Eventually, a third impulse is required, appearing

between the other two, then a fourth, and so forth (see property 5 below). Thus, if N1

is the number of impulses with nonzero probabilities used in the optimum p(x) for a given

p and K, then N is a nondecreasing function of a, and increases in steps of one.

3. As a is increased for given values of K and p, r decreases monotonically, and
b

as a goes to infinity, r goes to an apparent asymptote of r = a/a b , where a and b are

constants.

4. If a is held constant and p is varied, N1 is a nonincreasing function of p, and

decreases in steps of one.

5. As a is increased for a given p, it is interesting to note what happens in the

neighborhood of a value of a where an extra impulse is added. Sufficient condition (54)

may be rewritten for impulses as

r(z+zn) (l+z) 1/2(l+z) 1/2p
F(z)- I pn e 1 

n=1 (z+Zn

N N 1/ 1i/p

I Z pnmer(zn +zm(l) 1/2 (+Zm+ (74)A; I PnPm e n In n I m -

n=l m=1 +(Zn+Z m )

where, for convenience, we have set z = x 2, n = xn, and if (74) is satisfied for all z0,, Z n
then {Pn}, r, {Zn} comprise the optimizing set. For a typical value of a for which two

impulses is optimum, F(z) will appear as sketched in Fig. 12, where z 1 = 0 and z 2 are

F(z)

/I ~~~~~-J 7

z 1 = 0 Z2

Fig. 12. Sketch of F(x) vs z when two impulses are optimum.
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the impulse positions. As a is increased almost to the point where 3 impulses are

needed, F(z) will begin to appear as sketched in Fig. 13a. Figure 13b represents

F(z) at the breakpoint, where at this value of a, p(x) still consists of two impulses

LF )z /~~~~~~~~~~~~~~~~~~~~~ 

iF(z)

, !, 

Zl= 0 z2 Z1 = z3 z2

(a) (b)

Fig. 13. (a) F(z) vs z near breakpoint.
(b) F(z) vs z at breakpoint.

(at WJi and Nz ). As a is increased slightly, the new optimum p(x) will contain a
12 

third impulse at NZ, with very small probability. Of course, the positions of z and
3' 2

z3 will be continuously changing as a is increased. When a new impulse is needed it

is evident, from Fig. 10, that most of its probability comes at the expense of the

impulse that was added the time before, since that probability undergoes a sharp dip.

Consider the sets of (p, a) for which the optimum p(x) consists of 2 impulses. One

impulse must always be at the origin, and in Fig. 14, we indicate roughly how the posi-

tion of the second impulse varies with p and a. The line going from lower left to upper

right indicates the line of breakpoints, and the region below this line is the range of p

and a, where 2 impulses are no longer optimum. The other lines represent constant

z2 =x 2 in the region where a two-impulse p(x) is optimum.

Some exponents resulting from the optimal sets of p(x) and r are presented in

Figs. 15 and 16. The first of these shows Exe(p, a, 1) as a function of a for several

values of p, while the second shows- Exe(p, a, 1) versus a.

Recall that, when p = o and a and N were fixed, there was a monotonic improve-

ment in the exponent as K was increased, and as K went to infinity for any value

of a, the infinite bandwidth exponent was approached. This is no longer the case

for p < o. In Fig. 17, we show Exe(p, 1,K) as a function of K for several values

of p. When K is increased beyond a certain point the exponent starts decreasing

again; this corresponds to the fact that the signal energy is being split among too

many diversity paths. We shall return to this point in Section IV.

We have previously found a lower bound to Ex(P, a,_) in terms of an equal eigen-

value system, as well as an upper bound when p = o. Unfortunately, it has not

been possible to find an equally tight upper bound for 0 < p < o. About the best
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0.12

n n K
2 4 6 8 10

Fig. 17. Exe(p, 1,K) vs K.

we can do is to say that

Exe(p, a, ) aEo. (75)

This is certainly true because Exe(p, a, X) is an increasing function of p, but it can be

quite loose because, even at p = o, the right-hand side can be approached only by letting

a - 0 or K - oo, and for p < o, the only way it can be approached is through a - 0.

d. Large a

With the exception of the point p = oo, our results are mainly numerical, so it is

difficult to say what the behavior of the exponent will be for very large a. From the

previous results, it appears that as a - oo, the best p(x) will be one with many impulses

spaced fairly widely apart. The proof of impulse optimality is valid for any finite a,

but does not give us much information as a - o because the ceiling on impulse positions,

NA?, goes to infinity with a. We can, however, obtain a lower bound to the exponent

by evaluating any particular p(x) and r combination. For this purpose, let

b 2- 1/2P - cX2
p(x) = axb(1+x2) - 1 /2p e x (76)

where a and c are chosen so that p(x) integrates to unity and x p(x) integrates to a,

and b is a free parameter that may be optimized. The factor of (+x2) 1/2p cancels

with a similar factor in Hl(x, Xl)1/p, and allows us to integrate the expression for the
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exponent. It may be shown that, as a goes to infinity, the resulting exponent is maxi-

mized by choosing b = -1 + /p, and r = 0. With these values we obtain a lower bound

to Exe(p, a, 1) of the form

Exe(p, a, 1) +p n 1 (77)

where U (x, y, z) is the confluent hypergeometric function defined by

1 -zt = -1 ('lt zt x- 1 
U(x,y, Z) -- e t (l+t)y - x - dt, (78)

r(x) 0

and c is chosen to satisfy

U1 + ,2, c

2p = I - I-(79)

28U 2p, 1, cH

The U's are reasonably well-known and tabulated functions, 8 and it turns out that as

a- o, c - 0 to preserve equality in (79). For small enough c, we may approximately

replace the U's by their asymptotes, which are

U(x, 2, c) I c (80)
r (x)

U(x 1, c) 1 ilnc. (81)
r (x)

This results in

Exe(p, a,1) > p n (-ln c) (82)

~ 1a - 1 (83)
-c n c

as c -0. Since -c n c > c if c <e 1 , we may write

Exe(p, a , 1) > pin (ln a) (84)

as a - oo for 0 < p < oo. Note that this is invalid at p = oo.

Equation 84 implies that Exe(p, a, 1) must go to infinity as a goes to infinity. The

significance is that, when all other parameters are held fixed, Pe can be forced to zero

by increasing the available transmitter power, since a is proportional to P/N o . Note

that the p(x) chosen for this bound is the best of a fairly general family defined by (76),

and might well be about as good as we can do with a continuous probability distribution.
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There is some reason to believe that the right-hand side of (84) represents the true

behavior of E (p, a, 1) as a -co. It is known 1 that the expurgated-bound exponent forxe
the additive Gaussian noise channel, Exg(p, a), behaves as

Exg (p, a) p n a, a -oo, 0 < p < oo (85)

xg
Exg( ,a) 2a, a-so, (86)

or, in other words,

Exg (p, a), a - o, 0 < p < o. (87)

One might conjecture that the expurgated bound for the present channel also satisfies

(87). Since we have previously shown that Exe(o, a, 1) ' in a as a - o, this would mean

Exe(p, a, 1) - p in in a, which is the same as the behavior of the bound just obtained.

3. 2 RANDOM-CODING AND SPHERE-PACKING BOUNDS

The bounds and optimization techniques considered here are very similar to the

expurgated bound just discussed, but are more complicated, so that the results obtained

will be less complete. We start with the random-coding upper bound to error proba-
10

bility,10 which, when applied to this channel model, states: If each code word is con-
N 2

strained to satisfy x Na, then for any block length N, any 0 s r 0
n= mn

and any probability density p(x) such that fO x2 p(x) dx = a < o, there exists a code for

which

Pe < exp - N ( s p(x), r) -1 s RN N (88)

, s ' ) lnS DX p(x) p(ylx) l-s er(x 2-a) (89)
o( 1-s ,P(X), r) 1n ~_y I providd dxy,

where RN was defined earlier, and iN - 0 as N, provided fo p(x) Ix2-a ' dx < .

Readers familiar with the random-coding bound will note that instead of the more con-
p

ventional parameter p, we use s 1 + p This will later simplify the derivation of the

lower bound to P e' Aside from this parameterization, the bound of (88) and (89) has the

usual properties enumerated by Gallager.10 The critical rate R is now defined as
1 crit'the rate obtained when s = 2. As in the expurgated bound, we are faced with the prob-

lem of determining the p(x) and r that result in the tightest bound:

Eok is a,X)= -in gmin 0 p(x) p(yx)l - s er(X 2a) dx dy, (90)

subject to the constraints (45).
subject to the constraints (45).
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Because of the integral on y, this minimization problem is so complex that there is

little hope of obtaining results for arbitrary \. Even in the simpler case of the expur-

gated bound, when the y integral could be removed, an arbitrary was hard enough

to handle so that we chose to avoid the possibility. Thus necessity dictates that we con-

strain the analysis to equal eigenvalues systems at the outset. Then, as we have noted,

the vector y of outputs reduces to a scalar, and although we are still left with the inte-

gration of y, it is now a single integration. With this simplification, and again with the

use of the subscript e for equal eigenvalues, the minimization becomes

[r~~~~~p~(x) Soy [S KXYx) se r(x -a) dx] a, K) = -ln min pK(x)p(yjx ledX] dyj (90)
Mr , px)

where pK(y Ix) is given by Eq. 31. To simplify things, we normalize x by dividing by

AFR, to obtain

Eoe( S , a, K) = Cmn iC [ p(x)p(yx) -ser(x -a/K)d dy (91)1 - ,,
[r, p(x) 0

where

K- 1 -y/(l +x 2 )
y e

p(y x)= 2 K (92)
r(K)(l+x )

and the constraints (45) now are

r 0, p(x) 0, p(x) dx = 1, x2 p(x) dx = a/K. (93)

Unfortunately, it is no longer possible to remove K from the problem, as we did before.

In Theorem A. 3 in Appendix A, it is shown that a sufficient condition for r, p(x) to

be optimum in (91) is

0(y/(1- s) p 1lx -s rx2 co 1ps
S P()/(1 ) P(yIx)l erx2 dx > p(y) 1/(l-s)dy (94)

for all x, when 0 < s < 1, and with

Do 2
rx 1 

P[(y) - p(x) e x p(yx)l-s dx. (95)

In Theorem D. 5 in Appendix D, it is shown that, if 0 < s < 1, condition (94) must be

satisfied by some r, p(x) combination, where 0 r K(1-s), and p(x) is a finite set
N1

of impulses. More exactly, p(x) = pnu (x-xn), where N1 is a finite integer, and
n=1 1

42

I



0 x2 < z s , where z is a function only of s, a, and K, and is finite for 0 < s 1,
n S S

0 <a < , and K< o. Both (94) and the impulsive solution are valid for all 0 < s <1,
1

and not just < s < - as required for the random-coding bound. This extension of the

region of s is necessary for consideration of the lower bound, which we shall now pre-

sent.

In Appendix E, it is shown that, if AN <RN <dN, then

P ~ ~ ~ ~ ~~~~~~~~~~~~~ ~~~~~(96)P > exp- N [max {E (1 S, a, K) - I (R N-N) + 6 (96)
L0 < s-< 1o

where AN and N go to zero and dN goes to infinity. The right-hand side of (96) differs

from the randomr-coding upper bound to Pe' only in additive factors that go to zero as

N goes to infinity, and in the difference in the range of s. When R N > Rcrit, the maxi-

mum will be in the range 0 < s <-, so as N - oo, the upper and lower bounds exponen-

tially agree for that range of rates, and thus describe the true asymptotic behavior of

this channel model. As in the expurgated bound, the zero-rate intercept (s = 1) is the

easiest point to consider, as far as the optimization is concerned, so we shall discuss

it first.

3.21 Zero-Rate Bound

When the limit s - 1 is taken, we find that r = 0, and00 ~~~~~p x
Eoe(o, a, K) = min -K p(x) n (+x 2) dx + n p dx, (97)
oe p(x) x +x 2

where p(x) must satisfy (93). In Theorem A. 4 it is shown that a sufficient condition

for p(x) to be optimum is

in (+x 2) + 1 12 0+ PX 2 (98)2 [ px2 ) A (98)
+ x dx - o2 klx

for some kO, k and all x, with equality when p(x) > 0.

In Theorem C. 1 in Appendix C, it is shown that a p(x) given by (65), will satisfy (98)

when the parameters are chosen correctly, so that once again, at zero rate, two

impulses are optimum. In Figs. 18 and 19 we present the optimum distribution in terms

of a, and the exponent is shown in Fig. 20, together with the expurgated-bound zero-

rate exponent for comparison. In this special case, K can be normalized into a. Once

again, IE (-, a, K) is a decreasing function of a, and
a oe

1 Eoe(OO,a,K) 0. 2162. (99)
a oe

Note that, as a-0, Eoe (oo, a,K)1.46Exe(oo, a,K) and as a--oo, Eoe (O, a, K) '4E xe(c, a, K).
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3. 22 Positive Rates

As in the expurgated bound, when p < o, corresponding here to s < 1, results are
much harder to obtain, beyond the basic fact that an impulsive p(x) is optimum. As

before, there are some special cases for which results may be derived without too much
1effort. The first case is for s = . This point reduces to the p = 1 expurgated bound by

noting that the integration on y may be performed (at the expense of a double integral

on x), and results in Exe(1, a, K). This problem has already been considered, so that
numerical results are already available. Moreover, it can be shown (Theorem C. 2)

that a two-impulse p(x), when combined with a suitable value of r, will asymptotically

satisfy (94) as a goes to zero. In detail,

p(x) = (1 zK)uO(x) + u(x ) (100)PW ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~K z7 Uo0(X- ",/zo 10

r = K(1-s) fs/(lzs)( (101)

f ,, 1(lsx) [ln (l+sx) - s n (+x)], (102)
~~~~~~~~~~~~~~~12fs/(1-s)( = 1s

for which it is known 1 6 that for any 0 <s < 1, f/(l s)(x) is positive for x > 0, has a

single maximum in x, and z is chosen to be that maximum. The resulting exponent

is the same as the infinite-bandwidth exponent found by Kennedy:

Eoe(iso aK) = a f 1s( ) a- 0. (103)oe( 1-s' e, K= f s/(1-s) ( z o )'

Aside from the cases just mentioned, only numerical results are possible. If {xn}
and r are specified, the function to be minimized is known to be a convex function of

{pn}. This property may be used to determine conditions 2 9 specifying the best {Pn,

given {xn} and r, but since the objective function is no longer a quadratic form in {Pnl,
implementation of the problem for computer solution is much more difficult. Never-

theless, this was done, using the same general program mentioned before 2 7 as a base.

Unfortunately, because of the integral on y (which must be numerically evaluated at

each step), running even a small number of {xn} as inputs takes a large amount of

computer time, so this was done sparingly.

3. 23 Capacity

There is one other case in which some simplifications are possible, and that is the

determination of capacity, obtained by letting s -0. In that case, it is easily shown

that r = 0 provides an optimum, and since the exponent goes to zero as s - 0, the prob-

lem is a maximization of the rate at which this occurs rather than a maximization of

the exponent. Denote this maximum rate, capacity, by C(a,K), where
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oo o P(Y yx)
C(a,K) = p(x) p(ylx) n dxdy. (104)

P(X1 ) P(ylxl ) dxl

It may be shown, by methods similar to those used before, that a sufficient condition

on p(x) for maximization of C(a,K), subject to (93), is

y(x 2 -K) + C(a,K) i p(yIx) n [t dy (105)
P(x 1 ) P(ylx 1 ) dx1

for all x and some y.

Once again, if we consider the limit as a - 0, it can be shown that two impulses

are asymptotically optimum, and result in the infinite-bandwidth capacity, which is the

same as that of an additive Gaussian noise channel with the same value of P/N o . It can

also be shown numerically that two impulses are optimum for a range of small but posi-

tive a. The same program that was used before was modified for numerical maximi-

zation of C(a,K), and some results are shown in Fig. 21, where C(a, 1)/a is plotted

against a. Here again, even small sets of {Xn} resulted in long running times.

When capacities were computed for channels with K > 1, with N and a fixed, it was

found that K > 1 was uniformly worse than K = 1, for all values of a and K that were

tried. This is not unexpected, since our expurgated bound work indicated that as p

became smaller, the optimum value of K decreased, too. Once again, we defer further

discussion to Section IV, in which some additional results will be presented.

3.3 COMMENTS

The results given above were quite sketchy, the major limitation being the running

time of the numerical optimizations. Even so, a quite passable E(R) curve can often be

obtained with a relatively small number of computed points. As an example of this, in

Fig. 22 we present the E(R) curve for a channel with K = 1 eigenvalue, and a = 1. For

comparison, the infinite bandwidth E(R) curve is also drawn. For convenience, both

axes are normalized to a.

As long as we adhere to the equal-eigenvalue assumption, it is feasible to generate

numerical results. For the expurgated bound, the optimizing algorithm makes use of

existing quadratic programming techniques that are basically simple and quite efficient.

With the random-coding bound, the problem is no longer one of quadratic programming;

furthermore, the algorithm must perform a numerical integration at each step, so that

numerical results are just barely feasible.

When the eigenvalues are no longer equal, the situation changes drastically. For

the expurgated bound, the problem is still one of quadratic programming, so the

numerical optimization can still be performed for any finite number of k' although it

will take longer. The only possible drawback is that there is no longer a guarantee that

optimum p(x) is impulsive, and problems might arise if a large number of xn are
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necessary to adequately approximate a continuous p(x). For the random-coding bound,

there will be one extra numerical integration per step for each eigenvalue, and that in

0.4

0.2

A~

* E(RN)

_a

0.2 0.4 0.6 0.8 1.0 RN

a

Fig. 22. Normalized E(R) curves, K = 1, a = 1, and 0.

itself should be enough to almost completely eliminate the possibility of numerical

results. Also note that the lower bound presented here will not be valid for unequal

eigenvalues.

Once again, we note that our purpose here was to present results that will later

be applied to the questions that were raised in Section II. Thus we have purposely

left much discussion, interpretation, and comparison for Section IV.
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IV. RESULTS AND INTERPRETATION

4. 1 DISCUSSION OF RESULTS

In Section III we evaluated both upper and lower bounds to the minimum attainable

error probability, for coding over N independent uses of the channel model derived in

Section II. The results are almost exclusively restricted to channels with K equal

eigenvalues (although K may be arbitrary), and hereafter we shall refer only to equal-

eigenvalue systems. We note, however, that (at least for low rates), a channel with an

arbitrary set of eigenvalues has a minimum P that may be upper-bounded in terms of
e

the P attainable with an equal-eigenvalue channel. Equality holds in the bound when
e

the arbitrary eigenvalues are all equal, and a few examples indicate that the bound might

be reasonably good for non-equal eigenvalues. Thus the equal-eigenvalue assumption

may be regarded as an approximation to facilitate analysis and insight, rather than a

restriction precluding application of the results to real channels.

The upper and lower bounds to the minimum Pe confirm that this Pe is exponentially

decreasing in N, and for a range of rates the bounds agree as N becomes large. For

this range of rates, then, our bounds represent the true exponential behavior of this

channel model. Each bound involves an arbitrary probability density function p(x) that

has to be optimized to obtain the tightest bound. We found that the optimum density

always consists of a finite number of impulses, and we shall now discuss the impli-

cations.

4. 11 Significance of p(x)

The density p(x) may be interpreted as a probability density from which the letters

for each code word (the modulations xmn) are to be chosen at random. This is not

exactly correct, since to ensure that no code words have energies significantly smaller

than the average, it is necessary to keep renormalizing p(x) as successive letters of

each code word are chosen. For purposes of interpretation, however, this effect may

be ignored. An optimum p(x) consisting of an impulsive density then corresponds to

choosing the input letters from a discrete set of voltage levels.

For a small enough value of P/NoW = a, we found that the optimum p(x) consisted

of only two impulses, one of which was at the origin. When this modulation level (zero)

is chosen, we use" the channel by not sending that particular basic signal. Thus on

any basic signal, we may not send anything, but when we do, it is always some optimum

voltage level determined from the location of the second impulse. The zero level cor-

responds to saving energy so that the optimum amount may be sent on some other basic

signal. As a goes to zero (obtained, for example, when W goes to infinity) the impulse

that is not at the origin is placed so that the resulting value of output energy-to-noise

ratio per diversity path is identical to that found by Kennedy to be optimum for orthog-

onal signals when an infinite bandwidth is available. This result is independent of the

number of diversity paths of the basic signals because the ensemble p(x) can be used
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to compensate for any value of K.

As a increases from zero, two impulses eventually cease to be optimum, and p(x)

goes to three impulses, then four, etc. Thus, as the signal-to-noise ratio is increased

for a fixed bandwidth, there will be a set of optimum voltage levels to be used for com-

munication. This corresponds to the fact that we must use more levels to make best

use of the increase in available signal power. Furthermore, if the rate R is increased

with other parameters held constant, the number of levels also increases because we

require more levels to transmit the greater amount of information. As a final note, we

recall that one impulse is always located at the origin, thereby reflecting the fact that

this input has the smallest output variance, and, of course, the energy constraint also

tends to keep signal levels low.

4. 12 Comparison with the Gaussian Channel

We shall compare the fading channel to an additive Gaussian noise channel with an

equivalent value of output signal-to-noise ratio per channel use (a detailed discussion

of the Gaussian channel results has been given by Gallager 10). The first major dif-

ference is in the form of the optimum p(x). Here an impulsive density was optimum,

while for the Gaussian channel, the best p(x) was Gaussian. When the resulting expo-

nents are evaluated, it is clear that performance is always better for the Gaussian

channel.

As representative examples, consider Figs. 23, 24, and 25. The first shows

1/a Exe (p, a, 1) vs a (proportional to P/NoW) for the fading channel with p = and o,

and the equivalent exponents for the Gaussian channel. Without going into detail, we

recall that p is a parameter (used in Section III) inversely related to rate, such that

p = oo is zero rate, p = 1 is critical rate, and p = 0 is capacity. This will be elaborated

on later, along with the normalization with respect to a. Note that, at zero rate for

the Gaussian channel, the infinite-bandwidth exponent may be obtained for any signaling

bandwidth, but not for the fading channel. This is due to the fact that the only known way

to combat the probability of a deep fade is through sufficient signal diversity, and for

small W, even at small rates, there is not enough diversity available.

Figures 24 and 25 show equivalent capacities for the fading and nonfading channels.

It is known 1 5 that the capacity of the infinite-bandwidth fading channel is the same as

that of an equivalent Gaussian channel, a fact which, although not apparent from the

figures (as a- 0), was shown in Section III. Note the vast difference in the rate of

approach to this asymptote for the two channels.

4. 13 Comparison with Orthogonal Signals

We have already noted that, as a goes to zero, this channel model provides the

orthogonal-signal, infinite-bandwidth exponent. Furthermore, the optimizing density

consists of two impulses, one at the origin, and one at a level that excites the same

value of output energy-to-noise ratio per diversity path that was optimum in the

52



�t_1tjrbt-�* �-
._ 
. t- :-. .--- --- - -- -- - - .. t:-

Iit
e _ ..: .-:F :- e

.f .. _ .T ._ _ ..

... - . ,=

it

Lf- =-i~ T!-- f
.'-' 71- i- '-

-:_ -r _2~. _!.

Eg
z
.7

I- -- I ---- t -- �'=I, " � .1, -1- - , 7�1:7-
cL- --. -- -s _ - : _. EEl -l . f

T--f r:=

f j-...X=
A-1- if-- - �--

=a: 7-

--
- f .-- W-.: P .S

',.- :al: I" W
ai~i:='"t, T---~~f~~'~

I- - --- ~t-i _, 1ir'flf t "; ' , IL
--T'L
!L:,I�it

.:11 'ti-
I'li! ln� -�7

I- - .
'1 ] -t'-fi -WI:. -re .'bc' --_ -- ' i+ I 1- -1 II i _- l -_ IIf; Ii~ 

k ,2

m:-ELLIW.. -,-: ~-:~=~ Z-i 7- i

._ . ___ )- --- r- ----, ^-s-- -:- I=r-;:r-r-- · 1

EJ:t;
.i -i:_ �''~�' � _ j -w]

w f *

'cl -**-c�-"-- .. _ I '`
., ,.j

'_,_ I- - - , r :+ -E= -4, , Iff t I hR-: I fo
mE CD

:__ t_ t f . _ - t- , -- - R t-- + -

E .t-ftr+<,.--_1.__1. r ' i i_ 1 3. -t +.-=E-1--M'i--tf-t~-Lf ' -t--cl-Ct--i 

.

- - v -t-t=

.W~;;;W;FF~-F-1 ..4~;-.-T-.,rW f; t;- .- 5. f-. il -f 

_g- __ [_ *gt-.r--

7L ---
- , --;- .= , 

F- - ,.f W W -· 

W _. _f.I E . ,, ,.-' 1 g _ 

E---

"' 4,~ --

-Tz - --f--E -1-- ----- =i -- - - ~- -- =-I-- 
2~~~~~~~~~~~~~~~~~U I _I` =-.-._,-- `-_-/,-i--1 --,, ,. .i.:

. . . -- I . - . _ -- ,_,, ElE

-r .:r ;-.
tT tt-, - .- .__

_ L ,- -

;.A--- :-1

--: i

9 _' -ff=- '

11 =_ 

i.-

.C4 gft r4X

E~~~~~~~~~~~~~~~~~~~~~~~r -Am-7-F f- Lg :W= 0- I

-J> ,-j-V S: -:-- -

L - '� .--_7 :i�� . L---A. I--F ,-. -AH --TE -I - � T--�4--q -
s i- -:1

M- -- , -T--- -7 -=-- _:;-,J� �- -- �
._: _�E_ __�r�7tE____ r ;-.:

VITIUlt -I tf.t itft4*>
-- -1.- . - . ,

-- 1�_1_�-_1_11 . . ~ _- _ ._ -�---·-L-- ---

Ih
c

MT r

N, 

f. 4 , --g' -~- -=f-aIP f L ---i-r

W._

i

I "~~~~~~~~~~~~~

_,-I -~~~~~·- 
n 114 I T r

t
1I

a

L. r~-h I I ,8 %

' 1'
-H : L, -i:: -ti---ii i;f I i 11 i++f-

.t 7 .- ir-f-

w

-40
z,l0b/)

wo I'u

a

o

0o,.

0 r

0

,4

.,
I..

:-. -- t - -. /[-,r-
. ..;

._ _- T---. ( 9 --+ II � -:-.: -11� . F~-- 

._,.71_ 'r _ __ ___ - L,,r- _: ._ r- ,F+{
.t:

:4::?F-T /:~
-- , + -+ t , Tt -111-1- --- - iiAi t rt F; I } | 1 1_

.i,,- :77P- ,N: ,H= , 1 - i,- .t7,- -- , . - .--T'+_-7+7ELf _i-t t

-t ------ : : t- :- - , -
)-1:::,=

1 _ -J:-_': ___ _ -__ �t�t .=-1- --1 j----- 
............W.--

--
-1

7--

�LfTl
f __ __,__. __ - 1- i- .- ! -

:5 - t.- I

l:
I

_ _ I

.1_.- F-"{

o.

bQw
X-4?

L_- --: :

F~';·hri )f; rt·r't:i ntIt i_~ . F- 4t._.---i T:+t_; - L;F .

!I I 

To6

53

--�. z - - - Z-� .. ::t -Z- �. - a --- -- -r:-, �-- � -1 L - . �:, : �1� -, 1--- , -7i A�--.4 F� 4 A-�------ k - - .-- l

I I-/- ,+;,:Ai ', !I-H-H-t =
I , 1�

14
-------- - - - -:--I-

.- .

�� � .1. ̀ � -�L=.i-. I-;:�p..
1:: -:- --

- -. =A. --= --
-- -

:= t i j

t -,, 

_f- t= . - -t--

_ _- , -_ _i .P
i -- I, 3F,-

` IZ: - 1 .S = r l:

T-; F�

-4-j- l w-}--+--r s----hair-+- 1--- ,-;:;--+-. 1----- -- - - -
~':!-z.-?[ J-':'-Z-~-. :: T :- I---~--- -: -- If'=~-£ A,

-1i L1, 



Hl 
± J

E714

C

-:- -.- z. ;-:, . - o _t -
F1:7i -E =_

6 4§ --§+-=1 t T- ,_._ --- =

*;

I

i. 

*Ej~~S _ 7-. ~ij _ i__ ~t --. -r

0H,.
ui

Q)
-d

C,)

U
vbJD

cdH -.,4

0 0

CO

cd
CdcU.oeq

©S
,C>-t

10 0

Cd
r.* d 
*_

.Cj
-'-

0

LE -.r rJ
-__ _4 

_- -_ __ 

: -t--:-_.t - - -

I -r: 0 -H4: iH
FyIF

_- . r i ', r 1 ̂ ~ 6 .Im Ig ;, Il T I i Il I i I I ir I il l .; I i I I I I, t * , c -r ! P i ~1 I 1 ; 1 1 ! I I q I I ! i , , ;I-
S.O~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+III,;,,i,.

.-I

I
-

,-4

54

h

Cl)

'-4 b

r:
, M:7 � Hr0 1
f U)t M

I I �I I

-i 1�711

II *i�' -mo-fi

1-

, ',� g- �i-JELL-rd --- - :L- aj� I.'~

i _
r- .1-7-4��- � 17Z

,.-Fiat - ---

:-_-I -1 -

B-IliI Z.- - I
�F---T -- iI~fg

,.I

Ii+
EH

V-1i
i 

i-

t- ' l i 7t-fail, t5 ttt -: ;4-t -t/



H; 0:

02

C1)

-C)

02

C-4 d

-0
0 

Cd

02

n0

-44

-I4

0

H

0
(N

55

_·__�I _1 1�---21111_1�--_1_.-.�
---·-q _



orthogonal-signal analysis. We note from Figs. 23-25 that as the rate is increased, the

degradation in performance, owing to lack of sufficient bandwidth, becomes more severe.

This degradation may be moderate at low rates, but will be quite severe at rates close

to capacity.

The infinite-bandwidth analysis revealed that the optimum fading channel was one

with equal eigenvalues. Unfortunately, it has not been possible to show that the same

is true for finite bandwidths, although we speculate that such is the case. As a final

comment, we note that, with infinite bandwidth, Kennedy was able to bound the perfor-

mance of a channel with arbitrary eigenvalues in terms of the performance of an equal-

eigenvalue channel, for all rates. This has been possible here only for low rates,

although our bound is completely analogous to his.

4.2 APPLICATION TO THE COMMUNICATION PROBLEM

Up to this point, the results of Section III have been presented on a per channel use

basis, and now we shall relate them back to the communication scheme set forth at the

end of Section II.

4. 21 Exponent-Rate Curves

Since the problem has been formulated as the determination of exponential bounds

on the minimum Pe attainable through coding, the quantity of interest for determination

of performance levels is the exponent-rate curve. We have shown that

-N max [Eoe(P, a,K)-PRN]
o<p--<

e< min (106)
-N max [Exe(p, a, K)-PRN]

e p>~

P e-e~eN 0<pa [E oe ( P. a K)-PRN] ( 10 7)

with additive factors omitted in the exponents that become negligible as N goes to

infinity. In Section III a parameter, s, was used to simplify derivation of the lower

bound, but for uniformity of notation, we now use p = s/(1-s).

These bounds all have the same basic form, differing only in subscripts and ranges

of p, and we shall describe the random-coding bound (the top inequality of (106)) as typi-

cal. We consider application of this bound to the scrambling scheme outlined at the end

of Section II, and then summarize the analogous results for the other schemes. Recall

that

RN = RT/N (108)

a = PT/NoN (109)
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N = TW/Qsc

Qsc = (Ts+L)(Ws+B) ()

(I+BTs)(I+LWs) BL < 

K = (112)
{(Ts+L)(Ws+B), BL 1

Plugging these into (106) yields

PT
NE sc(R)

P< e o (113)
Pe

E (R)= max Eoe(p, aoQ K) - p (114)
SC 0 P.< Ia OQ oe 0 SC, ~~~~~~~~~~~~0< <

in which we have defined

a = P/NoW (115)

Given the basic signals (in this model, just a specification of T s and Ws), together

with the parameters B, L,W, and P/N , we may generate E SC(R) given parametrically
SC ~ ~ ~~Sin (114). As discussed elsewhere,1 0 Esc(R) may be constructed as the upper envelope

of the set of straight lines with slopes (-p) and intercepts Eoe(P, aoQsc, K)/aoQsc. Note

that K and Qsc depend on T and Ws, and we are free to choose these quantities to

obtain the largest exponent (subject to the rough constraint TSW s > 1). For any given

p, the intercept should be maximized, so we must compute

1max E (pa Q K).
T s W aoQSc Eoe( aoQ0 sc,otsc

In general, this must be done numerically, although, as we shall see, there are many

cases for which this is not necessary.

In Table 2, we present the random-coding bound for the three schemes proposed at

the end of Section II, before optimization on T s and W s. To get equivalent results for

the sphere-packing lower bound, replace 0 < p < 1 by 0 < p < oo, and for the expurgated

bound, replace Eoe by Exe and 0 < p 1 by p 1. Note that, since Qsc < Q Ere(R) <

ESC(R). Also (in Section III), we found that Eoe(p, P, K)/p was a decreasing function of

3, so thatE(R) < EC(R), too. Thus, of the three schemes, scrambling gives the

largest exponent.

Unfortunately, given R, the optimum value of p will depend on T s and Ws, thereby

making the optimization difficult. Thus a reasonable procedure is to perform the maxi-

mization on T s and W for several different values of p, draw the resulting straight
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Table 2. Exponent-rate curves for arbitrary Ts, W

Scheme Random-Coding Exponent

Scrambling E (R) = max PaQs P 
SC O<p-< 1L aOQSC No

No E(R) =max C -p
Scrambling <p L a0 Q KP/N

Rate- E (R) = max P K) 
Expanding re O<p°1 Q aQsc OP/N j

0 <p- < /N o _

Parameters ao = P/NoW

Q = (Ts+L+1/B)(Ws+B+1 /L)

Qsc = (TS+L)(Ws+B)

(1+BTs)(l+LWs), BL < 1

(T-+L)(W-+B), BL 1
- s 

lines, and then get the resulting exponent numerically for the rate of interest. This dif-

ficulty does not apply at the end points of the curve, since p = o corresponds to R = 0,

and p = 0 corresponds to capacity, independent of all other parameters. We shall con-

sider these points first.

4.22 Zero Rate

At zero rate, p = oo, independent of all other parameters. Unfortunately, the upper

and lower bounds do not agree at this point, so they must be considered separately. The

applicable upper bound is the expurgated bound, for which the problem becomes (note

that lim pR = 0):
R-0

Esc (0) = max
sc Ts WS

Exe(co, aQsc, K)

aOQsC

Exe ( a sc 1
= max

' S Ws aoQsc/K

in which Eq. 59 has been used. Thus the problem reduces to the minimization of Qsc/K.

When BL > 1, K = Qsc' independent of T s and Ws, and for BL < 1, the minimization
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yields QSC/K = 1 for any T s W = signal Thus

1
E sc(0) =a Exe ( , a, 1), (117)

o

which is easily evaluated from Fig. 23.

For the nonscrambled scheme, the optimizing signals are

T= - W s B a-oo, (118)
S B' s~~ L'

in which case

-aE (o° o,a 1) BL 1a xe 
0

E(0) BL 1 (19)

L Exe \ ' B L 1) , BL < 1

As a practical matter, TW s = a does not have to be too large, for the exponent in (119)

will be approximately attained if

+ 4-a >> 1/B-BL, BL 1 (120)

1 + FL >> BL, BL < 1. (121)

When BL > 1, the scrambled and nonscrambled exponents are the same, while for

BL < 1, the nonscrambling bandwidth must be increased by a factor of 1/BL before the

exponents are equivalent. When BL > 1, both schemes are limited primarily by the

guard space necessary to ensure orthogonality, but when BL > 1, the nonscrambled

scheme is penalized by the large guard spaces necessary for providing independence

between output signals. Without scrambling, the individual basic signals take up more

area in the TW plane, thereby reducing the effects of the larger guard-space require-

ments.

For the rate-expanding scheme, when BL 1, the basic signals of (118) are again

optimum, with the result that the same exponents are obtained for all three

schemes. When BL < 1, the optimization must be performed numerically. It can be

shown, however, that if the basic signals of (118) are chosen, we arrive at the non-

scrambled exponent, so that E(0) Ere(0) Esc(0). In Table 3 we list the optimized

zero-rate expurgated-bound exponents for these signaling schemes.

Note that these exponents represent an upper bound to Pe. For many channels of

interest, however, an improved zero-rate lower bound can be derived that agrees with

this zero-rate expurgated upper bound,1 2 '30 so there is reason to believe that these

exponents represent the true zero-rate channel behavior. When the sphere-packing

zero-rate lower bound is evaluated, recall that
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Eoe(, f,K) = KEoe(0, /K, 1), (122)

which permits easy optimization on the input signals. In fact, the optimum signals are

the same as those for the upper bound, so that the corresponding lower bound results

may be read from Table 3 with Ee replaced by Eoe . Figure 26 may be used for lower
xe oe

bound exponent evaluation.

Table 3. Optimized zero-rate expurgated-bound exponents.

These upper and lower bounds are different, but the optimizing signals are the same,

so whatever the actual exponent may be, the choice of input signals presented in Table 3

is probably a good one.

4. 23 Capacity

Once again, because p = 0 at capacity (defined as the largest rate at which a positive

exponent may be obtained), independent of other parameters, the results are simpler

than in the general case. For scrambled signals,

Csc C(aoQsc, K)

P/No- aoQsc
(123)

Recall that given aoQsc, K should be minimized, and given K, Qsc should be mini-

mized. It turns out that K and Qsc are simultaneously minimized by

T 
V/B'

W s B
s /L
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(124)

Scheme Exponent Signals

1 =
Scrambling all E (0) E (, a 1 TW=Isc() a xe 0 s s)

0

BL 1 E(0) Exe(o ao 1) axee o
o Ts B //

N o
Scrambling B

B 0 \ W-aeIu
BL< 1 E(O) 1)x B

a a- 00~~~~~~~

BL > I E (0) BE (0 a--

re a xe o
0

Rate -
Expanding

BL < 1 E (0) K o ,sc 1) unknown
re a0 Q xe K 
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for all BL, with the resulting capacity

C C ao(1+NI)2 (1+ L2 (12)

2 (125)
P/No a( 1+ 

Without scrambling,

C C(ao0 Q, K)

P/N ao Q (126)

Once again, for all BL, Q and K are simultaneously minimized by the signals of (124),

with resulting capacity

C[ao( 1+NFB-L+ 1/fB-) 2 , (1+NB)2(

P/N (127)
-P=N - a(l+ B-L+ 1/ )2 *(127

For the rate-expanding scheme, Cre = Csc for all BL, so the same input signals are

optimum. These results are summarized in Table 4, together with the limiting capac-

ities when BL gets large or small.

A graph of C(a, 1) was presented in Fig. 24. On account of the computational dif-
a

ficulties mentioned in Section III, we do not have sufficient data to draw equivalent

curves for larger values of K. Many channels of interest have BL < 101, however,

and the variation of- a C(a, K) with K is not too large in the vicinity of K = 1, so Fig. 24

may be used in those cases for the estimation of capacities.

4. 24 Other Rates

At rates between zero and capacity, the optimization is more complex. We first

consider the simplest case, that of the expurgated bound.

a. Expurgated Bound

With the use of Eq. 50, we find

E SC (R = max oQsc/K, - p (128)
pE -L aoQsc/K P

For a given K, Qsc is minimized by choosing TWs = 1, so that Qsc/K = 1, and K

should then be minimized. This is accomplished by using the signals of (124), with the

resulting exponent

E (R) = max -E 2 a' 0 - (129)Esc(R) ppl °VNSC p>_1 a0 xe (1+ +L)
No
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for all BL.

Without scrambling, the unoptimized exponent is given by (128) with the sc sub-

scripts removed. For this situation, the optimization must in general be numerical,

with exceptions when BL is much larger or smaller than unity. In the former case,

Q Qsc and we can obtain the scrambling exponent; in the latter case, Q K/BL, which

implies that K should be minimized, and the signals of (124) are again optimum.

The rate-expanding exponent is given by

Ere(R) = max -xe(P/KaOc/K 1) P (130)
p>l aoQsc/K /N O

and, in this case, the maximization over basic signals is hardest to perform. Except

when BL >> 1, when the exponent will be the same as both the scrambled and non-

scrampled exponents, Ere(R) must be evaluated numerically. These results are sum-

marized in Table 5.

b. Random-Coding Bound

For this bound, there is little that we can do except resort to a numerical optimiza-

tion, and the nonoptimized exponents have already been summarized in Table 2. There

is one further computation that may easily be performed, and that is the evaluation of

the bound for a particular signal set. For that purpose, we choose the signals of (4. 19),

which yield reasonably simple results and have proved optimum in many cases. For

these signals,

Q = K = (1+L) 2 (131)Qsc

\2
Q = + , (132)

which may be plugged directly into Table 2. We note the asymptotic forms for large

and small BL in Table 6.

4. 25 Comments

We have considered application of the results of Section III to the communication

schemes outlined in Section II. Parametric exponent-rate curves were presented for

basic signals of arbitrary T s and Ws, and in many cases, the optimum signals could be

determined without resorting to numerical measures. The general results appear to be

the following.

1. The scrambling scheme is uniformly best, although for BL > 100, all three are

about equivalent.
2. When BL 10 , the non-scrambled scheme requires an increase in bandwidth2. When BL -- 10 , the non-scrambled scheme requires an increase in bandwidth
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Table 6. Approximate random-coding exponents for the signals of Eq. 124.

by a factor of 1/BL to get the exponent attainable by scrambling.

(3) The rate-expanding scheme appears to lie between the other two in exponent,

and has the same capacity as that attainable through scrambling.

(4) For scrambling, basic signals with Ts = Ws appear to be optimum.

These signals, with their associated guard spaces, take up less space in the TW plane

than any others, indicating that it is better to use many basic signals, each with a small

amount of diversity, than to provide more diversity per signal with a corresponding

decrease in the coding constraint length.

(5) When scrambling is considered, larger values of BL result in larger error

probabilities (with the exception of infinite bandwidth or zero rate operation). Without

scrambling, small values of BL are also bad because of the large guard spaces required

for independence.

We shall apply some of these results to the computation of numerical examples.

4.3 NUMERICAL EXAMPLES

We shall illustrate how the preceding results can be applied to the estimation of per-

formance levels. As a first example, consider the generation of an exponent-rate curve
-2for the scrambling scheme, used on any channel with a value BL < 10 2

. Assume that

the basic signals of (124) are used, since they are optimum for the expurgated bound

and capacity, and we speculate that they are at least good (and perhaps optimum)

for the random-coding bound, too. With these preliminaries, and given P/N o and W,

an exponent-rate curve can be drawn, as discussed in section 4. 21. In Fig. 27, we
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Fig. 27. Sample exponent-rate curves.

present a set of such curves (upper bounds only), parametric on ao = P/NoW. The rate

R (nats/sec) has been normalized by P/No, and may be converted to bits/sec by mul-

tiplying by 1.44.

Consider applying these curves to communication over a tropospheric scatter chan-

nel, with a value of P/No= 105, and B= 10Hz, L= 10-6sec, so that BL= 10 Each basic

signal is then assumed to have T s =300 psec, Ws = 3 kHz. A value of a =0.1 corresponds
R 0to W= 1 MHz, a = 1 correspondstoW = 100kHz, etc., and - =0.1 on the graph corre-

P/N 0

sponds to a rate of 14.4kbits/sec. Suppose for example, that we are allowed a bandwidth

of W= 100kHz, and code over a constraint length N= 300. This corresponds to a block in

time of T = 3 msec, but remember that we are evaluating the scrambling scheme, so that

the 300 basic signals involved in one code word are actually interleaved among many
-6. 6 -3blocks. For a rate of 14.4kbits/sec, the resulting Pe= e = 10 . The capacity of such

a signal-channel combination is approximately 28 kbits/sec.

As a second example, we could consider computing the bandwidth required to

attain q times the infinite bandwidth exponent (0 <q< 1). Since our data are best at

low rates, where we can apply the expurgated bound, we shall use this bound for

exponent estimation. When this is done for communication without scrambling over

the West Ford orbital dipole belt (BL= 10 1), for a value of P/N = 10, the result

is as shown in Fig. 28. We note that R - 0.03 corresponds to a bit rate of
=I 0 0 3 c r e p n s t a b i r a e o

P/N o
430 bits/sec (which is indeed a low rate!), but only lack of specific computed data

prevents us from extending these curves to any rates desired.

In Fig. 29, we illustrate the effect of an increase in BL on an exponent-rate

curve for scrambled signals. All curves are for a = 1, and the upper curve repre-
-2sents any channel with BL 10 , while the others show the effects of increasingsents any channel with BL ~< 10 , while the others show the effects of increasing
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W (MHz)

q =0.9

q =0.8

q =0.7

q=0.6

q = 0..5

R0.01 0.02 0.03 0.04 P/N

Fig. 28. Bandwidth required for an exponent of q times
the infinite-bandwidth exponent.

PFig. 29. Change in exponent for a change in BL.

Fig. 29. Change in exponent for a change in BL.
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BL in powers of ten. Although the lower two plots are incomplete because of lack of

data for higher rates, it is evident that the exponent is greatly reduced as BL increases

beyond unity. As remarked earlier, the zero-rate intercept is independent of BL.

In some cases, our general assumption that -(r, f) is a unimodal function is obviously

incorrect. In Fig. 30 we show the estimated scattering function for the F layer of the

ionosphere, which clearly reveals the presence of three separate paths. Each piece of

the scattering function is approximately described by B = 1 Hz and L = 10 - 4 sec, but
-the total function takes up B = 1 Hz and L = 5 X 10 4 sec.the total function takes up B = Hz and L = 5 X 10 sec.

f

Fig. 30. Typical scattering function for HF propagation.

If a basic signal has a bandwidth greater than the reciprocal of the range difference

between adjacent paths (W s
> 104 Hz), the paths will be resolvable; that is, the contri-

butions to the total received process from each of the three paths can be approximately

separated. Since each path is made up of a different group of scatterers, these three

received components should be independent, and the resulting signal diversity will be

approximately

K1 = 3(1+BT)(l+L1 Ws) (133)

For orthogonal output signals we still require guard spaces of B and L, however. To

obtain independent output signals, additional guard spaces of approximately 1/B in

time and 1/L 1 in frequency are required, owing to the path resolvability. When

Ws < 10 Hz, the paths will not be resolvable, and the scattering function should

have an effect comparable to that of a unimodal scattering function described by

B and L.

Consider the computation of the expurgated bound for this channel. We note

that BL is much less than unity, so we can apply our previous asymptotic results.
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4
For the case s<10 Hz, we can apply the results of Table 5 directly. Using the signals

of Eq. 124 results in a value W s = 50 Hz, well under the limit of 10 Hz, so that

E (R) = max
Exe(p, a 1)

L a
0

E(R) = max
p>-l

When Ws > 104 Hz and scrambling is used, our previous discussion implies

E sc(R) = max (136)- P(P

ao(T +L) (W +B)
P3 =

3 ( 1+BT s) ( I+L 1 W s )

(137)

and now numerical optimization is required to determine the best signals. Indications

are that, within this resolvability framework, the basic signals should be made as much

like those of (124) as possible, so we consider evaluation of (137) with W = 10, T s =
10-4. In this case,10 . In this case,

(138)E sc(R) max
p>l

Without scrambling,

E(R) = max
p>:l

xe 3(1+BT )(l+L Ws)
I PoI

__I R ~

KP/No)jP

ao0(T s+L+ 1/B)(W s+B+ 1/L 1)

3(1+BT S )( I1+L I Ws )

Evaluation of this scheme with the same basic signals leads to

ep a° 1 }-, E x ' 6 X 105 R 
E(R) ' max r. . .p

P 1 a 0 5 }
L 6 X 105 
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In this case, both with and without scrambling, a smaller exponent is obtained by

making the paths resolvable. This resolvability results in a smaller amount of diversity

for a given input signal, but the large bandwidth required by a basic signal to obtain

resolvability excessively decreases the number of basic signals available for coding.

4.4 SIGNAL DESIGN

Up to this point, all results have been for the case of basic signals that are just time

and frequency translates of one another, and so are identical for the purposes of our

analysis. In Section II, we remarked that, before evaluation of performance estimates,

there was no way of determining whether this choice of a basic signaling set was a good

one or not, although we speculated that such was the case. We now return to that ques-

tion, and show that, in one situation at least, this choice of basic signals is optimum.

Since the results in Section III are only valid for equal-eigenvalue basic signals,

we must restrict the analysis to that case, but we now allow different basic signals

to have different orders of diversity, K, obtained by using different values of T and

W s on different basic signals. To make matters as simple as possible, we consider

only the scrambling scheme, and use the expurgated bound for exponent estimation.

Let the nt h basic signal have time duration Tn and bandwidth Wn . If we allow the

usual guard spaces of B and L, each basic signal may be considered to use an area

Qn= (Tn+L)(Wn+B) (142)

in the TW plane, with a diversity

Qn' BL 1

Kn (143)
K(i+BTn)(I+LW n), BL< 1

If unimportant end effects and integer constraints are neglected, the bandwidth con-

straint may be expressed as

N

Z Qn = TW. (144)
n= 1

It may be shown, in a derivation similar to Ebert's, that

PT E (R) = max{ - p ln[S S nPnx e 2)
o sc Pn(X) Pn(Xl) e (I )

HK (xx) /P dxdx P( R )} (145)
Kn N

where Sn =f x2pn(x) dx, and H (X, xl) is defined in Eq. 49. The right-hand side of= H nKn 

71

I _



(145) is to be maximized on {pn(x),r,Tn,Wn}, subject to (144) and the additional con-

straints that pn(x) be a probability function and

N

S PT, T Wn 1, r > o0. (146)
n N ' Tn n

n=1

The maximum can obviously be increased by allowing r to vary with n, subject to

the constraints rn > 0. In that case

N

PT E (R) -<max 2 Exe (p, S ) P (147)
0 ~~~L_

Equality will hold in (147) if S and K are independent of n, since the same value of rn n
is then optimum for all n. For a given {Sn, Kn}J Qn enters only in the determination

of N, the number of basic signals. The larger N, the larger the exponent, so given

Kn on any particular signal, Qn should be minimized. This is achieved by choosing

TnW = 1, in which case Qn = Kn The problem has now been reduced to
n n n'

N

max Exe(P, SnJ Kn)
K 5 e'n n' n n=

subject to the constraints

N N

PT S 20, K >(1+NB~B-) 2
K = TW, S n n (148)

n ~ ~~ n = N 'n n'
n= 1 °

The constraint on Kn may be changed to K > 0, and if the solution to this new problem
2 ~~n

has Kn > (1+ BqB~L), then it will also be a solution to the problem of interest.
n

In Theorem B. 5 (Appendix B) it is shown that Exe(QO, S, K) is a jointly concave function

of S and K. For this situation, the maximization conditions have been given by the

Kuhn-Tucker theorem, 2 9 in which case it is easily shown that, given N, K = TW/Nn
and Sn = PT/NoN provide the maximum. Thus, for scrambling, identical basic signals

are optimum at zero rate because the inequality of (147) becomes an equality for iden-

tical basic signals. The corresponding exponent is

1Es(0) = IE(-, a , 1) (149)
SC aO ° (19

0

for any set of identical basic signals with T sW s = 1, which agrees with a previous result.

When p < oo, recall, from Section III, that a typical Exe(p, S, K) appears as sketched

in Fig. 31, thereby illustrating the fact that Exe(p, S, K) is not even concave in K, much

less jointly concave in K and S. For specified p and S, however, an optimum basic
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signal can never have a value of K greater than Ko, for then K could be reduced to Ko,

which decreases the signal area, and allows a simultaneous increase in exponent. Thus

it is possible that, for the range of K that is of interest, the function could be jointly

concave, but this remains speculative, and the optimum {Sn, Kn} is still unknown.

K

0

Fig. 31. Sketch of a typical Exe(p, S,K) versus K.

The preceding discussion was just meant to provide additional justification for our

belief that identical basic signals provide the greatest exponent. Even at zero rate,

however, we can make no conclusive statements, for two reasons:

1. We do not have an expression for the true exponent (the upper and lower bounds

do not exponentially agree at zero rate).

2. We cannot evaluate exponents for arbitrary X.

4.41 One-Dimensional Signaling

All of our previous work was done under the assumption that basic signals were

spaced both in time and frequency. We now consider signals designed so that either

Ws = W or T = T, thereby eliminating the need for guard spaces in one dimension. Note

that this cannot be obtained from our previous analysis because all signals were assumed

to have attached guard spaces. This is intuitively attractive if, for example, B or L

is very large or small, in which case a considerable amount of guard space might be

eliminated without scrambling. We shall now show that little improvement is to be

expected from such methods.

Consider first, basic signals that take up the entire available bandwidth, W s = W.

To avoid a lengthy discussion, we only consider zero-rate signaling. With scrambling,

we find

*
This section is tangential to the main discussion and may be skipped by the

casual reader.
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Esc(0) = C Exe(°°'sc 150)

1 BL>1

1 + B/W

~Ps~~~~~ =C a ~~~~~ T + L(151)

S ~ +LBL < 1

(i+BTs)(L+1/W)

To maximize the exponent, T should be minimized, so that T = 1/W and

a
P = 0 , allBL. (152)

1 + B/W

Thus at zero rate, for scrambled signals, we have improved results for all BL, although

if B/W is small, as it often is, the improvement is negligible. For R > 0, a numerical

optimization over T s is necessary, and this type of signal design, depending on the

parameters, may result either in improvement or degradation in performance.

Without scrambling, the comparable results are

E(0) = E xe ( 0o ,1) (153)xe

- 1 [1+ 1
I/W BL > 1

|'1 + B/W BT S+ B L

= ao (154)

[1 + BL < 1
BL( + /LW)s 

In each case, Ts should be large, with the result that

1 BL > 1
1 + B/W

P= a (155)

1 +LW] BL < 1.
LBL + LW

Once again, we find uniform improvement, which will be significant if B/W or 1/LW is

at least comparable to unity, the latter of which might be reasonable for some tropo-

spheric scatter channels. Away from zero rate, the same comments hold as for

scrambling.

We can also consider the analogous situation, when T s = T. In this case, at zero

rate, after optimization on Ws, we find

a
p 0 (156)

sc 1 + L/T
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BL > 1
1 + L/T

= (157)
+ 1/T] BL <1.

B-L l+/p °l E + 1/BTg 17

Once again, we have an apparent increase in exponent with this type of signal design,

which becomes substantial when L/T or /BT is unity or larger. We stress the word

apparent for several reasons. First, consideration of scrambling implies sequential

(in time) transmission of blocks of signals, between which we require a separation of

L sec, or more, to ensure orthogonality. This has been ignored in the discussion, and

inclusion of such guard spaces brings us back to the normal scrambled-signals analysis.

When considering the "one-shot" channel usage without scrambling, this difficulty

does not occur, but a more fundamental question arises. In particular, E(0) is maxi-

mized by T - 0, and results in the infinite-bandwidth exponent. But, for the determina-

tion of Pe' E(0) must be multiplied by T, so that in this case the resulting error

probability goes to unity. This scheme may result in a substantial improvement in Pe

only if there is some T comparable to (or smaller than) L or /B, which results in

reasonable error probabilities. The exponent E(0) will be valid only for that T, and as

T is increased E(0) will decrease until it approaches the lower bound given by the

original signaling scheme.

Also note that the bounds used here are tight only as N - o, and with the signals

just proposed, T - oo no longer implies N - , so that the bounds may not give a good

indication about the true exponential behavior. For R > 0, the situation is again

numerical.
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V. SUMMARY AND CONCLUSIONS

We shall briefly summarize the major points of this research, give some conclusions

about estimation of performance levels, and mention some possibilites for further work

on the problem.

5. 1 SUMMARY

Our central problem concerned digital communication over fading-dispersive chan-

nels, subject to a bandwidth constraint on the input signals. The channel model con-

sidered here was an extremely approximate one, yet it reflects the major channel

characteristics. We considered coding over a specific set of basic input signals, namely

one that resulted in independent and orthogonal outputs, a choice that reduced the prob-

lem to communication over a diversity channel. Within this framework, several

different signaling schemes have been outlined.

We derived upper and lower bounds to Pe' the minimum attainable error probability,

which were exponentially decreasing in the signal duration, T. These bounds agreed in

exponent for a range of rates in the limit of large T; thus, they give the true asymptotic

behavior of this signal-channel combination for that range of rates. We found that the

signals that optimized the bounds had basic signal modulations chosen from a finite set

of discrete voltage levels. This result was used to evaluate parametric exponent-rate

curves in terms of the important signal and channel characteristics. We investigated

the interactions of the channel with the signals and their effects upon over-all system

performance.

Our results were found to agree with the previously known infinite-bandwidth,

orthogonal-signal exponents in the limit as available bandwidth goes to infinity. For

finite bandwidths, we illustrated the manner in which the present results might be used

in the estimation of system performance, and we considered the question of design of

optimum basic signals. The major stumbling block was that, even with as simple a

characterization of the channel as the one used here, the problem is basically numerical,

making absolute statements about the nature of parameter interactions impossible,

although we can evaluate enough special cases to get some good indications.

5.2 CONCLUSIONS

The difficulties encountered in evaluation of the bounds to P make it impossible to
e

draw conclusions of great generality, but some trends of channel behavior and perfor-

mance may be stated.

1. With the methods and results presented here, it is possible to make some rough

performance estimates for coding over reasonable signaling schemes. Also, these esti-

mates provide ultimate performance limits for coding over many commonly used diver-

sity schemes.

2. For this type of signaling, except at zero rate or with an infinite available

bandwidth, channels with BL > 1 are generally inferior to those with smaller values
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of BL. Unless something like scrambling is done, channels with BL << 1 will also give

poor performance, because of the large guard spaces required to ensure independence

between signals.

3. For BL > 1, there is little difference between scrambled and nonscrambled sig-

nals, while for BL < 1, nonscrambled signals require a bandwidth increase of a factor

of approximately 1/BL to obtain a value of Pe equal to that attainable by scrambling.

We close with the speculation that, if one is interested in "one-shot" channel use,

that is, the performance available within a block of time T and bandwidth W, the rate-

expanding scheme proposed at the end of Section II may provide a reasonable estimate

because it does not suffer quite as much from independence requirements as the scheme

that was originally proposed. Unfortunately, it is also the most difficult to evaluate.

Of course, if many blocks are used, and it is feasible to interleave signals among many

blocks, the scrambling exponent will be better, as well as the easiest to evaluate.

5.3 FUTURE WORK

There are openings for more work on this problem along two fronts: analytical and

numerical. In the analytical category, the bound presented here, relating performance

of channels with arbitrary eigenvalues to that of equal eigenvalue channels, is valid only

for low rates. A similar bound may be derivable for the random-coding case, too,

although some time was spent in an unsuccessful search for one. Furthermore, we

suspect that equal-eigenvalue basic signals are optimum, and it might be possible to

prove this. Last, although it is in some respects a singular case, zero rate is by far

the easiest point to evaluate, and it would be worth while to determine the true exponent

for this rate. Since an improved zero-rate lower bound that agrees with the upper

bound can in some cases by derived, the same may be true here.

Concerning further numerical work, there are two separate problems to be con-

sidered. For the expurgated bound, we obtained many numerical results, and any others

desired can be easily computed, as long as the eigenvalues are equal. Even for nonequal

eigenvalues, because of the quadratic nature of the problem, it should be possible to

obtain results equivalent to those in Section III, provided there is only a small number

of significant kk . The only possible trouble may arise because, with nonequal eigen-

values, an impulsive p(x) may no longer be optimum, and a large number of impulses

may be necessary to approximate a continuous p(x). If the basic signals were specified,

so that T s and Ws could be approximately determined (T s and Ws cannot be obtained

from a specification of k alone), these parameters could then be used for evaluation of

system performance, exactly as in Section IV for equal-eigenvalue systems.

For the random-coding bound, without the development of some new optimization

techniques, the number of numerical integrations necessary for arbitrary k makes it

doubtful that results can be obtained (indeed it was difficult enough for equal eigenvalues).

With enough computer time, and perhaps a more specialized optimization program, it

should be possible to generate a fairly complete set of curves for equal eigenvalues.
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APPENDIX A

Conditions Sufficient for Exponent Maximization

THEOREM A. 1

A sufficient condition on p(x), r to minimize

§s00§,0Ix[r, p(x)] =
r (2Z+x+x 2)

p(x) p(x1 ) e 1 H (x,xl)I / p dxdx

(1 + XkxZ)1/2

HX((XX1) =
00

k=l

(1+ kxl)

1 + Xk(x2+x2)2- Xk IX

subject to the constraints

00

r > 0, p(x) 0, §
r (x2+x2)

p(xl) e 

p(x) dx = 1,

H (x,xl)1/ d 1 I0 c° 0o
0I

x2p(x) dx = a (A. 3)

r(x2+Xl2
p(x) p(x1 ) e ( 1)H (xx)/p dxdx

(A. 4)

for all x, with equality when p(x) > 0, for any 0 < p < oo

Proof: Assume that p(x), r satisfy constraints (A. 3) and condition (A. 4), and consider

any r, (x) that satisfy constraints (A. 3).

§000ooIx[rl, PI(X)] -Ix[r, p(x)] =

Pl(X) P (Xl)

r 1 (-2a+x2+x Z) r I
e I(I- p(x) p(x1 ) e

-2a+x+X 1 dXdx

This may be rewritten

Ix[r1 , P1 (x)] - Ix[r, p(x)] = 0

rl (-a+x2 )

p l(x) e
rx (-a+x } e

- p(x) e I-u (x2) ePlXl e

r(-a+x )+rl (-a+x2)
+ p(x) P1 (xl) e + P (x) P(x 1 )

rl(-a+Xl) - p(x1 ) er(a+ )}
Ir(ax)

rl (-a+x2)+r(-a+x2)

r(-2 a+x2 2
- 2p(x) p(xl) e

(A. 1)

(A. 2)

is

So

(A. 5)

) dxdxl (A. 6)
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At this point, define

q(y I x) = I
k= 1

Yk

1-1 1+Xk?
__[D

eYk

r(l/p)(l+Xkxz)l/P

It can be easily verified that

H(x, X )1/ =
- 0

and hence

50 0f(x) f(x1 ) Hx (x, x )l /P dxdx1So~~~~~o' 
r 1 (-a+x2)

Using this result, with f(x) = p (x) e

metry properties of Hx(x,x 1 ), we have

Ix[rl ,p (x)] - Ix[r,p(x)] >

r r= C \0

3oLJo
- p(x) e

r(-a+x2 )

d dy O.
_x_

(A. 9)

, together with the sym-

P (x)
(r 1 -r)(-a+x2)-2ra

e

(r -r) (-a+x2)-Zra
Since pl (x) e

Ix[rl . Pl (x)] - Ix[r, p(x)] >

SOP(x1 )

e 2+x 2)
r(x2+xl) 1/p
e Hi(x, x1) dXldX - Ix[r, p(x) -

(A. 10)

> 0, and (A. 4) is satisfied

2[ S P1 (x) 
(r -r)(-a+x 2)

Ix[r, p(x)] dx -

Ix[rl, P (x)] - Ix[r, p(x)] >

00
2Ix[r, p(x)] P (rx)[e -r)(-a+x)

PI (x l

(r -r)(-a+x2)
I[r,p(x)] > 0, e INote that pl(x) > 0,

Ix[rl P ()] - Ix[r, p(x)] 2Ix[r, p(x)]

because pl (x) satisfies constraints (A. 3).

> 1 + (rl-r)(-a+x2), so

00 . oo
p1 (x)(rl-r)(-a+x ) dx = 0

This completes the proof.
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THEOREM A. 2

A sufficient condition for p(x) to minimize

I0[p(x)] = S §00
0 

p(x) p(x1 ) In HX(x, xi) dxdxl,

subject to conditions (A. 3) is

p(x 1 ) n HX(x,x 1 ) dx 1 > 5 p(x) p(x1 ) n HX(x, X1i) dxdx1 + (x 2 -a)

for all x and some X.

Proof: Assume that p(x) satisfies (A. 3) and (A. 15), and pl(x) satisfies (A. 3).

I [p (x)] - I [p(x)] = I n H (x, x 1 ) {p ()-p(x)}f{p 1 ( 1 )-p(x1 )} dxdx 10o'S0

+2 In H_(x, x 1 ) {i (x)p(x1 )-p(x)p(xl )} dxdxl.

We shall now show that the first integral is non-negative.

00

ln H(x,xl) = 

k=l 1

00

In HX(x,xl)= 

k=l

Iln (1

+ In (l+Xkx2)2+in

+2kX )+ in (I+ kxl) -In

- In ( +1 kX2)2I k1+

{ 1 +Xk(X +X)

-In (I+xkx2)l

00oo

In H(x, x1 ) = 

k=l

In + ln + inIn 2fXX1) 11
1 + X kXl

(A. 19)

Let f(x) = P (x) - p(x), and then

f(x) f(x 1 ) nHk(x, xl ) dxdx1

00oo

k=l 
f(x) f(x 1 ) ln

f f(x l) dx1

oo

k=l

SO
0

(A. 14)

(A. 15)

(A. 16)

(A. 17)

(A. 18)

;0 0

S0oCo

0
f(x) In

dxdx 1

dx. (A. 20)
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But f f(xl) dx = 0, and

dx 0 lp1(x)-p(x)i

I P (x)-p(x) -< P1(x) + p(x).

In

00oo

k-l
00

= n (1 + Xkx2) -- ln (l+Xkx2) -XkX.-~l ~ 1 

f(x) In dx 

S00
0

( Xkx 2 ) [P (x)+p(x)] dx =
k=l

Xka = a < 0.

Thus the second term in (A. 20) is zero, and

0 500 f(x) f(xl) n H(x,xl) dxdxl =

[D
0 0

f(x) f(x 1) In [ (1 XkX)(I

+ Xk(X

It has been shown 3 1 that

I Jo
= 1 (2a

when a and al are non-negative, hence

g(a,t) g(a,t) dt,

where

81

f(x) In In dx. (A. 21)

(A. 22)

(A. 23)

(A. 24)

+ 2 xx2k 

1 )
dxdx 1

In

(A. 25)

I (t) dt (A. 26)

1+ (a+a)
(A. 27)
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1
2ya

g(a, t) = t 1
in (l/t)

Therefore

f(x) f(x1 ) In Hx(x,xl) dxdx = dt > 0.I [§0 ' 0 f(x) g Xkx2,t dxk=lI 0 

Therefore

Io1p 1 (x)] - oo[P(X)] 2 P1 (x) p (x1 ) n H(x, xl) dxldx - 2Ioo[p(x)].

But p (x) 0, and p(x) satisfies (A. 15) by hypothesis, so

I[p ()] - Ioo[p(x)] > 2 [0 P1 () {I 0 [P(x)]+x(x2a)} dx - 0 0 [p(x)]]

or Ioo[p1 (x)] - Ioo[P(x)] 0, thereby proving the theorem.

THEOREM A. 3

A sufficient condition on p(x), r for minimization of

I1[r, p(x)] = 50[5 p(x) er(x 2z - a ) p(y IX) S d 1/(l-S)dy

0when p(x) and r are subject to the constraints (A. 3) is the following:when p(x) and r are subject to the constraints (A. 3) is the following:

2 00
erx dx > P(y)1/(1-s) dy (A. 33)

for all x, where 0 < s < 1, and

p(x) ex p(y Ix) - s dx. (A. 34)

Recall that

K-1 -y/(l+x )

p(y Ix) = 
r(K)(l+x 2) K

and when p(y Ix) is normalized in this fashion, a
straints (A. 3). At this point, however, a is arbitrary, so we shall leave
unchanged, and make any necessary alterations later on.

Proof: Let r, p(x) satisfy (A. 3) and (A. 33), and consider
We shall show that

any rl, P1 (x) that satisfy (A. 3).
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500,0

(A. 28)

(A. 29)

(A. 30)

(A. 31)

S00
0

(A. 32)

P(y) 50

con-

(A. 3)

-- I

PYS/(I-S) ( lx) I-

should be replaced b a/K in



Io[r 1 P1 (x)] - Io[r, p(x)] > 0.

It has been shown 3 2 that, if a > 0, then

ta ,Ta a 1.

Thus, if 0 < X < 1,

I0 -x
O {(1-x)

So
0

p~x) (x 2 ) p(y x)- s dx

r 1 (x-a)
pl (x) e

) 1/ ( 1 -s)

p(y Ix) 1-s dxJ

(l-X) I[r, p(x)] + XIo[r, P1(X)]

Io[rl, P1 (x)] - Io[r, p(x)] >

- Io[r p(x)] + {(-X)T 0~~~~1X Sc p(x e -) e r - a ) p(y x) 1 - s d
0

+ r ( er1 (x2-a)
+ X Pl(X eI

1/(1-s) 
p(y x) 1- s dx dy

Recall that

p(y Ix) =

K-1 e-Y/(l+x2)

r(K)(l+xZ)K

yKl- l -s
so that r ) may be factored out

r(K))
of the integrals on x.

p(x)(l2+x Z K ( 1 - s ) r(x -a) - (1-s)y/(l+x) dx > 0, all y, so that

Io[rl'pl(x)] - IO[r,p(x)] 

Also

-Io[r, p(x)] + [P(y) e - ra]/(s)

1 - + 

oo rl (x -a) 1 1 s
fJ pl(x) e P(yIx) dx

(x) er(X2 a) p(y x)- dx Jd .
0f p (x) r x- a ) py 1 - s d

f~~ p W e P~ 11/(l-s
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(A. 35)

(A. 36)

oX

or

dy -<

(A. 37)

(A. 38)

S0

(A. 39)
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Since 0 < X < 1, we may apply the inequality

(l+t)1/(l - s ) >-1 + t
I1- ' -1 - t, 0 <s < 

to obtain

I[rl, P (X)] - IO[r, p(x)] >

I [-I o[r, p(x)] +S p(y)s / ( - s ) S0
r1 (x2 -a) dxdy.PI (x) e 1 p(y I) 1I - s dxdy .

The order of integration may be interchanged,33 however,

(A. 33) by hypothesis,

I 0 [rl, P1 (x)] - I[r, p(x)] >

Io[r p(x)][ 

(A. 41)

and, since p(x) satisfies

(r -r)(x -a) 
p (x) e dx. (A. 42)

Note that Io[r,p(x)] > 0, et 1 + t, so

I[rl PI (x)] - Io[r, p(x)] >

Io[r, p(x)]

1 - S (r -r)
00J0p (x)(x 2-a) dx = 0. (A. 43)

THEOREM A. 4

A sufficient condition on p(x) to minimize

r00 p(X)
Ii[P(X) = K- p(x) In (l+x2) dx - In (A. 44)

subject to conditions (A. 3), is

1 C0 p(x+) In (l+x Z ) + 1 + L dx

- I~1

< ko + X1xZ (A. 45)

for some )o, X1' and all x, with equality- when p(x) > 0.

Proof: Assume that p(x) satisfies (A. 3) and (A. 45), and pl(x) satisfies (A. 3).

that the function Xpl(x) + (1-X) p2 (x), 0 < X < 1, will also satisfy (A. 3).

Note
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1 [kplx+1-Xpxf =

-X0 [pl (x)+ (1-X)p(x)] n (l+x 2 ) dx - in
[S XP1 (x)+ (1-X) p(x) 

dxlx
~~l'~+x j

34
It is well known that in x > In x, and by applying this inequality to the

(A. 46),

(A. 46)

last term in

Il[Xpl(x)+(l-X)p(x)] - kXIl[pl(x)] + (-X) Il[p(X)] (A. 47)

1i[P1 (x)] - 11 [p(X)] [I1 [P 1 (x)+(1i-X)p(x)]- [p()]] (A. 48)

I 
[ p

l - 1[p(x)] >l - §0
{(P (x)-p(x)} In (1+x2 ) dx

00 pl(x)

1 - + x
p(x)

1 + 2 dx01 + x

We now apply the inequality In (l+t) t, -1 t.

1i [P(x)] - I 1[p(x)] >- 0 {1pl(x)-p(x)}ln (l+x ) dx + 1

?!(x dx
1 + x2

0o p(x)

o dx
0l1+x

I [P { ( x)] - I [P(X) ]

{00fp(x)-pl(x)} n (l+x2) + 1 xZ P(xl)

0:1 +X O 1 

dxIj dx.

By hypothesis, p(x) satisfies (A. 45).

when p(x) = 0, p(x) - p(x1 ) < 0, so that

Ii[pl(x)] - IL[P(X)] > 

When p(x) > 0, equality holds in (A. 45), and

{p(x)-Pl (x)} ()o+X 1 x 2 ) dx = 0.
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APPENDIX B

Theorems Concerning the Expurgated Bound for

Equal Eigenvalues

Recall that we found, in Section III, that when all of the eigenvalues are equal, we

need only compute results for one eigenvalue with value unity. In this case, the con-

ditions sufficient for maximization of the exponent, derived in Theorems A. 1 and A. 2,

specialize to

r (x +x 2 ) i/p o r (x 2 +x 2)1/p
p(x1 ) e Hl(X,x ) dx > p(x) p(xl ) e H(xx/P dxdx

(B. 1)

for any p in the range 0 < p < oo, and

p (x 1 ) n Hl(x,xl) dx > p(x) p(x1 ) in Hl(x,xl) dxdx + (x2 -a) (B. 2)

for all x and some when p = oo. Note that

( +x) ( x)

H l (x,x 1 ) = , (B.3)1 1 2 2
I + (X +x

and r, p(x) are constrained to satisfy (A. 3).

THEOREM B. 1

If r,p(x) and rl,pl(x) both satisfy conditions (B.1) and (A.3), then r = r, p(x) = p(x)

almost everywhere, and furthermore

00 &0~ [p(x)-pl(x)] dx = 0.

Proof: If r, p(x) and r 1 , P (x) satisfy the conditions, by Theorem A. 1, they result in the

same value of Ix . In the proof of Theorem A.1, it is shown that for this to be the case,

,0c , f(x) f(xl) Hl(X, xl) /P dxdxl = 0,(B 4)

where

r 1 (-a+x ) 2
f(x) = p1(x) e - p(x) e r(a+x (B. 5)

86



Equation B. 4 may also be written

2
y -

1 +x2

0 f(x) 2 (B. 6)
f~~~x) - ~~dy =0.'

O 0 ~~~2 l/p
r(1/p)(l+xz)

Change variables to t = and let

2~~~2

tP f (B7)

h(t) = -.

Then, for 0 < p < oo,

oo L3~ 1i h(t) eYt dt dy = 0. (B. 8)

o zr(l/p) o

•~~~~00 l (B. 9)
H (y) dy = 0. (B. 9)

0

H(y) = h(t) eyt dt. (B. 10)

As the Laplace transform of a pulse function, H(y) is entire. 3 5 Equation B.9 implies

H(y) = 0 almost everywhere, y > 0, hence H(y) = 0 in the whole complex plane, and by

Parseval's law,

h2 (t) dt = 0 (B. 11)

or

00o f (x)_1
(lSb rdx = 0. (B. 12)

l+xH)n

Hence
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r 1 (-a+x)
(x) e

(1+x 2 )

r1 (-a+x2)
Thus pl(x) e

= ~ ) er(-a+x 2
= p(x) e r ( a +x ) almost everywhere, and any region where

(r-r ) (-a+x2)
_- I - _ A- I _- - _ _- - _ A t i / - -J -- _ - - - -I -I -- 1 rs

equaizty aoes not nola cannot contain any area. ence P1 tx) = ptx) e

everywhere, and

o0 00 (r-rl)(-a+xz )
1=,I pl(x) dx = p(x) e dx.

almost

(B. 14)

But et > 1 + t, equality only at t = 0. Hence

1 > - p(x) l+(r-rl)(-a+x2)] dx= 1,) d (B. 15)

so that (r-rl)(-a+x ) = 0, where p(x) > 0. It can be shown that p(x) = uo(x-a) cannot

satisfy (B. 1), so r = r, p(x) = pl(x) almost everywhere, and

S 00

0o
[p(x)-pl (x)]2 dx = 0. (B. 16)

THEOREM B. 2

When p = oo, p(x) = pluo(x) + p2 uo(x-x o ) satisfies (B. 2) and thus maximizes the zero-

rate exponent.

Proof: Condition (A. 3) requires

2
Pi' P2 >O 0, P + P2 = 1, p2 xo = a. (B. 17)

We shall show that (B. 2) is satisifed for a given value of a, when P1 , P2 , X, x are
2 2 

chosen properly. For simplicity, let z = x , z x0 , and

G(z) = 0 p(x 1 ) n H 1 (.Tz, x) dx - 5 p(x) p(xl) n H I (x, x1) dxdx - (z-a).

(B. 18)

If we can choose the parameters so that G(z) 0, z 0, then the theorem is true.

Plugging in p(x), and noting that H(a, a) = 1, we have

G(z) = P1 n H 1(-z-, 0) + P2 n H(NFz, J) - 2p 1 p2 n H(0, -) + (z-a). (B. 19)

Let
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- p(x) er

1/p
dx = 0. (B. 13)

I _ _ _ _

.... ;JL - . ...- 1_ _-- 1 ..... J.



\ = zl 1-2pd) n 0 °l . (B.Z0)
1 i lln0

Direct evaluation confirms that G(0) = G(zo) = 0. If G(z) is to be non-negative for z 0,

and G(zo) = 0, then G(z) must have a minimum at z = z0 , and G' (zo) = 0. This condition

determines P1 and P2 in terms of z as follows:

P p = - l (B. 21)
h(zo)

fl(z)= z in (1+- ln(l+z) (B. 2)

1 2 
NY(z) =(B. Z23)

(l+z)( +Z)

fl (z)
h(z) = *( (B. 24)

y(z)

The important properties of h(z) are the following.

1. h(z 1 ) = 1, z1 3. 071

2. h(z) is a strictly increasing function of z, z > 1

3. h(oo) = oo.

Consider property 2 first. After some computation, we find that

h'(z) =z 1-fI(z)(3+4. (B.25)

16It has been shown that f1 (z) is positive and decreasing for z > z 1 3. 071 (z 1 is

the point where f(z) is maximized, and is defined by f(zl) = (z 1 )). Also, (3+z) is

decreasing in this range, so

h'(z) >_ 1 - fl(Zl ) 3 + 4 35 > ' (B. 26)

and h(z) is strictly increasing for z z 1 . Properties 1 and 3 are verified by direct

evaluation.

Therefore, if z is increased from z to o,
o 0

1. h(zo ) goes monotonically from 1 to oo
2. P1 goes monotonically from 1 to 1/2

3. P2 goes monotonically from 0 to 1/2

4. P2Zo goes monotonically from 0 to oo.
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Thus, for any 0 < a < co, there is a one-to-one correspondence with some < Z 0 < 00,

so that we can work in terms of z and later find the corresponding a = P2 zo. To prove

that G(z) 0, consider G'(z).

G'(z) = z1 z 1 +T (Zl + 2. (B. 27)

Putting G'(z) over its common denominator yields

b(z)
G'(z) = _ a(z) b(z), (B. 28)

2(I+z)( + Z) + (Z+z o )

where b(z) is a cubic polynomial in z. For z 0, a(z) > 0, so the positive zeros of

G'(z) are the same as those of b(z).

Note that

G'(z) = 0 = b(z ). (B. 29)

G'(o) = > + 2x = 2 Zo (PI -I) f (zo > . (B. 30)~~~~~~Z 1 1+1 Pz o 1 To ~~~~2o 

and thus b(O) > 0. Also,

3
z - co - b(z) - z+ co. (B. 31)

Since b(z) is a cubic polynomial, it can have, at most, three real roots. There must

be at least one negative real root because b(0) > 0, b(-oo) < 0. Thus there can be, at most,

one other positive root in addition to the one at z. G(z) is continuous and differentiable

in (0, zo), and since G(0) = G(z o ) = 0, the Mean Value theorem 3 6 states that G'(z 2 ) = 0,

for some 0 < z 2 < z o , and hence b(z2 ) = 0, too. Thus b(z) must be as shown in Fig. 32a.

b(z)

Z Zo Z 0

G(z)

2 o

(a) (b)

Fig. 32. (a) b(z) versus z.
(b) G(z) versus z.
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b(z 0) = O. b(z0) > 
Thus b(z 2 ) = 0, b(z 2 ) < 0the only roots of b(z) for z > 0, and b(z) 0, z > z, so that

G'(z) 0, z z, and thus G(z) 0, z z. Differentiating (B. 28) and noting that

b(z o ) = b(z 2 ) = 0 show that G"(zo) = a(zo) b'(zo) > 0, and G"(z 2 ) = a(z 2 ) b'(z2 ) < 0. Thus

G(z) has a minimum at z = z and a maximum at z = z2 . These are the only two extreme

points of G(z) for z 0, so G(z) must be as shown in Fig. 32b. Hence G(z) 0, and two

impulses, suitably chosen, optimize the zero-rate expurgated bound. The resulting

exponent is

Exe[oo, a, 1] = a(1 - za) fl(Zo) afl(Zo)

THEOREM B. 3

If we define

00

Z Xk= b,

k= 1

Ex[p, a, X] > Exe

00 73Xk = d,
k= 1

b2a b3I: d ' 

Recall that
00

kk > 0, Z kXk = 1, and
k=l 

oo °O r (- 2 a+x +I)
Ex[p, a, k] = -p ln min 0 0 p(x) p(xl) e

r, p(x) 0 0

L

=1T
Lkl

i/p

dxdxl
1 + 1 k(x2+Xl)1 +~k 2X 2

Exe [p,a,K] = -p n min 50 05
xe L~~r, p(x) 0 0

r Z a+x2 +x2 )
p(x) p(xl) e 

/p

dxdx ,.
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(B. 32)

then

(B. 33)

(B. 34)

(B. 35)

(B. 3 6)
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where in each case, r and p(x) must satisfy conditions (A. 3).

Proof:

Ex[p, a, X]= -p
S0 r00 r (-Za+x+xI

in min 3 (x) 1l) e
r,p(x) 

) G (x, x 1 ) dxdx 1

G (x, x 1) = exp -
00

k= 1
k ln (1+ ("x k+\kXl)) -4ln (l+kx2) - 1n(l+kX)l)1 '

(B. 38)

Define

B(x) =I in l+-x(a+a1 -ln+ax.2 ( 2 d)- 'ln l+ax)- 'nlax 
X

We shall now show that B"(x) > 0, all x 0, and any fixed a,a 1 > 0.

Evaluation of the second derivative shows that

(B. 39)

B"(x) = 62
X

B(x) + 
2x

a 1 (4+5a lx)

(1+alx) 2

2 ( , )( + 5 ( 1
[Ia+a( a+a

+(~ +al) 

Using (B. 39), and defining

x(4+5x)
g(x) = -6 n (+x) + 

(l+x) z

we find that

B" (x) = 4 [ {g(ax)+g(a 1 x)} - g {(a ) xa1}

6x2
g"(x) = > O

(l+x)
x >-0,

so that g(x) is convex, and

t g(ax)+g(at B x 0,2 p t

thereby proving that B"{(x) > , x > , and hence B~x) is convex.
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(B. 40)

But

(B. 41)

(B. 42)

(B. 43)

(B. 44)



If p is a probability vector,

(B. 45)B E kxk pkB (xk). -
k=1 k=l

Let

X2

kb''k- b- , Xk = Xk

Gk(x,x 1 ) ~< exp 22\,~zkb~nbljG(x, x ) _< exp [_b [dLn I+ dx + d x +x - 1 In + x2 ) - 1In (1 + bx1 )

(B. 46)

L d 1
4 dx2)

/pd 2

GX(x, x 1) 

2 b ( 

Plugging this into (B. 37), and making use of (50) and (B. 36), we have

b 2 j b F b2 a b s (B. 48)

THEOREM B. 4

As a - 0, a two-impulse p(x) asymptotically satisfies (B. 1), the condition for opti-

mization of the expurgated bound, and hence is asymptotically optimum. The resulting

exponent is the same as the infinite-bandwidth, orthogonal-signal exponent found by

Kennedy, for R < Rrit
crit'

Proof: Define

F o(x) = 2+x 1 /F (x) = p(x 1 ) e (X IHl(X, X1 ) Pdx1S 011 
p(x) P(xl) e Hl(x,xl ) /P dxdx
0 0~~~~~~~11

(B. 49)

Let

p(x) = pluo(X) + P2 uo(X-xo) (B. 50)
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P =I - a'
x

0

22where x = 3. 071 maximizes fl(x ) given by (B. 22).
2 o-rx 1

e H(ox) 1p. With this choice of r and p(x),e~~ = 1(o o

2
F(x)e =

Also let r = 1/2p fl(xo), so that

{Hl(0,x' XP - e-rx + a (x x )/p 

2 2 2rx2

a -rx o

x
o

The coefficients of a and a2 are bounded for all

F(x) e -rx = H (0, x) /P e-r

x, so as a - 0,

+ O(a),

o (a)
where we use the notation to indicate that lim - < .

aa -o

(B. 53)

But

/P erx 2 = +- 22 f(xo) - fl(x2)] 0.X f, (I > l
Thus H (o,x) l / p >_ e-rx and F(x) > 0 as a- 0.

The resulting exponent is

2 2rx2
Exe[p, a, 1] = 2pra - p n + a4 }j

Exe[p, a, 1] = pra - O(a 2 )

Exe[P, a, 1] - afI (Xo 

which is the straight-line bound that Kennedy found for low rates.

THEOREM B. 5

Exe (OO, a, K) is a jointly concave function of a and K.

Proof: Define

F(a) Exe(0, a, ).
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a
(B. 51)

I}

(B. 52)

(B. 54)

(B. 55)

(B. 56)

(B. 57)

(B. 58)

I

H (0 X)1 /

9 2

In (0, OX)1



Then

xe (o a K) = KF( ) = 0(a K) (B. 59)

37The conditions for (a, K) to be jointly concave37 are

0 <0 0 -< 2- 0 -< 0, (B.600 aa oKK (B. 60)8~.,.<,aK-e eaaeKK(" < 6o,

where we are using standard partial derivative notation.

We first show that F"(a) < 0. From the proof of Theorem B. 2,

F(a) = max a(1-) f 1 (z) (B. 6 1)
z >-z 

0

or

F(a) = g(a,z) a(1- -) fl(z), (B.62)

subject to the constraint gz= 0. Differentiating, we obtain

F'(a) = g + gz da = (1- Z -- ) fl(z)' (B. 63)

Again, in Theorem B. 2, we found that a and z were both increasing functions of a,z
and f(z) was a decreasing function of z, and hence of a, too. Thus ga is a decreasing

function of a and hence F"(a) - 0.

Direct evaluation confirms that

ea -- F"(a/K) 0 (B.64)aa K

2
eKK = -a F"(a/K) - 0 (B.65)

O KK

eaK = K2F"(a/K) (B. 66)
aK =--

2 aa0KK ° (B. 67)
aK 0 aa = 0,

and so (B. 60) is satisfied, thereby proving the theorem.
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APPENDIX C

Theorems Relating to the Random-Coding Bound

for Equal Eigenvalues

THEOREM C. 1

When s = 1, p(x) = pluo(x) + p2 uo(x-xo) satisfies (A. 45).

Proof: Condition (A. 3) requires (remember to replace a with K)

2 a
(C. 1)

Inequality (A. 45) may be written

o z1 r p(x) --
G(z) + z - ln (l+z) -1 dxl +0 1 1 + z I~ i+x2

for all z 0, with equality when p(x) > 0, where for convenience, we have set z =
2

= x0 . Equality at z = 0 and z = z requires
Zo 0 0

+z
0

o 1 + z

1 1
= I ln (l+Zo) +pz

kl 1 + PZ

If G(z) is to be non-negative, and G(z0 ) = 0, we require that G'(zo) = 0.

mines P1 as follows:

P l ln (+z
1-.'

- 1]
1

z
O

(C. 2)

2

(C. 3)

(C.4)

This deter-

(C. 5)

Note that

1 +z
0 ln (l+z) - 1 < z,

z 0 0

so that if > 0, P > 0. We also require P1 1.

z + 2Z
~oIn (l+zo) 2°

(l+z )
0

This will be ensured if

(C. 7)

Let
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(C. 6)

__

P 1 P. >_O' I +P2 I



z +2z 2

H(z o ) = in (l+z ) - 0 (C. 8)
o o (1+z

0

Then

Z (z -1)
H'(zo) =°° (C. 9)

° (1+z o 30

and H'(z o ) > 0 when z > 1. Therefore, if z > 1, H(zo) is increasing. Direct compu-

tation confirms that z '' 2. 163 satisfies (C. 7) with equality, and results in P1 = 1.

Hence if z > 2. 163, 1 P > 0. Then we could specify z > 2. 163, solve for PI, P2 , a,

and have a probability function that satisfies all of the constraints for that value of a.

Recall that G(0) = G(zo)= G'(z o ) = 0. By using the continuity and differentiability

of G(z) to apply the mean-value theorem, there exists some z1 , 0 < z1 < z o, such that

G'(zl) = 0. Differentiation of (C. 2) leads to

Xl(l+Z) - (l+z) +1 +l)
G'(z) 2 , (C. 10)

)2(1+z)

and thus G'(z) can only have the two positive zeros just mentioned. Also

I + z \ Z + z\
G'(0) = 1 1 + 1 + ln (l+Zo) -2. (C. 11)

Making use of (C. 7), we find that

z
G'(0) > 0 > 0. (C. 12)

(1 +zo)2

Thus G(z) must have a maximum at z = Zl, a minimum at z = z, and since these

represent the only two zeros of G(z) for z 0, G(z) must be as shown in Fig. 33,

thereby proving the theorem.

0 z1 z 

Fig. 33. G(z) versus z.
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The resulting exponent is

Eoe[o, a, K] =

Eoe [oo a, K] <

K z in (+z O ) + In 

ar ln
L0

(l+zo) 1 + z '
0- 

By differentiation, it is easy to show that the right-hand side of (C. 12b) is a decreasing

function of zo , for z > 2. 163, so that

Eoe[oo, a,K] 0. 2162a. (C. 12c)

THEOREM C. 2

As a - 0, a two-impulse p(x) asymptotically satisfies condition (A. 33), 0 < s < 1.
1

For 0 < s I (0 < p 1, and R Rcrit) the resulting exponent is the same as the one
obtained with orthogonal signals and an infinite bandwidth.

Proof: Condition (A. 33) states

F(x) 0
0o

y 21 
(y)S/() p(ylx)l erX dy - S0

0X

P(y)l1/(l-s) dy 0

is sufficient for an optimum.

Let

p(x) = pluo(X) + P2 Uo(x-xo)

a a
= 2 ' I K

x K xK
0 0

Define

f s (x) 1 [in (+sx)

1's x(1-s)

-s ln (l+x)].

The function f s (x) is positive for x > 0,
1-s

Choose x4 so that f

0 < s < 1, and has a single maximum in x.16

a maximum, and let
(x' ) is

1-s

r = K(1-s) f s (x'

1-s

Applying (A. 36) gives
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a/K} ]
(C. 12a)

(C. 12b)

(C. 13)

(C. 14)

(C. 15)

(C. 16)

(C. 17)

I



P(y) 1/(l-s) dy =
S00 Q00

0o J

~2 ~1/(l-s)
p(x) terx p(yjx) s} dxj

· 5s005~00
p(x) erx

1/(1-s)

P(Y x) }

S00
0o P(y)l/(1-S)

[rx°
dy 1 + ae -s = 

0 -
x2K
O

Let

2 p00
G(x) eX er

0
(y)S/(1-s) p(y Ix)l-s dy

2 - r x

G(x) e P(yfx) 1
+ 2 {1

rx Fp(YIxo)] s/(l-s)

L P(yI )
(C. 2 1)

where the bar denotes an average with respect to

p(yIo)s P(yX) 1 - s

S00
0

p(ylo) s p(ylx) -s dy

1Using (A. 36) again, and assuming that s >- ,

K
(l+x)1

2
erx ° 00

e

S00
r

P(Yo)l1+Zs

P(y I O)s p(y

s/( 1 -s)

p(yjx ) Z-Zs dy

x ) 1-s dy 

(C. 2)

2xK

G(x) e r >Z 2 ( + :s [ 2
rx

X + 2 + e
x 2 { +x (Zs-1 +

All terms in (C. 23) are bounded, so that

99

00
dy

dxdy (C. 18)

+ 0(a). (C. 19)

(C. 20)

2
G(x) e

we obtain

1 + sx-

-s)

(C. 3)

_�II _I __ ·I

p(ylo)s 

I



2 ~~~~~~~~~12 f(I+x2)S]
G(x erx >I - + O(a), 1 > s I

I + sx as

1Now assume that 0 < s < -1, and write G(x) as

2 00r

G(x) e
0

(C. 24)

dy.

(C. 25)

Applying (A. 36) to the inner integral this time, we obtain

G(x) e- rx >_ p(ylx) 1 s p(xl) p(yjx l ) e s
0 0

-rx2 1+x2) 1 a rxsT. , -rx _ ) s . a 1-sX t 2 L-x 2 i _r x KL
ll+ sx DJ XZKL 1 + sx + (1-s)xo

dxldy

K

(C. 26)

(C. 27)

This result, together with (C. 24), proves that

2 ( +xz + (a),
G(x) e-rx _ ___ G~x) e >I + sxZj ~)

F z ( -r 2 +x)S

1+ sx z

2
-e- rx + (a).

ln FerxZ {} = x (l-S)[ s (xz)

1-S

- f (x2

1-s

; 0. (C. 30)

Thus as a - 0, F(x) > 0, with equality at x = 0, x = xo , and hence this probability func-

tion is asymptotically optimum.

The resulting exponent is

Eoe[p, a, K] = -n er a/[K(1 -s)] 0 ()/( -)
dy = af s

1-s

(x2 )-n 00 () I/(-s)
0 o

(C. 31)
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O< s < 1

But

(C. 28)

(C. 29)

Idy]

2 s/( -s)

~1+2)s,+x) -s

. . ... 



where p = s/(1-s). We shall show that for 0< s 2 -, n o (y)l/(l s) dy

as a 0. 

S00

0

P()1 /(I s) dy

is negligible

(C. 32)

2
rx Ip(y I X ) 

H(y) -l + e 0 L 0l-
P(y o)

2
rx

= -1 + e °

Note that H(y) is an increasing function of y, H(oo) = + oo, and

0 > H(O) = -1

1 + sx 2 K( 1-s)

1 +x 2
0 J

If Yo is defined by the relation

1

2rx
O

(C. 35)

then

(l-s)

-1 +

0 < H(y),

-< H(y) -< 0,

Y < Y.0 J

1We will now show that, for 0 < s ~< 2'

/(1-s)

~ 1 s + t +

a > 0,

t> 0

-1 + a t 0

To show the first part, let

A(t) = + t + tl/(l-s) (l+t)l/(l-s)

A'(t) = 1 [L+ts/(1-s)-(l +t)s/(l-s)]

101

I -5

(C. 33)

> -1. (C. 34)

0 y Y (C. 36)

(C. 37)

(C. 38)

(C. 3 9)

(C. 40)

.

1 _C!

( I +t) 1 /(1 -S)

dy =00 P(y I ) + ' H (y)- IAI -S)
x2K

0 -



A(t) = t(-1+zs)/(l-s) (+ ( s)/(
A"(t) = -

so that for t > 0, 0 < s , A"(t) 0. ButA(0)

and thus non-negative, so that A(t) is increasing,

assertion.

To show the second part, let

(C. 41)

= A'(0) = 0, so that A'(t) is increasing

and A(t) 0, thereby proving the

t (lt ) l /(l-s)
Al(t) = 1 + + 1 (t+t)

2a(1-s)2

A1(t) = 1 + sa-- - ( +t) /( S-s
1 1 - S a (-s)

(C. 42)

(C.43)

(C. 44)A1(t) = 2 [1 -+t)(-Zs)/(-s)
(I) -Sl~t

But (+t) -(1-2s)/(1-s) < a(1 - 2 s )/(1 - s ) a - 1 in this region. Hence A (t) 0. But

Al (0) = A1 (0) = 0, so that A1 (t) is increasing and must be nonpositive, so that A1 (t) is

decreasing and must be non-negative in -1 + a t 0, thereby proving the second part

of (C. 38).

If a/(xoK) 1, then

P(y) /(l-S) dy < pP(Y 0) + 2a H(y dy

o L xo2K(1-s) j

K(1-s)

+ (I -S)2(xK 1 [ sx 1 0Sp(y| 0) H2 (y) dy

I1A( -s) p00

/ 

K) L,+÷s2K(s) 0 p(y O) dy

1/(-s)+xV)

00 P(y)l/(l -s) dy
0

P(Yo )0

rx Z/(1 -s)
e dy

F + I 1/(1-s) rx/(1-s)
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So
0

00

0
p (y) 1/(1 -s) dy

(C. 45)

(C. 46)

(C.47)

p ( I ) H (y)/(l -s) dy

2



Also, using (A. 36), we obtain

2
rx

+P2a1 +e So p(y1O)5 P(Ylx0)

1 /(1 -s)

1-s dy7

0 Iln M0 (y)l/(1-s) dy < 0(al/(l-s ))

Eoe[p, a,K] = f (x ) + 0(a/( )),

1-s

(C. 49)

(C. 50)

1
and as a - 0, 0 < s < , the infinite-bandwidth, orthogonal signal exponent is obtained.
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s00

so that

= 1,

(C. 48)
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APPENDIX D

Optimality of Impulses

We shall prove that some p(x) consisting of a finite number of impulses must satisfy

the sufficient conditions for optimization of the expurgated bound, 0 < p < oo, and the

random coding bound, 0 < s < 1. Let the subscript p relate to the expurgated bound,

and s to the random-coding bound.

It has been shown (Theorems A. 1 and A. 3) that a sufficient condition for the mini-

mization of

oo oo ~ r(x2+x 2-2a) 
Ip = p(x) p(x1 ) e H(x,x) P dxdx1po'So

ooF0 o 2 1/(l-s)
I = p(x) er(x - a) p(y x) - s dx

over r and p(x), subject to the conditions

dy

(D. 1. p)

(D. 1. s)

r 0, p(x) 0, p(x) dx = 1, x2 p(x) dx = a

00 r(x +x) 1 
p(xl) e H(x, x 1 dx1 > I e (D. 3. p)

rx I-s ra/(l-s )e p(y x) 1 dy > Is e

S001 e_ p~y~ dx s/(l-s)
00 [i P rxl p(y I 1x)1 - s dxSo'[ o' rx~

(D. 3. s)

for all x. Since x appears in these relations only in squared form, replace x by z

and rewrite the conditions:

S°° r(Z+X12) (l sI) 1 /S00 r (Z+x ) [(1 + )(+Xl ) ]
0p(x1 )e 

1/p

dx > Ip eZra

0 §20 ( e ' p~y 1 ) d s/(l-s)

p(x ) erx p(y I 1 s do'[So'~~~
(D. 4. s)

for all z 0.
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(D. 2)

(D. 4. p)

erz p (y I NG-) 1 _s dy >_ I era/(l-s)
s



THEOREM D. 1

Condition (D. 4. p) is satisfied by some r, p(x) combination that also satisfies (D. 2),

where p(x) consists of a finite number of impulses.

Proof: Consider some p(x) consisting of a finite number of impulses, that is,
N

p(x) = pnuo(x -). Label the positions so that 0 z < z2 <... < ZN and assume
n=l 

that n > 0 because any zn for which Pn = 0 may be deleted. We start with N = 1 impulse,

and then consider increasing N in a search for some N that satisfies (D.4. p).

When N = 1, p(x) = uo0 (--a), or constraints (D. ) will be violated. It is easy to

show that the resulting I may be reduced by using r = 0 and any p(x) with N = 2 that

satisfies the constraints; thus we may skip N = 1. With N > 2, we formulate a vector

minimization problem as follows: Specify the set {Zn} and minimize

N N r~ z-e 1/2 (1 /2] /p

p E E PnPm n m L l+z m (D. 5)

n=l m j 

over r, in}, subject to the constraints

N N

r 0, pn a , nrn I, Pnznl (D. 6)

n=l n=1

This is the discrete analog of the continuous minimization problem of (D. 1. p).

It can be shown 10 that a necessary and sufficient condition for r, n to minimize

J is
p

F (z ) 0 (D. 7)

for all n, with equality when pn > 0, wherep~~~~~n 1 n= z1z

Fp (z) = E n e | ; 1 r (D. 8)

If n > 0 for some zn > a, then r must be bounded (because r - oo will make

J p c - clearly not a minimum). If N > 2, some zn must exceed a, for otherwise the

constraints could not be satisfied. Thus, since J is a continuous function of r, 1n} in a

closed, bounded region, (D. 7) must have a solution. Given {zn}, there must be some

r, {n} that satisfy (D. 7) and result in a minimum value of J p for those {zn} (under the

assumptions that at least one zn < a, and at least one > a, or else no } can satisfy

the constraints). Restrict the analysis to such impulse sets, for any set of impulses
that does not first satisfy (D. 7) cannot satisfy (D. 4. p).

Theorem D. 3 states that any set of N impulses for which ZN > z has a value of Jp

l+Zn)~~~~~~~~~~~~~~~~
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that can be strictly reduced by some set of N or fewer impulses with a smaller max-

imum z n , where z is a finite quantity, independent of N, defined in the theorem. Thus

we need only consider sets of N impulses with all Zn < z P. Theorem D. 4 states: Given

any set of N impulses such that 0 Zn z there exists an E > 0 and a positive inte-

ger Mp (both independent of N, r, {pn}) such that for any zj in the range 0 zj < zp,

F j (z) 0 for all z in the interval z z < z + p, for some positive integer mj M

By F(m)(z) we mean the mth derivative of F (z).
P P

Consider splitting the range 0 z z into intervals of width E by letting zj = jep

j = 0, 1, . . , L, where Lp is the smallest integer for which EpLp > zp. Suppose there

are nj > mj+l nonzero impulses in the range zj z zj+ Then F(z) must have nj

zeros in the range if (D. 7) is to be satisfied. By the mean-value theorem, F (z) must
p

have nj_ 1 zeros in the interval, and by repeated application to the derivatives of Fp(z),

Fp J (z) must have n. - m. > 1 zeros in the interval. By Theorem D. 4, this is impos-
L

p
sible, so that at most N = m. (Lp+l)M nonzero impulses can lie in (0,z ) and

p~~~~~~~~~~~~~~ pj=0 3 p p 
still permit (D. 7) to be satisfied.

Theorem D. 2 states that any N > 2 impulses satisfying (D. 7) but not (D. 4. p) can be

strictly improved by the addition of one more impulse. Suppose the best set of N1 > 2

impulses does not satisfy (D. 4. p). Then some set (and certainly the best set) of N1 + 1

impulses is strictly better. We now apply induction up to Np, where either some set of

N1 < N impulses satisfies (D. 4. p) or some set of N + 1 impulses is strictly better
p P

than the best set of N impulses. We have just shown that no set of N +1 impulses
p P

restricted to (0, zp) can satisfy (D. 7). But (D. 7) must have a solution for any Np + 1

zn's, so at least one Pn = 0. This reduces us back to N impulses. Hence there can be
Zn ~~~~~~~~~~~~~~~~~p

no improvement in going from the best set of Np to N + 1 impulses. Therefore, we

have a contradiction, and some set of N or fewer impulses must satisfy (D. 4. p),

thereby proving the theorem.

THEOREM D. 2

Any set of two or more impulses satisfying constraints (D. 6) and condition (D. 7)

but not (D. 4. p) can be strictly improved by the addition of one more impulse.

Proof: Since (D. 4. p) is not satisfied, there exists some z such that Fp(zo ) < 0. Since

p(x) consists of two or more impulses satisfying (D. 6) and (D. 7), there exists z1 < a,

z 2 > a such that P > 0, 2 > , and Fp (z 1) = Fp(z2 ) = 0.

Let

pA(X) = p(x) + A[3ouo(x- ~Z)+ 3 o(x- /-)+Pzuo(x -- z)] (D. 9)

z z 2 z z
po = z' 2 z - z (D. 10)

13 0 1 31 z2 _Zl2 1
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Note that z - z 1 > 0, so that P1 and are bounded. Since p(x) contains the last two

impulses with Pl, P2 > 0, if A is chosen small enough and positive, pA(X) 0, and

pA(X) has one more impulse than p(x). Direct evaluation confirms that the other con-

straints in (D. 6) are also satisfied by p(x). Let JpA be the new value of Jp resulting

when pA(X) is used with the same value of r as before. Then

JPA= JP + A e ZF p(z r(z +z H (D. 1 1)
i=0 j=0

where we have used the fact that Fp(z1 ) = Fp(z2 ) = 0. All terms in the double summation

are bounded, and F(zo) < 0, so for some small positive A, JpA < Jp, and we have

obtained a strict improvement by the addition of one more impulse.

THEOREM D. 3

Any set of N impulses for which some zn> zP, where

4(2+a)

eP 0< P<lzP= e P, 0<p< (D. 12)

e4(2+a) p<oo

has a value of Jp that is strictly greater than the Jp resulting from some set of N1 N

impulses, for which all Zn < Z .

Proof: Consider a set of N impulses. If this set does not satisfy (D. 7), it may be

altered by changing fpn}, r so that (D. 7) is satisfied, with a strict reduction in J. Thus

we need only consider sets for which (D. 7) is satisfied. Let N be the maximum zno by

hypothesis greater than z p, and

N1/

G rz +z) /Z (l+z )/] (D. 13)
G (z) =n erz n enn(D. 13) 

n=l 1 + (Z+Zn)

Consider 0 < p < 1.
~. !

Zrz N 1
GP (zN ) < erzNi Pn

n=l 1 +
1 +

l/p

(D. 14)

ZrzN 1 + z 1/2p -1/2 pn )/2 1+z 1l/zp
Gp(zN) < eN +Z (1+ ) 1 n]/ P (+ n 

P I ~~~ 1 ~ Z N) I n Y 11 (D. 15)z2 -N n=1 - 2 n
(D. 1 5)
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But (1 1 zl/+Z n)
l+z

Zn

Gp(ZN) <
2 1/P(l+a) 2rzN

e

( + 1 Z 1/2
2ZN)

[2(1+c)]l/p eZrzN

(1 +zN)

(D. 16)

Now let 1 p < oo. Making use of (A. 36) yields

Zr ZN I
GP(zN) < e

n

Gp(zN) <

Gp(ZN) <

2rzN
e

l/p

(D. 17)

n=1

pn (l+zn -l /p (D. 18)

1/p [2(l1+a)]/P eZrzN2rzN
e (l+a) (D. 19)

I 1/2p

By assumption, (D. 7) is satisfied, so Gp(N) = J e , and
p N Pe an

ZrzN Zr(zN-a)
e >e

F (I +1zN)/, 0< p< 

> +p

[2(1+a)]1 / P + Z p I < p < 

10
It is known° that -p n J is an increasing function of

P
shown that

(D. 20)

p, and in Theorem B. 2 it was

lim - p n J - aE o 0. 15 a.

Hence,

(D. 21)

r > N I ln (

where

ap = 

T

+1z 2 -{aEo+ln2+ln(l+a) ,Z~ N -P1o~

O<p< 1

1 <p< 00oo
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Differentiation of Fp(z) yields

N rZn 1/2p I~~~~~~~~~~~~~~~2-p
F( z) er (l+z) / ZP Pn e (l+z n) _ _

1 1/+ z
n=l 1 + (Z+Zn)l

1
2p

(D. 24)

If r 1/2p, the bracketed term in (D. 24) is positive for all z, n so that Fp(z) is a

strictly increasing function. Hence Fp(z) can have, at most, one zero, and no set of

N > 2 impulses with r > 1/Zp can satisfy (D. 7). Thus we can restrict r < 1/2Zp. Using

(D. 22), and dropping the second positive term, we obtain

rz N rz lpe +zn)/2 (!+N) 1/2
F; (zN)> eN I e n 1n N

n=l Pn 1 + (Zn+ ZN)

1 In 2 +ln(l+a)+ -.
- (1ZN ) 1 .aE +lZ+ll+a+lL

Once again noting that Gp(ZN) = Jpe2ra we have

J era Fpa 

F(z) > ZP L In 1 + 1z zN)-[aEo+ln2 +2+ln(l+a)] 
P 2 -ZNP 2 2N

(D. 25)

(D. 26)

Therefore, if

pa

2 ln 1 + ZN) > aE. + n 2 +

1 -aE /P
F' (zN ) > e

P PzN

2 + ln (l+a) + 1, (D. 27)

1 -a/p

Loosening inequality (D. 27), we find that, if we define z as in (D. 12), then if

Zn> Zp, F(zN) > ea/p

Consider > 0, z = ZN - E. Then, by Taylor's Theorem, 3 8

(D. 29)Fp(z) = -F'p(ZN) - N (z-t) Fp(t) dt.
P P N P~~~

If IF"(t) | I D over the region of integration, and z N > z then
If F p,

Fp(z) < - Z e-a/p + ED < _ e e-
P~ ~~~~ -z-< 2 2Z N--- 1 -EDZNP e a/
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I
E =

2DZN e/p

we have

E
P -a/P< .

Fp(zN-e p ) < - 4 zNP e

This depends on the properties of F" (z), which we now investigate.
p

F(z) = (r
P

+ 2p
+-z F(z) +

erz (+z) 1/2p N

2p Pen (+ n)/p
n= 

-r

ll+l/
++Zn)j

I (+ )
+ 2 p

I +9 12+1/p
I + 2 (Z+n)

I

(z1 z I1_+/2p

(l+z) + (Z+Zn )
-.

We recall that r < 1/2p,

IF;(z) < IF, (z)

and restrict z • zN. Then

+ [3G (1+ p)
l P 

|FP(z) < 23p Gp(z)
pp

'9+3p

| P ()|<GP{Z) - r

/9+3p N

4p n= 1

r(z+zn )

Pn e

0 < z ZN (D. 36)

Note that D, and hence Ep, depends only on p and ZN and not on {Pn' Zn}' r. There-

fore, regardless of r and any other impulses, if PN> 0, FpZN-e ) < 0 when z N > Z.

By Theorem D. 2, Jp may be strictly reduced by adding an impulse at ZN - Ep. Consider

a new set of {Zn}T consisting of the original set plus one at zN - Ep We must get a strict

improvement if we optimize on r, {pn} so that (D.7) is satisfied. If PN> 0, Fp(zN-ep)< 0,
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Choos ing

(D. 31)

+
-1

(D. 32)

(D. 33)

(D. 34)

(D. 35)

f9+3p z P



and (D. 7) cannot be satisfied. Therefore PN = 0, and the impulses at ZN may be dropped

in favor of the one at ZN - p, thereby resulting in a strict improvement. Therefore,

unless all impulses are at values of n < zp, a new set of N (or less) impulses may be

found that provides a strict decrease in Jp, thereby proving the theorem.

THEOREM D. 4

1 + z

Let Mp be the smallest integer greater than + -_ + 2 (l+Zp) and F )(z)
denote the mth derivation of Fp(z). Given any set of N impulses such that 0 Zn zp

p~~~~~~~~~~~~~
there exists an > 0, independent of N, such that, for any z in the range

(m)
0 z zp, F (z) * 0 for all z in the interval z. z z + , for some positive inte-

ger m. M .
J p

Proof: From the form of Fp(z) given by (D. 8), we see that F (z) and all of its deriva-
P ~~~~~P

tives exist, are continuous, and can be bounded independently of N in 0 z zp by

methods similar to those used in (D. 32) through (D. 36). Each term of the sum can be
N

bounded in terms of zp, and Pn = 1, so that any derivative can be bounded indepen-
n= 1

dent of N. Therefore, if we can show that there exists a positive A, independent of N,

such that IF (j) I > A for some integer mj in the range 1 mj < M and any zj in the
p j3 3 p 

(m)
interval, then the continuity property of F (z) may be invoked to prove the theorem.

Suppose the opposite is true, and there exists a value of z such that IFpm)(z) | A,

for all A > 0, 1 m M andfter some manipulationn}, r.we find

F' (z) = a(z) b(z) (D. 37)
P

a(z) = 21/p erz (l+z)(Z ) (D. 38)

rz +1
b(z) = pn en (l+z n) /zp (Zr(2+ + Z) p

n=l

- -2 Z j. (D. 39)+{ -r(1+Z+ Zn ) - 1 / p (2+ Z+Zn) (D. 3 9)

Since 0 r < 1/Zp, a(z) and all of its derivatives must be bounded in the range

0 z z . Note that
P

1~~~~~~~01 0 < p <-~

a(z) 21 / p (D. 40)

(l+z )l/Zp-1 I < p
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If Fp' (z) is to vanish with A for some z, then, since a(z) is bounded away from zero,p~~~~~~~~~~~~~~~~~~~
lb(z) I -< coA, where c is a finite constant. Differentiating again, we have

F" (z) = a'(z) b(z) + a(z) b'(z). (D. 41)
P

If b(z) vanishes with A, the first term in (D. 41) will also vanish with A because a'(z)

is bounded, so if F"(z) is to vanish with A, then Ib' (z) J < clA, where c is another
'p

finite constant. Repeat this procedure, and if F(m)(z) and all previous derivatives are

to vanish with for some z, then b(J)(z) cA, j = 0, 1, .. , m - 1. Investigation

of the derivatives of b(z) reveals that

N

b(M)(z) (-)m(/p)(/p+) (/rZ+m-2) P e n(+z 1/2p (2+z+z)-(1/p+m) T

n=l

(D. 42)

~~1 1 - ~r(-- 1) (2+z+zn) 2

Tn = + m - 1+ {r(l+zn)-p (2+z+z) 1 (D. 43)
I+ m -2
p

As m gets large, Tmn becomes positive; in fact,

Tmn > m -1 (1+z )+ 2(1+z2] (D. 44)
mn ~ ~~ ~~~~ ~~~~~~ p) P zp

Thus when m = Mp > 1 + 1 (l+z) + 2 (1+zp)2, b(m)(z) is strictly bounded away frommn ~~~1 +-(1+z ~~Ib" ~~ I is strictly bounded away from
-~ P P (1

zero. Thus all of the first Mp derivatives of Fp(z) cannot be arbitrarily small, and the

rest of the theorem follows.

THEOREM D. 5

Condition (D. 4. s) is satisfied by some r, p(x) combination also satisfying conditions

(D. 2), where p(x) consists of a finite number of impulses.

Proof: The proof is analogous to the proof of Theorem D. 1. Once again, N = 1 may

be disregarded, and with N 2, specify the set {Zn} and minimize

NOL er(zn-a) yIJ)jJ =,ap e ~n p(y Iz)l- dy (D. 45)

-n=l1 

over r, {Pn}, subject to the constraints (D. 6). The integral on y does not affect the

discrete character of the optimization, and a minor modification of Gallager's work1 0

shows that a necessary and sufficient condition for r, {Pn} to minimize Js is

Fs(zn) > 0 (D. 46)

for all n, with equality when n > 0, where
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erzn s/(l-s()-sF s~(z) ,90p(yj NT)1S0 er P(y 4Nz)ls dy - J e/()
Fs(Z) ~~= PnePI ~Zn1

(D. 47)

Once again we find that (D. 46) must have a solution, so we restrict the analysis to sets

of impulses that satisfy (D. 46).

Theorem D. 7 states than any set of N impulses for which z N > zs has a value of J

that can be strictly reduced by some set of N or fewer impulses with a smaller maxi-

mum Zn, where z s is a finite quantity, independent of N, defined in the theorem. Thus

we need only consider sets of N impulses with all Zn < Zs, so that there must be some

best set of N impulses. Theorem D. 8 states: Given any set of N impulses such that

0 < Zn < z s , and rK(-s)/z s , there exists an Es >0 and a positive integer M s (both inde-

pendent of N, r, 4pn) such that, for any z. in the range 0 < z s, F (z) t 0 for all z

in the interval z < z < z + Es, for some positive integer mj M.

Then with reasoning identical to that used in the proof of Theorem D. 1, we can show

that, at most, Ns < o nonzero impulses can lie in 0 z z and still permit (D. 46) to
5~~~~~~~~~

be satisfied, if r K(l-s)/z s . If r < K(1-s)/zs, there could conceivably be more. In

the last case, however, it can be shown that Fs(zs) < 0. Theorem D. 6 states that any

N 2 impulses satisfying (D. 46) but not (D. 4. s) can be strictly improved by the addition

of one more impulse, at the point where Fs(z) < 0. Hence, if r < K(-s)/zs, we could

achieve improvement by adding another impulse at z s. If this new set is optimized, we

find that r K(1-s)/z s , or else (D.46)could not be satisfied; hence, at most, N s impulses

can be used, with strict improvement. Once again we see that there can be no improve-

ment in going from the best set of N s impulses to N s + 1, and this fact can be used, as

in the proof of Theorem D. 1, to complete the present proof.

THEOREM D. 6

Any set of two or more impulses satisfying constraints (D. 6) and condition

(D. 46) but not (D. 4. s) can be strictly improved by the addition of one more

impulse.

Proof: Since (D. 4. s) is not satisfied, there exists some z such that Fs(zo) < 0. Since

p(x) consists of two or more impulses satisfying (D. 6) and (D. 46), there exist z1 < a,

2 > a such that P > 0, P > 0, Fs(zl) = Fs(z2 ) = 0. Let p(x) be defined again by (D. 9)

and (D. 10). Let JA be the new value of Js resulting when pA(x) is used with the same

value of r as before. Then

r N Z l/(l-s)

_s -ra/(1-S) §0cosA = e -r a/ (l0-S) p p(yNr)l5 s erzn n p(yf,.Jz-)1s dyI n n n+ n 
=1 n=04

(D. 48)

1!3

_ ��._�--_1�111 - -X - ·----------L� _- _I- ·



p (y)l/(1-s)
JA = e-ra/(l-s) 00

2 rz 1/(l-s)
Z P e n p(y l)lS s

I Yn=0
n

L y )

P(Y I n ) 1

1Consider first 0 < s < From (C. 38), we see that

I- I PI-S)

(1-s)
1 +1 t <+)

2 z n 1-s
~2 Pne n p(y Zn)s

t(y) 
(y)

Only P1 and P2 can possibly be negative, so that if we choose small

2AI1 II< P1 2 12 < P2 , then t(y) > - and we may apply (D. 51). Li
ofy 0 for whicht(y) 0, and Y bey > 0 for which - < t(y)< 0. Then

Js -e-ra/ls P(y)l/(1-s) {+ t dy+ p(y)l/t(y) l / /(y

SA [0 ®0 I1 t') s~ (

+ S
(-S)2

enough that

et Y be the set

s) dy

(y)l/(l-s) tZ (y) d (D. 53)

s A s +
e-ra/(l-s) 

1 -s
n=0

(y)s/(1-s) p(yln)-s erzn dy + e-ra/(1-s)
end

where I 1 and I2 are the last two integrals in (D. 53).

(D. 54)

Making use of the fact that the n

sum to zero, and F(z 1 ) = F(z 2 ) = 0, we find

_ J 1< -f- -ra/(1-s) F(z ) + e-ra/( s) [I1+I2]

I~~~~~~
1 AI ) h [ p ezn

II = A( Pn en=

(D. 55)

dy

/ [ 2

n=0

rz 1Is/ (1-s)
IPn I e P(yl)

114

N

(y) = 

n=l

rz nPn e

dy

(D. 49)

(D. 50)

(l+t)l/(l-s) <

Let

t >0

-- t < 0a

A n=u

(D. 51)

(D. 52)

dy. (D. 56)

__

.

Pnoe

- I /(I -S)
P(Y14T) I -sn



Using (A. 36) it may be shown that

Z /(l-S1/(l-s)

II< a/(l -s)I Pn enj (D. 57)

C ln=tr J

Consider the last integral,

I = 1/(l-S) S )/(l-s)
(1-s)

2 
rz

P e n p(Y 1n =0
n=0 dy. (D. 58)

(Y)

We can certainly choose A small enough that

1 /1-Zs 11-2s
A2i2 P "Z 11- < P2

Then

i2 S< s ) ()l/(l -S) (y)l/(l)dy s s J e+ra/(l-s) 1/(-S)
-S~~z ~ ~ 74) 4(1-)2- 

(D. 59)

-/ ra/(l-S) AS/(1-S) 5e- e (zo)+ l-s) e~sA s 1s L As(s~~{ I n /1sj 0

s +rJs"l A
+ sJ erals , (D. 60)

4(1-s) 

The last terms are bounded, so that for some small but positive A, JsA < Js' and a

strict improvement has been obtained by the addition of one more impulse, when
0< 1

O < s 1

When < s < 1, we can make use of the inequality

2~~~~~~~~~~- <~t

1/(l-s) t > t (D. 61)

-~~~~~

( +t) 1/ ( l - s ) < 1 + t-s +

where (l+to)(2s-1)/(1 s)= 2 defines to . The proof of (D. 61) is similar to the proof

of (D. 51) and will be omitted. An analysis similar to the one just performed

shows that
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A e - ra/(l-s)
JsA - Js 1 - s

+ (1-s)

F(zo ) +0

(+ _=0

for some < s < 1, so that for some small positive A, JsA < Js' thereby

theorem for all 0 < s < 1.

proving the

THEOREM D. 7

Any set of N impulses with some ZN > z s , where

K(l+a)

2
Zse

ZS --

2

a s=2

e(l+a)(K+l) +

K)a s

(a+K+l) (l+a)2K r(ZK)
r (K)j

-• s < 1

< s <120<s<-
2

has a value of Js that is strictly greater than the Js resulting from some

impulses, for which all Zn - z Note that is a continuous function of

for all s, 0 < s - 1.

Proof: Again, we need only consider sets for which (D. 46) is satisfied.

maximum zn, by hypothesis greater than z s , and

Gs(z) erZ 5 p(y)S/(ls) p(y Iz)l-s dy.

1Consider 0 < s -< -. Then, by (A. 36),

P (y 1 zN )- s (y)G (zN) e rzN Fs 0 p(y )1-s dy 1s Fs _ s/(l -s)

dy

set of N1 N

s and is finite

Let zN be the

(D. 65)

(D. 66)

Evaluation of the integrals leads to

Gs(zN) eN [F
r[K-sK+s](l+zN)

rz
n r[l+Z(K-1)(1-s)] (l+zn)(lI+zN)Pn e

r(K)' ( s ) {(l-s)(2+z+z )}1+2(K- 1

s/(l-s)
} l+(K-2)(1-s)

. )( -s) 
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J
s

era/(1-s)

(D. 62)

(D. 63)

(D. 64)

1 - s

N

n=1
(D. 67)

IPn 

I -S (1 -S) K (I -s)+ s



Recall that K 1, so that

r[K+s(l-K)] -< r(K)

r[l+Z2(K-l)(l-s)] < r(2K)

G(z )<e Nr(K) 
sN LF(K) I

N

n=l

(D. 68)

(D. 69)

(1+zN)KS

(1 -s) K

rz _ s/(l -s)
e n (+z l+(K-2)(1-s) /e((l2z)+zn )l+

(2+z +z ) (K-1)(1-s)+ 1 + (K-1) (1 -S)n N

Ks
rZN r(2K) (l+ZN)

Gs(zN) e L(K) j (Is)K (l+ZN[l+(K-l)(1-s)]s/(l-s)

N

n=l
Pn e

rz
e n (l+z 

n

s/( -s)

rzN F(ZK)1
rF(K)_

(l+z N)-S2/(1 -s)

(1 -s)K

[erZN s/()-s)N(l+a)j

rzN/(-s) [ K r(2K)]
Gs(zN) < e (l+a)2 K

(K)]
(l+zN)-S2/(1 -s)

Now consider < s < 1.2

Gs(ZN) =
rzN/(l -s)

P(y)l/(1-s) dy =

Ho(Y) I -

_

N

Pn
n=l

In + l{ dy.

But et > 1 + t, and, by hypothesis, Gs(zN) = O p(y)l/(ls) dy, so

0 ( l-s)o Ho(Y) P n +

n

(D. 70)

(D. 71)

(D. 72)

(D. 73)

O
0

0

00r 0

H (y) dy (D. 74)

exp(1-s) (D. 75)

rz N
N s+ In1 -s dy (D. 76)
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rzr._ N ra- s- - K In (l+zN) + K pn (l+z)0 1 - N s Pnln(~z n)
n

Ho(Y) 1 + y 1 zn dy

t - n
00

J0 Ho (y) dy

coJ O yHo (y) dy
+ 

00Ho()dyH (y) dy

By hypothesis, f H(y) dy = 70 (y)l/(1-s) dy = J
increasing function of s, and recall that we have already shown

lim - In J 0.22a.
-~ 1 I j_1

(D. 78)

Note that -In Js is an
(Theorem C. 1) that

(D. 79)

yHo(y) dy e

rz Nl(l-s) 00 o 

Jo I0 nYn Pn {P(Y I zn)s dy

(D. 80)
and, by applying (A. 36) once more,

yHo(y) dy e
rzN/(1-s)

n=l
Pn 00 yp(y IJzn )s p(y J[-zN)-s dy

rzN/(1-s)yH (y)dy -< K e

We note that

(l+zn)(l+zN)

s(1+zN) + (-s)(l+Zn)

1+ Zn
5<

F r (l+z )(l+z ) ( +z ) s (]+z ) K
p ~ ~ N n ( N )P( 8n s(l+z N)+ (-s)(l+zn) s+z N)+ (-s)(l+z n)

(D. 82)

(l+z )l-S (1+zN)s
1 ,

s(l+zN ) + (-s)(l+Zn)

so that

§00

J0

K(1+a) rzN/(1-s)
yHo (y ) dy -< -s -e

rzN/(1-s)< 2K(l+a) e . (D. 84)
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(D. 83)

rz N< 1 - K In (l+ZN)

(D. 77)

But

00

0

00

0 (D. 81)

�� __ _ ___ __
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Putting (D. 84) and (D. 79) into (D. 78), and loosening the inequality still further, we

obtain

a(1+K) rzN/(-s)
K n (l+ZN) < 4K(l+a) ea ( e l -) < s < (D. 85)

rz1
1 Ns > ln [ln (l+zN)] - a(K+l) - ln [K(l+a)], < s < 1. (D. 86)

From (D. 73), we find

rz N s2r2
s - s In (l+zN) - . 22a - K In 2 - n (+a) - In [r(K) 0 < s (D. 87)

Differentiation of F s (z) yields

F' (z) = er i (y)5/(1) p(y f)l Fr - + 1 dy. (D. 88)
s 1 + z (l+z

If r > K(l-s), F' (z) > 0, and F (z) is strictly increasing so that no set of two or more

impulses can satisfy (D. 7). Thus, by restricting r < K(l-s), and dropping the last term

of (D. 88),

F' (z ) rzN s/(15) ,-s f K(l -sf)
Fs( ZN> e (y )S/(l-s) p(yl -N)l-s - 1+ dy. (D. 89)

We now apply the lower bounds to r, given by (D. 86) and (D. 87), in the same fashion

as in the Proof of Theorem D. 3, and by loosening the inequalities somewhat, we find
1 -s -. 22a

that, if ZN> Z, F (zN)> ZN e , where s is defined by (D. 63). Note that z s is a

continuous function of s, and is strictly bounded for 0 < s - 1.

As in Theorem D. 3, it may be shown that IFs(t) -< D s , 0 t < ZN, where Ds is a

finite quantity depending only on s, K, a, and ZN. Therefore, by the same reasoning

that was used in Theorem D. 3, if ZN > zs, there exists an s such that

-E (l-s) .22a
Fs(zN-E ) < *, e .2< 0. (D. 90)

The same line of reasoning as before completes the proof.

THEOREM D. 8

Let M be the smallest positive integer m for which
s

K(1-s) K sKzs
b mK[K(1-s)+m] e c >0, (D. 91)

Zsb+s szs(2+zs)

where
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K(l+s), 0 < s <
Zbs 1 (D. 92)

¥ Z~ < <s<1

S' 2~~~~~~~~-ms

+1+z ' < s-

c s (D. 93)

+ -I<s 1
T -- I + z ' f

Given any set of N impulses such that 0 n s and r a K(-s)/zthere exists an

(mj
E > 0 and independent of N, such that, for any zj in the range 0 zj • z s, F s J 0 for

all z in the interval z. < z < z. + , for some positive integer m. Ms + 1.
J jjs

Proof:

-(1 -s) y

rz K~l -s) 00 l+z e ra/(l1-s)F s( erz (+Z)K(s) g(y) e l+z dy - s e /( ) (D. 94)

()S/(1 IK-1 1 -s)
g(y) (Y) s-l s) Y *(D. 95)

LJ(K)

Differentiating, we obtain

F' (z) = al (z) b () (D. 96)

a1 (z) = erz (l+z) - K(l - s)-l (D. 97)

-(1-s)y 

b (z) = g(y) e [r(l+z) - K(1-s) + dy (D. 98)

b1 (z) [r(+z)-K(1-s)] I (1) + -s I (y), (D. 99)

where

-(l-s) y
° 1 +z m

Iz(ym) g(y) e y dy. (D. 100)

We see that F(m)(z) will consist of a sum of terms involving I(yn), n= 0, 1,.. m,

with bounded coefficients if 0 - z z. Thus if Iz(yn) is bounded in the region z S

for all n 2< m (and we shall soon show that this is the case), then F m)(Z) will be
bounded and continuous in the same region. Therefore, if we can show that there existsbounded and continuous in the same region. Therefore, if we can show that there exists
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(in.)
a positive A such that IF (zj) (z > A for some integer mj in the range 1 -< m. -< M and

any z in the (in.) t S
any in the interval, then the continuity property of F j (z) may be invoked

to prove the theorem.

Suppose the opposite is true, and there exists some z such that I F(m)(z) -< A, all
S

A > 0, 1 -< m -< M s. Since a(z) is bounded away from zero, then b 1 (z) c 1 A, where

c 1 is a bounded constant. Differentiating again, we obtain

F(2 )(z) = a(z) bl(z) + a2(z) b2 (z) (D. 101)

a 2 (z) = a(z)(l+z) - 2 (D. 102)

-(1-s)y r

00 1l+z (I-)•0 ~~~ (l-s)jf
b2 (z) = g (y) e (l+ z )z+ (1-s)y (l+z) - K(l-s) - I + +z dy

(D. 103)

Thus, since a(z) is bounded, and b l (z) I -<clA, and a 2 (z) is bounded away from zero,

we require b2 (z) I c 2 A, where c 2 is a bounded constant. Proceeding in the same

manner, we have bm(z) -< cmA, where bm(z) = (+z) 2 b' (z). Thus we must inves-'~~~~ m-1 
tigate bm(Z). Differentiation of (D. 103) leads to

-(1-s)y 
l+z2b3 (Z) = g(y) e Z Zr(1+z)3+ Zr(1+z)2 (l-s)y

o ~LZ

+ [(1-s)y] z (l+z)-K(1-s)-2+ Iz ) dy. (D. 104)

At each step, there will be only the two negative terms, and a little thought shows that

b +l(Z) = m!r(l+z) m + l I (1) - (-s) M [K(l-s)+m] I (ym) + positive terms.
M~l = in~r~l~z~m+ 1 1 z (1) - (1 ...5 )in zK~l-s)+mj J(~m (D. 105)

Consider 0 s .

-(1-s)y s/(1 -s)

~ K+*-l -( N rzn l+zn
M 00 y 1~+z Pn e e

Iz[y ]= - e 1+ dy. (D. 106)
Z r(K) =1 (l+Z K(l-s)

Making use of (A. 36), we find

/l-s

r(m+K) __m+K N

z r(K) VI -s 
(D. 107)
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r(m+K) +K

r(K)

rsz -ms

1-s 1
e~~~~~z+
+lsoz

1Now consider s< s < 1.

s/(l-S)

rs N

e1-s o
I (Y ) < (K)
z (K)0oo

-(l-s)y 
K+m-1e +z L

y e =

n=l

-sy (I -S)/s

l+zn n
Pn z)Ks

Using (A. 36) again, we find

m r(m+K)
Iz(Y ) < (K)

Z r(K)

( m+K

m r (m+K) m+K
17(K)

rszN
1-se

[i± s()]m

rszS

1-s
e c s ,

where c s was defined by (D. 93).
1

Now consider I z(1). When 0 < s < , it may be shown that

K
1Z(1) Ž-k--S (2+z )-K(I+s)5?+ 

1Similarly, in the range T- < s < 1, it may

l +z KIz (1) > V \---/

be shown that

-2Ks
1-s

(2+zs )

and so

-b s
(2+z) s

where b s was defined by (D. 92). Therefore

(l+z)m+K -b
b+(Z) > r(m+) r(l+z)(Zz) 

b () (1 -s)K r(m+) (1+z)(Z+Zs) s

r
r(m+K) s

r- +K [K(1-s)+m] e c .S
r(K) r(m+l) s
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(D. 108)

dy.

(D. 109)

Thus

(D. 110)

(D. 111)

(D. 112)

(D. 113)

(D. 114)

(D. 115)

liz 



r(m+K) m+K-1) K
= K-1 <m .

r(K) r(m+ 1)

Also, if we constrain r _ K(1-s)/z s , then

m+s 
b (l+z)m+K 1( 1 -s) K I Ksz s
+ 1 m(z) -) b s 

(D. 116)

(D. 117)

As m gets large, the exponential dependence of c s on m will eventually dominate the

last term, so for m large enough, bm+1 (z) will be bounded away from zero. In partic-

ular, if M s is the smallest positive integer for which (D. 91) holds, then bM +l(Z) is
s

strictly bounded away from zero. Thus all of the first M s + 1 derivatives of Fs(z) can-

not be arbitrarily small when r a K(-s)/z s , and the rest of the theorem follows.
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APPENDIX E

Lower Bound to Error Probability

We shall consider N uses of the amplitude-continuous, time-discrete channel

derived in Section II. We shall compute a value of Pe that cannot be reduced by any

coder-decoder combination using a block length N, when the channel is used with an

average power constraint. This will be a lower bound to the minimum attainable Pe and,

for historical reasons, it is called the "sphere-packing" lower bound. For rates R 

Rcrit and N oo, this bound will agree exponentially in N with the random-coding

upper bound previously derived. It thus represents the true exponential behavior of the

signal-channel model for this range of rates.

First, we present the body of the proof, making use of theorems whose proofs will

be presented at the end of this appendix. The method will be similar to that used by

Shannon, Gallager, and Berlekamp 3 9 for the discrete memoryless channel, although

major modifications are necessary to account for the continuous amplitude of this chan-

nel model.

Let a code consist of M equiprobable code words (xl'x 2 .. ,XM). As a preliminary,

define

,(x, s) ln [S f(y)S p(ylx) 1 d 0 s 1 (E. 1)

N

m ly -1 k (E. 2)Zm=E rI f(yk) dy, (E. 2)
k= 1I-

m

th
where Y is the set of output vectors, y, that are decoded as the mth code word, andm
f(y) is any probability function defined on the output letter space. Note that

M M N N

Zm= m f(yk ) dy (= 1 (E.3)
k= 1 k= 1 

m= 1 m=1 m

Shannon, Gallager, and Berlekamp have shown that, for any code word in any code,

and any s, 0 < s < 1, either

N

Zm> exp N N 2 E " (xmn s) - ln 4Zm N {If~(Xmn, s)+(1-s)~' Xmn, s N 2 "(mn, s) n

n=1 n=1

or (E.4)

N / N

Pe > exp N ~ )-~iPem >expNH> {L(xmn, s)-sL' (xmn, s)}- 2 - (mn' ,) N 4
n= 1 n= 1

124

"--



thwhere Pe is the probability of error when the m code word is sent, and primes denote
em

partial derivatives with respect to s, with f(y) held constant, that is,

00~~ F f (Y) 
0 f(y)S p(yx)l's in p[f(yf xdy

' (x, s) = c (E. 5)

0
50 f(y) p(y fx) 1ns dy

0 z~) F~~[ f i( dy)f(y)S p(ylx)l-s in I (y~x I X d
" (x, ) = o - - [I(x,s)]. (E. 6

i f(y) s p(y|x)-s dy

At this point, we shall choose a particular f(y) in order to simplify the bound.

p(y)l/(-S)

f(Y) = (E. 751 (y)l/(1-s) dy
0

p(y) = p(x) erx p(yx) s dx, (E. 8
0

where p(x) and r are chosen to satisfy condition (A. 33), and therefore optimize the
random-coding upper bound. In Appendix D, we have shown that some finite set of
impulses must satisfy (A. 33), so we know that a solution exists. From Theorem E. 1,
s i"(x,s) B(s) < oo, 0 <s < 1, so that

N
s2 I l" (xmn, s) < NB(s). (E. 9)

n= 1

Theorem E. 2 states

p .(x s) >_ -(1-s)E oeLs a, K + ra-x n2 ' (E. 10)

Where Eoe is the equal eigenvalue random-coding exponent. By using (E. 9) and (E. 10)
in (E.4), either

N

Z > exp N ( -s) E a K + ra x

n= 1

N~~~~~s I~~~-s 2 B(s)
I+ s) 1- - n4N XFL (Xmn' s )

n= 1
or (E. 1 1)
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Pem > exp N -(1-s)Eoe ,a,K

N

N (Xmn, 
n= 1

2B(s)

N

N

+ ra -
n= 1n=lI

1
- in 4 1

We now restrict analysis to a subset of the code words in any code; in particular,
N -

to those code words with S = J- Z
m N -, /- % a-Z-< a 0 < < 1.Xmn - ' Since we require

n= -1 M a
M- Z S < a, at most, (1-\)M code words can have S m> 1 ,and hence at least

m= 
XM code words must lie in the subset under consideration.
words, x, and consider quantizing on the values of xmn-M ~~~~~~~mn'

Take any of these code

For this code word,

2 a
mn 1 - ' (E. 12)

so certainly xmn N If j < X2 (j+)E, whermn 1 x = . T a Xmn< posibe wher
2 2replace Xmn by x = jE. There are J possible values

Mn j ~~~~~~~~~~~~~~~~~~~I
aN

e(1-k)
From Theorem E. 3, a2 L(X,

ax
2 2 20 < s < 1, so ifx. < x -< x.2 + E, then
J J

s) D(s)

E is a small positive number,

.. , J, where

for all x >- 0,

of Xj, j = 0, 1,

= B(s)1/ < o,

It' (X s) - D(s) E < ~' (x, s) -< ' (x., s) + D(s) E.j, j

Let n. be the number
jm 2

that j Xmn < (j+1) ).

of xmn that are quantized to x2 (that

Then
is, the number of xmn suchmn

J n N J n N

n= 1 j=0

By using (E. 12) and (E. 14), (E. 11) becomes either

rXa
- ra + (-s)z m > exp N -(l-s)Eoe ss a, K]

L-~~~2B(s)

-s N 1 Nn4
~T ln4 I

fJ
F

=0~
njm
-N& tL(xj, s) - D(s)
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2
x

mn

N

n= n=l1

J=o

(E. 13)

' (j, ) + D(s) E.-xj, (E. 14)

or

E}

(E. 15)
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P> exp N L o-S)E [-, aS K] - s 4 N ' (x, s) + D(s) E
=0

Define the composition of any code word in the subset under consideration as the

vector (n Om, nlM, ..., njm) that is associated with that code word. If co is defined as

the number of possible compositions, then c is the number of ways in which we can

choose vectors (n0 ,n . .. nj) such that n. >_ 0, n. = N, and jn. aN From
a] j=0 J j=O j E(1-X)

Theorem E. 4, with 3 =-
E(1-X)

,2 WN +l
c < (pN ) (E. 16)

when N and PN are greater than 100.

At least one of these c possible compositions must contain at least M code words,

or else the total number of words in the subset would be less than XM. We now further

restrict analysis to code words in that particular composition. If Pe is the total error
ec

probability for all words in this composition, certainly

M

1 I >~kp (E. 1 7)e M 2 em c ec (E. 17)
m=l 1

Consider the 2 M code words within this composition, that have the smallest

values of Pe . For these words Pem < 2Pec so Pe max< 2P where P maisem ' em ec' e max ec'ema
the maximum value of Pem in this group. Therefore, if we can derive a bound Peb so

XMthat there must be some code word in any composition with at least -- code words with
o

P > P, then 0em eb'

p >_ P (E. 18)
e c0 ec 2c Pe max 2c eb18)

o o o

Choose- - 12 X=N kM
Choose = N 1/2, = N 1, and consider a composition with at least 2M code

o0 2c
words. For that particular composition, at least one code word must have z m kMXM'
otherwise (E. 3) will be violated. For this code word, either

J nm Bs 

RN < ( s) oe[ aK]+ -(-s) (xj,)+( 1-s)(+ ) N +N-ln(8Nco)

j=0

(E. 19)
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J 1n.
P > exp - N (l-s ) Eoe -,aK + -+ , s)- - ~~~~~~j=0

+ (s + [ s) + in 4 ,N

where, as before, RN =N iln M.NN Define I(s) to be equal to the right side of inequality

(E. 19). Note that B(1) is strictly bounded,

lim (1-s)Eoe 1 ,a,K1 = 0,

and consider

J n.
Jm

- ,(xj, 1).
j=0

Calculation of '(x, 1) shows that

1
~'(x, 1) = K -1

N

n= 1

Pn 2 + n (+x ) +

n

which is bounded by

where z 1 is given by (D. 63) with s = 1.

J n.Jm

- '(xj , 1) =<
j=0

K3+ a
1 - 1/N

2 N
(l+x ) 

n= 1

(E. 22)

Thus

and hence

where

I(1) = ra + 1 n 8Nc
N - 1 -- ln (8NC0)

Restrict s to the range 0 < A -< s

4K n A 1/2

A O N- 

L(ln N) 1J

and Ao is a constant given later by (E. 67).

trarily small.

(E. 24)

Clearly, for large N, A will be arbi-
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(E. 20)

(E. 21)

1 +

< oo, (E. 23)

< 1,
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NJ'(1-A) (A) J njnjm
I(A) > A N (1-) E N I (XJA). (E. 25)

j=0

It is known 3 9 that L(x, s) is a convex function of s, so that >'(x, s) is an increasing func-

tion of s, and thus if N is large enough so that A < 1 - 1-, then
4-f

I(A) >

1/Z

- K(a+l+zl) dN. (E.26)

Since I(s) is continuous, if I(1) < RN < dN, then there exists an s, A < < 1 such
A~~~~~~~~~~~

that RN = I(s). Since inequality (E. 19) is not satisfied for s = s, (E. 20) must be. By
n.jm

using the equality in (E. 19) to eliminate N ,'(x, s) from (E. 20), we have
j=0

s s Is raP > exp -N E a, K - fR l~1 n (N coPem > exp oe - a N N-1 ln(8Nc-s I ~'

+ (1 + ),/t+ 1 n 4) (E. 27)N

for some , A < < 1, and some code word in the composition, provided I(1) < RN< dN .

This gives us the bound that is necessary to apply (E. 18). By using (E. 16) to specify co ,

and noting that B(s) B(A), and 0 r - K, (E. 27) becomes

Pe > exp-N oe s a, -K (R-AN) + 5N (E. 8)'eN 
S^S s~

AN NKa + n (16N) + ZL + I1n
N N1N_ 

(E. 29)

2(1 + f~)
5N = + AN. (E. 30)

(ln N)1/4

If (E.28) is true for some S', A < < 1, it is true for the s that minimizes the

right-hand side. Therefore, if A N < RN < dN, then

P > exp-N[ max TE -s Ia, - I(R -A + (E. 31)

where AN and N go to zero and dN goes to infinity as N goes to infinity.
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sIf we replace 1- s by p, 0 < p < , the right-hand side of (E. 31) is the same as the

random-coding upper bound to Pe' except for additive factors that go to zero as N - 00o,

and the difference in the range of p. When R N > Rcrit the maximum is in the range

0 < p < 1, and so as N - oo, the upper and lower bounds exponentially agree.

It is worth noting that this lower bound depends on the nature of the channel model

in a rather limited fashion. To be specific, this bound can be applied to any time-

discrete, amplitude-continuous, average energy-constrained channel p(y x), for which

the following properties hold:

1. There exists 0 < r < A, p(x) satisfying constraints (A. 3) such that

i (y) s /(1 s) p(ylx) -s erx dx > p(y)l/(s) dy,
-o0 -00

where

oo 2
[(y) = p(x) erx p(y x)l s dx.

-00

N2 N
2. s F (x" s) B(s) < , 0 < s 1

N mn'
n= 1

3. |- I '(x,s) D(s) < o, 0 < s 1,

where B(s) and D(s) are continuous and bounded for 0 < s < 1.

The previous bound is not valid at the end point, s = 1, and since many of the com-

plexities that arise for 0 < s < 1 can be avoided when s = 1, it is worth while to consider

this point as a separate case. For this point,

00 ~~-I 1 /(l-s)

p(x) p(yjx) dx K-K -ecly
yLK-clK e

f(y) lim = , (E. 32)
s-1 o(- _ -S) (K)

5O p(x) p(yjx) 1 dx dy

where

00 p(x)
c= 5) p_) dx. (E. 33)

0l+x

Because of the simple form of f(y), it is possible to evaluate [L'(x, 1) and [L"(x, 1) directly.

The results are

2 11[~'(x, 1) = K n c1 -1 + In (+x 2 ) + 2 (E. 34)
c1 ( +xj
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±"(x, 1) = K 1 + c1(L+)j
C 1 ( + x 2) (

By applying (E. 4), with s = 1, for any code word in any code, either

1
z > m 4

or

Pem > exp N
em N

/ N

2 f (Xmn, 1) - ln 4.
n= 1

By using (E. 34) and (E. 35), (E. 36) may be replaced by

Pem > exp -NK n c -1

N

+ in +x z)

n= 1

+

N

1 1
nl

1

2+ + ANK '
mn

(E. 37)

where

(E. 38)A 1 In 4 +l21+/c 2).NK = NK ln4 + ( 1

Choose p(x) as the one discussed in Theorem C. 1. In this case,

< 1 + jCI a

1 1

C 1 1 + mn

_ 1 + p(x) n (+x )
1 0

1 (H
c1 \\a

dx].ln(l+x ) + 1 2
1 1 +x

N

N 
n= 1

ln (+x 2 )

(E. 39)

(E. 40)
2 n

X)

c 1
C1

S00
p(x) In (l+x2 ) dx 0.

Therefore, either

1
m 4

or

P > exp-NKem In

N

c 1 +- 1 + H
Can= 1n= 1

131

(E. 35)

(E. 36)

(E. 41)

x2 + AN
mn N 

(E. 42)
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N
Restrict the analysis to code words for which xmn -<

n= 1

aN
1 - ,0 < < 1.

must be at least XM such code words. At least one of these XM words must have <
1
M1 .For that word, either

RN<- iln(+)

or

+ - p(x) n (l+x 2 ) dx +

(E. 43)

Observe that
c1

so I - -< 0,- c and also p(x) ln (l+x 2 ) dx -< f x2 p(x) dx = a.

Thus, if

RN >-Nln (4)

then

Pem > exp-NK n c + p(x) ln (l+x2) dx + 1a + ANK (E. 44)

for at least one code word in any code. Let X = 1/N. Then if we go through the same

argument as before, we find that if RN ln (8N), then

oe(O,a,K) +{Kln 2 + aK + ln4N- Nn

which is of the same form as (E. 31).

THEOREM E. 1

2
s 2(x, s) < B(s) = (Ao)

by (D. 64).

8Ka
, where Ao is a bounded constant, and a is defined

0 s

Proof: Recall that

0 f(y)S p(ylx)-s n 2 (Yl ) dy

0 -sd
f(y)L p(yx) dy

Sf S ! 1sd

- ['(x, s)]2 ,

where '(x, s) is given by (E. 5), f(y) by (E. 7), and now
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There

Pem > exp -NK n c1

Pe >- exp-N [ + (l+i/c)) (E. 45)

"(x, s) = (E. 46)



N
rn 1 -sP (Y) = pn e P(I n) -s

n= 1

After some manipulation, we find

- -r-Y/( +Zn)I -s )l/(l-s)

n LYe~n
Pn e+ K

(E. 48)

500 P (y)/(1-s) dy

If we define

I- -'1-s1

i1x 2 lnsePn n e
= 1 (l+n I

sqx(y)
p(yjx) e

0S sqx(y)
p(yx)e

0

(E. 50)

dy

2
p"(x, s) =n } - n (y) } ,

lP LP(Y[ X J

(E. 51)

where the bars denote an average over y with respect to y(yIx).

In computing p."(x, s) we can drop any multiplicative constant, independent of y, in
f(y)

because the logarithm will convert it to an additive constant, which will cancel
p(yjx)
when we compute the variance (E. 51). Since

f (y) K 0 xy
=- (l+x2 ) (y)1/ S) d e , (E. 52)

p(y I x)

and the first two terms are independent of y,

u"(x,s) = y(y§x) qx(y) -qx(Y) dy. (E. 53)
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(E. 47)

f(y)

p(ylx)

and

y(yfx) =

(E. 49)

we find

__��_ __ ·_�I lp *·UI--·ll_·· -��.II__I1I

2 N
(1 +xz)K eY/(l +x )

=1



We now make use of the fact that ( -) < 2, to obtain

." (x, s) -< ¥ (yIx) qx(y) dy = qx(Y) (E. 54)
S0

In Theorem D. 3, it was shown that xn < i, with z as defined in that theorem.
~~~~~~Thus sThus

-y(-s)

l+z
ne

-y(l-s)

l+z
5 (E. 55)

Applying these inequalities to (E. 49), we find

qx(y) = a + bx(Y)
(E. 56)

2
yx

-Y < -2 < b(Y)
1 +x

N
I nIl-- -i n e Pn

n=1

z 2

<y I x

n(l+z n

qx(y) = a + 2abx(y) + bZ(y) a 2 + 2a I7-+ y .~~~X

P(yx)e y dy
0

0J

as+sbx(y)
p(y~x) e

S 00

p(ylx) y e

dy

r21
Zs - x

L +z )(l+x idy-dy

2syx

P(Ylx e d

p(ylx) e dy
0

(E. 60)

Evaluation of the integrals leads to

- r(m+K)m _ _

Fr(K)

Kr - 2 - m+K

1 + sx 2 (1+x )(l+zS)

1 + x2 1 + zs -sz+ jsx

r(m+K)

F(K)

m

+ sx)

(E. 61)
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(E. 57)

(E. 58)

But

(E. 59)

m
=

e-y (I -S) -<

rz



r(m+K) (+Z )m+K

r(K) s

Also note that

-K n (l+z s )

and so a < Kz s .

< -j sln L+ Ij a • 1 f ln S s]

Therefore

< (Kzs) 2 + Kzs ss +

K(K+1) (1+z )K+

2
S

22 s 1 "(x,s) < K (I+zs )
5

+ 2K 2 (l+z s ) +K + +
5

(K +K)(l+z)K+2
5

-< 5K (1 +z )K+
S

a
But z = A s, where A > 1 can be defined from (D. 63) and a >

Then

K+Z

s ,(x, s)< zZK(ZZ s) < (1OK AS)

1 is defined by (D. 64).

8Ka
< (14K A) s (E. 66)

and if we let

A = 14K A,
0

2
0

(E. 67)

(E. 68)
8Ka

s B(s).

Note that B(s) will be continuous and bounded for 0 < s < 1, since as
S

THEOREM E. 2

i±(x,s) -(l-s) Ee(i-S-,a,K) + r(a-x 2 ).

Proof:

u(x, s) = ln
0

0X p(y)l/(1-s)

0

m
y (E. 62)

< Kz s,

2
q (Y)x

(E. 63)

(E. 64)

(E. 65)

is.

S

(E. 69)

(E. 70)
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{1(y) e-ra) /(l ) dy ras

+ ln [ dy e-rx ,

and, since (A. 33) is satisfied,

{ P (y),u(x, s) > -s in e-ra}l/(-s) ras x2+ in [ P(y) 1/(1 -S)

in {(y) e

(x, s) > -(l-s) Eoe

-ra} /(i-s)

S a KI + r(a-x ).

THEOREM E.3

a- W'(x, s
ax

rem E. 1.

)1 < B(s)1/2 for any x > 0, 0 < s < 1, where B(s) is defined in Theo-

2For convenience, define z x.

S00 f(y)s p(ylr-z)l - s in 

0J
f(y)S P(Y[|-)l-s d

After plugging in the functions involved, and considerable simplification, we find that

,Iu(-r, s) = -ln
00

0

1 () /(l -s) dy] + K n (l+z) +

50 P ( zu ) h(z u) du•0 0oU
p00I

p (u) eh(z u) du
0

~o ~(E.76)
(E. 76)

where we have defined

h(z, u) = u + 1 -s in

(E. 71)

d]

+ r(a-x z )

(E. 72)

(E. 73)

(E. 74)

Proof:

dy

(E. 75)

[]
1 o.-1

rz n
Pn e (E. 77)
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and

K- 1 -u
p (u) = 

r(K)
(E. 7 8)

Differentiation of (E. 76) with respect to z, and further manipulation, yields the

expression

a '(-z, s) = 1 + h'(z,u) + s[h(z,u)h'(z,u)-h(z,u)
l= 1 + ' (E. 7 9)

where

h'(z, u) = 8z h(z, u) = (E. 80)

and a bar represents an average over u with respect to the density

po(U) esh(z, u)
p0 (eS00

0
p (U) esh(z, u) dup0 ()e ' d

a s)I% K + Ih'(zu) + s{ h(z,u)h'(z,u) + Jh(z, ul lh'(z,u)I}.

1Note that 0 -< 2 -< 1, so
1 +x

-u -< h(z,u) 0 (E.8

lh'(z,u) | u. (E. 8

The procedure to be followed is similar to that used in the proof of Theorem E. 1.

Using (E. 55) and (E. 58) yields

h(z, u) = a + c(z,u) (E. 8

-u(l+z) -< -uz -< c(z,u) u s ] u -< u(l+z) (E. 8

2)
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C00 sc(z, u)
p (u) e u du

0 
Po(u) esc(z~u) du

0

sz - z]

u pO(u) e du
S . ~ ~ ~ ~ ~ d

500
0o

p(u) e-usz duPoU0

Evaluation of the integrals leads to

+ z m+Kl IF
F(K) L + sz + (1-s)zj

K r(m+K)
(l+sz) 

r(K)

)K+i|h'(z,u) I -< K(l+z s ) 

and also

Ih(z,u)I I a + Ic(z,u) -< Ia + (+z)u

Ih(z,u) I Kz
S

+

(l+z)K(1+z )K+1

1 + sz

Kz + K(l+z )K+1
< 5 

5

Ih(z, u) < 2K (+z )K+1.I S 

Note that

|h(z,u)h'(z,u) -< I h(z,u) I h'(z,u)j < uh(z,u)I s< au + (+z)u

I h(z, u)h'(z, u) -<
+z)K+ (1+z) K(K+l)(l+Z )K+2

(l+sz)

3K ( 1 +zs)K+
s

S

Plugging (E. 88), (E. 91), and (E. 93) into (E. 81), we find

4Ka
Ia (-, s) 7K2(l+Z )2K+2 < (14K2A) S = B(s)/

thereby proving the theorem.

THEOREM E. 4

Let c be the number of possible vectors (n, n, . . ., n such that nj 0,

J = N, n. an integer, and
J
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m
u =

rF(m+K)
m

(E. 86)

Hence

(1+z )m+K

(1 +sz)m
(E. 87)

(E. 88)

(E. 89)

(E. 90)

(E. 91)

(E. 92)

(E. 93)

(E. 94)

J
Z n. = N,

j=0 J

. S~~~~~~~~~~~~~~~
u-



J

E jnj ~ N.
j=0

(E. 95)

2q-ZN +1
Then c < 2(pN ) when N and N > 100. The quantity c can be interpreted

as the number of ways in which N indistinguishable balls may be distributed into J + 1

distinguishable boxes, subject to constraint (E. 95). When N is large, we can change

P slightly to make J an integer, without affecting the character of the result.

Proof: Constraint (E. 95) is difficult to deal with directly, but it may be loosened some-

what to compute an upper bound to c. We ask, How many different nj can be positive

when (E. 95) is satisfied? Clearly, the largest number of positive n. is obtained when

nI = 1, n2 = 1, . . . , nI = 1 until constraint (E. 95) is satisfied with equality (or as close

to equality as possible), and n0 = N-I, provided I < N, of course. This means that

I(I+1)
1 + 2 + 3 + ... + I-= 2 N

I < - +2/1 + 8PN < 2N.

(E. 96)

(E. 97)

Therefore, we can obtain an upper bound to c by computing do, the number of pos-
J

sible vectors (non, n1 .. nj) such that nj > 0, n = N, n. = integer, and, at most,
o3J j= 0 J J

/2PN different nj are positive, where J = N. This will be an upper bound because all

vectors satisfying (E. 95) will also satisfy these constraints.

number of ways N balls can] number of ways the m occu-
d = be put into m distinguishable X pied slots can be chosen from

m-1 slots so that no slot is empty a total of J slots 
~~~~~~~m=l 1~~~~(E. 98)

(E. 98)

d = (m-l)(mN)o ~m-1 
m= 1

N-1) < (N+m-1) < NM

d < L Nm( )N .
o m 

m= 1

If N is large, >100, for example, and 1 < m < 2N, then

mr P

(E. 99)

(E. 100)

(E. 101)

(E. 102)
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( < N m = NN
d CN g > N = N I N(N-1)l <
0 / Nf2=N'/'J yrMN/ L N-Ni

(E. 103)

and if N > 2,

(a)~ =( ) < (x- = - =x+l 2) <

(E. 104)

do < N 2N(PN) 2N+1 < 2(PN2 +1 (E. 105)~~~~~~~~~~~~~~~~~~~~~ 05

thereby proving the theorem.
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