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Abstract

A model is developed for the effects of multiple scattering upon optical-frequency
radiation. Attention is focused upon situations in which the scattering particles are large
compared to the carrier wavelength, so that forward-scattering predominates. This is the
case for atmospheric clouds at visible-light wavelengths, the physical framework within
which the analysis is carried out. The objectives served by the model are those of a com-
munications engineer desiring to design a system for optical communication through
clouds.

Light traversing optically dense clouds suffers dispersion in space, time and fre-
quency. These effects are considered both separately and in a compact unified formula-
tion. The spatial variation of the intensity of light beneath a cloud subjected to continuous-
wave illumination is modeled as the output of a multidimensional linear system. The
approximate impulse response of the system is determined, in two complementary forms,
and the approximate response below the cloud under arbitrary illumination is shown to be
given by a linear superposition integral. In general, the spatial behavior is representable
as a joint function of angle of arrival and horizontal coordinates over the ground.

The field on the ground is shown to be representable in terms of a complex Gaussian
random process. A complete statistical description of the process is therefore provided
by its mean(which is zero) and its correlation function. The time-space correlation func-
tion K(tl, t 2 ,r,' ) is written in terms of a generalized scattering function c(T, f,v'),

combining all the time, frequency and spatial information. The spatial impulse responses
are shown to be special cases of the scattering function. Expressions are derived for the
spatial correlation function of the received field over the ground, for both omnidirectional
and directive antennas. The conventional range-Doppler scattering function o(T, f) is de-
rived for an upward-pointing narrow-beam antenna. Polarization effects are not included
in any of the analyses.

Some of the implications of these results are considered with respect to communica-
tions system design and performance. A system is proposed and analyzed to provide an
indication of the rates and error performance that can be achieved with optical signaling
through a cloud.
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OPTICAL COMMUNICATION

THROUGH MULTIPLE-SCATTERING MEDIA

CHAPTER 1
INTRODUCTION

Clouds and fog are common enough in most regions of the earth to present a serious problem

to the designer of an optical communication system whose transmission path includes the atmos-

phere. One alternative is simplyto agree that the linkwill notbe usable when these obstructions

are present. In many applications one might be unable to accept such a constraint, but willing

to trade receiver complexity and diminished communication rates for more nearly constant chan-

nel availability. This possibility motivated the research reported in this paper. The chief ob-

jective was the development of a realistic model for a cloud layer as an optical-frequency com-

munication channel.

A small particle suspended in the atmosphere absorbs a portion of the light incident on it,

in general, and scatters the remainder in all directions. The particles in clouds are droplets

composed mainly of liquid water, and their diameters 1 range from about 10 to 40 microns. Since

they are large compared with the wavelengths of visible light, they tend to scatter most of the

incident energy at these wavelengths in the forward direction. Also, their absorption at visible-

light frequencies is small. Thus a large fraction of the light entering a cloud emerges at the

other side. A beam of light traversing a cloud will suffer dispersion in angle of arrival and deg-

radation of spatial coherence, while any modulating signal which may have been carried by the

beam will experience dispersion in time and frequency. These deleterious effects become pro-

gressively more severe as the particle concentration increases. For typical clouds, one finds

that most of the emerging light has been scattered more than once. All the results reported here

account for the presence of this multiple scattering.

We take the point of view that an observer standing beneath a cloud illuminated from above

is interested only in the light emerging from the bottom of the cloud. We do not attempt to cal-

culate intensity distributions or other characteristics of the backscattered light. All the energy

which is lost from the forward-directed signal in this manner is treated as though it were lost

by absorption in the cloud.

The analysis in this report depends heavily upon the condition that most of the light incident

on each individual particle is scattered in a generally forward direction. This is demonstrably

true for clouds at visible wavelengths, as we have already indicated; in general, it is true for

any situation in which the particle diameter is large compared with the wavelength of the incident

radiation. Although all our analyses are couched in terms of a somewhat idealized model for a

cloud, most of our results can be applied for communication through fog as well by simply letting

both the transmitter and the receiver be located right at the cloud boundaries. Although natural

fog particles tend tobe somewhat smaller than those of clouds (their diameter distributions 2 tend

to peak up in the neighborhood of 4 to 6 microns), they are still quite large compared with vis-

ible wavelengths. Thus the light scattered byfog particles is also quite stronglyforward-directed.

1



The applicability of our results to optical communication through atmospheric hazes is

somewhat questionable, and has not yet been investigated in any detail. Hazes generally contain

many particles roughly comparable in size to visible-light wavelengths, 3 which scatter substan-

tial amounts of light through large angles. This tends to violate our assumption that any light

which is scattered through an accumulated total angle of about 2r radians is so attenuated as to

be negligible compared with the forward- scattered light.

Section 1.1 describes the effects of a cloud upon the angular and spatial properties of the

transmitted light. Section 1.2 provides a brief description of the generalized space-time-

frequency scattering function presented in Chapter 4, which is the most general form of our

cloud-channel communication model. Section 4.3 outlines the body of this report.

1.1 SPATIAL DISPERSION OF LIGHT TRAVERSING A CLOUD

Chapter 3 of this report is an analysis of the angular and spatial distributions of light be-

neath optically thick clouds. The topic is treated separately, and an entire section of this intro-

ductory chapter is devoted to it, because it is potentially of interest in areas outside of commu-

nications theory. The incident light is assumed to have constant intensity, and the results are

derived without reference to communications-oriented concepts such as bandwidth and modulation.

We define a simplified representation for both the incident and the scattered light as a su-

perposition of elementary waves, specifying the distribution of light intensity in angle and in po-

sition on the horizontal plane. By using the ideas and techniques of linear system theory, we

show how this mathematical function is modified as the light traverses the cloud. We find that

the intensity distribution below a cloud with arbitrary illumination incident on its upper surface

is given by a multidimensional linear superposition integral.

The results are obtained in two complementary forms. One of them is appropriate for in-

cident illumination which is uniform over the entire horizontal plane, while the other must be

used for beams of finite cross-sectional area. We show that the first result is simply a special

case of the second.

As an example of the utility of these results, suppose that one illuminates the top of a cloud

with a group of constant-intensity uniform plane waves, having angles of arrival distributed over

some range. By application of the first kind of superposition integral, we immediately obtain

the distribution of intensity as a function of angle of arrival over the ground below the cloud. As

another example, suppose the top of the cloud is illuminated with a pencil beam incident at hor-

izontal coordinates (Xo, yo). The second form of the superposition integral yields the distribution

of intensity over the ground as a joint function of angle of arrival and the horizontal coordinates

x and y.

1.2 CHARACTER OF CHANNEL

As one might well expect, the field incident on the ground beneath a cloud can be represented

as a complex Gaussian random process. The arguments leading to this conclusion are presented

in detail in Appendix A. Since a signal traversing the cloud suffers time and frequency disper-

sion as well, we anticipate that a signal detected on the ground will be qualitatively similar to

one which was transmitted over a classical fading dispersive channel. The problem is compli-

cated, however, by the fact that the spatial and angular variation of the arriving field are both

important and useful. In Chapter 4 we present a generalized scattering function (T, f, v'), first

suggested by Kennedy, which combines all this information about the channel in a useful, compact
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form. The vector argument v' may be thought of as a unit vector pointing in some direction,

drawn through some point (x, y) on the ground plane. The function g( ) is defined in such a way

that the quantity (T, f, v') dT df dv' is the fraction of total received signal energy at the point

(x, y) on the ground borne by rays which experienced time delay and Doppler shift in the ranges

(T, T + dt) and (f, f + df), and had angles of arrival in the range dv' about v'. We derive the func-

tion from basic assumptions, and present a brief discussion of the manner in which one would

proceed to a mathematical description of the optimum communication receiver from knowledge

of ( ) and the transmitted signal.

Declining to carry the general treatment any further, we proceed to derivations and discus-

sions of various special cases of the scattering function and signal correlation functions. We

show that the spatial superposition integrals of Chapter 3 are in fact special cases of U(T, f, v').

The other specialized functions based on ( ) that we discuss include a time-independent spatial

correlation function of the field over the ground, angular and spatial correlation functions for

signals received by directive antennas, the range scattering function (T) for an antenna aimed

in a given direction, and the range-Doppler scattering function a(T, f) for the same antenna.

1.3 OUTLINE OF REPORT

A large body of literature exists on the subject of electromagnetic scattering by particles.

Chapter 2 is devoted to a brief survey of some of this material, with particular emphasis on

those results which will be exploited in the remainder of the report. Chapters 3 and 4 have just

been discussed. Because their contents are thought to be of particular interest, they have each

been accorded an entire section of this chapter for introductory comments.

In Chapter 5 we propose a sub-optimum communication system which could be realized with

techniques and components which are available or readily visualized as being available in the

future. Since it falls within the purview of classical fading dispersive channel analyses, we can

readily analyze its performance. The results give us some feeling for the performance one

might expect with the optimum system.

Chapter 6 summarizes the conclusions we have reached in this report, and outlines areas

of potentially fruitful future research on optical cloud communication. The appendices deal with

matters which are peripheral to the main issues in the body of the report, and with long and

complicated derivations.
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CHAPTER 2

AVAILABLE RESULTS OF SCATTERING THEORY

The scattering of electromagnetic radiation by particles has been studied extensively for

many years. The scattering behavior of collections of particles has been thoroughly analyzed

for situations in which single scattering predominates. For a particle suspension so dense that

a substantial fraction of the light traversing it has been scattered more than once, however, the

problem becomes far more complex. A number of books and papers have been written about

specialized aspects of multiple scattering (of which this thesis report is an example), but the

status of research on the general problem is still very fluid.

The first section of this chapter is a brief survey of the literature on both single and multi-

ple scattering of light. In Sec. 2.2 we review those results of single-scattering theory which will

be utilized in the development of our linear-system model for multiple scattering.

2.1 HISTORICAL DEVELOPMENT

A concise review of the early history of the subject of electromagnetic scattering by parti-

cles is given by van de Hulst in his Sec. 1.3. The problem of the scattering of electromagnetic

waves by a single homogeneous sphere was first solved in complete generality by Mie.6 His

approach was to represent the fields in space as a superposition of spherical waves which were

concentric with the scatterer. The solution of the boundary-value problem in this coordinate

system was straightforward. He obtained completely accurate and general formulas for the

scattered field in the presence of a sphere of arbitrary radius and arbitrary complex refractive

index, for incident radiation of arbitrary wavelength.

Virtually all electromagnetic scattering research since that time has been based upon the

fundamental work of Mie. The first logical extension of his results was the analysis of light

scattering by low-density suspensions of particles. By assumption, the volume density of parti-

cles in such suspensions is small enough that light scattered more than once can be neglected

compared to unscattered and single scattered light. Many authors have attacked this problem;

excellent treatments of the subject are provided by, for example, van de Hulst1 and Newton.7

The usual approach has been to show that the angular distribution of light traversing such a

medium is simply a superposition of unscattered light and the scattering pattern of a single par-

ticle, averaged over the distribution of particle sizes in the medium.

For denser suspensions of particles, however, a significant fraction of the emerging light

has been scattered more than once. The mathematical complexity of the multiple scattering

problem is enormous, compared to the simpler results described above. The first successful

treatment of the problem was that of Chandrasekhar, who attacked light propagation through

multiple-scattering media as a transport phenomenon. He derived an elegant diffusion equation

(his "Equation of Radiative Transfer") for the angular distribution of scattered intensity. His

work has been widely applied in such areas as the study of planetary atmospheres in radio astron-

omy. In practice, his equation is extremely difficult to solve, except when the particles scatter

isotropically, or nearly so. His ideas have been extended, and additional results of the same

general nature have been obtained by Sobolev.9 Like those of Chandrasekhar, his equations for

angular intensity distributions of diffuse scattered radiation are very difficult to solve except in

a few special cases.

Certain other multiple-scattering results have been obtained by Fritz. 0-12 He modeled

the scattering pattern of an individual cloud droplet as a superposition of forward-scattered
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and isotropically scattered intensities; the latter were smaller by a factor of several hundred.

His main results were angular distributions of luminance and illuminance below an overcast sky,

which he obtained by the approximate solution of a diffusion equation. Like the work described

in the preceding paragraph, Fritz' s techniques do not have enough versatility to provide the ad-

ditional information (such as spatial correlation functions and time and frequency spreading of

signals) required for a useful optical communications model.

A substantial number of papers have appeared in recent literature, reporting experimental

work on single and multiple scattering of light. For example, Carrier and Nugent 1 3 and Reisman,

et al., have carried out measurements of light scattered by fogs in air as a function of angle.

Smart, et al., 5 Woodward 6 ' 17 and a number of other workers have made angular intensity dis-

tribution measurements of light scattered by water suspensions of polystyrene latex spheres,

where the particle concentration was high enough that multiple scattering was important.

Certain other results have recently been obtained which are more directly applicable to the

questions of interest in optical communication. Dell-Imagine used numerical integration of

Chandrasekhar' s equation of radiative transfer to obtain the transient response of a cloud illumi-

nated from above by a plane wave which was turned on at some instant of time. In a series of

four articles, Plass and Kattawar 9- 2 2 have reported on a Monte Carlo technique which accu-

rately follows the multiple scattered paths of photons through thick clouds. They have obtained

numerical simulations of the cloud albedo and of the angle dependence of reflected and transmit-

ted light, as functions of various parameters of the clouds and the particles, the wavelength and

incident angle of the incoming light, and the albedo of the planetary surface. They have also ob-

tained information about the optical path lengths traversed by photons penetrating clouds.

In Appendix G we carry out explicit comparisons of our results with some of those of Dell-

Imagine and of Plass and Kattawar.

2.2 BASIC DESCRIPTION OF SINGLE SCATTERING

The study of multiple scattering must begin with an understanding of the mechanism of plane-

wave scattering by a single particle. Thorough expositions of the theory of electromagnetic scat-

tering by homogeneous spheres are contained in the original paper of Mie,6 in the classical book

by Stratton, 2 3 and in the cited works of van de Hulst1 and Newton. 7 In general, the amplitude,

phase, state of polarization and direction of propagation of the scattered wave can be precisely

determined as functions of the parameters of the sphere and the incident wave. Although the for-

mulas of Mie are elegant in their generality, their application to specific cases involves a great

deal of computational labor. Our task is somewhat simpler, because we choose to ignore polar-

ization effects. Furthermore, as we show in Appendix A, we need not retain phase information,

since phase coherence is lost in the multiple-scattering process. Thus the only result we need

from the Mie theory is the sum of the intensity scattering patterns for the two orthogonal polar-

ization components, for a spherical particle of radius a at a given wavelength. We shall call it

Fa(O). Its argument is the angle between the incident-wave propagation vector and the direction

of propagation of scattered radiation. The function is conventionally defined in such a way that

the intensity of light scattered into the solid angle

do = sin 0 dO do

is given by Fa(0) dw, when the particle is illuminated by a unit-intensity plane wave. Assump-

tions and approximations to be used in the present study will be developed in Chapter 3.
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It is convenient to describe the behavior of a scattering particle in a cloud in terms of its

cross sections. Suppose a particle intercepts Pi watts of power from an incident plane wave of

intensity Ii . Let Psca watts of this power be scattered, while Pabs watts are absorbed. By def-

inition, we have

Csca Psca/Ii , (2-la)

Cabs = Pabs /Ii (2-lb)

and

Cext= Pi/Ii (2-1 c)

These quantities are the cross sections (in square meters) of the particle for scattering, absorp-

tion and extinction, respectively. By virtue of energy conservation, we have

Cext = Csca + Cabs (2-2)

The extinction cross section of a particle is not necessarily equal to its geometrical cross sec-

tion. For a spherical particle of radius a which is large compared to a wavelength, Cext is

roughly equal to 2ra 2 (see the discussion of the "extinction paradox" on pp. 107-108 of van de

Hulst ).

Within a medium containing scattering particles, a wave of initial intensity I traversing a

distance z suffers the well-known "extinction" attenuation

I(z)= I exp[--yz] , (2-3)

where I(z) is just the unscattered and unabsorbed residue of the original wave. For a so-called

"monodisperse" suspension containing dv identical particles of radius a per unit volume, we

have

= dvCext(a) (2-4)

In a "polydisperse" suspension the particle radii obey some probability density function p(a). If

the average volume density of particles is dv, we have

'=dv Cext(a) p(a) da (2-5)

The coefficient y is frequently expressed as D where De is defined as the "extinction dis-

tance" of the medium. When distance within the cloud is normalized to De , it is called "optical

distance." In particular, the "optical thickness" of a cloud is

N T(2-6)e De

where T is its physical thickness.

As a general rule of thumb, one assumes that a single-scattering analysis is adequate for

a particular cloud when its optical thickness is about 0.1 or less. Thus the extinction attenua-

tion exp (-0. 1) for propagation all the way through the cloud is very nearly unity. The single-

scattered intensity emerging from the cloud is very small, being roughly [1 - exp (- 0. 1)] times

the unscattered intensity, and higher-order scattered radiation is of a higher order of smallness.

_ ___�___�lil�



Now, we shall direct our attention in the present study to clouds whose optical thicknesses range

from perhaps 5 to 100. Thus the importance of multiple scattering in analyzing the behavior of

these clouds is manifest.

These few concepts comprise all the background that is necessary for the idealized cloud

model described in Chapter 3.
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CHAPTER 3

SPATIAL IMPULSE RESPONSES

We begin this chapter with a description of an idealized physical model for a cloud and the

particles comprising it. We then define two complementary forms of a simplified elementary-

wave representation, which gives us an adequate mathematical description of the angular and

spatial variation of the intensity of the incident and scattered light. It is demonstrated that the

average effect of the cloud upon the function representing the incident illumination is analogous

to the effect of a linear system upon its input. We define impulses in each of the two forms of

the elementary-wave representation, and obtain the response of the cloud to each of the impulses.

We show that the effects of the cloud upon an arbitrary incident distribution can be determined

by means of a superposition integral involving the appropriate impulse response.

In this chapter we consider only the intensity of the scattered light beneath a cloud. More-

over, we restrict our attention to the average behavior of the intensity. We argue in Sec. 3.1

that the intensity of the scattered light measured by an antenna is a random variable with ex-

tremely small variance, so that it is always very nearly equal to its statistical average.

3.1 IDEALIZED CLOUD

The physical configuration of the idealized cloud to be analyzed is illustrated in Fig. 3-1.

Its boundaries are infinite parallel planes separated by T meters; it is parallel to the earth,

which is represented as an infinite plane h meters below the lower boundary of the cloud. The

statistical properties of the cloud (e. g., particle

density and size distribution) are uniform every- 13-45-11796

where within its boundaries. The receiving an- INCIDENT

tenna on the ground has some aperture size and RADIATION

beamwidth associated with it.

We shall assume that the particles in the -

cloud are spherical and that all have the same .- . CLOUD

complex refractive index m. Their radii are : . :: :- :...

assumed to obey a probability density function

p(a), 0 < a < o, and the average volume density

of particles is taken to be d per cubic meter. /

As we pointed out in Chapter 2, the extinction

cross section C (a) and the intensity scatteringext //

pattern F (O)are precisely specified bythe Mie ,

theory for each individual particle, at a given ////
GROUND PLANE

wavelength. The average extinction cross sec-

tion over all the particles in the cloud is Fig. 3-1. Physical configuration of idealized cloud.

Cext Cext (a) p(a) da (3-1)

We shall find it expedient to depart from conventional practices to a degree, with respect to the

particle scattering pattern. For calculations involving polydisperse suspensions, one would

normally use the average scattering pattern defined by the relation

9
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F(0) = } Fa(0) p(a) da

This is a spatial average, in the following sense: a small volume of the scattering particle sus-

pension, illuminated by a plane wave, will look like a point source of scattered radiation if ob-

served from a sufficient distance. As we shall show later in this section, it is reasonable to

imagine a volume large enough to contain an enormous number of scatterers, but small enough

(and having its scatterers far enough from each other) that each particle scatters the incident

light independently. The above definition of F(O) then follows.

In the present case, however, the particle diameters (roughly 10 to 40 microns in typical

clouds 2 4 ) are much larger than visible-light wavelengths. The scattering pattern at a given

wavelength is therefore strongly peaked in the forward direction. The intensity of radiation

scattered through 7r radians is roughly 50 to 60 times smaller than the forward-scattered inten-

sity, for large spherical particles. 2 5 We shall assume that backscattered light is lost, for our

purposes, exactly as though it had been absorbed. (If it were to contribute to the effects of light

scattered forward by a given particle, the backscattered light must undergo a second reversal

of direction. Such rays will then be attenuated relative to the forward-scattered rays by a factor

of perhaps 2500.) Thus we restrict our attention to the forward-scattering pattern Ff, a(0), which

we define for a given wavelength as

Fa(0) . IO142 ;

Ff, ( ) A
, a 0 , elsewhere (3-2)

The average forward-scattering pattern for the particles in the cloud is

0Ff() n Ff a(0) p(a) da (3-3)

The average total power scattered through angles less than r/2 by a particle illuminated by a

unit-intensity plane wave will be called the average forward-scattering cross section

Ff(O ) dw

-= d 9 dO sin Ff(O) (3-4)

= 27r dO sine Ff(0)

We lump the average total backscattered light together with the absorption loss, describing the

result in terms of the average loss cross section C . By virtue of energy conservation, we

have

Cex t = C + Cf . (3-5a)

We define the average forward-scattering efficiency

A Cf
Yf - , (3-5b)

ext

10
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the average fraction of the incident power which is scattered forward. For convenience in the

thin-layer model analysis to follow, we define a normalized average single-particle forward

scattering pattern

f(e) (Cf) Ff(O) . (3-6)

Neglecting near-field effects, we see that the average scattered intensity at a point at spherical

coordinates (r, e, qA) relative to a particle is

Ii -l- f() ,
Is(r, ) = r

0 , elsewhere (3-7)

independent of the azimuth angle ~o. The incident illumination is a plane wave of intensity Ii ,

and is measured from its propagation vector.

We remark in passing that the Mie theory does not hold for incident illumination other than

a uniform plane wave. Thus Eq. (3-7) is not strictly correct in a multiple-scattering environ-

ment, where some components of the light incident on a particle are approximately spherical

waves that result from scattering by other particles. As a practical matter, however, this prob-

lem may be ignored. For a very dense cloud, 2 6 d is on the order of 10 per cubic meter.
v

The corresponding average particle separation is roughly

d- 1/ 3 5 x 10 - 4 meter (3-8)
v

At this distance, a spherical phase front is flat over a region the size of a particle (say, 5 mi-

crons) to within about 6.2 x 10- 9 meter, which is roughly 0.012X at a wavelength of 0.5 micron.

We assume that the locations of the scattering particles within the cloud obey a Poisson dis-

tribution. This follows from the assumption that individual particle locations are statistically

independent of each other, and that the location of each of them is a uniformly distributed random

variable over the volume of the cloud. Specifically, let there be

n = Vd
v

particles in a large but finite volume V in the cloud, and let a given particle be present in a

given region 6v of V with probability 6v/V. Let all n particles obey the same probability law,

independently of each other. Then the population k of 6v obeys a binomial distribution, with

Pr [k particles in v] = (nk) (V k (1- v )n-k (3-9)

Now, if n becomes large and 6v/V becomes small, while their product

6v
n -= d 6v (3-40)V v

remains moderate, the Poisson approximation 2 7 holds. Thus

(d 6v)k -d 6v
lim Pr [k particles in 6v] = e (3-11)

V- oo

11
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The exponential extinction of waves traversing the cloud follows from the Poisson assumption.

Suppose a plane wave of intensity I(x) within the cloud progapates through a layer of thickness dx

whose boundaries are parallel to the phase fronts of the wave. On the average, each particle in

the layer removes CextI(x) watts of power from the plane wave (we visualize the averaging proc-
ess as a spatial average over a large area of phase front). We assume that the resulting local

perturbations in the wave become smoothed out rapidly enough that its plane wave character is

preserved everywhere. Now, a section of this layer with unit-area faces contains d dx particles,

on the average. The average intensity of the unscattered remnant of the plane wave at x + dx is

therefore given by

I(x + dx) = I(x)- CextdvI(x) dx , (3-12)

which we integrate to obtain

-Cext vx

I(x) I e (3-13)

By similar reasoning, we find that the extinction losses of a spherical wave traversing a shell

of thickness dr are represented by the equation

(r + 2rdr) I(r + dr) = r I(r)-rC tdI(r) dr ,(3-14)ext v

which we integrate to yield

I -C d r
I(r) = e (3-15)

r

Throughout this chapter we consider the average intensity of the scattered light traversing

a cloud. In Appendix A and Chapter 4, we study the statistics of the light in greater generality.

It is meaningful and useful to study only the average behavior of the intensity, as we do here,

because the variance of the intensity is extremely small. Thus it is always very nearly equal

to its average value. An heuristic argument in support of this assertion is now given, with par-

ticular reference to the total intensity I measured by an antenna on the ground aimed at the under-

side of the cloud. Because of their independent random phases, the contributions arriving at the

antenna from each particle in its beam add incoherently. Let the intensity contributed by the
.th
i particle be the random variable E.. Now, the contributions from two particles will be statis-

1

tically decoupled if the light rays illuminating one of them have no effect on the other. This will

be true when the distance r between the two particles obeys the condition

r << D , (3-16)e

so that the probability of double scattering within a distance r is very small. Thus the cloud

particles in a volume V of dimensions small compared to the extinction distance De will provide

a set of signal contributions at the antenna which are essentially statistically independent of each

other. The total intensity received from the volume V is a random variable

IV = L ek (3-17)
k

where k ranges over the particles in V. Let the number of such particles be K; assume that

12



the variance of Ek is ak, and that its mean is

Vm K (3-18)

for every k. Let us make the intuitively satisfying assumption that each k varies over a rea-

sonably small range, so that its standard deviation is no larger than a number roughly compa-

rable to its mean. Thus

V
k = Ckm = Ck K (3-19)

where Ck is a factor of fairly modest magnitude (possibly even less than unity). Let us upper-

bound the quantities Ck by the relation

Ck max Ck A Cmax-C (3-20)k

Then

K

var (v) Uk

k=1

2 ____ 2 _____

C C (3-21)k 2 •Cmax K
Kk=1

Under these assumptions, then, the ratio of the standard deviation of IV to its mean goes as

K- 1/ 2 Now, the dimensions of V are on the order of, say, 0.1 D . Thus a very conservative
e

estimate for the volume of V would be a few cubic meters, so that K is of the order of the par-

ticle density, a huge number. We conclude that IV is always very nearly equal to its average

value. The same statement holds for the total intensity I measured by the antenna, which is a

superposition of a number of nearly-constant components similar to IV .

3.2 PLANE WAVE SUPERPOSITIONS

An essential feature of the analyses in this chapter is the representation of the intensities

of arbitrary propagating fields as superpositions of elementary waves. We require the user of

our results first to represent the incident illumination in accordance with the techniques we

shall define below. The scattered illumination that we predict beneath the cloud is to be inter-

preted in the same way.

Now, it is possible in principle to obtain a complete and precise representation for a gen-

eral propagating field in the form of a superposition of uniform plane waves (see, for example,

Stratton28). Such a technique is more general than is necessary for the representation of the

scattered light within and below clouds. Because of uncertainty in our knowledge of the locations

of cloud particles, we take all the scattered wavelets to have statistically independent random

phases, uniformly distributed over (-7r, 7r), as we explain in Appendix A. Thus all the wavelets

at a point in space, including any unscattered residue of the incident radiation, add in an incoher-

ent fashion (i.e., their intensities add). For our purposes, then, an adequate description of the

field at each point in space (even for the incident radiation, before it enters the cloud) need specify

13
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only the intensities and directions of propagation of all rays passing through the point. We shall

define two different kinds of simplified plane wave distributions which provide this information in

a convenient form. The first of these is appropriate for wave configurations which are uniform

over any plane parallel to the ground, while the second must be used to represent finite beams

whose intensity varies with the lateral coordinates x and y.

The first plane wave distribution function we shall employ depends only upon angles of ar-

rival. It will be called the angular intensity distribution function I(e, ), with dimensions of watts-

meter -2-radian . Its arguments are the orthogonal angular coordinates defined in Appendix B

by the relations

a = e cos ,

f = 0 sin , (3-22)

where and <p are the polar and azimuthal angles in spherical coordinates. As we explain in de-

tail in Appendix B, the transformation is approximate in roughly the same sense as the statement

that

si 1 . (3-23)

Thus Eq. (3-22) is precisely correct at = 0 and is good within 20 percent for

0 ~ 1.03 radians (3-24)

The resulting restricted angular range of I(a,o) causes no real problems. For the situations we

shall consider, the condition (3-24) is satisfied by that portion of the scattered light beneath a

cloud which is intense enough to be of value for optical communication. Thus the approximation

is valid for our objective, which is the development of a useful approximate analysis of the cloud

as a communication channel, not a precise description of the physical phenomena involved. We

define I(o, ) by means of the statement that I(ac, ) d do is the total intensity borne by those plane

waves whose angles of arrival lie in the intervals (, + d) and (, f + d). Thus a hypothetical

antenna with unit aperture area whose power gain is unity over a solid angle

do = d d (3-25)

and zero elsewhere simply reproduces the intensity distribution incident upon it. When it is

illuminated by I(ov, A) the antenna measures a total power level

Prec ( ) = I(c, ) d (3-26)

A more general antenna, with power gain pattern g(ov, ) and aperture A, aimed in direction

(al' n) and illuminated by I(a, i), receives a total power level

p rec ( 1' 1) AI(v, 3) g(1 a, 31 - 3) d d (3-27)

The double-impulse intensity distribution

'(a, 0) = UO((a - ) UO( -So ) (3-28)

is taken to be a single unit-intensity uniform plane wave whose angle of arrival is (o o , roo ) .

14



The second type of plane wave distribution we utilize will be called the power distribution
-2_ -2

function P(o, , x, y). Its dimensions are also watts-meter -radian . We define this function

by the statement that P(oa, 3, x, y) d do dx dy is the total power borne by those rays of light with

angles of arrival in a solid angle d dB at the angular position (, P), which fall on an area dx dy

at the point (x, y) on a plane parallel to the ground. This situation is illustrated in Fig. 3-2. The

indicated angle

e =JC 2 + 2 (3 -29)

is the polar angle in conventional spherical coordinates which corresponds to the position (, fi).

JS-45-11,9?J

SOLID ANGLE
da d

Fig. 3-2. Geometry for definition of P ( ).

The interpretation of P( ) in terms of plane waves is complicated by the fact that the phase

fronts of an arriving plane wave are not parallel to the x-y plane. Referring to Fig. 3-2, we ob-

serve that the area dxdy projects into an area dxdy cos on a plane parallel to the phase fronts

of a plane wave having angle of arrival (, 3). Thus the power distribution function

P(, ,1,x,y) = u0 (a- a0) Uo(3 -- 0) (3-30)

must correspond to a uniform plane wave with angle of arrival (g1 o' ) whose intensity is

I = seco
p o

= sec ( + ) (3-31)

Suppose that a plane wave arriving from ( 1,o3o) had some nonuniform intensity given as a func-

tion of the x- and y-coordinates by the expression I (x, y). Clearly the corresponding power dis-
p

tribution function would be

(3-32)P(oa, , , y) = I(x, y) cos O u ( C - CZ0) uo(P - ,)

The quadruple-impulse power distribution function

P(0c, , x, y) = uo( 0 - o) uo(p - po) u0 (X - Xo) Uo (Y - yo)
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corresponds to a "plane wave" arriving from (o ,, P ) whose intensity is

I (x, y) = sec u(x - x) Uo(Y yo )

p 0 0 X) y- (3-34)

This can be envisioned as, for example, the limiting case of a plane wave whose intensity is

Gaussian in both x and y and is multiplied by sec 0 . In another sense we may think of it as

an individual ray, carrying unit power. An idealization, like the familiar impulse in linear sys-

tem theory, Eq. (3-33) will be used only as a mathematical artifice in studying the behavior of

waves which could exist physically.

A hypothetical antenna which reproduces a power distribution function P( ) incident upon it

must have an aperture dxdy which remains fixed in the x-y-plane, rather than the plane perpen-

dicular to the antenna boresight axis. The power gain of the reproducing antenna must be unity

over an incremental solid angle dw and zero elsewhere. Let the location of the antenna be de-

noted by (x4 , Y1), while its pointing angle is (1' f1). Then the power received by the antenna

when it is illuminated by P(oz, 3, x, y) is given by

(3-35)Prec (a1' 1' xl' Y1 ) = P(t1'/3' X1i Y1) d dxdy

In order to write an expression for the power received by an

that its aperture be described by an aperture function A(oL, , x, y)

arbitrary antenna, we require

defined over the x-y-plane,

13-45- 117981

TELESCOPE
JECTIVE AREA

aeff

Fig. 3-3. Aperture function geometry.

which includes any variation of the aperture with the antenna pointing angle (a, p). As an example

of what we mean by this statement, consider a conventional telescope pointed at some angle (, 3)

whose effective aperture area (on a plane perpendicular to the axis of the telescope) has a con-

stant value aeff. For this antenna, the function A( ) that we require is a function of x and y

whose area is a eff sec (J o + /3 ); that is, it is the region on the x-y-plane which projects into

aeff on the aperture plane. The situation is illustrated in Fig. 3-3. In addition to the aperture

function, we require knowledge of the power gain pattern g(c, /3) of the arbitrary antenna. When

illuminated by a power distribution function P(ac, /, x, y), this antenna receives a power level

16



00

Prec( 1, i1 x1 , Y1) = dot dpdxdy P(o, p,x,y)
_00

.g(a 1 - c, 1 - ) A(al - cz, l - P x -x, Y -Y) (3-36)

One final comment about the function P( ) is in order. It is obvious that the function depends

upon the vertical coordinate z in addition to the four arguments listed. In our development we

are able to suppress explicit indication of this dependence, however, because the vertical loca-

tion is clearly specified in the context at each step of the analysis.

3.3 THIN-LAYER MODEL

We consider a subdivision of the cloud into parallel layers of thickness O' each of which is

treated independently. Since the particles are assumed to scatter only in the forward direction,

we can consider each layer successively from the top of the cloud downward. The desired re-

sults are obtained in the limit as io goes to zero. While our analysis appears to be new, the
29thin layer idea itself is not. Hartel, for example, calculated the angular distribution of diffuse

scattered light intensity in a thick cloud by computing the effects of successive layers of scat-

terers. He used an exceedingly complicated approach, involving the expansion of both the single-
particle scattering pattern and the scattered light intensity distribution in associated Legendre

polynomials. Another approach was used by Fritz in the work mentioned in Chapter 2, in which

he divided the cloud into layers of fixed optical thickness 0.25. By adding the contributions of

diffuse scattered light "generated" independently in each of the layers, he derived a diffusion

equation for the angular distributions of transmitted and reflected light.

We assume that the thickness of the
o

layers in our model is small enough at the out-

set that the probability of multiple scattering

within a layer is vanishingly small. Thus most
INCIDENT WAVE

of the light rays traversing a layer emerge with-

out having been scattered, and a few undergo a

I-- single scattering, but virtually none of them is

i- i" scattered more than once. An alternate state-

· ' · :ment of this assumption is the condition that

<< De (3-37)

whence the extinction attenuation exp[- o/De]

is very nearly unity. Here we implicitly inter-
RECEIVING ANTENNA pret the extinction attenuation as the probability

-//////////////////////that a light ray traverses a distance withoutGROUND PLANE o

being scattered. This and related ideas will be
Fig. 3-4. Layermodel of the cloud. discussed in detail in Chapter 4. Now, since o

is so small and will be driven to zero in a later

step anyway, we will not be changing the gross behavior of the model if we assume that all the

particles in each layer are physically located on a plane at the center of the layer. Thus we ar-

rive at the simple model illustrated in Fig. 3-4, in which each particle in the cloud is located on

one of the N parallel planes in the region occupied by the cloud. For a cloud thickness of T me-

ters, we have

17
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oN = .e . (3-38)

Since we assumed the particles were Poisson-distributed over the volume of the cloud with aver-
-3

age density dv meter , it is appropriate to let them be Poisson-distributed over each of the par-

allel planes with average density

p = d meter 2 (3-39)o v

and to let the distribution on each plane be statistically independent of all the others.

For the present we shall assume that each particle has zero velocity. The inclusion of

questions of Doppler dispersion at this point in the layer-model analysis leads to excessive com-

plexity without changing the results. This issue will be addressed by means of an alternate tech-

nique in Chapter 4.

The determination of the average impulse responses of the cloud involves averaging over all

possible sets of particle locations in the cloud. This problem resolves itself into averaging sep-

arately over the Poisson distributions of particles on the plane at the center of each layer, since

they are assumed to be statistically independent of each other. Each layer is considered succes-

sively in the analyses to follow, from the top of the cloud downward, and an implicit averaging

process is carried out for each layer in turn.

For the sake of convenience, we shall use the term "layer" somewhat loosely hereafter, to

refer to the plane and its Poisson-distributed particles at the center of the actual cloud layer.

3.4 ANGULAR IMPULSE RESPONSE hI(a, p; ao, Po )

When a cloud is illuminated from above by a uniform plane wave, the light emerging below

it will be spread out over a range of angles of arrival. In terms of the angular intensity distribu-

tion function I(a, p) defined in Sec. 3.2, the incident plane wave is equivalent to a two-dimensional

impulse. The average angular dispersion of the light emerging below the cloud in response to

this illumination is shown to be equivalent to the double-impulse response of a two-dimensional

linear filter. We show that the response of the cloud to an arbitrary plane wave illumination

is given by a linear superposition integral with the impulse response as its kernel.

The angular impulse response hI(a, ; a o , o ) is defined as the angular intensity distribution

at coordinates (a, 3) below a cloud in response to a unit double impulse at coordinates ( 0 , o0 ) in-

cident on the top of the cloud. We derive hI( ) by finding the impulse response hI(O1i , 1; o 0o)

of a single layer of thickness I0 , and writing an (N - )-fold two-dimensional superposition inte-

gral to obtain the response of an array of N layers. We then solve the integral in the limit as

N goes to infinity and the layer separation I0 goes to zero, while the cloud thickness

z = N (3-40)

remains constant.

We begin by transforming the normalized average single-particle forward scattering pattern

f(O) of Eq. (3-6) into a function f(c, B/) defined over the a -/3 domain. As we explain in Appen-

dix B, the result is

sin ( a 2 + /2) (-4+p2
f1 (a, ) = 2 f2 + (3-41)

Ya2 +/3
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f,(a, B) 13-45-118001

Fig. 3-5. Average single-particle scattering
pattern fl (a, 3).

la

A typical fl(a, p) is illustrated in Fig. 3-5, where we have indicated that the function peaks up

sharply near a = = 0 and is zero for e > 7r/2. We shall find that f1 ( ) affects the angular im-

pulse response hI( ) only through the width parameters W a and W3. They are defined for con-

venience as

W =i dai d 2fl(a, /) (3-42a)

and

i oo da dpp2 fl(,] a , (3-42b)

by analogy with the marginal standard deviations of a joint probability density function. We re-

mark that the "covariance" a/3 is zero, because of the circular symmetry of fl(a, /).

In accordance with our discussions in Sec. 3.2 and Appendix B, we shall replace the metric

coefficient

sin ( Z2 ) - sin O

ja +32 0

by unity. Thus we use the approximate single-particle scattering pattern

fl1 (a, P) - f( a 2 + 72 ) (3-43)

in most of the work to follow. As we point out in Appendix B, it is necessary to include the metric

coefficient in the variance calculations [Eq. (3-42)] because the integrand is weighted heavily at

larger values of by the factor a or p . We shall improve the accuracy of our results by in-

cluding the factor (sinO)/O when we transform our ultimate answers back into polar coordinates.

In all the intermediate calculations in the analysis below, however, we shall assume that the met-

ric coefficient is unity.
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Fig. 3-6. Geometry for single-layer
impulse response.

The geometry for the derivation of the single-layer impulse response h1( 1 , P1; ao, p0 ) is

shown in Fig. 3-6. The antenna in the figure is the hypothetical reproducing antenna defined in

connection with Eq. (3-26) in Sec. 3.2. At its indicated location 0o meters below the layer, it

measures the average angular intensity distribution function which will illuminate the second

cloud layer when we add it to the model. The antenna is aimed in the direction (a 1, P/1), where

a I and i1 are measured in the directions indicated at the top of the figure, and

e 01+
2 P2 (3-44)

The distance from the antenna to the layer, measured along the axis of its receiving "beam,"

is o sec eO At that distance, the cross-sectional area of the beam is P 2 sec 2 O d. Since

this cross section is inclined at angle 01 to the layer, the region on the layer which lies in the

beam of the antenna has area

6A 2 sec3 0 d . (3-45)
o sec d

The incident plane wave illumination, represented as an angular intensity distribution, is the

unit double impulse uo( Ca - a) Uo (P - Po); the polar angle indicated in the figure is

2 p+2 (3-46)
0 = So0 0

The antenna in Fig. 3-6 receives scattered radiation from the layer if and only if a particle

is present in the region 6A. Given that a particle is there, we use Eqs. (3-7) and (3-43) to write

the conditional average scattered power
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Cf

Prec, sca(al ', 1; o' Po ) = 2 2 f2(L1 - ao 21 - o) (3-47)
sec 0o 1

received by the antenna. (Recall that both Cf and fl ( a, P) are averaged over the distribution of

particle sizes in the cloud.) Now, by the Poisson assumption, a particle is present in the incre-

mental area 6A with probability

2 3
p6A = p2o sec3 01dc , (3-48)

where p is the average particle density [Eq. (3-33)]. Thus the average scattered power received

by the antenna in Fig. 3-6 is given by

2 3
Cf p o sec3 1Od

Prec, sca(lv P1p; 0o' ) o) 2 20 fl(al- Co' 1 - po)
o 1

= pCf sec 01 fl(a - ao, P1 - Po) dw (3-49)

The unscattered light emerging below the layer is assumed to be a plane wave propagating

in the same direction as the incident wave. Its average intensity is reduced because of the ex-

traction of Cext watts of power from the wave by each particle in the layer, where Cext is the

average extinction cross section over all particles in the cloud. Now, an area sec (0 in the
o

layer projects into unit area on a phase front of the incident wave. Thus each unit area of phase

front has its path obscured by p sec 0 0 particles, on the average. The average intensity of the

unscattered plane wave emerging below the layer is therefore [1 -PCex t secO ]. Since the an-

tenna can receive this plane wave only when 1 = o and p1
=

0o, the average unscattered power

received by the antenna is given by

Prec,unsc(l'/l; A ao,7 ) =(1 -PCex t secel) u) Uo()u - o ) dw (3-50)

in which we were able to write sec 1 in place of secO because the impulses constrain the two

angles to be equal. We observe, however, that the unbounded growth of secOl as 01 approaches

±r/2 will cause the coefficient in Eq. (3-50) to become negative whenever

loi > sec 1 . (3-51)
pCext

We cannot permit this to occur, since it would violate the law of conservation of energy. A nega-

tive coefficient in Eq. (3-50) would correspond to the absorption by the particles of more power

than is incident on them. The difficulty arises because, although Io is small enough to preclude

double scattering, Io sec 0 1 is not. We avoid the problem by replacing sec0 1 in Eq. (3-50) by

secOl 1, 1 1 1 sec-1 1
_ A PCext

sec0 11
elsewhere (3-52)

PCext

This artifice becomes unnecessary in the limit as Io (and hence p) goes to zero. Upon a mo-

ment's reflection, we see that the same substitution should be made in the expression (3-49) for
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the average scattered power. When the inequality (3-51) holds, Eq. (3-52) actually expresses the

fact that the path of the plane wave is completely obscured by particles, on the average. Thus

all its power is removed by the particles, and a fraction Cf/Cext is re-radiated as forward-

scattered light. This behavior is expressed precisely by the replacement of sec O1 by seco t in

Eq. (3-49).

These substitutions having been made, the sum of Eqs. (3-49) and (3-50) is the total power

received by the reproducing antenna in Fig. 3-6. In view of Eq. (3-22), the average angular in-

tensity distribution incident on the observation plane is

[de - [Prec,unsc ( ) + rec,sca ( )] (353)

This distribution is, by definition, the average single-layer unit double-impulse response.

Writing it out in full, we have

hl(al' r1 ; o, P ) = (1 -PCex t secGo) uo(a 1 - ao ) Uo(3 -- o)

+ p Cf sec 1 fl(eC - o, 5 - Po ) (3-54)

The response below many layers follows from an argument which is familiar from linear

system theory. Let us think of an arbitrary incident distribution I(a, rgo) as a sum of very

narrow rectangular pulses. Because of the linearity of Maxwell's equations, the scattering proc-

ess is linear. In a straightforward fashion, then, we construct a linear superposition integral

R(ai1, 1) = 5 dao 5 dpo I(o , o ) hl(al, ; a, /o) (3-55)

to calculate the average response R(a 1 ' P ) below a single layer to the arbitrary illumination

I(a o , PO). It follows that the double-impulse response hN(aN, rN; ao, ro) of an array of N par-

allel cloud layers o meters apart is given by the (N - )-fold two-dimensional superposition

integral

N( ZN, PN; o, p o) SS ... S N- ..d 1S ... d iN-1.. d, 1

hl(a N N; aN-1' gN-1)' h'' h1 (a, ; o', o) (3-56)

The impulse response of the actual cloud is

hI(Yz, r; a o o o) lim hN(, r; ° o0 ) (3-57)
N- o

0o-0

The question of the limits of integration in Eq. (3-56) requires a certain amount of discussion.

Within the context of our thin-layer model, a problem arises whenever oa and lie outside the

region

0 e2 ;+ 4 t (3-58)

This would correspond to scattering through accumulated total angles large enough that some

light was propagating upward toward the top of the cloud. Our model will account for the loss

of this light by simply setting hN( ) equal to zero outside the region [Eq. (3-58)], whenever it
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extends that far. One way to do this analytically is to let the integration limits in Eq. (3-56) be

such that (/ + i )< (r/2) for all i. The other alternative is to let all the limits be oo, and

then truncate the final result outside Eq. (3-58). Both schemes were studied in some detail during

the course of this research. Attention was focused upon the analogs of Eqs. (3-56) and (3-57) for

a two-dimensional cloud, which were similar except that all the p-variables were absent. Appen-

dix C describes the results of a numerical solution obtained by Zaborowski, 3 0 who programmed

an (N - )-fold one-dimensional integral equation similar to Eq. (3-56)which had the limits ±7r/2

on all integrals. He simulated the solutions for a range of optical thicknesses, using values of

N such that fo was equal to 0.5D . Another approximate solution was obtained by letting

secO. 1 (3-59)
1

everywhere in the integral, using the integration limits ±oo on all integrals, and applying the

Central Limit Theorem. The two solutions were essentially identical over the central region

(specifically, the region l o < 2 , which includes 95 percent of the area under the curve). A

more detailed discussion of the two solutions is presented in Appendix C.

We carry out a Central Limit Theorem approach to the solution of Eqs. (3-56) and (3-57) here,

with integration limits oo. The factors hA( ) in the integrand must fulfill three requirements in

order that this technique be applicable:

(a) h 1( ) >0

(b) Sd d h(oz, p; , 0) = Kh<<

- 00

(c) h1( k Pk; 'k-l' Pk- ) = hl(ak - k-l' Pk - Pk-l) (3-60)

Requirements (a) and (b) are clearly satisfied. We meet condition (c) by setting

secO. 1 [Eq. (3-59)]

everywhere. We note that this approximation is accurate within 10 percent for

IO I < 0.42 radian , (3-61a)

and within 20 percent for

il < 0.58 radian , (3-61b)

and that these numbers are roughly comparable to the other angular restrictions on our analysis.

Thus we expect that, like the effects of our earlier approximations, errors due to Eq. (3-59) will

become important only out in the tails of the final result. Making use of Eq. (3-59), then, we

approximate hi( ) of Eq. (3-54) as

hl(oak' Sk; Ok-l' Pk-l ) - (1 -PCex t) uo(CZk - ak-l ) o(Pk - k-l)

+ Cffl( k - Zk-l' k- k-l) (3-62)

It will be convenient for the kernels in the integrand of the multiple integral equation to be nor-

malized to unit volume. Integrating the right side of (3-62) to find the total volume under the

function, we have
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Kha = 55 d d [(1 -PC ext) uo(o ) u(/P) + pCf1(a, )]
_00

= 1 - P(Cext - Cf)

= -pCI (3-63)

The quantity CI is the average loss cross section per particle defined by Eq. (3-5) in Sec. 3.1.
Defining the normalized function

hla k k-l' k- k- ) = Kha [( - PCext) o( k -k - k-) U O(Pk -Pkl)

+ PCffl(a k - -l Pk-' k- ) ]'

hl(a k' k; ak-l' k-' k- ) Khahla(a k -ak-l' k -3 k- )

(3-64)

(3-65)

The integral equation (3-56) then becomes

00

h (a - KN g ... do
hN( NP N; g) Kha <5 * * 5 a N-1.

_00

00

. da 5... 1dN_ 1- .. d1
00

hla(aN- aN, N- N- ) . . .hla(a 4 - a0, -o' ) . (3-66)

The approximate solution of this equation for large N follows in

Limit Theorem for two dimensions. We have

KN aexp - a 

hN(aN'UN; ao'o) Nh' exp 2 2
ha

nmediately from the Central

(P )2]Nh 0
2Nu

hp

(3-67)

in which

2 2
N=ha = N d a d a hla a, 3)

NQ d CW 2
-1 - 2 o v f a,= NKha PCf WC 

- o vCI
(3-68)

2 2
and Ngh is given by a similar expression involving W/3. The quantities W and W are the
single-particle scattering beamwidth parameters defined by Eq. (3-42). Since they are equal,

2. 2Nu a is equal to Nh We recall that the cloud thicknessNo-h hp .
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T = N1
o

and that

Cf YfCex t

in terms of the average forward-scattering efficiency yf defined by Eq. (3-5b). The extinction

distance in the cloud is

De [dvCext

and the optical thickness of the cloud is

T
N =

e De

Using these relations we reduce Eq. (3-68) to

2
2 2 YfN W 2

No2 Na2 f e- a (3-69)
hat hp -- odvCf

In the limit as N goes to infinity (while Io = T/N goes to zero) Eq. (3-69) becomes

2 2
YfN W = -

-2 (3-70)

This limiting process was already implicit in the application of the Central Limit Theorem.

The coefficient in Eq. (3-67) becomes

N+1 (1- d C

lim - lim
N-oo 2r r aX N- o 2r a

- -o
0 0

exp [-Ne (1 - Yf)]
_= . (3-71)

Finally, then, we can write down the angular impulse response of the entire cloud. We have

hI(ag, ; aCo , p 0
)
= lim hN( ,P; ao Po)

I -
o

exp[-Ne( - Yf)] [ (cocat) 2 ( - P)2

27ea f exp- 2 ] (3-72)
2'ru 0! U Zu 2 2 2a2 P

Since the single-layer response (3-62) contains an impulsive term, it is clear that Eq. (3-72)

should actually contain an impulse as well. This term corresponds to the unscattered residue

of the incident wave. It is easily shown that the coefficient of the impulse is exp [-Ne], however,
and we assume Ne to be large enough that this term is negligible compared to Eq. (3-71).

We observe two interesting and intuitively satisfying features of Eq. (3-72). First, the vari-

ances (3-70) are proportional to the quantity YfNe, which is precisely the optical thickness the
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cloud would have if its particles were lossless, in the sense that CI were zero and Cext were re-

duced to Cf. Second, the integral of Eq. (3-72) on and is exp[-Ne( -f)], roughly the grand

total of all scattered light which penetrates to the bottom of the cloud. This is precisely equal to

the extinction attenuation which would be suffered by a plane wave traversing the cloud if the par-

ticles were completely lossy, in the sense that Cf were zero and Cext were reduced to Cf.

Having derived the angular impulse response (3-72) of the cloud, we can immediately write

down its response R(a, p) to an arbitrary incident distribution I(O, ). Repeating the superposition

arguments used in connection with Eq. (3-55), we have

R(a, 9) =SS (ao go) hI( ov; C o p o
) dodo (3-73)

We can now obtain explicit numerical criteria for the rather vague condition stated earlier

that our results should be concentrated about 0 = 0, in order that use of the coordinates cZ and

p be permissible. After all intermediate calculations have been carried out, and we have ar-

rived at a final answer [such as Eq. (3-73), for example], it will generally be appropriate to

transform the result back to the conventional polar coordinates and . As we explain in Ap-

pendix B, this is accomplished by using the transformations

a = cos 

, = e sin 

multiplying the function by the metric coefficient O/sinO, and setting the result to zero for

o > 7r/2. The metric coefficient can be important in physical situations, as we shall see in Appen-

dix G, because the parameters of actual clouds can often be such that the angular intensity distri-

butions below them are nearly flat over most of the range of from 0 to 7r/2.

A numerical criterion for the maximum permissible values of gCZ and a:/ in Eq. (3-72) follows

when we impose the condition that the value of the (, q0) transformation of Eq. (3-72) at 0 = 7r/2

shall not exceed its value at = 0. In particular, let us suppose that co = o = in Eq. (3-72),
2 2

and let us transform h(oe, ; 0, 0) into a function g(O, o0). Recalling that ua = g, we have

g (0, P = 1 sin exp ,2 (3-74a)

where

exp [- Ne(1 -- f)]
Ci 2 (3-74b)

27r(

The requirement that

g(, P) g(, )

leads to the condition

sinr/2 exp[ 8] 1

which is satisfied by
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22 2 7r
Croc =YfNeW 1 7In 

- 2.73 , (3-75a)

or

ua 9 1.68 . (3-75b)

Now, we indicate in Appendix G that W a and yf are very nearly 0.3 and 0.96, respectively, for

most cloud particles at visible wavelengths. For these values Eq. (3-75a) yields the result

Ne 31.6 . (3-75c)

We therefore have confidence in our analytical results for optical thicknesses less than about 32.

In Appendix G we use published meteorological data to show that Eq. (3-75c) is satisfied by

a broad range of naturally occurring clouds. For clouds of greater optical thicknesses, we are

inclined to stipulate that angular intensity distributions are practically flat for all 0 < r/2.

Equation (3-75a-c) is subject to a reasonable physical interpretation. We recognize that

about 0.9 of the volume under a symmetric two-dimensional Gaussian function is contained within

a radius 2 about the origin. In particular, 0.9 of the volume under the cloud impulse response

hI( ) of Eq. (3-72) is contained within the region

0 = d2 + 32 2 

When oa satisfies Eq. (3-75b) with equality, this becomes very nearly

2cz + 2 <

3.5 JOINT IMPULSE RESPONSE hp(,p,x,y; Co,oXo, Yo)

A narrow beam of light traversing a cloud becomes spread out in both angle of arrival and

cross-sectional area. We shall model this behavior of the cloud as a four-dimensional linear

system, which is a natural extension of the results of the preceding section.

The joint impulse response h (, A, x, y; Co , xo, yo) is defined as the power distribution
p rio'

function at coordinates (a, , x, y) on the underside of a cloud when a quadruple-impulse beam of

the form of Eq. (3-33) is incident on the top of the cloud at coordinates (ao, Po' , Yo). As we

showed in Sec. 3.2, the impulsive distribution [Eq. (3-33)] is a unit-power beam with infinitesimal

angular dispersion which has intensity

sec 0oUo(X - Xo) Uo(y - Yo)

sec 0 )U(x -Xo) U(y-yo) watts-m 2 (3-76)

We use the same technique in deriving hp( ) that we used in finding h( ) in the preceding section;

that is, we obtain the single-layer impulse response, construct an (N-1)-fold linear superposition

integral, and take a limit as N goes to infinity.

The geometry of the single-layer configuration is shown in Fig. 3-7. It is convenient to begin

by writing down the response sl(Cl1 , 1' xl , y l ; o , o', xo, y o ) to the hybrid incident distribution

Pi(c, , x, ) = C - ) O(- o ) _l(X - ) U_1( - Y ) (3-77)
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f

Fig. 3-7. Geometry for single-layer
power function response.

in which u 1( ) is the unit step function. Equation (3-77) corresponds to a plane wave with angle

of arrival ( o, Po) whose intensity at the surface of the layer is

sec a,2+ P2) ifx
I (x, Y) = s ( ) ' i x

0 ,elsewhere

and y > yo

(3-78)

The quadruple-impulse response h ( ) of a single layer is obtained by differentiating s( ) with

respect to x and y l . This step is permissible specifically because: (a) the scattering mecha-

nism is linear, and (b), si( ) turns out to be a function of the differences (xl - xo) and (i - Yo ).

The antenna in Fig. (3-7), which is the reproducing antenna defined in connection with

Eq. (3-35) in Sec. 3.2, is pointed in the direction (1' P1 ). Its effective aperture area in the plane

perpendicular to its boresight axis is dxdy cos 1. The coordinates (XA, YA ) of the center of the

region 6A on the layer are given by

XA = o tan O1 cos yo + xl

oe01 cos 1 + X1

(3-79a)o= ol + 1

and

YA = o tanel sin 1o + Y1

(3-79b)
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where ¢o1 is the azimuth angle in spherical coordinates of the direction in which the antenna is

pointed. It is clear that the antenna receives a signal only when 6A lies in the region over which

the incident illumination [Eq. (3-77)] is nonzero; that is, we must have

Io01 + x > x (3-80a)

and

0 o/p + Y > yo (3-80b)

simultaneously.

Given that the conditions of Eq. (3-80) obtain, and given that a particle is present in 6A, we

can write down the conditional average scattered power

see Cf

2 ec2 1( 1- f o' - o ) cos 1 dxdy (3-81)

o t

received by the antenna. Our reasoning is analogous to that associated with Eq. (3-47) in Sec. 3.4.

The extra factor sec O in (3-81) is the intensity of the incident plane wave, and the antenna aper-

ture area cos 0 1 dxdy also appears as a factor. We express the conditions (3-80) by multiplying

(3-81) by the function

_1(x1 -xo + o°l) U-_(yl - Yo + opl) (3-82)

The condition that a particle be present in 6A is removed as before by multiplying (3-81) by the

probability

p6A = Po2 sec3 01 dw [Eq. (3-48)]

that a particle is there. The result is

Prec, sca('1' P ' xl, ' y ; o Po' xo, Y) = pCf se o ff(ol - o' Pi -go )

u_4 (x4 - Xo + IoC ) u_(y 4 Yo + op,) d ) dxdy , (3-83)

the average scattered power received by the reproducing antenna. By reasoning similar to that

preceding Eq. (3-50), we write down the average unscattered power

Prec, unsc ) -PCext secO0) secO cosO * uo(a - ) u(P1 - )

l(x1 - Xo + oL) U- (Y -Y + oB ) d dxdy (3-84)

received by the antenna. Again, the factor sec 00 cos 01 accounts for the incident intensity and

the effective antenna aperture. But the impulses in ay and p in Eq. (3-84) constrain O0 and 04

to be equal; hence

sec 0 cosO = secO cosO = 1 (3-85)

In view of Eq. (3-35), we see that the average power distribution function below the layer in re-

sponse to the hybrid input [Eq. (3-77)] is
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st( ) = [dw dxdy] [Prec, unsc rec, sca

=[(1 - PCext secO) Uo( - a0) Uo( - Po) + PCf secO fl(al - o , ' - Po ) ]

u _(x- Xo + fol ) U-i(Y - Yo + oPl) (3-86)

The replacement of sece 0 by see follows from the same reasoning that we used in connection

with Eq. (3-52). As we stated earlier, the hybrid response s 1 ( ) is a function of the differences

(x - Xo) and ( 1 - yo). Now, the quadruple-impulse incident distribution (3-33) is the second

partial derivative with respect to x and y of the incident wave [Eq. (3-77)] which gave rise to

the output s ). The impulse response hi( ) is therefore the derivative of s ); that is

2

h( ) axay [st( )] (3-87)

The result is a duplicate of the rightmost member of Eq. (3-86), except that the two unit-step

functions u 1( ) are replaced by unit impulses u ( ).

As in Sec. 3.4, we exploit the linearity of the model to construct an (N - )-fold superposition

integral for the response hN( ) below N layers So meters apart. We have

NN(a N N, XN YN; o, Xo, Yo ) =SS... S doaNl ... da

SS S d 3
N-1 ... dp 1 S... dX N_... dxl SS- .. dYN 1. .. dy1

·h(a N' N' N' YN; N-t'1PN-1' N-1' YN-1). '

ht(a' P' X1 Y; o Po, Xo' Yo) (3-88)

The limits of integration on all the az and /3 variables are + r/2, and the x and y integrals have

limits ± o.

Equation (3-88) cannot be solved by application of the Central Limit Theorem, because h )

is not a function of the differences of its arguments. Even though we can replace sec i by unity

as before, the two impulses u (xi - xi + 0o0ai) and uo(yi - yi + oi) cannot be written as func-

tionof - o )c and (ie -tions of ( i - i-i ) and (i - i_1) The equation has been solved, however, by a method which
is approximate in the same sense as the technique used in Sec. 3.4. Because the procedure is

long and involved, only the final answer is presented here; the solution is carried out in detail

in Appendix D. In the limit as N goes to infinity, the result is the four-dimensional jointly

Gaussian function

h (o, , x,y; ,0 , xo, yO) exp [-Ne - f)] [4 7rZ c2racru ) ]
-

p( o 0o o e ( -- p x-- p/y

[- (1 | (a -a ) (a - a )(X - X + o) (X - 7 a

2(1-p 2 2 X ax 
x -x± x

(P 0 )2(P-p )0 ))(yy (y Y + T ) 
-exP1 - 2 V(P o 2 - + y 2 , (3-89)

3y o y y
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in which

2 zYNW2 2 2

O* YfNW ' a ( 3 (-90)2 2 Z

Z r 2 2

x 3 O

The quantities yf, Wo and W 2 are the single-particle scattering pattern parameters defined

previously. The quantity T is the physical thickness of the cloud in meters, and Ne is its opti-

cal thickness.

Now, since hN( ) was defined as the impulse response over a plane Io meters below the Nth

cloud layer, Eq. (3-89) is a power distribution function over the lower boundary plane of the cloud.

In many situations we will want to know the impulse response over the ground plane h meters be-

low the underside of the cloud. One could calculate the necessary transformation geometrically,

but it is easily obtained from the single-layer impulse response h1 ( ) that we have already de-

rived. Let us visualize adding a fictitious planar layer Io meters below the cloud, on which the

average particle density p is equal to zero. The quadruple-impulse response hi( ) of this layer

is obtained from h1 ( ) by replacing p by zero and Io by h; that is,

h(sa, p,x, y; , Po, pxo, Yo) = u (a-ao) Uo( -o) U(x-x + ho) u(y-yo + hp) . (3-91)

The impulse response hG( ) of the cloud, measured over the ground, is given by the superposition

integral

hG(a, , X, y; o, go' Xo0 Yo) = 555 dot' d:' dx' dy'

· h(a, , x, y; y', ', x', y') hp(C ',p',x',y'; o,o, xo , yYo ) (3-92)

The solution of Eq. (3-92) is another four-dimensional Gaussian function,

hG(, x, X y; so , /go xo, Yo) = exp[--Ne( - f)]

[2 GpGrxGyG xG )(pyG-

1 (- ) 2 (a - a )(X-X o + (T + h) aO)
·exp 0__ 00 0 0Lex 2 2(1-P 2xG a a-GxG

aaxG a GoG XG

(x - x + (T + h) a+ 2 2
2

xG

2(1p (P- )2 ( -p o)(y- Y + ( + h) o), exp 2P
2 a2 yG G

yG
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in which

2 2
aozG cr a

2 2
aG = r ,

2 2 22xG a - 2p ha a + h2 2
xG = a X X a

2 2 2 2
OG = ay P/3 yhryaa +h 

P xax - ha

P xG xG

Ppy' - hap

9/syG a P YY (3-94)

We notice that the coefficient in front of the Gaussian exponentials in hG( ) is identical to the

coefficient in h p(), as it must be. In both cases, it is

~~p~~~~~ ~2
3 exp[-Ne(1 - Yf)] [7rTYfN aW 3] (3-95)

We notice also that the integral of either hG( ) or hp( ) over all ac, , x and y is equal to

exp [-Ne( - Yf)], which is approximately equal to the total power penetrating to the bottom of

the cloud when the unit-power quadruple-impulse beam is incident on the top of it.

We can immediately write a superposition integral specifying the response PG(e, , x, y)

over the ground beneath a cloud illuminated by an arbitrary incident power distribution function

Pi ( c 0o , 3o, xo, Yo). Specifically,

PG(a,/5, xy) = a 5d do/ dx dy 

Pi( o' 01o ' Xo' Yo) hG(a,'1' x, Y; o , o , X' Yo) (3-96)

The intensity variation across a laser beam is frequently approximated by a Gaussian function.

Suppose such a beam were incident on the top of the cloud at an angle of arrival ( i , pi
), and that

it had negligible angular dispersion. Further, assume that the center of the beam intersects

the upper surface of the cloud at the coordinates (xi , yi). An appropriate power distribution rep-

resentation for this beam is

P
Pi(ao' ' Xo' ) y U)( ) -i) Uo(o i)

xi yi

exp - 2 2a , (3-97)
xi yi

where P is the total power borne by the beam, provided that aci and i are small. (In general,

the beam intensity variation would be modeled as a Gaussian function over a plane perpendicular

to the direction of propagation. One would transform it into a function of xo and y over the

horizontal plane, which would not necessarily be Gaussian, and use the result in Eq. (3-97).
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The assumption of small a i and i simplifies the mathematics for this example.) Inserting this

expression into Eq. (3-96) and carrying out the integrations, we find that the resulting power dis-

tribution function PG(oa, , x, y) over the ground has precisely the form (3-93), with the following

modifications:

(a) multiply (3-93) by Po;

(b) replace O, /3p x and Yo by i' P,.xi, and yi; and

(c) replace uxG by (2G + axi) and OyG by (Q +a ).

The incident beam [Eq. (3-97) is particularly well suited for demonstrating the consistent

relationship between the angular impulse response hI(a, P/; a 0c, P0) of Eq. (3-72) and the joint

impulse response hG(a, , x, y; ao , ,0 Xo, Yo). In the limit as xi and uyi go to infinity, the

incident beam [Eq. (3-97)] looks like a uniform plane wave with angle of arrival ( i, pi ), whose

intensity is

P
I - o (3-98)

xi yi

Meanwhile, the corresponding response PG( ) of the preceding paragraph assumes the form

(a - .)2 ( P - Pi)2
Ip exp[-Ne( -f)] [27cu] exp2 (3-99)

Ia 3

which is precisely the angular intensity distribution that Eq. (3-72) gives in response to the same

incident plane wave.
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CHAPTER 4

GENERALIZED SCATTERING FUNCTION

In Appendix A we consider the statistics of the scattered field on the ground beneath a cloud

illuminated by a signal of the form

ei(t,-) = Re {s(t) E(p) exp(-j27rfot)} (4-1)

The function s(t) is a narrow-band unit-energy complex envelope. The function E(p) describes

the variation of the field amplitude with position P over the top of the cloud. It is equal to a

constant for all - when the incident illumination is uniform over the top of the cloud (e.g., a

plane wave), but has the appropriate functional form when the illumination is nonuniform (e.g.,

a beam). It is shown in Appendix A that the resulting field at a point on the ground can be rep-

resented in terms of a complex Gaussian random process. Because of the spatial variation

E(p) in Eq. (4-1), the parameters of the received process depend upon the point of observation r

on the ground plane.

Since it is a Gaussian process, the received field is completely characterized statistically

by its mean (which is zero) and its correlation function. We shall write this function in terms

of a generalized scattering function (T, f, v'), which also depends upon the point of observation r.

These ideas are developed in Sec. 4.1. In the remaining four sections of the chapter, we examine

and interpret both the correlation and scattering functions from several points of view.

4.1 SCATTERING FUNCTION u(T,f, ')

Some of the ideas exploited in this section are similar to those developed in detail in Appen-

dix A. The reader may find it helpful to read the appendix before proceeding further with this

analysis.

When the cloud is illuminated by the signal [Eq. (4-1)], the scattered field y(t, r, r') in the

vicinity of the point r on the ground plane is adequately approximated, as we show in Appendix A,

by the expression

y(t, r, r') = Re f flnS(t-Tn )

n= 

exp [-j2rt(f -fn ) -jen -j (r' vnl (4-2)

in which both r' and v' are vectors drawn from the origin of a coordinate system S' centeredn
at r. The vector r' lies in the ground plane, and is small in magnitude compared to the distance

of the cloud particles from r. The unit vector v points toward the last particle encountered
th signal component before it reached the ground. The number by the n signal component before it reached the ground. The number M is enormous, being

the total of all possible single- and multiple-scattering paths from the top of the cloud to the

ground. The amplitude factor 7n is very small; it is a random variable, and is statistically in-

dependent of all the other amplitudes. The quantities T n and fn are the total path delay (often

called the "range delay") and Doppler shift, respectively, associated with the n path. In gen-

eral, 71n, Tn and fn are implicitly dependent upon r. The phase 0n is random, uniformly
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distributed over (-7, 7r), and is statistically independent of the phases on all the other paths.

The last term in the exponent of Eq. (4-1) expresses the phase variation of the nt h signal com-

ponent with r'.

Because of the uniformly distributed random phases, the mean y(t, r, r') of Eq. (4-2) is zero.

Thus a complete statistical description of the process is provided by its correlation function

K(t 1, t 2 , rl, r). Like all the other functions considered in this chapter, K( ) is functionally

dependent upon r. Rather than carrying r along as an argument everywhere, we simply adopt

the convention that the r-variation is implicitly present in every case. The details of this de-

pendence will be discussed explicitly where appropriate. In particular, we will find that the

r-dependence is important when the incident illumination is a beam, but absent under plane-wave

illumination.

In deriving K( ) we adhere closely to an analysis carried out by Kennedy.3 2 We have

K(til t, rl, r2 ) = y(tl, rl) (t z r e)

1 E [ _ -iji ,. _ +j 0

A [(t e' A''(tl r ) e
i

_ j e0 k ' ( rz
[, e +0 A-"'(t r e k (4-3)

k

in which

Ai(t, r') = s(t -T i ) exp -j27rt(f f i) -j ( 

Let us first average Eq. (4-3) over the phases Oi, conditioned on the random amplitudes i.'

Because of our assumptions about the phases, Eq. (4-3) becomes

K(tl,t 2, r, r) - Re Ait 2 ) i2'Re -j27rfittt,'r 1 ) ' (t2,- 2)

2 Re [ i (1 t2In i 12 s(t 1 -Ti) s*(t 2 - Ti )
i

exp (j2rfi(t -t 2 ) -j ( - 2 i(4-4)
o 1/li

Let us collect all the terms in the summand of Eq. (4-4) which have path delays Ti in the range

(7-, + A), Doppler shifts f. in the range (f, f + Af), and v in the range (v', v' + Av'). It is
1 1

convenient to defer the precise interpretation of the quantity Av' to the following section; for

the present, we simply assume that it is a well-defined quantity. We now add all these terms,

writing their sum in the form
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Re exp [-j27rf(t -t 2 )] 3 [l1m 12 s(tl Tm) s*(t 2 T )
m

exp (j2rf (tt --t2 ) j 2- (r v 

- Re exp [-j27rf(t - t2 )] W(T, f, ) T Af A v'

* (t -T ) s*'(t 2 -T) exp (27f(t I -t 2 )j i (r 17) -) (4-5)

in which the index m ranges over only those field components having Tm, fm and v' in the pre-

cribed ranges. The weighting function W( ) is defined by the relation

W(T,f,v') AT Af A I m12I (4-6)
m

with m ranging over the values it assumed in Eq. (4-5). The approximate equality in Eq. (4-5)

approaches equality as AT, Af and Av' approach zero.

We visualize grouping all the terms in Eq. (4-4) into partial sums of the form given in

Eq. (4-5) and adding them. In the limit, as AT, Af and Av' approach the increments d, df and

dv', this sum approaches the multiple integral

K(t t r r ) = Re exp[-j27rf(t-t2) ]

dT df dv' W(T,f, v') s(tl -T) s* (t2 -T )

exp j27rf(tl -t 2 ) i ( 1 2- v (4-7)

where the range of integration includes all T, f and v' for which W( ) is nonzero. From an engi-

neering point of view, the function W( ) and the integral in Eq. (4-7) make sense when the weight-

ing coefficients | i 2 in Eq. (4-4) are small, the number of field components is very large, and

the parameters of the field components are distributed over the applicable ranges of T, f and v'

in a reasonably smooth manner. We claim that these conditions are satisfied by our cloud model,

under the assumptions we have made, and hence mathematical convergence questions need not

be considered.

We now introduce the generalized channel scattering function

U(T, f, v') = W(T, f, v') dr df dv' W(T, f, v')] , (4-8)

in which the integration range includes all T, f, and v'. We recognize that a( ) depends in gen-

eral upon r as well. Let us assume that the complex envelope s(t) of the transmitted signal is

so normalized that
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2 I s(t) dt = 1 . (4-9)

Without concerning ourselves at this time with the value of the signal energy incident on the

cloud, we simply observe that the energy Er per unit area borne by the received signal y(t, r, r')

is given by the relation

Er K(t,t,r'r') dt (4-10)

It follows that Eq. (4-7) can be written in the form

K(tl, t, r, r) = Re exp[-j2rf(t-t) ]

*dTdfdv' (T,f, v') s(t -T) S'(t 2 -T)

exp [j7f(t -t) j ( - r) v' (4-11)
0

Equation (4-11) is the result that we seek. If we knew the scattering function at every r,

and the transmitted signal envelope s(t), the relation (4-11) would give us a complete statistical

description of the field everywhere on the ground plane. Of course, the determination of the

scattering function in any specific case can be a major undertaking. We have obtained only a

partial description of the function for the cloud communication problem, as we explain in suc-

ceeding sections of this chapter.

Nevertheless, assuming we have complete knowledge of U((T, f, v') and s(t), the formulation

of Eq. (4-11) leads to a description of the optimum receiver for the case in which the total

received process

r(t,r) = Y(t, r) + N(t, r) , (4-12)

where the noise N( ) is a Gaussian random process, statistically independent of the signal Y( ).

Kennedy 3 2 has outlined the processing such a receiver must perform, over an aperture which

is small compared with the distance to the scattering medium, as a logical extension of known

techniques33 for the detection of Gaussian signals in Gaussian noise. He obtains a set of observ-

ables by expanding the received process on a complete set of orthonormal time-space functions

q9i(t, r), and proceeds to a likelihood function. While the analysis is quite straightforward on

an abstract level, the actual receiver processing in specific cases involves the solution of com-

plicated integral equations in time and space.

We choose not to dwell upon the design of such an optimum receiver. Instead, we shall pro-

pose a scheme in Chapter 5 which is subject to a straightforward performance analysis. It is not

clear how closely this scheme approaches the optimum performance, but it will give us a feeling

for a lower bound on the performance one might expect to achieve. In designing this receiver,

we shall use certain special cases and rough approximations of the correlation function and

scattering function developed in this section. The remainder of this chapter is devoted to dis-

cussions of these specialized functions.
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4.2 SPATIAL CORRELATION FUNCTION K(r, r2)

A special case of Eq. (4-11) is the time-dependent spatial correlation function

K(t, t, r, r-) Er Re dT df dv' (T, f, v')

2~~~~~~~~~~~- rs(t -) 27s (t -) exp ' (4-13)

in the vicinity of a point r on the ground. Now, suppose that the complex transmitted-signal

envelope s(t) is extremely narrow band; that is, let it equal 2/T over a time interval -T/2 <

t < +T/2 which is very long compared with the interval along the T-axis over which (T, f, v') is

nonzero. We can then talk about a function

K(O0, r,r )-) -I Re V dv' (v') exp j 2 o (4-14)

in which

(y(v') = dT df (r, f, v') (4-15)

We can extend Eq. (4-14) to the case of CW illumination simply by setting

E = P T (4-16)
r r

and letting T go to infinity. Pr is the average received power, understood to be defined (like Er)

on a per-unit-area basis. Equation (4-14) is now a time-independent spatial correlation function,

which we redesignate K(rl, r).

The quantity u(v') in Eq. (4-14) has a natural interpretation in terms of the cloud impulse

responses derived in Chapter 3. Suppose we regard v' as the radial unit vector

i = sinO cos i + sine sinq i + cosO i (4-17)r x y z

in a spherical coordinate system centered at the point of observation r on the ground plane.

The situation is illustrated in Fig. 4-1, for the case in which r = 0. The indicated region dv'

about v' is merely symbolic, since dv' has not yet been defined. From the defining Eqs. (4-6)

and (4-8), we conclude for the CW case that (v') dv' is proportional to the average total power

scattered toward the origin of coordinates by all the cloud particles in the region dv' about v'.

We recognize that it is entirely consistent with this definition to let dv' be the incremental solid

angle

dw = sinO dO d (4-18)

about v'. Thus we can replace cr(v') dv' by

gr(O, ) dw = (O, qo) sine de dp . (4-19)

We remark in passing that a similar interpretation applies to the complete scattering function

(T, f, v') for general s(t); that is, we can replace a(,f, fv') dT df dv' by c(T, f,O, q0) dT df dw.

In terms of the orthogonal angular coordinates

o = cos ° 

= sing , (4-20)
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13-45 -118031

Fig. 4-1. Spherical coordinates for a(v').

defined in Appendix B, we have

or(Oe, o) d a(oe, a,) da d . (4-21)

Here a and are measured, like O and p, in a coordinate frame with its origin at the point

of observation r. Viewed in this manner, r(a, i) embodies precisely the information provided

by the impulse responses of Chapter 3. Thus it is appropriate to call or(a, p) the angle-of-arrival

scattering function. When the incident illumination is a superposition inc(ao, io) of uniform

plane waves over the top of the cloud we have, by Eq. (3-73) of Sec. 3.4,

u(a, ) = K p SS inc(oZ, 0o ) h(Z, f; oa0, o) do d 0 (4-22)

in which hI( ) is the angular impulse response [Eq. (3-72)]. The proportionality constant Kp is

included to satisfy the requirement that

cr(o, ) do d = 1 (4-23)

Because the incident radiation Iinc ( ) is uniform over the horizontal plane, nothing on the right
side of Eq. (4-22) depends upon position r (i.e., the Cartesian coordinates x and y) over the

ground plane. Thus u(a, Al) is independent of r in this instance.

When the spatial variation of the incident radiation is more complicated (e.g., a narrow

beam), it must be represented as a power distribution function Pinc (ao, o, xo , yo) over the top

of the cloud, as explained in Sec. 3.2. In this event, (a, ) does depend upon the horizontal

coordinates (x, y). In view of Eq. (3-96) of Sec. 3.5, we have
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u(o, )= Kp &Si do d odxodYo

* Pinc(ao' 3o ' Xo' Yo) hG(', ' , X, y; c o,/3 ' x Yo) (4-24)

in which hG( ) is the joint impulse response [Eq. (3-93)]. As we showed in Sec. 3.5, Eq. (4-22) is

simply a special case of Eq. (4-24) in the limit as the cross-sectional area of the incident beam

goes to infinity.

It is worthwhile to calculate some typical examples of K( r', r ). Suppose first that the in-

cident radiation is a single CW uniform plane wave with angle of arrival (a o, ). We shall find

that K( ) is independent of the coordinates x and y over the ground (as it is in every case when

the incident illumination is uniform over the horizontal plane). Equation (4-22) now reduces to

cr(, /3) hi(a, ) f ao 0)

(a - )2 ( °
4 exp ( 2 ( 2 (4-25)

in which

2 2 2
2 = ( = fNeW

Th nmit q(2 fe e because we agreed that hi( ) should

be set to zero outside the ranges

al < a 7r/2

1PI < r/2 . (4-26)

This detail may be ignored when we deal with situations in which t a and (X are small enough

that most of the volume under Eq. (4-25) is inside the region of Eq. (4-26).

We recall that the arguments of K(r; r, r) are vectors of small magnitude, measured in a

coordinate system S' with its origin at the point r about which K( ) is defined. The calculation

of K( ) is facilitated by shifting r (and hence S') slightly so that

-' y I- y 4-7-)= + r2 (4 -27)

where x' and y' are also measured in S'. In view of Eq. (4-17), we have

(r -r) · v' = x' sino cosq0 + y' sinO sinyg

x'ac + y' . (4-28)

Equation (4-14) now becomes

K(i, r'2 ) P Re dda d (a, B) exp - o_ 7 (x' + )]j (4-29)

with a(ac, ) given by Eq. (4-25). This is simply the two-dimensional Fourier transform of a joint

Gaussian function. We have immediately
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K(r~, r~) Pr cos [A (x'a 0 + y exp J (4-30)

in which

R 2 = r r2 y (4-31a)

and

a2 Z (T 2 7(4-31b)

As we show in Appendix G, typical values for a might be in the neighborhood of 0.5. Suppose

we stipulate that the correlation distance associated with a Gaussian-shaped correlation function

is about two standard deviations. For o and P3 near zero, then, the correlation distance asso-

ciated with K(r' r r) is typically a few tenths of a wavelength.

Equation (4-29) does not change drastically when the incident illumination is a beam of finite

cross section, except that K( ) becomes a function of the ground-plane coordinates (x, y) of the

point r about which it is defined. As a specific example, let the incident beam have the Gaussian

form [Eq. (3-97)],

P(v ,y 2 exP[~2 +
o ( )U(a 3o )· exp - -o 

Pinc(°o' o'Xo Yo )0 0 2 u 0 0 22
i

which might correspond to a CW laser beam of negligible angular dispersion at vertical incidence,

centered at coordinates x = Yo = 0 on the top of the cloud. In accordance with Eq. (4-24), we

see that the angle-of-arrival scattering function a(, P) in this situation is proportional to the

four-dimensional joint Gaussian function PG( , x, y) described immediately below Eq. (3-97).

Let us suppose again that the coordinate system has been shifted slightly, so that the vectors

ri and r' are given by Eq. (4-27). Let us further suppose that the variation of (o, 3) with r

is slow enough, and the magnitude of r -- rI is small enough, that o-(a, P) is identical at r and

r2 with its value at x' = y' = 0. (This is nearly always true, even when the incident beam is2
extremely tight, because of the x and y dispersion effected by the cloud.) Without going through

the algebra in detail, we write the answer obtained from Eq. (4-29). We have

21
K(r, r) = P(x, y) exp | 22 (4-32)

K1r~,r~) [rc 4]2a

in which R2 is the same as Eq. (4-31a) and12

2p ( ) .i (4+ Th + h

ai +2 272
0i +Ua 1-
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T is the thickness of the cloud in meters, and h is the height of the bottom of the cloud above

ground. The average power Pr(x, y) in Eq. (4-32) is proportional to the joint Gaussian function

2 2exp - +2y
2uxG

with x and y measured in the fixed coordinate system on the ground plane, where

2 2 2(r2 2)
0 xG = t i + at h + h

If the beam Pinc( ) had been incident at some angle (i, 1i) slightly off the vertical, a cosine

term similar to that in Eq. (4-30) would appear in Eq. (4-32), except that the argument of the

cosine would involve algebraic functions of ail, i', and h.

Notice that uRi approaches the parameter R of Eq. (4-31b) in the limit as the width . of

the incident beam goes to infinity. Even for modest ui the correlation distance for Eq. (4-32) is

comparable to the wavelength (except in the extreme case when h becomes very large, so

that the cloud begins to look like a point source, and aR1 becomes proportional to h). These

small correlation distances, for both Eqs. (4-30) and (4-32), substantiate the assumption made

in Appendix A and in this chapter that the vector r' in the expression (4-2) for the scattered

field is small compared with the distance from the ground to the cloud particles.

4.3 SPATIAL CORRELATION FUNCTIONS FOR ANTENNAS

An interesting extension of the angle-of-arrival scattering function ua(c, 3) allows us to cal-

culate a spatial correlation function for signals observed with directive receiving antennas. We

begin by establishing certain conventions for an adequate mathematical description of an antenna.

As in Sec. 3.2, we shall characterize its power gain pattern by a function g(oI', P') whose argu-

ments are orthogonal angular coordinates measured from the antenna boresight axis. When it

is aimed at angle ( a, a ) and illuminated by an intensity distribution I(c, 13), the antenna receives

Ag(ao - a, -a ) I(oz, ) da d (4-33)

watts of power from the solid angle d d at (, ). The quantity A is the area of the antenna

aperture. Under an illumination P(o, 13, x, y) which varies over the horizontal plane, the aper-

ture area A must be replaced by an appropriate aperture function A(a, p, x, y), as we explain

in connection with Eq. (3-36) of Sec. 3.2. When the antenna is located at coordinates (xa , ya) and

aimed in direction ( a', a), then, it receives

A( -a, - a x -x a y-ya ) g( - a , - a )

P(a, p, x, y) d d dx dy (4-34)

watts of power over the area dx dy at (x, y), from the solid angle d d at (, 3). We shall obtain

explicit results in this section under the assumption that the illumination on the top of the cloud

is uniform over the horizontal plane, so that (4-33) applies. The extension of the results to

nonuniform illumination, where (4-34) applies, is a straightforward exercise. It is outlined but

not carried out.

Whenever it is necessary to assume a specific functional form for g(c, ) in this section, it

will be convenient to use the symmetric Gaussian power gain pattern
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g(a', ')-= 2 exp a2 + ,2 (435)

ant ant

This is neither essential to our model, nor (generally) realistic, although it is not unreasonable

when cant is small compared with 7r/2. We use Eq. (4-35) here simply because it permits us to

work out meaningful examples with minimum labor.

The results we shall obtain are subject to an intuitively satisfying interpretation in terms of

diffraction-limited antennas. For this purpose we stipulate that Eq. (4-35) represents the power

gain pattern of a diffraction-limited antenna with a circular aperture of diameter D when

B
ant 7r (4-36)

where

B - (4-37)D

is the familiar rule-of-thumb approximation for the antenna beamwidth. The proportionality

factor /7r in Eq. (4-36) is chosen for convenience, as we shall see. We do not claim that it gives

the "best" fit in any sense, but only that it is roughly correct. The accuracy of this analysis is

such that factors of two are unimportant.

Consider two identical antennas, both having a power gain pattern g(a', 3'). Let them be

centered about the points r and r, respectively, measured from some point r on the ground
plane. Their apertures are assumed to be small and nonoverlapping (the meaning of the term

"small" in this context will be clarified below). Let the antenna at r be aimed in the direction

(a, pt), while that at r is aimed toward (a2 3 2
). The correlation function of the signals re-

ceived by the two antennas is readily obtained by appropriately modifying the analysis in Sec. 4.1.

Our starting point is Eq. (4-3),

Kti l (t, t 2 , r, r)= (t r ) y(t2 , r) ,

in which we interpret the functions y(tl, r) and y(t 2 , r) as the signals measured by the first

and second antennas, respectively. Now, we have seen that all the field components arriving

at a point on the ground beneath a cloud add incoherently; that is, because of their independent

random phases, their intensities add. Therefore, if the component intensities entering an an-

tenna aperture from the direction (, 3) are weighted by the function g( ), it is reasonable to

treat the component amplitudes as though they had the angular weighting g( )1/2. Thus the sig-

nal y(t t , r) measured by the first antenna includes the factor g(a- a t, P - 1)/2, while y(t 2 , r)

contains the factor g(z - a2, p - p2 ) /2 Carrying these factors along through the analysis in

Sec. 4.1, one finds that they can simply be lumped with the scattering function U(T, f, v') of

Eq. (4-8), to form the directive-antenna scattering function

a(T, f, a, ; aOt, P81' 2' 2)

-[g( 1 - ,' o- ) g(O - a :, f - /2 (T7, f, V')(4-38)

This equation incorporates the interpretation of v' in terms of the angular coordinates a and

p, as we explained in Sec. 4.2. In this section we are concerned only with CW illumination;
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hence, by analogy with the ideas expressed in Eqs. (4-13) through (4-15), Eq. (4-38) reduces to

the directive-antenna angle-of-arrival scattering function

Cra(CZV P; l' o1 2' f2 )

= [g( - l - P ) g(O 2 - C2' / - 2)] / 2 (c, ) (439)

The function ua(o, 3) on the right side is the angle-of-arrival scattering function of the field at the

point r in the absence of the antennas. Let us denote the correlation function of the signals

measured by the two antennas as Ka( r r, , 1 , 31' , P2 ) ' with the extra arguments indicating

the explicit dependence of the function upon the antenna pointing angles. Assuming that the co-

ordinate system has been shifted slightly, so that Eq. (4-27) holds, we obtain Ka( ) simply by

inserting Eq. (4-39) in place of a(ac, ) in Eq. (4-29). Thus we have

Ka( r,' Gl, . = Pr Re d d

a(a ,' ; ' /' 2'/32) exp j (x + (440)

We recall that this equation is valid under the assumption that the magnitudes of r and r are

small compared with the distance from the point r to the cloud. Also, we recall that the scat-

tering function and the correlation function both depend, in general, upon r. As we stated ear-

lier, we shall restrict our attention for the present to situations in which the light illuminating

the top of the cloud is uniform over the horizontal plane, so that the r-dependence vanishes. In

particular, let the illumination be a single uniform plane wave, vertically incident on the top of

the cloud. In the absence of the antennas, the resulting angle-of-arrival scattering function

would be given by Eq. (4-25) with o = o = 0,

U(ao, ) 2 exp + 2 (4-41)
27r 2

Assuming the Gaussian antenna beam pattern [Eq. (4-35)], we see that Eq. (4-39) becomes

oa(,A; o!l, fil cZP)2 )= [47r2(2 ant]

2 (( - ct)2 ( - o22)2a jHj,~~ 2 , L l2o 2 4oa2n t 4Cant 

exp I- 2 ( - )2 ( -2 ) 2
LU r 4u 4c 2 ]a ant ant

exp I-2(2 2 - 2 - 2n . (4-42)
L 2 4u2 4u 

o ant ant

Notice that Eq. (4-42) is not normalized to unit volume, as a scattering function ought to be. We

are not concerned about this detail at present, since we are interested only in the functional form

of the results. Substituting Eq. (4-42) into Eq. (4-40) and carrying out the integrations, we obtain

45

______111_---··11·11---�



2

= z Cos a [x'(ac1 a ) + Y(31 + 2) 1X(2 ± 22 + y 2
o (a + ant

2 2 2 2 2

exp exp- 2cr exp - (4-43)2 ) 2 2: 1-S ) ( 2 )

(o±er2 = x +a n (4-44a)

2 2 C2nt(2:ratc ant)

e i r p antea a (4-44d)
4a 1c2+2

The calculation of C is straightforward but uninteresting. The cosine term in Eq. (4-43), which

and the second exponential expresses the behavior of Ka( ) as a function of the angular separation

ot2 of the axes of the two beams. The third exponential in Eq. (4-43) simply expresses the de-
crease in received power when the antenna axes point in some direction other than the angle of

arrival (in this case, a = 13o = 0) of the plane wave illuminating the top of the cloud.

orNow, we agreed in Sec. 4.2 that a reasonable estimate of the correlation distance for a

Gaussian-shaped correlation function was two standard deviations. Equivalently, we regard the

signals as being uncorrelated when their correlation function is down by at least exp [-2] from

its maximum value. We see that this is always the case in Eq. (4-43) under either of the

conditions

R2 20CRa (4-45)

or

p42> >2cr , (4-46)

46

_I� _� _�_ _ _ _____



regardless of the behavior of the cosine term or the third exponential in Eq. (4-43). Thus the

two antennas receive uncorrelated signals when the centers of their apertures are separated hor-

izontally by a distance Rt2 obeying (4-45), regardless of the antenna pointing angles. On the

other hand, if we form two beams with the same aperture (by making field measurements over

two different Airy disks on the focal plane of an objective lens), the two signals are uncorrelated

with each other whenever the angular separation of the two beams obeys Eq. (4-46). This result

may be extended immediately to an array of many multibeam apertures distributed over the

ground. We see that the signal received on each beam in the array is uncorrelated with the sig-

nal received on every other beam when (4-45) and/or (4-46) is satisfied for every pair of beams.

Moreover, since all the signals are Gaussian, each of them is statistically independent of all the

others.

Let us consider the magnitudes of the correlation distances 2Ra and Zup. In the limit as

the antenna beamwidth parameter ant becomes large compared with a , we see that Eq. (4-44b)

becomes

a -(2 )2 (4-47)Ra 2-] 

which is precisely equal to the parameter a of the spatial correlation function K( r, r) of the

scattered field over the ground in the absence of antennas, given by Eq. (4-30). This is just as

it should be, since Eq. (4-30) is equivalent to a spatial correlation function for signals measured

by omnidirectional antennas. When Oant is small compared with o , however, we have

~2 0(a >o )Z (4-48)
Ra = \ 2 ant /

Notice that the horizontal correlation distance

X
2gRa rnt (4-49)

is then precisely equal to the aperture diameter D of a diffraction-limited antenna having an ap-

proximately Gaussian beam representation with parameter antin accordance with the conven-

tions (4-36) and (4-37). Thus two identical narrow-beam diffraction-limited antennas on the

ground beneath the cloud receive uncorrelated signals if their apertures do not overlap, regard-

less of their beam pointing angles.

The nature of the parameter cr, also depends upon the relative magnitudes of (u and aant'

Equation (4-44d) becomes

4
2 ant

2 4ant (4-50)

when aant > > Ua, which simply implies that the concept of angular correlation distance becomes

meaningless for very broad-beam antennas. When Pant is small compared with ua' Eq. (4-44d)

reduces to

a2 4a2nt (4- 51)Pb ant
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For narrow-beam antennas, then, the angular correlation distance is approximately equal to

4uant . In view of Eq. (4-36), we see that two narrow diffraction-limited beams formed with the

same aperture on the ground beneath the cloud receive uncorrelated signals when the angular

separation between the beams is greater than about 1.27 B, where B is the conventional estimate

(4-37) of the width of a single beam.

These results are readily extended to situations in which the illumination on the top of the

cloud is more complicated (a group of plane waves, or a narrow beam). We know how to calcu-

late the resulting intensity distribution I(oa, ) or r-dependent power distribution P(v, /3, x, y) be-

neath the cloud, either of which can then be inserted into Eq. (4-39) in place of U(a, ). When the

r-dependence is present, Eq. (4-40) is valid under the assumption that a( ) varies slowly enough

with r, and 7 rlJ and I r2 are small enough, that a( ) is the same at both antennas. This is

nearly always the case, even when the beam illuminating the top of the cloud is extremely tight,

because of the spatial dispersion effected by the cloud. Carrying out the integrations in Eq. (4-40)

when u(av, i3) is the joint impulse response hG(, i, x, y; o, 00, Xo0 yo) of Eq. (3-39), for example,

one finds that Ka( ) depends upon the last six arguments of hG( ) but the correlation distances

(4-45) and (4-46) are practically unchanged. The algebra is straightforward but very tedious.

When we apply the results of this section to the spatial diversity issue in Chapter 5, we shall be

dealing with narrow-beam incident illumination. Thus the correlation function Ka( ) will, in fact,

depend upon the coordinates of the point of observation r on the ground. We shall simplify the

problem considerably by assuming that the scattered intensity over the ground is constant (inde-

pendent of r) over a suitably delineated region, and zero outside that region.

4.4 ANGLE-DEPENDENT RANGE SCATTERING FUNCTION r(r, V)

We shall show how to obtain the range scattering function

gc(T, v)= (T, f, v) df (4-52)

over a small range Av' about some fixed vector v . Interpreting v' in terms of and /, as

in Sec. 4.2, we see that Eq. (4-52) corresponds to the classical range scattering function

J(T) = cr(T, f) df (4-53)

for the signal measured by an antenna of beam solid angle

Aaw = A Ap (4- 54)

pointed in some fixed direction ( F'f F)' In Sec. 4.5 we shall extend the results of this section

to yield the function (T, f, v) over a range v' about v F . For the case in which the incident

illumination is uniform over the horizontal plane, so that nothing depends upon r, knowledge of

((T, f, V;) for each of a suitable set of vectors vF would give us an estimate of (7-T, f, v') for all

r and -'. For beam illumination, with ( ) depending upon r, one could obtain adequate knowl-

edge of the generalized scattering function over the entire ground plane by calculating (r(T, f, vi)

for a set of vectors vi, for each of a suitable set of positions r on the ground.

As a first step in determining u((T, v), consider the angular impulse response h(a, ; ao io )

given by Eq. (3-72) in Sec. 3.4. This function is defined in such a way that the quantity

IA(o, ; a , ) = h I(a, 3; a ,/3 ) Aco (4-55)

48



is the average total intensity arriving at the ground through the small solid angle A = Aoa Ap

about the direction (oe, 3), when the top of the cloud is illuminated by a constant unit-intensity

uniform plane wave with angle of arrival ( o , oA). Now, suppose we regard the field components

making up IA( ) as a bundle of rays, with one ray corresponding to each scattering path through
th

the cloud which contributes to I( ). The n ray in this bundle has a path length In and an inten-

sity weight wn associated with it. The path length is measured from the point at which the n

ray, while still a part of the incident wave, enters the top of the cloud.

In a more general situation, the plane wave illuminating the top of the cloud has a complex

amplitude envelope s(t). The time origin is referred to a specific point (say x = y = 0) on the top

of the cloud. The intensity weight of the nth ray in the bundle Aw now becomes the time function

, s t _T (4-56)
2 W ns- c (4-56)-f n ( no c

where T is a constant which depends upon the location of the point at which the ray enters the
no

top of the cloud, and upon the angle of arrival of the plane wave. The total intensity of the bundle

of rays in Aw is then given by the time function

IA(t, ', 3; Coo ) 2 Wn s(t -T no- ) (4-57)

Now, the correlation function K(t,t2 l, r2 ) of Eq. (4-11), evaluated at t t 2 = t and r 

r = r', is the average intensity at time t of the radiation incident at the point r' on the ground.

The vector r' is measured from some point r. We recall that both K( ) and the scattering func-

tion o(T, f, v') depend upon r, in general. By virtue of Eq. (4-11) we have

K(t,t,', ') - Re dTdfdv' · U(T,f,v') .s(t-T) (4-58)

Let us select a transmitted signal envelope s(t) such that

Is(t)12 = 26(t) ,(4-59)

where 6(t) is a unit-area pulse which is very short compared with the length of an interval in T

over which U(T, f, v') varies appreciably. Equation (4-58) then becomes

K(tt, r',r) Er dv' (t,tr',') dv' (4-60)

We shall interpret v' and dv' in terms of a and / as before. Suppose now that we observe the

field at r with an antenna of unit aperture area, pointed in the direction (a, /). Let the power

gain of the antenna be unity over a very small solid angle Acw, and zero elsewhere. By Eq. (4-60),

we see that the average power measured by the antenna at time t is

Pa(t a, ) = ErAw(t, a, ) (4-61)

Again, this quantity is a function of the point of observation r. But let us choose the incident

illumination on top of the cloud to be a uniform plane wave, arriving from (a Po). Both sides

of Eq. (4-61) are then independent of r, and both are functions of as° and Po' Let us rewrite
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Eq. (4-61) to indicate this dependence; that is, the average power received by the antenna at

time t is

Pa(t, a, ; O o, o) = ErAwa(t, a, /3; a, Po) (4-62)

We now observe that Eq. (4-62) may be interpreted as being precisely the function IA( ) of

Eq. (4-57), when the signal envelope s(t) in Eq. (4-57) obeys Eq. (4-59). Thus

ta(t, °o, A; Co o) = E A w n 6(t-Tno ,c (4-63)
r

in which n ranges over all the rays in the solid angle Ac. Because 6( ) is very short compared

with the rate at which a( ) changes with time, it is clear that

tU(t, a, ; ao, 30) At w E A i ' (4-64)
r

where i ranges over all rays in Aow such that

1
t Tio + c - t + At (4-65)

Except for certain special cases, the evaluation of the sum on the right side of Eq. (4-64)

will require numerical computation. In Appendix E we consider one of these special cases, with

, , ° and 0 all equal to zero. By making a series of approximations we find that the range

scattering function for this situation, denoted for brevity by ao(t), is given by

j4yfNe(t _h) -3/4 ( ) YfNet -c) tI 1/2
a 0(t) C 3 ( /c ) exp De/C + 2 /c ) J (4-66)

when t ( + h)/c, and zero elsewhere. Here is the cloud thickness in meters, h is the height

of the bottom of the cloud above the ground, and c is the velocity of light. The factor C3 in

Eq. (4-66) is a normalizing constant. A typical ao(t) is illustrated in Fig. E-1 in Appendix E.

The multipath spread L of u o(t), its approximate width, is given by

D
L -- e [1 + 2 e] . (4-67)

In Appendix E we also outline procedures for obtaining u(t, a, P; o0 , 3o0) numerically, in more

general situations. For illumination other than a vertically incident plane wave, some form of

Monte Carlo simulation must be used.

4.5 RANGE-DOPPLER SCATTERING FUNCTION r(T,f, v)

We assume that each cloud particle has a random velocity component, superimposed upon a

slowly varying mean. The mean velocity, which has no effect upon the scattering function

(T, f, v'), is presumed to be equal for all particles to the average wind velocity. The random

velocity component V- is caused by local phenomena such as turbulence and thermal mixing. It

is assumed to be identically distributed for all particles, with a probability density function which

is uniform over any solid angle. By this we mean that its magnitude Vr is random, nonnegative,

and independent of the spherical coordinates 0r and r of its direction, while er and pr are so

distributed that the direction of V lies in any solid angle Q with probability a/47r. Thus the
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joint probability that Or is in the range (0, 0 + do) and r is in the range (, qp + d p) is given by

4 sinG d dp
4w

We may regard 0 r and qpr as having the joint probability density

sinO

pOr' 9 (0, qo) = I

The Doppler shift associated with a single scattering event is given by

f
0 c

fdi - c [Vr s -r di]

where f is the carrier frequency and c is the velocity of light.
0

Fig. 4-2. Doppler shift geometry.

The vectors d and d. are unit
S 1

13- 45- 118041

vectors in the directions of the scattered ray and the incident ray, respectively. The geometry

of the situation is illustrated in Fig. 4-2. The coordinate system is so oriented that

d. = i
1 z

(4-71)

and the scattering particle is at the origin. The coordinates Os and qps of the direction of the

scattered ray are assumed to be randomly distributed in accordance with the average single-

particle forward-scattering pattern f(O), as explained in Appendix B. Thus Os and Yos obey the

probability density function

POsO (, s( ) = sine f(O)

with f(O) so normalized that

2 s O

o< 0 < /2

0 < (4 21r

sinO f(O) d = 1
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It is clear that

Vr = Vr {sinOr cos i+ sinO sinyr iy + cosOr iZ} (4-74)
r r r r x r ry rz

and

ds = sinOs cosqDs ix + sins sin os iy + coss iz (4-75)

so that Eq. (4-70) becomes

f
fdl Vr [sino s co SO sino cos rdi c r - s r r

+ sinO sin qps sinOr sin opr + cos Os cos r -cos O] (4-76)

Although we shall not do so, it is possible in principle to calculate the probability density func-

tion of fdl from Eq. (4-76). Although the algebra is rather tedious, it is a straightforward task

to obtain the more limited results

fdl = (4-77)

and

2 2
fdl var (fdl) f

22f 7/2

2 V2o 27r sinO f(O) [ -coslO] d (4-78)
3c 2 r

Provided that its magnitude is much less than the carrier frequency fo, the Doppler shift

fdk of a kth-order scattered wave is approximately the sum of k first-order Doppler shifts. We
assume that all the first-order Doppler shifts fdl are statistically independent and identically

distributed. Invoking the Central Limit Theorem, we write

4 ~ f2
p (f)_ exp 2 ] (4-79)

Pfdk(f f 2k 2J

for large k. Now, we know that this approximation can be very good over the central region

even for fairly small k, if the first-order density function is smooth, symmetric and unimodal.

It is reasonable to assume that fdl has such a density, as long as the velocity magnitude Vr is

reasonably well behaved. Equation (4-79) will be seriously in error out in its tails for small

values of k; for purposes of estimating the shape and width of the scattering function, however,

we can ignore the tails. In any case, as we indicate in Appendix E, when Ne > 5, the rays of

low scattering order contribute only weakly to the total received energy. On these grounds, then,

we shall assume that Eq. (4-79) is valid for all k > 1.

In Appendix F we derive an approximate form for the angle-dependent range-Doppler scat-

tering function U(T, f, V) for the special case in which the incident illumination is a uniform

plane wave, and , 3, o and po are all zero. The result is left in the form of an infinite sum,

[Eq. (F-2)], which could be approximated numerically if desired. The Doppler spread B of the

function is approximated by
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2W [2rN 1/2 ,2\4/2
B - XV (4-80)

o L3 (Tr

in which W = Wp is the average single-particle scattering pattern width parameter, Xo is the

carrier wavelength, and (V ) is the RMS value of the random component of the velocity of the

cloud particles.

Using the multipath spread

D
L c [ + 2 N] (4-81)

derived for this same special case in Appendix E, we find that the BL product is

27r TW (-2 1/2
BL~2 Z g r ~t) [2 + (4-82)

where T is the cloud thickness. Notice that BL becomes independent of the cloud optical thick-

ness Ne (and hence independent of the particle density dv) as Ne becomes large.

Appendix F also indicates numerical techniques for calculating u(t, f, vF) in more general

cases. For the most part, Monte Carlo simulation appears to be the most attractive alternative.
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CHAPTER 5

COMMUNICATION SYSTEMS FOR THE CLOUD CHANNEL

We have seen in Sec. 4.1 that the generalized scattering function a(T, f, v') embodies a complete

statistical description of the received field over the ground plane beneath a cloud. An extension

of known techniques can be utilized to obtain a mathematical description of the optimum receiver

for the cloud channel. The processing such a receiver must perform involves the solution of

difficult integral equations in both time and space. In general, these operations cannot be readily

interpreted in terms of components we know how to build. We consider a communication scheme

in this chapter which we know how to interpret and to analyze. Although we do not know the de-

gree to which the proposed system approaches the optimum, our analysis will provide a lower

bound to the performance that the optimum system could achieve.

An important feature of the proposed receiver is spatial diversity, which we obtain by taking

independent samples of the received field over the ground plane. In Sec. 5.1 we estimate the de-

gree of spatial diversity which can be achieved. Section 5.2 deals with the sources and character

of noise corrupting the received field. The proposed receiver is described in Sec. 5.3, and its

performance is analyzed in Sec. 5.4.

5.1 SPATIAL DIVERSITY

It is clear from our results in Chapter 4 that one can obtain many statistically independent

samples of the received field over the ground plane. The degree of spatial diversity Ks of the

cloud channel is the largest possible number of such samples which contain significant signal

energy. In this section we estimate the magnitude of Ks for an array of identical field-sensing

devices, and we argue that it would not be appreciably greater for a composite array of noniden-

tical devices.

It is clear that our field-sensing devices should be located only where significant signal en-

ergy is incident on the ground. Moreover, they must be directive; that is, the solid angle over

which a sensor has nonzero gain must not exceed the solid angle over which the signal energy is

significant. A larger sensor field of view would only admit more noise, causing the signal-to-

noise ratio to deteriorate. Having concluded that the sensors should have restricted angular

beam patterns, we realize that each of them must have an aperture area associated with it. We

are free to think of them as antennas. An antenna of a given beamwidth B must have an aperture

area at least as great as

2
7r 2

7rD (5-1)
4B2

where X is the carrier frequency and D is the diameter of the aperture of a diffraction-limited

telescope with beamwidth B. We shall think of our sensors as completely general antennas,

each having some beamwidth B and some aperture area A which is lower bounded by the rela-

tion (5-1). The maximum obtainable spatial diversity is achieved by packing as many sensors

into the "active region" on the ground plane as possible. (By the term "active region" we mean

the area on the ground plane over which significant signal energy is received.) Clearly, the

maximum spatial diversity is infinite when the illumination incident on the cloud is uniform over

the entire horizontal plane, because the resulting active region on the ground has infinite area.
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This is not surprising, because the transmitted signal energy in such a case must also be infi-

nite. Thus the spatial diversity is finite only when the incident illumination is a beam of finite

cross-sectional area.

When this is the case, the analysis of Sec. 3.5 leads us to an expression for the power dis-

tribution function P(ac, 1i, x, y) incident on the ground. To facilitate the mathematics of estimat-

ing the spatial diversity, let us assume that the incident illumination has the form of Eq. (3-97),

a unit-power beam with negligible angular dispersion which has Gaussian intensity variation over

its cross section. Let it be symmetric in x and y, with

2 2 2a =. a U. .2 (5-2)xi yl i

The resulting average power distribution over the ground is

PG(, P, x, y) = exp [-Ne(l--f)]

2 2 2 1 
47r a as(asaxs ays (-Paxs) P s)

2 2
--1 (_ _ ma)2 (ca-ma (x)-m ) (x -m) x)

exp- - 2p +

exP[ 2 a 2 s a2 I (5-3)2 (1 -x) (y -m ) (v -f

The parameters in this equation are

2 2 2 2 a 2

xs =ys i + fNeWa (T3 + Th + h

COfNSeW (2 + h)

aoxs Pfys 2 (5-4)

laas (_ + Th + h )+ .21/

We recall that f is the average single-particle forward-scattering efficiency, Ne is the optical

thickness of the cloud, is its physical thickness, and h is the height of the bottom of the cloud

above the ground. The quantity W a is the width parameter of the average single-particle scat-

tering pattern, which is symmetric in ao and if. The mean values m, imO, mx and my , which

are functions of the coordinates i l i, Xi and i of the incident beam, will not enter into our

results.

Let us assume that the aperture area As of a single antenna at coordinates (x1 , Y1) on the

ground plane is small enough that the x- and y-dependent portion of Eq. (5-3) is virtually con-

stant over it. The angular intensity distribution incident upon the antenna is therefore propor-

tional to

[27r ( 2 - x -2) (5-5)
axs [ ~as (-paxs
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with m' and m' dependent upon x I and Y1. Suppose that the antenna has multiple receiving

beams, each adequately represented by the symmetric Gaussian power gain pattern [Eq. (4-35)],

' -u 2 ex 2g(°, 1') = 1 2 exp [- °+ ]ant ant

and each having the same (fixed) beamwidth parameter aant. We wish to estimate how many such

beams to use in order to obtain the maximum number Nb of statistically independent "looks " at

the distribution (5-5) incident on the aperture As . By Eq. (4-51), we know that multiple beams

from the same aperture receive statistically independent signals when their boresight axes are

separated from each other by at least 4 ant radians. This is equivalent to stating that each

beam occupies an effective solid angle

2
Wb = 4 rant (5-6)

Thus we have

inc
N icb , (5-7)b Wb

where inc is the effective solid angle over which the intensity distribution (5-5) has significant

magnitude. We estimate Q inc by again invoking the approximation that most of the volume under

a symmetric two-dimensional Gaussian function is contained within a circle of radius 2 about

the mean. Thus we shall approximate (5-5) by a distribution which is uniform over a solid angle

inc. 4 (l (5-8)inc as -cxs

and zero elsewhere. [Note the consistent relationship between Eqs. (5-8) and (5-6).] Equation

(5-7) now becomes

2(I- 2

N as axs (5-9)
b 2 (9)2

(ant

By referring to Eq. (5-3), we realize that (5-5) depends upon the coordinates (x1, Y1) of the

center of the aperture As only through the mean (m , m:). Thus Eq. (5-9) is valid for any aper-

ture similar to As located anywhere in the active region on the ground plane. Let us now esti-

mate the maximum number of such apertures which one could pack into the active region, subject

to the requirement that statistical independence holds among all beams in the entire array. We

showed in Sec. 4.3 that each beam from one aperture receives a signal which is independent of

every beam from an adjacent aperture when the centers of the two apertures are separated by

at least the distance [Eq. (4-48)],

Ax =
7ant

Roughly speaking, then, we can place one aperture on the ground plane for every

2 hAx oAx 2
0 (5-10)

47ru 2

ant
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square meters of area in the active region. But let us note that a diffraction-limited antenna

whose beam pattern is approximated by a symmetric Gaussian function with parameter ant has

aperture area

2
D o

di dL=~~~~~~ 4 2 ~~~~~~~(5-11)
47r ant

in accordance with our convention [Eq. (4-36)]. Observe that

As >Adg , (5-12)

as we pointed out in connection with Eq. (5-1), and that Adi is equal to Eq. (5-10). If our antennas

are not diffraction limited, we cannot pack the maximum number Na of apertures into the active

region unless we are willing to allow them to overlap each other to some extent. If we do not

permit overlapping apertures, then we must use diffraction-limited antennas to achieve the max-

imum spatial diversity. We see that

Aactive
Na A (5-13)

where Aactive is the area of the active region. We estimate Aactive by again using the ap-

proximation that led to Eq. (5-8). Thus we integrate the received power distribution function

[Eq. (5-3)] on oi and to obtain

[ (x - m )±(y - 1SS P (a, x, y) d di = [272 ] -exp y (5-14)

xs

and approximate this result by a uniform distribution over a circle of radius 2xs in the (x, y)

plane, centered about (mx, my). The area of the circle is

A = 42 (5-15)active xs

Equation (5-13) now becomes

222
167r22xs an t

N xsant (5-16)
a 2

0o

Using the assumed receiving apparatus (i.e., an array of identical multibeam antennas with

beamwidth parameter u ant) we see that the maximum achievable spatial diversity is

167 2u 2 2 -P 2)ov CrxsrOzs~ -o C pxs )
K =NN X = (5-17)

s a b 2
X

But we observe that Eq. (5-17) is independent of ant Thus any set of identical diffraction-

limited multibeam antennas (or nondiffraction-limited antennas with suitably overlapping aper-

tures) could be used to achieve the maximum diversity [Eq. (5-17)], regardless of the value of

aant' This statement is subject, of course, to the condition that the effective solid angle b of an

individual beam must not exceed the effective solid angle .inc of the angular intensity distribution

(5-5) incident on the aperture associated with the beam. If cob were, in fact, equal to t2inc' we
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see that each aperture would observe all the signal energy incident on it with a single beam

(Nb = 1), and we would have

(1-p 2

(ant C= s (1( Povxs

Inserting this value in Eq. (5-16), we find that

Ks= NaN b = Ns ab a

would still be given by the right side of Eq. (5-17).

We imagine that it might be possible to achieve slightly greater spatial diversity by using

some composite of various aperture sizes and beamwidths. It is reasonable to assume, however,

that the increase would only be comparable to the errors inherent in the approximations made in

deriving Eq. (5-17). Thus it is fair to say that the value of Ks obtained here is a reasonable ap-

proximation to the maximum spatial diversity achievable by any scheme.

Suppose that we were only willing to process over some limited area Aim on the ground

plane, which is within but smaller than the active region. The maximum spatial diversity KsI

obtainable under these circumstances is found by multiplying Eq. (5-17) by (A im/47r x2s), which

gives the result

A 2 2
K 4A 2 ( 1 p X ) (5-18)

SIt~ 2
0o

We see that the maximum spatial diversity in either case is equal to the product of the solid

angle subtended by the incident radiation, times the ground-plane area over which we process,

times the factor 
o

It is interesting to calculate the value of Ks for a typical set of cloud parameters. From

Appendix G, we see that a reasonable set of numbers is

T = h = 1000 meters

-7
k = 5 x 10 meter

o

W = 0.3 radian

N =10
e

f = 0.9 6 (5-19)

Let us assume that the incident beam on top of the cloud is small enough that a. 2 is negligible
2 1

compared with a xs By using (5-19) in Eq. (5-4), we find that

2
a = 0.9

2 6
(x = 2.1 x 10

(1 -p xs ) 0.035 (5-20)aXS

59

__1_11_1_11 ·- I ------ - - - --- - ·-L-^- - · LI--- -· -



Equation (5-21) then becomes

K = 4.25 x 1019 (5-21)s

If we process over a total aperture area of only one square meter, Eq. (5-18) yields

Ksi = 1.6 x 10 (5-22)

5.2 NOISE MODELS

There are five types of noise to consider in communicating over the cloud channel: quantum

noise, diffuse sky noise, sunlight, light from the stars and the moon, and backscattered light

from terrestrial sources. The quantum noise, which is always present, assumes major impor-

tance when the number of signal photons received per second is small. This issue will be dis-

cussed quantitatively in the following section. The communication system we shall propose will

be operated in such a way that the quantum noise can be lumped with the additive Gaussian noise,

in order that the system design and performance analysis may be carried out using conventional

techniques. This issue is discussed in detail in Sec. 5.4.

The diffuse sky noise, which is present only in the daytime, is the result of atmospheric

scattering of sunlight. Its spectral density has been reported34 as about 1.33 10 - 14 watts per

(meter -steradian-Hertz). It is not clear whether this noise model is meaningful when clouds

are occupying much of the atmosphere where it is "generated." For present purposes, we shall

assume that the diffuse sky noise is absent.

The sun's radiation is approximately white over the band of visible-light frequencies, with

spectral density 3 5

N = 1.67 x 10 - 12 watts/(meter 2 -Hz) (5-23)
sun

just outside the earth's atmosphere. We can regard it as an incoherent superposition of uniform

plane waves. The angular dispersion of the arriving plane waves is small compared to the

spreading in angle that the light experiences in traversing a cloud. In the presence of the ide-

alized cloud of Sec. 3.1, the angular impulse response hI(c?, 0; o', ,3) of Eq. (3-72) immediately

gives us an estimate of the angular intensity distribution INs (C, ; aZsu n ,s un) of scattered sun-

light incident on the ground. We have

N uexp [--Ne(- Yf)]
Ns(' '; O°sun' sun) = sun

exp- un 2 (5-24)
2 2

which has the dimensions of watts per (meter2-steradian-Hz). The quantities asun and psun are

the angular coordinates of the center of the sun. Knowing Eq. (5-24), we can immediately calcu-

late the noise spectral density due to sunlight which is received by an antenna of given beam pat-

tern and aperture area.

At night the chief sources of noise (aside from quantum noise) are moonlight, starlight, and

backscattered light from terrestrial sources. Given a model for the angular and spectral dis-

tribution of light from the moon and stars arriving at the earth, the angular impulse response
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analysis of Sec. 3.4 would easily lead to an expression similar to Eq. (5-24). The effects of back-

scattered light from nearby sources on the earth would have to be estimated by some other means.

One could probably obtain sufficiently good results with a crude analytical approach based on

single or double scattering. Another alternative is Monte Carlo simulation. We choose not to

dwell upon nighttime optical noise here. The communication system we analyze in this chapter

will be assumed to be operating during the day, in the presence of scattered sunlight described

by Eq. (5-24).

5.3 PROPOSED COMMUNICATION SYSTEM

As we indicated in Sec. 4.1, it is possible in principle to proceed from the generalized scat-

tering function a(T, f, v') and the transmitted signal envelope s(t) to a mathematical description

of the optimum receiver for the cloud channel, in the presence of an additive Gaussian noise

N(t, r). We shall not attempt to do so here. Instead we propose an ad hoc scheme that is easy

to analyze, allowing us to obtain a lower bound for the performance achievable with the optimum

system. We make no claims about the practicality or optimality of the system considered here;

indeed, it is possible that the performance bound we obtain is quite pessimistic. To facilitate

the analysis, we make several simplifying assumptions, which will be enumerated below. The

system can then be regarded as a classical fading dispersive channel with a high degree of ex-

plicit (spatial) diversity. The analysis of its error probability is a straightforward application

of known results.

The receiver that we shall consider is shown diagrammatically in Fig. 5-1. Each of the

KA channels receives a statistically independent sample of the received field, obtained in the

13- 45-118 8

KA CHANNELS

PROCESSOR

PROCESSOR

~~~~--~~~~~~~~11:·3~~~~~~~~~~~~ DECISION
DEVICE

PROCESSOR

Fig. 5-1. Proposed receiver structure.

manner described in the preceding section. Thus each channel could correspond to a single

wide-angle antenna, or several channels could be obtained with each of a number of multibeam

antennas. We imagine that the latter might be the more practical alternative. Such an antenna

could be realized by making observations at a number of points on the focal plane of a telescope.

We shall assume that the receiver measures the incident field, rather than the intensity. Phys-

ically, this implies the use of heterodyning, with the local oscillator signal appropriately
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introduced in the focal plane. We assume that KA is less than the maximum achievable spatial

diversity Ks of Eq. (5-17), so that it will be meaningful to analyze the behavior of the system

error probability as a function of KA.

The absence of nonuniform weighting at the processor outputs in Fig. 5-1 embodies the as-

sumption that all spatial diversity paths have equal gain. Moreover, we shall assume that the

range-Doppler scattering function u(T, f) and the statistics of the received process are identical

on all spatial paths (and on all channels we might later add, to increase KA). We justify this

assumption on the grounds that the available spatial diversity per square meter is so enormous

[cf. Eq. (5-22)] that we can obtain all the independent channels we are willing to deal with by

using only a modest area on the ground plane, and a modest total solid angle. A final simplify-

ing assumption we shall make is that the correlation function of the noise-free received process

on each diversity path has KI equal-eigenvalue orthonormal eigenfunctions pi(t) (which, of course,

depend in general upon the transmitted signal). Note that the assumptions described in this par-

agraph are not essential; we use them because they will simplify our performance analysis con-

siderably. For a thorough discussion of these issues, and of more general fading dispersive

channels, the reader is referred to Kennedy.3 6

Each box labeled PROCESSOR in Fig. 5-1 contains all the components of a conventional re-

ceiver for a fading dispersive channel, except the decision device. We assume that the noise is

additive, white and Gaussian. One of the possible realizations of the processor is illustrated

in Fig. 5-2, for the simple transmission strategy of binary on-off signaling. The envelopes of

the impulse responses of the bandpass matched filters (which depend upon our choice of a trans-

mitted signal) are the time-reversed and delayed eigenfunctions .Pi(T -t), i = 1, 2, ... ,K. Each

BANDPASS 13-45- 118091
MATCHED
FILTERS

K: 1 q~K]
( t

m SLED 

SAMPLE
AT tT

Fig. 5-2. Processor.

box labeled SLED contains an envelope detector followed by a square-law device. In the receiver

of Fig. 5-1, the outputs of all the processors are added and (in the binary case) compared with a

threshold.

The extension of the receiver structure to M-ary signaling alphabets is straightforward.

Each processor would then contain a set of M banks of apparatus similar to Fig. 5-2. The

matched filters would differ from one bank to the next, of course, since the eigenfunctions depend
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upon the transmitted signal. A vector of M numbers would be computed by each of the KA proc-

essors. The decision device would add corresponding components of all the vectors and would

pick the largest of the results. Again, we refer to Kennedy 3 6 for a complete discussion of the

details. Particular attention is directed to the remarks in his Chapters 4 and 6 concerning ex-

plicit diversity.

5.4 SYSTEM PERFORMANCE

We begin the analysis by calculating the signal power and noise spectral density measured

by an antenna on the ground beneath a cloud. The signal-to-noise ratio is obtained, taking proper

account of quantum noise. We summarize known methods for calculating bounds to the error

probability of fading dispersive channels, and apply them to the proposed cloud-channel commu-

nication system of Sec. 5.3. The channel capacity is calculated, and it is shown that the error

probability decreases exponentially with the spatial diversity KA. These results are illustrated

with typical numerical examples.

The calculation of the signal power received by an antenna is a straightforward application

of the results of Chapter 3. As in Sec. 5.1, let us suppose that the top of the cloud is illuminated

by a narrow CW beam with symmetric Gaussian intensity variation over its cross section. The

resulting power distribution function PG(o, fP, x, y) over the ground is given by Eqs. (5-3) and (5-4)

when the illumination carries unit power. Assuming the total power in the incident beam to be

Po watts, we simply multiply Eq. (5-3) by Po'. As we showed in Sec. 3.5, the average power Ps

received by an antenna with this illumination is determined by integrating Eq. (5-3) over the

beam pattern and the aperture of the antenna. When the beam solid angle w s and the aperture

area As of the antenna are small compared with the total solid angle and total ground-plane area

of Eq. (5-3), respectively, we can approximate the integral by the product

Ps = A sPoP G(c ' x, y) , (5-25)

where the quantities in the argument of PG( ) are the antenna coordinates. Now, we recall that

the averaging process utilized in Chapter 3 was, in fact, an ensemble averaging. Thus Eq. (5-25)

represents the statistical average of the power received by the antenna at an instant of time. By

assuming ergodicity, we can interpret Eq. (5-25) as a time average, when the illumination on the

top of the cloud is CW. This interpretation is approximately valid for a time-limited transmitted

signal, also, if the duration Ttr of the signal is long compared with the multipath spread L of

the channel. The total signal energy received by the antenna is then

Es = PsTtr (5-26)

We observe that the material in Chapter 3 [and hence Eq. (5-25)] does not apply for transmitted

pulses which are short compared with L. The analysis in this section assumes that Ttr >> L,

and we do not attempt to determine the receiver performance for short signals. This issue will

be discussed further in Chapter 6.

The calculation of the spectral density of background noise measured by the antenna follows

easily from the results of Sec. 5.3. Equations (5-23) and (5-24) give us the angular intensity dis-

tribution INs( ) of scattered sunlight, which we assume to be the dominant background noise. As

we stated immediately above Eq. (5-23), its spectrum is essentially flat at optical frequencies,

and the arguments in Appendix A cause us to conclude that it is Gaussian. By the same reason-

ing that led to Eq. (5-25), we see that the sun noise spectral density received by an antenna of
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small solid angle ws and aperture area As is given by

No = AssINs( )

1.67 x 10- 12 exp[-Ne(1 - f)] S 

2 7r8 2a
as as

where s is the angular separation between the antenna boresight axis and the geometric line of

sight to the sun. The units of Eq. (5-27) are watts per Hertz; the conventional two-sided noise

spectral density No/2 is equal to Eq. (5-27) divided by 2.

The received signal is corrupted by photon noise, in addition to the background noise. As-

suming heterodyne detection, with a strong local oscillator signal (as we do here), it has been

shown 3 7 '3 8 that the effect of photon noise is equivalent to that of an additive white Gaussian proc-

ess with (two-sided) spectral density hfo/471, statistically independent of the signal and the back-

ground noise. The constant h is Planck's constant, f is the optical carrier frequency, and

71 < is the quantum efficiency of the detector. Thus one accounts for the quantum noise (really

local oscillator shot noise, in this case) by replacing the classical white noise spectral density

No/2 by

N hf
o+ 0 (5-28)2 49

We now see that the ratio of signal energy to noise spectral density for the antenna consid-

ered in this section is equal to

P Tt ~~~~~~~~~~s tr ~~~(5-29)
(No/2) + (hf0 /4T7) (

with Ps given by Eq. (5-25) and No given by Eq. (5-27). Let us examine this ratio quantitatively.

Assume that the antenna is so oriented that Ps is maximized; that is, let its pointing angle (, 3)

and its ground plane coordinates (x, y) be equal to the mean values (m a , m:, mx, my ) of the power

distribution function [Eq. (5-3)] incident on the ground. Equation (5-25) becomes

2 22 2 -3P = AswsPo exp[-Ne( -f)] . [47r asxs -Pxs)] (530)

with as' , Xs and Paxs given by Eq. (5-4). Let the background noise No have its worst-case

value, with the sun located directly behind the source. With s equal to zero, then, Eq. (5-27)

gives us

N 8.4 x 10 1 3 exp[-N (1 -f)]
Ass e (5-31)

27r(uas

Assuming a detector quantum efficiency 77 equal to unity, the quantum noise term in (5-29) is

hf
4 10 joules

0 - 1-9joules (5-32)4

at visible-light frequencies. Observe that both Ps and No/2 are proportional to the quantity

Ascos while hfo/4 is a constant. Thus the signal-to-noise ratio (5-29) increases monotonically

with A scws . As a numerical example, let us compute (5-29) for the set of cloud and signals 
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parameters [Eqs. (5-19) and (5-20)]. The result is

PT AwPT X2.57X10 7

s Ttr Ass oTtr x 2.57 x 10
(No/2) + (hfo/4) A3 -1 (533)0 0 A sco x 10 + 10

We recognize that the antenna must be diffraction-limited in this case, so that the received field

is coherent across the entire aperture, in order that heterodyne detection can be performed. In

accordance with our conventions [Eqs. (4-36) and (5-6)], we would then have

Aws (4 = rD2 2.5 x 10 (5-34)

at 0.5-micron wavelength. The background noise term in the denominator of Eq. (5-33) would

become

N
o -262= 2.5 x 102 , (5-35)2

which is far smaller than the photon noise term. In order to get some idea of the magnitude of

the corresponding signal-to-noise ratio, let us assume that the average transmitted power Po is

500 watts, and that Ttr is 1000 times the multipath spread L of the scattering function o((T, f).

The particular scattering function obtained in Appendix E had

D
L = ce (1 2 N) (5-36)

[Eq. (E-36)]. For the assumed numerical values in this example, we have

L 2.44 x 10 6 second, (5-37)

whence

T - 2.44 x 10 3 second. (5-38)tr

Equation (5-33) then becomes

SNR - 0.784 (5-39)

It is clear that one could realize a far better signal-to-noise ratio (SNR) by using a

nondiffraction-limited antenna, having a larger value of AsW s . We could no longer use hetero-

dyne detection, however, because the aperture would now be larger than the coherence area of

the field received from the solid angle cos . But one might be willing to consider a scheme such

as optical filtering followed by square-law detection, followed by electrical filtering and process-

ing. Although the nature of the necessary filtering and processing is not yet known, it is inter-

esting to calculate the achievable SNR improvement. We notice that Eq. (5-33) would approach
-4

its largest possible value for any AscWs greater than about 10 , which could correspond to, say,

c s = 0.01 steradian and As = 0.01 square meter. Using the above values for PO and Ttr, we see

that Eq. (5-33) would then become

SNR = 3.13 x 10 6 (5-40)

Obviously one could achieve an adequate SNR with this scheme by using far lower transmitted

power and shorter signals. The tradeoff is reflected in the fact that the square-law detection
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scheme combines a large number of spatial diversity paths to obtain one received signal. It

appears that some form of direct detection would be much more attractive than the field meas-

urement scheme proposed and analyzed here. As we have already noted, the receiver structure

described in this chapter was chosen simply because it can be analyzed easily by means of known

results.

We turn now to a brief summary of the error probability bounds for fading dispersive chan-

nels presented in detail by Kennedy 3 6 in his Chapters 4 and 5. Let us first discuss the quantities

which appear in the bounds. One ordinarily assumes that the average total signal energy received

by the entire system is a known quantity Er . The noise is assumed to be additive, white and

Gaussian, with spectral density No/2. An important parameter in the performance bounds is the

ratio

EA r
(5-41)

0N

The received signal energy is assumed to be divided among some number KE of explicit diver-

sity paths, obtained in space, time or frequency. On each of these paths one can obtain a num-

ber of statistically independent samples by correlating the received process with each member

of the set of orthonormal eigenfunctions {i(t)) of the correlation function R(t, T) of the signal

part of the process. Thus we can think of an explicit diversity path as having an implicit diver-

sity KI associated with it, where KI is the number of eigenfunctions having nonzero eigenvalues.

The so-called fractional path strengths of the implicit diversity paths are the eigenvalues

x i , i = 1, 2, ... , KI of the {i(t)). The eigenfunctions depend upon the transmitted signal, along

with KI and the {xi). It is known that a system with KI equal eigenvalues has better performance

than any other system with the same number of eigenvalues. It is convenient to analyze the per-

formance of an unequal-eigenvalue system in terms of the performance of an equivalent equal-

strength system. We shall simplify the analysis of the cloud-channel receiver by assuming at

the outset that each explicit diversity path has equal eigenvalues. Moreover, we shall assume

that each explicit diversity path has the same number KI of eigenvalues. Thus we may regard

the entire system as having a total diversity

D =KEKI . (5-42)

One associates a time constraint length Tt with each signal transmission. It is necessary

for the analysis that the received signals resulting from two successive transmissions do not

overlap. We choose to insure this by setting

t = Ttr + L Ttr (5-43)

If the size of the signaling alphabet is M, the information rate R of the system is

log 2 M
R = bits/sec (5-44)

The capacity C of the channel is identical to that of a nondispersive Gaussian channel with the

same value of the ratio Pr/No, where

E
Pr Tt (5-45)r Tt
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is the average received signal power. Thus the capacity is

C = oz (5-46)
It n2

The bounds to the system error probability P(E) have the form

-- tCE -tCE
KL2 -P ()C KU2 (5-47)

Since the coefficients KL and KU are slowly varying compared to the exponential, it is sufficient

for our purposes to concentrate on the exponential part of Eq. (5-47),

P(C) 2
-TtCE

(5-48)

SLOPE (-1)

ry (0)
ncr it

R/C

C

Fig. 5-3. System reliability function E.

The quantity E in the exponent, called the system reliability function, has the familiar shape

shown in Fig. 5-3. It is defined by the parametric expression

f-2Y(-)- R/C

s'(s) -(s)

KI

KE 
'y(s) - [in (1t

R crit

Rcrit R
c .< .< .I(0)

+ s ln (1 cta K I

RU = (s + 1).7'(s)-.7(s)C

in which

(5-49a)

(5-49b)

and

4
-I-< SO (5-50)

(5-51)
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in Eq. (5-49b). The critical rate Rcrit is given by

Rcrit 1 1 15-52)
C - ( 2 '( -2-52)

The value of E can be maximized for given values of and of R/C by optimizing the eigen-

values i and the total diversity D. The eigenvalues Xi are all equal in the optimum system.

The total diversity D is adjusted so that /D, the signal-to-noise ratio per diversity path, has

an optimum value o determined for given R/C as the solution of a set of nonlinear equations.
P

The quantity o increases monotonically from about three for very small R/C to extremely large
P

values as R/C approaches unity. The optimum diversity is

D 0

D° = P

1 a a0 (5-53)

The corresponding optimized reliability E° , which also depends only upon and R/C, is qual-

itatively similar to Fig. 5-3, except that it intercepts the R/C axis at the point

R/C = (5-54)

The application of these results to the cloud channel is straightforward. The total average

received signal energy Er on the cloud channel is not fixed; as we have shown, it is proportional

to the spatial diversity KA. By Eq. (5-26), the received signal energy per antenna beam is

E PT ' (5-55)

and the total received signal energy is

Er=KAEs (5-56)

where we assume that all KA spatial paths are identical. Because of Eq. (5-43), the average

total received signal power is

E E
p r_ r _ r KA P s (5-57)

r Tt tr

In view of (5-28), the quantity of Eq. (5-41) becomes

E KAEs
N + (hf/2) = No + (hfo/27) (5-58)

for our ad hoc receiver. The capacity of the cloud channel is

C - a
cl - Tt n 2

=KACs , (5-59)

where

o

C s (5-60)
s Tt n2
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is the capacity per spatial diversity path. The quantity

E
a s

Rs KA No + (hfo/277) (5-61)

is the energy-to-noise ratio per spatial diversity path.

There are two cases of interest in applying the performance bounds to the cloud channel.

In case I we assume that the ratio R/Ccl is held constant; that is, we let the rate R be propor-

tional to the number KA of telescope beams. In case II we investigate the error probability for

communication at a fixed rate Rf.

Case I is equivalent to adopting the policy of increasing our communication rate by a fixed

amount each time another spatial diversity path is added to the system. Let us identify the spa-

tial diversity KA with the explicit diversity KE of Eq. (5-42). We see that Eq. (5-50) then becomes

KI

y(s) - E [ln(l -sys i ) + s ln(l + I xi)] , (5-62)
R, s

i=l

which is independent of KA. By inspection of Eqs. (5-49), we find that the reliability E is also

independent of KA , and the error probability [Eq. (5-48)] becomes

P(E) 2 t cl

-tKACsE
2 , (5-63)

which decreases exponentially with increasing KA.

In view of Eq. (5-62), we conclude that the optimized reliability E ° of the channel in case I

is that of a single spatial path with energy-to-noise ratio s . We compute oP for the given value
s p

of R/C l and determine the optimum implicit diversity per spatial path by the relation

f a s 08 > 0p
o s p

KI = P

ofs K. IpI (5-64)

independent of KA. The optimum total diversity is simply

D° = KAKI , (5-65)

regardless of the value of KA. The resulting optimized error probability is

P(E) =2 As (5-66)

still exponentially decreasing with KA.

Under case II, where we communicate at the fixed rate Rf, the system reliability E of

Eqs. (5-49) depends upon KA through the quantity

R R 1 R5 RC~~ f-~~ =C ~~~ f-~ ~~ (5-67)
C Ccl KACs
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We note that the function y( ) is still given by Eq. (5-62), and is independent of KA, as is the

quantity Rcrit/C of Eq. (5-52). In view of Eq. (5-67), Eqs. (5-49) may be rewritten as

E -

1 Rf Rf/Cs
21( 2 HKAC s I R c it/C KA < (5-68a)

Rf/C s Rf/cs
sy'(s)-7(s) , y'(O) KA < i (5-68b)

Rf/C s
o KA y'(0) (5-68c)

where

Rf
KC= (s + 1)y'(s)-Y(s) (5-69)
KAC s

in Eq. (5-68b). For KA in the interval in Eq. (5-68a), the error exponent

TtCclE= 7tKACsE

-2TtKACsY(- 2) - tRf (5-70)

again increases linearly with KA. For KA in the interval in Eq. (5-68b), the situation is more

complicated. The corresponding range of R/C lies between Rcrit/C and y'(0). Now, the deriv-

ative of E with respect to R/C increases from -1 to O as R/C increases from Rcrit/C to y'(O).

In view of Eq. (5-67), we see that the derivative of E with respect to KA increases from zero to

Rf/(KACs) as KA increases over the interval in Eq. (5-68b). Therefore, the error exponent

TtKACs E increases faster than linearly with KA over this interval. Finally, for KA in the inter-

val in Eq. (5-68c), the reliability E is zero because the system is attempting to operate at a rate

above capacity.

The optimization of the diversity in case II is quite simple. For each value of

R Rf

C KACs

we can calculate ca and

KAs
DO = KAKI - (5-71)A1I o o

p pP P

as before. For given R/C and ac we calculate E ° . The error exponent T K C E is zero forThe error exponent A s

R
KA C '(5-72)

5

increases faster than linearly with KA when

Rf (Rf/Cs)

Cs , KA (Rcrit/C) (5-73)Cs i
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and goes up linearly with KA for

(Rf/C s )
(Rcrit/C) < KA < (5-74)

In the results of both cases I and II, we see the answer to the question of optimum spatial

diversity KA. Since the error probability decreases monotonically with increasing KA, it is

clear that the optimum value of KA is simply the largest possible value, up to the maximum

achievable spatial diversity Ks of Eq. (5-17) in Sec. 5.1. In a more realistic situation one would

presumably assign a cost function to KA, thereby allowing the optimum KA to be determined by

considerations external to the actual channel analysis.

As a numerical example, let us calculate some approximate figures for communication to

the earth with a laser in a satellite in synchronous orbit, at a distance of about 20,000 miles.

Let the laser have 500 watts of output power capability at 0.5-micron wavelength, and let it have

5-cm diffraction-limited optics. Using the conventions of Sec. 5.1, we model its intensity var-

iation over the upper surface of a cloud layer on the earth as a symmetric Gaussian function of

x and y, with

2 3
a. 5 X 103 (5-75)

Let the cloud have the set of parameters of Eq. (5-19). We find that 0.2 is indeed negligible com-
2 1

pared with the variance xs' given by Eq. (5-20), of the resulting power distribution function

PG(a, ]9, x, y) [Eq. (5-3)] over the ground. Thus the three parameter values of Eq. (5-20) used in

our earlier numerical examples are also correct in the present situation. Let us now make the

same set of assumptions about the telescope and the signal that led to the signal-to-noise ratio

[Eq. (5-39)] which we have already calculated. The telescope is located and aimed in such a way

that the received signal power Ps is maximized; the sun is directly behind the satellite. The

time duration of the transmitted signal is given by Eq. (5-38),

Ttr = 2.44 x 10 3 second -_ T

The resulting ratio of average received signal energy to (two-sided) noise spectral density for

this single telescope beam is given by Eq. (5-39),

E
5 0.784 (5-76)

(N0 /2) + (hf0 /4/) 0.784 

Now, the signal-to-noise ratio ozs of Eq. (5-61) is the ratio of the received signal energy to the

single-sided noise spectral density, for a single beam. Thus a s is equal to one-half of Eq. (5-76)

or

as 0.392 . (5-77)

The received signal power per beam is

P = 3.21 x 10 - 1 7 watt , (5-78)s

and the signal energy per beam is

E = PTtr 7.84 x 10 20 joule (5-79)s s tr
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Finally, let us assume that we form 103 beams, so that

KA = 10 , (5-80)

and that we wish to communicate at a rate

R = 0.03 Ccl , (5-81)

which is just equal to Rcrit for the given value [Eq. (5-77)] of s . We have

o
C = T I 2 2.32 X 102 bits/sec (5-82)

and

Ccl = KACs = 2.32 x 10 5 bits/sec , (5-83)

so that the desired rate is

R = 6.96 x 103 bits/sec . (5-84)

From Fig. 4a in Chapter 5 of Kennedy,3 6 we find that R/C = 0.03 corresponds to the optimum

signal-to-noise ratio

o
ozp 3.0 (5-85)

P

per diversity path. The corresponding optimum implicit diversity is

oc

K 0= s 1 (5-86)I 0

Pp

and the optimized total diversity (given that KA = 103) is

D° = KAK I = 103 (5-87)

Exploiting the low-rate, small-o s analysis in Kennedy's Chapter 5, we find that the error prob-

ability of the system is

P(E) = 10 6.63 (5-88)

An unattractive feature of this example is the required size of the signaling alphabet, which

is a consequence of the rather long constraint length Tt we had to use. We require

RTt 17
M = 2 (5-89)

orthogonal waveforms. Equivalently, one could form the transmitted signals by coding 17 bits

together. This high degree of complexity can be substantially ameliorated by exploiting known

techniques 3 9 '4 0 for efficient approximation of orthogonal signals. It is possible to generate a

set of 2K "almost orthogonal" waveforms with only about K /2 bits. In many applications, the

resulting signal set will perform nearly as well as an orthogonal set.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

The most significant results of this study are indications that communication through

clouds at visible-light wavelengths is both feasible and capable of fairly impressive data rates.

Even if one makes generous allowances for suboptimum signal and receiver design, the numer-

ical examples of Sec. 5.4 indicate that a laser of modest power in a satellite, with a reasonably

simple receiver on the ground beneath a cloud layer, could achieve kilobit rates with low error

probability.

The primary objective of this research was the development of an adequate model for the

cloud as an optical communication channel. The first step toward this end was a study of the

spatial variation of the average intensity of light over the ground beneath a cloud, when the top

of the cloud is subjected to CWV illumination. This portion of the analysis (the material of Chap-

ter 3) can be understood and applied without any background in communications theory. Using

the ideas and techniques of linear systems analysis, we derived a linear superposition integral

which describes the light on the ground as a function of the spatial character of the illumination

on the top of the cloud (e.g., a uniform plane wave, a narrow beam, or any desired spatial var-

iation). In general, the integral gives the average intensity of the light as a joint function of

angle of arrival and horizontal coordinates (x, y) over the ground plane. It is shown that the re-

ceived light has extremely small variance; that is, the instantaneous intensity is always very

nearly equal to its average value. For the special case in which the illumination on the top of

the cloud is uniform over the entire horizontal plane, the superposition integral simplifies con-

siderably. The intensity of the light incident on the ground then depends only upon angle of

arrival.

Light traversing a cloud suffers dispersion in time and frequency, as well as in space.

Moreover, the received field at a point on the ground can be represented in terms of a complex

Gaussian random process (the arguments leading to this conclusion are worked out in detail in

Appendix A). Thus the received process at a point is equivalent to the signal received over a

classical fading dispersive channel, such as a tropospheric-scatter microwave system. At

visible-light frequencies, however, the spatial variation of the received field occurs on a scale

which makes it both important and useful in receiver design. These ideas led to the character-

ization of the channel in terms of the generalized scattering function (T, f, v') of Sec. 4.1, which

includes the dependence of the received field upon both angle of arrival and horizontal coordi-

nates (x, y). If this function were known in detail for a particular physical situation, one would

have a complete statistical description of the received process. On an abstract level this for-

mulation is concise and efficient. It constitutes the most general form of our optical commu-

nication channel model for the cloud. We recognize, however, that the elegant function

(r(T, f, v') is cumbersome and difficult to obtain in practical situations. In Secs. 4.2 through 4.5,

we consider various specialized and easily calculable aspects of it. These include the spatial

correlation function of the received field over the ground, the joint spatial and angular corre-

lation function for directive receiving antennas, and the classical range-Doppler scattering

function o(T, f) for a narrow-beam antenna of small aperture area. It is shown that the inten-

sity distributions of Chapter 3 are simply special cases of the generalized scattering function.

The correlation functions are utilized in Chapter 5 to estimate the degree of spatial diver-

sity achievable in a cloud communication system. An ad hoc receiver is proposed which exploits
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the spatial diversity to obtain a number of statistically independent samples of the received

field and processes the signal on each spatial diversity path in the manner of a classical fading

dispersive channel receiver. The relationship between this receiver and the optimum commu-

nication system for the cloud channel is not known. The proposed receiver is easy to analyze,

however, and the results provide a lower bound for communication rates and error performance

that the optimum system could achieve.

Future theoretical investigations in the area of cloud communication could logically proceed

along three fronts. These are refinement and extension of the present results, development and

analysis of optimum and suboptimum receivers, and numerical computation of a variety of func-

tions and parameters related to the problem. The first of these efforts should include a detailed

study of the scattering function -(T, f, v' ), which was discussed only briefly in this report. Our

results also need clarification and interpretation for both small and large optical thicknesses

N e . The unscattered residue of the incident illumination, attenuated by the factor exp [-Ne],

can be regarded as a specular component in the received signal. For optically thin clouds, one

could perhaps realize a significant simplification in receiver structure by exploiting this specu-

lar signal appropriately. On another level, our Gaussian results for angular distributions of

the scattered radiation can be in error even at substantial optical thicknesses when the single-

particle scattering pattern is very strongly forward-directed. Evidence of this effect appears

in certain of the Monte Carlo results of Kattawar and Plass 4 i for nimbostratus clouds, in which

the maximum of the particle radius distribution occurs at about 12 microns. At e = 0, the av-

erage single-particle scattering pattern for such a cloud is greater by 10 than at = /2. For

Ne = 10, Kattawar and Plass found that the scattered light had an angular intensity distribution

with about the same shape as our Gaussian predictions, except for a narrow peak at = 0 hav-

ing a value about twice that at = 1.5 degrees. The reason for the erroneous behavior of our

results in this case (which would predict a pure Gaussian) appears to be associated with the

limiting processes carried out in Chapter 3. In a typical law of large numbers problem, one

convolves some fixed unit-area probability density function p(x) with itself (N - 1) times. It is

easy to write down conditions on p(x) such that the result converges to a Gaussian function in

the limit as N goes to infinity. In Chapter 3, however, we carry out an (N - 1)-fold convolution

of a function of the form

b b
g(x)= (1- ) Uo(X ) + p(x) , (6-1)

which is also a well-defined probability density function. The problem is that g(x) varies with

N, approaching a unit impulse as N approaches infinity. Our difficulty appears to be the fact

that the result of the (N - 1) convolutions does not converge to a pure Gaussian curve as N be-

comes large, when p(x) is too high and narrow. It would be interesting and worthwhile to de-

rive the conditions on p(x) such that the convergence does take place, and to study the behavior

of the result when it does not converge properly.

At optical thicknesses greater than about 32, our Gaussian results become suspect. As we

point out near the end of Sec. 3.4, in such cases we predict that the angular intensity distribu-

tions are practically flat for all 0 < 7r/2. We do not yet know how nearly correct this is, nor

precisely how other attributes of the received signal (such as time and frequency spreading)

behave under these circumstances. These questions constitute another area of interest for

further research.
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The determination of the actual optimum receiver for the cloud channel is closely coupled

with the study of the generalized scattering function ((T, f,v'). As we commented in Sec. 4.1,

Kennedy 4 2 has outlined an extension of known techniques one might utilize to address this prob-

lem, if ( ) were known. Among the useful results of a research program in this area would be

an assessment of the "degree of optimality" of the proposed communication system of Chapter 5,

and the ability to design other practical suboptimum systems. An unsolved problem of particu-

lar interest in this regard is the design and performance of both optimum and suboptimum re-

ceivers for very short transmitted pulses. The receiver of Chapter 5 assumed long pulses, in

order that the CW results of Chapters 3 and 4 could be exploited. The author has done some

preliminary work which indicates that the linear system approach of Chapter 3 could be success-

fully applied for an incident illumination which is impulsive in time as well as in a, f, x and y.

Proceeding along these lines, one could presumably obtain an impulse response (and a super-

position integral) which would describe the received process as a joint function of angle of arrival,

x, y and time, for very short pulses.

Another interesting research area is the question of practical realization of receiving sys-

tems, both optimum and suboptimum. It is attractive to think of performing some of the signal

processing optically, such as spatial or time-domain filtering. The extent to which such opera-

tions can be realized, using components which we know how to build, is an open question. One

might also study the possibility of square-law detecting the received field (e.g., with a photo-

multiplier tube) and filtering the resulting intensity signal appropriately. Because all the phase

information would be lost, it seems clear that one could not realize optimum performance with

such a scheme, but it is possible that the performance would be good enough to be acceptable

under some circumstances.

We remark that it is not always possible to regard the field incident on the ground as a time-

continuous process. It is in fact a time-discrete sequence of light quanta, or photons, which can

be treated as a continuous time function only when the number of photons arriving per second is

very large. This was true in our receiver analysis of Chapter 5, and we have assumed it to be

true throughout this report. A recent investigation 4 3 of pure quantum-mechanical communica-

tion systems has yielded results which appear to be applicable to communication over the cloud

channel. In particular, the detection of the quantum-mechanical equivalent of Gaussian signals

in Gaussian noise was considered. It would be worthwhile to undertake a study of the implica-

tions of these results in our problem, for both small and large signal levels.

It is clear that numerical simulation will be a valuable complement to analytical results in

cloud channel communication system design. The work of Zaborowski, described in Appendix C,

has considerably increased our confidence in the approximate methods used to solve the spa-

tial impulse response equations. In addition to substantiating certain of our results, the Monte

Carlo methods of Plass and Kattawar can secure many results which we have not obtained an-

alytically (e.g., backscattered intensity, polarization behavior, and the effects of reflection from

the earth's surface). In Appendices E and F, we propose straightforward numerical methods

for obtaining the range and range-Doppler scattering functions in simple cases, and we discuss

the application of Monte Carlo methods to finding these functions in more general situations.

A fourth area of interest for future research is experimental investigation of some of our

results. We suggest an equipment configuration similar to that used by Zaborowski, as de-

scribed in Appendix G, which simulates the idealized cloud with a water suspension of scattering

particles in a shallow transparent tank. The spatial intensity distributions could be measured
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accurately with a carefully constructed narrow-beam detector, using a CW laser beam to illu-

minate the scatterers. It is conceivable that one could also obtain time-spreading information

with this experimental model by square-wave modulating the incident beam and measuring the

rise time of the output, if a modulator and a detector of sufficient bandwidth were obtainable.

As we explain in Appendix G, one would expect rise times to be on the order of T/c, where 

is the physical depth of the particle suspension. If the depth were a few centimeters, the rise

time would be tenths of a nanosecond.
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APPENDIX A

SCATTERED FIELD ON GROUND PLANE

The received field at a point ron the ground beneath a cloud is a superposition of an

enormous number of scattered components. In general, a contribution arrives over every pos-

sible multiple-scattering path through the cloud. In this appendix we show, subject to certain

reasonable assumptions, that the field on the ground plane can be represented in terms of a

complex Gaussian random process.

13-45-1118051

TRANSMITTED
SIGNAL

h
CLOUD . i' . . .i PARTICLE

Fig. A-1. Cloud configuration.

GROUND PLANE

The configuration that we shall examine is illustrated in Fig. A-i. We visualize a trans-

mitted signal of the form

ei(t, ) = Re [s(t) E() exp(-j27rfot)] (A-1)

incident upon the top of the cloud, in which s(t) is a narrow-band complex envelope. The term

E() allows us to treat infinite plane waves, narrow beams, or any other spatial variation in

the same general formulation. It is clear that the received field varies with position r on the

ground plane, depending in a complicated way upon E(p). The spatial dependence is discussed

in Chapter 4. For purposes of the analysis in this appendix, we take the point of view that the

spatial dependence is implicitly included in all the field parameters that we use.

In studying the field in the vicinity of a point r on the ground plane, it is convenient to set

up a new coordinate system S' with its origin at the point ir in the fixed coordinate system S.

We visualize a set of vectors {'} from the origin of S' to all the particles in the cloud, and

we specify positions on the ground in the vicinity of the point by means of a vector r' from

the origin of S'.
th

The signal scattered by the i particle toward the point r on the ground consists of Mi

components, where Mi is the number of wavelets incident upon the particle. These include the

unscattered remnant of the incident signal (A-1) that penetrates to the particle, in addition to

wavelets of all scattering orders arriving at the it h particle from all the other particles in the

cloud. Many of these components, of course, will have been severely attenuated by multiple

scattering or by scattering through large angles. If there are N particles in the cloud, the th
p
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particle is illuminated by (Np-1) single-scattered components, (N - 1) double-scattered

components, and so on. There are (N - 1) scattering paths of order m which encounter

the i particle and proceed directly to the point on the ground. Although the total number

Mi of all such scattering paths is infinite, in practice we shall regard it as a large but finite

quantity, since we can ignore those components which have been scattered so many times that

their amplitudes are negligible.

Let us assign an index k to each of the scattering paths which proceed to the point r via

the i particle, with k ranging from to M i. As it proceeds along the kth scattering path, a

field component experiences a sequence of attenuations. Each time it is scattered through some
1/2

angle 0 by a particle in the path, its amplitude suffers a loss proportional to [F()] / , where

F( ) is the intensity scattering pattern of the particle, as discussed in Chapter 2. This loss can

vary by order of magnitude, depending upon the size of . Over the distance d between one

particle and the next, the amplitude of the field component suffers both 1/d loss and an average

extinction loss of exp[-d/2De] (the square root of the average extinction attenuation of its in-

tensity). Finally, the component suffers scattering pattern loss and 1/d loss in proceeding

from the it h particle to the point on the ground. Let us lump all these losses on the kt h path

into a single amplitude factor r ki' which is obviously very small in most cases. We shall use

three additional parameters to characterize the kt h path through the it h particle to the point r.

These are the total path length ki (seconds), the total Doppler shift fki' and the phase ki. All

three of these quantities include the effects of the final segment of the path, from the ith particle

to the point r.

Ignoring the effects of polarization (as we do throughout the report), we regard the total field

component arriving at the ground from the it h particle as a sum of scalar quantities. We shall

write down an expression for this component at a point ' in the vicinity of r, where F' is

measured in the coordinate system S' centered at r. Let us denote this component as yi(t, r r').

We have

M.

Yi(t,k,') = Re E ' ki s(t -Tki)
k=1

exp -j27rt(f o - fki- jki - 2 i (A-2)

where > is also measured in S'. This expression incorporates several assumptions which are
36 4

frequently invoked in the study of scattering channels. ' First, although we attribute the

Doppler shift fki to the variation with time of the path delay Tki' only the nominal value of the

path delay appears in the argument of the signal envelope s( ). This is consistent with the as-

sumption that s( ) is a narrow-band waveform. Second, we have assumed that the magnitude of

r' is small compared with that of i, so that the attenuation ki and the delay ki (though im-

plicitly dependent upon ir) are independent of r'. The same assumption permits us to approxi-

mate the carrier phase variation with r' as indicated in Eq. (A-2). Specifically, the phase as-

sociated with propagation from p- to F' is given by

<7r Pi - I =-7( - -2r ' P + r t) / 2

0 0
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2| ' - 2r | i 2 -2z r 1/2
0 0

Xo ( R I Pi I )
The first term is lumped with the overall path phase ki and the second term appears in the ex-
ponent of Eq. (A-2) by itself.

We justify the assumption that ' > > | ( in terms of one of the results of Sec. 4.2, which
states that the spatial correlation distance of the field over the ground is on the order of X.When the field is being observed with a directive antenna of beamwidth B, the spatial correla-
tion distance is roughly B . In either case, it is not meaningful to describe the field at one
point in terms of the field at another point, unless the fields at the two points are correlated.
That is, I ' should be less than the correlation distance, which, in turn, is much less than

i I in any reasonable situation. Even when the plane of observation is within or at the lower
boundary of the cloud, most of the particles contributing to the field at a point are far away
from it, compared with the spatial correlation distance.

Another familiar assumption we shall make is that there is an uncertainty of many times
the carrier period f 1 in our knowledge of the path delay Tki. We shall therefore take the path
phase ki to be a random variable which is uniformly distributed between -r and . Moreover,
it is reasonable to assume that similar uncertainties exist in our knowledge of the differences
in delay between scattering paths; hence, we shall take each path phase ki to be statistically
independent of all the others.

As we indicated earlier, the path attenuation 7 ki can vary considerably with small changes
in such details of the path as individual scattering angles. An additional element of uncertainty
in ki results from the fact that the scattering pattern of any particle in the path depends upon
the particle radius a, which we can regard as a random variable obeying a particle size distri-
bution p(a). It is therefore reasonable to regard rq ki as a random variable. We have no reason
to assume that Dq ki is statistically dependent upon any other path attenuations, except possibly
those of paths which are nearly identical to the kt h But suppose the mth path were everywhere
identical with the kth except for one segment, where each of them contained one particle that
was not in the other path. Even in this extreme case, that one different scattering angle could
cause 7? ki to differ from mi by orders of magnitude. But suppose one suspected that there
was actually enough statistical coupling between the amplitudes (and perhaps the phases) on the
kt h path and those "nearly identical" to it to cause problems. In that case one could visualizedividing the M signals into M' groups, each containing a set of signals nearly identical to each1other, and lumping the members of each group together into a single term, with a common
delay, Doppler shift and phase. The only effect on Eq. (A-2) would be to reduce M. to M, which
is still an enormous number.

Thus we shall assume that the amplitude factors 71 ki are statistically independent random
variables, each described by a probability density function P ki( ) . Because of the spatial varia-
tion E(p ) of the incident signal, the density functions P ki( ) will depend upon the locations of the
paths and of the it particle, in general, but knowledge of the density functions will not be nec-
essary in our argument that the received process is Gaussian. In fact, the ki can even be
nonrandom, so long as they are very numerous and very small.
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The total received field y(t, r, r ') at points r' relative to r is simply the sum of contribu-

tions similar to Eq. (A-2) from every particle in the cloud. Thus

N
P

y(tr, ')= E Yi ( t , , ' )

i=l

N M.

|Re S "ki s(t - ki) exp [-j2rt(f- fki ) - jOki - j 7r i | (A-3)

The total received field y(t, F, F') should include a specular component, the unscattered residue

of the transmitted signal which penetrates the cloud to the ground. We shall simplify our prob-

lem somewhat by assuming that this component is so attenuated by the cloud that it is negligible

compared with the scattered radiation.

By arguments similar to those used above, we immediately establish statistical independence

between 0 ki and mn for every value of m and n except m = k and n = i. Similarly, r7 ki is

statistically independent of 7 mn' Let us re-index all the terms in Eq. (A-3), replacing all the

double subscripts ki by a single subscript n, which ranges from unity to

N
p

M = X Mi (A-4)

i=l

The last term in the exponent in Eq. (A-3), which depends upon i, can be made to fit into this

new formulation by defining new vectors

P1~ ' n =, 2, . .. , M

A P2 n = M1 + 1, M1 + 2,. M1 + M 2

n

(A-5)

Equation (A-3) can then be rewritten as

y(t,r, r') = Re n s(t-Tn) exp [j27rt(f - fn)- e n r (A6)
n=l

We have now put y(t, r, r ') into precisely the form obtained by Kennedy 36 for a signal transmitted

through a single-scattering medium. The crucial assumptions are the same; that is, the num-

ber of components is very large, the amplitude factors qn are small, and the phases n are

statistically independent and uniformly distributed over (-7r, r). Under these conditions, we

argue exactly as Kennedy did that the complex envelope of y(t, r, F') is a complex Gaussian ran-

dom process. The real and imaginary parts of the envelope are uncorrelated Gaussian random

variables, having equal correlation functions and zero means. Knowledge of the correlation

function is equivalent to knowledge of a complete statistical description of y(t, r, rF'). These

issues are discussed in Chapter 4.
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APPENDIX B

ORTHOGONAL ANGULAR COORDINATES a AND :

Much of the analysis inthis report uses orthogonal angular coordinates a and /3 to represent

the positions of points in space. In this appendix we define the transformation to a and /3 from

the spherical coordinates and (p, and discuss the transformation of functions of and qy into

functions of a and 3.

The most important advantage of the new coordinate system is that the orthogonality of a

and permits major simplifications in the calculation of convolutions of functions defined on the

unit sphere. Another convenient feature is the ability

to express the angular separation between two points

in space in the (approximate) Cartesian form given by 13-45-L61

Eq. (B-3) below. The equivalent of Eq.(B-3) in spher-

ical coordinates is a cumbersome expression ob-

tained by solving a spherical triangle. Finally, the

transformation maps the upper hemisphere into a fi-

nite region in a plane. As in the original problem, it

is possible for a light ray to be scattered out to 7r/2 ra-

dians by means of a finite number of finite steps. This

would not be the case under any transformation which

mapped the upper hemisphere into the infinite plane.

The relationship of ao and with the zeniih an-

gle and the azimuthal angle yo is closely analogous

to the relationship of the Cartesian coordinates x and

y with the polar coordinates r and qo in two dimen-

sions. As illustrated in Fig. B-1, the transformation Fig. B-1. Mapping of unit sphere onto

is accomplished by mapping the unit-radius sphere (a,) plane.

onto a plane tangent to the sphere at 0 = 0. (The plane in the figure is drawn above the sphere

for the sake of clarity.) The mapping is performed in such a way that azimuthal angles So and

polar arc lengths 0 are preserved. Thus the length of the radial line OP in the plane is equal

to that of the arc OP on the unit sphere, which is 0 units long. The coordinates of the point P

in the plane, measured along the orthogonal ao and B axes, are

= cos so radians

3 = 0 sin qy radians (B-l)

These equations define the transformation of coordinates. Although we can visualize mapping

every point of the sphere onto the plane in this manner, we shall restrict our attention to the

region 0 < T/2. The corresponding region in the a - 3 plane is bounded by the circle

2 2 = 2 (B-2)

Although the transformation preserves distance along lines of constant Sy, we observe that

distance along circles of constant 0 is not preserved. The circle e = 0° on the sphere has cir-

cumference 27 sinO 0, while the corresponding circle in the a - 3 plane has circumference 27rO 

In general, the distance between two arbitrary points in the plane differs from the great-circle
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distance between the two corresponding points on the sphere. Let two points Pi and P 2 be lo-

cated at (i, B3) and (2'2) on the - B plane, while the corresponding points on the sphere are

located at ( i , 'P1) and (2, 'P2 ). The distance between the two points on the plane has the con-

venient Cartesian form

D +2 J~acvl2 o 4 2 ( 2 _81 ) 2 (B-3)
D12 = (a2-- ~i 2 B2-~ )

It is clear that D2 differs from the great-circle distance between the two points on the sphere

by a factor which is upper-bounded by roughly 0 m/sin 0 m, where

Om = max[, 0,2 ] (B-4)

We recall that m and sinO m are equal within 0 percent for

om 0.75 radian -- 430 (B-5)

while the error does not exceed 20 percent for

< 1.03 radians 59 ° (B-6)

Now, the great-circle arc length between P1 and P2 on the unit sphere is equal to their angular

separation Y12 relative to the center of the sphere. Thus

Y12 12 (B-7)

within 10 percent subject to condition (B-5), or within 20 percent under the condition (B-6).

The transformation of a function of and defined over the surface of the unit sphere into

a function of cz and is a straightforward matter. As a specific example, consider the nor-

malized single-particle scattering pattern f(O) discussed in Chapter 3. This function is defined

in such a way that f(O) d is proportional to the intensity of the radiation scattered by the par-

ticle into the incremental solid angle (or area element)

dw = sinE d d (B-8)

at coordinates (, 'p). The polar angle is measured relative to the propagation vector of the

plane wave incident on the particle. We wish to transform f(O) into a function fo(a, ) subject

to the condition that

Sf f(0)sin0dOdp = ( f (oz, )d df ,1 (B-9)

where the domain of integration is the region < 7r /2. The transformation is a simple case of

a general treatment summarized by Wozencraft and Jacobs, 4 in the context of reversible trans-

formation of random vectors. The result is

f1(o, )3) = J(o, ) f[E(a, B)] (B-t0)

in which

J)= sin[((o,)] (-)
E)((a, )
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is the Jacobian of the transformation, often called the metric coefficient. The function O(o, 2)

is the first member of the transformation which is the inverse of Eq. (B-1),

= 2 + 221/2

(P = tan - (B-12)

For the most part we shall ignore the metric coefficient [Eq. (B-il)], since we deal with functions

which are concentrated in the region of small , where Eq. (B-11) is nearly unity. Even when

we perform a multiple convolution of a function like Eq. (B-10) with itself, we shall ignore

Eq. (B-l) if the result of the convolution tails off to small values by the time sinO/O differs

appreciably from unity. Somewhat more care is required, however, when we compute higher

moments of a function such as Eq. (B-it). Suppose, for example, we want the variance a2 of

the function f1 (c, 3), and that f1 ( ) is quite large near = 0 but has tails which extend all the way

out to = r/2. Regarding u and v as polar coordinates in the (o, ) plane, we have

2 2 2 y = de d f (o, )

eO ,7/2

= dv udu u cos v f (u)

o7r/ 2 2
"= w $du u sinu f(u) . (B-13)
o

Because of the factor u sinu, the integrand in Eq. (B-13) might be small near the origin

and fairly large as u approaches 7r/2. If we had not retained the metric coefficient (sinu)/u,
2 3 2

the factor u sinu would have been replaced by u , and a substantial error in a might have

resulted.

All the analysis in this report is carried out in the (a, ) domain. When we arrive at a final

answer, however, it will often be desirable to transform it back into spherical coordinates. The

transformation of a function I(o, ) into a function 11(, qp) is simply the inverse of Eq. (B-10),

I () - sin ( I [ (, (0), 2(0, S0)] (B-14)

The arguments of I[ I are given by the transformation (B-1).
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APPENDIX C

TWO-DIMENSIONAL NUMERICAL SIMULATION

In the earlier stages of the research reported in this document, spatial impulse responses

were derived for a two-dimensional model4 5 of the idealized cloud presented in Chapter 3. The

analog of the N-layer angular impulse response [Eq. (3-56)] in two dimensions was found to be

hN(°N' a°) $ ... * da N- '1.. d °at hI(aN, N_1)... hl(a, a O) (C-1)

The single-layer impulse response was

hl(a, a) = (1-pa sec a) u (a - a) +pa secaf(a - a ) (C-2)

in which

seca , if Ia <sect 1
sec a 

-- pa ' otherwise (C- 3)

Equation (C-2) was derived under the assumptions that all radiation incident on a particle was

scattered forward, and that the two-dimensional particle cross section was equalto its diameter a.

The function f( ) is the single-particle forward-scattering pattern. Observe that Eq. (C-2) would

be practically identical to the three-dimensional single-layer impulse response [Eq. (3-54)] if the

dependence upon were deleted.

The application of the Central Limit Theorem to Eq. (C-1) was prevented, as was the case

in Sec. 3.4, by the presence of the finite limits +7r/2 and the terms sec a. Changing the limits

to ±oo and replacing sec a by unity in Eq. (C-1) led to the result

CZ - ) (C-4)
hN(aN, a o) exp o ] (C-4)

in the limit as N goes to infinity, with

2 2
a = N W (C-5)a e a

N is the optical thickness of the cloud and Wa2 is the variance of f( ). Notice that this is nearlye a
identical to the a-dependent factors in the solution (3-72) of Eq. (3-56).

Zaborowski 3 0 carried out numerical solutions of Eq. (C-1) and another equation to be de-

scribed below, in order to test the validity of the approximations leading to Eq. (C-4). He pro-

grammed Eq. (C-1) just as it stands, retaining the integration limits i7T/2 and retaining the terms

sec a in the kernels. Although the number (N - 1) of integrations should ideally have been made

very large, he found after extensive testing that the choice

N = 2N (C-6)e

led to results virtually indistinguishable from the results obtained by using much larger values
2

of N. It is unfortunate that it was not yet clear that W 2 should be the variance of the rigorously

correct Mie scattering pattern of the particles. Instead, the fact that the half-power beamwidth
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of the scattering pattern goes roughly as X/a, where a is the particle diameter, was used as

justification for modeling the scattering pattern as

f(a) 2 o 

0 , elsewhere (C-7)

The parameter O0 was so chosen that the standard deviation

W = [ f(a) dsl (C-8)

was equal to X/a. Selecting X = 0.5 micron and a = 10 microns as representative values led to

the choice for O of 5 degrees. This figure was used in all of Zaborowski's work. The corre-

sponding value of Wa was about 2.9 degrees, smaller by a factor of six than the correct value,

which we show in Appendix G to be about 16.9 degrees, independent of particle size.

Nevertheless, his numerical solutions of Eq. (C-i) for large optical thicknesses give a rough

indication of the behavior of the results that would be obtained at smaller optical thicknesses if

the correct value of W were used. The largest value of N that he considered was 50. Thee
result of this computation (for which the incident angle was set equal to zero) is visually in-

distinguishable from a Gaussian curve, but its width is slightly greater than the predicted value.

For eO = 5 degrees and Ne = 50, Eq. (C-5) predicts a standard deviation

ua = 20.5 degrees (C-9)

The author has calculated the values of a Gaussian function with parameter (C-9) and compared

it with Zaborowski's curve for N = 50 at various values of the argument. At = a the simu-
e s

lated curve is larger by 3 percent than the true Gaussian. At e = 4.35, ua 89 degrees, well

out in the tail, the simulated curve is high by only a factor of ten; and it is down to 10-3 of its

value at the origin.

The other equation which was solved numerically is the two-dimensional analog of the joint

impulse response [Eq. (3-88)], having the form

h(NrxN; °x2)= 5.5 de -1 1 .d 1 )-..S dxNl dx .

The single-layer joint impulse response is

hI (ae, X; Ng, o) = [(1- pa sec a) u( - ao)

+ pa sece f( -o)] u(x - x + tan a) (C-il)

Notice that Eq. (C-10) would be practically identical to the three-dimensional equation (3-88) if

all functions of and y were deleted. An approximate analytical solution for Eq. (C-10), ob-

tained by a method analogous to that of Appendix D, looked like the a- and x-dependent factors

of the solution (3-89) for Eq. (3-88). Zaborowski programmed a numerical solution for Eq. (C-10),

again retaining the limits ±7r/2 on the -variables and retaining the terms sec a in the kernels.
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He solved the equation in an efficient manner, using a hybrid combination of Fourier transfor-

mation and convolution. Because the result is a function of two variables, comparing it with the

theoretical curve is not quite so simple as in the preceding case. As he explains in detail,

Zaborowski devised a way to calculate the standard deviations Uc and x and the correlation co-

efficient pax of each of his outputs. For Ne = 50, these quantities agreed with the theoretically

predicted values within 1.4, 1.15, and 0.4 percent, respectively.

These results constitute a fairly strong argument that the approximations made in solving

the multiple integral equations of Chapter 3 are valid. Since the value of W used in the numer-

ical work was too small by a factor of six, the results that were obtained apply only for small

optical thicknesses. Because the agreement between computed and theoretical results was so

close, however, one imagines that the approximations are adequate for considerably greater

optical thicknesses.
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APPENDIX D

SOLUTION OF EQUATION (3-88)

An approximate solution has been obtained for Eq. (3-88), the N-layer four-dimensional

impulse response hN(aN, / N' xN YN; o' X' O 0 , Yo). The keys to the solution are a series ex-

pansion and a limiting process which are carried out in the Fourier transform domain.

We begin by making the same two initial approximations that were used in Sec. 3.4 in solving

the angular impulse response equation (3-56). Specifically, we increase the limits to ±o on the

a, and integrals, and we assume that

sec ir 1 all i

over the angular ranges of interest. We then recast the single-layer impulse response in the

form

hi(ci' i'xi'Yi; i-i'xi- iYi- )- g(ai i-i' i- i-1 )

Uo(Xi- xi_ + Ioai) Uo(Yi- Yi-l + oi) (D-1)

in which

g(i-a i-i' i- Pi-1l) (1 - PCext) Uo(ai - i-l ) Uo(/3i - i l)

+ pCf f1(°i - Ci-1, i - i-1) (D-2)

Let us replace the two impulse functions in Eq. (D-1) by the inverses of their Fourier transforms.

We then have

h( ) - g(ai- ai- 1' pi-Ri-i 1)

dXi exp [j2rXi(x- i -x + oi )]

rO
dY exp [j27rY(y i-l ±opi (D-3)

Our next step is to make the substitution (D-3) everywhere in the superposition integral (3-88),

and to carry out a sequence of operations exactly as one conventionally does in the solution of

convolution integrals by Fourier transforms. Thus we rearrange orders of integration and

carry out the integrals on all xi and yi to obtain a product of impulses in the "frequency" variables

X and Y. A typical example of these integrals is

5 dxi exp [j27rxi(Xi - Xi+l)] = Uo(Xi - Xi+) .(D-4)

The superposition integral (3-88) now has the form
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hN( ) SS**Sd N.-1* d1 ** dN-1- **dI1

g(sN- Sn-*' PN - fN- ) '' g(sl- co,' 1-- o)

s S dX N dX SdYN dY
.00 00

* exp [j27r(XNXN - X 1xo + YNYN- Y1Yo)]

exp [j27r (XN N + ... + X s a + YNN +N + Y1 1 )]

Uo(XN-1- XN) '.' Uo(X1 - X2 ) Uo(YN-I YN) ' Uo(Y- Y2)

SS. 5 dNN- d 5 ... dN 1..- dfi
00 00CO

g(a N 01 n-i' N- N-1 ) ... g(sCl - o', Q1 - Po)

dX N dYN exp [j2rXN(XN - Xo) + j27YN(yN- Yo) ]

exp [j27rioXN( ON +. . + s i ) + j2 7rIo YN( N + fP1 (D-5)

Let us now replace each g( ) in Eq. (D-5) by the inverse Fourier transform

g(a i i-1' i i ) = J dAi _ dB.

* exp [j27rAi(cvi - C i- + j27rBi(i - i_,) ] G(Ai, Bi) , (D-6)

in which

G(A, B) d d exp [j27r(aA. + B)] g(cv, 3) (D-7)

Rearranging orders of integration and carrying out all the cv and /3 integrations, we obtain

another product of impulses. A typical integral is

o daYi exp [j27+rai(XNlO + A.i -Ai+l u (XN I i i+l (D-8)

Next, carrying out all the A and B integrations except those on AN and BN, we arrive at the
equation
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hN( ) = dX N dYN exp [j27rXN(x N - x + oaN + (N - o

exp [j27rYN(y N - Yo + NoN (- ) oPo )]

dAO N 5 dBN exp [j27rAN(a N - o ) + j2irBN(/ N - P)]

N- 

II G(A N- kXN o, BN- kYN ) (D-9)

k=O

The product on G( ) can be rewritten as

N-1

exp I lnG(AN- kXNo, BN- kYN o) (D-10)

k=O

Recalling the definition in Eq. (D-2) of g(cv, ), we see that

In G(A., B) = In [1 -pC ex t + pCfF1 (A, B)] (D- 1)

in which F1(A, B) is the Fourier transform of the single-particle forward-scattering pattern

f1(!, ,B). Since F1( ) may be interpreted as the conjugate of the characteristic function of a

probability density f ), we know that the magnitude of F1( ) is upper-bounded by unity. Thus

Eq. (D-ll) becomes

lnG(A., B) -PCext + CfF (A., B)

=-- d + d C fF(A., B) (D- 12)o v ext o v f 

in the limit as IO becomes very small. Let us now replace F1(A, B) by the leading terms of its

Taylor's series expansion,

(27rW )2 (27rW )2

F1(A., B) 2 A 2 B (D-13)

where Wa and Wp are the single-particle scattering beamwidth parameters defined by Eq. (3-42)

in Sec. 3.4. Equation (D-13) is actually valid to third order, since the coefficients of the third-

order terms of the series turn out to be zero. For the time being, we shall assume that the

series representation (D-13) is sufficiently accurate; later we shall justify the assumption. In-

corporating Eqs. (D-12) and (D-13) into (D-10), we have

N- 

rI G( ) exp [-Nfodv(Cext -Cf)]

k=O

P N- r [ 2 -2 2 

exp -IodvCf 2 (A N- kXNo) + 2 (BN- kYN o) (D-14)
k=0
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The first exponent in Eq. (D-14) is

--N odv(Cext - Cf) =-Ne(l- Yf) (D-15)

where Ne is the optical thickness of the cloud and f is the single-particle forward-scattering

efficiency. In the limit as So goes to zero, the second exponent in Eq. (D-14) becomes an integral.

Letting

k0 - u

- du
0

the exponent becomes

_-dC(2rW2 ) 2 (27rW ) 2
-dvC f du L (AN-X u ) + (B -

fW i 2 + 2 2

fNe a (27rAN)2 T(Z7 (2rAN)( ) 3

YfNWf2 2 (rY)2

2 fN (2 7rBN )2- (2rBN) (27rYN) 3 ] (D- 16)2 N(D-N6)

Substituting Eqs. (D-16) and (D-15) into Eq. (D-14), and inserting (D-14) into Eq. (D-9), we

find that hN( ) is precisely the inverse of the Fourier transform of a four-dimensional jointly
Gaussian function, multiplied by the factor exp [-Ne(1 - f)]. This joint Gaussian is consider-
ably simpler than the general four-dimensional case, in that four of the six possible covariances

are zero. Declining to write out all the algebra, we proceed directly to the answer. We have

hN( N N' XN' YN; Co' o' Xo' Yo)

exp [-Ne( -yf)] [47r oaxu (l-p ) (-p Y

exp2 x 
2(1-Pax ) V a x

(XN -o + To
2

)2)]

--2 (O4 - o) (Y - N-P 0 ) (YN- Y + TPo)
2 2 ( fl - o

2
f

0 )2 ] (D-17)
Y
yj
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in which

2 2
aO~ f e fNeW

2 2
gP =Y fNeWp

22 2
x 3 fNe Wc

22 T 2
cry =3 YfNeW y 3

Poex PPy=- F (D- 18)ax Pfy 2

Observe that Eq. (D-17) incorporates the fact that the terms Io 0 N and ON (D-9) go to zero

with O, while the terms (N- 1) f Oo and (N- 1) OB~o become Ta0 and 0O respectively.

As we stated in Sec. 3.5, the joint impulse response hp( ) of the cloud is equal to the N-layer

response hN( ) in the limit as o goes to zero. But we have already incorporated this limit in

the derivation of Eq. (D-17); hence hp(o, , x, y; o0 , go, xo, yo ) is obtained from Eq. (D-17)by simply

deleting the subscript N wherever it appears.

The relative simplicity of the result [Eq. (D-17)] was made possible by the assumption

[Eq. (D-13)] that a third-order Taylor's series was an adequate approximation for the transform

FI(A, B) of the single-particle scattering pattern. There are two indications that this assump-

tion is consistent with the other approximations we have utilized. The first is a numerical solu-

tion of the two-dimensional analog of Eq. (3-88) for a joint distribution in and x, which is

discussed in detail in Appendix C. Over the region of interest, the numerical results agreed

very well with an approximate analytic solution for the same equation, which was obtained by the

same technique that we used here. The second indication is related to the joint distribution over

the ground when the top of the cloud is illuminated by a beam of finite cross-sectional area,

which is calculated by means of a convolution operation on Eq. (D-17). When the cross section

of the incident beam becomes very large, the joint distribution over the ground reduces to pre-

cisely the angular intensity distribution [Eq. (3-72)] that is present below the cloud when the in-

cident illumination is a uniform plane wave. The details of this issue are discussed in Sec. 3-5.
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APPENDIX E

RANGE SCATTERING FUNCTION o (t)

We shall calculate the range scattering function o(t, a, A; ,o' So) defined in Chapter 4, for

the special case in which the illumination on the top of the cloud is a uniform plane wave, and

, , CZ and io are all equal to zero. In addition, we outline procedures for obtaining ( ) in

more general cases (e.g., when the illumination is an obliquely incident plane wave or a narrow

beam).

Equation (4-64) implies that

(t, a, ,; ao', o ) dt (ErAw)' Pa(t, a, ; a , ) dt

(ErAo)- w i (E -1)

where pa( ) is the average value of the instantaneous power measured by a unit-area antenna of

beam solid angle Acw aimed in the direction (a, 3). The quantities wi are ray intensity weights,

and i ranges over all rays such that

tht <T + ,< t + dt (E-2)The quantity i is the length in meters of the path of the it h ray, and Tio is a geometry-dependent

adjustment to the time origin for the signal borne by the ray. When a = = 0, the plane wave

illumination is vertically incident on the top of the cloud, and the quantities T. in (E-2) reduce

to zero for all rays.

We shall calculate the sum E w. in Eq. (E-1) by subdividing the rays in aw by scattering
1

order, computing the total intensity weight of all rays of each order which satisfy (E-2), and

summing them over all scattering orders. Our first step is to calculate the terms in the time-

independent sum

0oo

IA(, 3; 0, 0) = IkA (a, ,) (E-3)

k= 

for a vertically-incident unit-intensity CW plane wave, with IkA( ) defined as the total inten-

sity borne by all rays in Aow which were scattered exactly k times. To this end, let us re-

examine the (N - 1)-fold integral equation (3-56) for the N-layer angular impulse response

hN(aNN' PN; o,' , ). Each of the N factors in the integrand is a single-layer impulse response,

for which we use the approximate form (3-62),

h4 ( i - ai- ' i Pi- 1) - ( - PC ext) Uo( ai - -1i_) uo( i- i_-)

pCf fi( i . i- i i-1)

-th
The double-impulse term in hi( ) corresponds to passing through the it h layer without scattering.

The second term, involving the single-particle forward-scattering pattern f( ), corresponds to

the occurrence of scattering at the it h layer. Let us multiply out all the N binomial terms h( )

in the integrand of Eq. (3-56). The result is a sum of 2N (N - )-fold double integrals, each

having an integrand composed of the product of N monomial factors. Each of the monomials is
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one of the two terms in h1 ( ). There are precisely

kNI= Nk (E-4)( k! (N - k)! (E-4

of these integrals in which the first term of hi( ) appears (N - k) times and the second term of
hi( ) appears k times. We observe that each of these corresponds to one of the ways a light ray

can undergo exactly k scatterings in traversing N layers, and that the ( N ) integrals include all

possible ways for this to occur. Now, these (k) integrals are, in fact, identical to each other,
because all the double impulses integrate out immediately. Thus each of the integrals reduces

to the form

N-k
gk (aN N ) = ( - Cext) (p)k fk(N, BN ) (E-5)

in which we have defined fk ( ) as the (k - 1)-fold convolution of f( ) with itself,

f ( N N) = ... dk** 1 ak-.. du, dk-... d 1

fl (aN - k-l' N - k-)

fl(ak-l ak-2' k-l 3k-2) fl(atl, 1 ) (E-6)

Note that both Eqs. (E-5) and (E-6) incorporate our present assumption that a and o are equal

to zero. For k = 0, we have

go( N' /N ) (1 PCext ) Uo(a N ) Uo(EN) (E-7)

corresponding to the rays which traverse the entire cloud without being scattered. Thus it is

consistent to set fo(aN, AN) equal to uo(oaN ) Uo(3N). We can now write the expression

(Ika, )= (N) gk(a, B)A

=k ( 1--pC )N - k (pCf)k fk (, 3) Aw (E-8)

for the average total intensity borne by all the kth-order scattered rays in the solid angle aw

at (, ). The coefficient on the right side of Eq. (E-8) may be rewritten as

k
which has the form of a binomial probability multiplied by y f. Now, we obtained our results in

Chapter 3 in the limit of infinite N. If N is very large and PCext is very small, while their

product

NpCext = Ne (E-10)

is finite, the Poisson approximation 4 6 is valid; that is, (E-9) can be approximated as

Nk
k e
f exp[--N e (E-

f ~~~~~~~~~~~~~~~~~~E-)
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Equation (E-8) is now

k e
IkA(CZ, ) = Yf k! exp [-Ne] fk(ca, ) a c (E-12)

Observe that the integral of Eq. (E-12) over all a and / is given by

(f Ne)k
k! exp [--N ] (E- 13)

which we claim to be the total of all kth-order scattered radiation emerging below the cloud.

This is identical to a result obtained in Germany in 1941 by Hartel. 2 9 Observe also that the sum

of the terms (E-13) over all k is exp[-Ne(1 -f)], which is near unity. The integral of the un-

scattered intensity [Eq. (E-7)] over and is exp[-Ne]. We shall avoid the problems engen-

dered by the presence of the impulses in Eq. (E-7) by assuming Ne to be large enough that the

unscattered radiation is negligible compared with the scattered light. Thus we restrict our at-

tention to k 1 in the analysis below.

Let us interpret Ik,(o, A) in accordance with the comments following Eq. (4-55). We see

that

IkA(a, 3) = wm ,(E-14)

a sum of intensity weights of rays in the solid angle Aw at (, /), where m ranges over the kt h -

order scattered rays only. Knowing the single-particle scattering pattern f(a, A), one could

obtain each IkA( ) by calculating the functions fk(a, A) numerically. A more attractive approach

is to use the approximation

expfk(1 2 p (E-15)
27rkWa 2kW

2 2where Wd = W2 is the width parameter of f (, A). This approximation can be very good for

reasonably small c and , even for fairly small k, if f( ) is smooth, unimodal and symmetric.

Furthermore, for large Ne the coefficients (E-11) are very small when k is small. Thus we

shall use Eq. (E-15) in Eq. (E-12) for all k > 1, when Ne is large. In order to obtain results in

a convenient analytic form, we shall specialize the present problem even further by setting

a = = (E-16)

Using Eq. (E-15), Eq. (E-12) then becomes

(YfN )k
IkA(0, 0) 2 Aw exp[-Ne] (E-17)

27rW k k!

Despite the extra factor k in the denominator, Eq. (E-17) behaves much like the Poisson prob-

abilities. Thus the value of IkA(0, 0) increases monotonically with k up to a maximum, beyond

which it decreases monotonically with increasing k. To within a possible error of 1, the value

of k which maximizes IkA( ) is roughly Ne . This result may be restated as follows: the dom-

inant scattering order kd of the scattered light entering an upward-pointing narrow-beam antenna

below a cloud is approximately equal to the cloud optical thickness Ne, rounded off to the nearest

integer. For all Ne less than or equal to unity, kd is equal to unity.e
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Our next step is to subdivide the rays in the bundle IkA(ca, 3) by path length. We begin by

calculating the probability density p (r) for the random path length k of an arbitrary k th-order

scattered ray in the cloud. As we stated in Sec. 3.3, the extinction attenuation exp[-r/De] of a

light wave in a cloud can be interpreted as the probability that a light ray traverses a distance r

without being scattered. The path length 1 traversed by a light ray up to the first scattering

event it experiences is therefore exponentially distributed, with probability density

(r) = D exp - , r 0 (E-18)

The same probability density applies to the length of the path segment between successive scat-

tering events (which are assumed to be statistically independent of each other). Thus the length

k of the path from the starting point of the ray to the (k + 1)th scattering event is a gamma-
distributed random variable, with

k [ 1
P ( k+ expr > -19)

k D rF(k + 1) ' e
e

This applies, in particular, to a ray whose starting point happens to be at the top of the cloud.

Now, suppose the ray emerges from the bottom of the cloud after the kt h scattering event, having

traversed a total distance Vk within the cloud. We show that 1k obeys the probability density

[Eq. (E-19)] by the following simple argument. Observe that our assumptions imply that the oc-

currence of scattering events along the path of a ray, as a function of path length r, is a simple
-1Poisson process with constant average frequency D . Now, we know that the interval to thee

occurrence of an event in such a process, measured from an arbitrary point on the coordinate

axis, obeys the same probability density whether one looks forward or backward from the point.

Similarly, the length of path back to the kt h scattering event from the point where the ray emerged

from the cloud obeys the same probability density as the distance between any two successive

scattering events on the path. Thus the length f' of this kth-order scattered path from the point

of entrance into the top of the cloud to the point where it emerges from the bottom obeys the prob-

ability density [Eq. (E-19)], with one reservation: obviously Ik exceeds the cloud thickness T

in length. Applying Bayes' rule, we find that

fAk r k+1)
Akrk _exp - r

k k e

0 , elsewhere , (E-20)

with

r
Akl=S~ kM exp - drk k =D

D r (k + 1) e

oo

= D- .D) m exp -D (E-21)

m=k+l

If we include the distance from the bottom of the cloud to the ground in k' the effect is to

translate the probability density [Eq. (E-20)] along the r-axis by a deterministic amount. For
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the particular case at hand in which the ray emerges traveling essentially vertically downward,

the density is translated a distance h, the height of the bottom of the cloud above the ground.

Thus Eq. (E-20) becomes

Ak (r - h)k (E-2)
i(rlk >/T + h) = k+I exp , r >(+h) (E-22)

e

A valid interpretation of Eq. (E-22) is the following: of a bundle of many kth-order rays ar-

riving at the ground in the solid angle Aw about the vertical, a fraction

Ak(i - h)k

D ktl exp (i- h)] d (E-23)D k e
e

traversed paths of lengths between and + di (where I > T + h). Alternately, we may say that

a fraction

Ak+ (t k (t 

k+l exp- Dke /C dt (E-24)D k+ike

experienced a time delay between t and t + dt, where t > (T + h)/c and c is the velocity of light.

Now, the total intensity weight of those k th-order rays with time delays between t and t + dt is

the product of IkA(O, 0) and the expression (E-24). Adding these products for all k > 1, we find

that

exp[-Ne] cAw [ (t ) Ak k YfN(t- h d

2 exp - D/C2 e [ ex -k C k . f\ e c dt (E-25)a e k=1

is the total intensity weight of all scattered rays in Aw, of all orders, having time delays be-

tween t and t + dt [where, again, t (T + h)/c].

Let us now assume that the envelope s(t) of the plane wave illuminating the cloud was such

that

|s(t) 2 = 26(t) , (E-26)

where 6(t) is a very short unit-area pulse, as in Sec. 4.4. Recalling the definition of

o(t, , ; o,3 ) dt of Eq. (E-1), we now see that (E-25) is proportional to (t, 0, 0; 0, 0) dt, which

we shall abbreviate as o (t) dt. We have

A / fNe(t- i)
o(t): C1 exp _ )] I A k(k)Z e(t )k (E-27)

for t (T + h)/c, where C1 includes everything in (E-25) which is not dependent upon k or t.

We require C1 to be such that

o 9o(t) dt = 1 (E-28)
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The term Ak, given by Eq. (E-21), complicates Eq. (E-27) to the extent that we do not know

how to carry out the indicated summation. But we notice that Ak varies much more slowly with

k than the other factors in the summand, such as (k') . Without Ak , the terms in the sum peak

up sharply for

rYfNet - h ]/Z
k G D / C > Ne f , (E-29)

and a few terms with k near this value are much larger than the terms associated with higher

or lower values of k. In the interest of obtaining a very rough closed-form approximation for

Eq. (E-27), we replace Ak by a constant equal to its value when k is given by Eq. (E-29). This

simply modifies the constant C1. Now, since the important values of k are quite large, replac-

ing the factor k by (k + 1) in the denominator of the summand in Eq. (E-27) is also a reasonable

approximation. Thus Eq. (E-27) becomes

() - e D ] k(k + 1) e (E-30)

k= 1

which is precisely equal to

C2 exp Dc e/ , (E -31)

where I( ) is the hyperbolic Bessel function of first order and first kind, and

[ V -Ne (t -] (E-32)

Since t > (T + h)/c, we have v > 2N . Letting our attention be restricted to values of Ne

greater than about 5, we see that v> 10. Under this condition the large-argument approximation4 7

v

I1(v) e (E-33)

is valid to better than one percent. Inserting Eq. (E-33) in (E-31), we have

C-yN ( )3/4 (t )- N (t - h -2
2 fNe(t - - c

(t) 34(0 (t) -2<Y (z +fc) exp - /c + 2 (Y eC ) (E-34)

This function has a maximum at its left edge,

t h , (E-35)c

and decreases monotonically with increasing t. A plot of a typical ao(t) is shown in Fig. E-1.

The most interesting feature of o(t) is its width, the multipath spread L. Like the band-

width of a spectrum, the spread of ro(t) can be defined in a number of ways. As Kennedy points

out, any reasonable definition of the spread parameters (in both time and frequency) is adequate,

since they will be used only in an imprecise way in the channel analysis. In this particular case,

it is convenient to use a measure which is akin to the 1/e width. Noticing that the exponential
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Fig. E-1. Typical scattering function a (t).

part of Eq. (E-34) dominates the function, we calculate the value of t for which the exponential

is down by 1/e from its value at Eq. (E-35). The resulting estimate of the multipath spread is

L = + 2Ne(f-f) + 2JNe2(Jf- i)2 + Ne(2yff -f) , (E-36a)
c e -- e e

which simplifies to

D
L - [1 + NN] (E-36b)

when yf is very nearly unity, which is generally the case for nearly-lossless particles with the

diameter-to-wavelength ratios typical for clouds at visible frequencies.

The determination of u(t, a, 3; o' S o) by means of the approach developed here, for more

general illumination on the top of the cloud, will require numerical computation. The next level

of generality above Eq. (E-34) is the case in which o and rio are zero but and 13 are arbitrary.

For this situation we again want to know the quantity Z wn of Eq. (E-1), hence we require knowl-

edge of the terms IkA (, 3) in Eq. (E-3) for all scattering orders k. These functions, given by

Eq. (E-12), can be computed for given a and . If N is large enough (say, greater than about 5)

and f ( , ) is sufficiently smooth, the Gaussian approximation of Eq. (E-15) for fk(a, B) could

be used in Eq. (E-1Z) when computing the functions IkA((, pi). The path lengths Sk for the various

values of k will still obey the density functions [Eq. (E-22)], except that we must make the

substitution

h-h sec (?c2 + 2') (E-37)

We make the same substitution in (E-24), multiply the result by IkA(a, 13), and add these prod-

ucts numerically for all k > 1, for the desired set of values of t, to obtain a function proportional

to (t, ca, B; 0, 0). Finally, the proportionality constant must be adjusted so that

5ar(t, o, A; 0, O) dt = 

This quasi-analytical approach becomes far too cumbersome for more general situations.

When the cloud illumination is an obliquely incident plane wave, for example, or a narrow beam,

one may resort to Monte Carlo simulation of light propagation through the cloud. By this means,

it is possible 4 8 to keep track of the path lengths and intensities of all rays penetrating the cloud

as a function of angle, thereby simulating the angle-dependent range scattering function.
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APPENDIX F

RANGE-DOPPLER SCATTERING FUNCTION o(t, f)

In this appendix, the range-Doppler scattering function ao(t, f) is obtained by extension of the

analysis leading to (t) in Appendix E. The Doppler spread B is calculated, and the BL prod-

uct is discussed. In addition, we outline numerical procedures for obtaining the complete scat-

tering function u(t, f, a, 3) in more general situations.

Our point of departure is Eq. (E-27) in Appendix E, which gives an analytical expression for

the range scattering function cro(t). By assumption, the incident illumination was a vertically

incident plane wave with some finite-energy complex envelope s(t). Equation (E-27) was based

upon the assertion that, of all the energy arriving in the solid angle Aow about the direction (0, 0),

a fraction

C1 exp [(t - h/c) Ak YfNe(t -h/c) t (F-l)
De/C k(-.)2 De/C

was borne by kth-order scattered rays having time delays between t and t + dt. Now, each of

these rays has a random Doppler shift obeying the (approximate) probability density [Eq. (4-74)],

1 [ f2 
Pf (f) = 1_ exp 2

Pdk Ofl J fl

The product of (F-1) and pf (f) df is the fraction of received energy which is borne by kth-order
dk

rays having time delays in the range (t, t + dt) and Doppler shifts in the range (f, f + df). The

sum of these quantities for all k > 1 is equal to o (t, f) dt df. Thus

Yo(t,f)= | C Ak {YfN(t kh/c))k e p (t -h/c) f2ka(-a0(t, f) U Nr-2kk r kkk.1)2 De /C exp- D e /C 2k 2 (F-2)

where, again

T +h
t> c (F-3)

We know the shape of this function along the t-axis; it is simply o(t), Eq. (E-34). Each section

of o(t, f) at fixed t is a weighted sum of Gaussian curves in f.

An estimate of the Doppler spread B of o(t, f) is reasonably easy to obtain. As we pointed

out in Appendix E, any reas3nable definition of B is adequate, since it will be used only in an

approximate way in the channel analysis. In this case, it is mathematically convenient to cal-

culate it from the definition

B [ a 2 (f) dfl (F-4)

used by Kennedy, 3 6 in which

o(f) = ro(t, f) dt (F-5)
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Integrating Eq. (F-2) over t, we have

C (De/) (7fNe)k
o k(f) = k k ef 

k=l k k! fl N[-Zk·

exp [- f2 
2kf fl

(F-6)

We determine the value of C1 by noting that

u "o(f) df =_ 1

C C(De/c) (fNe)k
z k k k!

k=l

0 Ci(De/c) (fNe)k

k yfNe(k + 1)I
k=l

CI(De /c)
YfN exp [fNe]
Yfe

(F-7)

Notice that two small terms were dropped in making the final step in Eq. (F-7). This approxima-

tion depends upon the assumption that YfNe is large (at least 5, and often much greater), so that

exp[--yfNe] << 1. Equation (F-7) implies that

cyfNe
C1 = D exp [-fNe]

e

Inserting Eq. (F-8) into Eq. (F-6), we find that

(F-8)

a (f) df = exp[-2YfN] 
- 0-e

(fNe )m+n+2

ml n- m * mn*n fl n Zw,./27r(m + n)m= n. fl

Again invoking the fact that the important terms in Eq. (F-9) are those for which

near fNe, we make the approximation

/m+n + n- 2yfNefe

Equation (F-9) then becomes

2 df df exp[--2yfNe]
oT ao(f) d f e

f e m=l n=l

(2af 7T'fN) - 1

fl e)f'

(F-9)

m and n are

(F-10)

m+l (, N)n+l
(m + 1YfN) (n + fN1)
(m + (n + 1)

(F-11)

whereupon Eq. (F-4) yields the result

B -
-2 fl 7I}yfN (F-12)

Let us make a rough estimate of afl' so that we can examine the BL product of u o(t, f).

Equation (4-78) of Chapter 4 states that
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2f 2
- /2

2 '.2

where f is the carrier frequency and V 2 is the mean-square value of the random particle veloc-

ity. If we assume that sino f(O) becomes very small as approaches 7r/2, it is reasonable to

make the approximation

2
1 -cosO 0 2 (F-14)

in Eq. (F-13). The integral then becomes

7rT 0 sine f(e) dO (F-15)

which is precisely the integral of Eq. (B-19) in Appendix B for the average single-particle scat-

tering pattern width parameter

W 22 O (F-16)
a

By making this substitution in Eq. (F-13), we find that

= W 0 2 (F-17)

whereupon Eq. (F-12) becomes

2B o 2 W c ]_ (F-18)[2YfNV2ji/2

Assuming that yf is very nearly unity, we multiply Eq. (F-18) by the multipath spread

[Eq. (E-36b)] derived in Appendix E to obtain the channel time-bandwidth product

TW (V2)I/2
BL 2 - c 2 + . (F-19)

As we shall indicate in Appendix G, the channel is often overspread (BL >> ) for typical sets of

cloud parameters.

In more general situations, the determination of a(t, f, o, 3) for a small solid angle Ac does

not lend itself to analytical calculation. Numerical computation will generally be necessary.

This is relatively easy when the incident illumination is a modulated uniform plane wave with

ao = o = 0, but a and are arbitrary. We carry out the steps detailed in the paragraph fol-

lowing Eq. (E-36) in Appendix E, up to the substitution (E-37). The product of (E-24) and

IkA(a, P) is then multiplied by pf (f), Eq. (4-79), and the result is summed over all k > I for

the desired set of values of f and t. When the configuration is more complicated, one must

again resort to a Monte Carlo simulation.
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APPENDIX G

COMPARISON OF RESULTS WITH PUBLISHED WORK

As we commented earlier, the recent literature contains a number of reports of both

theoretical and experimental work on various specialized aspects of multiple scattering. In many

instances it is not feasible to make explicit comparisons between the published work and the re-

sults of the present study, because the corresponding physical configurations differ drastically.

For example, Reisman, et al.2 have carried out measurements of light scattered by dense artifi-

cial fogs, but they observed the scattered light through a window in the side of the fog chamber.

An experimental study which is potentially well suited for comparison with our results was

carried out by Smart, et al.1 5 Their scattering chamber was a thin rectangular glass-walled

cell containing a water suspension of polystyrene latex spheres that had an average diameter of

1.305 microns. They carried out measurements of scattered intensity vs angle of arrival for

optical thicknesses ranging from 0.03 to 78.5. There are two obstacles to the convenient com-

parison of their data with our results. First, we need to know the average single-particle

scattering-pattern width parameter W of the particles they used. Although the author of this

report has not done so, one could presumably obtain an approximate value for this parameter

by numerical integration of their measured intensity patterns for very small optical thicknesses.

The other obstacle, which is considerably more troublesome, is an anomaly which appears in

their measured curves for optical thicknesses greater than about 10. Although all these curves

have a generally Gaussian shape, as we would predict, their widths are virtually independent of

optical thickness. They are all down by a factor of 0.25 at the same angle, roughly 65 degrees.

As the authors of the report point out, this may be due to the finite width of their receiving beam.

At the larger angles of observation, it was presumably viewing unilluminated regions of the

scattering cell, causing the measured power levels to be low. Indeed, the techniques evolved

in the present study allow us to take account of this behavior, but the necessary computational

labor would be odious.

Zaborowski 3 0 has carried out some experimental work of a preliminary nature, using equip-

ment which closely resembled our assumed cloud model of Fig. 3-1 in Sec. 3.1. His scattering

particles were suspended in water in a broad, shallow Plexiglas tank illuminated from above by

a laser beam, with a narrow-beam measuring apparatus below it. He measured the scattered

light intensity below the tank as a joint function of lateral displacement and angle of arrival.

Using a scattering medium of dilute homogenized milk in one case, and polystyrene latex spheres

in another, he obtained results which showed substantial qualitative similarity to the Gaussian

joint impulse response hp (c, , x, y) we derived in Sec. 3.5.

The author has calculated a series of curves from the results of this study which show rather
19-22

striking agreement with certain Monte Carlo results reported by Plass and Kattawar.1922 The

specific curves that we consider are given in Figs. 12 and 13 of Ref. 19 and Fig. 4 of Ref. 21, all

of which correspond to our angular impulse response hI( ) of Chapter 3. Dr. Plass has kindly

provided full-page copies of the figures to permit reading off the values with greater precision.

The results are presented in Figs. G-1 through G-4. In each case, values were calculated only

for those angles for which Monte Carlo data were given. The calculated results were all smaller

by modest scale factors, as we explain below, but have been re-scaled as necessary for conven-

ience in visual comparison of the curve shapes. Figure G-1 represents the intensity as a func-

tion of zenith angle below an idealized laminar cloud of optical thickness Ne = 10, illuminated
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by a vertically incident uniform plane wave with unit intensity at 0.7-micron wavelength. The

assumed particle size distribution was Deirmendjian' s cumulus cloud distribution function, 3

which peaks at a particle radius of 4 microns. The single-particle albedo (called co0 by Plass

and Kattawar) was assumed to be unity for this curve, meaning that the particles were nonabsorp-

tive. The curve marked "Monte Carlo" is that of Plass and Kattawar, while the curve marked

"Theoretical" was calculated from our results in a manner to be described below.

The assumed conditions for Fig. G-2 were identical to those of Fig. G-1, except that wo was

given the value 0.9 (upper curves) and 0.5 (lower curves). Thus the particles were assumed to

be lossy, with each of them absorbing a fraction (1 - co) of the power incident upon it. The con-

ditions related to Fig. G-3 were identical to those of Fig. G-1, except that the optical thickness

Ne was set equal to 30. The assumed conditions for the curves of Fig. G-4 were the same as in

Fig. G-1, but the plane-wave illumination was incident at an angle of 60 degrees relative to the

zenith.

We observe an obvious characteristic of all four figures: each pair of curves shows remark-

ably good agreement near the zenith, but at larger angles the Monte Carlo curves begin to fluctu-

ate and (except for the case with coo = 0.5 in Fig. G-2) to fall below the theoretical curves. There

are two reasonable explanations for this behavior. First we note (as Plass and Kattawar did in

Ref. 19) that fluctuations must necessarily occur in any Monte Carlo simulation, simply because

the number of calculations is finite. One expects the fluctuations to be more severe at large

angles in the multiple-scattering simulations, because the number of photons which are scattered

through large angles is relatively smaller. The second phenomenon which could contribute to the

upward deviation of the theoretical curves at large angles relates to the technique we used to

solve the (N-1)-fold superposition integral [Eq. (3-56)] for the angular impulse response of the

cloud. As we explain in the paragraph immediately below Eq. (3-56), it would be reasonable to

set the result of each successive convolution in the equation to zero outside the range.

(0 + ) (2) (G-1)

in accordance with our assumption that all upward-scattered radiation is lost. But the impulse

response [Eq. (3-72)], which we used to calculate the theoretical curves in Figs. G-1 through G-4,

was obtained by letting all integration limits be ± o in Eq. (3-56). Had we been willing to include

the series of truncations at 7r/2 in our solution of Eq. (5-36), the result might have been similar

to the slight tailing off at large angles exhibited by the Monte Carlo curves.

As we stated above, the specific result of the present study which corresponds to these

curves is the angular impulse response [Eq. (3-72)] of Sec. 3.4,

exp[-Ne(l -Yf)] (-a )2 + ( o) 2

hI(a,1; °o' o)= 2 exp - 2 (G-

which is the angular intensity distribution function below a cloud illuminated by a single unit-

which is the angular intensity distribution function below a cloud illuminated by a single unit-
intensity plane wave with angle of arrival (o Po). The quantity Ne is the optical thickness of

the cloud, and the average single-particle forward-scattering efficiency yf is the fraction of the

power incident on a particle which is scattered through angles less than 7r/2. The variance is

2 2
a =YfNeW (G-3)
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in which W is the average single-particle scattering pattern width parameter defined by

Eq. (3-42). The author has computed the value of W for these calculations by numerical inte-

gration of the average scattering pattern 3 for the particle size distribution used by Plass and

Kattawar; the result is

W a 0.295 radiana

= 16.9 degrees (G-4)

The value of yf obtained from the same data, assuming the particles to be lossless, was

f = 0. 96 (G-5)

The theoretical curves in the first three figures in this appendix represent the function

0 exp [-N e (1- f)] exp- 2e (G-6)
g() =sin 2ryfN 2 W 2 , (G-6)

which is the transformation to polar coordinates of Eq. (G-2) with ao = o = 0. For Fig. G-1,

with Ne = 10 and Wa and yf given by Eqs. (G-4) and (G-5), the value of Eq. (G-6) at 0 = 0 was

smaller by a factor of 0.685 than the value obtained by Plass and Kattawar. We are unable to

give a reasonable explanation for this problem. The theoretical curve was rescaled to the same

height as the Monte Carlo curve, to facilitate comparison of the shapes of the functions.

For the upper curves in Fig. G-2, Plass and Kattawar assumed that each particle scattered

a fraction

c = 0.9 (G-7)
o

of the power incident on it, absorbing the remainder. The appropriate value of yf is therefore

Yf = 0.96 wo

- 0.864 (G-8)

The value of Eq. (G-6) at 0 = 0 in this case was smaller by a factor of 0.582 than the Monte Carlo

results.

For the lower curves in Fig. G-Z, with wo = 0.5, the correct value of yf was 0.48. At = 0

the value of Eq. (G-6) was 0.0235 of the Monte Carlo figure. It would be presumptuous to attribute

this severe discrepancy to a possible scale error in the Monte Carlo result. But we remark that

the number of photons penetrating to the ground, which is proportional to the transmitted inten-

sity, was much smaller in this case than in the other Monte Carlo simulations.

The theoretical curve in Fig. G-3 corresponds to Ne = 30 and yf = 0.96. The value of Eq. (G-6)

at the origin was smaller by a factor of 0.215 than the Monte Carlo curve.

In order to compute the theoretical curve of Fig. G-4 the cloud impulse response [Eq. (G-2)]

was modified in a rather obvious manner. Since the incident light arrived at an angle 60 degrees

below the vertical, the direct rays had to traverse an optical distance

sec 6 0 = 2.0 (G-9)

times greater than the assumed optical thickness of 10 measured vertically through the cloud.

We therefore used an effective optical thickness

N = 10 sec60° = 20
e
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in Eq. (G-2). As in the previous case with oo = 1, we set yf = 0.96. Assuming that the scattered

intensity was measured in the plane formed by the vertical line and the incident direction, we set

O = =-60
O O

3= = 0
0

in Eq. (G-2) and transformed it into polar coordinates, to obtain

(e - e o )
g(0) = sin ( - o )

(G-10)

(G-11)
exp [ -N (1 - Yf)] ( - 2 1

2 exp 2]
2 7ryfNeW 2YfNeWa

The value of Eq. (G-11) at = 0O was smaller by a factor of 0.592 than the corresponding Monte

Carlo value in Fig. G-4.

A recent paper by Dell-Imagine18 addressed the problem of optical communication through

clouds. His approach involved approximate numerical solution of Chandrasekhar' s equation of

radiative transfer. He assumed that a finite beam of light was vertically incident upon the top

of an idealized laminar cloud similar to that of the present study, and calculated the measured

power as a function of receiver beamwidth at a point on the ground directly below the center of

the incident beam. He obtained these results for a variety of incident-beam radii, cloud optical

thicknesses, and cloud heights h above the receiver. A set of three curves computed from our

results of Sec. 3.5 is compared in Fig. G-5 with corresponding curves from Dell-Imagine' s Fig. 17.

The optical thickness Ne of the cloud was 5. 0, and the assumed particle size distribution was the

"haze M" distribution of Deirmendjian. 3 Since the author had not computed W for this particle

distribution, its value was so adjusted that the uppermost calculated curve in Fig. G-5 coincided

with the corresponding one in Dell-Imagine' s data.

Fig. G-5. Received power vs receiver beamwidth.
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These curves can be described in terms of Eq. (5-3) in Sec. 5.1 of this report,

PG(c, , 0, 0) = exp[-N (1 -Yf)] 2 [47r2o2 ox2 P 2 xs ) ]
e asXs u (- axs

i oz + I-[exp [-( ) (G-12)

axs as

in which

2 2
oS Yf e 

r = . + + Th + h ;
xs 1 as 3

aS (T 2/12) + .22 as 
(- pxs ) 2 (G-13)

a
xs

The parameters and h, the thickness and the height above ground of the cloud, were both nor-

malized by Dell-Imagine to the extinction distance D of the cloud. We therefore do the same in

these calculations. Equation (G-12) is the scattered intensity at (, ) below a cloud, at coordi-

nates x = y = 0, in response to a unit-power vertically-incident beam at x = yo = 0. The inci-

dent beam intensity is symmetric and Gaussian in x and y, with "variance" parameter .
1

Dell-Imagine let the incident beam be uniform over a circle of radius 0.5 extinction distances in

computing these curves; hence, we set Zc i equal to 0.5. A receiving antenna with uniform gain

over a beam of width 2, illuminated by Eq. (G-12), receives

2r,~,,, 2 /0,)d /-exp [-Ne( - f)]

PG( , , 0) do = xs

2o2s (1-- Pxs )

watts of power per unit aperture area. This is the equation used to compute the theoretical
2

curves in Fig. G-5. Its dependence upon h enters in via the quantities 2 and (1 - p ). Thexs axs
vertical axis in Dell-Imagine' s graph was labeled " percent transmission," but he did not explain

how it was defined; therefore, we simply renormalized (G-14) so that our curve coincided with

his for h = 0. The curve labeled "h - 0" in Fig. G-5 represents experimental data measured by

Walsh4 9 in an endeavor to substantiate Dell-Imagine' s results.

While the curves of Fig. G-5 show substantial agreement, certain other results of Dell-

Imagine depart drastically from ours. In his Figs. 18 through 26, he plots time step responses

of the cloud, corresponding to the power measured by a receiver below the cloud when the inci-

dent illumination is turned on at some instant of time. He computes the rise time of the power

transported to the receiver by single-scattered light, and then uses a rather tenuous argument

to conclude that the rise time of the multiple-scattered power is of the same order. As an exam-

ple of these results, he indicates in his Fig. 20 that the rise time is about 0.002 of the time re-

quired to propagate through the cloud, for an optical thickness of 5.0 and a receiver beamwidth

of 5 degrees. Now, we showed in Sec. 4.4 and Appendix E that the range scattering function a(t)
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under similar circumstances (for an upward-pointing narrow-beam antenna) had a multipath spread

D
L e [1 +2 N] . (G-15)

The function r(t) can be interpreted as an impulse response; the step response is the integral

of u(t), and its rise time is roughly equal to L. As a fraction of the time

D N
2T e e (G-16)
c c

required to propagate through the cloud, the rise time is roughly

4+2 N
N 1.1 (G-17)Ne

This is in sharp contrast to Dell-Imagine' s result. Note also that Plass and Kattawar 9 found

that the average total path length traversed by transmitted photons was comparable to or greater

than twice the vertical distance through the cloud.

It is worthwhile to list some numerical values for typical cloud parameters. As we shall see

below, they indicate that the results of this study are valid for a broad range of naturally occur-
50-53

ring clouds. Table G-1 is a rough composite of cloud data obtained from four references,

each of which includes material from a variety of sources. The clouds of type 1 are fair-weather

cumulus, the woolly individual masses usually associated with "partly cloudy" weather. Type 2

clouds are the medium-height widespread overcasts (including cirrus, cirrostratus, altostratus

and altocumulus) which often foreshadow prolonged precipitation. The clouds of type 3 include

stratus and stratocumulus, the low watery overcast which becomes fog when it touches the ground.

In view of Eq. (2-2) et seq. in Sec. 2.2, we calculate approximate values for the extinction dis-

tances De in these clouds by means of the formula

2 -1.
D (27ramdv) (G-18)

in which a is one of the particle radii in Table G-1. We find that typical values for D lie in

the range of about 20 to 100 meters. The larger particle sizes are generally associated with the

smaller volume concentrations, tending to decrease the range of De . Thus the clouds of types

2 and 3, presumably the ones of greatest interest in optical communication applications, have

optical thicknesses Ne ranging from perhaps 5 to 50, with the larger values being rather less

common.
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TABLE G-1

CLOUD DATA

Cloud Particle Concentration d Mode Radius a Thickness Height above Ground
Type (cm- 3) v (microns) (meters) (meters)

1 100 to 300 4 to 10 700 to 2000 100 to 2000

2 100 to 400 5 to 10 '-1000 >1000

3 1 00 to 300 4 to 6 <1000 100 to 2000
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It must be emphasized that the above numerical values are quite crude, being intended only

as guidelines. The design of a receiver for optical communication through clouds in a particular

locality will naturally depend upon extensive knowledge of local meteorological data.

The single-particle scattering pattern width parameter Wa appears to be almost invariant

to particle size, for particles typically found in clouds. Using precise numerical computations 54

of the Mie scattering pattern of water droplets, the author has calculated W in accordance with

Eq. (3-42) for ten different radii, ranging from about 3 to 12 microns. Following no discernible

pattern, W varied within 6 to 7 percent of the 16.9-degree value used in the earlier calculations

in this appendix. Similarly, values calculated for yf fell within about 0. 008 of the value 0. 96, for

the same range of particle sizes. To be sure, the half-power beamwidths of the scattering pat-

terns decreased with increasing radius, but this had little effect on yf or the " standard deviation"

parameter W .of

110

it



ACKNOWLEDGMENTS

It is my pleasure to acknowledge the guidance and supervision of Professor

Estil V. Hoversten throughout this research. I consider my association

with him to be an invaluable adjunct to my education. I owe a debt of grat-

itude also to my readers, Professors Peter Elias and Robert S. Kennedy.

Through stimulating discussions and pertinent comments, they have made

important contributions to this effort.

I am deeply grateful to Lincoln Laboratory for the generous financial sup-

port given to me over a period of three years, under the Staff Associate

Program. Thanks are due also to the Research Laboratory of Electronics

for the facilities made available to me.

111

___�_IIIIII___IYI_�Dl--�.-� -.--1-1111_---·�.1_._·-�-- 11 - --



REFERENCES

1. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

2. E. Reisman, et al., "Comparison of Fog Scattered Laser and Monochromatic Inco-
herent Light," Appl. Opt. 6, No. 11, 1969-1972 (November 1967).

3. D. Deirmendjian, "Scattering and Polarization Properties of Water Clouds and Hazes
in the Visible and Infrared," Appl. Opt. 3, No. 2, 187-196 (February 1964).

4. R. S. Kennedy, private communication.

5. H. C. van de Hulst, op. cit.

6. G. Mie, Ann. Physik 25, 377 (1908).

7. R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York,
1966).

8. S. Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950).

9. V. V. Sobolev, A Treatise on Radiative Transfer, Transl. by S. I. Gaposchkin
(Van Nostrand, New York, 1963).

10. S. Fritz, "Scattering and Absorption of Solar Energy by Clouds," Sc. D. Thesis,
Massachusetts Institute of Technology, Cambridge (1953).

11. , "Scattering of Solar Energy by Clouds of Large Drops," J. Meteorol. 11,
291-300 (August 1954).

12. , "Illuminance and Luminance under Overcast Skies," J. Opt. Soc. Am. 45,
820-825 (October 1955).

13. L. W. Carrier and L.J. Nugent, "Comparison of Some Recent Experimental Results
of Coherent and Incoherent Light Scattering with Theory," Appl. Opt. 4, 1457-1462
(November 1965).

14. E. Reisman, et al., loc. cit.

15. C. Smart, et al., "Experimental Study of Multiple Light Scattering," J. Opt. Soc.
Am. 55, No. 8, 947-955 (August 1965).

16. D.H. Woodward, "He-Ne Laser as Source for Light Scattering Measurements,"
Appl. Opt. 2, 1205-1207 (November 1963).

17. , "Multiple Light Scattering by Spherical Dielectric Particles,"
J. Opt. Soc. Am. 54, 1325-1331 (November 1964).

18. R. A. Dell-Imagine, "A Study of Multiple Scattering of Optical Radiation with Appli-
cations to Laser Communication," in Advances in Communication Systems, Vol. II,
Ed. by V.A. Balakrishnan (Academic Press, New York, 1966), pp. 1-50.

19. G. N. Plass and G. W. Kattawar, "Influence of Single Scattering Albedo on Reflected
and Transmitted Light from Clouds," Appl. Opt. 7, 361-367 (February 1968).

20. , "Monte Carlo Calculations of Light Scattering from
Clouds," Appl. Opt. 7, 415-419 (March 1968).

21. , "Radiant Intensity of Light Scattered from Clouds,"
Appl. Opt. 7, 699-704 (April 1968).

22. G. W. Kattawar and G. N. Plass, "Influence of Particle Size Distribution on Reflected
and Transmitted Light from Clouds," Appl. Opt. 7, 869-878 (May 1968).

23. J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

24. H.C. van de Hulst, op. cit., p. 423.

25. Ibid., pp. 231-232.

26. H.J. Aufm Kampe and H.K. Weickmann, "Physics of Clouds," Meteorol. Mono. 3,
182-225 (July 1957).

27. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I,
(Wiley, New York, 1957), p. 143.

28. J.A. Stratton, op. cit.

29. W. Hartel, Licht 10, 141 (1941).

112

_�_IL I � �



30. J.S. Zaborowski, S.M. Thesis, Department of Electrical Engineering, Massachusetts
Institute of Technology, Cambridge (1968).

31. W. Feller, op. cit., Vol. II, p. 254.

32. Ref. 4.

33. H. L. VanTrees, Detection, Estimation, and Modulation Theory, Part 2 (Wiley,
New York, to be published in 1969).

34. E. V. Hoversten, private communication.

35. C.W. Allen, Astrop_ysical Quantities (Athlone Press, University of London, 1955).

36. R.S. Kennedy, Performance Limits for Fading Dispersive Channels, (Wiley,
New York, to be published in May 1969).

37. B.M. Oliver, "Signal-to-Noise Ratios in Photoelectric Mixing," Proc. IRE 49, No. 12,
1960-1961 (December 1961).

38. C. W. Helstrom, "Detectability of Coherent Optical Signals in a Heterodyne Receiver,"
J. Opt. Soc. Am. 57, No. 3, 353-361 (March 1967).

39. L.I. Bluestein and R. L. Greenspan, "Efficient Approximation of Orthogonal Wave-
forms," Group Report 1964-48, Lincoln Laboratory, Massachusetts Institute
of Technology (3 November 1964), DDC 45-755, H-616.

40. W.W. Peterson, Error-Correction Codes (Massachusetts Institute of Technology
Press, Cambridge, 1961).

41. G.W. Kattawar and G.N. Plass, loc. cit.

42. Ref. 4.

43. J. W-S. Liu, "Reliability of Quantum-Mechanical Communication Systems," Sc. D.
Thesis, Department of Electrical Engineering, Massachusetts Institute of Technology,
Cambridge (September 1968).

44. J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering (Wiley,
New York, 1965) pp. 111-114.

45. H. M. Heggestad, "Angle-of-Arrival Dispersion of a Plane Wave Traversing a Two-
Dimensional Cloud," Quarterly Progress Report No. 90, Research Laboratory of
Electronics, Massachusetts Institute of Technology (15 July 1968), pp. 169-174.

46. W. Feller, loc. cit.

47. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill,
New York, 1953), p. 1323.

48. G.N. Plass, private communication.

49. D.H. Walsh, "Laboratory Measurement of Multiple Scattering of Coherent Optical
Radiation by a Nonabsorbing Aerosol," Appl. Opt. 7, No. 6, 1212-1219 (June 1968).

50. B.J. Mason, The Physics of Clouds (Clarendon Press, Oxford, 1957).

51. N.H. Fletcher, The Physics of Rainclouds (University Press, Cambridge, 1962).

52. W.G. Durbin, "Droplet Sampling in Cumulus Clouds," Tellus 11, No. 2, 202-215
(1959).

53. F. Singleton and D.J. Smith, "Some Observations of Drop-size Distributions in Low
Layer Clouds," J. Roy. Meteorol. Soc. 86, 454-467 (1960).

54. A. Holland, private communication.

113

_11111 ^.111-1_- 1 e -



___ __ ___�_I



JOINT SERVICES ELECTRONICS PROGRAM

REPORTS DISTRIBUTION LIST

Department of Defense

Dr. A. A. Dougal
Asst Director (Research)
Ofc of Defense Res & Eng
Department of Defense
Washington, D. C. 20301

Office of Deputy Director
(Research and Information, Rm 3D1037)
Department of Defense
The Pentagon
Washington, D. C. 20301

Director
Advanced Research Projects Agency
Department of Defense
Washington, D. C. 20301

Hq USAF (AFRDSD)
The Pentagon
Washington, D. C. 20330

Colonel E. P. Gaines, Jr.
ACDA/FO
1901 Pennsylvania Avenue N. W.
Washington, D. C. 20451

Lt Col R. B. Kalisch (SREE)
Chief, Electronics Division
Directorate of Engineering Sciences
Air Force Office of Scientific Research
Arlington, Virginia 22209

Dr. I. R. Mirman
AFSC (SCT)
Andrews Air Force Base, Maryland 20331

Director for Materials Sciences
Advanced Research Projects Agency
Department of Defense
Washington, D. C. 20301

Headquarters
Defense Communications Agency (340)
Washington, D. C. 20305

Defense Documentation Center
Attn: DDC-TCA
Cameron Station
Alexandria, Virginia 22314

Director
National Security Agency
Attn: TDL
Fort George G. Meade, Maryland 20755

Weapons Systems Evaluation Group
Attn: Colonel Blaine O. Vogt
400 Army-Navy Drive
Arlington, Virginia 22202

Central Intelligence Agency
Attn: OCR/DD Publications
Washington, D. C. 20505

Department of the Air Force

Hq USAF (AFRDDD)
The Pentagon
Washington, D. C. 20330

Hq USAF (AFRDDG)
The Pentagon
Washington, D. C. 20330

AFSC (SCTSE)
Andrews Air Force Base, Maryland 20331

Mr. Morton M. Pavane, Chief
AFSC Scientific and Technical Liaison

Offic e
26 Federal Plaza, Suite 1313
New York, New York 10007

Rome Air Development Center
Attn: Documents Library (EMTLD)
Griffiss Air Force Base, New York 13440

Mr. H. E. Webb (EMIIS)
Rome Air Development Center
Griffiss Air Force Base, New York 13440

Dr. L. M. Hollingsworth
AFCRL (CRN)
L. G. Hanscom Field
Bedford, Massachusetts 01730

AFCRL (CRMPLR), Stop 29
AFCRL Research Library
L. G. Hanscom Field
Bedford, Massachusetts 01730

Hq ESD (ESTI)
L. G. Hanscom Field
Bedford, Massachusetts 01730

Professor J. J. D'Azzo
Dept of Electrical Engineering
Air Force Institute of Technology,
Wright-Patterson Air Force Base,
Ohio 45433

_ I I_ II _ FIII �II�--�--- . --L�llll^i·WL�I�1-···^-ll-l�·_C-_·-l---- II1IIIIII1I·--·----..-�-- .-- _1�



JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Dr. H. V. Noble (CAVT)
Air Force Avionics Laboratory
Wright-Patterson Air Force Base,
Ohio 45433

Director
Air Force Avionics Laboratory
Wright-Patterson Air Force Base,
Ohio 45433

AFAL (AVTA/R. D. Larson)
Wright-Patterson Air Force Base,
Ohio 45433

Director of Faculty Research
Department of the Air Force
U.S. Air Force Academy
Colorado Springs, Colorado 80840

Academy Library (DFSLB)
USAF Academy
Colorado Springs, Colorado 80840

Director
Aerospace Mechanics Division
Frank J. Seiler Research Laboratory (OAR)
USAF Academy
Colorado Springs, Colorado 80840

Director, USAF PROJECT RAND
Via: Air Force Liaison Office
The RAND Corporation
Attn: Library D
1700 Main Street
Santa Monica, California 90406

Hq SAMSO (SMTTA/Lt Nelson)
Air Force Unit Post Office
Los Angeles, California 90045

Det 6, Hq OAR
Air Force Unit Post Office
Los Angeles, California 90045

Hq AMD (AMR)
Brooks Air Force Base, Texas 78235

USAFSAM (SMKOR)
Brooks Air Force Base, Texas 78235

Commanding General
Attn: STEWS-RE-L, Technical Library
White Sands Missile Range,
New Mexico 88002

Hq AEDC (AETS)
Attn: Library/Documents
Arnold Air Force Station, Tennessee 37389

European Office of Aerospace Research
APO New York 09667

Department of the Army

Physical & Engineering Sciences Division
U.S. Army Research Office
3045 Columbia Pike
Arlington, Virginia 22204

Commanding General
U.S. Army Security Agency
Attn: IARD-T
Arlington Hall Station
Arlington, Virginia 22212

Commanding General
U.S. Army Materiel Command
Attn: AMCRD-TP
Washington, D. C. 20315

Commanding Officer
Harry Diamond Laboratories
Attn: Dr. Berthold Altman (AMXDO-TI)
Connecticut Avenue and
Van Ness Street N. W.
Washington, D. C. 20438

AUL3T-9663
Maxwell Air Force Base, Alabama 36112

AFETR Technical Library
(ETV, MU- 135)
Patrick Air Force Base, Florida 32925

ADTC (ADBPS-12)
Eglin Air Force Base, Florida 32542

Mr. B. R. Locke
Technical Adviser, Requirements
USAF Security Service
Kelly Air Force Base, Texas 78241

Director
Walter Reed Army Institute
Walter Reed Army Medical
Washington, D. C. 20012

of Research
Center

Commanding Officer (AMXRD-BAT)
U.S. Army Ballistics Research Laboratory
Aberdeen Proving Ground
Aberdeen, Maryland 21005

Technical Director
U.S. Army Limited War Laboratory
Aberdeen Proving Ground
Aberdeen, Maryland 21005

__



JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Commanding Officer
Human Engineering Laboratories
Aberdeen Proving Ground
Aberdeen, Maryland 21005

U.S. Army Munitions Command
Attn: Science & Technology Information

Branch, Bldg 59
Picatinny Arsenal, SMUPA-VA6
Dover, New Jersey 07801

U.S. Army Mobility Equipment Research
and Development Center

Attn: Technical Document Center, Bldg 315
Fort Belvoir, Virginia 22060

Director
U.S. Army Engineer Geodesy,

Intelligence & Mapping
Research and Development Agency
Fort Belvoir, Virginia 22060

Dr. Herman Robl
Deputy Chief Scientist
U.S. Army Research Office (Durham)
Box CM, Duke Station
Durham, North Carolina 27706

Richard O. Ulsh (CRDARD-IPO)
U.S. Army Research Office (Durham)
Box CM, Duke Station
Durham, North Carolina 27706

Technical Director (SMUFA-A2000-107-1)
Frankford Arsenal
Philadelphia, Pennsylvania 19137

Redstone Scientific Information Center
Attn: Chief Document Section
U.S. Army Missile Command
Redstone Arsenal, Alabama 35809

Commanding General
U.S. Army Missile Command
Attn: AMSMI- REX
Redstone Arsenal, Alabama 35809

Commanding General
U.S. Army Strategic Communications

Command
Attn: SCC-CG-SAE
Fort Huachuca, Arizona 85613

Commanding Officer
Army Materials and Mechanics

Research Center
Attn: Dr. H. Priest
Watertown Arsenal
Watertown, Massachusetts 02172

Commandant
U.S. Army Air Defense School
Attn: Missile Science Division, C&S Dept,
P. O. Box 9390
Fort Bliss, Texas 79916

Commandant
U.S. Army Command and General

Staff College
Attn: Acquisitions, Lib Div
Fort Leavenworth, Kansas 66027

Commanding Officer
U.S. Army Electronics R&D Activity
White Sands Missile Range,
New Mexico 88002

Mr. Norman J. Field, AMSEL-RD-S
Chief, Office of Science & Technology
Research and Development Directorate
U.S. Army Electronics Command
Fort Monmouth, New Jersey 07703

Mr. Robert O. Parker, AMSEL-RD-S
Executive Secretary, JSTAC
U. S. Army Electronics Command
Fort Monmouth, New Jersey 07703

Commanding General
U. S. Army Electronics Command
Fort Monmouth, New Jersey 07703
Attn: AMSEL-SC

RD-GF
RD -MT
XL-D
XL-E
XL-C
XL-S (Dr. R. Buser)
HL-CT-DD
HL-CT-R
HL-CT-L (Dr. W.S.McAfee)
HL-CT-O
HL-CT-I
HL-CT-A
NL-D
NL-A
NL-P
NL-P-2 (Mr. D. Haratz)
NL-R (Mr. R. Kulinyi)
NL-S
KL-D
KL-E
KL-S (Dr. H. Jacobs)
KL-SM (Drs. Schiel/Hieslmair)
KL-T
VL-D
VL-F (Mr. R. J. Niemela)
WL-D

_ IC--I ·- III�L--�. .--·CII^I IC-�·ll�-I 1�----·-·- ·--L--- 1II_._--II.___I1·Il�l -11-·



JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Dr. A. D. Schnitzler, AMSEL-HL-NVII
Night Vision Laboratory, USAECOM
Fort Belvoir, Virginia 22060

Dr. G. M. Janney, AMSEL-HL-NVOR
Night Vision Laboratory, USAECOM
Fort Belvoir, Virginia 22060

Atmospheric Sciences Office
Atmospheric Sciences Laboratory
White Sands Missile Range,
New Mexico 88002

Missile Electronic Warfare Technical
Area, (AMSEL-WT-MT)

White Sands Missile Range,
New Mexico 88002

Deputy for Research and Engineering
(AMSWE-DRE)

U.S. Army Weapons Command
Rock Island Arsenal
Rock Island, Illinois 61201

Project Manager
Common Positioning & Navigation Systems
Attn: Harold H. Bahr (AMCPM-NS-TM),

Bldg 439
U.S. Army Electronics Command
Fort Monmouth, New Jersey 07703

Director
U. S. Army Advanced Materiel

Concepts Agency
Washington, D. C. 20315

Department of the Navy

Director, Electronic Programs
Attn: Code 427
Department of the Navy
Washington, D. C. 20360

Commander
U.S. Naval Security Group Command
Attn: G43
3801 Nebraska Avenue
Washington, D. C. 20390

Director
Naval Research Laboratory
Washington, D. C. 20390
Attn: Code 2027

Dr. W. C. Hall, Code 7000
Dr. A. Brodzinsky, Supt. Elec. Div.

Dr. G. M. R. Winkler
Director, Time Service Division
U.S. Naval Observatory
Washington, D. C. 20390

Naval Air Systems Command
AIR 03
Washington, D. C. 20360

Naval Ship Systems Command
Ship 031
Washington, D. C. 20360

Naval Ship Systems Command
Ship 035
Washington, D. C. 20360

U. S. Naval Weapons Laboratory
Dahlgren, Virginia 22448

Naval Electronic Systems Command
ELEX 03, Room 2046 Munitions Building
Department of the Navy
Washington, D. C. 20360

Head, Technical Services Division
Naval Investigative Service Headquarters
4420 North Fairfax Drive
Arlington, Virginia 22203

Commander
U.S. Naval Ordnance Laboratory
Attn: Librarian
White Oak, Maryland 21502

Commanding Officer
Office of Naval Research Branch Office
Box 39 FPO
New York, New York 09510

Commanding Officer
Office of Naval Research Branch Office
219 South Dearborn Street
Chicago, Illinois 60604

Commanding Officer
Office of Naval Research Branch Office
495 Summer Street
Boston, Massachusetts 02210

Commander (ADL)
Naval Air Development Center
Johnsville, Warminster,
Pennsylvania 18974

Commanding Officer
Naval Training Device Center
Orlando, Florida 32813



JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Commander (Code 753)
Naval Weapons Center
Attn: Technical Library
China Lake, California 93555

Commanding Officer
Naval Weapons Center
Corona Laboratories
Attn: Library
Corona, California 91720

Commander
U. S. Naval Missile Center
Point Mugu, California 93041

W. A. Eberspacher, Associate Head
Systems Integration Division
Code 5340A, Box 15
U. S. Naval Missile Center
Point Mugu, California 93041

Commander
Naval Electronics Laboratory Center
Attn: Library
San Diego, California 92152

Deputy Director and Chief Scientist
Office of Naval Research Branch Office
1030 East Green Street
Pasadena, California 91101

Library (Code 2124)
Technical Report Section
Naval Postgraduate School
Monterey, California 93940

Glen A. Myers (Code 52 Mv)
Assoc. Prof. of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

Commanding Officer and Director
U. S. Naval Underwater Sound Laboratory
Fort Trumbull
New London, Connecticut 06840

Commanding Officer
Naval Avionics Facility
Indianapolis, Indiana 46241

Other Government Agencies

Dr. H. Harrison, Code RRE
Chief, Electrophysics Branch
National Aeronautics and

Space Administration
Washington, D. C. 20546

NASA Lewis Research Center
Attn: Library
21000 Brookpark Road
Cleveland, Ohio 44135

Los Alamos Scientific Laboratory
Attn: Reports Library
P. O. Box 1663
Los Alamos, New Mexico 87544

Federal Aviation Administration
Attn: Admin Stds Div (MS-110)
800 Independence Avenue S. W.
Washington, D. C. 20590

Mr. M. Zane Thornton, Chief
Network Engineering, Communications

and Operations Branch
Lister Hill National Center for

Biomedical Communications
8600 Rockville Pike
Bethesda, Maryland 20014

U. S. Post Office Department
Library - Room 6012
12th & Pennsylvania Avenue, N. W.
Washington, D. C. 20260

Non-Government Agencies

Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Mr. Jerome Fox, Research Coordinator
Polytechnic Institute of Brooklyn
333 Jay Street
Brooklyn, New York 11201

Director
Columbia Radiation Laboratory
Columbia University
538 West 120th Street
New York, New York 10027

Director
Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61801

Director
Stanford Electronics Laboratories
Stanford University
Stanford, California 94305

�_·�____� �111_ _ _ I_�l�p 1__11 11_11 -1-.11�--·-·-·--·-·�-----·ly�-�



JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Director
Microwave Physics Laboratory
Stanford University
Stanford, California 94305

Director
Electronics Research Laboratory
University of California
Berkeley, California 94720

Director
Electronic Sciences Laboratory
University of Southern California
Los Angeles, California 90007

Director
Electronics Research Center
The University of Texas at Austin
Austin, Texas 78712

Division of Engineering and
Applied Physics

Harvard University
Cambridge, Massachusetts 02138

Dr. G. J. Murphy
The Technological Institute
Northwestern University
Evanston, Illinois 60201

Dr. John C. Hancock, Head
School of Electrical Engineering
Purdue University
Lafayette, Indiana 47907

Department of Electrical Engineering
Texas Technological College
Lubbock, Texas 79409

Aerospace Corporation
P. O. Box 95085
Los Angeles, California 90045
Attn: Library Acquisition Group

Prof. Nicholas George
California Institute of Technology
Pasadena, California 91109

Aeronautics Library
Graduate Aeronautical Laboratories
California Institute of Technology
1201 E. California Blvd.
Pasadena, California 91109

The Johns Hopkins University
Applied Physics Laboratory
Attn: Document Librarian
8621 Georgia Avenue
Silver Spring, Maryland 20910

Hunt Library
Carnegie-Mellon University
Schenley Park
Pittsburgh, Pennsylvania 15213

Dr. Leo Young
Stanford Research Institute
Menlo Park, California 94025

School of Engineering Sciences
Arizona State University
Tempe, Arizona 85281

Engineering and Mathematical
Sciences Library

University of California at Los Angeles
405 Hilgard Avenue
Los Angeles, California 90024

The Library
Government Publications Section
University of California
Santa Barbara, California 93106

Carnegie-Mellon University
Electrical Engineering Department
Pittsburgh, Pennsylvania 15213

Prof. Joseph E. Rowe
Chairman, Dept of Electrical Engineering
The University of Michigan
Ann Arbor, Michigan 48104

New York University
College of Engineering
New York, New York 10019

Syracuse University
Department of Electrical Engineering
Syracuse, New York 13210

Yale University
Engineering Department
New Haven, Connecticut 06520

Airborne Instruments Laboratory
Deerpark, New York 11729

Raytheon Company
Attn: Librarian
Bedford, Massachusetts 01730



JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Raytheon Company
Research Division Library
28 Seyon Street
Waltham, Massachusetts 02154

Dr. Sheldon J. Welles
Electronic Properties Information Center
Mail Station E-175
Hughes Aircraft Company
Culver City, California 90230

Dr. Robert E. Fontana
Systems Research Laboratories Inc.
7001 Indian Ripple Road
Dayton, Ohio 45440

Nuclear Instrumentation Group
Bldg 29, Room 101
Lawrence Radiation Laboratory
University of California
Berkeley, California 94720

Sylvania Electronic Systems
Applied Research Laboratory
Attn: Documents Librarian
40 Sylvan Road
Waltham, Massachusetts 02154

Hollander Associates
P. O. Box 2276
Fullerton, California 92633

Illinois Institute of Technology
Department of Electrical Engineering
Chicago, Illinois 60616

The University of Arizona
Department of Electrical Engineering
Tucson, Arizona 85721

Utah State University
Department of Electrical Engineering
Logan, Utah 84321

Lenkurt Electric Co., Inc.
1105 County Road
San Carlos, California 94070
Attn: Mr. E. K. Peterson

Philco Ford Corporation
Communications & Electronics Division
Union Meeting and Jolly Roads
Blue Bell, Pennsylvania 19422

Union Carbide Corporation
Electronic Division
P. O. Box 1209
Mountain View, California 94041

Department of Electrical Engineering
Rice University
Houston, Texas 77001

Research Laboratories for the
Engineering Sciences

School of Engineering and Applied Science
University of Virginia
Charlottesville, Virginia 22903

Department of Electrical Engineering
College of Engineering and Technology
Ohio University
Athens, Ohio 45701

Project MAC
Document Room
Massachusetts Institute of Technology
545 Technology Square
Cambridge, Massachusetts 02139

Department of Electrical Engineering
Lehigh University
Bethlehem, Pennsylvania 18015

Materials Center Reading Room 13-2137
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Case Western Reserve University
Engineering Division
University Circle
Cleveland, Ohio 44106

Lincoln Laboratory
Massachusetts Institute of Technology
Lexington, Massachusetts 02173

The University of Iowa
The University Libraries
Iowa City, Iowa 52240

II __·_ · · _�___� _ II_ _ IY-----·llll-





UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA- R&D
(Security clesifcaltion ol title, body of abstract and Indexing annotation must be entered when the overall report is classified)

I. ORIGINATING ACTIVITY (Corporate author) 2Z. REPORT SECURITY C LASSIFICATION

Research Laboratory of Electronics Unclassified
Massachusetts Institute of Technology 2b GRouP
Cambridge, Massachusetts 02139 None

3. REPORT TITLE

Optical Communication through Multiple-Scattering Media

4. DESCRIPTIVE NOTES (Type of report and nclusive dates)

Technical Report
5. AUTHOR(S) (Last name, first name, Initial)

Heggestad, Harold M.

6- REPORT DATE 74. TOTAL NO. OF PAGES 7b. NO. OF REFS

November 22, 1968 120 54
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

DA 28-043-AMC-02536(E) Technical Report 472
b. PROJECT NO.

200- 14501-B31F

NASA Grant NGL 22-009-013 9b. OTER RPORT NO(S) (Any othernumbers that may be asslg*d

Lincoln Laboratory TR-454
ESD- TR - 68 - 3s410. A V A IL ABILITY/LIMITATION NOTICES

This document has been approved for public release and sale; its distribution
is unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

None Joint Services Electronics Program
Through U. S. Army Electronics Command

13. ABSTRACT

A model is developed for the effects of multiple scattering upon optical-frequency radiation. Attention is focused upon situations in which the
scattering particles are large compared to the carrier wavelength, so that forward-scattering predominates. This is the case for atmospheric
clouds at visible-light wavelengths, the physical framework within which the analysis is carried out. The objectives served by the model are those
of a communications engineer desiring to design a system for optical communication through clouds.

Light traversing optically dense clouds suffers dispersion in space, time and frequency. These effects are considered both separately and
in a compact unified formulation. The spatial variation of the intensity of light beneath a cloud subjected to continuous-wave illumination is modeled
as the output of a multidimensional linear system. The approximate impulse response of the system is determined, in two complementary forms,
and the approximate response below the cloud under arbitrary illumination is shown to be given by a linear superposition integral. In general, the
spatial behavior is representable as a joint function of angle of arrival and horizontal coordinates over the ground.

The field on the ground is shown to be representable in terms of a complex Gaussian random process. A complete statistical description of
the process is therefore provided by its mean (which is zero) and its correlation function. The time-space correlation function K(tl,t 2 , r, 2 ) is
written in terms of a generalized scattering function (T,f,v'), combining all the time, frequency and spatial information. The spatial impulse
responses are shown to be special cases of the scattering function. Expressions are derived for the spatial correlation function of the received
field over the ground, for both omnidirectional and directive antennas. The conventional range-Doppler scattering function (r, f) is derived for
an upward-pointing narrow-beam antenna. Polarization effects are not included in any of the analysis.

Some of the implications of these results are considered with respect to communications system design and performance. A system is proposed
Lnd analyzed to provide an indication of the rates and error performance that can be achieved with optical signaling through a cloud.

I
i1 1ORM 1 A 7 '

J U 1 JAN 4 I I t 
-- - _ _ .. - - - - I

UNCLASSIFIED
Security Classification

I - - - I- -`- c -- �-�-

I



UNCLASSIFIED
Security Classification

1I4.
KEY WORDS

i~~~~~~~~~~~~~~~~ 

optics

optical communications

optical-frequency radiation

optical systems

multiple scattering

fading dispersive channels

time-frequency scattering function

UNCLASSIFIED
Security Classification

LINK A

ROLE
. o~

W 

LIN K 1

ROLE

I LINK C

HOLE " rWT

__ I I I I
.. ii_


