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Abstract

Cascaded codes are long codes that are constructed by successively encoding a
series of relatively short constituent codes. The purpose of cascading is to facilitate
decoding by dividing the composite decoding process into a sequence of relatively
simple steps, each of which corresponds to the decoding of one of the constituent
codes.

In this report cascading techniques in which the constituent codes are tree codes
are studied. We determine the efficiency attainable with cascading, and bound the
attainable error probability in terms of the composite decoding complexity. Our major
results in these areas are the following.

1. A 2-stage cascaded tree code can be formulated to yield an error exponent
that equals 1/2 of the single-stage error exponent at all rates below capacity.

2. If N is the composite decoding complexity per decoded symbol for a cascaded
tree code in which maximum-likelihood decoding is applied to each constituent code,
it is possible to find, in the limit of asymptotically large N, a code for which the

decoding error probability becomes arbitrarily close to (l/N)(C/R)

3. It is possible to use sequential decoding on the outer stage of a cascaded tree
code and yet communicate at a composite rate exceeding Rcomp, provided that the

alphabet sizes of the constituent codes are suitably restricted.

We also show how to apply the Viterbi decoding algorithm to an unterminated tree
code, and describe the burst characteristics of decoding errors made by a Viterbi
decoder. Finally, we present techniques for efficiently realizing a useful class of
synchronous interleavers.
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I. INTRODUCTION

1. 1 COMMUNICATION IN THE PRESENCE OF NOISE

Were it not for noise and distortion, there would be no difficulty in accurately trans-

mitting messages from one point to another. The recipient of an attenuated version of

the signal representing a message could amplify the signal with a noiseless amplifier to

obtain an exact copy of the transmitted signal. It is therefore the corruption of signals

by noise and distortion that engenders the need for information theory and associated

signal-processing techniques.

Until the late 1940's communication engineers believed that this corruption limited

the accuracy with which transmitted messages could be reproduced by the receiver. They

thought that no amount of signal processing could increase the reliability of message

reproduction beyond a level that depended on parameters like the signal-to-noise ratio.

Modern communication theory began with Shannon'sl' 2 publication of hitherto aston-

ishing discoveries. He demonstrated that with enough signal processing it is possible

to transmit discrete selections over corruptive channels with arbitrarily high reliability,

provided only that the rate at which information is conveyed is kept below a value called

channel capacity which depends on the corruptive properties of the channel. He did not

elaborate, however, on the realization of practical signal-processing techniques, nor

on the amount of reliability attainable with a given amount of signal processing. Indeed

these are very difficult questions that have occupied the efforts of communication theo-

rists for the last two decades, and which are still largely unsolved. Gallager has pre-

sented a summary of many contemporary results.

1. 2 COMMUNICATION OVER DISCRETE MEMORYLESS CHANNELS

It is difficult to be precise without considering a specific model for the communica-

tion process. One of the simplest models that represents a reasonably large class of

noisy physical communication channels is the discrete memoryless channel (DMC),

which has a finite input alphabet of K symbols, a finite output alphabet of J symbols,

and is characterized by a time-invariant set of channel transition probabilities

{Pjk= Pr (output= jl input= k)}, where k belongs to the input alphabet, and j to the output

alphabet. The effects of noise and distortion are reflected in the values of the channel

transition probabilities.

Suppose that a block of N channel symbols is used to represent one of M messages.

The parameter

1
R= ln M, (1)

called the information rate, represents the rate at which information is going into

the channel. Let the transmitted sequence corresponding to the mth message be
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Xm = (Xlm' X 2m' ... X Nm ), 1 m < M, and let the corresponding received sequence be

Ym ' (Yl YZm' m ... YNm ), where the {Xim} belong to the input alphabet, and the Yim} to
the output alphabet. Now consider the ensemble of K communication systems that are

possible by distinguishable assignments of the {Xim } , where the {Xim} are selected inde-

pendently from a probability distribution Q(k). Gallager 4 '3 has shown that if a maximum-

likelihood decoder is used for each communication system, the probability of decoding

error averaged over the ensemble of communication systems satisfies

Pe,m = Pe < exp -NE(R), (2)

where

E(R) = sup sup [Eo(p, Q)-pR], (3)
O<p<l {Q(k)}

and

Eo(p, Q) = -In Q(k) Pk (4)

The quantity E(R) is called the block code exponent for the channel. Gallager has shown

The quantity E(R) is called the block code exponent for the channel. Gallager3 has shown

that for a DMC, the E(R) curve looks somewhat like the curve shown in Fig. 1, and has

the following properties: There is a rate C called channel capacity for which E(R) > 0

for all R, 0 R < C. There is another rate Rrit called the critical rate, 0 < Rcrit < C,

for which the E(R) curve of a DMC has a straight-line portion with slope -1 for all R,

0 < R < Rcrit. The intercept of the straight-line portion of the E(R) curve with the rate

E

E (O)

Fig. 1. Block-code and tree-code exponents.

R
Rcrit Rcomp

axis is called the computational cutoff rate R . It is evident that R is numeri-comp comp
cally equal to E(O), and also that Rcrit < Rcomp < C. The rates Rcrit, Rcom, and C

all have various engineering significance with respect to communication over the DMC;
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some of these properties will be brought out later in appropriate sections of this report.

Each distinguishable assignment of the {Xim} to represent the messages is called a

code, and it represents a particular mapping of the M possible messages into the code

words x, x 2, ... , xM. Equation 2 asserts the existence of at least one code for which

the probability of decoding error decreases exponentially with the block length N.

Shannon, Gallager, and Berlekamp 5 have recently demonstrated that for equally probable

messages, there is an exponent EL(R) such that for all KM N possible codes

P > exp-N[EL(R)-o(N)], (5)

where o(N) - 0 as N - oo. Furthermore,

EL(R) =E(R), R crit R < C. (6)

The preceding discussion suggests that block coding should be an efficient technique

for achieving reliable communication over a DMC at all rates below channel capacity.

This conclusion follows from (2) and (5), which assert the existence of block codes for

which the probability of decoding error decreases exponentially, but no faster, with the

block length. Unfortunately, any known decoding technique equivalent to maximum-

likelihood decoding of an arbitrary block code requires a decoding effort that grows expo-

nentially with the block length. Thus the probability of decoding error tends to decrease

only algebraically with the decoding complexity, thereby substantially reducing the

attractiveness of using block coding with maximum-likelihood decoding. Some computa-

tionally efficient techniques for decoding particular block codes of particular structures

have been discovered, however. Many of these techniques are treated in books by

Peterson6 and by Berlekamp. 7

Block codes are a subclass of a more general class of codes known as tree codes.

The structure and properties of tree codes are treated extensively in Section II. In gen-

eral, a tree encoder supplies b channel symbols to the channel for each t source sym-

bol that it receives from the source. One of the parameters that characterizes a tree

code is its constraint length v, which can roughly be interpreted as meaning that each

set of b channel symbols supplied to the channel depends on, in some sense, only the

last vt source symbols supplied by the message source. The constraint length in chan-

nel symbols (that is, vb) of a tree code is analogous to the block length of a block code.

There are ensembles of tree codes for which the probability of decoding error per source

symbol is bounded:

Pe < exp -vb[e(R)- o(vb)], (7)

where e(R) is the tree code exponent for the channel, and e(R) > 0 for all R, 0 R < C.

Moreover, e(R) is substantially greater than E(R), especially at rates approaching chan-

nel capacity. The comparison of e(R) and E(R) is shown in Fig. 1. In Section II it

is shown that
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e(K) = (U), U Hcomp, (8)

and e(R) then declines to zero approximately linearly with increasing rate for Rcomp

R < C.

There are at least two good reasons for studying encoding and decoding techniques

for tree codes. One reason is that the tree code exponent is substantially greater than

the block code exponent at rates approaching channel capacity, which suggests that tree

codes may be much more efficient than block codes in providing reliable communication

over a DMC. The second reason is the existence of sequential decoding, which is a

simple but powerful decoding technique that is applicable to all tree codes.

1.3 CASCADING OF CODES

Since the code exponents E(R) and e(R) may be small at rates approaching channel

capacity, (2) and (7) suggest that the constraint length of an efficient code may have to

be large in order to drive the probability of decoding error below some acceptable level.

Meanwhile the decoding complexity grows - often very rapidly - with the constraint

length. The coding problem is to find good, long codes that can be easily decoded.

One effective general approach to the coding problem is cascading. This technique

is illustrated in Fig. 2 for a code with two stages of cascading. The basic idea of cas-

cading is quite simple: A code with a long constraint length is constructed by cascading

DATA OUTER INNER INNER OUTER
S C ENCODER ENCODER DECODER DECODERSOURCE ENCODER RSINK

COMPOSITE ENCODER COMPOSITE DECODER

Fig. 2. Two-stage code cascading.

the outputs of two or more constituent encoders, each of which generate a code with a

relatively short constraint length. There are several techniques for cascading block

codes in which the composite constraint length is equal to the product of the constraint

lengths of the constituent codes. Some of these techniques require symbol interleaving

between successive stages of coding, in which case the encoders and decoders shown

in Fig. 2 are assumed to contain the appropriate interleaving and unscrambling devices.

The decoding of cascaded codes is accomplished by successively decoding the constitu-

ent codes, stage by stage. Thus the composite decoding complexity is equal to the sum

of the decoding complexities of the constituent codes. Cascading is an effective encoding

technique whenever it can yield a substantial reduction in the decoding complexity

required to attain a given decoding error probability at a given information rate.

Two classes of cascaded block codes that have been extensively studied are Elias's

product codes and Forney's 9 ' 10 concatenated codes. These coding techniques will be

4
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reviewed in Section V. Forney 9 showed, however, that it is possible to construct long

block codes involving many stages of coding for which the decoding complexity is pro-

portional to N3 , while the probability of decoding error can be made nearly exponential

in N:

Pe < exp-K(R)N(l A), (9)

where A is a nonzero, positive quantity that can be made arbitrarily small. Thus in

the limit of high decoding complexity and low probability of error, cascading of block

codes achieves a probability of error that decreases nearly exponentially with decoding

complexity.

Forney 9 ' 10 also investigated the properties of concatenated block codes which con-

sisted in exactly two stages of coding. He showed that it is possible to construct a two-

stage cascaded block code with composite length N and composite rate R such that the

probability of decoding error is exponentially bounded:

Pe < exp -NEC(R), (10)

where EC(R) is the cascaded error exponent, and

E(R) EC(R) > 0, 0 R < C. (11)

He defined the efficiency of two-stage cascading as the ratio of EC(R) to E(R). The

reciprocal of the efficiency indicates roughly how much longer a cascaded code should

be to yield the same probability of decoding error as a single-stage code satisfying (2).

For one specific example he found that the efficiency was monotonically decreasing with

rate, was 0. 5 at R = 0, and approximately 0. 02 at R = 0. 9C. At high rates, therefore,

the cascading of block codes appears to produce a substantial reduction in the coding

performance when compared with an efficient single-stage code.

Since tree codes are markedly superior in performance to block codes at high rates,

and since cascading is an effective, though perhaps inefficient, technique for constructing

long block codes, it is natural to wonder whether cascading could usefully be applied to

tree codes, and whether the cascading of tree codes would be superior in some ways to

the cascading of block codes. We investigate such questions in this report. Some

methods for constructing and decoding cascaded tree codes are presented, with emphasis

on techniques that appear to require a minimal amount of implementational complexity.

The efficiency of cascading tree codes is also studied, and is found to be greatly superior

to the efficiency obtained in the cascading of block codes.

1.4 OUTLINE OF THE REPORT

To study cascaded tree codes, a large amount of introductory material is required.

In Section II the reader is introduced to the concept, mathematical structure, and error-

correcting capabilities of tree codes. Although little of this material is original, the
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author believes that its presentation in this report will provide the reader with a much

quicker and deeper understanding of tree codes than could be obtained by reading most

of the readily available literature on the subject. In Section III two methods of decoding

tree codes are considered which appear attractive for decoding the constituent codes of

a cascaded tree code. Some of this material, particularly that concerning the Viterbi

decoding algorithm, is new. The new results include efficient application of the algo-

rithm to high-rate systematic convolutional codes, application of the algorithm to

unterminated tree codes, a study of the asymptotic distribution of the delay required for

unique maximum-likelihood decoding of an unterminated tree code, and an analysis of

the expected character of decoding error patterns. In Section IV the results of a com-

puter simulation of Viterbi algorithm decoding of short-constraint-length random tree

codes are presented. The principal results are observations concerning the decoding

lag distribution, evaluation of the error probability as a function of the decoding lag, and

a study of the burst characteristics of decoding errors as a function of rate and con-

straint length. Section V contains the results that will probably be of most interest.

Several methods for constructing cascaded tree codes are considered, including tech-

niques analogous to product coding and concatenation for block codes. The asymptotic

coding-theorem efficiency of two-stage cascading of tree codes is then investigated, and

for concatenationlike codes is shown to be greatly superior to that obtained in the

cascading of block codes, especially at rates approaching capacity. Next, we derive an

asymptotic bound on the attainable error probability expressed as a function of the com-

posite decoder complexity for cascaded tree codes in which maximum-likelihood decoding

is applied at each stage of decoding. Section V concludes with an examination of the

question of which decoding techniques appear to be practical for decoding the constituent

codes. The emphasis is on finding decoding techniques that provide reasonable improve-

ment in performance with modest decoding complexity. We show conditions for which

it is possible to use sequential decoding on the outermost stage and still operate at a

composite rate exceeding RComp. Section VI deals with the efficient realization of the

synchronous interleavers that are required to construct some of the classes of cascaded

tree codes described in Section V.

6



II. PROPERTIES OF TREE CODES

2. 1 STRUCTURE

One should clearly understand the mathematical and geometric structure of tree

codes before attempting to study their other properties. This section, which is based
11

largely on Forney's work, furnishes an introduction to the structure of tree codes.

Tree codes are named for the geometric structure usually associated with the

encoding process. For many tree codes a trellislike structure might be a more appro-

priate geometric representation, so that it would be natural to call these codes "trellis

codes." It is unlikely that this renaming will ever occur, however, since the term "tree

codes" has become firmly established in the literature of coding.

Tree codes are most naturally applied to an unending sequence of symbols to be

encoded. For this reason, it is assumed that the data source supplies an indefinitely

long ordered sequence of source letters ... , s_l, s, s, . .., where each source letter

comes from an alphabet of size q. The most common example is the binary source, for

which q = 2.

In a tree encoder the source sequence is

partitioned into subblocks containing t con-

tiguous source letters each. Each subblock,

containing the t source letters contiguous

(Hl) l1 to the source letters in the adjacent sub-

blocks, is called a source branch, and is

encoded into a channel symbol branch com-

prising a sequence of b channel symbols,

where the channel symbols come from an

alphabet of size qc' Figure 3 is an example

of a tree encoding process for which q = t =

b = 2 and q = 3. For the tree code shown,

the data sequence ... , 1, 0, 1, 0, .. . would

be encoded into the channel sequence

... , 0, 0, 1, 2, .. , and the data sequence

.... 0, 1, 1, 1, ... would be encoded into

the channel sequence ... , 1, 2, 2, 2, ...

The tree structure of the encoding process

is evident in Fig. 3. A branch of channel

symbols is supplied to the channel whenever

a source branch is received from the source.

The rate of a tree code in nats per channel

symbol is thus

Fig. 3. Example of the encoding process r = t q. (12)
for a tree code. bn q.
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One of the most important characteristics of a tree code is its encoding constraint

length v. Precisely, the channel symbols assigned to any branch are determined by

only the v + 1 source branches received immediately before the transmission of the

branch. The units of v are thus source branches, a convention that differs some-

what from the definitions used by other authors. Both the constraint length of a tree

code and the block length of a block code are measures of the encoding memories of their

respective classes of codes, and both exhibit similar general effects with respect to

encoding and decoding complexity and to attainable error probability.

Whenever a tree code has a finite constraint length, there is a rather natural geo-

metric representation of the encoding process that is more trellislike than treelike.

(Subsequent discussion throughout this report is restricted to tree codes with finite con-

straint length.) This representation is easily developed through the concepts of merging

and of the state of the encoder.
12

The concept of the state of the encoder was first defined by Omura. After a channel

branch has been specified, the next branch will be determined by only the last v source

branches already received plus the next source branch that will be provided by the

source. Accordingly, the state of the encoder can be defined by the v source branches

received immediately before the time at which the most recent channel branch was spec-

ified. It is evident that there are q t possible encoder states and that qt different out-

comes can occur for the next channel branch when the encoder is in a particular state,

depending on the next t letters received from the data source.

Now consider any two semi-infinite sequences of source symbols S1 and S2 supplied

after the encoder is in some prespecified initial state. By the definition of constraint

length, if the elements of S1 and S are identical over a sequence of v + 1 or more

contiguous source branches, then the channel symbols selected by the encoder will

be identical until the next branch in which S1 and S differ. S 1 and S2 are said to

be merged at all branches for which the last v + 1 branches of S 1 and S are iden-

tical, and S and S are unmerged at all other branches. Augmenting these defini-

tions, we define a merged span (with respect to S and S2 ) as a set of contiguous

branches that are all merged, and an unmerged span as a set of contiguous branches

that are all unmerged. Corresponding to S1 and S2, therefore, there is a sequence

of merged spans alternating with unmerged spans. Each span is nonempty and is

disjoint from all other spans. The length of a span can be arbitrary, but by defini-

tion an unmerged span must contain at least v branches.

The concepts of merging and of encoder state are illustrated in Fig. 4, which

is a trellislike representation of a tree code for which q = 2, t = 1, and v = 3. The

lightly drawn lines represent the possible branches originating from each encoder

state. At each stage of penetration into the trellis there are q(V+l )t branches, which

correspond to all of the independent combinations of source letters that are possible

within the constraint length of the code. Going to and emerging from each state are

qt branches, corresponding to all of the possible combinations of t source symbols

8
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occurring in the last source branch and the next source branch, respectively. The

set of states having branches going to a particular state are the predecessor states

for that state, and the set of states that are immediately reached by the branches

emerging from a state are the successor states for that state. Each state has qt

predecessor states and qt successor states. Observe that there are qt states that

share the same set of predecessor states, and furthermore that these are the only

states that can be reached immediately from these q predecessor states. One can

therefore partition the qvt states into subsets in two ways: one partition contains

the q(v-1)t predecessor sets, and the other partition contains the q(V-)t successor

sets. These partitions are generally different.

The set of branches corresponding to a particular sequence of source symbols

is called a path. The heavily drawn lines in Fig. 4 are the paths corresponding to

the source sequences ... 0001101101... and ... 0001011101.... These paths clearly

show the merging property: The sequences are merged at the initial and final branches

shown in the figure, and are unmerged elsewhere. Observe that the length of the

unmerged span is v branches longer than the length of the span in which the source

sequences differ.

Figure 4 emphasizes the fact that only a finite number of branch specifications

are possible at each stage of penetration into the coding trellis, because of the prop-

erty that the constraint length is finite. This point is not so easily recognized from

the treelike representation shown in Fig. 3, where one might be tempted to infer

that the number of branch specifications at any stage of penetration into the code

tree grows exponentially with the depth of penetration.

The merging concept is a useful tool for understanding the occurrence of decoding

errors in a maximum-likelihood decoder for memoryless channels. Let S1 be the

sequence of symbols supplied by the data source, and suppose that S2 is identical

to S1' except for a single unmerged span of finite length. The paths corresponding

to S 1 and S would then look somewhat like the heavily drawn lines shown in Fig. 4.

Furthermore, suppose that the decoder decides that the portion of S2 included in the

unmerged span is more probable than the corresponding portion of S1. Then a

decoding error will certainly occur, since the entire sequence S is more probable

than S 1. Of course, there may exist a third sequence, S 3, that is even more prob-

able than SZ over the entire sequence, and which may be the sequence that is actually

decoded. The intersection of the span in which S and S2 are unmerged with the

spans in which S1 and S3 are unmerged will be nonempty, however, since otherwise

the sequence S4, which is identical to S2 over the span in which S 1 and S2 are

unmerged and identical to S3 elsewhere, is more probable than S3 , thereby contra-

dicting the hypothesis that S3 is the choice of a maximum-likelihood decoder.

The relationship between merging and maximum-likelihood decoding is used effec-

tively in the Viterbi algorithm for decoding tree codes. This subject will treated

extensively in Section III.

10



It is trivial to observe that tree codes include block codes as a subclass. The

simplest example of a class of block codes derived from tree codes is the subclass

of tree codes for which v = 0. The most common subclass of these block codes is

the binary codes for which q = qc = 2, N = b is the block length, and the normalized

rate is t/N bits per channel symbol. Since tree codes include block codes as a sub-

class, they must be at least as good as block codes in general.

A much more interesting way of constructing a block code from a tree code is

to form a terminated tree code. After every set of K source branches has been sup-

plied by the source, the encoder inserts a resynchronizing sequence of v fixed,

dummy source branches (frequently all "zeros") which is also known to the decoder.

After the last dummy source branch, and every (K+v) t h branch thereafter, the decoder

known unambiguously the state of the encoder. Consequently, the successive sequences

of K + v branches form independent blocks. The tree code is said to be terminated
after the (K+v)t h channel branch, and thus in this way a terminated tree code is

made into a block code. The length of the resulting block code is therefore N =

b(K+v), representing qt possible code words, so that the block code rate is

Kt
R In q = kr (13)

(K+v)b

nats per channel symbol. Forney calls the parameter

X K (14)K+v'

the synchronization rate loss.

Wozencraft and Reiffenl 3 used terminated tree codes as a practical means of

retaining or re-establishing synchronization during the decoding process, while Forney

used them analytically to determine bounds on the tree code error exponent in terms of

the more easily derived block code error exponent.

2.2 CLASSIFICATION

Several classes of tree codes will be defined here. Each of these classes is use-

ful because it is either analytically tractable or relatively simple to implement in

practice. The classifications are based on the properties of the encoding process.

2. 2. 1 Random Tree Codes

A random tree code is an ensemble of tree codes in which the b channel sym-

bols assigned to each branch are chosen at random independently of each other and

are also chosen independently of the channel symbols assigned to all of the other

distinct branches in the trellis representation of the code. The channel symbols are

selected according to a probability distribution {pk}, where Pk is the probability of

choosing channel symbol k, k = 1, 2, ... , qc. For any specific code in this class,

11



the channel symbols assigned to a given branch (in time) corresponding to two dif-

ferent source sequences are either identical or totally independent, depending on

whether the two sequences are merged at that branch.

It would be absurd to contemplate building an encoder and decoder for a randomly

selected tree code, since the equipment complexity would be prohibitive. The useful-

ness of random tree codes is that they are amenable to relatively simple analysis.

We shall exploit that property in section 2. 3.

2. 2.2 Convolutional Codes

Convolutional codes (sometimes called "recurrent codes") constitute the class of

linear tree codes, and these codes are the coding class usually associated with tree

codes. Let the source symbols and the channel symbols be elements of the finite

field of q elements, GF(q). If X 1 is the channel symbol sequence corresponding to

the source sequence S1 , and X 2 is the channel sequence corresponding to S 2 , then for

a convolutional code the channel sequence X1 + cX 2 will be generated when the source

sequence is S 1 + cS 2 , where c is any element of GF(q). The fact that convolutional

codes are linear makes their implementation relatively simple.

We introduce the following notation: Let the t source symbols in the it h branch

be designated sij, j = 1, ... , t, and let the b channel symbols in the th branch

be designated xik, k = 1, 2, ... , b. Then for a convolutional encoder, the {xik can

be expressed in terms of the {sij} as follows:

v t

xik = E E gjk() (i-_)j (15)
2=0 j=l

The elements {gjkf(i)} are elements of GF(q), and they indicate the contribution to

Xik made by the source symbol s(i l)j. The running variable in (15) indicates the

SOUl

SYMB(

CHANNEL

SYMBOLS

Fig. 5. Generalized realization of a convolutional encoder.
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delay in branches since s(if) was received; since the constraint length of the code

is v, gjk (i) is identically zero except for 0 -2 - v. In terms of i and , (15)

assumes the form of a convolution, which accounts for the term "convolutional

code." Figure 5 shows a circuit for realizing (15). This device, adapted from

Gallager, 3 comprises two commutators, t (v+l)-stage shift registers, (v+l)bt GF(q)

multipliers, and b GF(q) adders.

In general, the multipliers {gjkf(i)} are functions of the branch number i. If,

however,

gjk(i) = gj k all i, j, k, (16)

the code is said to be a time-invariant convolutional code; otherwise, if (16) is not

satisfied, the code is a time-variant convolutional code.

The systematic codes are an important subclass of convolutional codes, for which

g9jo(i = 1, all 1 < j - t (17a)

gjj(i) = 0, all 1 -j - t, 1 < -< v (17b)

gjk(i) = all 1 - j i k -- t, 0 --< v. (17c)

Equations 17 merely state that the first t symbols in each channel branch are iden-

tical to the corresponding source branch symbols. Both time-invariant and time-

variant convolutional codes can be systematic. A useful feature of systematic codes

is that they can be decoded trivially in the absence of channel errors.

The representation (15) suggests that convolutional codes can be defined in terms

of a generator matrix in the same way that linear block codes can be described. Let

the source sequence S be represented by the semi-infinite column vector

T
S Sll Sl2 . sit S21 s22 ... s2t s31 .... (18)

and let the channel sequence X be represented by the semi-infinite column vector

T
X Xll X12 .. Xlb X21 x22 ... X2b x31 *.. (19)

Let Gi be a two-dimensional semi-infinite matrix whose elements are all identically zero

except for the submatrix G! consisting in rows [(i-b)+l] to ib inclusive and columns

[(i-v-l)t+l] to it inclusive. The nonzero terms of Gi form the (v+l)t X b array

gll (i) . gtlv(i) ... gll (i ) ... gtll ( i ) gl1O( i ) ... gt10(i)

glbv(i) ... ... gtb(i)
m-

13



Define G to be the matrix sum of the {G.}, subject to the additional condition that

gmn = 0 for m - 0 or n -' 0. (The condition is equivalent to the assumption that the
encoder is in the all-zero state before the first source branch is supplied by the data

source.) Then it follows that

X = GS, (21)

where G is a two-dimensional semi-infinite matrix that defines the convolutional code

specified by (15).

An alternative description for a convolutional code is the parity-check matrix repre-

sentation given by Wyner and Ash. In this representation, a convolutional code is

defined in terms of a two-dimensional semi-infinite parity-check matrix H such that

for every possible channel sequence X

HX = 0. (22)

The parity-check matrix representation is the dual of the generator matrix repre-

sentation, and for a time-invariant convolutional code with a unique inverse Forney 5

has shown that it is always possible to find a parity-check matrix H corresponding

to a given generator matrix G, or vice versa. This is generally a difficult prob-

lem, however, except in the case of systematic convolutional codes. In that case,

Wyner has shown that the array (20) has the form

t t t I t
G'. = (23)

S1 IV | Gi( v-l ) | ' * ' | il | Gio

where t is the t X t zero matrix, It is the t X t identity matrix, and the {Gil}, i =
0, 1, ... , v are t X (b-t) matrices whose elements define the systematic convolu-

tional code. Define H as the two-dimensional infinite matrix whose elements are

all identically zero, except for the submatrix H consisting in rows [(i-1)(b-t)+l] to

i(b-t) inclusive and columns [(i-v-l)b+l] to ib inclusive, and whose nonzero terms form

the (v+l)b X (b-t) array

I I I I I I I I
H' = [-Gi 10 i-G I 0 1 ... -G. 0 1-G I (24)si [iv 0b-t i(v-l) 0b-t I 1-G1

0 b-t ib-t ' (24)

where 0 bt is the (b-t) X (b-t) zero matrix, and Ib_ t is the (b-t) X (b-t) identity

matrix. Let Hs be the matrix sum of the {Hsi } , again subject to the condition that

h = 0 for m 0 or n -< 0. Then for the convolutional code defined by (23) andmn
the two-dimensional semi-infinite matrix Hs defined by (24), it follows that

H X = 0, (25)

so that Hs is the parity-check matrix corresponding to the systematic convolutional

code whose generator matrix elements are given by (23).

14



Let the sequence of symbols detected by the receiver be represented by the

semi-infinite column vector Y whose entries {Yik } are elements of GF(q):

T
Y Yll Y12 ''' Ylb Y21 Y22 ''' Yb Y31 (26)

Furthermore, suppose that the received sequence can be accurately modeled as the

sum of the transmitted sequence and an additive sequence of the channel-introduced

errors, where the errors are statistically independent of the transmitted sequence:

Y = X + E, (27)

where

T
E T = el 2 e lb 21 e 22 egb e 31 .e (28)

and the {eik} are elements of GF(q). As with block codes, the syndrome Sy corre-

sponding to the received sequence Y is defined as

Sy = HY = H(X+E) = HX + HE = HE, (29)

by using (22). Thus the syndrome defines the class of error sequences that was intro-

duced by the channel. One way to realize a maximum-likelihood decoder for addi-

tive channels is to determine which member of the class of error sequences defined

by the syndrome was most likely to have occurred, and to subtract it from the

received sequence to yield the most probable transmitted sequence.

Two important classes of convolutional codes are those for which the normalized

rate is either 1/n or (n-l)/n, where n is an integer. Here, these classes are simply

called low-rate codes and high-rate codes, respectively.

2. 3 CAPABILITIES

We shall conclude with a demonstration that some classes of tree codes are mark-

edly superior to block codes in their ability to correct errors, for a given rate

and coding constraint length. The purpose here is to provide motivation rather than

rigor. By confining the derivation to a very simple example with limited applica-

bility, we hope to establish the credibility of similar, more general results obtained

by others, and to convince the reader that there is a performance advantage to be

gained by using certain classes of tree codes. The development here is again based

on Forney's work. 1 1

Recall from (2) that for random block codes of length N and rate R used on a

DMC the average probability that a code word is erroneously decoded after maximum-

likelihood decoding is upper-bounded by

P(E) < exD -NE(R), (30)
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where E(R) is the block code exponent. Gallager shows that (30) applies when the

probability distribution iPk} of assigning channel input symbols is suitably chosen,

and when all symbols in all code words are chosen from that distribution with sta-

tistical independence. This condition is then reduced slightly to require only pair-

wise independence: that is, (30) applies whenever the symbols in any code word are

chosen independently of the symbols assigned to any other code word.

A reasonable comparison of block codes and tree codes is a comparison of their

error-correcting performance per channel symbol as a function of the encoding con-

straint lengths. Since (30) is an upper bound on the block error probability, it is

also an obvious upper bound on the symbol error probability for a block code. On

the other hand, (5) asserts that the block error probability for any code is lower-

bounded by

P(E) > exp -N[EL(R)+ol(N)], (31)

where ol(N) is a term that goes to zero with increasing N, and EL(R) is essentially

equal (exactly equal for Rrit R C) to E(R). Thus an obvious lower bound on

the symbol error probability for a block code is

PSB >N exp -N[EL(R)+ol(N)]

= exp -N EL(R) + o(N)+ ln N

= exp -N[EL(R)+o2(N)] (32)

and thus, asymptotically, the symbol error probability for a random block code is

equal to exp -NE(R) for Rcrit - R C.

Now it can be shown that the class of terminated random tree codes is greatly

superior to block codes in terms of symbol error probability as a function of encoding

constraint length.

It is helpful at first to understand explicitly the geometrical interpretation of a

decoding error in a terminated random tree code. For such a code, the encoder

state is pre-specified every K + v branches, so that all of the paths through the

coding lattice converge every K + v branches. Define the correct path as the path

in the coding lattice that corresponds to the symbols supplied by the data source.

If a decoding error occurs in the maximum-likelihood decoding of a terminated tree

code, then some other path in the coding lattice must be more probable than the

correct path. In particular, the incorrect path must diverge and then remerge with

the correct path at least once for a terminated tree code. On the other hand, if

there is no path that diverges from and later remerges with the correct path that

is more probable than the correct path, then there will be no decoding error for

a maximum-likelihood receiver.

16
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The error probability for a terminated random tree code is therefore the proba-

bility that no path that diverges from and later remerges with the correct path is

more probable than the correct path.

Consider now the set of all paths that diverge from the correct path at branch i

and remerge with the correct path after branch i', 1 i K, i + v ` i' K + v. Let Mii,

be the number of such paths that are distinct. For all of these paths the last

v source branches are identical, so there are only i' - i - v + 1 source branches in

which the symbols may differ. Thus

Mii, qt(i'-i-v+l)(33)

Conversely, this set of paths includes all of those paths corresponding to source

sequences that differ from the actual sequence at the (i'-v)th branch and at the

(i+j v) t h branches,

0 < i'il, (34)

where "[xj" means "the greatest integer contained in x." Thus

Mi > qt(i'-i-v+l) q l) (35a)

and consequently, using (33), we obtain

Mii, = qt(i'-i-v[l+o(v)]+l) (35b)

For random tree codes, each of the code words corresponding to a divergent

path will be independent of the correct word over the span from branch i through

branch i'. Since the code words are pairwise independent of the correct word, the

union bounding techniques used by Gallager 4 apply, so that the set of diverging

code words may be regarded as being equivalent to a random block code with Mii

code words and length N = (i'-i+l)b. The block code rate is

In Mi , (i'-i+l-v)t n q
R - = = r, (36)

N (i'-i+l)b

where the tree code rate r was given by (12), and

= 1 (37)

so that 0 i < 1. Thus the probability of decoding incorrectly over exactly the

span from branch i through branch i' is bounded by
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Pii,(e) < exp -NE(R)

vb
= exp _ 1 - E(r)

= exp -vbe(r, ),

where the tree code exponent e(r, it) is defined as

E([ir)
e(r, ji) = 1- 

Next, define the random tree code exponent e(r) by

e(r) = Inf
Et: 0-<I<1

e(r, t).

(38)

(39)

(40)

Figure 6 provides a graphical construction of e(r, ) from E(R), and also compares e(r)

and E(R). For r -< Romp e(r, Bi) is minimized at ~t= 0, so that e(r) = E(0), 0 -< r -< Rc 0mp' comp

E(O)

e(r)

(r)

Fig. 6. Construction of e(r) from E(R).

R,r

R _ r

For R < r < C, e(r) is the E-axiscomp
that is tangent to the E(R) curve. Thus e

to E(R) increases without bound at rates a

Using (40) in (38), therefore, we have

Pii,(E) < exp -vbe(r).

intercept of the line from r on the R-axis

,kr) > E(R), 0 < r < C, and the ratio of e(r) to

.pproaching channel capacity.

(41)

For the terminated random tree code the union bound yields

K K+v

P() =l i'=i+
i=1 i 'i+v

Pii,(E) < K2 exp -vbe(r).
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Asymptotically, therefore, if K does not increase exponentially with v [for example,

by maintaining a fixed synchronization rate loss (14)], then

P(E) < exp -vb[e(r)-o(v)], (43)

and e(r) represents the error exponent for the class of terminated random tree

codes.

The derivation leading to (43) applies strictly to a specific class of tree codes with

rather limited practical applicability. It does, however, lend credibility to similar

results obtained by others. In a similar derivation, Viterbi shows that (43) applies

to the class of terminated randomly time-variant convolutional codes. Interestingly,

nobody has yet shown that (43) applies to any class of time-invariant convolutional codes;

the best error exponent that has been obtained for any of these codes is the block coding

exponent E(R). Yudkin 1 8 and Gallager 3 use a much more elaborate argument based on

the properties of sequential decoding to show that (43) applies to the class of unterminated

randomly time-variant convolutional codes, where P(E) is then interpreted as the proba-

bility that a given branch is decoded incorrectly.

The implications of (43) and Fig. 6 are that, with respect to constraint length, some

classes of tree codes are greatly superior to block codes in their ability to correct

errors. For a given decoding error probability per symbol, a tree code, whether ter-

minated or not, requires a much shorter encoding constraint length than that required

for a block code. The encoding structure inherent in tree codes evidently provides a

much more effective use of the stored symbols than that which is obtained in a block

encoder. Terminated tree codes using relatively short constraint lengths can be used

to form essentially optimum, much longer block codes. We shall later observe that

for those block codes that can be realized as terminated tree codes, the tree code reali-

zation also yields a substantial reduction in decoding complexity, so that tree codes

attain a performance advantage in decoding as well as in reducing error probability.
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III. TREE-CODE DECODING TECHNIQUES

FOR MEMORYLESS CHANNELS

Although it is relatively easy to find codes that are capable, with maximum-likelihood

decoding, of achieving the coding theorem results given by (2) or (7), these codes have

not been widely used because the decoding algorithms equivalent to maximum-likelihood

decoding for these codes require a computational effort that grows exponentially with

the constraint length of the codes. This decoding problem has discouraged the wide-

spread application of coding in operational systems.

One useful but hitherto suboptimum approach to the decoding problem has been to

find classes of block codes that have a high degree of mathematical structure which can

be successfully exploited to construct easily implemented efficient decoding algorithms.

A summary of many of these algebraic coding techniques has been given in books by

Peterson6 and Berlekamp. 7 Unfortunately, none of the known classes of easily decoded

algebraic codes contains members that satisfy (2) for arbitrary rates and arbitrarily

large block lengths.

The block-code cascading techniques introduced in section 1. 3 furnish a second, par-

tially successful, approach to the block-code decoding problem. These techniques have

the property that for a nonzero rate, the decoding-error probability can be made arbi-

trarily small with modest decoding complexity, except for the required symbol storage.

None of these techniques quite achieves the coding theorem performance specified by

(2), however. Cascading is operationally attractive because it is the only known class

of block-code decoding techniques of modest complexity that achieves arbitrary reliabil-

ity at rates close to capacity.

Several interesting techniques have been presented for decoding tree codes. Of those

techniques that are applicable to memoryless channels, three of the most widely studied

are sequential decoding, which was introduced by Wozencraft and Reiffen, 13 Massey's 1 9

threshold decoding, and Viterbi'sl7 recent decoding algorithm. Furthermore, there

are several useful burst-error-correcting tree-code decoding algorithms, some of which

are discussed by Gallager.3 Of the three memoryless-channel decoding techniques listed

above, both sequential decoding and the Viterbi decoding algorithm can be applied to any

tree code, and both are capable of attaining the coding theorem performance given by

(7). For sequential decoding, however, decoding failures, caused by buffer overflows,

dominate the behavior of the decoder, and their probability decreases only as a finite

power of the buffer size. On the other hand, the decoding effort for the Viterbi algo-

rithm grows exponentially with the constraint length. Threshold decoding algorithms

can be easily implemented, and they do not suffer from the computational problems that

characterize the two other decoding methods. Threshold decoding applies only to a

limited class of tree codes, however, and it is believed that this class contains no mem-

bers that satisfy (7) for arbitrary rates and arbitrarily large constraint lengths.

Our purpose is to determine to what extent cascading techniques can usefully be
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applied to the construction and decoding of tree codes. In that context, the techniques

used to decode the constituent codes of a cascaded tree code must be carefully chosen in

order not to render cascading impractical. We shall now examine the properties of those

techniques that are reasonable for decoding the constituent codes.

3. 1 SEQUENTIAL DECODING

Sequential decoding has been the most extensively studied technique for decoding tree

codes, to the point where many communication engineers automatically disregard the

possibility of using alternative decoding methods, a conclusion that is understandable

although perhaps unwise. Sequential decoding does indeed have some attractive features:

It is readily applicable to all classes of tree codes; at rates below R the average
comp

amount of computation required to decode a branch is small, and its error-correcting

capability in the absence of computational failure approaches the bound (7) specified by

the coding theorem. On the other hand, the amount of computation required to decode

a branch is a random variable c whose frequency of occurrence is upper- and lower-

bounded by a finite power of c at all rates. Thus the decoding failure known as a buffer

overflow occurs with a probability that decreases only as a finite power of the buffer

size. A buffer overflow is also likely to produce a decoding error with substantial error

propagation.

3. 1. 1 Basic Description

The basic principles upon which sequential decoding is based are quite simple. A

sequential decoder decodes a tree code by making tentative hypotheses on successive

branches and by changing these hypotheses when subsequent choices indicate an earlier

incorrect hypothesis. The implementation of a decoder is predicated on two assump-

tions: (i) the decoder can maintain a replica of the encoder; and (ii) with high proba-

bility it can detect an incorrect hypothesis shortly after the incorrect hypothesis has

been made. The following simple example, taken from Gallager,3 illustrates the gen-

eral application of these ideas in a sequential decoder.

Example 1. Consider the convolutional code generated by the device shown in Fig. 7.

The first four branches of the conventional treelike representation of the code, corre-

sponding to Fig. 3, are shown in Fig. 8.

Suppose that the sequence 1100... is supplied by the data source, so that the sequence

111 101 001 000 ... , shown by the heavy line in Fig. 8, is transmitted. We consider two

cases.

Case I: No Incorrect Hypotheses

Let the received sequence be 101 101 001 000 .... On the basis of the first received

branch, the decoder will tentatively hypothesize that 111 was the first transmitted

branch. At this point the received sequence and the hypothesized transmitted sequence

differ in one symbol. Continuing, the decoder will hypothesize successively branches 101,
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S -1 001, and 000, so that after the fourth. ~r-ac th rn a 
branch the received sequence and the

Xi2 hypothesized transmitted sequence still

differ in only one symbol. The agreement

X•3 between the two sequences beyond the

-'IV - first branch tends to confirm the validity

Fig. 7. Encoder for Examples 1 and 2. of the initial hypothesis. Decoding is
simplified because in hypothesizing the

kth branch the decoder must choose
101

between only two alternatives instead of

2 alternatives.

Case II: An Initial Incorrect Hypothesis

Suppose instead the received sequence

is 010 101 001 000 ... . This time the

decoder will tentatively hypothesize 000

to be the first transmitted branch. Again

the received sequence and the hypothe-

sized transmitted sequence differ in only

one symbol at this point. Continuing, the

decoder will hypothesize successively

branches 111, 101, and 001. In this

example, therefore, the two sequences

differ in k symbols after k branches,

k = 1,2, 3,4. Once the decoder has made
Fig. 8. Treelike representation for the an incorrect hypothesis, its subsequent

encoder of Fig. 7.
choices will be between branches that

are entirely unrelated to the actual

transmitted sequence. The decoder soon recognizes this situation by observing that the

disagreement between the received sequence and the hypothesized transmitted sequence

grows rapidly with the number of tentatively hypothesized branches. Therefore it must

backtrack and make alternative hypotheses in an effort to find a hypothesized transmitted

sequence that eventually agrees closely with the received sequence.

Example 1 illustrates the manner in which a sequential decoder hypothesizes suc-

cessive branches, and the mechanism by which it recognizes that it has somewhere made

an incorrect hypothesis. Unfortunately, it gives no indication of the specific mechanics

of the procedure to be followed by the decoder once it has detected an incorrect hypo-

thesis. Indeed, the specification and analysis of sequential decoding algorithms is a

difficult and complicated problem that has been subjected to considerable research in

recent years. It is beyond the scope of this report to reproduce the details of this

research here, especially since this subject is ably treated by Gallager, 3 but it is
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appropriate to outline here the highlights of this field of research.

3. 1. 2 Error Probability and Computational Failure

The most extensively studied sequential decoding procedure has been the Fano algo-

rithm, which is a set of rules directing the decoder to hypothesize a subsequent branch,

an alternative branch from the current node, or to backtrack, based on the value of a

running metric such as accumulated Hamming distance that is monotonically related to

the likelihood of the hypothesized transmitted sequence. Using a modification of the Fano

algorithm as a model for sequential decoding, Gallager3 shows that in the absence of

computational failure, the decoding error probability per symbol for unterminated ran-

domly time-variant convolutional codes is bounded by (7), which is the coding theorem

result for tree codes.

Unfortunately, all sequential decoding algorithms have a property that limits their

applicability in practical communication systems. This property, which was studied by
20 21 22

Savage, Jacobs and Berlekamp, and Jelenik, is concerned with the peak amount

of computation required to decode any branch. The computational effort to decode a

branch is a random variable that depends on the number of incorrect hypotheses that

are made by the decoder while the branch is within the decoder' s memory, and this in

turn depends on the channel error sequence. Jelenik 2 2 has shown that for any p > 0,

the pth moment of the computational distribution is bounded by a constant if

1
r <- E (p), (44)

where

Eo(P) = sup E(p,Q), (45)
{Q(k)}

and E (p, Q) is given by (4). On the other hand, Jacobs and Berlekamp show that the
th 0

p moment is unbounded if the sense of the inequality (44) is reversed. [The behavior

of the pth moment when (44) is satisfied with equality is still unresolved.] In particular,

(44) states the well-known result that the average amount of computation required to

decode a branch is bounded for r < R . These results establish that, for rates below
comp

capacity, the distribution of decoding computation is Paretian:

P(Co>L) = L ), (46)

where

p(r) =p:r= E(p), (47)p 

and thus p(r) > 0 for 0 < r < C.

Suppose a sequential decoder has a buffer that can store L branches of received

symbols. Then any particular branch must be irrevocably decoded before the next
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L branches are received, for otherwise a new branch will be received that cannot be

stored, and the decoder will lose sufficient information to continue decoding. This event,

calamitous to decoding, is called a buffer overflow. Equation 46 indicates that the prob-

ability of a buffer overflow decreases only as a finite power of the buffer size L, while

(7) indicates that the decoding-error probability decreases exponentially with the con-

straint length v. Thus in the limit of small probability of a decoding failure, the buffer

overflow event dominates the erroneous decoding behavior unless the buffer size grows

exponentially with the constraint length. This characteristic is common to all sequen-

tial decoding algorithms.

A buffer overflow is especially objectionable because it causes the decoder to lose

track of the received sequence. Then it is desirable that the decoder become resynchro-

nized quickly, since the decoder is likely to continue producing decoding errors as

long as it is unsynchronized. Although tree codes and sequential decoding algorithms

do not generally have properties to assist in resynchronization, there are several

practical methods that have been used to help re-establish synchronization. For a

code with a unique inverse (cf. sec. 3. 2. 2), a simple non error-correcting decoder

can be built to form a reasonable estimate of the correct path. Alternatively,

the code can be terminated every few thousand branches, as described in section 2. 1.

Finally, a feedback channel can sometimes be used to enable the receiver to request

the transmitter to repeat its transmission, starting at a mutually known branch in

the sequence.

An alternative sequential decoding algorithm has been described by Jelenik2 3 and

independently by Zigangirov, Pinsker, and Tsybakov.24 While it offers a higher decoding

speed than the Fano algorithm at the expense of increased decoder memory, its attain-

able error probability and bounds on computational moments are the same as those that

are obtained by using the Fano algorithm.

3.2 VITERBI DECODING ALGORITHM

The Viterbi algorithm is a probabilistic decoding procedure that may be readily

applied to any tree code. After each branch has been received, the decoder calculates

the relative likelihood of each of the qt possible decoder states and the maximum-

likelihood path through the coding lattice to each possible state. These calculations are

based only on the current received branch and the set of relative likelihoods and

maximum-likelihood paths that had been calculated before the branch was received.

Strictly, of course, this sort of computation is probabilistically meaningful only for

memoryless or Markov channels. Here we assume that the channel is discrete and

memoryless. With that assumption, the Viterbi algorithm is a general maximum-

likelihood algorithm for decoding codes.

We first describe the computational procedure of the Viterbi decoding algorithm,

and then we investigate some of its more important properties.
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3. 2. 1 Computational Procedure

The Viterbi algorithm for decoding tree codes was first formulated by Viterbi, 7 and

was later studied by Forneyl and by Omura.l2 Each of these authors described an

algorithm similar to the one presented here, but in which a resynchronizing sequence

was periodically inserted into the channel sequence in order to assist the decoder. The

formulation described here is stated directly in terms of unterminated tree codes,

however, and it indicates clearly when and how much the decoder may decode at any

given branch without sacrificing any pertinent information.

The computational procedure described is based on minimum-distance decoding, and

is a maximum-likelihood algorithm only for those channels in which the maximum-

likelihood path throughout the coding lattice to any possible encoder state is also the

path that accumulates the minimum Hamming distance with respect to the received

sequence. Such channels are said to be matched to the Hamming metric. Under the

assumption of equally likely code sequences X for all possible X, an example of a

class of channels that are matched to the Hamming metric is the q-ary symmetric chan-

nels, including the binary symmetric channel, with q-ary input and output alphabets

whose transition probabilities are given by

p(yjl x i )
= 1 - p, i = j (48a)

p
q 1I i j. (48b)

q-1'

For these channels the conditional probability of any transmitted sequence X of L sym-

bols, given the corresponding received sequence Y, is given by

p(YIX) p(X)
p(XY = 

P(Y)

p(X) L
-p_ n� (Yil xi)
p(Y) i=l 1

P(X) L-d P
_ (l-P)L - (49)

p(Y) q

where d is the Hamming distance between X and Y. Since p(X) is the same for all code

sequences X, p(XjY) is a monotonically decreasing function of d, provided (l-p) >

p/(q-1), so that the q-ary symmetric channels are indeed matched to the Hamming

metric.

The reason for considering only a minimum-distance decoding algorithm is that it

is relatively simple both to describe and to implement. It is possible to describe a

more general algorithm that is maximum-likelihood for any DMC, but this generalized

algorithm is much more cumbersome than the minimum-distance algorithm, and the
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added complexity would tend to obscure rather than clarify the basic computational pro-

cedure.

For minimum-distance decoding, it is easy to describe the iterative process by

which a Viterbi decoder calculates the maximum-likelihood path throughout the coding

lattice to each of the q t possible encoder states. Before the it h branch is received,

let d(il)j be the accumulated Hamming distance along the maximum-likelihood,

minimum-distance path through the coding lattice to state j, and let P(i 1)j be the
(i-l)j vtsequence of symbols along the maximum-likelihood path to state j, j = 1, 2 . q

We now show how to calculate dij and Pij in terms of the ith branch yi and the {d(i-l)j}

and the {P(i-l)j}'

Let SP(j) be the set of predecessor states for state j. Let xijj, be the set of symbols

specified by the encoder during the ith branch from state j' to state j, where j' E SP(j).

Furthermore, let d..., be the Hamming distance between xijj, and the ith branch Yi. Afteriii I iii "
branch i is received, therefore, the Hamming distance that would be accumulated

throughout the coding lattice to state j, under the assumption that state j' is the pre-

decessor state for state j, is d (il)j + dijj. We want to find the minimum-distance

path to state j after branch i is received. Define

di = inf [d(i 1 +dij, (50)
j j' E SP(j) iii

and let state j" E SP(j) be any state that achieves this minimization; that is,

{j"i} ={j SP(j): d(i_)j +dij j,, +d di (51)

At this point the decoder may still be unable to specify the maximum-likelihood path

Pij with certainty. Consider the set of states {j"} defined by (51). Surely {j"} is non-
empty, since some state must by definition satisfy the condition specified by (51). It is

quite possible, however, that {j"} contains more than one state; that is, it frequently

happens that after branch i is received, there are two or more distinct paths to state j

that accumulate the same minimum Hamming distance. We call this condition a decoding

ambiguity. Since under our assumptions all of these paths are maximum-likelihood and

hence equally likely, the decoder may resolve the ambiguity by arbitrarily selecting a

particular state from the {j"}. Define

j" = inf j". (52)
j" E "{j }

Then j"' is unique for each i and j. Now the unique path Pij can be specified as the

path P(i1)j"' plus the i branch from state j"' to state j.

The iterative computational process used by the Viterbi algorithm only requires the

relative Hamming distances accrued on the maximum-likelihood paths to each state, and

not the absolute distances. To keep the relative accumulated distances within reasonable

bounds, especially after decoding indefinitely many branches, we adopt the following
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convention. Let

d. = inf d!.. (53)
1 j 1j

Obviously di > 0. If d = 0, there is no problem. If d. > 0, however, the decoder might

as well reduce the Hamming distances accumulated along all of the maximum-likelihood

paths by d i , since all of the required quantities are relative rather than absolute. Thus

d.. = d. - di, all j, (54)

so that by convention

inf d.. = 0. (55)
j -J

Whenever d. > 0, the calculation (54) is called a distance subtraction. The totality of
th L

distance subtractions that have been encountered through the Lt branch, Z d i , is an
i= 1

obvious lower bound on the number of channel errors that have occurred through the Lth

branch.

For this iterative process the number of computations per branch is a fixed quantity

which, unfortunately, grows exponentially with the constraint length of the code.

The preceding formulation described only the mechanics of the iterative computa-

tional process, but did not specify how or when the Viterbi algorithm actually decodes

source symbols, especially in an unterminated tree code. Now we can be precise about

these points. Define the decoding lag k to mean that all q t maximum-likelihood paths

{Pij} agree everywhere, except for the last k branches. Thus the decoding lag is a

random variable that indicates the number of branches about which the decoder has

uncertainty as to the unique maximum-likelihood path throughout the coding lattice. From

the (k+l)th branch backward, all of the maximum-likelihood paths are identical, so that

the decoder may uniquely and unambiguously decode the source symbols up to and

including the (k+l)t h branch before the current branch. [We emphasize that it is only

the decoding that is unambiguous. If the decoded path passes through one or more states

having a decoding ambiguity, then of course there would be alternative maximum-

likelihood paths throughout the coding lattice. The point here is that the decoded path

is a maximum-likelihood path to all states notwithstanding the occurrence of decoding

ambiguities.]

The statistical properties of the decoding lag are directly related to the size of the

buffer that is required by a Viterbi algorithm decoder to satisfactorily decode untermi-

nated tree codes. If the decoder can store the last L branches of symbols on the

maximum-likelihood path to each state, then the probability that k > L clearly bounds

the probability of ambiguously decoding a branch if the algorithm is applied to an

unterminated tree code. This type of ambiguous decoding is thus caused by a buffer

overflow condition. The consequences of a buffer overflow are much less severe for

Viterbi algorithm decoding than for sequential decoding, however, because the Viterbi
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algorithm has a tendency to resynchronize automatically as it continues its branch-by-

branch computations.

The resynchronization property, together with the computational mechanics of the

iterative calculations and the decoding procedure, are illustrated by the following

example.

Example 2: Consider again the convolutional code 'generated by the device shown in

Fig. 7. Suppose initially that the shift register contains all O's, and the the data source

supplies the sequence 01011001010111... to the encoder. Then the encoder output

sequence will be 000 111 010 100 110 001 000 100 010 100 001 100 110 110 .... Suppose

the received sequence is 000 111 010 100 100 001 010 100 000 100 001 100 110 100 ...
th th th th

that is, there are single transmission errors in the 5, 7 t , 9 t , and 14 branches.

We illustrate the operation of a Viterbi algorithm decoder under two different assumed

conditions.

Case I: The initial state of the encoder, 000, is known to the receiver. Figure 9 illus-

trates the computational procedures followed by the Viterbi algorithm decoder in this

case. At each branch the relative accumulated Hamming distance to each state is shown

under that state, subject to (55). For example, at branch 1 only two states are pos-

sible - 000 and 100. If 000 is the actual encoder state, its accumulated distance is 0

because the received sequence exactly matches the hypothesized transmitted sequence.

Similarly, the accumulated distance to 100 is 3. States marked with a small circle

indicate decoding ambiguities where two distinct paths terminating at those states accu-

mulate the same minimum relative distance. For example, the 100 state at branch 4 is

ambiguous. Its predecessor states are 000 and 001. The transmitted branch from 000

to 100 is 111, the received sequence is 100, a distance of 2 which when added to the pre-

vious distance of the 000 state, 4, yields a total accumulated distance of 6. Similarly,

the transmitted branch from 100 to 001 is 100, which exactly matches the received

sequence, and adds no Hamming distance. The total accumulated distance along the

001-100 path is therefore just the previous distance of the 001 state, which is also 6.

Therefore a decoding ambiguity exists at that state. The decoder, however, arbitrarily

keeps only the 000-100 path in accordance with (52). The decoding lag at each branch

is also indicated. For example, at branch 4 the decoding lag is 3 because all maximum-

likelihood paths to the 8 branch-4 states pass through the initial 000-000 link. Therefore

the decoder can then unambiguously decode the first source symbol, which is 0. Simi-

larly, at branch 7 the decoding lag is 4, and the decoder can then decode the next two

source symbols, 10. The decoder next decodes a 1 at branch 8, and then waits until

branch 14 when it decodes the next 7 symbols, 1001010. The decoded path is shown by

the heavy line throughout the coding lattice. Since it passes through no decoding ambi-

guities thus far, the maximum-likelihood path decoded is in fact unique at this point.

Case II: The initial state of the encoder is not known to the receiver. Figure 10 illus-

trates the computational procedures followed for the first 9 branches by the Viterbi
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algorithm decoder in this case. Since the initial encoder state is unknown, the decoder

assumes initially that all states are equally likely, and it reflects this fact by assigning 0

as the relative accrued distance to each state. The decoding and computations then pro-

ceed in the obvious, branch-by-branch manner. Observe that at branch 7 the distribu-

tion of relative accrued distances is identical to that for Case I, Fig. 9. There is an

ambiguity at the 010 state, however, and application of (52) yields 100 as the predecessor

state instead of 101. Since the distribution of relative accrued distances is identical for

both cases at branch 7, the maximum-likelihood paths beyond branch 7 will therefore be

identical for the two cases. At branch 9 the maximum-likelihood paths to all states coin-

cide for both cases, and the decoder is able to decode the first 4 (or 7) source symbols,

(000)0101. From this branch on decoding will be identical for both cases.

Example 2 illustrates the tendency of a Viterbi algorithm decoder to find a unique

maximum-likelihood path through the coding lattice, regardless of the assumed initial

conditions. This property can also be interpreted in another useful way. Whenever a

buffer overflow occurs, that is, whenever k > L, then the decoder is prone to make

decoding errors because it must choose between two or more alternative sets of

maximum-likelihood paths. Of course, it should be possible to specify an algorithm for

making this choice (such as choosing the source symbol corresponding to the most prob-

able path, or the source symbol that occurs most often at the beginning of all the qvt

maximum-likelihood paths) that would substantially reduce the error probability, even

under these circumstances. Regardless of decoding errors, however, an implicit initial

distribution of accumulated relative distances appears in the current set of accumulated

relative distances. Example 2 suggests that regardless of this initial distribution, the

decoder will eventually find a unique maximum-likelihood path through the coding lattice.

Thus the Viterbi algorithm automatically tends to resynchronize after a decoding error

or a buffer overflow, in contrast to sequential decoding.

3. 2. 2 Distribution of the Decoding Lag

The storage requirements and buffer-overflow probabilities of a Viterbi decoder

depend on the statistical properties of the decoding lag. We shall demonstrate that for

a wide class of applications, the asymptotic distribution of the decoding lag is exponen-

tially bounded; that is, there is a > 0 such that, for sufficiently large L,

p(k>L) < eP L . (56)

The class of applications for which (56) is satisfied includes the minimum-distance

decoding of any time-invariant convolutional code with a unique inverse, or to the

ensembles of time-variant convolutional codes or random tree codes, operating over a

wide class of DMC's, including the reachable channels, and operating at any rate above

or below capacity. [A DMC is reachable if all possible transition probabilities {Pij}

are strictly nonzero. The reachable channels include the q-ary symmetric channels

defined by (48). Equation 56 applies for the indicated class of applications, even though

30

I -- -- I�



0 0 0 0 00 
o 0

- 0 o 

N 0 0 0 0

o 0 00

0 0 - - 0
o 0 0

U') - 0 0 0
- 0 -

" - 0

o 0 0
- - 0

0 0

0

0 0(C=8
o 0 00
0
0

0

r.L4

)
-7

WU LU

muJ uZ Z Uco w D Z

w
Z V)e

UOZU U°
co U) LU c LU

~- - - - 0 0 0
- - 0 0 0-v~ ~ ~~~)C_ ~ ~ ~ C _2 _Co o

_ o o) _ C_

V)

v)

-
v

U)
UJ

UL

>Z

u3

31

-

00

- N

'0

CN

a)
U)

ul
C.)
V
Cd

0

Cs

(a)1-4

C)L

0)

0E
C).0

a

(1)r.,,

0
uC)

.,-

0 -o 
0-

u

<

UZ
u Z

< oI-U)U
_u

LU

u

LU

D
U)

LU
C
0
u
u

C

X 1 1 __^1_ _ _ __ i

__ 



minimum-distance decoding is not necessarily maximum-likelihood decoding for an

arbitrary reachable channel.]

The essence of the derivation establishing (56) is to model the Viterbi algorithm as

a homogeneous Markov process with a finite number of states. Exactly one of these

states, which represents a reduction in the decoding lag, is absorbing. We then consider

the Lth-order transition matrix in the asymptotic case as L - oo and show that the prob-

ability that the absorbing state has not been entered after L transitions is lower-bounded

by 1-X L for some X such that 0 < X < 1. This in turn establishes (56).

Theorem 1 is used to show that the Markov process that represents the Viterbi algo-

rithm has a finite number of states.

Theorem 1

sup d.. <bv. (57)
j 1

Proof of Theorem 1: By (55), inf d(iv)j = 0. Let j' be the state that achieves this
(i-v)j

minimization; that is, d(iv)j = 0. Observe that there is a unique path with exactly v

branches from state j' to any state j. With respect to the received sequence, this path

can accumulate an absolute Hamming distance no greater than by. Clearly, the mini-

mum absolute Hamming distance accumulated to any state at branch i cannot be nega-

tive, and the minimum-distance path to state j must be at least as good as the path from

state j'. This establishes (57).

Let the problem of calculating the distribution of the decoding lag be restated in the

following manner. Consider the set of maximum-likelihood paths to the q t encoder

states at the th branch, where i is arbitrary. Next consider the set of maximum-

likelihood paths to the q t states at the (i+L) t h branch, L > 0. The probability that the

decoding lag at the (i+L) t h branch is less than or equal to L is the probability that all

of the qt maximum-likelihood paths at the (i+L) t h branch pass through a single encoder

state at the i t h branch.

For each possible encoder state j at the (i+L) th branch, j = 1, 2, ... , qvt , consider

the 2-tuple (d(i+L)j, S(i+L)j). The quantity d(i+L)j is the relative distance accrued on

the maximum-likelihood path to state j at branch i+L, as defined by (54), while S(i+L)j

is defined as the encoder state at branch i through which the maximum-likelihood path

to state j at branch i+L passes. Since di+Lj can assume no more than vb+l values
Vt (i+ L)j

and S (i+L) can assume no more than q values, the 2-tuple can be specified in no

more than qvt (vb+l) ways.

The Markov state of the decoding process at branch i+L can be specified by the

ordered set of qvt 2-tuples {(d S (i+Lj)}, plus the actual state of the encoder at(i+L)j' (i+L)j
branch i+L. The number Nm of possible Markov states is thus finite and bounded:

vt
Nm q t[q t(vb+l)]q (58)
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Of course, many of the possible states included in (58) are nonexistent or void; for

example, all of the states for which(55) is not satisfied are not allowable under our for-

mulation. Moreover, many states are equivalent because they indicate a reduction in the

decoding lag. These are the states for which

S(i+L)j = S(i+L) j= 2, 3 ... q (59)

These equivalent states can all be represented by a single lag-reducing state, denoted

z. With respect to the Markov process this state is an absorbing state, since once

it has been entered - that is, once the decoding lag has been reduced - the Markov pro-

cess remains in that state for all subsequent branches.

We now show that for time-invariant convolutional codes with a unique inverse, and

for the ensembles of time-variant convolutional codes and random tree codes, there

are no other sets of absorbing states in the Markov process representation, so that all

of the allowable Markov states except z are transient. To prove this assertion, it suf-

fices to show that it is always possible for the process to reach state z from any allow-

able state after a finite number of transitions.

First consider a time-invariant convolutional code with a unique inverse. By unique

inverse, we mean that the code is not subject to indefinite error propagation, or equiva-

lently that no input sequence containing an infinite number of nonzero symbols can pro-

duce an output sequence containing only a finite number of nonzero symbols. Massey

and Sain 2 5 derive the conditions for which a time-invariant convolutional code has a

unique inverse. For such a code they show that it is possible to build a linear, feedback-

free decoder that uses only the last M received branches to uniquely decode the source

sequence, where M is finite. Although this decoder is not generally a maximum-

likelihood decoder, it has the property that will always be decoding along the correct path

after M or more error-free branches are received.

Theorem 2

For any time-invariant convolutional code with a unique inverse (TICCUI), it is pos-

sible to find parameters Ko and K < Ko such that a Viterbi decoder is decoding along the

correct path with a decoding lag not exceeding K whenever K or more consecutive

error-free branches are received.

Some intermediate results must be established before Theorem 2 can be proved.

Lemma 1

For a TICCUI, any source sequence of M+v branches that is nowhere merged with

the all-zero sequence produces an encoder sequence whose corresponding M+v

branches are not all zeros.

Proof: Suppose the encoder produces M+v all-zero channel branches. Since the

Massey-Sain decoder has a memory of M branches, it estimates zeros for the source

symbols from the M t h through the (M+v) th branches. Furthermore, all-zero branches are
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the only source branches that could have produced the last v+l all-zero channel branches,

since the code has a unique inverse that can be recovered by a Massey-Sain decoder.

Thus M+v consecutive all-zero channel branches implies that the source sequence is

merged somewhere with the all-zero sequence, and therefore the lemma must be true.

For notational purposes, define d as the relative Hamming distance and d'i as the

absolute Hamming distance accrued from branch 0 by a minimum-distance Viterbi

decoder to state s at branch i. The corresponding distances accrued to the all-zero

state will be designated di and di.

Lemma 2

Let the source sequence be the all-zero sequence. Let all branches after branch 0

be received without errors. Then for a TICCUI, di = 0 for i > vb(M+v).

Proof: From (55) and (57), 0 d0 0 _< vb. Certainly d(M+v) doo, since the

branches are received without errors. Now consider ds(M+v), s 0. By Lemma 1, if the

minimum-distance path to s does not merge anywhere with the all-zero path, then

ds(M+v) >s 1. Otherwise d'v)' Suppose d0 0 > 0, since Lemma 2 is trivially

true otherwise. Then if d(M+V) > 1, we see that d( 1 for all s, and a distance
s(M+V) s(M+v)

subtraction will occur so that d(M+) < d00 - 1. Alternatively, if d'(M+V) = 0, Lemma 2

is trivially true. Applying this result no more than vb times establishes Lemma 2.

Lemma 3

Assume the same hypotheses as for Lemma 2, and let d00 = 0. Then after (vb+l)

(M+v) branches, each path in a minimum-distance Viterbi decoder is merged somewhere

with the all-zero path.

Proof: Certainly do = doi = 0. Apply Lemma 1 vb+l times, then no path corre-

sponding to an unmerged sequence of (vb+l)(M+v) branches can accumulate an absolute

Hamming distance of less than vb+l. Since, from (57), di vb for all s, Lemma 3 is

established.

Proof of Theorem 2: Since the code is a convolutional code, we lose no generality

by assuming that the source sequence is the all-zero sequence. Let all branches after

branch 0 be received without errors. From Lemma 2, d = 0, and there are no dis-Oi
tance subtractions for i > vb(M+v). Suppose that the minimum-distance path to some

state s is merged with the all-zero path at some branch I, where I > (vb+l)(M+v). Then

the minimum-distance path to s must be coincident with the all-zero path for all

branches i in the range (vb+l)(M+v) H<i -<I. If this last statement were not true, then

either the minimum-distance path would, looking backward, diverge from the all-zero

path at some branch i2 in the range (vb+l)(M+v) i 2 -<I and later remerge with the all-

zero path at some branch i in the range vb(M+v) -< i 1 i 2 - v, or it would diverge at

branch i 2 but not remerge for any i > vb(M+v). The first case is prohibited by the

fact that the code has a unique inverse, so that any such divergent sequence must
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produce an output with a Hamming distance of at least one in order not to be confused

with the all-zero sequence. The second case is prohibited by Lemma 1 and by the fact

that d[vb(M+v)] = 0. By applying these considerations and Lemma 3, we observe that

Theorem Z is satisfied for K ° = 2(vb+l)(M+v) and K = 2 Ko

Theorem 2 states that a time-invariant convolutional code with a unique inverse will

always reach state z whenever K consecutive error-free branches are received. This
o

result implies that the ensembles of time-variant convolutional codes and random tree

codes can (with perhaps an extremely small, but nonzero probability) reach state z after

Ko branches, provided that the ensemble chooses the same branch specifications as for

the time-invariant convolutional code considered above for the next Ko branches, and

that these branches are received without errors.

To simplify the derivation of (56), it is convenient to assume that the Markov process

is also homogeneous; that is, the stochastic matrix T. that contains the Markov state
th b thtransition probabilities from the ith branch to the (i+1)th branch is independent of i.

Certainly, the Markov state at the (i+1)th branch is uniquely determined by the Markov

state at the th branch, the ith source branch, and the channel error sequence on the th

branch. For a DMC the channel-error sequence is independent of i, so that the Markov

process is homogeneous if the probability assignment of source branches supplied to

the encoder is also independent of i. One way to ensure this source independence is to

add a pseudo-random sequence to the source output, and later to subtract this sequence

from the output of the decoder.

Thus for the class of applications described after (56), the operation of the Viterbi

decoding algorithm can be modeled as a homogeneous Markov process with exactly one

absorbing state that represents a reduction in the decoding lag. Let T be the finite

matrix of one-step transition probabilities characterizing the Markov process, and let

TL be the matrix of transition probabilities after L branches. Since the process is

homogeneous,

T = T L . (60)L

Furthermore T can be partitioned:

A B
T = , (61)

1

where A is the (n-l) X (n-l) matrix whose elements represent the one-step transition

probabilities among the transient states, B is the 1 X (n-l) matrix whose elements are

the one-step transition probabilities from the transient states to the absorbing state, and

the 0 and 1 reflect the fact that z is an absorbing state. It follows that

TL= [L (62)
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Accordingly, we investigate the behavior of AL . We shall require some results from

the Perron-Frobenius theorem. 6

Perron- Frobenius Theorem: (Condensation)

Suppose A is an irreducible square matrix with real, non-negative elements. Then

A has a real positive eigenvalue 1 with the following properties:

(i) if a is any other eigenvalue of A, then

Ial |- X I' (63)

(ii) 1 increases when any element of A increases.

(iii) \1 < max ( ajk) (64)
j (

These results are accepted without proof here. From property (iii), X1 is bounded by

the maximum row sum of A. Since A is derived from a stochastic matrix,

X1 1. (65)

Furthermore, A has some row whose row sum is strictly less than 1, since B is assumed

to have at least one nonzero element. Applying property (ii), we observe that 1 1

because if 1 = 1, an element in the row whose row sum is strictly less than 1 could

be increased so that N > 1, which would finally contradict property (iii). By using prop-

erty (i), the following lemma is established.

Lemma 4

Let A be the matrix of transition probabilities among the transient states of any

Markov process having sets of absorbing states. If is any eigenvalue of A, then

I I < 1. (66)

Next, observe that the matrix

is, if A is an n X n matrix, there

A=Q

'Jk (X 1 )1

0

0o
o

A can be expressed in its Jordan canonical form; that

exists a nonsingular n X n matrix Q such that

0

0
Jk ( 2 )

0

where the {J.(Xi)} are the ki. X k.
1

Jk (Xm)
m

Q-1 (67)

matrices of the form
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1 0 0 ... 0

O X 1 0

0 0 X 1

0 0 0 

kl + k ++ .. +k = n.1 2 m

The {ki} are eigenvalues of A, not necessarily distinct, and to every distinct eigenvalue

of A there corresponds at least one Jk (i) in (67). Thus
1

LA =Q

L
J (X1)

1

0

0 0

0
L

~k R2)

0 0
Jk 

m

-1Q (70)

where the h t h term of J(X) is
k

((L) L )L--h
k(hQ) Q-h

0 -< - h <L.

Now suppose that A is the matrix of transition probabilities among the transient states

of a homogeneous Markov process with a single absorbing state, as in (61). Let A be

any eigenvalue of A, and define

X = sup I AI -

From Lemma 4, X < 1, so that

1 *
x -= - (1+X ) < 1.

By choosing

1 2 (+X )'

and
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Jk(k) =

0

0

X
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2 2 (Xi)+' (74b)

it can be seen that, for sufficiently large L,

J(L) < (75)

k(h) 1'

so that

ah(L) < X2' (76)

where a(L) is the hith element of AL. Thus, in (62),

b L ) > 1 - n2 L > 1 - , (77)

where b( L ) is the jth element of B L in (62), 1 -<j n - 1, provided L is sufficiently large.

This establishes the following theorem.

Theorem 3

Consider any homogeneous Markov process with a single absorbing state. For suf-

ficiently large L there exists a positive number X < 1 such that the probability that the

process is not in the absorbing state after L transitions is less than k .

Theorem 3 establishes (56) for the class of applications described after the state-

ment of (56). Not only does (56) apply to individual time-invariant convolutional codes

with a unique inverse, but it can also be interpreted to apply to individual codes that

belong to the ensembles of time-variant convolutional codes or random tree codes in

which the generator connections or branch specifications are selected randomly at each

branch. While (56) does not apply to all possible codes that can be picked from these

ensembles, it can be interpreted to mean that the probability of selecting an individual

code for which the decoding lag does not converge is an exponentially decreasing

function of the number of branches that have been selected.

Although the preceding derivation establishes the validity of (56), it gives little

insight into a reasonable estimate of the magnitudes of the parameters a and . It would

appear to be exceedingly difficult to derive analytical expressions for these parameters

as functions of the constraint length and the rate. Furthermore (56) is only an asymp-

totic expression that does not purport to be valid for small values of L. To help one

get a feeling for the properties of the decoding-lag distribution, especially at small and

intermediate lags, a rather limited computer simulation was obtained for the decoding

lag experienced at various rates and constraint lengths by a random tree code. The

results of this simulation will be reported in section 4. 1.

3. 2. 3 Character of Error Patterns

Another feature of the Viterbi decoding algorithm is that for tree codes with large

constraint lengths, decoding errors occur in bursts whose lengths tend to cluster about
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some characteristic value. We shall examine that property, and extend similar work

by Forney. 11

Equation 38 is an upper bound over the ensemble of random tree codes on the prob-

ability of a decoding error within an unmerged span of length v/(l-L), where Bp is defined

by (37). For large v the bound approaches an equality:

P (E) - exp -vb[e(r, p)-O(v)], (78)

where e(r, p1) is defined by (39), and O(v) goes to zero for large v. Such a decoding error

produces an error sequence of length

v v4
L = 1-- V - -' (79)

which is equally likely to be any of the unmerged sequences of that length. Thus, for

codes with large constraint lengths, we would expect to observe decoding-error bursts

of length L occurring with a probability proportional to PB (E).
Define as the for which e(r) = e(r, p.) in (40). Since e(r) is the minimum value

of e(r, ), we would expect to observe error bursts of characteristic length L most
l 0

frequently in the decoding output. Furthermore, the fact that P (E) varies exponentially

with e(r, p.) indicates that error bursts of length L are going to occur negligibly often

compared with bursts of characteristic length L whenever p. and So are substantially

different. 0

Define any error burst of length L to be rare if

P (E)
C - A, (80)

P (E)
o

for some arbitrary A << 1. For large v, (80) is equivalent to

f() - f(L ) > B (81)

where

-ln AB b ' (82)

and

f(p.) = e(r, p.). (83)

Consider first the case r > Romp. The quantity f(pL) can be expanded in a Taylor
series about o:

(= f + ( ) f + )
f() = f(o 0 ) + (-) f'(o) + 2 f( 0 ) + ... (84)
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Since r > Rcomp, f'(po) is identically zero from the definition of ~LO. If third-order and

higher order terms in (84) can be neglected, then for large v (81) becomes

)2 > 2 B (85)
0~-~J~o) V (85)

f" ( o)

The range of ja that does not satisfy (85) is proportional to v- 1/2, so that by (79) the

range of error burst lengths that are not rare is proportional to v . Thus for large v

most error bursts have lengths near the characteristic length L , although the absolute

range increases, in the same way that the sum of a large number N of independent

random variables clusters closely about N time the mean, although the dispersion is

proportional to N 1/.

For r < R comp, decoding errors tend to occur in short bursts whose distribution

of lengths is independent of the constraint length. In this case, = 0, f([o) = E(O), and

f(i) can be given explicitly:

ir 
1 R p E(0)

f(tL) = 1 - r<Rcomp (86)

Thus (81) becomes

C
1- > - (87)
1-CI v

where

B
1-C Or (88)

\( Rcomp 

For sufficiently large v, < 1/2, so that then

2C
1 > (89)

is the range of .L for which error bursts are rare. Consequently, the range of p for

which error bursts are not rare is proportional to v , and thus by (79) the range of

error burst lengths that are not rare is independent of v.

For tree codes with large constraint lengths, we would expect for r > R
comp

that decoding errors would occur in bursts whose lengths cluster around a mean

value that is proportional to v, while for r < R decoding errors occur in bursts
comp

whose length distribution is essentially independent of v. It is somewhat harder to

predict the burst-length distribution for tree codes with short constraint lengths. A

very limited computer simulation of decoding-error statistics (reported in sec. 4. 2)

tends to suggest the validity of the expected behavior of burst-error patterns.
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3. 2.4 Decoding Complexity for Systematic Convolutional Codes

For the iterative computational procedure described in section 3. 2. 1, the number

of calculations per branch grows exponentially with both the constraint length v and the

number of symbols per source branch t. This happens because q accumulated relative

Hamming distances must be computed and compared to determine the minimum-distance

path to each of the q t states at each branch. Thus for the algorithm described in sec-

tion 3. 2. 1 the decoding complexity is proportional to q(V+l)t

It is bad enough that the decoding complexity grows exponentially in v. Since it usu-

ally becomes difficult to build computers that can perform more than 2 -20 calcula-

tions per branch in real time, a Viterbi decoder is essentially restricted to using binary

codes with constraint lengths not exceeding from 15 to 20. If larger alphabets are used,

the allowable constraint length must be reduced accordingly. For example, if q = 4, it

appears impractical to build a decoder whose constraint length exceeds 7-10. This

restriction on allowable constraint length severely limits the practical usefulness of

these codes.

If the decoding algorithm described in section 3.2.1 is used, the fact that the decoding

complexity also grows exponentially in t permits the use of only low-rate codes, for

which t = 1, in practical systems. If codes in which t > 1 are used, the permissible

constraint length must be reduced to the point where it is likely to render the code inef-

fective for error-correction purposes.

It is possible to modify the algorithm described in section 3. 2. 1 somewhat in order

to achieve a substantial reduction in decoding complexity for high-rate systematic con-

volutional codes. For high-rate codes, b = t + 1, and only the b t h channel system

depends on the last vt source symbols plus the current t source symbols. Using (15)

and (17), we have

xik i = ik' k , 2, ... , t (90a)

v t

xib = Z Z gjbf(i) s(i-) . (90b)
X=0 j=

A circuit for realizing (90) is shown in Fig. 11. It comprises a v-stage shift register

and some multipliers and adders.

Since the contents of the shift register contain all of the information required to

characterize the system at each branch, the state of the encoder can be defined by the

contents of the shift register. Thus the encoder is defined by q possible states instead

of q . At this point, a decoding algorithm exactly like the Viterbi algorithm described

in section 3. 2. 1 can be defined on only these q states. At each branch, each state has

qt possible successor states, so that the total number of distance calculations required
v+t vt

at each branch is q +t, which is significantly less than qvt. Like the conventional Viterbi

algorithm, the decoder calculates the maximum-likelihood, minimum-distance path to

each state, and it decodes all but the last k branches when the q maximum-likelihood
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paths are all identical except for the last k branches.

There are some minor differences between this high-rate decoding algorithm and

the conventional algorithm, however. In some cases, some of the possible states do

SiI Xi

Fig. 11. High-rate systematic convolutional code encoder.

not exist. An example occurs when gjbv(i+v) = 0 for all j = 1, 2 .. , t, so that all of

the possible states except those for which the first shift register stage contains a zero

are nonexistent. Second, the sets of predecessor states and successor states may

change from branch to branch for a time-variant systematic convolutional code. This

property is illustrated by the rate 2/3 systematic binary convolutional encoder shown

in Fig. 12. Suppose that at one branch the connections shown by the solid lines are in

effect, and suppose that at the next branch the connection indicated by the dotted line is

added. Table 1 indicates the encoder output branch and the final state as a function of

the initial state and the source branch for the cases in which the dotted line is uncon-

nected and then connected. When the line is unconnected, the predecessor states for

the 00 state are the 00 state and the 01 state, while all four states are predecessor

states for the 00 state when the line is connected. A third difference between the algo-

rithms is that the path from a state to a given successor state may correspond to two

or more distinct source branches. This is again illustrated by Fig. 12 and Table 1 for

the unconnected case wherein, for example, the path from the 00 state to the 00 state

may correspond to either a 00 or a 01 for the source branch. This situation can lead

to rather complicated decoding ambiguities which can be resolved by arbitrarily

choosing paths or sequences as in (52). For example, suppose the dotted line in Fig. 12

is unconnected so that the predecessor states for the 00 state are the 00 state and the
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Fig. 12. Rate 2/3 binary systematic convolu-
tional encoder.

Table 1. Outputs and state transitions for encoder of Figure 12.

Final State
Initial Source Output
State Branch Branch Unconnected Connected

00 00 000 00 00
01 011 00 10
10 100 11 11
1111 1 11 01

01 00 001 00 00
01 010 00 10
10 101 11 11
11 110 11 01

10 00 000 01 01
01 011 01 11
10 100 10 10
11 111 10 00

11 00 001 01 01
01 010 01 11
10 101 10 10
11 110 10 00
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01 state, suppose the accumulated relative distance to the 00 state is 2 and to the 01 state

is 1, and suppose the branch 111 is received. Let us calculate the minimum-distance

path to the 00 state after receiving the branch. From the 00 state the decoder adds a

distance of 3 if the 00 source branch is assumed and adds a distance of 1 if the 01 source

branch is assumed, so that it chooses the 01 source branch for a total accumulated dis-

tance of 3 along the 00-00 path. From the 01 state the decoder adds a distance of 2 if

either the 00 or the 01 source branch is assumed, so that by (52) it arbitrarily selects

the 00 source branch for a total accumulated distance of 3 along the 01-00 path. But now

a decoding ambiguity exists between the 00-00 path and the 01-00 path, since they both

lead to total accumulated distances of 3 to the 00 state. By applying (52), again the

decoder arbitrarily selects the 01 source branch along the 00-00 path as its final, unique

decision, thereby yielding the minimum-distance path to the 00 state.

The Viterbi decoders for low-rate arbitrary tree codes and high-rate systematic

convolutional codes have the same expression for decoding complexity per branch,
v+t

namely q . For the general case of systematic convolutional codes, let

= inf (t, b-t). (91)

VL-+t
Then a Viterbi decoder can be built with a decoding complexity per branch of qV

The decoding complexity is therefore greatest for medium-rate codes. This situation is

similar to the decoding complexity observed for block codes, where some high-rate

codes such as the single-parity-check codes or the Hamming codes can be easily

decoded, some low-rate codes such as the repetition codes or the MacDonald codes can

be easily decoded, but where it is usually very difficult to decode large classes of

efficient medium-rate codes.
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IV. SIMULATION OF THE VITERBI DECODING ALGORITHM

We have presented a reasonably comprehensive analytical treatment of the Viterbi

algorithm for decoding tree codes. The algorithm is applicable to any tree code with a

finite constraint length, and it is also a maximum-likelihood decoding technique for a

large, practical class of channels. Thus the Viterbi algorithm can be applied to any

"good" tree code to yield a decoding error probability bounded by (7), the coding theorem

bound for tree codes.

Although section 3.2 contains new and interesting results concerning the Viterbi algo-

rithm for decoding tree codes, the analysis is weak in some important practical

aspects. We have shown that the asymptotic distribution of the decoding lag is exponen-

tially bounded. This is interesting, of course, and it may give an indication of the

form of the tail of the decoding-lag distribution. Nothing in that analysis, however, pro-

vided a suggestion of the magnitudes of the relevant parameters, nor did the analysis

treat the form of the decoding-lag distribution near the median of the distribution,

or show how the decoding-lag distribution varies as a function of v, R, and C. We have

explored the character of decoding-error patterns to be expected in the limiting case

of codes with large constraint lengths. As we observed, however, it is usually not prac-

tical to apply the Viterbi decoding algorithm to tree codes whose constraint lengths

exceed 15-20 branches. It is doubtful to what extent the analysis in section 3. 2. 3

applies to short, practical tree codes, or what decoding error probability is attain-

able beyond the bound (7) for these codes. Finally, no suggestion has been made any-

where that the decoding error probability of a particular symbol may be related to the

decoding lag of that symbol at the time it is decoded. It would certainly be interesting

to determine whether such a relationship exists.

We shall attempt to provide some insight into these questionable areas by analyzing

experimental data obtained from a computer simulation of the Viterbi decoding algorithm

applied to random tree codes with short constraint lengths. Several topical areas will

be explored: (i) we shall examine the gross characteristics of the form of the dis-

tribution of the decoding lag as a function of v, R, and C; (ii) we shall tabulate L,

the average length of a burst of errors, as a function of v, R, and C, and then relate

our observations to the analysis presented in section 3. 2. 3; (iii) we shall show that

the probability of erroneously decoding a particular symbol appears to depend strongly

on the decoding lag of the symbol at the time it is decoded; (iv) we shall show that

the decoding error probability is approximately 5 times as small as the coding-theorem

bound (7); and (v) we shall indicate how our results may be extrapolated to codes

whose constraint lengths are longer than those of the codes used in the simulation.

A Digital Equipment Corporation PDP-1 computer was programmed to generate low-

rate (normalized rate l/n) random binary tree codes with arbitrary constraint lengths

not exceeding 10 branches, in order to simulate the transmission of these codes over a

binary symmetric channel with an arbitrary error probability p, and to decode the
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Table 2. Viterbi algorithm simulation data runs.

Run No. v Rate R p R/C Sample Size

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

5
8

10
5
8

10
5
8

10
5
8
5
5
8

10
5
8

in
5
8

10
5
8

10
5
8

10
5
8

10
5
8

10
5
8

10
5
8

10
5
8

10
5
8

10

1/4
1/4
1/4
1/3
1/3
1/3
1/2
1/2
1/2
1/4
1/4
1/9
1/18
1/18
1/18
1/4
1/4
1/4
1/18
1/18
1/1S
1/4
1/4
1/4
1/18
1/18
1/18
1/4
1/4
1/4
1/3
1/3
1/3
1/2
1/2
1/2
1/4
1/4
1/4
1/3
1/3
1/3
1/2
1/2
1/2

0
0
0
0
0
0
0
0
0

.109
.109
.230
.306
.306
.306
.175
.175
.175
.341
.341
.341
.200
.200
.200
· 355-
· 355
.355
.214
.214
.214
.174
.174
.174
.110
.110
.110
.5
.5
.5
.5
.5
.5
.5
.5
.5

1/4
1/4
1/4
1/3
1/3
1/3
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
3/4
3/4
3/4
3/4
3/4
3/4
9/10
9/10
9/10
9/10
9/10
9/10

1
1
1
1
1
1
1
1
1

10, 400
10, 400

5, 740
9,980
9, 980
4, 990

20, 700
10, 400

5, 170
20, 700
46, 000
20, 700
20, 700
30, 200
15, 000

100, 000
18,900
10, 000
10, 300
11,500
10, 300
20,900
20, 000
15, 600
56,800

9, 600
5, 200

10, 400
10, 300

5, 170
9, 960
9, 940
4, 990

10, 300
10, 300

5, 120
10, 300
10, 200

5, 120
10, 400

9, 940
5, 030

10, 400
10, 300

5, 140

In source symbols.
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resulting channel sequence according to the Viterbi algorithm specified in section 3. 2. 1.

The program computed the probability distribution of the decoding lag, the gross channel

and decoding error rates (i. e. , fraction of erroneous symbols to total symbols), the dis-

tribution of error burst lengths, and the distribution of error-free intervals between

bursts. Quite arbitrarily, but reasonably in terms of the computational procedure

specified in section 3. 2. 1, we defined an error burst to be any segment of the decoded

source sequence with the following properties: The sequence begins and ends with

decoding errors; it contains no error-free subsequences of v or more consecutive sym-

bols; and it is immediately preceded and followed by error-free intervals of at least

v consecutive symbols. Table 2 lists the data runs that were obtained from this simu-

lation program.

For simplicity, it was assumed in the computer program that the all-zero source

sequence was supplied to the encoder, and that the all-zero source sequence produced

the all-zero channel sequence. To generate a random tree code, it was further assumed

that each of the b symbols assigned to each of the q+ - 1 encoder branches not merged

with the source sequence at each source branch were chosen independently from a dis-

tribution p(O) = p(l) = 1/2.

Corresponding to each source branch, the computer generated data simulating the
v+l

Hamming distance between the received branch and each of the q possible encoder

branches. The distance between the received branch and the transmitted branch of b "O's"

accounted for channel errors. This distance was simulated by choosing b symbols from

the distribution p(l) = p, p(O)= l-p, and by totaling all of the "l's" that were selected.

To generate a binary symbol from that distribution, the computer used a random-number

generator to provide a 13-bit random number, then determined whether this random
13

number exceeded 2 p, and if not, assigned "1" to the resulting binary symbol.
v+l

The distance between the received branch and each of the q - 1 remaining pos-

sible encoder branches was simulated by generating an 18-bit number from the random-

number generator, and by counting the number of "l1's" in a particular set of b binary

digits in that random number. This computational procedure is, of course, perfectly

valid for the simulation of a Viterbi algorithm decoder acting on a random tree code

applied to a binary symmetric channel, even though it does not correspond to the way

in which an actual decoder would work.

The random-number generator produced a periodic pseudo-random sequence of

18-bit numbers. Its period was 109610, a number whose prime factors are 2, 5, 97,

and 113. From the description of the manner in which the computer simulated the
v+lHamming distances between the received branch and each of the q possible encoder

v+l
branches, it is evident that the generator was used q + b - 1 times per source branch.

By elementary calculation, one can observe that the random-number generator pro-

gressed through many periods for each of the data runs listed in Table 2. Nevertheless,
v+l

the set of q distances simulated for a source branch was different, if not statistically

independent, from all other such sets, provided that the random-number generator was
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in a distinct state as it began to simulate distances for each source branch. Thus the

simulation program would have produced a periodic sequence of N(v, b) distinct sets of

distances, where N(v, b) is equal to 109610 divided by the greatest common divisor of
v+l

2 + b - 1 and 109610. None of the data runs listed in Table 2 had a sample size

exceeding N(v, b). While each set of distances generated by the program was dif-

ferent, so that it is reasonable to expect that the data that was simulated provided a good

approximation to actual decoder behavior, it is possible that the repeating sequence

produced by the random-number generator accounted for some of the anomalies that

will be described later.

Once the program had generated the data simulating the Hamming distances between
v+l

the received branch and each of the q possible encoder branches corresponding

to a source branch, it then applied the Viterbi decoding algorithm specified in sec-

tion 3. 2. 1. Explicitly, the choice (52) was always used to resolve decoding ambiguities,

so that the simulation program always resolved decoding ambiguities in favor of the all-

zero sequence. Thus the simulation output tended to be slightly optimistic with respect

to decoding error probability, and it may have tended to shorten the decoding lag. It

would have been more accurate to have used a random choice rather than (52) to resolve

decoding ambiguities in the simulation program. We suspect, however, that the inac-

curacies introduced by always using (52) had a negligible effect on the gross charac-

teristics of the decoding statistics obtained from the simulation.

For the most part, data runs 1-15 and 28-45 were used to obtain estimates of the

distribution of the decoding lag, while data runs 10-36 were used to study the charac-

teristics of decoding-error patterns. All of the data, however, were used to some

extent in both parts of the simulation program.

4. 1 DISTRIBUTION OF THE DECODING LAG

In order to get an initial idea of the distribution of the decoding lag k, we first simu-

lated a Viterbi decoder for rate 1/4, 1/3, and 1/2 codes with constraint lengths of

5, 8, and 10 branches for three extreme cases: the error-free channel; the channel

for which the rate is equal to channel capacity; and the completely random, zero-

information channel. These three cases are represented, respectively, by data runs

1-9, 28-36, and 37-45. When the distributions of the decoding lag for the error-free

cases were plotted, we found that these distributions depended on both the rate and the

constraint length, with short lags being most probable for short, lower rate codes, as

might be expected. For the other two cases, however, we found that the decoding lag

distributions depended on the constraint length, but that they were essentially inde-

pendent of the rate.

These observations led us to hypothesize a rather unexpected phenomenon: The dis-

tribution of the decoding lag appeared to depend on only two parameters, the constraint

length v, and the ratio R/C of rate to channel capacity.

To test this hypothesis further, we took several longer data runs for random tree
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codes with constraint lengths of 5 branches, at rates /Z, 1/4, 1/9, and 1/18, and for

which p was chosen so that the ratio R/C = 1/2. These data were obtained from data

runs 7, 10, 12, and 13, respectively. The results were remarkable: as shown in

Fig. 13, the distributions of the decoding lag nearly coincided for all four data runs,

1 ^ 
i .u

ZO 0.8
Z

U

, 0.6
0
z

O 0.4

o

" 0.2

z
0
U

1 2 3 4 5
DECODING LAG k

Fig. 13. Perturbations in the distributions of the decoding
lags, v = 5, R/C = .5.

even though the rates were spread over a range of an order of magnitude. Certainly,

there were some differences in the four distributions, but these were minor compared

with the changes that were observed when either v or R/C was varied slightly.

The same qualitative effects were observed in comparing the decoding-lag dis-

tributions obtained from runs 8, 11, and 14, which were simulations of applying the

Viterbi decoding algorithm to random tree codes with constraint lengths of 8 branches,

at rates 1/2, 1/4, and 1/18, and for which p was chosen so that R/C = 1/2. Indeed,

this phenomenon was noted in the comparison of all subsequent sets of data runs in

which the rate could vary, but in which v and R/C were fixed. Thus we concluded

that, as a first-order approximation, the hypothesis was valid, and therefore the dis-

tribution of the decoding lag tended to depend primarily on v and the ratio R/C.

In Figs. 14-16 we have plotted the distribution of the normalized decoding lag

k/v for codes of constraint length 5, 8, and 10, respectively. In each figure the nor-

malized decoding-lag distribution is shown for R/C = 1/2, 1, and infinity. In accord-

ance with the preceding discussion, each distribution that is shown is obtained by

combining the data from all data runs for a given v and R/C. For example, the

R/C = 1/2 curve in Fig. 14 represents the combined data from data runs 7, 10,

12, and 13.
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Fig. 14. Distributions of normalized
decoding lags, v = 5.
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Fig. 16. Distributions of normalized decoding lags, v = 10.
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The distributions shown in Figs. 14-16 have several interesting features. As would

be expected, the probability of short decoding lags decreased when either R/C or v

increased. The most interesting observations were quantitative: the logarithm of the

median of the distribution of the normalized decoding lag was approximately propor-

tional to v + 1 and to R/C whenever R/C 1, and the logarithm of the median of the

R/C = x distribution was approximately 1. 5 of the logarithm of the median of the

R/C = 1 distribution for a given v. Thus

, (v+l)R
in M k C ' R/C - 1. (92)

Table 3 lists experimentally determined values of k as a function of v and R/C,

including additional data not shown in Figs. 14-16.

Table 3. k as a function of v and R/C.

R/C

.25 . 33 .50 .75 .90 1. 00

5 .159 .161 .154 .160 .158 .157

8 .180 .185 .150 .150 .153 .153

10 .173 .165 .138 .135 .140 .152

Let FR/C v(k/v) be the distribution function of the normalized decoding lag cor-

responding to v and R/C. When we plotted the distributions of the decoding lags

for the data runs in which R/C = .25, . 33, . 50, .75, .90, and 1. 00, we found that, as

a rough approximation,

FR/C v(k/ v) FaR/C, v[(k/v)a]

whenever 0 a 1 and .1 < FR/C, v(k/v) <.9. This approximation was especially

good near the medians of the distributions, where FR/C v(k/v)=. = . 5.

4.2 ANALYSIS OF DECODING ERRORS

Table 4 lists additional properties not given in Table 2 which further characterize

the error patterns of data runs 10-36. In Table 4, the symbols v, R, p, and R/C are

as defined previously, p' is the average decoding error probability, PB is the coding

theorem error probability bound given by (7), N and L are the average number of

errors in a burst and the average burst error length, respectively, and NB is the

total number of error bursts occurring in the data run.
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Table 4. Decoding error statistics for data runs 10-36.

Run No. v R p R/C ' PB N L NB

10 5 1/4 . 109 .50 .0017 .015 2.40 3. 14 15

11 8 1/4 .109 .50 .00002 .0012 1 1 1

12 5 1/9 .230 .50 .0045 .024 2. 27 2. 95 41

13 5 1/18 .306 .50 .0072 .025 1.96 2. 39 76

14 8 1/18 .306 .50 .0017 .0027 3. 33 5. 00 15

15 10 1/18 .306 .50 .0048 . 0006 3.42 5. 34 21

16 5 1/4 . 175 .75 .036 .254 3. 94 6. 03 944

17 8 1/4 . 175 .75 .020 .110 6.85 11. 6 54

18 10 1/4 . 175 . 75 . 016 .063 7.80 14. 5 20

19 5 1/18 .341 .75 .045 .310 3. 30 4. 96 135

20 8 1/18 .341 .75 .033 .153 6. 77 10.8 56

21 10 1/18 .341 . 75 .014 .096 7.44 13. 2 19

22 5 1/4 .200 .90 .073 .64 4. 78 7. 60 320

23 8 1/4 . 200 .90 . 071 .49 10. 0 18. 0 143

24 10 1/4 . 200 .90 . 068 .41 12. 7 23. 2 84

25 5 1/18 . 355 .90 .091 .69 4. 32 6.43 1193

26 8 1/18 . 355 . 90 . 093 .55 9. 15 16.4 95

27 10 1/18 . 355 .90 .078 .47 11. 1 20. 2 37

28 5 1/4 .214 1. 00 .096 1. 0 5. 33 8. 64 187

29 8 1/4 .214 1. 00 .123 1. 0 13.8 26. 0 92

30 10 1/4 .214 1. 00 .116 1. 0 21.8 33.9 32

31 5 1/3 . 174 1. 00 .109 1. 0 5. 95 10. 0 183

32 8 1/3 .174 1. 00 .096 1. 0 11. 0 21. 1 86

33 10 1/3 .174 1. 00 .093 1. 0 14. 9 26.8 31

34 5 1/2 .110 1. 00 .085 1. 0 5. 13 8. 75 164

35 8 1/2 .110 1. 00 .109 1. 0 13. 4 25.9 84

36 10 1/2 . 110 1. 00 .101 1. 0 20. 0 36. 2 26

Several of the data runs summarized in Table 4 have questionable validity or use-

fulness. In data run 11, only one source symbol was decoded erroneously from a

sample of more than 50, 000. Not only is p' much smaller than PB for this data

run, but also the single decoding error gives no indication of the properties of the

burst error statistics. In data run 15, the average decoding error probability p' is

much larger than the coding theorem bound PB' It is questionable whether the simula-

tion is an accurate portrayal of the behavior that would be expected operationally in this

case. Perhaps these anomalies could be resolved by taking much more data, and per-

haps, as we have indicated, they are partly caused by the relatively small period of the
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random-number generator that was used in the simulation program. For the most

part, however, the data obtained from the simulation agreed reasonably well with

the analytical results.

4. 2. 1 Burst-Error Statistics

Table 5 compares the average burst length L obtained from the simulation with

the characteristic burst length L described in section 3. 2. 3 for data runs 10-36.

A comparison is also made of 0o' obtained by approximating the e(R) curve by

comp' R Rcomp (94a)

e(R) =(C-R)

(C-R ) compcomp

and .o' obtained by applying L to (79):

J* L (95)
o -0 L+v

By using the approximation (94), it turns out that o = R/C.

To a large extent the simulation data agreed qualitatively with the analytical

results given in section 3. 2. 3. For codes with constraint lengths of 8 or more, the

data from runs 14 and 15 indicated that for rates below Romp decoding errors

tend to occur in bursts whose lengths are essentially independent of v, while the

remaining data showed that for rates above R the average burst length is pro-
comp

portional to v. These results did not carry over to the v = 5 codes, thereby sug-

gesting that the analytical results of section 3. 2. 3 become invalid for codes whose

constraint lengths are somewhat less than 8.

There was also an area quantitative disagreement: for codes with constraint

lengths of 8 or more, Fo was approximately equal to .76 pLo. Thus L was much

shorter than the characteristic length described previously.

Finally, the data showed that for fixed v and R/C, L decreases with decreasing

rate. This suggests a difference between the approximation (94) and the true char-

acter of e(R), and it therefore indicates that the approximation o = R/C is slightly

inaccurate. In particular, the simulation data suggest that increases with

decreasing R or increasing channel error probability for a fixed R/C, in agreement

with our intuition.

4. 2. 2 Error Probability as a Function of the Decoding Lag

A limited number of data runs included printouts that enabled the calculation

of error probability as a function of the decoding lag. For these data runs,
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Table 5. Error burst lengths.

Run No. R/C * 1O L L
C10 . 50 . 39 §3. 14

10 .50 .39 § 3. 14

11 .50 - § 1. 0

12 .50 .37 § 2.95

13 .50 .32 § 2. 39

14 .50 .38 § 5. 00

15 .50 .35 § 5. 34

16 .75 .53 15 6. 03

17 .75 .59 24 11.6

18 .75 .59 30 14. 5

19 .75 .50 15 4.96

20 .75 .58 24 10.8

21 .75 .57 30 13.2

22 . 90 .60 45 7. 60

23 .90 .69 72 18.0

24 .90 .70 90 23.2

25 .90 .56 45 6. 43

26 .90 .67 72 16.4

27 .90 .67 90 20. 2

28 1. 00 .63 oo 8. 64

29 1. 00 .72 oo 26. 0

30 1. 00 . 77 oo 33. 9

31 1. 00 .67 w 10.0

32 1. 00 . 73 00 21. 1

33 1. 00 . 73 oo 26.8

34 1. 00 .64 00 8. 75

35 1. 00 .76 00 25.9

36 1. 00 .78 oo 36.2

§R < R for R/C < .50.comp
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Table 6 lists the decoding error probabilities of symbols as a function of their decoding

lag at the time they were decoded.

The results shown in Table 6 are dramatic. A comparison of the data indicates that

the probability of erroneously decoding a symbol, given the decoding lag of the symbol

at the time it was decoded, was approximately the same for all five data runs, even

though the rates and the ratios R/C varied considerably. The "composite" column in

Table 6 lists the error probabilities obtained by combining the data from all five data

runs.

Only five data runs were available for this study, since an excessive amount of com-

puter time would have been required to obtain the necessary printouts for all of the

data runs. Thus it may be unwise to draw definite conclusions from Table 6. Neverthe-

less, the table listings suggest that the decoding error probability as a function of the

decoding lag is relatively insensitive to R or R/C. If this hypothesis is indeed true,

then Table 6 indicates that for a random tree code with v = 10, the decoding error proba-

bility is approximately 1T - 3 when k = 30, 3 X 10- 3 when k = 35, 10- 2 when k = 40,

3 X 10 2 when k = 50, 101 when k = 60, and 3 X 10 when k 100.

Our results suggest that this phenomenon might also be applicable to tree codes

Table 6. Error probability as a function of the decoding
lag for codes with v = 10.

Error Probability
Range of

Decoding Lag Run 21 24 30 33 36 Composite

k< 30 * .00036 * * * .00010

30 < k< 35 .0026 .0051 * * * .0030

35 k< 40 .012 .013 .016 .0075 * .011

40 < k< 45 .021 .028 .022 .018 .0023 .021

45 k< 50 .054 .047 .044 .024 .016 .040

50 k< 55 .061 .068 .067 .054 .056 .054

55 k< 60 .098 .078 .12 .043 .093 .097

60 -< 65 .089 .089 .13 .067 .097 .094

65 k< 70 * .14 .15 .075 .14 .14

70 ~ k< 75 * .19 .20 .074 .14 .17

75 • k< 80 * .20 .26 .14 .17 .19

80 k< 85 * .24 .29 .17 .17 .21

85 < k< 90 * .22 .34 .19 .11 .21

90 k< 95 * .26 .34 .26 .14 .24

95 < k< 100 * .30 .35 .32 .20 .29

100 - k * .29 .37 .30 .31 .31

No data or insufficient data.
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with different constraint lengths. Certainly, the problem is worthy of further experi-

mental study. If, as our data suggest, it is indeed true that the decoding lag and the

decoding error probability are highly correlated, then this property may be useful to the

designer of a decoding system. The fact that the decoding lag supplies a measure of like-

lihood information for each decoded symbol might be used, for example, by treating all

decoded symbols whose decoding lag exceeds a specified amount as erasures. The prop-

erty certainly indicates that there is a practical limit to the decoder memory beyond

which one gains little in terms of decreasing decoding error probability.

4. 2. 3 Comparison with the Coding Theorem

By comparing p' with PB in Table 4, we observe that the decoding error probability

is less than the coding theorem bound (7) for every data run except run No. 15. Table 7

lists the ratio of p' to PB observed as a function of v and R/C.

Table 7. Ratio of p' to PB.

R/C v

5 8 10

.50 .20 * *

.75 .15 .20 .20

.90 .12 .16 .17

1. 00 . 10 . 11 . 11

Insufficient or unreliable data.

Table 7 indicates that P'/PB tends to increase with v and to decrease with R/C, but

that it has a value ranging between approximately . 15 and . 25 for . 50 < R/C < . 90 and

5 v 10.

4.2.4 Projections

In Section V we shall occasionally want to estimate the performance attainable by

applying the Viterbi decoding algorithm to tree codes for which v > 10 and for which

. 5 -< R/C -< 1. 0. Using the results of sections 4. 2. 1 and 4. 2. 3, we conservatively esti-

mate a decoding error probability

p' = .25 exp -vbe(R), v 20, (96)

and we estimate an average burst length

VFL

L'= 1°0 (97)
o- O

where

= ·76 R/C, v > 8. (98)
0
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V. CASCADED TREE CODES

5. 1 REVIEW OF BLOCK-CODE CASCADING

In section 1.3 it was indicated that cascading techniques can be used to generate
easily decoded codes that have a large constraint length. Cascading is effective when-
ever, for a given rate and decoding error probability, it yields a substantial reduction
in the decoding complexity compared with a one-stage code.

Two effective classes of block-code cascading techniques are product codes and con-
catenated codes. These techniques, which have somewhat different structures and prop-
erties, also have analogs in the formulation of cascaded tree codes. To understand the
tree-code cascading techniques, therefore, it is helpful to review the properties of these
two classes of block-code cascading techniques.

5. 1. 1 Product Codes

Elias's8 invention of product codes was the first application of cascading to the con-
struction of long block codes. The formulation of a two-stage, prodUtctlike code can be
explained by referring to Fig. 2. The data source supplies symbols from an alphabet
of size q to the outer encoder in blocks comprising klk2 symbols each. These symbols
can be arranged conceptually in the k X k 2 array shown in Fig. 17a. The outer encoder
takes the k 1 symbols from each row and encodes them into blocks of n1 symbols, where
the output symbols also belong to the q-ary alphabet. The outer code can be arbitrary,
although in most practical coding systems it is systematic, linear, and time-invariant.
The k 2 output blocks comprising n symbols each can be conceptually arranged in the
n1 X k 2 array shown in Fig. 17b. By using an interleaver, the symbols from the
n1 X k2 array are read into the inner encoder by columns. The inner encoder takes
the k2 symbols from each column of the n1 X k2 array and encodes them into blocks
of n2 symbols, where once more the output symbols belong to an alphabet of size q.
Again, the inner code format may be arbitrary. The output of the inner encoder can
be represented by the n1 X n 2 array shown in Fig. 17c. The symbols from this array
are supplied column by column to the channel.

The decoding process is the reverse of encoding. Each block of n 2 channel output
symbols is decoded according to an algorithm appropriate to the inner code to produce
an estimate of the k 2 symbols that were supplied to the inner encoder. When a block
of n1 of these k 2 -symbol words is decoded, it is arranged conceptually in an n 1 X k 2
array like that shown in Fig. 17b, and an interleaver is used to read the symbols out by
rows. Each block of n1 of these symbols is decoded according to an algorithm appro-
priate for the outer code, and the output of the outer decoder is the composite decoder's
estimate of the symbols originally supplied by the data source.

The extension of this encoding technique to an arbitrary number of stages is obvious.
In all cases the composite block length is equal to the product of the block lengths of the
constituent codes, while the composite normalized rate is equal to the product of the
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normalized rates of the constituent codes.

[The normalized rate of a code is the

fraction of output symbols that represent

information. For an (n, k) block code,

the normalized rate is k/n.] On the other

hand, the composite decoding complexity

___________l --------- l is approximately equal to the sum of the

k2 Idecoding complexities of the constituent

L I codes, plus the complexity and additional

(b) storage requirements introduced by the

interleaver.

Elias8 proposed a product coding sys-

'I-- 1 tem that is remarkably simple. The

innermost code is a Hamming single-

n2 error-correcting, double-error-detecting

code of length 2 , and each successive

code is a similar Hamming code with

(c) twice the length of its predecessor. Elias8

then showed that this coding system could

Fig. 17. Representation of product-code be effectively used on a binary symmetric
symbols.

channel, provided the error probability

p < 2 (+l) For such a coding system

with s stages, he showed that the decoding-error probability satisfies

P(E) < (2m+ p)2 

while

m+2
R > 1 2 m l (100)

Although (100) is a somewhat loose bound for small values of m, the actual rate of this

coding system does fall somewhat short of channel capacity. Furthermore, P(E) does

not decrease exponentially with the composite block length. Finally, the code cannot

correct (by this decoding method) some error patterns whose weight is less than half

the minimum distance of the code, although it has a substantial diffuse error-correction

ability to correct many likely error patterns of weight exceeding half the minimum dis-

tance. Despite these shortcomings, this is one of the very few known practical coding

systems capable of generating arbitrarily long codes for which the probability of error

goes to zero at a reasonable, nonzero rate.

In more recent work that exploits the implementational advantages of cyclic codes,
27

Abramson has designed a cascade decoder for the cyclic product codes introduced
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by Burton and Weldon.2 8

All cascaded decoding algorithms for product codes have substantial diffuse error

correction, as well as the inability to correct some error patterns whose weight is less

than half the minimum distance of the code.

Cascaded algorithms for decoding product codes can realize a substantial reduction

in the decoding complexity. If maximum-likelihood decoding is used for decoding each

constituent code, for each n i symbols supplied to the it h decoder, its decoding algorithm
1

n.r.
must essentially compare q = qi alternatives, where q is the alphabet size of the
.th .th
i code, and r. is the normalized rate of the ith code. For product codes, all constit-

1

uent codes operate with the same q-ary alphabet. For a product code with s stages of
n r1 sss s

coding, the innermost decoder makes - q calculations per channel symbol, the nextn
s

1 ns-lrs-innermost decoder makes n q calculations per symbol supplied to it, or
ns-1

r ns slrs-i
q calculations per channel symbol, etc. Thus the total number of calcula-

s-1
tions per channel symbol for an s-stage product code is

s+l s
1 r n.r. 1 n

*. s S 11 i=1J=i+1 nri q q
q < --- n. n<< s (101)ni s

i=l i=l II n.
i=l

where rs+1 1 in (101), and the right-hand expression in (101) is the number of cal-

culations per channel symbol required for a single-stage maximum-likelihood decoder

with the same composite length and rate as the product code.

5. 1. 2 Concatenated Codes

Forney's 9 10 concatenated codes are a second cascading technique for generating

long block codes. Concatenated codes and product codes are quite different in their

structures and properties, except that the encoding and decoding processes for both

classes of codes involve a series of successive, cascaded operations.

In terms of Fig. 2, the construction of concatenated codes can perhaps be most

easily understood by considering first the inner code, and then the successively cascaded

stages of outer codes. The inner code has a block length n 1 and a normalized rate kl/nl,

and operates on symbols from a channel alphabet of size qc. This code can be arbitrary,

but in most practical systems it would usually have some mathematical structure such

as time invariance, linearity, or being systematic.
k

Each inner code word represents one of q possibilities, which can be interpreted
kas a symbol in an alphabet of size q2= Using this interpretation, the outer code

as a symbol in an alphabet of size q = qc ' Using this interpretation, the outer code
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has block length n2 and a normalized rate k 2 /n 2 , but operates on the derived q2 -ary

alphabet.

The cascading process can be extended in an obvious manner to an indefinite number

of stages. For a concatenated code with s stages of cascading, the source supplies sym-

bols that are interpreted by the outer encoder as blocks of ks symbols each from a qs-ary
i
1 k 1
ji- -1

alphabet, where qi = qc , k = 1, i = 1, 2, ... , s. The outermost encoder encodes0 '
these symbols into blocks of ns qs-ary symbols. Each of these qs-ary symbols is then

encoded by the next outermost encoder into blocks of n_l 1 qs_- ary symbols, and the

process is continued through the innermost encoder that encodes each q2 -ary symbol

into blocks of n1 qc-ary symbols. Observe that, in contrast to product coding, no inter-

leaver is required between successive stages of coding for concatenated codes.

Again the decoding process is the reverse of encoding. The innermost decoder forms

estimates of the q 2 -ary symbols, the next innermost decoder uses the q2 -ary symbols

estimated by the innermost decoder to form estimates of the q3 -ary symbols, and so on

until the outermost decoder finally estimates the k s qs-ary symbols originally sup-

plied by the source.

As with product codes, the block length of a composite concatenated code, expressed

in channel symbols, is equal to the product of the block lengths of the constituent codes

in their respective alphabets, while the normalized rate of the composite code is equal

to the product of the normalized rates of the constituent codes. Similarly, also, the

composite decoding complexity is approximately equal to the sum of the decoding com-

plexities of the constituent codes. This last statement does not by itself imply that con-

catenation can substantially reduce the decoding complexity in the way that (101) implies

that product-code cascading reduces decoding complexity, since the alphabet sizes

differ substantially for concatenated codes. It takes further work to show that con-

catenation can offer a reduction in decoding complexity compared with the complexity

required to decode a single-stage code of the same length as the composite code.

Forney9, 10 has demonstrated a concatenated coding system for which the probability

of error decreases nearly exponentially with the composite length at all rates below

capacity, while the decoding complexity is proportional to the cube of the composite

length, where the constant of proportionality depends on the composite rate. The coding

system has a suitably chosen binary BCH code as the inner code, with outer Reed-

Solomon codes whose lengths and alphabet sizes are determined by the inner code. For

this system the decoding-error probability decreases essentially exponentially with the

complexity in the limit of high complexities. The efficiency of these codes - that is,

the ratio of the effective concatenated error exponent to E(R)- is quite low, however,

especially at rates approaching capacity.

Despite their shortcomings, cascaded block-coding techniques are an effective, prac-

tical, and general approach to the coding problem.
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5.2 FORMULATION OF CASCADED TREE CODES

We have outlined the structure and properties of product codes and concatenated

codes. Both of these coding techniques involve only block codes, and both techniques

are an effective approach to the coding problem.

In Section II we showed that in some ways tree codes are superior to block codes.

It is natural to wonder whether cascading techniques can be applied to coding systems

involving tree codes and, if so, whether the use of tree codes offers any advantage in

performance compared with block-code cascading.

Pinsker 2 9 and Stiglitz 3 0 have studied two-stage cascaded coding systems in which

the inner code is a block code and the outer code is a tree code. Their objective

was to discover under what conditions such a coding system could be used so that sequen-

tial decoding could be applied to the outer code while the composite rate was higher than

R for the raw channel. Some of their results will be reported here. It was notcomp
one of their primary objectives, however, to study the efficiency and error-correcting

capabilities of these codes, nor to study alternative tree-code decoding techniques. In

similar work Falconer31 proposed a two-stage coding scheme in which the inner code

comprised N tree codes operating in parallel. K of these codes were independent;

the symbols for the remaining N-K codes were specified by an (N, K) block code, which

could be regarded as an outer code. Each tree code was decoded independently by using

sequential decoding; however, when K tree codes had been decoded, the block code

format was applied to decode the remaining N-K tree codes. The primary objective of

this technique was to be able to use sequential decoding at composite channel rates

exceeding R
comp

In the rest of Section V we shall consider the properties of cascaded coding systems

in which both the inner code and the outer code in Fig. 2 are tree codes. Several alter-

native formulations of cascaded tree codes will be given. Some of these techniques are

analogous to the product codes and the concatenated codes, and some are distinctly dif-

ferent. We shall compare the efficiency of tree-code cascading to the efficiency attain-

able with block-code cascading. It is indicated that in this respect tree-code

cascading is greatly superior to block-code cascading, especially at rates approaching

channel capacity. Finally, we shall consider the practicality of tree-code cascading,

using present available techniques for decoding the constituent codes. Unfortunately

cascading, at present, offers at best a marginal improvement. Conditions will be pre-

sented for which a cascaded coding system can employ sequential decoding on the outer

code of a two-stage system, while operating at a composite rate exceeding Romp for

the channel.

5. 2. 1 Productlike Codes

Suppose that both codes in the two-stage cascading process illustrated in Fig. 2 are

tree codes. Let the outer encoder be characterized by parameters vl, tl, bl, and q, while
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the inner encoder is characterized by parameters v, t, b, and q, where the v's are the

constraint lengths, the t's and the b's are the input and output branch lengths, respectively,

and q is the symbol alphabet size for each code. With a suitable interleaver inserted

between the two stages of encoding, the composite encoder configuration of an outer

encoder, interleaver, and inner encoder generates a two-stage cascaded tree code that

is analogous to product codes.

First, consider the amount of symbol separation that must be provided by the inter-

leaver. Since the constraint length of a tree code means that each output symbol "depends

on" the last v+l input branches supplied to the encoder, then for a two-stage productlike

tree code each channel symbol should "depend on" (vl+l)(v2+1) data source branches.

This dependence is ensured if a [(v 2 +l)t 2 , (vl+l)bl] interleaver is inserted between the

outer encoder and the inner encoder. [An interleaver for which the symbols in every

contiguous set of n2 symbols in the output sequence were mutually separated by at least

nl symbols in the input sequence is called an (n 2 , nl) interleaver. In Section VI we

discuss the efficient realization of (n 2 , n1 ) interleavers.] The function of the interleaver

is to reorder the output sequence from the outer encoder in such a manner that all of

the (v 2 +1)t 2 symbols appearing within the constraint span of the inner encoder "depend

on" distinct sets of (vl+l)t 1 data source symbols. Thus the constraint length in source

branches of the composite code is (vl+l )(v 2+1 )t2 -1. Viewed from the data source, every

data symbol affects (vl+l )b1 output symbols from the outer encoder, each of which influ-

ences a distinct set of (v 2 +l)b 2 channel symbols. Thus the channel symbol constraint

length is essentially (vl+l)(v2 +1)blb 2.

The composite encoding and decoding procedures are what one would naturally

expect for cascaded codes. The data source symbols are supplied to the outer encoder,

which encodes them in its format at a normalized rate tl/b1 . The output symbols from

the outer encoder are interleaved and then supplied to the inner encoder, which encodes

them in its format at a normalized rate t 2 /b 2 . Decoding is just the reverse of encoding.

The channel output symbols are supplied to the inner decoder, and its output sequence

is unscrambled and supplied to the outer decoder. The output of the outer decoder is

the composite decoder's estimate of the data sequence.

The amount of symbol separation provided by a [(vz2 +)t 2 ,(vl+1)bl] interleaver is

only a minimum amount required to obtain a composite constraint length of (vl+l)

(v 2+l)t 2 - 1. Any (n 2 , nl) interleaver with n 2 (v 2 +1)t 2 and n (vl+l)b1 will do. Some

decoding algorithms are effective only if the input errors appear to occur randomly

rather than in bursts. To use these algorithms effectively in the outer decoder, there-

fore, it is necessary for the interleaver to provide much greater symbol separation;

that is, to make n2 >> (v 2 +l)t 2 if the inner decoder has a substantial probability of making

errors in bursts of more than (v 2 +l)t 2 symbols whenever it does make decoding errors.

The only effect of this modification on decoding complexity is to increase the required

symbol storage.

It is almost trivial to extend this coding procedure to the construction of multistage
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productlike cascaded tree codes. Under the assumption that sufficient interleaving is

inserted between successive stages of encoding, the composite constraint length for an

s-stage productlike code is

v= (vi+l) - 1, (102)
i=1

while the composite constraint length in channel symbols is

s

Vc = II (vi+l)bi (103)
i=l

The normalized rate is just the product of the normalized constituent rates:

s

r = II ti/bi (104)
i=l

Since the alphabet sizes are the same for all of the constituent codes of a product-

like code, we would expect that the cascade decoding of these codes would yield a sub-

stantial decrease in the decoding complexity compared with the complexity required to

decode a single-stage code of the composite constraint length such as that indicated in

(101).

Because of the continuous nature of tree codes, there is no need to provide branch

synchronization between successive stages of coding. In this regard, the parameters

vl, v2 , tl, t2, bl, and b 2 may be chosen independently of each other. Furthermore,

there are no restrictions on the parameters n1 and n2 of the (n 2 ,n 1 ) interleaver inserted

between the outer encoder and the inner encoder, except that they be large enough to

provide sufficient symbol separation to achieve a composite constraint length equal to

the product of the constituent constraint lengths. This contrasts with the analogous

block-code formulation, where branch synchronization and much more restrictive or

explicit interleaving functions are required to achieve the multidimensional array struc-

ture illustrated in Fig. 17.

5. 2. 2 Concatenationlike Codes

Suppose now that the outer and inner codes in the two-stage cascading process are
m

tree codes with parameters v, tl, bl, and q, and v2, t2, b2, and q, respectively.

It is evident that one symbol in the outer code alphabet can be transformed into m

symbols in the inner-code alphabet, and vice versa. Using that fact, the equipment con-

figuration shown in Fig. 18 can be used to generate a two-stage cascaded tree code that

is analogous to a concatenated code.

It is convenient to assume that the data source supplies q -ary symbols to the

outer encoder. These symbols are encoded by the outer encoder in its format
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q- dry ( vltlbl q
m )
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P > ( l+ l)b 

Fig. 18. Encoding for concatenationlike tree codes.

at a normalized rate tl/b1 . The resulting q -ary symbols are fed to an [a, (vl+l)bl]

interleaver that operates in the q -ary alphabet, where

(Vz+l)t z -2 l
a = + 2 (105)

m

and "LxJ" means "the greatest integer contained in x." The reordered sequence of
m m m

q -ary symbols are supplied to a q -ary-to-q-ary translator: each qm-ary symbol is

transformed into a sequence of m q-ary symbols. The resulting sequence of q-ary sym-

bols is fed to the inner encoder, which encodes these symbols in its format at a nor-

malized rate t 2 /b 2 . The function of the interleaver is to reorder the output sequence

from the outer encoder so that any symbols within the constraint length of the inner

encoder that come from the transformation of distinct q -ary symbols depend on dis-

tinct sets of (vl+l)t1 data source symbols. Viewed from the data source, each data

symbol affects (vl+l)b1 output symbols from the outer encoder, and each of these

affect a distinct set of at least (v 2 +l)b 2 channel symbols. Thus the channel symbol

constraint length is at least (v 1+l)(v2 +1)blb2.

As one would expect, decoding is just the reverse of encoding. The channel output

symbols are supplied to the inner decoder, and the resulting sequence of decoded q-ary
m

symbols is converted into a sequence of q -ary symbols which is unscrambled and then

supplied to the outer decoder. The sequence of output symbols from the outer decoder

is the composite decoder's estimate of the data sequence.

The [a, (vl+l)bl] interleaver provides only the minimum amount of symbol separa-

tion necessary for a composite channel symbol constraint length equal to the product of

the constituent output symbol constraint lengths. Whenever the inner-code decoding-

error distribution coupled with the outer code decoding method requires further symbol

separation, any (n 2 ,n l ) interleaver with n2 sufficiently greater than some a l a and n 1

sufficiently greater than some P > (v l+l)b1 will suffice.

The extension of this coding procedure to the construction of a multistage concatena-

tionlike code is straightforward. The alphabet size for the i th stage of coding from the

channel is qm(i), where for an s-stage concatenationlike code,

m(l) = 1 (106a)
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i
(i) = II mj_ i = 2,3,..., s. (106b)

j=2

rn(s)The data source supplies q -ary symbols to the outermost encoder. These

symbols are encoded and then interleaved, and are then translated into blocks

of ms 1 qm(S- 1 ) -ary symbols. The sequence of q m(sl)-ary symbols is fed to

the second outermost encoder, and the process continues in an obvious manner

until the innermost decoder supplies a sequence of q-ary symbols to the chan-

nel. Decoding is again just the reverse of encoding. The composite normalized

rate is again given by (104), while (103) is a lower bound on the composite con-

straint length in channel symbols, provided there is sufficient symbol separation

between successive stages.

As with the productlike codes, it is unnecessary to provide branch synchronization

between successive stages of coding, except that framing synchronization must be pro-

vided to the qmn(i 1)-ary-to-qm(i) -ary symbol translators. Also the {vi}, {ti}, and {bi}

may be chosen independently of each other, with the obvious restriction that b. > t. > 1r·ifl 1 1

for all i. Additionally, the parameters {n(i ) } and {n(i)} for the interleavers between
th th I1 2

the i and (i+l) stages may be chosen arbitrarily, provided they are sufficiently large

to furnish the required symbol separation. Finally, in contrast to Forney's 1 0

concatenated codes, the {mi} that define the alphabet sizes of each stage may

be chosen arbitrarily from the positive integers without regard to any of the

other sets of parameters previously mentioned. [The use of sequential decoding

for the outermost stage or stages may restrict the {mi} in terms of the {vi}

This topic will be treated in section 5. 4. 2.] This flexibility in the choice of

parameters differs considerably from the analogous situation with block-code con-

catenation.

There is one final difference between block-code concatenation systems and tree-code

concatenation systems. The encoding system for a tree code, shown in Fig. 18, uses

an interleaver, while the corresponding block-code concatenation system does not.

If there were no interleaver between successive stages, and if m were not propor-

tional to v2 b2 , then the approximate composite constraint length in channel symbols for

a two-stage code would be

v1+1)blm
v c + v2 } b 2 , (107)

so that the composite constraint length would grow more like the sum rather than the

product of the constraint lengths of the constituent codes. The interleaver ensures prod-

uctlike growth, whenever m is not proportional to v2b 2 . In the block-code concatena-

tion formulation, m is proportional to the block length of the inner code, so that the

productlike growth in block length is automatically provided without the interleaver.
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5. 2. 3 Burst-Error-Correcting Outer Codes

There is a third, reasonably obvious, formulation for a tree-code cascading sys-

tem that has no clearly defined block-code cascading analog. This formulation makes

use of the fact that decoding errors for tree codes tend to occur in bursts, as is

indicated in section 3. 2. 3 and is further supported by the simulation results given

in section 4. 2. 1.

Consider once more the two-stage coding process illustrated in Fig. 2. Let the inner

code be a tree code characterized by parameters v2 , t 2, b 2, and q. Furthermore,

assume that the statistical properties of the inner code decoding errors, such as burst-

length distributions, error-free interval distributions, and perhaps burst-error den-

sities, can be described and calculated in some suitable manner. Then it may be

appropriate to use a burst-error-correcting tree code as the outer code. This code

would be chosen to match as efficiently as possible the statistics of the decoding errors

of the inner code. Some examples of families of burst-error-correcting convolutional

codes are given by Gallager. 3

Whenever this cascaded system is appropriate, it can yield improvement with

relatively little decoding complexity. For example, no interleavers are required

between successive stages, and the realization of the burst-error-correcting outer

decoders is fairly simple. Like the other classes of cascaded tree codes, the com-

posite normalized rate is equal to the product of the normalized rates of the con-

stituent codes. It would be possible to define a composite constraint length for this class

of codes which would be sumlike, as in (107); however, this concept makes little sense

because the outer code is a specified, burst-error-correcting code that is matched to

the error statistics of the inner-code decoder. Instead it is more meaningful to eval-

uate this coding system in terms of the error probability attainable at a given composite

rate and composite decoding complexity.

Several techniques are possible for extending this basic coding system to a multi-

stage cascaded tree code. Given a multistage cascaded tree code in which the inner-

most code is a random-error-correcting code that produces decoding errors in

well-defined bursts, and is immediately followed by a burst-error-correcting tree code

that is matched to the inner-code error statistics, then it is possible to envision at least

three alternative possibilities for the next stage of coding: In one case, it might be pos-

sible to effectively use a second burst-error-correcting tree code that is matched to

the decoding errors of the innermost burst-error-correcting tree code. On the other

hand, it might be preferable to use an interleaver and to form a productlike code with

a third stage, or to make an m-to-1 symbol translation and then to use an interleaver

to form a concatenationlike code with the third stage. Furthermore, it is evident

that these three choices are present at each further stage of coding. It is rather

difficult to compare any of these techniques without reference to a specific applica-

tion, since their relative performances might vary widely.
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5.3 EFFICIENCY OF TWO-STAGE CASCADING

5. 3. 1 Coding Theorem Efficiency

Suppose that the channel in the two-stage cascaded coding system shown in Fig. 2 is

a DMC with block-code exponent E(R) and tree-code exponent e(R), where the relation-

ship between E(R) and e(R) is given by (39) and (40) and is illustrated in Fig. 6. Let a

be the composite constraint length of the cascaded code, where a is the number of chan-

nel symbols whose selection is influenced by any given data source symbol. For example,

if both codes are block codes with inner-code block length N 2 and outer-code block length

N1, then a = N1N 2 for a product code. We shall define a for the case in which the inner

code is a tree code in the discussion immediately preceding Theorem 4 below. For any

combination of block codes and tree codes in the two-stage cascaded coding system, it

is possible to find a coding system for which

P(E) < exp-aE1 2(R)-o(a), (108)

.th .th
where o(a) - 0 for large a, 3i = T if the i code is a tree code, pi = B if the i code

is a block code, and

E (R) > , 0 R < C. (109)

P 1%
The quantity E (R) is called the cascading exponent for the channel corresponding

to the assignment of 1 and p2. Forney has demonstrated the existence of E (R); it

follows immediately that ETB(R) exists, and can be found from EBB(R) by using (39)

and (40) or the graphical technique shown in Fig. 6. In proving Theorem 4 below, we

use Forney's 9 arguments to demonstrate the existence of EBT(R), and thus also, as a
TT

consequence, the existence of E (R).

The ratio

BP 2

P1P2 E (R)/E(R), 11 = B
n (R) - (110)

E ) 2 /e(R) , = T

is called the efficiency of cascading. Its reciprocal indicates approximately how much

longer the composite constraint length of a cascaded code must be than the constraint

length of a single-stage code for the cascaded code to attain the same error probability

as the single-stage code.

Theorem 4 below asserts that if a tree code is used for the inner code of a two-stage

cascaded coding system, it is possible to attain an efficiency that is independent of the
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rate for rates below channel capacity. The theorem applies only to concatenationlike

codes in which blocks of

m = v2t 2 (111)

contiguous q-ary symbols from the output of the inner decoder are used to form symbols

in a ql-ary alphabet used by the outer code, where

m
4q q ' (112)

and the inner code is characterized by the parameters v2, t 2, b 2 , and q. The param-

eter ~b defined by (111) indicates the degree of concatenation of the cascaded code. Each

set of t 2 q-ary symbols supplied to the input of the inner encoder influences the selec-

tion of (v 2 +l)b 2 channel symbols, so that each ql-ary symbol influences the selection of

(4+l)v 2 b 2 channel symbols. If an interleaver is used between the stages of cascading,

as in Fig. 18, so that each ql-ary symbol influences a distinct set of (+l)v 2 b 2 channel

symbols, then it is evident that a = N 1( Lp+1) v2 b 2 if the outer code is a block code, and

a = (vl+l)b1 (4+l)v 2 b 2 if the outer code is a tree code.

Theorem 4

In a two-stage concatenationlike coding system in which the inner code is a tree code

characterized by the parameters v 2, t 2, b 2, and q, and the alphabet size of the outer code

is given by (111) and (112), for arbitrary p1,

PIT 1
l (R) 2' < R < C, (113)

provided J = 1 in (111).

Proof of Theorem 4: It suffices to specify a coding system for which

BT 1
E (R) = 2 E(R), (114)

2

since E (R) can be constructed from E (R) by using (39) and (40), or Fig. 6, and
T1 BT 1BT

E (R) e(R) if if E - E(R).

The rate of the inner code is

t
R bln q, (115)

2

and its decoding error probability per symbol is bounded by

P(E) < exp -vb 2 [e(R2)-o(v 2 b2)]. (116)
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Using a union bound, the probability that a ql-ary symbol supplied to the outer decoder

is erroneous is bounded:

p < v 2 t 2 exp -v 2 b 2 [e(R )-o(v2 b 2 )]

=exp -v 2 b2 [e(R2 ) v b2 ln v t o(vb

= exp -v 2 b2 [e(Rg)-o' (v2 b2 )], (117)

where o(v 2 b 2 ) - 0 for large v 2b 2 . If the inner code is decoded according to the Viterbi

decoding algorithm, the discussion in section 3.2.3 indicates that decoding errors occur

in bursts whose lengths cluster around some characteristic length that is proportional

to 2 for R 2 > Rcomp. Thus if p is carefully chosen, (48) gives a close approximation

to the marginal ql-ary symbol transition probabilities:

Pij = 1 - p, i=j (118a)

p
q1 ij. (118b)

Forney has shown that the q1-ary discrete memoryless channel whose transition prob-

abilities are given by (118) is the worst of all ql-ary DMC's, in the sense that its error

exponent is the lowest for a given p. Thus our results, derived for the channel defined

by (118), will hold for any ql-ary DMC.

Now let the outer code be a block code of length N and normalized rate bL whose

symbols are taken from the ql-ary alphabet. By approximately interleaving the q 1 -ary

symbols from the output of the inner decoder, the symbols within a block can be made

to appear statistically independent, so that the superohannel seen by the outer decoder

looks like a DMC, with transition probabilities given by (118). Then (2) can be used

to bound the probability that an outer code block is erroneously decoded:

P(E) < exp -NEi(R'), (119)

where, in this case,

R' = . ln ql = v2 b2 +kpR2 , (120)

and, from (3),

E1 (R') = sup [E o (P)-pR'. (121)
O<p<l

Using (4) and (118), we obtain
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Eo(p) = -In q;P[l-p)l/(l+p)+ (q _l)p/(l+p) pl/(l+p)L+p0 ~ ~~~~~~~~~~ )1

When v 2 is sufficiently large, one or the other of the two terms in brackets in (122)

dominates, so that with an error of at most n 2,

(122)

Eo(P) =

PeR 2 < e (R 2 )

PqR 2 > e (R2 )

= v 2 b2 min {pPR2, e (R2 ) (123)

where e (R) = e(R) - o'(v2 b z ) from (117). Equation 122 is maximized by setting p =

min {1,e (R 2 )/ R2}. Thus

E1(R') = v 2 b2E (124)

where we define

E (f,R 2 ) = (1-B) min {R 2, e (R2). (125)

Equations 119, 120, 124, and 125 can be combined to form a bound for P(E) that can

be expressed in terms of the composite rate R seen by the ql-ary symbols. We shall

now derive a bound for P(E)to be expressed in terms of the composite rate R that applies

to the q-ary channel symbols. Finally, we shall relate this last bound to the composite

constraint length of the code in channel symbols, which will be used to evaluate the effi-
BT

ciency BT (R), and thereby complete the proof of Theorem 4.

Continuing along this line, therefore, we define

E BT(R) = sup E (, R 2), (126)

where

R = .R2 (127)

is the composite rate that applies to the q-ary channel symbols, and E (p, R 2 ) is given

by (125). Figure 19 illustrates the construction of E (R) from e (R) whenever

1. Curves are drawn showing E (, R 2 ) as a function of R = R 2 for 5 fixed

values of R 2. The E BT(R) curve is the upper envelope of all possible E (Ep, R 2 ) curves.

Since the E:'(., R 2 ) curves lie below the E:(I, Romp ) curve for R 2 < R , it is clear

that R 2 m Rcomp in the maximization of (126) whenever ~ D 1. Using (125) and (126), we

obtain
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E (R) = sup (1- e(R 2 ).128)
0--.< <1

R oR
2 comp

But (128) is just like (40) in which the unknown tree-code exponent e(R) is expressed in

terms of E(R), which is known in deriving (40). By comparing (128) with (40), it is clear

that E BT*(R) = E(R) - o"(v 2 b2 ) whenever j 1, so that

P(E) < exp -Nv 2 b2 [E(R)-o" (v 2 b2 ) ] . (129)

A similar procedure can be used to construct EBT (R) when q4 < 1. It is easier graph-

ically to understand the construction of E TT(R) instead, which is illustrated in Fig. 20.

Defining RE( i) as the value of R for which e(R 2) = R 2, we find that for R RE(q),
TT* 2 TT*( e[R()

E (R) = e(R), and for R < RE(q), E (R) = eRE( ] .

We now relate EBT (R) to the concatenation exponent EBT (R). We want a bound of

the form

P(E) < exp -N(y+1) v2 b2 [EBT(R)-o(vbZ)]. (130)

Comparing (130) with (129), we see that

BT E (R)
E (R) - + 1' 1, 0 R< C. (131)

By choosing b = 1, Theorem 4 is proved.

Theorem 4 shows that it is possible to find a cascading system in which the inner

code is a tree code for which the efficiency is constant at all rates below capacity. This

contrasts sharply with Forney's9 results, which indicate that for a two-stage cascading

system in which the inner code is a block code, the efficiency decreases monotonically

with rate, and becomes arbitrarily small at rates approaching capacity. As we shall

see, however, the cascaded tree codes that are most efficient in terms of the coding

theorem are sometimes quite inefficient in their ability to reduce decoding complexity.

The results of Theorem 4 can be extended to an n-stage cascaded coding system in

which all of the codes are tree codes. Let the symbols for the (i+l)t h innermost code

be obtained by grouping bivit i symbols from the ith innermost code, i = 1, 2, . . . n - 1.
1

Let i n - 1 i = 1, 2, .. , n - 1. Then it turns out that the composite decoding error

probability of the n-stage code analogous to (129) is given by

n-1
P(E) < exp - n V) TT*(R) 1 - o()j (132)

whi 1. n-1

where the construction of E TT*(R) from e(R) is shown in Fig. 20 for < 1. The
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Rd Rc Rb Ra C

Fig. 19. Construction of EBT (R) from e(R 2 ).

E(O)

E (O)

0 Rcomp RE(+) C

Fig. 20. Construction of ETT (R) from e(R 2 ).
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composite constraint length of the n-stage code, expressed in channel symbols, is

(j bn I n-I1 vibi (+l)n 1 = ib [n/(n- )] 1, so that the n-stage cascaded tree-code
k i=l

exponent is

Tn n- n- TT(133)
E (R) = y-) ETT(R) 1(133)

0= n-

Since E T(R) a We(R) = ni e(R) for all R, 0 R < C, and (n )n1 < (n+ln <

lim ( n 1) = E, where E is the natural logarithmic base, then the n-stage cascaded
n-oo
tree-code efficiency is bounded by

1
n(R) , 0 < R < C. (134)

(n-1)E

This again contrasts sharply with Forney's results for the attainable efficiency in cas-

cading block codes.

5. 3. 2 Computational Efficiency

One should not infer from the foregoing discussion that cascading is efficient in the

sense that it greatly reduces the complexity required to attain a given decoding error

probability at a given rate. The actual performance of cascading may be quite contrary

in this respect. For a two-stage concatenationlike cascaded coding system in which both

constituent codes are tree codes, a maximum-likelihood decoder for the outer code may

be required to compare

v lt

No = q = exp vltlv2 t 2 P In q

= exp v1 V2blb 2 LR (135)

alternatives per received branch to achieve a decoding error probability per symbol

bounded by

P(E) < exp -vlvzblb 2 E TT(R)-o(vlb). (136)

From the discussion between (129) and (130), we see that ETT (R) = e(R) - o(v 2 b2 ) for
TT*y > 1. The construction of E (R) for 02 < 1 is illustrated in Fig. 20. For every branch

of b ql-ary symbols supplied to the outer decoder, the inner decoder processes Iblv 2

received channel symbol branches, and thus makes

v2t 2
Ni = bl v2 q = b l v2 exp vZb 2 R 2 (137)
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calculations. The total number of comparisons made by both decoders per branch sup-

plied to the outer decoder is

N=N +N.
O 1

= 1 + exp v2 b 2 2 + - b -) _

2b1

exp v 1V2blb 2 %R

= exp VlV2blb 2 PR[1-o(vlbl)], (138)

so that the number of comparisons made by the outer decoder dominates for large outer

code constraint lengths and fixed .

We can express P(E) in terms of the complexity N:

ETT (R) 

L R[1-o(v lbl )]
P(E) < N (139)

We compare (139) with the following expression that relates P(E) to the complexity

Ns required for a single-stage maximum-likelihood tree code decoder.

[e(R)-o(v)] 1

P(E) < N R (140)

Since E (R) = [e(R)-o(v 2 b2 )] for > 1, (139) indicates that a concatenationlike

cascaded tree code for which ~ > 1 requires more complexity than a single-stage tree

code to achieve a given error probability at a given rate, if maximum-likelihood decoding

is used at each stage. Cascading can therefore offer an improvement only if < 1. We

observe in both (139) and (140) that the exponents E (R)/L4R and e(R)/R are mono-

tonic decreasing functions of R. In (140) we observe that for a single-stage code,

R
comp

p(E) (_ ) R o <R ~ Romp (141)

On the other hand, since E TT(R) - RE(P) for 0 R RE(4 J) as shown in Fig. 20,

(141) becomes

RE()

P(E) I R 0 < R RE() (142)P(N) I E(N R
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By choosing sufficiently small, RE(P) becomes arbitrarily close to channel capac-

ity.

We shall now show that essentially the same result can be obtained in a somewhat

cleaner form for productlike cascaded tree codes. Our result will be summarized

in Theorem 5 following the derivation for productlike codes.

We observe that the smallest attainable value of m in (111) is m = 1, which repre-

sents a limiting value of for a given v2 t 2 . This observation suggests that an expres-

sion like (142) applies to productlike codes, with RE(Y) replaced by a quantity arbitrarily

close to capacity. The composite decoding complexity corresponding to (138) for a prod-

uctlike cascaded tree code is

N=N +N.

b
= exp(vltl In q) + exp(v 2 t 2 n q)

= exp v lt 1 [ln q-o(vltl)], v t 1 >> 2 t 2 (143)

Suppose that for some E > 0, the inner code rate is greater than (1-E)C. Furthermore,

if (7) is used to bound the error probability p' of the inner decoder, suppose that v2t 2

is sufficiently large to make p' small enough so that the R' = E(0') seen by the outercomp
code exceeds (1-E) In q, where R' can be obtained by substituting (138) and p' in (4)

comp
and evaluating at p = 1. Then, by using (8), the e(R') curve seen by the outer code can

be approximated by (1- E) in q for all R', 0 < R' (1-E) n q. Thus for R' (1 -E)lnq,

P(E) < exp - vlbl[(l-E) In q-o(vlbl)]. (144)

Combining (143) and (144), we express P(E) in terms of N for a productlike cascaded

tree code:

b

- (l-)-o(v2b2)-O(vlbl
P(E) <N

C(1-E) 1

L - o(v2b2)- o(vlbl 
=N 0 < R < C(1-E) . (145)

Since E can be made arbitrarily small, we establish the following theorem.

Theorem 5

Consider a two-stage productlike cascaded tree code in which a maximum-likelihood

decoder is used at each stage of decoding. Let N be the average number of calculations
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per decoded symbol made by the composite decoder. Then for any 6 > 0 it is possible

to find such a productlike code for which

P(E) {N[1+o(N)]}[( 1- 6)C/R] 0 <R < (1-6)C. (146)

Since 6 is arbitrary, (146) states that we can achieve a decoding error probability

that is arbitrarily close to N (C/R), provided N is sufficiently large.

Heuristically, we can achieve (146) by using an inner code whose rate, R 2 , is

perhaps (1- ) C. The constraint length of the inner code would be chosen sufficiently

large to reduce the decoding error probability to the point where the normalized R comp

seen by the outer code equals 1 - .. This specifies the decoding complexity of the inner

code, which may, of course, be very large. The outer code may be used at any nor-

malized rate not exceeding 1 - 2. When its constraint length is sufficiently large that

the decoding complexity of the outer decoder dominates the composite decoding com-

plexity, (146) will then be satisfied.

Theorems 4 and 5 appear to be somewhat paradoxical. Theorem 4 indicates that

tree-code cascading is efficient in terms of the coding theorem if a concatenationlike

coding system is used. For = 1, the coding-theorem efficiency is exactly 1/2 at all

rates below capacity. It is tempting to think that a concatenationlike code is necessary

to achieve nonzero coding-theorem efficiency. The composite constraint length of a

two-stage concatenationlike code is a = (+1)(Vl+l)blv 2 b2 , while that of a two-stage

product code is a = (v 1 +1)b 1 (v 2 +l)b 2. The decoding error probability for the outer

decoder is upper-bounded by

P(e) < exp -vlbl[E(R)-O(Vl b)] (147)

where R' is the rate of the outer code. If the code is productlike, E 1 (R') •< ln q so that,

expressed in terms of the composite constraint length in channel symbols,

P(E) < exp -a[E (R')-o(a)], (148)

where

ln q
E (R ) _< (149)

P (v 2 +1)b 2

Thus, as v 2b 2 becomes arbitrarily large, E p(R) becomes arbitrarily small. This indi-

cates that the efficiency of a productlike code cannot be lower-bounded by a nonzero

quantity at any rate below capacity. The only way to guarantee that a fixed efficiency

can be maintained is to have E(R' ) in (147) grow in proportion to v2b2, and this can be

accomplished-through concatenation by making the outer-code alphabet comprise

Lv 2 b 2 k symbols (where k = t 2 /b 2), as in (111), where and k are fixed quantities.

76



On the other hand, the discussion has indicated that for concatenationlike codes, the

asymptotic computational effort required to attain a given, extremely small decoding-

error probability at a given composite rate is a monotonically decreasing function of 4'.
The computational effort required for productlike codes is equal to the computational

effort required for concatenationlike codes in the limiting case as - 0. This result

leads to an apparent paradox: Concatenationlike codes have been shown to be efficient

in terms of the coding theorem, while there is no guarantee that productlike codes can

attain a nonzero efficiency at any rate. On the other hand, productlike codes are com-

putationally more efficient than concatenationlike codes with fixed, nonzero .

We can now further elaborate this paradox. The derivation leading to Theorem 4

showed that the coding-theorem efficiency of a concatenationlike cascaded tree code is

exactly 1/2 at all rates below capacity whenever 4 = 1. Furthermore, this value of is

optimal, in the sense that the efficiency at some rate is less than 1/2 for any other value

of . For > 1 the efficiency is strictly less than 1/2 at all rates below capacity. For

% < 1, the efficiency is less than 1/2 at very low rates.

An improvement in the efficiency T tt(R) occurs, however, for 4 < 1 at rates exceeding

RE(4). From Fig. 20, the error probability for a two-stage concatenationlike code in

which both codes are tree codes is

P(E) < exp -v bl 2 b2 [e(R )-o(v 2b 2 )-o(v l b1 )]

e(R) 
exp -vb1 V2b2(k+ ) d, + 1 o(v2b 2 ) - o(Vlb (150)

whenever R RE() and ' < 1. Thus

TT _ 1
Tr (R) + ' < 1, R RE(). (151)

TT
In particular, -r (R) becomes arbitrarily close to 1 at rates approaching capacity if

4 is fixed but arbitrarily small.

Equation 151 indicates that for a fixed , a concatenationlike code can achieve arbi-

trary coding-theorem efficiency as - 0. The result is suggestive of the possibility

that the coding-theorem efficiency for productlike codes is

TT
T1 (R) 1, R- C. (152)

We shall presently disprove that possibility. The derivation leading to (149) shows that

we cannot guarantee a nonzero efficiency for productlike codes. Now we shall present

an upper bound to the efficiency attainable by a productlike code. This bound will be

derived in terms of the lower bound to tree-code error probability presented by Viterbi.l7

In particular, we shall show that the error exponent in the lower bound for a product-

like code grows in proportion to v2b2, and this will be used to form an upper bound to
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the efficiency that may be possible with productlike codes. Then we shall show that

this upper bound is arbitrarily small as R - C, so that (152) is not satisfied for prod-

uctlike codes.

Viterbi 7 showed that the decoding-error probability of a tree code is lower-bounded

by

P(E) > exp -vb[eL(R) + o(vb)], (153)

where eL(R) is given parametrically by

eL(R) = Eo(P), 0 < p < oo (154)

and

E (P)
R - p (155)p

where E (p) is given by (45). Observe that eL(R) = e(R) for Rcomp < R < C.

We want to find a lower bound for the error probability of a productlike code that

can be expressed in the form

P(e) > exp -v lbl vb 2 eL(R)+o(vlbl )+o( 2 b2 )] (156)

This can be used to form an upper bound on the efficiency attainable with productlike

tree-code cascading. For simplicity, we consider the binary case, noting that our results

carry over to channels with larger alphabets.

Consider a two-stage productlike binary code in which both codes are tree codes.

Let the rate of the inner code be R 2 and let the normalized rate of the outer code be 1-i,

so that the composite rate is

R' = (1-[i)R 2 . (157)

The error probability from the inner decoder is bounded by

p < exp -v 2 b 2 [e(R 2 )-o(v2 b2 )]. (158)

Thus the E (p) seen by the outer code is expressed, using (45), by

E0(p) = pln 2 - (l+p) ln [(1-p)l/(+p) pl/(l+p)] (159)

As p becomes small by increasing v2 b 2 , (159) can be approximated by
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E (p) p in 2 - (l+p) In -
O

+ exp 5 v2b 2

1 +p

exp {-v 2 b 2[e(R 2 ) -o(v 2 b 2 )]}

l+p

- p in 2 - (+p) exp
2b 2

1 + P [e(R2 )-'2 b )]
(160)

(161)

Now we can express p implicitly in terms of the outer-code rate:

Eo(p)
R1 = (l-p) In 2 

P

(l+P) v 2b

a in 2 -- exp- 2 [e(R )-o(
-p + p 22 2

Let K be defined by

= exp -K.

Then (161) and (162) imply that

v2b2 (l+p)K 1 + [e(R 2 )-o(v2b 2)] - in p n 2

For large v2 b 2 and fixed K, therefore,

v b2 2
P < K [e(R 2 )-o(v 2 b2 )].

(162)

(163)

(164)

Using (161), (162), and (164) in (154), we find that

(1-p.)
eL(R) < 2b 2 -n (n 2)[e(R2 )-o(v 2 b 2 )].eL(' < v262 -ln I2

We wish to maximize (165) subject to (157), and we shall use the notation of (156) to

define

eL(R) =,
e JR) =

sup
R'=(1-)R 2

0<< <1

( 1-F )
(In 2)_1 e(R2).

-n ~ e 2)' (166)

We could construct eL(R) graphically from e(R 2 ) in a similar manner to that which

we used in Fig. 19 to construct E (R) from e(R 2 ). This procedure would provide little
insight, however, into the asymptotic behavior of e(R), especially at rates approaching

79

[e(R 2)-o(v b2 )]

_ 1_11 ^ _ _ _ _ _

(165)



capacity. It is simpler, perhaps, to rather crudely bound e(R). Let be defined by

R = (1-E)C. In the maximization of (166), we are constrained by R < R2 and now by

>j < E. Furthermore, the function

f(0) -In p. (167)

is a monotonic increasing function of p., 0 < < 1. Thus, clearly,

(1-E)

eL(R) < -I n e (n 2) e(R). (168)

L -slnE
As R - C, E - 0, and the ratio of eL(R) to e(R) in (168) becomes arbitrarily small.

The efficiency of a productlike code can now be upper bounded:

TT (1-E) In 2 R In 2
p (R) < -In = (169)

(R) -n -C in [1-(R/C)]

TT
Our crude upper bound on TT (R) establishes the apparent paradox: A productlike

code cannot attain any given level of efficiency in terms of the coding theorem at rates

sufficiently close to capacity, while a concatenationlike code can attain an efficiency

given by (151) at all rates exceeding RE(I), and this efficiency improves as b - 0.

5.4 PRACTICALITY OF CASCADING

We now come to the uncomfortable problem of assessing the practicality of tree-code

cascading. Certainly the results above suggest that the cascading of tree codes can be

efficient in terms of the coding theorem. The practical question is whether cascading

can provide superior performance to alternative decoding techniques at a decreased

decoding complexity. Unfortunately, we are unable to give an unqualified affirmative

answer to this question, given the current level of development of single-stage tree-code

decoding techniques. Nevertheless, we can show that there is an area of application,

mainly involving fairly noisy channels, in which the use of cascading appears to offer

at least marginal improvement.

5. 4. 1 Estimated Performance

We shall consider first the matter of which decoding techniques are appropriate for

decoding the constituent codes of a two-stage cascaded tree code. Then we shall provide

an example that illustrates the marginal improvement that might be gained by using a

cascaded tree code in contrast to a single-stage code that uses sequential decoding.

At first, we might consider utilizing either Viterbi algorithm decoding or sequential

decoding for both the inner code and the outer code. We shall presently demonstrate

that it is impractical to use the Viterbi algorithm for decoding the outer code. For rates
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above R omp, we show that if the coding theorem bound (7) is expressed as P(E) < PB'

a Viterbi algorithm decoder requires pB data storage registers and pB computations

per received branch. For a data-quality error probability such as PB = 10 , the com-
-1 6

plexity PB = 10 may well be prohibitive. For rates below Rcomp, we show that for a

given decoding error probability and a given computational and storage complexity, it

is possible to communicate at a higher rate using sequential decoding than at the attain-

able rate using the Viterbi decoding algorithm. Our results are obtained from Theo-

rems 6 and 7.

Theorem 6

Suppose the Viterbi decoding algorithm described in section 3. 2. 1 is applied to a

tree code operating at a rate t/b > R on a binary symmetric channel. Alternatively,
c omp

suppose the modified Viterbi decoding algorithm described in section 3. 2. 4 is applied

to a high-rate systematic convolutional code operating on a binary symmetric channel.

In either case, if the decoding-error probability bound given by the coding theorem is

PB' then the decoder must contain at least pBI data-storage registers, and it must make-1
at least PB calculations per received branch.

Proof of Theorem 6: First we consider the high-rate algorithm described in sec-

tion 3. 2. 4. For high-rate systematic convolutional codes, Bucher's32 results can be

manipulated to yield

P(E) < PB = exp -v[e(R)-o(v)]. (170)

This contrasts with exp -vbe(R) given by (7), which is the general tree-code coding theo-

rem bound for nonsystematic tree codes. Let PB be expressed as

-E
PB = 2 (171)

Since e(R) in 2 for binary codes, comparison of (170) and (148) implies that v E.

From section 3. 2. 4, the number of calculations per branch is at least 2 l , and the num-

ber of data-storage registers containing maximum-likelihood path history and accumu-

lated relative likelihoods must be at least 2. Thus

2 v+l > 2v > 2 (172)

thereby proving Theorem 6 for the high-rate algorithm described in section 3. 2. 4.

Now consider the Viterbi decoding algorithm described in section 3. 2. 1. Whenever

R > Romp, there is a p < 1 such that

e(R) = pR = p In 2. (173)
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Thus

P(E) < PB = exp -vb[e(R)-o(v)] = exp -vt[p ln2- o(vt)], (174)

where 0 < p < 1 for R < R < C. The required storage and the number of calcula-
comp

tions per branch, from section 3. 2. 1, is at least 2 . Thus, for R a R

2 vt > 2 tp > -1 (175)

thereby proving Theorem 6 for the Viterbi decoding algorithm described in section 3.2.1.

Theorem 6 indicates that for a maximum-likelihood decoder, it is not possible to

achieve a coding-theorem probability of error that exceeds the reciprocal of the decoding

complexity for R > R , while the discussion in section 5. 3. 2 indicates that this rela-
comp'

tionship is possible in the asymptotic limit of large complexity whenever R < R omp

Theorem 7

Consider using either the Viterbi decoding algorithm or sequential decoding to

achieve a decoding error probability p' with a data-storage capacity of N and a number

of calculations per received branch not exceeding N, where N < (p') . Then one can

communicate at a higher rate using sequential decoding than by using the Viterbi decoding

algorithm.

Proof of Theorem 7: In this case the rate t/b achievable when using the Viterbi

algorithm, from Theorem 6, must be less than R comp. Let > 1 be so defined that

R
t comp

(176)
v

Applying (7) and the results of section 3. 2. 1, we obtain a decoding-error probability

-vt[pv-o(vt)] *
bounded by, 2 , with a complexity N = 2 Thus, defining Pv = Pv- o(vt), we have

-1
P(E) < PB = (N l ) (177)

using the Viterbi decoding algorithm. For sequential decoding the probability of a buffer

overflow is bounded by an expression like (175). The rate achievable by using sequential

decoding is

R E, ) (178) 

Pv Pv

where E p is given by (45). Thus, since
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Eo(P )> Eo(1) = Rcomp' >1 (179)

from Gallager,3 R * > t/b, and Theorem 7 is proved.

Pv
Now we must determine what sort of decoding is appropriate for the inner code. Cer-

tainly, if we wish to communicate at a composite rate exceeding Rcomp, then the inner

code cannot be decoded by using sequential decoding. By using the Viterbi algorithm for

decoding an inner code with a sufficiently large constraint length, it is theoretically pos-

sible to use sequential decoding on the outer code and to communicate at any rate below

channel capacity. (This subject will be treated in section 5. 4. 2.) The practical question

is whether a reasonably short inner code can be used to reduce the error probability suf-

ficiently that sequential decoding may be used effectively on the outer code.

One application in which cascading appears to be somewhat effective is in increasing

the rate at which a communication system can operate with a given, small decoding-

error probability, with little increase in complexity over a one-stage coding system using

sequential decoding. The improvement is especially noticeable for relatively noisy chan-

nels as, for example, the binary symmetric channel with an error probability exceeding

.05. Example 4 illustrates this application.

Example 4. We compare two coding systems, designed to yield a decoding error prob-

ability of 10- 8 with a storage requirement of approximately 104 symbols, at an arbitrary

binary channel error probability p. The first system will be a one-stage coding system

in which a tree code is decoded by using sequential decoding, and the second system will

be a two-stage productlike cascaded tree-code coding system in which the inner code is

decoded according to the Viterbi decoding algorithm and the outer code is decoded by

using sequential decoding. [We have also considered an example in which the cascaded

tree code was concatenationlike, and in which 2m-ary symbols were supplied to the outer

decoder. The productlike system described here outperformed any concatenationlike

system in which m > 1.] The basis of comparison will be to determine the ratio of the

rates attainable by the two systems, allowing an approximate 10% increase in storage

for the cascaded system.

We assume that the constraint lengths of the single-stage code and of the outer code

in the cascaded system are sufficiently long that the decoding-error probability is negli-

gible compared with the probability of a buffer overflow. Thus the dominant source of

sequential decoder failure is a buffer overflow, whose probability is given by (46). For
-8 4

our example, P(E) = 10 and N = 10 , so that (46) implies that p = 2. We further assume

that in the cascaded system, the interleaver causes the effective channel seen by the

sequential to be accurately modeled by a binary symmetric channel whose error prob-

ability is bounded by the approximation (96) given in section 4. 2. 4.

For the single-stage code, the attainable normalized rate using sequential decoding

with p = 2, from (47) and (4), is
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R =R R2 = - 23 n [(1-p)l/3+p/3] (180)

If the inner code of the cascaded system is characterized by the parameters (v, t, b, 2),

the normalized rate attainable with the cascaded system is bounded by

R > - 2n2 n [(1-PB) Ps ] } (181)

where the decoding error probability of the inner code is estimated from (96).

P(E) < PB = 0. 25 exp -vbe(bln 2). (182)

We can define the rate improvement, I, as the fractional gain in rate obtained by

using the cascaded system compared with the rate attainable with the single-stage sys-

tem:

R
I =R _1. (183)

2

In Table 8 we have tabulated I as a function of p for the inner codes whose rates

and constraint lengths are given. For p .10, 12 has been maximized, subject to the

conditions that vt < 10 and v and t are integers. For p > .10, the values obtained for

I are believed to be typically good, but it is possible that they could be further increased

by adjusting R and v slightly. Figure 21 shows the improvement factor for our example

plotted as a function of p.

Example 4 indicates that for p .05, a rate improvement of typically 20% is attain-

able for a two-stage cascaded tree-code coding system whose complexity is at least 10%

greater than that of a single-stage sequential decoding system. It is doubtful whether

the improvement obtained by using cascading would be worth the additional cost of its

implementation.

We have been unable to discover applications using currently known tree-code

decoding techniques in which tree-code cascading offers substantially more improvement

over the performance of a single-stage tree code than was accomplished in Example 4.

Further accomplishments in developing tree-code decoding techniques will be required

before cascading can be made very practical. Several developments could make cas-

cading very effective, as is suggested in section 5. 3. One development that would offer

substantial improvements for cascading would be to discover a class of tree codes like

the BCH block codes that could be easily decoded, and in which the short members at

least are efficient in terms of the coding theorem. Better yet would be the discovery

of efficient codes operating in higher order alphabets that could be easily decoded, like

the Reed-Solomon block codes. Finally, cascading could be made effective at high rates

if a modification to the basic Viterbi decoding algorithm like the one described in
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Table 8. Representative rate improvement for p = 2.

P R v R 2 (p) R 2 (p') I

.02 2/3

.03 5/9

.04 1/2

.05 1/2

,06 5/11

.07 2/5

.08 2/5

.09 5/14

.10 1/3

.11 1/3

.12 2/7

.13 2/7

.14 1/4

.15 1/4

.16 1/5

.20 1/6

.25 1/10

.30 1/17

0.30

0.20
I-

z

UJ

o

I 0.10

0

5 .483

2 .428

10 .385

10 .349

2 .319

5 .290

5 .266

2 .247

10 .225

10 .205

5 .193

5 .179

10 .166

10 .157

10 .143

10 .104

10 .0693

10 .0404

Fig. 21. Rate
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improvement for Example 4.
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section 3. 2. 4 could be found which would be applicable to efficient nonsystematic high-

rate convolutional codes.

5. 4. 2 Sequential Decoding at Rates Exceeding R
comp

Consider now the concatenationlike tree code described in section 5. 2. 2. We shall

show that it is possible, in the asymptotic limit as v 2 becomes very large, to communi-

cate at any rate below channel capacity by using a Viterbi algorithm decoder for the inner

code and by using sequential decoding to decode the outer code, provided the ratio of m

to v2 b2 is kept below some bound depending on R, C, and Rcomp.

At first, it might appear that our assertion contradicts Stiglitz's results. Actually,

Stiglitz's results were derived for a two-stage code cascading system in which the inner

code is an (n, k) block code with symbols from a q-ary alphabet. For that system, he

showed that one could not consider the decoded blocks as symbols from a q -ary alpha-

bet, and apply sequential decoding to these q -ary symbols at a composite rate exceeding

R omp. He did, however, quote Pinsker's 2 9 result that sequential decoding could be

~~~~~compapplied at a composite rate exceeding Romp to the individual q-ary symbols obtained

from the decoded blocks, provided that they were made to look independent to the

decoder. We shall generalize Pinsker's results.

Before proceeding with the derivation, we mention that the required independence
m

of the q -ary symbols seen by the outer decoder can be attained by choosing the param-

eters a and of the (a,j ) interleaver in Fig. 18 sufficiently large. We shall not elab-

orate here, since this is a problem that is more appropriate for simulation studies than

for an analytical solution.

Thus we assume that the derived channel seen by the outer decoder contains statisti-
m m

cally independent q -ary symbols whose transition probabilities are given by the q -ary

symmetric channel transition probabilities (119). We recall that Forney showed that
m m

the q -ary symmetric channel is the worst among all possible q -ary channels, in the

sense that its error exponent is lowest for a given q -ary error probability. Thus if
m

we can prove our assertion for the q -ary symmetric channel, which, incidentally, is

a reasonably accurate model in our application, then our assertion also applies to any
m

q -ary DMC.

Let the inner code operate at a rate R, where R < R < C. The normalized
':"m comp

R for the 2-ary symmetric channel seen by the outer decoder is
comp

Rcomp > 1 m 2 In (1-p )1/2+ (2 m-1)/2 p1/2] (184)
comp m In 2 m m

where m < m exp -v 2 b2[e(R)-o(v2 b 2)]. We shall show that if m/v 2 b2 is kept below a

value depending on R, C, and R then for sufficiently large v 2 , R' > 1 - E for
comp . 2' comp

any E > 0. Then, to communicate at a composite rate Rc = RRcomp > (1-6)C, for some

6 > 0, and still be able to use sequential decoding for decoding the outer code, we can

set R = (1- ) and E = so that Rc (1-6 + 2 C > (1-6)C. This will verify
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our original assertion.

For large v 2 and m, either 2 or Pm dominates the right-hand expression in brack-
2 m 

ets in (184). If Pm becomes arbitrarily small, then the entire right-hand term

in (184) becomes small, and R* > 1 - E for some E > 0. The condition for
m comp

2 Pm to become arbitrarily small is

m e(R)- o(v 2 b 2 )
b < In 2 (185)

Thus, if (185) is satisfied, it is possible to make R approach 1 arbitrarily closely
comp

by sufficiently increasing v2 b2 , and hence to enable the use of sequential decoding on

the outer stage of coding at any composite rate below capacity.
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VI. REALIZATION OF OPTIMUM INTERLEAVERS

6. 1 INTRODUCTORY CONCEPTS

An interleaver is a device that rearranges the ordering of a sequence of symbols in

some one-to-one, deterministic manner. Associated with any interleaver is an

unscrambler, which is the device that restores the reordered sequence to its original

ordering. Interleavers and unscramblers have a variety of applications in cryptography

and in communication technology.

In sections 5. 1 and 5. 2 interleavers are employed in the generation of several classes

of cascaded codes. In the applications dealing with block codes, it is somewhat natural

to consider using block interleavers. An example of such a block interleaving function

is to divide symbol sequences into blocks corresponding to a two-dimensional array,

and to conceptually read the symbols in by rows and out by columns.

In the applications dealing with convolutional codes, such as those given in sec-

tion 5. 2, it is more natural to consider synchronous interleavers, in which a symbol

is read out each time a symbol is read in. Synchronous interleavers are a more gen-

eral class of interleavers than block interleavers, since any block interleaving func-

tion can be realized by a synchronous interleaver.

Interleavers and unscramblers are characterized by their encoding delay D, which

is the maximum delay encountered by any symbol before it is inserted into the output

sequence, and by the storage capacities S and Su, which are the number of symbols

stored by the interleaver and by the unscrambler, respectively.

We define the class of (n 2 ,n1 ) interleavers to be those interleavers that reorder

a sequence so that no contiguous sequence of n2 symbols in the reordered sequence con-

tains any symbols that were separated by fewer than n 1 symbols in the original ordering.

We shall present four simple but similar techniques for realizing synchronous

(n2 , n1 ) interleavers. We shall derive lower bounds for the encoding delay and for

the combined storage capacity, S + Su , achievable by any (n2 , n1 ) interleaver. An (n 2 ,n1 )

interleaver is optimum if it achieves both the minimum possible encoding delay and the

minimum possible combined storage capacity. For any n and n2 satisfying certain

relative primeness conditions, one of the techniques that will be described achieves the

minimum possible encoding delay. Then we shall describe reduced-storage versions

of these interleavers that also achieve the minimum possible combined storage capac-

ity, and therefore are optimum. Our results are similar to results independently

obtained by Forney. 3 3

Let ... , a , a , . .. be the sequence of symbols in the output sequence, where
Z1 z2

..., Zl' z2' .. are the positions of these symbols in the original ordering. For an

(n 2 , n1 ) interleaver, therefore,

1z.-z.j n1 (186 a)
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whenever

Ii-j n2 - 1. (186b)

Hereafter it will be useful to recognize that the unscrambler for an (n2 , n1 ) inter-

leaver is itself an (n 1 , n 2 ) interleaver. This assertion can be verified through the fol-

lowing arguments. Again let ... , az, a, ... be the sequence of symbols in the
"1 Z2

output of the interleaver, which is also the input to the unscrambler, where .... z,

Z2' ... are the positions of these symbols in the original ordering. Let .... z, ...

be the positions of these symbols in the output of the unscrambler. Since the

unscrambler restores the sequence to its original ordering,

z = z. + D', all i, (187)
1 1

where D' is a fixed delay introduced by the interleaving-unscrambling process. Thus

(186) continues to apply to z and z; that is,

I z-z'j anl (188a)ij

whenever

i-j | -n2 1. (188b)

But (188) implies that if

Iz!-zjl I - n1 - 1 (189a)1j

then

|i-j n2 . (189b)

This completes the verification, since (189) defines an (n 1 ,n 2 ) interleaver.

The encoding delay is defined as

D = sup (j-z ), (190)
where j z because the interleave is assumed to be physically realizable. It is

where j z because the interleaver is assumed to be physically realizable. It is
assumed that

d = inf (j-z )= 0, (191)
J j

since D could be reduced by d if d > 0. It follows that the delay introduced by the com-

bined interleaving and unscrambling operations is also D, which can be seen if

z! = z. + D. (192)
3 3
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Finally, if D is the encoding delay of the unscrambler, then
U

D = sup (zj-j) = D. (193)

Thus the encoding delays of the interleaver and the unscrambler are both equal to the

delay introduced by the over-all interleaving-unscrambling operation.

An (n2 , n1 ) interleaver is said to be uniform if the members of every set of n2 con-

tiguous symbols in the output sequence are mutually separated by at least n1 symbols

in the input sequence, but there is no set of n2 + 1 or more contiguous symbols in the

output sequence in which the members are mutually separated by at least n symbols in

the input sequence. Clearly, an (n 2 , n l ) interleaver is either uniform or nonuniform:

If it is nonuniform, then the members of some set of n2 + 1 or more contiguous symbols

in the output sequence are mutually separated by at least n1 symbols in the input

sequence.

6.2 FOUR BASIC INTERLEAVING TECHNIQUES

We shall now describe four basic methods of using a commutator and a tapped shift

register to realize an (n2 , n1 ) interleaver. Subsequently, we shall show that at each

point in the (n2 , n1 ) plane satisfying a relative primeness condition a modification of one

of these methods realizes an optimum (n Z, nl) interleaver.

6. 2. 1 Type I (n 2 , n l ) Interleaver

Whenever n and n2 + 1 are relatively prime and nl > n2 + 1, the device shown in

Fig. 22 is a nonuniform (n 2 n1 ) interleaver. That device comprises an [n 2 (n 1 -1)+1]-

stage shift register with taps at the outermost stages and at every (nl-l)th inter-
mediate stage, and an (n2 +1)-position commutator that cyclically samples the n2 + 1 taps

TAP NO: n2 k- I 1 0

STAGE NO: n2(n- 1) (k- 1) (nl- 1) n1 n- 1 0

Fig. 22. Type I (n2 , nl) interleaver.

in reverse order of their distances from the input of the shift register. Observe that

the encoding delay of this device is n(n 1l-).
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Two assertions must be verified to prove that the device is an (n 2 , n1 ) interleaver:

(i) no contiguous sequence of n2 output symbols contains symbols that were separated

by fewer than n symbols in the input sequence; and (ii) each symbol in the input

sequence eventually appears in the output sequence. Condition (i) ensures that the

device performs the required symbol separation, while condition (ii) is required to show

that the device provides a one-to-one mapping of the input sequence into the output

sequence.

Assertion (i): Suppose that symbols ak through ak+n (n 1) are stored in order in shift-

register stages 0 through n2 (nl-1) when the commutator is at position 0. The device

proceeds as follows: Symbol ak is read out, a new symbol is shifted into the shift regis-

ter, the commutator is advanced to position 1, symbol ak+n is read out, and so on. The
1

ordering of symbols in the output sequence is, therefore, ak, ak+n l ak+2n

ak+jnl' ' ak+n2nl' ak+n+1' ak+n2+n+ 1 ' ' ak+n2+jnl+1 We must showkijn1 2 1 ~2 ~ ~l ~ jn1+l . We must show
that each set of n 2 contiguous output symbols has the required separation. Certainly,

each set starting with symbols ak or ak+n has the required separation. Consider now the

set of n 2 contiguous symbols in the output sequence starting with ak+jn 1 and ending with

ak+n+(j-2)nl+l 2 < j n2. This set can be divided into two subsets, one of which contains

symbols ak+jn 1 through ak+n2 n ,and the other symbols ak+n2 +1 through ak+n2+(j-2)n+l.

Each subset obviously has the required separation. The lowest index in the first subset

is k+jnl, while the highest index in the second subset is k+n 2 + (j-2)nl+l. If

(k+jn1 ) - [k+n2 +(j-2)n 1+l] = 2n1 - nZ - 1 n 1, (194)

or equivalently if n1 > n2+l, then the entire set has the required separation, since

no symbol from one subset was within n symbols of any symbol from the other sub-

set in the original ordering. If n < n, however, the entire set does not have the

required separation because the symbol with index k + n2 + (j-2)n 1 + 1 must have been

within n 1 symbols of some symbol from the first subset in the original ordering.

This completes the proof of Assertion (i).

Assertion (ii): We must show that each input symbol appears somewhere in the out-

put sequence whenever n and n2 + 1 are relatively prime. Let the commutator be

at an arbitrary position j when the symbol a is first shifted into the shift register.

The symbol a appears at tap k after (n 2 -k)(nl-l) shifts, and it is read out then

if and only if the position of the commutator is also k. But the position of the com-

mutator after (n 2 -k)(nl-1) shifts is [j+(n2 -k)(nl-1Y] mod(n2+1) = [j-(k+l)(nl-1)] mod(n2 +1).

Therefore the required condition for ao to be read out at tap k is

[j-(k+l)(nl-1)-k] mod(n2+1) = [j-(k+l)nl+l] mod(n2 +l) = 0, (195)
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or equivalently if

(kn1) mod(n 2 +1) = a, (196)

where a = (j-n 1 +l) mod(n 2 +1).

If n1 and n2 + 1 are relatively prime, then (196) is satisfied for one and only one

value of k in the range 0 - k - n2 , so that an arbitrary symbol a appears once and only

once in the output sequence. This establishes Assertion (ii) and verifies that under

the given conditions the device shown in Fig. 22 is indeed an (n2 , n1 ) interleaver.

TAP NO: n2 k-I 1 0

STAGE NO: n2 (nl-l) (k-l) (n-l1) n1-1 I 0

Fig. 23. Unscrambler for the Type I (n2 , n l) interleaver.

The device shown in Fig. 23 is a simple realization of an unscrambler for the inter-

leaver shown in Fig. 22. By comparing Figs. 22 and 23, the reader may verify that

this device restores the original ordering of the sequence of symbols.

6. 2. 2 Type II (n2 n 1 ) Interleaver

Recall that the unscrambling device for an (n2 , n l) interleaver is an (n1 , n2 ) inter-

leaver. Using this fact, we see that whenever n2 and nl+l are relatively prime, and

n2 >n1 + 1, an (n2 , n1 ) interleaver can be realized by a device comprising an [nl(n 2 -1)+1]-

stage shift register with taps at the outermost stages and at every (nz-l)th intermediate

stage, and an (nl+1)-position commutator that cyclically inserts input symbols into the

nl+l taps in reverse order of their distances from the input of the shift register. The

configuration for this device is shown in Fig. 23 with the parameters n1 and n 2 inter-

changed. The corresponding unscrambler can be realized by the device shown in

Fig. 22, again with the parameters nl and n2 interchanged.

6. 2. 3 Type III (n 2 , n1 ) Interleaver .

Whenever n1 and n2 are relatively prime, the device shown in Fig. 24 is an (n 2 , n 1)

interleaver. That device consists of an [(n 2 -l)(nl+l)+l]-stage shift register with taps at

the outermost stages and at every (nl+l)th intermediate stage, and an n2 -position

_��� __ I ----



commutator that cyclically samples the n 2 taps in the same order as their distances

from the input of the shift register. The encoding delay of this device is therefore

(nz -1 )(n 1 +1).

A verification that the device shown in Fig. 25 is indeed an (n2 , nl) interleaver when-

ever n 1 and n2 are relatively prime can be given in a manner similar to that given

in section 6. 2. 1 for the Type I interleaver. We shall omit doing so here. Observe that

the ordering of symbols in the output sequence is ... , ak, akn akn ....
k-n1 .... 1

k-(n2-l)nl, ak+n2. ak+n.2-nl' * *so that whenever nl >nZ , the device shown in Fig. 25

is a uniform (n 2 ,n 1 ) interleaver.

A simple realization of an unscrambler for the interleaver of Fig. 24 is given by

the device shown in Fig. 25.

TAP NO: n2-1 n2-2 k-1 1 0

STAGE NO: (n2-l) (nl+l) (n2-2) (nl+l) (k-l) (n1 +) nl+l 1 0

Fig. 24. Type III (n 2 , nl) interleaver.

INPUT

OUTPUT

TAP NO: n2-1 n2-
2

k-1 0

STAGE NO: (n2-1) (nl+) (n2-2) (nl+l) (k-l) (nl+l) 1 0

Fig. 25. Unscrambler for the Type III (n 2 , n) interleaver.

6.2.4 Type IV (n 2 ,n1 ) Interleaver

Whenever n and n2 are relatively prime, an (n 2 , n1 ) interleaver can be realized by

a device comprising an [(nl-1)(n 2 +1)+l]-stage shift register with taps at the outermost
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stages and at every (n 2 +1)th intermediate stage, and an nl-position commutator that

cyclically inserts input symbols into the n taps in the same order as their distances

from the input of the shift register. The configuration for this device is shown in Fig. 25

with the parameters n and n2 interchanged. The corresponding unscrambler can

be realized by the device shown in Fig. 24, with the parameters n and n2 inter-

changed.

6. 3 OPTIMVLALITY OF ENCODING DELAY

We shall now show that one of the interleavers of Types I-IV achieves the minimum

possible encoding delay for any (n2 , nl) interleaver, provided the appropriate relative

primeness conditions between n1 and n2 are satisfied. We first demonstrate that when-

ever n > n2 , either a Type I interleaver or a Type III interleaver achieves the mini-

mum possible encoding delay.

Theorems 8 and 9 are proved in Appendix A.

Theorem 8

The encoding delay for a nonuniform (n 2 , n1 ) interleaver is at least n2 (nl-).

Theorem 9

The encoding delay for a uniform (n2 , nl) interleaver is at least (n 2 -1)(nl+l1).

Theorems 8 and 9 are precise statements of the facts that whenever nl > n2 , Type I

and Type III interleavers achieve the minimum possible encoding delay for nonuniform

and uniform (n2 , n1 ) interleavers, respectively. Observe that a Type I interleaver pro-

vides the minimum possible encoding delay for any (n2 , n 1 ) interleaver for which n 2 <

nl < 2n 2 , and a Type III interleaver provides the minimum possible encoding delay for

any (n 2 , n 1 ) interleaver for which n 2n 2 , provided the appropriate relative primeness

conditions on n and n2 are met.

We shall now demonstrate that whenever n < n 2 , either a Type II interleaver or a

Type IV interleaver achieves the minimum possible encoding delay.

Theorem 10

If an interleaver achieves the minimum possible encoding delay for any (n2 , n1 )

interleaver, its unscrambler is an (n1 , n2 ) interleaver that achieves the minimum pos-

sible encoding delay for any (nl, n 2 ) interleaver.

Proof of Theorem 10: Recall that an interleaver and its unscrambler both have the

same encoding delay, and that the unscrambler for an (n2 , n1 ) interleaver is itself an

(n 1, n2 ) interleaver. Suppose the theorem were not true. Then the unscrambler for the

minimum-delay (n, n 2 ) interleaver would be an (n 2 , n1) interleaver whose delay is less

than that of the minimum-delay (n 2, n 1) interleaver. But this is a contradiction, so the

theorem must be true.

In conjunction with Theorems 8 and 9, Theorem 10 asserts that a Type II interleaver
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provides the minimum possible encoding delay for any (n 2 , n1 ) interleaver for which

n 1 < n 2 < Zn 1 , and a Type IV interleaver provides the minimum possible encoding delay

for any (n 2 , n1 ) interleaver for which n2 > Zn 1 , provided the appropriate relative prime-

ness conditions on n and n 2 are met. Thus, for any values of n and n2 that satisfy

the appropriate relative primeness conditions, one of the interleavers of Types I-IV

achieves the minimum possible encoding delay.

6.4 REDUCTION AND OPTIMALITY OF STORAGE

Although the basic interleaving techniques achieve the minimum possible encoding

delay for any (n 2 ,n 1 ) interleaver, they are somewhat wasteful of storage. For example,

many of the symbols stored in the later shift-register stages of the Type I or the Type III

interleaver have already been read into the output sequence. This fact suggests that it

might be possible to reduce the storage capacity of these interleavers without changing

their interleaving functions. We shall now describe a technique for efficiently reducing

the storage capacity of the basic interleavers, and then demonstrate that these reduced-

storage interleavers require the minimum possible combined storage capacity for any

(n 2, nl ) interleaver.

We shall examine in some detail techniques for reducing the storage capacity

of a Type I interleaver. Consider the symbols that must be stored by the interleaver

at any given time. Recall that the ordering of the input symbols in the output sequence

is ak ak+nl ak+Znl' . ak+n 2n ak+n2+1' ak+n2+1+nl ... , for some n > n2 We
1 1 ZikZ2k+n Zn ak+n2 , ak+n2 1 1 2.

now describe the symbols that must be stored in the interleaver from the time sym-

bol ak is read out until symbol ak+n n is read out. From the time symbol ak is

read out of tap 0, the ordering of input symbols read out of tap j is ak+jnl

ak+jnl+n2+l' ak+jn+2(n2+1)' ... 0 j < n2 . Thus symbol ak+nl is the first input
symbol that will be read out of tap 1. Let us list all of the input symbols received

before symbol ak+n that must still be stored by the interleaver. These are the

Lni - + 1 symbols, alk ak+nl .+1' ak+f(nz+l), for all (n 2 +1) <n 1 , where "LxJ"

means "the greatest integer contained in x. " All of these symbols will be read out of

tap 0. Similarly, symbol ak+Zn is the first input symbol that will be read out of tap Z.

The input symbols that were received before symbol ak+2n that must still be stored
1

by the interleaver are the Lnz/(nz+1)j + 1 symbols ak+n . ak+n l +(n+ for all

2(n2 +l) < n 1 , and the LZnl/ (n 2 +l)j + 1 symbols ak' ... , ak+2(n2+1) for all .(n 2 +) <

Zn 1 . The first Lnl / (n 2 +1)J + 1 of these symbols will be read out of tap 0, as we have

just seen, and then the remainder of these symbols will alternatively be read out

of taps 1 and 0. This listing can be continued in an obvious manner. We find that

the input symbols that were received before symbol ak+jn1 that must still be
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stored by the interleaver include Lnl/(n2+1)j +1 symbols to be read out of tap j - 1,

Lnl/(nz+l) +1 symbols to be read out of tap j - 2, and so on down to Ljnl/(n2 +l +1
symbols to be read out of tap 0, 1 j n2 . The total amount of storage capacity

required before symbol ak+jn is read out is not quite the sum of these quantities,

however, since symbol ak+in may be discarded from storage after it has been read

out. The total required storage capacity for the interleaver is therefore

n Z

S = + Lkn1 /(n2+1 (197)

k=l

But

n2 n2

E Lknl/(n2+1)i = Z L(n2+1-k)n/(n2+1)i
k=l k=l

n2

2 Inl knl/(nz+1)
k=l

n2

nz(nl-) - I Lknl/(n2+1) (198)

k=l

The last equality follows from the fact that n1 and n+1 are relatively prime. Therefore
1

(197) becomes S = I n2 (nl-1)+1. This represents almost a 50% reduction in storage

capacity from that used by the Type I interleaver.

The preceding discussion suggests an algorithm for constructing and using an inter-

leaver with minimum storage capacity whose operation is identical to that of the Type I

interleaver. We shall first describe the algorithm and then provide a simple example

to illustrate its use.

The interleaver is an [ n 2(nl-l)+l]-stage shift register with taps at positions 0,

k
1n 1 /(n 2 +1), Ljnl/(nz+1i . .. nn(nl-1), where the shift-register stages and

the tap positions are labeled in reverse order of their distance from the input. For nota-

tional purposes, define = Lnl/(nz+1). Assume that symbols ak, ak+nz+l ....

a +p(nz+ a k nI aak+(+l)(na2+,1) ak+nl+n2+l * * are stored in order in the shift-

register stages. The algorithm proceeds as follows.

1. Read out symbol ak from tap 0; then shift in a new input symbol.
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2. Read out symbol ak+n from tap 1; then shift in a new input symbol, but shift

only the shift-register stages from the input through tap 1.

3. For each j, 0 - j n2 , continue the process in the obvious manner: Read out

symbol ak+jn 1 from tap j; then shift in a new input symbol, but shift only the shift-

register stages from the input through tap j.

4. After symbol ak+n n has been read out and a new input symbol has been shifted

into the last shift-register stage, go back and keep repeating steps 1-4.

Example 5

This algorithm can be more easily understood by means of a simple example. Con-

sider a Type I interleaver for which nl = 7, n2 = 3. It is evident that the ordering of

input symbols in the output sequence is 0, 7, 14, 21, 4, 11, 18, 25, 8, 15, 22, 29, ...

Now consider the operation of the interleaver shown in Fig. 26, which was designed

Fig. 26. Interleaver for Example 5.

according to the construction procedure just described. It is a 10-stage shift

register with taps at stages 0, 1, 4, and 9. Table 9 lists the symbols stored

in the shift-register stages and the symbols that are read out from the initial

conditions through the first 5 shifts. The operation of this interleaver is iden-

tical to that of the corresponding Type I interleaver, but it requires only 10 shift-

register stages instead of 19.

Similar storage-reducing techniques can be applied to the Type II, III, and

IV interleavers. The details will not be given here, since they follow closely

the methods just described for reducing the storage capacity of Type I inter-

leavers. It turns out that the reduced-storage version of each type of inter-

leaver requires 2 D + 1 storage elements, where D is the encoding delay of

the basic interleaver. We shall now demonstrate that this realization achieves

the minimum possible combined storage capacity for any (n 2 , n1 ) interleaver and

its unscrambler.
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Table 9. Steps of interleaver operation for Example 5.

Initial
Content s

Shift 1

Shift 2

Shift 3

Shift 4

Shift 5

Symbols Stored in Stages

9 8 7 6 5 4 3 2 1 0

18 16 15 14 12 11 8 7 4 0

19 18 16 15 14 12 11 8 7 4

20 19 18 16 15 14 12 11 8 4

21 20 19 18 16 15 12 11 8 4

22 20 19 18 16 15 12 11 8 4

23 22 20 19 18 16 15 12 11 8

Symbol
Read Out

0

7

14

21

4

11

Theorem 11

S + S D.u (199)

Proof of Theorem 11: The effect of the combined interleaver-unscrambler operation

is to delay the original sequence by D symbols. At the very least, therefore, symbols

ai+1 , ai+2 , . . ., ai+D must be stored in either the interleaver or the unscrambler when

symbol a i is read out of the unscrambler.

We have shown that at every point in the (n1 , n2 ) plane satisfying the appropriate rela-

tive primeness conditions one of the four basic interleaver realizations achieves the min-

imum possible encoding delay. We have then shown that for the reduced-storage

versions of these interleavers and unscramblers,

S+S = D+2,
u

(200)

Both the interleaver and its unscrambler contain one stage of storage more than is

absolutely necessary (consider Example 5 with shift-register stage 9 removed), but this

initial stage is generally desirable in practical realizations. Except for this

Table 10. Summary of optimum interleaver parameters.

Encoding Delay;
also Combined Range of

Type Storage Capacity Optimality Restrictions

I n2(n-1) n2 < n1 < 2n2 n1 , n2 + 1 relatively prime

II nl(n2 -1) n1 <n 2
< 2n n2 n1 + 1 relatively prime

III (n 2 -1)(nl+l) nl 2n 2 n ni 2n relatively prime

IV (nl-1)(n2 +1) n2 Ž 2n1 n, n2 relatively prime1 2 2 1~~~~nl n2
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technicality, the reduced-storage interleavers achieve the minimum possible com-

bined storage requirements for any (n2 , n1 ) interleaver and its unscrambler.

We summarize the properties of the optimal interleavers that we have found in

Table 10.
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APPENDIX A

Proof of Theorems 8 and 9

To prove Theorem 8 we use the following lemma.

Lemma A. 1

Let a , a a be a set of n contiguous symbols in the output sequence of an

interleaver, and z1, z2 . zn be the positions of these symbols in the input sequence.

Let z. = max {Zi. } zn1 and zj min {Z. , Z } i i j. Then the encoding delay for

the interleaver is at least (zi-z ) - (i-j).

Proof: From sec. 6. 1, since D = sup (j-zj) and 0 = inf (j-zj), then
JJ J

D i (zi-z) - (-j)= (j-zj) - (i-zi) > -D. (A. 1)

Proof of Theorem 8: Let a , a , . .. , a be a set of n +a contiguous symbol
Z1 2n 2+a

in the output sequence, and zl, z 2 ' .. . Zn2+a be the positions of these symbols in the

input sequence, where {Z Z2 . . . , Zn +a} are mutually separated by at least nl. Let

Zi = max {z, z 2 . z }, and z = min {Z Z1 2,. Z., z a Since the positions are
1r mutalysepa d n2 +a n2 +a

are mutually separated by at least n,

S

(A. 2)
Zi - zj >(n2+a-l)n

On the other hand,

1 P<i, j n2 + a, i j, (A. 3)

(A. 4)

so that

i - j n 2 + a - 1.

Applying Lemma A. 1, we obtain

D > (zi-zj ) - (i-j)
i j

> (n2+a-l)n1 - (n 2 +a-1 )

= (n 2 +a-1)(n l -1). (A. 5)

For a nonuniform (n2 , n1 ) interleaver, a > 1, and Theorem 8 is proved.

Before proving Theorem 9, we shall first establish some intermediate results. We

define a subblock to be the set {a , a , ... , a } of n2 contiguous symbols in the output

sequence, where z 1z 2 . ns 
sequence, wh'rle z1, zI, . -Zn denote the positions of these symbols in the input

2
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sequence. The k h adjacent subblock is the set az a ,, a 
l (1+kn 2 ) (z2+kn 2 ) (n2 +kn 2 )

of n2 contiguous symbols in the output sequence. The relative ordering of a subblock

is defined to be the ordering of the input positions z1, z 2 ... , n

Lemma A. 2

For a uniform (n2 , nl) interleaver, the relative ordering of contiguous subblocks is
the same.

Proof: From the definition of a uniform (n2 , nl) interleaver,

I Zk-n2-ZkI < n (A. 6)

Suppose the relative ordering of two contiguous subblocks differs. Then, for some i and
j in the range 1 i j n2 ,

zi > Z. + n 1, (A. 7)

while

Zj+n Zi+n + n (A. 8)

Suppose i > j. Using (A. 8), we obtain

Zi+n Z = Z Z j+n Zj+n Zi

-n 1+ (Zj+nz-Zi). (A. 9)

Since I i+n -Zil < n from (A. 6), (A. 9) implies
2

Zj+n Zi >0. (A. 10)

Using (A. 7), however, we have

Zj+nZ - zj = Zj - z + z i -

>n 1 + (Zj+n2-i). (A. 11)

Since from (A. 6) z+n-ZI < n1 , (A. 11) implies

Z+n- Zi< 0. (A. 12)

But (A. 10) and (A. 12) are contradictory. A similar contradiction exists when

i < j. Thus the relative ordering of two contiguous subblocks cannot differ, and

the lemma is proved.
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Lemma A. 3

Let the boundaries of a subblock of output symbols from a uniform (n 2, nl) inter-

leaver be chosen so that Z1 = min{zl, z .... Zn }. Furthermore, let a = (n z+- ) <n 1 .

Then max {z 2, z3 ... Zn } a Z1 + (n2 -1)n 1 + a.

Proof: Let zi = min {Z Z3 * * Zn }. Since the members of all sets of n2 contig-

uous symbols in the output sequence are mutually separated by at least n1 symbols in

the input sequence, z i > z1 + a + n1 , and thus max {Z2, Z3 Zn2 . I + (n2)nl + a.

Lemma A. 4

Let the boundaries of a subblock of output symbols from a uniform (n2 , n1 )

interleaver be chosen so that zl = min {z1,' Z . . Zn }. Furthermore, let 1 a =
2

(n2+1 - z 1) < n and 1 a2 = (Zn 2 + 1 -znZ+ 1 ) < n1 . Then, unless z 2 > z3 > ... > Zz

max {Z2, Z3 . Zn2} > Z1 + (n2-1)n1 + a1 + a2.

Proof: Suppose that the condition z2 > z . .. > z is not satisfied. Then there are
2 

two indices j and k such that j < k and z. < z k . Without loss of generality, suppose

that z is the t h lowest number of the set {Z, Z22, Zn and k is the (+1)th lowest

number of the set. A simple extension of the proof of Lemma A. 3 establishes that

Zn+j > Z1 + (-l)n1 + a1 + a2 . Then, since j < k, zk > Zn2+j + n =z 1 + n 1 + a + a 2

so that max z2' z3'***'Zn2} z 1 + (n2 zl1)n + a + a z.

Lemma A. 5

For any subblock of output symbols from a uniform (n 2 , n1 ) interleaver with finite

storage, let z. = min {z Z, Zn }. Define ak Zkn + i (k-)ni Then

N

- lim 1 ak = n2 . (A. 13)
N-oo k

Proof: Let z. = max {Z' 2' z . Zn } and consider the set of input symbols that

appears in the first k subblocks of the output sequence. As k becomes arbitrarily large,

this set will include all of the symbols al through akn , except for a few symbols near

symbols a or akn , under the assumption that the interleaver has finite storage. This

assumption also implies that the range Rk = Zkn + j - Zkn +i of the kth subblock is also

2 =
n in++ i.
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N

= lim N Z ak = limk (zi -zi
N k= k-oo

= lim k (knz2Rk)= n2 (A. 14)
k-oo

and Lemma A. 5 is established.

We have now accumulated enough results to prove Theorem 9.

Proof of Theorem 9: Consider the symbols appearing in a subblock of the output

sequence. Without loss of generality, assume that z 1 = min {zl, Z2 . . Z}. We con-
n2

sider two cases.

Case I: z2 > z 3 > ... > z
n2

From Lemma A. 5, a = n 2 , and thus for some k

ak = Zkn 2 +1 - Z(k-l)n2+1 >n 2 . (A. 15)

Applying Lemma A. 3, (assuming k = 1), we obtain

Ap= max {Z 1 , 2. Z } > zn 1 + (n Z1)n 1 (n -1) + 1. (A. 16)

Applying Lemma A. 1, we establish that

D ( z 1 ) - (- 1)

> (n -1)(nl+l), (A. 17)

thereby proving Theorem 9 for Case I.

Case II: The condition z2 > z 3 > ... > is not satisfied.
n2

From Lemma A. 5, a = n 2, so that for some k such that ak a ak-1'

akl + ak >Zn2. (A. 18)

Suppose ak-l < 0. Then a k > Zn2 , and we can apply Lemma A.3 (assuming k = 1) to obtain

max {z,' z 2. * Zn }z >1 + (n-l1)n1 + Zn + 1. (A. 19)

Applying Lemma A. 1, and observing that i - j n 2 - 1, we obtain

D (n 2 -1)n 1 + Zn2 - (n 2 -1) + 1 = [(n2 - )(n 1+1)+3], (A. 20)

thereby proving Theorem 9 for Case II when ak-l < 0.

Finally, suppose that ak-l > 0. Then we can apply Lemma A.4 (assuming k = 1)
to obtain
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max Izi z 2 . * Zn } > Z + (n 2 - )nl + Zn.. (A. 21)

Applying Lemma A. 1 as before, we obtain

D [(n2 -1)(nl+l) + 2], (A. 22)

thereby completing the proof of Theorem 9.

104



Acknowledgment

There are several people and institutions whose assistance

has contributed greatly to this work. I wish to express my

appreciation to my thesis supervisor, Professor Robert G.

Gallager, for his guidance and for his many suggestions which

have considerably extended and improved this work. Professor

Peter Elias and Professor Chung L. Liu were willing and help-

ful readers. Dr. Jim K. Omura, a former colleague at Stanford

Research Institute, was instrumental in bringing the present

topic to my attention. I am also indebted to Dr. Kamil Sh.

Zigangirov, of the Institute for Problems of Information Trans-

mission, U. S. S. R., and to Professor Andrew J. Viterbi of the

University of California, Los Angeles, for their comments and

suggestions.

I am grateful for support from the Research Laboratory of

Electronics of Massachusetts Institute of Technology; from the

U. S. Government under PL 89-358 (the "G. I. Bill"); and from

the Communication Techniques Laboratory, of Stanford Re-

search Institute, Menlo Park, California. I especially wish to

thank Dr. Robert F. Daly, of Stanford Research Institute, for

his efforts in my behalf.

There are many other people who have given me a great

deal of badly needed encouragement. I am especially grateful

to Professor Henry J. Zimmermann, of M. I. T., for his advice

and for his faith in me throughout my graduate career.

105

_�__�__Y·_l� 1___1 I___L _I I I__



References

1. C. E. Shannon, "A Mathematical Theory of Communication," Bell Syst. Tech. J. 27,
379-423 and 623-656 (1948).

2. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (Uni-
versity of Illinois Press, Urbana, Ill. , 1949).

3. R. G. Gallager, Information Theory and Reliable Communication (John Wiley and
Sons, Inc., New York, 1968).

4. R. G. Gallager, "A Simple Derivation of the Coding Theorem and Some Applica-
tions," IEEE Trans. on Information Theory, Vol. IT-11, pp. 3-18, 1965.

5. C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, "Lower Bounds to Error
Probability for Coding on Discrete Memoryless Channels," Inform. Contr. 10, 65-
103 and 522-552 (1967).

6. W. W. Peterson, Error Correcting Codes (The M. I. T. Press, Cambridge, Mass.,
1961).

7. E. R. Berlekamp, Algebraic Coding Theory (McGraw-Hill Book Co., New York,
1968).

8. P. Elias, "Error-Free Coding," IRE Trans. on Information Theory, Vol. IT-4,
pp. 29-37, 1954.

9. G. D. Forney, Jr., "Concatenated Codes," Technical Report 440, Research Labo-
ratory of Electronics, M. I. T., Cambridge, Mass., December 1, 1965.

10. G. D. Forney, Jr., Concatenated Codes (The M.I.T. Press, Cambridge, Mass.,
1966).

11. G. D. Forney, Jr., "Coding System Design for Advanced Solar Missions," Final
Report, Contract NAS2-3637, Codex Corporation, Watertown, Mass., 1967.

12. J. K. Omura, "On the Viterbi Decoding Algorithm," IEEE Trans. on Information
Theory, Vol. IT-15, No. 1, pp. 177-179, January 1969.

13. J. M. Wozencraft and B. Reiffen, Sequential Decoding (The M. I. T. Press, Cam-
bridge, Mass., 1961).

14. A. D. Wyner and R. B. Ash, "Analysis of Recurrent Codes," IEEE Trans. on Infor-
mation Theory, Vol. IT-9, pp. 143-156, July 1963.

15. G. D. Forney, Jr., "Convolutional Codes I: Algebraic Structure" (to be published
in IEEE Trans. on Information Theory).

1'. A. D. Wyner, "On the Equivalence of Two Convolution Code Definitions," IEEE
Trans. on Information Theory, Vol. IT-11, No. 4, pp. 600-602, October 1965.

17. A. J. Viterbi, "Error Bounds for Convolutional Codes and an Asymptotically Opti-
mum Decoding Algorithm," IEEE Trans. on Information Theory, Vol. IT-13, No. 2,
pp. 260-269, April 1967.

18. H. L. Yudkin, "Channel State Testing in Information Decoding," Sc. D. Thesis,
Department of Electrical Engineering, Massachusetts Institute of Technology, 1964.

19. J. L. Massey, Threshold Decoding (The M. I. T. Press, Cambridge, Mass., 1963).

20. J. E. Savage, "The Distribution of the Sequential Decoding Computation Time,"
IEEE Trans. on Information Theory, Vol. IT-12, No. 2, pp. 143-147, April 1966.

21. I. M. Jacobs and E. R. Berlekamp, "A Lower Bound to the Distribution of Com-
putation for Sequential Decoding," IEEE Trans. on Information Theory, Vol. IT-13,
No. 2, pp. 167-174, April 1967.

22. F. Jelenik, "An Upper Bound on Moments of Sequential Decoding Effort," IEEE
Trans. on Information Theory, Vol. IT-15, No. 1, pp. 140-149, January 1969.

23. F. Jelenik, "A Fast Sequential Decoding Algorithm Utilizing a Stack," IBM J. Res.
Develop. 13, 675-685 (1969).

106

_I� � __ __ I __ _*



24. K. Sh. Zigangirov, M. S. Pinsker, and B. S. Tsybakov, "Sequential Decoding in
a Continuous Channel," Probl. Peredachi Inform., Vol. 3, No. 4, pp. 5-17, 1967.

25. J. L. Massey and M. K. Sain, "Inverses of Linear Sequential Circuits," IEEE
Trans. on Computers, Vol. C-17, pp. 330-337, 1968.

26. D. R. Cox and H. D. Miller, The Theory of Stochastic Processes (John Wiley and
Sons, Inc., New York, 1965), see Sec. 3. 10, pp. 118-123.

27. N. Abramson, "Cascade Decoding of Cyclic Product Codes," IEEE Trans. on Com-
munication Technology, Vol. COM-16, pp. 398-402, 1968.

28. H. O. Burton and E. J. Weldon, Jr., "Cyclic Product Codes," IEEE Trans. on
Information Theory, Vol. IT-11, No. 3, pp. 433-439, July 1965.

29. M. S. Pinsker, "On the Complexity of Decoding," Probl. Peredachi Inform., Vol. 1,
No. 1, pp. 84-86, 1965.

30. I. G. Stiglitz, "Iterative Sequential Decoding," IEEE Trans. on Information The-
ory, Vol. IT-15, No. 6, pp. 715-721, November 1969.

31. D. D. Falconer, "A Hybrid Sequential and Algebraic Decoding Scheme," Ph. D.
Thesis, Department of Electrical Engineering, Massachusetts Institute of Tech-
nology, 1966.

32. E. A. Bucher, "Error Mechanisms for Convolutional Codes," Technical Report 471,
Research Laboratory of Electronics, M. I. T., Cambridge, Mass., August 29, 1969.

33. G. D. Forney, "On the Theory and Practice of Interleaving," IEEE International
Symposium on Information Theory, Noordwijk, The Netherlands, June 15-19, 1970.

107





JOINT SERVICES ELECTRONICS PROGRAM

REPORTS DISTRIBUTION LIST

Department of Defense

Assistant Director (Research)
Office of Director of Defense Research

& Engineering
Pentagon, Rm 3C128
Washington, D.C. 20301

Technical Library
DDR&E
Room 3C-122, The Pentagon
Washington, D.C. 20301

Director For Materials Sciences
Advanced Research Projects Agency
Room 3D179, Pentagon
Washington, D.C. 20301

Chief, R&D Division (340)
Defense Communications Agency
Washington, D.C. 20305

Defense Documentation Center
Attn: DDC-TCA
Cameron Station
Alexandria, Virginia 22314

Dr Alvin D. Schnitzler
Institute For Defense Analyses
Science and Technology Division
400 Army-Navy Drive
Arlington, Virginia 22202

Central Intelligence Agency
Attn: CRS/ADD/PUBLICATIONS
Washington, D.C. 20505

M. A. Rothenberg (STEPD-SC(S))
Scientific Director
Deseret Test Center
Bldg 100, Soldiers' Circle
Fort Douglas, Utah 84113

Department of the Air Force

Hq USAF (AFRDDD)
The Pentagon
Washington, D.C. 20330

Hq USAF (AFRDDG)
The Pentagon
Washington, D.C. 20330

Hq USAF (AFRDSD)
The Pentagon.
Washington, D.C. 20330
Attn: LTC C. M. Waespy

Colonel E. P. Gaines, Jr.
AC DA/FO
1901 Pennsylvania Avenue N. W.
Washington, D.C. 20451

Dr L. A. Wood, Director
Electronic and Solid State Sciences
Air Force Office of Scientific Research
1400 Wilson Boulevard
Arlington, Virginia 22209

Mr I. R. Mirman
Hq AFSC (SGGP)
Andrews Air Force Base
Washington, D.C. 20331

Rome Air Development Center
Attn: Documents Library (EMTLD)
Griffiss Air Force Base, New York 13440

Mr H. E. Webb, Jr (EMBIS)
Rome Air Development Center
Griffiss Air Force Base, New York 13440

Dr L. M. Hollingsworth
AFCRL (CRN)
L. G. Hanscom Field
Bedford, Massachusetts 01730

Hq ESD (ESTI)
L. G. Hanscom Field
Bedford, Massachusetts 01730

Professor R. E. Fontana, Head
Dept of Electrical Engineering
Air Force Institute of Technology
Wright-Patterson Air Force Base,
Ohio 45433

AFAL (AVT) Dr H. V. Noble, Chief
Electronics Technology Division
Air Force Avionics Laboratory
Wright-Patterson Air Force Base,
Ohio 45433

Director
Air Force Avionics Laboratory
Wright-Patterson Air Force Base,
Ohio 45433

AFAL (AVTA/R. D. Larson)
Wright-Patterson Air Force Base,
Ohio 45433

Director of Faculty Research
Department of the Air Force
U.S. Air Force Academy
Colorado 80840

�1�_�11_111�_______ __s ~ _~ -P -s - l~-_ 



JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Academy Library (DFSLB)
USAF Academy, Colorado 80840

Director of Aerospace Mechanics Sciences
Frank J. Seiler Research Laboratory (OAR)
USAF Academy, Colorado 80840

Major Richard J. Gowen
Tenure Associate Professor
Dept of Electrical Engineering
USAF Academy, Colorado 80840

Director, USAF PROJECT RAND
Via: Air Force Liaison Office
The RAND Corporation
Attn: Library D
1700 Main Street
Santa Monica, California 90406

Hq SAMSO (SMTAE/Lt Belate)
Air Force Unit Post Office
Los Angeles, California 90045

AUL3T-9663
Maxwell Air Force Base, Alabama 36112

AFETR Technical Library
(ETV, MU-135)
Patrick Air Force Base, Florida 32925

ADTC (ADBPS-12)
Eglin Air Force Base, Florida 32542

Mr B. R. Locke
Technical Adviser, Requirements
USAF Security Service
Kelly Air Force Base, Texas 78241

Hq AMD (AMR)
Brooks Air Force Base, Texas 78235

USAFSAM (SMKOR)
Brooks Air Force Base, Texas 78235

Commanding General
Attn: STEWS-RE-L, Technical Library
White Sands Missile Range,
New Mexico 88002

Hq AEDC (AETS)
Arnold Air Force Station, Tennessee 37389

European Office of Aerospace Research
Technical Information Office
Box 14, FPO New York 09510

Electromagnetic Compatibility Analysis
Center (ECAC) Attn: ACOAT

North Severn
Annapolis, Maryland 21402

VELA Seismological Center
300 North Washington Street
Alexandria, Virginia 22314

Capt C. E. Baum
AFWL (WLRE)
Kirtland Air Force Base, New Mexico 87117

Department of the Army

Director
Physical & Engineering Sciences Division
3045 Columbia Pike
Arlington, Virginia 22204

Commanding General
U. S. Army Security Agency
Attn: IARD-T
Arlington Hall Station
Arlington, Virginia 22212

Commanding General
U. S. Army Materiel Command
Attn: AMCRD-TP
Washington, D.C. 20315

Director
Advanced Materiel Concepts Agency
Washington, D.C. 20315

Commanding General
USACDC Institute of Land Combat
Attn: Technical Library, Rm 636
2461 Eisenhower Avenue
Alexandria, Virginia 22314

Commanding Officer
Harry Diamond Laboratories
Attn: Dr Berthold Altman (AMXDO-TI)
Connecticut Avenue and

Van Ness Street N. W.
Washington, D.C. 20438

Commanding Officer (AMXRO-BAT)
U.S. Army Ballistic Research Laboratory
Aberdeen Proving Ground
Aberdeen, Maryland 21005

Technical Director
U. S. Army Land Warfare Laboratory
Aberdeen Proving Ground
Aberdeen, Maryland 21005

� -- �--



JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

U. S. Army Munitions Command
Attn: Science & Technology Information

Branch, Bldg 59
Picatinny Arsenal, SMUPA-RT-S
Dover, New Jersey 07801

U. S. Army Mobility Equipment Research
and Development Center

Attn: Technical Documents Center, Bldg 315
Fort Belvoir, Virginia 22060

Commanding Officer
U. S. Army Engineer Topographic

Laboratories
Attn: STINFO Center
Fort Belvoir, Virginia 22060

Dr Herman Robl
Deputy Chief Scientist
U. S. Army Research Office (Durham)
Box CM, Duke Station
Durham, North Carolina 27706

Richard O. Ulsh (CRDARD-IP)
U. S. Army Research Office (Durham)
Box CM, Duke Station
Durham, North Carolina 27706

Technical Director (SMUFA-A2000 -107-1 )
Frankford Arsenal
Philadelphia, Pennsylvania 19137

Redstone Scientific Information Center
Attn: Chief, Document Section
U.S. Army Missile Command
Redstone Arsenal, Alabama 35809

Commanding General
U.S. Army Missile Command
Attn: AMSMI-RR
Redstone Arsenal, Alabama 35809

Commanding General
U. S. Army Strategic Communications

Command
Attn: SCC-CG-SAE
Fort Huachuca, Arizona 85613

Commanding Officer
Army Materials and Mechanics.

Research Center
Attn: Dr H. Priest
Watertown Arsenal
Watertown, Massachusetts 02172

Commandant
U.S. Army Air Defense School
Attn: Missile Science Division, C&S Dept
P. O. Box 9390
Fort Bliss, Texas 79916

Commandant
U.S. Army Command and General

Staff College
Attn: Acquisitions, Lib Div
Fort Leavenworth, Kansas 66027

Mr Norman J. Field, AMCPM-AA-PM
Chief, Program Management Division
Project AACOMS, USAECOM, Bldg. 2525
Fort Monmouth, New Jersey 07703

Mr I. A. Balton, AMSEL-XL-D
Executive Secretary, TAC/JSEP
U.S. Army Electronics Command
Fort Monmouth, New Jersey 07703

Commanding General
U.S. Army Electronics Command
Fort Monmouth, New Jersey 07703
Attn: AMSEL-SC

DL
GG-DD
XL-D
XL-DT
BL-FM-P
CT-D
CT-R
CT-S
CT-L (Dr W.S. McAfee)
CT -O
CT-I
CT -A
NL-D (Dr H. Bennett)
NL-A
NL-C
NL-P
NL-P-2
NL-R
NL-S
KL-D
KL-I
KL-E
KL-S
KL-SM
KL-T
VL-D
VL-F
WL-D

Dr H. K. Ziegler, Chief Scientist
Army Member TAC /JSEP (AMSEL-SC)
U.S. Army Electronics Command
Fort Monmouth, New Jersey 07703

_______(_LIUL_�I�__Y__-��



JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Director (NV-D)
Night Vision Laboratory, USAECOM
Fort Belvoir, Virginia 22060

Commanding Officer
Atmospheric Sciences Laboratory
U. S. Army Electronics Command
White Sands Missile Range,
New Mexico 88002

Commanding Officer (AMSEL-BL-WS-R)
Atmospheric Sciences Laboratory
U.S. Army Electronics Command
White Sands Missile Range,
New Mexico 88002

Chief
Missile Electronic Warfare Tech

Area (AMSEL-WL-M)
Electronic Warfare Laboratory, USAECOM
White Sands Missile Range,
New Mexico 88002

Product Manager NAVCON
Attn: AMCPM-NS-TM, Bldg 439

(H. H. Bahr)
Fort Monmouth, New Jersey 07703

Department of the Navy

Director, Electronics Programs
Attn: Code 427
Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217

Commander
Naval Security Group Command
Naval Security Group Headquarters
Attn: Technical Library (G43)
3801 Nebraska Avenue, N. W.
Washington, D.C. 20390

Director
Naval Research Laboratory
Washington, D.C. 20390
Attn: Code 2027

Dr W. C. Hall, Code 7000
Mr A. Brodzinsky, Supt,
Electronics Div

Code 8050
Maury Center Library
Naval Research Laboratory
Washington, D.C. 20390

Dr G. M. R. Winkler
Director, Time Service Division
U. S. Naval Observatory
Washington, D.C. 20390

Naval Air Systems Command
AIR 03
Washington, D.C. 20360

Naval Ship Systems Command
Ship 031
Washington, D.C. 20360

Naval Ship Systems Command
Ship 035
Washington, D.C. 20360

U.S. Naval Weapons Laboratory
Dahlgren, Virginia 22448

Naval Electronic Systems Command
ELEX 03, Rm 2534 Main Navy Bldg
Department of the Navy
Washington, D.C. 20360

Commander
U.S. Naval Ordnance Laboratory
Attn: Librarian
White Oak, Maryland 20910

Director
Office of Naval Research
Boston Branch
495 Summer Street
Boston, Massachusetts 02210

Commander (ADL)
Naval Air Development Center
Attn: NADC Library
Johnsville, Warminster,
Pennsylvania 18974

Commander (Code 753)
Naval Weapons Center
Attn: Technical Library
China Lake, California 93555

Commanding Officer
Naval Weapons Center
Corona Laboratories
Attn: Library
Corona, California 91720

Commanding Officer (56322)
Naval Missile Center
Point Mugu, California 93041

W. A. Eberspacher, Associate Head
Systems Integration Division, Code 5340A
U. S. Naval Missile Center
Point Mugu, California 93041

__



JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Commander
Naval Electronics Laboratory Center
Attn: Library
San Diego, California 92152

Deputy Director and Chief Scientist
Office of Naval Research Branch Office
1030 East Green Street
Pasadena, California 91101

Library (Code 2124)
Technical Report Section
Naval Postgraduate School
Monterey, California 93940

Glen A. Myers (Code 52 Mv)
Assoc Professor of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

Commanding Officer (Code 2064)
Navy Underwater Sound Laboratory
Fort Trumbull
New London, Connecticut 06320

Commanding Officer
Naval Avionics Facility
Indianapolis, Indiana 46241

Director
Naval Research Laboratory
Attn: Library, Code 2039 (ONRL)
Washington, D.C. 20390

Commanding Officer
Naval Training Device Center
Orlando, Florida 32813

U.S. Naval Oceanographic Office
Attn: M. Rogofsky, Librarian (Code 1640)
Washington, D.C. 20390

Other Government Agencies

Dr H. Harrison, Code RRE
Chief, Electrophysics Branch
National Aeronautics and

Space Administration
Washington, D.C. 20546

NASA Lewis Research Center
Attn: Library
21000 Brookpark Road
Cleveland, Ohio 44135

Los Alamos Scientific Laboratory
Attn: Reports Library
P. O. Box 1663
Los Alamos, New Mexico 87544

Mr M. Zane Thornton, Chief
Network Engineering, Communications

and Operations Branch
Lister Hill National Center for

Biomedical Communications
8600 Rockville Pike
Bethesda, Maryland 20014

U.S. Post Office Department
Library - Room 6012
12th & Pennsylvania Ave. N. W.
Washington, D.C. 20260

Non-Government Agencies

Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Mr Jerome Fox, Research Coordinator
Polytechnic Institute of Brooklyn
333 Jay Street
Brooklyn, New York 11201

Director
Columbia Radiation Laboratory
Columbia University
538 West 120th Street
New York, New York 10027

Director
Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61801

Director
Stanford Electronics Laboratory
Stanford University
Stanford, California 94305

Director
Microwave Laboratory
Stanford University
Stanford, California 94305

Director
Electronics Research Laboratory
University of California
Berkeley, California 94720

Director
Electronics Sciences Laboratory
University of Southern California
Los Angeles, California 90007

__���1 ^I�^I-IIIXI·^IY�PIIII^ I I^·I*--·I __



JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Director
Electronics Research Center
The University of Texas at Austin
Engineering-Science Bldg 110
Austin, Texas 78712

Division of Engineering and
Applied Physics

210 Pierce Hall
Harvard University
Cambridge, Massachusetts 02138

Dr G. J. Murphy
The Technological Institute
Northwestern University
Evanston, Illinois 60201

Dr John C. Hancock, Head
School of Electrical Engineering
Purdue University
Lafayette, Indiana 47907

Dept of Electrical Engineering
Texas Technological University
Lubbock, Texas 79409

Aerospace Corporation
P. O. Box 95085
Attn: Library Acquisitions Group
Los Angeles, California 90045

Airborne Instruments Laboratory
Deerpark, New York 11729

The University of Arizona
Department of Electrical Engineering
Tucson, Arizona 85721

Chairman, Electrical Engineering
Arizona State University
Tempe, Arizona 85281

Engineering and Mathematical
Sciences Library

University of California at Los Angeles
405 Hilgred Avenue
Los Angeles, California 90024

Sciences-Engineering Library
University of California
Santa Barbara, California 93106

Professor Nicholas George
California Institute of Technology
Pasadena, California 91109

Aeronautics Library
Graduate Aeronautical Laboratories
California Institute of Technology
1201 E. California Boulevard
Pasadena, California 91109

Hunt Library
Carnegie-Mellon University
Schenley Park
Pittsburgh, Pennsylvania 15213

Dr A. G. Jordan
Head of Dept of Electrical Engineering
Carnegie-Mellon University
Pittsburg, Pennsylvania 15213

Case Western Reserve University
Engineering Division
University Circle
Cleveland, Ohio 44106

Hollander Associates
Attn: Librarian
P. O. Box 2276
Fullerton, California 92633

Dr Sheldon J. Welles
Electronic Properties Information Center
Mail Station E-175
Hughes Aircraft Company
Culver City, California 90230

Illinois Institute of Technology
Department of Electrical Engineering
Chicago, Illinois 60616

Government Documents Department
University of Iowa Libraries
Iowa City, Iowa 52240

The Johns Hopkins University
Applied Physics Laboratory
Attn: Document Librarian
8621 Georgia Avenue
Silver Spring, Maryland 20910

Lehigh University
Department of Electrical Engineering
Bethlehem, Pennsylvania 18015

Mr E. K. Peterson
Lenkurt Electric Co. Inc.
1105 County Road
San Carlos, California 94070

MIT Lincoln Laboratory
Attn: Library A-082
P. O. Box 73
Lexington, Massachusetts 02173



JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Miss R. Joyce Harman
Project MAC, Room 810
545 Main Street
Cambridge, Massachusetts 02139

Professor R. H. Rediker
Electrical Engineering, Professor
Massachusetts Institute of Technology
Building 13-3050
Cambridge, Massachusetts 02139

Professor Joseph E. Rowe
Chairman, Dept of Electrical Engineering
The University of Michigan
Ann Arbor, Michigan 48104

New York University
Engineering Library
Bronx, New York 10453

Professor James A. Cadzow
Department of Electrical Engineering
State University of New York at Buffalo
Buffalo, New York 14214

Dr F. R. Charvat
Union Carbide Corporation
Materials Systems Division
Crystal Products Department
8888 Balboa Avenue
P. O. Box 23017
San Diego, California 92123

Utah State University
Department of Electrical Engineering
Logan, Utah 84321

Research Laboratories for the
Engineering Sciences

School of Engineering and Applied Science
University of Virginia
Charlottesville, Virginia 22903

Department of Engineering and
Applied Science

Yale University
New Haven, Connecticut 06520

Department of Electrical Engineering
Clippinger Laboratory
Ohio University
Athens, Ohio 45701

Raytheon Company
Research Division Library
28 Seyon Street
Waltham, Massachusetts 02154

Rice University
Department of Electrical Engineering
Houston, Texas 77001

Dr Leo Young, Program Manager
Stanford Research Institute
Menlo Park, California 94025

Sylvania Electronic Systems
Applied Research Laboratory
Attn: Documents Librarian
40 Sylvan Road
Waltham, Massachusetts 02154

Dr W. R. LePage, Chairman
Department of Electrical Engineering
Syracuse University
Syracuse, New York 13210

--- �-l·�--L-l- �-sll__i�il�-·_^L.�..-- _- II�---^- .-.. ��-1_1--11_--^··-11�-CI -



� _ __�__ _�__1_ _ �_ _ 1 __ �



UNCLASSIFIED
S t) i t ('l i l c n

DOCUMENT CONTROL DATA - R & D
(Security clas.siication of title, body of abstral-t nd indcxinl annollon nm.st he entered when th-e overall report is clssfled)

i. ORICINA TING ACTIVITY (Corporate author) T2a. REPORT SECURITY CLASSIF IC A TION

Research Laboratory of Electronics Unclassified
Massachusetts Institute of Technology 2b. GROUP

Cambridge, Massachusetts 02139 None
3. REPORT TITLE

Cascaded Tree Codes

4. DESCRIPTIVE NOTES (7ype of report and inclusive dates)

Technical Report
5. AUTHOR(S) (First name, middle initial, last name)

John L. Ramsey

e. REPORT DATE 7a. TOTAL NO- OF PAGES 7b. NO. OF UEFS

September 1, 1970 120 33
8a. CON TRAC T OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

DA 28-043-AMC-02536(E) Technical Report 478
b. PROJECT NO.

2006110ZB31F
.NASA Grant NGL 22009-013 9h. OTHER REPORT NO(S) (Any other numbers that may be assignedNASA Grant LN'~J.LJ 22-009-013 this report)

d. None
t1. )7ISTRIRUTION STATEMENT

This document has been approved for public release and sale; its distribution
is unlimited.

I1. SUFPLEMENTA RY NOTES 12. SPONSORING MILITAR, ACTI VTY

Joint Services Electronics Program
Through U. S. Army Electronics Command

13. A . .- R A C T 

3 A sCcTaded codes are long codes that are constructed by successively encoding a
series of relatively short constituent codes. The purpose of cascading is to facilitate
decoding by dividing the composite decoding process into a sequence of relatively sim
ple steps, each of which corresponds to the decoding of one of the constituent codes.

We study cascading techniques in which the constituent codes are tree codes. We
determine the efficiency attainable with cascading, and bound the attainable error
probability in terms of the composite decoding complexity. Our major results in
these areas are the following.

1. A 2-stage cascaded tree code can be formulated to yield an error exponent that
equals 1/2 of the single-stage error exponent at all rates below capacity.

2. If N is the composite decoding complexity per decoded symbol for a cascaded
tree code in which maximum-likelihood decoding is applied to each constituent code,
then in the limit of asymptotically large N one can find a code for which the decoding

error probability becomes arbitrarily close to (l/N)(C/R)
3. Sequential decoding can be used on the outer stage of a cascaded tree code

whose composite rate exceeds R provided the alphabet sizes of the constituent
codes are suitably restricted. comp'

We also show how to apply the Viterbi decoding algorithm to an unterminated tree
code, and describe the burst characteristics of decoding errors made by a Viterbi
decoder. Finally, we present techniques for efficiently realizing a useful class of
synchronous interleavers.

D_ .1 UNLSII

UNCLASSIFIED

_ _ _ -__> ...... .~" ," x-~' 111 1-"1"- ~1 1-

DD, NOV R~'14 73
l



UNCLASSIFIED
Security Clas sifica tion

14.
K FY WO R )S

Cascaded Decoding

Coding

Communication Theory

Convolutional Codes

Information Theory

Interleavers

Iterated Coding

Tree Codes

TNC TA S TT F-
Security Ca Lsi fi-lt ion

L I N A

RO I

LINI _

RO I

LINK C

-101 
,-ni

-4

wr' 1 _ -

I I I I
__ i - -

---- _ __


