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Bounds on Performance of Optimum Quantizers
PETER ELIAS, FELLOW, IEEE

Abstract-A quantizer Q divides the range [0, 1] of a random
variable x into K quantizing intervals the ith such interval having
length Ax,. We define the quantization error for a particular value
of x (unusually) as the length of the quantizing interval in which x
finds itself, and measure quantizer performance (unusually) by
the rth mean value of the quantizing interval lengths Mr(Q) =
ax-'/', averaging with respect to the distribution function F of the
random variable x. Q, is defined to be an optimum quantizer if
M,(Q1) < Mr(Q) for all Q. The unusual definitions restrict the
results to bounded random variables, but lead to general and pre-
cise results.

We define a class Q* of quasi-optimum quantizers; Q2 is in Q*
if the different intervals Axi make equal contributions to the mean
rth power of the interval size so that Pr tAxi} AxiT is constant for
all i. Theorems 1, 2, 3, and 4 prove that Q2 E Q* exists and is unique
for given F, K, and r: that 1 > KMr(Q2) > KMr(Ql) > I,, where
I, = {Jf'f(x)dx)1/ f is the density of the absolutely continuous
part of the distribution function F of x, p = 1/(1 + r), and q =
r/(l + r): that lim KM(Q 2) = I as K- co;and that if KMr(Q) =
I, for finite K, then Q E Q*.

I. INTRODUCTION

A. Summary

A FTER reviewing the history and literature of
the problem, in Section II we define a quantizer Q
that divides the range [0, 1] of a random variable x

into a set of K quantizing intervals of which the ith has
size Axi. Using the unusual definition that the quantizing
error for a particular value x is the size of the quantizing
interval within which x finds itself, we measure the per-
formance of a quantizer by the rth mean interval size
M,(Q), the rth root of average of the rth powers Ax of
the interval sizes, averaged with respect to the distribution
F of the random variable x:

Mr(Q) = A-t/'

Given F, K, and r, we call Q1 optimum if M,(Q1 ) <
Mr(Q) for all Q. It is hard to compute the performance
of Q1 directly, but we bound it by the performance of
Q2, a quantizer in the class Q*, defined by the property
that each of the K terms Pr Ax I Ax' in the sum 1M (Q)'
are equal.

Prior work defines quantization error (or noise) not
as the size of the quantizing interval, but as the absolute
value of the difference between x, the random variable
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being quantized, and some representative point h(x)
lying in its quantizing interval; h(x) is a staircase function
that takes K fixed values, one in each quantizing interval.
Performance is then measured by D;(Q), the mean rth
power of this difference:

Dr(Q) = Ix - h(x) ',

the average again being with respect to the distribution
F of x. Optimization here requires choosing the K values
of h as well as the K quantizing intervals so as to minimize
D,(Q).

Suppose now that F is absolutely continuous, with
density f. If this density is constant in each quantizing
interval then the average of Ix - h(x) over the interval
Ax will be minimized when h(x) = Ax/2. Then

Af0j x- 2
1 (AX Ax'

1 +r\2/ 2r(l +r)

Thus for an f that does not change too fast,

1 1
D,(Q) = x - h (z) 2'(1 + r) 2'(1 + r)

(1)

the two measures will be almost monotonically related
for fixed r and F, and the optimum quantizing intervals
for one will be approximately optimum for the other,
an approximation that will become better, for smooth
I, as K increases.

Our unusual definitions have one severe limitation and
one major virtue. The limitation is that F must have
compact support, i.e., that x lies in a finite interval S,
which we normalize to [0, 1] for convenience. If x has
infinite range, as in the Gaussian case, one or two of the
quantizing intervals are infinite, and so is their rth mean.

The virtue is that no further restrictions need be placed
on F in order to obtain a firm lower bound to M,,(Q)
for any given F, K, and r, and to show that for the opti-
mum quantizer Q1, Mr(Q,) approaches this bound as
K -, o. We prove the existence and uniqueness of the
quantizer Q2 E Q* for given F, K, r (Theorem 2) and
the bounds

1 I,
> M2(QI) M,(QI) K

where

{o' dx}1/

r 1
q -- +r P= +r

and f = dF/dx is the density of the absolutely continuous
part of F (Theorems 1 and 2). Q2 E Q* may be constructed
adaptively without advance or complete knowledge of F
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(Theorem 2). mWhile Q C Q* is not in general optimum,
for each Q C Q* there is a distribution Fo consistent
with Q for which it is (Theorem 3). If Q(K) is a
K-interval quantizer in Q* and F and r are fixed, then
KM7,(Q(K)) -- I, as K - (Theorem 4).

Given these results about M.,(Q), it is possible to
impose smoothness conditions on F and f and thus to
derive results about Dr(Q) from (1). For arbitrary F,
results of the precision and generality of those available
for M,(Q) seem unlikely to hold for D,(Q). A reader
interested in Dr(Q) may want to rewrite our results
using-M/2 t (1 + r) as a performance measure to facilitate
comparison. We have not done so below because the
denominator complicates the expressions, while the use
of the rth mean power rather than the rth mean prevents
consideration of r = 0, where the rth mean becomes the
geometric mean and the mean rth power becomes
uninteresting.

While a firm bound has value for applications, the
fact that for arbitrary F the bound is also a limit for
large K is only of mathematical interest unless one can
say something about rate of approach. This is explored
in Section III.

There is no general answer; for arbitrary F, convergence
can be arbitrarily slow. However, a kind of a priori
knowledge that is often available about F, namely that
it has a density f that is monotone, or unimodal, can be
used to derive bounds on rate of approach. It is in fact
as easy to be more general, and to define a class C, of
distributions, proving results on rate of convergence of
KMI(Q) to I, for Q E Q* and F C.

A distribution, F is in C, if the graph of F may be
divided into no fewer than J convex pieces, alternately
convex Cf and convex U. Thus an F with monotone
density is in C; an F with unimodal density and the
arcsin distribution are in C2. Fig. 1 gives other examples.

For F E C, convergence is governed by k = K/J, the
average number of quantizing intervals per convex domain
of F. Theorem 5 gives a number of results, of which the
most general is

I, < KM,(Q) I - )/k exp 1 llk}

Iff < f < , a tighter result for small q is

Tr . . ' Im\ . T __. fq + In [k(f,.. -
r? Z! A Vr\sJ-.~ r t ~t -. k - q

1)'+ 1JJ
J

while if also f 2 f i, > 0, the tightest result is

I,. < KM,(Q) < 1, exp kIn ./L,.}

Theorem 5 also permits an experimenter who has found
one quantizer Q in Q* for some K, but has no further
knowledge of F beyond the integer J,'to bound I, above
and below in terms of M,(Q) and other measured quan-
tities:

In Section IV we give examples of bounds for K =
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Fig. 1. Distribution functions F,(x), F2(x), and F3(x) are in C,.
F4(x), F5(x), and F8(x) are in C2. The dot in the center at (,1)
is the unique boundary point separating the two domains of con-
vexity of F4(x). Any point in the slanted section of Fb(x) is such a
boundary, as is any point in the vertical section of F(x), for
example, the point at (, ) will do in both cases.

2-a very nonasymptotic case--and an entropy bound
for equiprobable quantization. We also state results anal-
ogous to Theorems 1 and 4 for the multidimensional
quantizer.

B. History and Literature

All prior work on quantization seems to use the error
measure x - h(x)l described above. In the work dealing
with optimum choice of quantization intervals and of
values of h(x), performance is measured by the mean
square of this error D2 (Q) [1]-[3], the mean rth power
D,(Q) [4]-[6], or the average of more general functions of
Ix - h(x) [6]-[81. Using these measures permits these
authors to include cases of unbounded random variables,
which many do.

Since M,(Q) is new as a measure of quantizer per-
formance, the results below are all new in detail. And
since the strict lower bounding properties of I, do not hold
for the difference measure, Theorem 1 is also new in
principle. So are all results for r = 0, the class C of
distributions, and the rate of approach results of Theorem
5. However for r 0 the definition of the class Q* and
Theorem 4 on its asymptotic optimality have approximate
precursors.

In a fundamental and widely overlooked paper in 1951,
Panter and Dite [1] define as approximately optimum the
quantizer for which each of the K quantizing intervals
makes an equal contribution to the sum Ix - h(x) '- anal-
ogous to Q*-and give the approximation for large K and
smooth f

jz - h~ x r ~1 ) [ l/x , +]Ix - h(x)l' 2:(1 + .)K '. (x) dx2r~l+ r)'. f (2)

for the particular case r = 2, 2'(1 + r) = 12 (we have nor-
malized the range of integration). They credit P. R.
Aigrain with the first deduction of this result.

.Smith [21 in 1957 summarizes[ll] but omits, mention of
the optimum quantizer and the role of I,, presumably
as not relevant to his different objectives. Lozovoy 31,
referencing Smith but not Panter and Dite, treatls their
problem and misses (2) entirely; Roe [5], referencing
neither, rediscovers their quantizer but not (2) for general
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r > 0; Zador [4] referencing Panter and Dite and unpub-
lished work by Lloyd [321 proves Theorem 4 for the dif-
ference error under some restrictions on f, for general
r > 0, with an unevaluated constant replacing 2r(1 + r),
but generalized to vector x (multidimensional quantiza-
tion) and permitting x to be unbounded. Max [7], Bruce
[8], and Bluestein [9], looking for algorithms for finding
optimum quantizers (for signal plus noise in [9]) miss the
reference and the result; Algazi [6], finding simpler sub-
optimal algorithms also misses the reference but cites the
quantizer from Roe and rediscovers (2).

As Smith [2] notes, Sheppard [101 was the first to give
the effect of a uniform quantizer (i.e., grouping statistical
data in uniform intervals) on variance in 1898. Sheppard's
correction, missed by Clavier et al. [11] in the first paper
on PCM distortion, is rederived by Bennett [12] and
by Oliver et al. [13]. Smith gives later statistical references
on uniform quantization; Cox [14], in 1957, writes on
optimum spacing of K - 1 levels to minimize the mean-
square error in grouping normally distributed data into
K intervals, and designs an optimum K-interval quantizer
in the mean-square difference sense for K = 2 to K = 6
for the Gaussian distribution by numerical calculation,
not referenced by and not referencing the communications
literature and missing (2).

Bertram [15], in 1958, considers uniform quantization in
automatic control systems and says "as far as the author
has been able to determine there is nothing in the control
system literature concerning this problem." He cites
Bennett [12] and Widrow [16] on uniform quantization,
and the numerical analysis literature on roundoff error in
the numerical solution of differential equations. Tou [17],
in 1963, devotes a chapter to design of optimal quantizers
in control systems, includes nonuniform spacing of levels
in his formulation, is concerned with effects of quantiza-
tion on the dynamics of the systems as well as the static
considerations dealt with here, references only Bertram
on quantization per se and misses (2).

This paper, and [1]-[9] and [17] deal with minimization
of a measure of the average distortion introduced by a
quantizer by varying the location of K - I quantizing
levels, given a fixed probability distribution. This is a
zero-delay zero-memory encoding operation. Kolmogorov
(see Lorentz [18] and Vitushkin [19] for English presenta-
tions and further references) and Shannon [20] have dealt
with related problems that include delay and memory.
Both divide a space (of continuous functions in Kol-
mogorov's case, of continuous or discrete random processes
in Shannon's) into many small domains and find the
trading relations between the logarithm of the number of
domains (source rate for Shannon, entropy for Kol-
mogorov) and the error made in mapping any random
point in the domain into one fixed representative point.
Kolmogorov and his school deal with the minimax and
covering or packing problems of approximating every
function in some class to within e on some distortion
measure-Shannon with the minimization of source rate
for a given average level of distortion.

As applied to one-dimensional quantization, Kol-
mogorov's problem leads directly to the uniform quan-
tizer. Shannon's leads to the problem of minimizing
average distortion for a given entropy of the set of K
output symbols. In our notation below, minimizing dis-
tortion for given

H(Y) - yi iln Ay,.

This is a sensible problem when the variable delay and
equipment complexity required for efficient encoding of
the quantizer output is permissable.

Pinkston [211 for a class of cases and Goblick and Hol-
singer [22] for the Gaussian case examine how closely
one-dimensional quantization approaches Shannon's rate-
distortion function. Gish and Pierce [23] (whose preprint
received in the fall of 1967 introduced me to the Panter
and Dite reference after my first presentation of some
of these results) show that uniform, one-dimensional
quantization is asymptotically (large K, small error)
optimum in minimizing distortion for given entropy for
a large class of measures, including mean rth-power dif-
ference measures but not the geometric mean. Wood [33]
independently reaches the same conclusion as Gish and
Pierce in the mean-square one-dimensional case, citing
Roe but not Panter and Dite or Algazi and missing (2).
The multidimensional minimal-entropy quantization prob-
lem is considered by Schutzenberger [24], who gives in-
equalities with unknown coefficients on trading relations
between entropy and mean rth-power difference measures,
and by Zador [4], who gives an asymptotic (large K, small
error) result with unknown coefficient for this case too.
The rate-distortion function of nonwhite Gaussian noise,
given by McDonald and Schultheiss [25] and Goblick
[26], has been compared with results obtained by varying
the spacing of samples in time as well as the spacing of
quantization levels, by Goblick and Holsinger [22] and
Kellog [27].

The only point of contact of the present work with
the minimal-entropy quantization problem occurs at r = 0,
when the equiprobable quantizer is in Q* and its output
has entropy In K, monotonically related to K, so that for a
geometric mean-error criterion the two problems have
more or less the same solution. The equiprobable quan-
tizer has the virtue of requiring no variable delay or en-
coding, for a stationary source without memory, while
the equal-interval quantizer, even for such a source,
requires recoding to represent its input in an average
number of binary digits nearly equal to its entropy.

II. BouNDs AND ASYMPTOTES

A. Definitions

Quantizers: A quantizer, or analog-digital encoder, maps
a random variable x into a discrete set of output symbols

Si1, 1 < i < K. Let x be a real number in the closed
interval [0, 1] with probability distribution function y =
F(x). We define the quantizer Q = {xi, y as a set of
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K + 1 distinct points in the unit square, with

xi-1 < xi, Yi- < _i, 1 i K

Xo = Yo = 0, X = Y = 1

and say that the distribution F is compatible with Q if
graph of y = F(x) passes through the K + 1 points ol
The xi are the quantizing levels of Q; the yi are its pr
ability levels; the Axi = xi - xi_ are the lengths of
quantizing intervals; and Ayi = yi - yi-1 is the pr
ability that x falls in the ith quantizing interval anc
encoded into Si.

Note that the quantizer Q is also determined by
2K nonnegative numbers { Lxi , Ayi } subject to

K K

E Axi = Z AYi = 1,
i'l

Axi + Ayi > 0, 1 <i<K.

175

Characterization of F: We define F(x) = ([O, x]) in
terms of a probability measure ,u defined on the interval

(3) Q = [0, 1]. Let X be Lebesgue measure on 91. Then M has a
Lebesgue decomposition, (e.g., Munroe [31], Theorem
41.6):

the
,f &. Le- go + A

:ob- where u is singular and 1 is absolutely continuous with
its respect to X. Let o2 be the set on which ,ui does not vanish,

ob- and Q1 the set on which ml does not vanish. Then we have
I is

X(fo) = ; X(2) = 1;

the A(M) 9= o() = o(o) + () = 1

(4)

If F is known and none of the x,, yi } lie on steps or flats
of the graph of F, then the quantizer is completely deter-
mined by F and either the {xi or the yi }. However, if
the graph of F has steps or flats, the {xi or the yi}
alone may not determine Q, and the pairs {xi, yi} may be
needed.

This model implies that if F(x) has a step at x = xi, a
quantizing level, then when the random variable x takes
on the value xi, an independent random selection is made
to determine whether to emit Si or Si,,, with probabilities,
respectively, proportional to yi - F(x) and F(x]) - y.
We use it rather than the usual model, in which the quan-
tizer is just the set x,} and only absolutely continuous
F are quantized, because we want to discuss different F
compatible with the same Q, and because we want to be
able, for example, to use the equiprobable quantizer for
K = 2 given by (0, 0), (-, ), and (1, 1) on the distribution
F6(x) in Fig. 1.

lMeasures of Performance: We measure the perform-
ance of a quantizer Q by the rth mean of the Axi with
weights Ayi,

Mr(Q) = M,({Axi, iAy,}) = { Ay(AXi)} (5)

df s dF
dX dx

(7)almost everywhere in Q

/f dx = (S) < (S).

B. Bounds on M,(opt)

For any F and r, choosing all Ax = 1/K gives an rth
mean quantizing error M,(1/K, Aye) = 1/K. The opti-
mum quantizer Qa can do no worse. Thus

1 > KM,(Q), (8)

with equality for all r and K when F(x) = x, the uniform
distribution.

We should expect behavior like (8), since doubling the
number of quantizing intervals permits halving the size of
each, and thus of their rth mean. However, it is usually
possible to do better than the constant 1 on the left in
(8) by making Axi small when Ayi is large and vice versa.
We next derive a lower bound to KM,(opt), which limits
how much better one can do.

Let p and q be defined by

1
P= 1 +r'

r
q 1 +r

(9)

For any quantizer Q, from the definition (5) we have

KM,(Q) = K[ Ay, Ax']

Kf E (1/K)(AyV',' Ax),
i-1~~~) 

T

including the limiting cases r -- 0 (geometric mean of the
Axi) and r -- Co (maximum absolute value of the Axe) (see
Hardy et al. [28], ch. 1). Note that MI,(Q) can be computed
from the quantizer itself, with no knowledge of F beyond
that given by the { Axi } and { Ayi } values.

For given F, K, and r we also ask how small the rth
mean quantizing interval may be made by adjusting the
Ax; and Ayi. We define a quantizer Q1 whose rth mean
quantizing interval is given by

M,(Q,) = min M,(AXi, Ay}) (6)

subject to the constraints of (4), as an optimum quantizer
for F, K, and r.

(10)R >~~~~~~~ (l+r)/rK/a (1/K) (&y i/r Axi)r/ l"+r)

_K _1/

= [ , E , A;] ..

i-1~]"
using the inequality for rth means ([281, Theorem 16) and,
if Axz does not vanish, defining the average densities

A= Ay,/,. (11)

For an i for which Ax, vanishes, we define the term in the
last line of (10) to be zero, as in the preceding line.
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Considering a typical term in the last line of (10),

.jp Ax = [ -- ' ]Ax,

> L A f1(x) dx] xi

= f(x)' dx f f(x)-'(f(x) dx)

f' g(y) dy g = 1/f = dx/dy. (12)
.i-,

The first inequality follows from > jL in (7) and the

second follows from the convexity (h of the pth power
for p < 1; the pth power of the average of f over [xi 1,, xi]
is greater than the average of its pth power.

Summing (12) on i and substituting in (10) gives the
following theorem.

Theorem 1

Given an F as in (7) and a nonnegative r, let Q. be an
optimum quantizer consistent with F. Then M,(Q), is

bounded:

1 > KM,(Qi) 2 I,. =[ (x)' dx (13)

where p and q are given by (9). In the limit r - 0 (q = 0),
(13) bounds the geometric mean Mo(Q) of the Ax,, while
in the limit r = o (q = 1), (13) bounds the maximum
value M.(Ql) of the Ax,:

KMo(Q,) > exp {o ln g(y) dy}

- {exp {H(f) JAo(Q) = 0

CAo() > 0

IEEE TRANSACTIONS ON INFORMATION THEORY, MARICH 1970

As r - 0, we have

lim [ f(x)v dx

U [f (x)p dx - lim ()f (x)-f(x) dx]
r, JO r- 

(16)= lim M·(Ilf , J f(x) dx]

or alternately

lim g(y)· dy= lim M,(g, 1)
r -- t

where we have used the notation

M.(u,v)E = [ u(x'v(x) dx/ v (x) dx] I,
i.e., M.(u, V)_ is the ath mean of the function u with
weights v on the set E. By [28], Theorem 187, the limit
of M. as a -- 0 is the corresponding geometric mean. The
geometric mean Mo(l/f, f)9% is the exponential of the usual
entropy expression and appears on the right in the top
line of (14). The limit of the other factor on the right in
(16) is mu(Q1)l/ = s(9)/*, and its limit as q -+ 0 is 0 unless

Al(gx) = 1, when the limit is 1. The geometric mean

M,(g, 1) is the center term in the top line of (14). Q.E.D.
Note incidentally that if F is defined on [A, B] rather

than [0, 1] the only change is to replace the upper bound
1 on the left in (13) by B-A, and the limits 0, 1 on the
integral I' by A, B. The bounds in (14) are unchanged.

C. The Class Q* of Quantizers

We next define a particular class Q* of quantizers that
are asymptotically optimum as K -+ co and have other

useful properties.
First, given any quantizer Axi, AYi} and any r > 0

(and thus p, q by (9)) we define a,:

KM.(Q) 2 I 1dx = f g(y) dy = ()

where j, is the singular measure of (7); a, is the set of x
on which f(x) does not vanish; and H(f) is the usual en-
tropy functional:

H() = - f (x) Inf(x) dx.

Proof: All but the limiting cases have been proved.
The fact that M0 exists and is the geometric mean and
that M. exists and is the maximum interval size is shown
in [28], Theorems 3 and 5. Thus only the limit, of T. need
evaluation.

From the dletil.,liu of i g I (7,.ir 

tIm [f fwr' .. ' 

- lim [ Irt!' lx] j I d, xt 1, i ,15!
,·· \,,

Ayi,

cri = Ay A'i = f Axi,

-Axi,

r=0

r 0 0 1/'r (17)

r= .

By the normalization (4) and Holder's inequality ([28],
Theorem 11),

K K

E-, = E Ay,' Ax:i-1 -Il
(18)

A K-interval .uantlzer Q is defined to be in the class
Q* fr partlclilar value of r If a, is defined and is the
sanie for all K quantizing intervals:

K

i-a = Ka < 1
i-1

a,. - . I -- < K; (19)

!S [ K , K AX i = -1z= 
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by (18). For Q E Q*, the average rth mean quantizing
interval AM,(Q) of (5) is related to by

KM,(Q) = K al = (Ka)t = ,] 1.

(20)

By (20), Q E Q* can be inserted into the inequality
chain (13), to give

1 > KMr(Q) > K3M,(Qi) > I,. (21)

To make (21) meaningful we next show the existence of
quantizers in Q*.

Theorem 2

Given F as in (7), let r be positive and finite (p 0 q)
and let K be any positive integer. Then the average
quantizing interval M,(Q) for any K-interval quantizer
Q Q* compatible with F is uniquely determined by
F, K, r, and the requirement (18). If M,(Q) > 0, then
the quantizer Q =x fx, y} E Q* is itself also uniquely
determined. If M,(Q) = 0, then F is a pure step function
with a finite number of steps, (Q0) = 1 and f = 0 in (7),
and Q E Q* exists but may not be unique.

For r = 0, the equiprobable quantizer Ay, = 1/K is
in Q* and is unique; for r = o, the equal interval quan-
tizer Ax = 1/K is in Q* and is unique.

Proof: For r = 0 and r = , the theorem follows
directly from (17) and (19), defining a, and Q*.

For p 0 q, we consider two cases. Given F, sup-
pose first that every K-interval quantizer Q(K) consistent
with F has o' = 0 for at least one value of i, 1 i < K.
Then it is not possible to choose more than K points on the
graph of F, including (0, 0) and (1, 1), without having two
of them share a coordinate value, i.e., lie on the same step
or flat of F. Thus F is a pure staircase function with a
total number of steps and flats <K. Let Q2(K) contain
(0, 0), (1, 1), one intermediate point at each corner of the
staircase, and any leftover points anywhere else. Then
Q2 has a = 0 for all i, so by (19) Q2 E Q*, and AI,(Q 2) = 0
by (20). Q2(K) is unique if and only if the number of steps
and flats in F is just K.

In the second case, there exists a quantizer Q(K) con-
sistent with F for which all a, > 0, 1 < i < K. We
parametrize the graph of y = F(x) by defining a new
variable s:

S= + y + F(x) y + G(y)
2 2 2 (22)

As s increases from 0 to 1 the graph of F(x) goes from
(0, 0) to (1, 1), and x(s) and y(s) are monotone nondecreas-
ing functions of s. Since a set of K + 1 numbers Isi, ,
O 0 i < K, with0 = s < s, < .. < S = 1, determinea
quantizer Q = {x(si), y(s,) = {xi, yi uniquely, we can
speak of "the quantizer S) }" as well as "the quantizer
{x,, yi}." By the definition of s, ai > 0 is a continuous
strictly decreasing function of si_. It is therefore possible
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to invert, in the domain a, > 0, s, < 1, to obtain each
st as a function of the aoi I:

Si = hi(o,, o 2, , ai) 1 <i <K-1 (23)

where hi is continuous and strictly monotone in each
a-i, and the domain a > 0, si < I is nonempty by
the assumed existence of Q(K). Since aK is a monotone
decreasing function of sK-1, the equation

,K(hK_1(0, ', ... , a)) = ay

has a left side strictly decreasing in a, a right side strictly
increasing, and thus a unique solution for a > 0. Then
the unique Q2(K) E Q* is determined by (23) at a, = a,
and by (19) has M,(Q2) > 0. Q.E.D.

Comment: The procedure of Theorem 2 for finding
quantizers in Q* is tedious analytically. Practically, how-
ever, it can be implemented as an adaptive feedback
system without advance or complete knowledge of F,
by simply adjusting the xi and measuring the resulting
relative frequency estimates of the Ayi until condition
(19) is satisfied.

D. Properties of Quantizers in Q*

Next come two theorems that show the unique role
played by Q*, and the fact that the lower bound of Theo-
rem 1 is best possible in two senses. For each Q Q*
and no other Q, the bound is attained by a unique dis-
tribution F, and for any F it is approached as K - -
by quantizers in Q* consistent with F and thus a fortiori
by optimum quantizers.

Theorem 3

Given a K-interval quantizer Q = xi, yi} and finite
positive r (i.e., p 0 5# q), if and only if Q C Q* it is
possible to find a unique distribution function Fo(x) with
density f(x) = dFq/dx defined a.e. such that Q attains
the lower bound of (21), i.e.,

KM31(Q) = I =f f0 (x)p dx] (24)

and is thus the optimum quantizer for Fo, K, and r. The
result still holds if p = 0 and none of the Ayi of the given
quantizer vanish, or if q = 0 and none of the given Ax
vanish. If q = 0 and one or more xi vanish a quantizer
in Q* will satisfy (24) but so will other quantizers not in
Q*. If p = 0 and one or more Ayi vanish no quantizer
will satisfy (24).

Proof: The graph of the distribution function F of
the theorem is constructed by connecting each pair of
adjacent points (xi, Yi) and (xi,+, y,) by a straight
line segment. For p i 0 q, if any of the Axi or Ayi
vanish, then (sufficiency) either all ai = 0, f(x) = 0 a.e.
and the quantizer Q is in Q* with M,(Q) = 0 I,, or
(necessity) some vanish and some do not, Q is not in Q*,
and equality is not attained in the rth mean inequality in
(10) and thus is also not attained in (13) and (24). This

_�
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eompletes the proof for p 0 • q unless none of the Ax,
or Ay, vanish. In that case the F defined above is given by

Fo(x) = -i-, Y, + - .c
X, -- i-i C, -- ,-I

x, , < x < x, (25)

o() y i - Yi-1 _ Ayi
Xi Xi- 1 AXi

Xi-1 < X < xi.

To show sufficiency, note that for Q Q*, and only
then, equality holds in the rth mean inequality and thus
in (10). Equality also holds for F = FQ in (12), and thus
in (13) and (24), since there are no steps in FQ(x) for
x C [xi-l, xi] so that

Ayi = Yi - - = = ' fQ(x) dx = F(xi)- FQ(xi_l)

and f is constant in each quantizing interval, so that

{A : J(x) dx xi J= f fQ(x) dx.{A--ifx' } x i f,

To show necessity, note that if {xi, y is not in Q*,
while the distribution (25) will still give equality in (12),
the unequal values of a; implied by not satisfying (19) for
all i will lead to strict inequality in the rth moment in-
equality and thus in (10) and (24).

This completes the proof for p 0 q. For p = 0 and
all Ay, > 0 the result still holds. The unique Q E Q* has
all Axi = 1/K by (23), KM,.(Q) = I and this is also the
limiting value of I, as r --+ o. A quantizer not in Q*
must have A, ax> 1/K, and since Ax,,, = M.,, the two
sides of (24) are not equal in that case. For q = 0 and all
Axi > 0 the result also holds. Ko(Q) is K times the
geometric mean of the Axi with weights Ayi, and it is
easy to show that for the quantizer in Q*, for which all
Ay = 1/K, and only for it, this quantity is equal to the
exponential of the entropy of the density function fQ
defined in (25), which has been shown in Theorem 1 to be
the limit of I, for q = 0.

This completes all the "if and only if" cases. If q = 0
and some Axi = 0, a quantizer in Q* will satisfy (24)
by making both sides vanish, but so will any other quan-
tizer that has any Axi = 0. If p = 0 and some Ay, = 0
so that F or any other compatible distribution must have
X(Q9) < 1 neither a quantizer in Q* nor any other can
satisfy (24), for the right side is X(92) by Theorem 1 while
the left is at least K/(K - 1) times X(,1) because at least
one of the K labels must be saved for the interval in which
Ay = 0. Q.E.D.

Theorem 4

Given a distribution function F and any nonnegative
finite r, let Q = Q(K) E Q* be any sequence of K-interval
quantizers in Q* compatible with F. Then

lim KI,( Q(K)) = I,
K' .o

(26)

where tile ght side is to be interpreted as the limit in
( 1', .it Tlheorem 1 for r = 0.

P,,if' If MI,(Q, I vanishes for some finite K,, and some
Q = Q,(K.) E Q*. then (26) is satisfied by the vanishing
of both sides. For I, must vanish by (13). And any quan-
tizer Q2(K), K > K,,. obtained from Q1 (K) by keeping
the K0 + 1 original levels and adding K - K 0 more will
have all i = 0 so that l,I(Q 2) = 0. which by Theorem
2 means that any Q E Q* with K intervals will have
I,(Q) = 3I,(Q,) = 0.

What remains is to prove (26) when ,lr(Q) > 0 for all
K. Then by Theorem 2, Q G Q* is unique for each K in
all cases, and by the construction of Theorem 3 it deter-
mines a unique distribution FQ with density f for which
it is optimum. By Theorem 3, for each K, Kr,(Q) =
I,(f) > Ir(f).

First, assume q > 0. Then, as we will prove below,
the set U2 = Q(K, ) given by

Q = I: f() > f (z) + } (27)

has Lebesgue measure X(02) that approaches 0 as K -4 :

lim X(fQ,(K)) = 0.
K-

(28)

Then letting Q = [0, 1], we have (assuming (28))

r4(Q)) = f a dx < f (f )d+ ) + dx

< f f dx + e f dx + X((%) f () dx

(29)
! J fQ dx

< f f dx + + X(2) X( 
Jo ~~~~~~~~~~~~~----X-( 0_~i2

<_ f f dx + e + X"(2). - ,

lim I(fI)"' <
K-

f Ip dx + e = [r(f)'
/ + .

0o

where we have used (27) in the first line, the convexity n
of the pth power in the third, and (2S) in the fifth. Taking
qth powers proves the theorem for q 0, given (2S).

To prove (28), we note from (27) that for x E ,`
f[(x) > e, since fP(x) > 0. Then from (17), (19). and (25).
for x E 02,

,!'K = Ay' (x ) ax, = f(x) Axi > x,.

so the size Ax, of the quantizing interval in which x E fI
lies is bounded above:

Ax, < 1/Ke. (30)

__ I
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As K increases, a fixed x will be in Q2(K) for some values
of K but not for others. To take limits, we define

((x),) 

Then taking pointwise limits,

lim gK(x) = f(x)
K-

x E 2(K)

x i 9%(K).

a.e. in .

(31)

(32)

For if x E 2(K) for only finitely many K, (32) follows
trivially from (31). If x E 92(K) for infinitely many K,
then on this subsequence of K values 9K(X) = fQ(K)(X)

is a difference quotient Ay,/Axi, with Axi - 0 by (30),
and approaches the derivative dF(x)/dx = f(x) a.e. in U,
(see e.g., Munroe [31], Theorem 41.3) while it approaches
the same value on the complementary subsequence by
(31), proving (32). Since the pth power, p > 0, is con-
tinuous, g --, f a.e. and thus (see e.g., Munroe [31],
Theorem 31.3) in Lebesgue measure in Q, and thus in

2. But in , gf9 = fQ(K) by (31). Thus f(K) - in
measure in Q2, and (28) holds.

For q = 0, if F has a step then I(fQ(K)) vanishes for
sufficiently large K, since the equiprobable quantizer will
have a complete quantizing interval lying in the step,
Ayi = 1/K, so the geometric mean of the { Ax I will
vanish. In this case the theorem is already proved above.
Thus if I(fO(K)) > 0 for all K, F is continuous (though
not necessarily absolutely continuous). Then for each
quantizing interval

f fQ dx = Ay = ([x_, xi])

> ([xi,, xi]) = f i dx. (33)

We define 13 = 3(K, ) by

= x: f(x) < e}. (34)

Since fQ is piecewise constant, 3 is a union of quan-
tizing intervals to each of which (33) applies, so

f dX = I1(03) < A(%3)

f= f dx < fedx = e(,) < . (35)

On - , fq > e. Then the quantizing intervals
in - 3 are bounded above as in (30), we can define
9g(x) as in (31) but with Q2 - Q3 replacing 92, (32) holds,
and since -z In z is continuous in z, -gK In gK --) -f In f
pointwise a.e. and thus in Lebesgue measure, in and
thus in Q - 3. Since in Q - 32, we have f(K) = K,

-/o In fo - -f In f in measure in 2 - 93. Thus there is a
set. 5, = ,(K, ) such that, for sufficiently large K,

-fo In fQ < -f n f + e on - - (36)

X(%) < e.

Then we have, for large K,

o - fQ In dx

< fJ -fQdx+ f - fQ ln fdx

+ f (- flnf+e) dx

< e In (1/,) + /e + e + L-5l,-9

(37)

- f In f dx

< 3 In (1/) + --f lnf dx + J f lnf dx,

where we use (36) in the first line, and in the second the
fact that -z In z is monotone increasing in z < < l/e
to bound the integral over Q23, and the fact that -z In z
< 1/e and (36) to bound the integral over 2.

Now let 2 = x : f(x) > 1 }. Then f In f < O outside Q,,

so

f nf dx= -s f Infdx

+ f ln fdx f < ln dx.
D~~rOD5 DE{.aQS

And from (35) and the definition of 5,,

6Ž--(Qa) =Jf dx > f dx

2 f dx = x(Q3 C\ Q6).

Thus from (37) and (38),

lim f - fQ In dx

- in dx + 3 e n (1/e)

_< sup f - in f dx} + 3e In (1/e).
E:X (E)<2~ < -E

(38)

(39)

(40)

Since, by (36) and (39), x((2 3 rf 9,) kJ 4) < 2e. As
e - 0 the right side of (40) approaches the value H(f),
finite or - o, and the exponential of (40) gives

lim [o(fO(K)) < Io(f).
K-

Q.E.D.

Comment: For r = , (26) does not hold, since by
(17), (19), KM,(Q) 1 for Q E Q*, whilei by Theorem
1 the lower bound I.(f) = X(52) < 1 if f vanishes on a
set of positive measure. This is not due to the nonopti-
mality of Q E Q* for arbitrary F, since assigning a positive
probability to each rational number in [0, 1] gives
IC.(f) = 0, while the optimum quantizer Q1 has KM (Q)
= 1, since every quantizing interval in [0, 1] has positive

___
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probability and thus must not be larger than any other
interval to minimize M,(Q,). The quantity I(f) does
have asymptotic significance, however. We state without
proof two results. First, for sufficiently large K there exist
quantizers Q such that all but a set Qa of x of probability
/,(Q) < lie in quantizing intervals of size < (1/K)
· (I. + ). Second, if F has only steps and an absolutely
continuous part, and thus no continuous singular part,
then (26) holds at r = co for a quantizer Q obtained from
an equiprobable Q E Q* by merging adjacent quantizing
intervals that lie on a single flat of F. This gives some
quantizing intervals with Axi > 1/K but Aye = 0, so that
they do not increase M.(Q), which is the essential
supremum of the Ax, 1.

III. RATE OF APPROACH

A. Monotone Densities and Convex Distributions

Theorem 4 guarantees convergence but says nothing
about rate of approach. In fact it is not possible to do
so without restricting F. Given > 0, it is possible for
any Ko to construct an F that has KM,(Q) > 1 -e for
all Q(K) with K < Ko, but has KM , (Q(K)) - 0 for
K -- co and Q E Q*. A staircase with sufficiently small
steps and flats will obviously do.

However if F has a density f that is monotone, or more
generally if F is a convex (U or n) curve in the unit
rectangle, bounds can be obtained on the rate at which
KM,(Q) -- I, for Q C Q*, as a function of K. These re-
sults can be extended to an F that has J domains of
convexity rather than 1 (see Fig. 1).

We define a distribution F to be in class C, if there
exists a set of J + 1 points ( q, hi) on the graph of F,
with (, 7o) = (0, 0), (, nJ) (1, 1), the graph of y =
F(x) is a convex curve between the points (i, li) and
(%i+ , mli+ ) (regions of convex U F alternating with regions
of convex C( F), and there is no set of less than J + 1
points on the graph of F having this property.

The division points (, i) are not unique when the
graph of F has straight-line portions. Any step or flat
must pass through one of the (, r7i), possible steps al-
ternating with possible flats.

Given that F E C,, a designer knowing F knows J, can
compute I, by (13), and knows

fmx = max f (x),
E0O,11

fmin = min f(x).
zE[O.11

An experimenter who has constructed a quantizer in Q*
by the iterative procedure of Theorem 2, but does not
have complete knowledge of F, cannot compute I,. He
knows M,(Q) and

fmr,, = max fi,
i_< K

aini = min 
liK

(42)

and we assume that he also knows J a priori. He may also
know one or both of fma and fi,, which are not measure-
able and thus must be known a priori if at all.

Theorem 5 permits the designer to bound M,(Q) as a,
function of K and the parameters he knows, without

designing a quantizer. It also permits the experimenter
to bound 1,, and thus to predict how well a quantizer might
do for some other K, without further experiment or
knowledge of F.

Theorem 5

Let F E CJ, Q E Q* with K intervals, J' = min (J, K),
k = K/J' (not necessarily integer), p and q as in (9),
fmasx, min, max, fmin as in (41), (42). Then

KMr(Q) I,

KMr(Q) exp {

KMr(Q) exp {
KMr(Q) exp

KMr(Q) exp

{
{

p In [f m .x/fmin]

k J

p n [ax/fmi ] + q
k-q J

p n [fmax/fmi] + p/q
k-p J

(43)

p in [fm./f m in] + 1/q
k-1

and

I, < KM,(Q)

Ir exp { ln [max/fmin]}

I, exp {ln [k(fma - 1) + 1] + q}

- - -J (p In
1iexp l\-q

C-·~· · (g,)

(44)
[k(f-,. - 1) + 1]

k-p

1 + In k\
k - '

where k > 2 in the last line of (44).

Comment: We prove Theorem 5 by means of a number
of lemmas. Before doing so, we note that at r - q = 0
only the first two lines of each of (43) and (44) are non-
trivial, and that they require fmar/fmi < co, or at least
fna < co. This is not a weakness in the result. If f is not
bounded, Io() may vanish for any value of ma/?~in, > 1,
for there is no way of ruling out a step in F or an f that
becomes infinite so fast that H(f) = - .

For q 0 0, however, while fma, and f- may become
infinite for F E C,, ma,,l and ?-mL cannot for a Q E Q*
unless KM,(Q) vanishes. Thus the last line of (43) pro-
vides a firm bound for F E CJ in terms of a Q E Q*, with
J as the only a priori information. And the last line of
(44) provides the designer who knows I, with an equally
general bound when F has steps and flats.

B. Lower Bounds on Tj

Lemma 1 bounds below the integral of f(x)" over the
ith quantizing interval by means of the convexity ( of
the pth power (p < 1). The bounds are functions of ratios
of any two of the three quantities.
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fn.axi = max f(x)

in t(f.cr)

] _ ,.1,

and hold for any F and any Q.
We start by obtaining lower bounds to the

on the right in (12). We define T,:

Ti fX f (r) dx = f g(y)Q dy
Oi i- 'i Yi-l

and note from (13) that
f 1 K j K

I~ = f(x)' dx = (x)" dx = aiTi
= i -1 -- il

and that for quantizers Q in Q*, from (20) and (21),

KM.(Q Ž iJ(cr K)i 1/K, f, (Q) > IrE
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which proves 49:. Similr!. given , and f,, .

T > (fni ...f.?,
(45) proving (49b). Next. if both f... and fin,, are known,

from (49a) and (49b).

T = TT > f (,/fm. Pq(fmin t/fi)
p

= (fmin ilfmax i)

integral
which proves (49c).

C. Lower Bounds on T for Convex F

Q.E.D.

For F convex U, f exists a.e. in [0, 1] and is increasing.
(46) We complete its definition there by setting it equal to the

right-hand derivative, which exists throughout [0, 1]
(Hardy et al. [28], Theorem 111). Then f may be infinite
only at x = 1, and may vanish only on an interval con-
taining x = 0, and

fm i = f (i) 

= (Ka)1 / K )i
-

or

KM, (Q) > 1, > KMI(Q) T",

Ka = [KMl7(Q)] ~ > I > [KlM,(Q)]'T = KaT, (48)

1 KT
T K ETi-

K i-1

Thus for Q E Q* lower bounds on r, can be derived from
lower bounds on the T,, or their average T. We now derive
such bounds.

Lemma 1

T, as defined by (46) is bounded below by

T, > e-"' = (lf/.. )"
Ti > e- ' = (fi/fma i,)i> (fmi ifi)P

(49a)

(49b)

Ti > e' = (fiini/fma ,)p (49c)

where we have defined zi = n fma /fmin. i], ui =
In [fma. /,j], vi = In [i/fi., i] for later use; fx,, i fmin i
and fi are defined by (45).

Proof: Given ?, and fmax , the f(x) that ninimizes T,
for fixed Axi (and thus fixed ai), by the convexity of the
p = 1/(1 + r) power, is at fa,, i for a set of measure a
Axi, and at its lower bound 0 for a set of measure (1 -
a)Axi, with a determined by

a Ax f i + (1 - a) AX,.- = , Axi,

and thus

a j,/fx .

Then from (46) and the definition (17) of aj,

Ti > - a , Axif, i + (1 - a) Ax .Ov}

> I fi Aif, = (fl/f ).. 
'i fma i

fmal = max fma. i = f(1)

fm.i = max f, = K-

fmin = min fmin i = f(0),

fmin = min f. = A.
i

We define

Zi=fln( i) = ln f(l = m= z
i-l i fx(i- 1) f(O) fmin

K_ K

z , zi = I ln f(l) = Infma =

K-I 

u, + E Zi + v, = In = W
i-2 fmin

(50)

(51a)

(51b)

v (51c)

(51d)

and note that by inverting the order of numbering the
intervals, the right-most expressions also apply if F is
convex , i.e., for any F E C.

Then from (48) and Lemma 1 we have the simple bounds

T 1 s ee
5 >Žr2 eP@u/ = fmax)/ (52a)K , e-,, o,,lr {/~,,,~"~'~

i + > e e- >-(min (52b)

,> - E e'" ' + e VtR > e " /a (52c)
K 1

1
-K

K- I
e- + F Ze-Pe'i' + e

T
> e-l'min'q)~/l]

i\ in(.o)/)I

(52d)

where e" is bounded below by e6 -', eP', and
e-

itncQ)
" , and the convexity U of the negative exponen-

tial is used to replace averages by functions of average
argmunent.

fmin i = f(Xi-1),
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The exponents in (52b), (52c), and (52d) can be im-
proved. We note from In p < p - 1 that

pe = eq+ln P < e
q+ -

= e
°

= 1

and thus that, by convexity U of the exponential and
(52b),

K K

KT > e-Q + E e- " "e > pe- Q(' -
) + Fje - "

i-2 i-2

> (p + K - l)ev(u- ' )/( "+x-K) (53a)

so that

T > (1 - -)e- ' '-v - )

> e
- [ p

a
( u- 1)+ ]

/
(- )

= e-qa(u+q)/l(K-a) (53b)

where the last inequality follows from

1 a = k -a > e-a/(k-)
k k a 

Similarly, from qe' < 1 and (51c) and (51d)

T > (1 _P e- Q(- ") (K-P)

> e= 
- [ p

(I1)+pl/(
K- )

= e-p(q+P)/(K-p)

T > 1-1 e-[ ( - 2 ) /( K- 1 )

> e (a(-2)+i]/(K-i) > e-(Pato+l)/(K-1)

(53c)

(53d)

The bounds (52) and (53) only permit the estimation of
behavior as K increases if fmax/fmin is known and finite.
Otherwise design of a quantizer Q E Q* for each K is
required, to evaluate fa, fai. or both; these change as K
increases and the averaging is done over smaller intervals.
The following lemmas permit eliminating Ym,, or min or
both.

Lemma 2

For F convex U, Q a K-interval quantizer in Q* com-
patible with F and any r 0,

(ffax)= e < K(fm. -- 1) + 1

(fax) = ea < K(fI,,- 1) + 1-
fmi n

so

K K

E = E = 
i-1 i-1 a.

(55)

Multiplying (55) by fx and using fa.. > i, for all i
on all but the first term of the first sum and all terms of
the second sum and noting from (50) that ], = fmin gives

]-. )-+ (K- 1) < Kfma.

proving (54a). Equation (54b) follows by a dual derivation.
Q.E.D.

Lemma 2 permits the elimination of f.. and fi
from the bounds of (52) and (53) as long as either of f,,.
and f]l are finite. If both are infinite, Lemma 3 is needed.

Lemma 3

Let F be convex U, Q E Q*, K > 2, r > 0. Then

(fmjx/fn)Q = e < KU.-.3m - IC~I, (56)

Proof: We apply H61lder's inequality to the two sums
in (55) with exponent q for the first and p for the second
([28], Theorem 11), but interchange the first and last
terms in the second set, so that Yl faces jfP and ]f faces
fl" while the other terms match in subscript. We get

,- + -\- + (K - 2) < (l;(,, 1

or

"~clto = i pa 1 1KeQ < -K + 2 < 1 < K

since K > 2. In the last step we use (48) to replace a,
which requires finding the Q(K) in Q*, by I, which can
be computed from f.

Proof of Theorem 5: From (48), taking the 1/q power
we have

(57)

Lower-bounding T successively by the right-most terms
in each of (52a), (53b), (53c), and (53d) gives

(54a)

(54b)

Proof: Since Q E Q*, if a = 0 then by Theorem 2, F
is a staircase, fca. = fi.n = o and the lemma is proved.
If a 0, from (4), (17), and (19)

K K K

1 = E Axi = E ii- = a- E i-,
i=l ii =

K' K K

1 = Z Ay = Z oii = a E :
i-1 i= i1

KM,(Q) > I, >

KM(Q) exp {-

KM,(Q) exp {-

KM,(Q) exp {-

pu + 
K-q

(p) v +
V K-p

(58)

KM,(Q) exp (1) pq + 11qK- 

which becomes (43), the first half of Theorem 5, for
k = K, J = 1, by substitution of the definitions (51) of
z, u, v, and w. Substituting in (58) for u and v from (54a)
and (54b) and for w from (57) gives (44), the second half
of the theorem, also for k = K, J = 1.
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ELAS: PERFORMAS'.'E BOLUNDS OF IOPIMU 1 QUANTIZERS

For J > 1, Lemmas 2 and 3 hold sith K replaced by k
on the right in (54) and (56). The proofs can be extended
to deal with the J largest and J smallest of the fi .
It is possible to show that the quantizing intervals can
be divided into <J subsets of adjacent intervals, in each
of which the monotone properties used in (51) hold, even
through the quantizing points x,, y.l and the points
separating domains of convexity {#i, l, may not coincide.
Then z, u, v, and w are upper bounds to the sums over
each such subset of the terms to their left, and minimiza-
tion of the sum of the exponential bounds to the T,
subject to the constraints (51) gives the results in (53a),
(53b), and (53c) and the right-most result in (53d), with K
replaced by k throughout, completing the proof of Theo-
rem 5 for arbitrary J.

IV. SPECIAL CASES AND EXTENSIONS

A. Case K=2. r = l

The case K = 2, J = 1 (and thus k = K) is the smallest
quantizer about which an experimenter can say anything
interesting. For r - 1, p = q = , a detailed analysis
that will not be reproduced here bounds I, above and
below in terms of KM,(Q) and vice versa. We have,
for Q E Q*,

+I, (2 - Va) > 2M1 (Q) > h
> [1 - Vi M 1 (Q)]. (59)

All of the bounds in (59) are attained. The distribution
F(x), which is a square with the upper-left corner cut off
illustrated as F1(x) in Fig. 1 and given by (0 < a < 1)

B. Case r = O--An Entropy Bound

At q = 0, M,(Q) for Q E Q* becomes the geometric
mean of the !Axi} taken with equal weights, since at
q O, o = A,, = 1/K. Only the first two lines of (43)
are useful: they give, for F E C,,

e';~" ' = M,,(Q) > K

Mo(Q)

Mo(Q)

exp -

exp -

In [fm/fmiJ

k I

In [k(fm., - 1) + 1]
k 

giving a 1/k or In k/k approach depending on whether
fi,, > 0 or not; f,m. < o is necessary in either case.

Taking logarithms gives a two-sided bound on the
entropy (always < 0) of a distribution F E CJ on [0, 1],

H() = - 10 f(x) In f(x)dx = ln g(y)dy

which is of some independent interest.

_ In [fn-mi.]
0 H(f) - lnK, - lnAx > n

In [k(fm.x - 1) + 1]
[- - k

(60)

for a K,-interval equiprobable quantizer (yi - 1/K 1) with
k = max (K,I/J, 1). The more usual bound is one-sided.

0 > H(f) -n Ay + In K2 (61)

F(O-) = 0,

F(x) = 1 - 2a + x, f(x) = 1

F(x)- 1, (x) = 0

has Q Q* given by (0, 0), (a, 1
r = 1 this gives

f(0-) undefined

0 < x < 2a

2a <x < 1 ,

- a), and (1, 1). For

Ml,(Q) = AyI.r + aY2 ax2

-- ( - a)a + a(l -- a) = 2a( -a)

{f = . ' f"l2dx - (2a)2

.liich satisfy the left--nost and right-most inequalities in
(59). The central inequality is satisfied by Fo of Theorem
3 illustrated by F,(x) in Fig I A line segment from (0, 0)
to (a, I -- a) and another from (a, I - a) to (1, 1).
I'his gives M,(Q) = 2a I - a) as before, srCee the quan-

tizer is unchanged, and

II = ltxZali ! t !L 'V'

{a-a- - a) a}
O+

for a K2 -interval uniform quantizer (Ax, = 1/K,) where
In Ay is the entropy of the discrete distribution Ay,}.

C. Multidimensional Quantization

In the multidimensional case we give only some defini-
tions and results. A more complete treatment will appear
elsewhere.

Let x = (xl, x2, - , xN) be a vector-valued random
variable with probability measure p defined on the N-
dimensional unit cube f = [0, 1]N. Let Q be the union
of K disjoint quantization regions R,, 1 < i < K. Let X
be Lebesgue measure on s, and let X(R,) = AVi be the
volume of Ri and p(Ri) = APi be the probability that
x will fall in R,. The K-region quantizer is defined as the
set Ri, AP, , 1 < i < K, with

K K

E ar, EA.= 1.
srj i-

To define a ,sesIlre of perfriitanee for Q, ,.· first
define the quartliz:tiorn rror in thl, ,tL. ,'.,rdil,:at! Sher
X IS In R, as t tile widtlh r,,t i? Iin tlt' lr't tionl l ,t .

I, I,} - sup . ;
r, R.

-inf 'I.'
g' R,

We define the (rth mean) qluantization error of x in R. as
e., where 0 < r < , the limiting cases having the usual= 4a(1 - a) .
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interpretation, and

ei = 1 i,( (Xn)

and measure the performance of Q by the rth mean of the

M,(Q) = = E;1/1il A·itet'}/

K APi N Ai(x.)' /
i -1 n-1

(62)

The justification of this definition of error and measure
of performance, as in the one-dimensional case, lies in the
simple, precise, and general results to which they lead.
For smooth distributions, these results may again be used
to make approximate or asymptotic statements about
the behavior of other measures. Again the major restric-
tion is bounded Ixl.

Let pu be an arbitrary probability measure on Q. Then
we have an analog to Theorem 1, for 0 < r < o, any
K-region quantizer Q consistent with y has

Ki/NM,(Q) > (63)JNNf" rd ) N+r/NrAf. fI N+, rdXH 

And there is an analog to Theorem 4; for 0 r < , there
is an increasing sequence of positive integers K,, and a
sequence of quantizers Q(Km) such that

lim K'/NM,(Q(K.)) =
mcx {J, j } N+r/Nr

f\J fV/N+rd

(64)

In both these results, f = d/dX is the density of the
absolutely continuous part of 1,, and the usual interpreta-
tions hold at r = 0, r = . Equation (64) is close to
Zador's results [4], which require absolutely continuous 
with bounded f and include an unknown constant, use a
mean rth-absolute-difference performance measure, and
apply to unbounded xl as well.
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