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ABSTRACT

This report is a study of the application of information theory techniques to the
field of connecting networks. It shows that these techniques are useful in this new
area, and demonstrates that two types of networks can be constructed with a com-
plexity that is proportional to an informational lower bound which is due to Claude E.
Shannon.

The concepts of information and entropy are extended to fit the context of con-
necting networks. These not only give insight into the problems of these networks, but
are used directly to show that the basic sort-merge algorithm does not of itself imply
that sorting networks are inefficient.

It is then shown that connecting networks with small blocking probability and time-
slot interchangers can be implemented with a cmplexity that is proportional to the
informational minimum. By defining an ensemble of connecting networks, analogous
to ensembles used in coding theory, it is shown that connecting networks with n inputs
and blocking probability E can be constructed with O(n log n) + O(n log 1/E) contacts
for all n and E. Shannon's results show that the first term in this expression is the
minimum possible order of growth for such networks. A similar result for time-slot
interchangers is illustrated by giving an explicit construction.
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I. INTRODUCTION

Information theory has provided many useful models for the transmission channels

that are used in communications systems, yet there has never been an analogous theory

for the switching systems that are used to connect transmission channels. Although

such switching systems have been used almost from the beginning of telephony, they

are not well understood theoretically. This report is the result of an effort to use the

techniques of information theory to study connecting networks, a basic component of

switching systems. In particular, it is shown that this approach can be used to deter-

mine the minimum amount of complexity for implementing certain types of connecting

networks.

For most practical applications it is not possible to interconnect directly all pairs

of locations between which communication is necessary. Switching systems are used

to control the flow of information through a communication system. Although the dis-

tinctions between them are sometimes unclear, these switching systems fall into two

classes. (i) Message-switching systems store information from the source at various

intermediate points and send it over an available channel at a later time. Thus a com-

plete path from input to output does not have to be available at one time in order to

transmit the message. But this does imply that the message will usually be delayed

en route by the switching system itself. A store and forward telegraph system is a

good example. (ii) Line-switched systems always create a direct path between the

source and the destination. The delay is solely a function of the transmission channels

that are used. A telephone system is a good example.

This report is concerned only with line-switched systems. In particular, it deals

with connecting networks; that is, with networks that actually create the path from a

set of inputs to a set of outputs. The telephone system uses thousands of such net-

works, the most visible of which are in local telephone exchanges.

The main theme of this report is the application of information theory techniques

to the field of connecting networks. Using these techniques, I shall discuss the mini-

mum possible complexity for implementing four different types of networks: connecting

networks with small blocking probability; nonblocking connecting networks; sorting net-

works (special connecting networks with decentralized control); and time-slot inter-

changers (a network used in switching time-multiplexed signals).

An important conclusion to be drawn is that the concepts of information, entropy,

and ensembles of systems can be used to yield useful results about connecting networks.

Among these results is an informational bound giving the minimum possible complexity

for these types of networks.

It is then shown that for a connecting network with small blocking probability and

for time-slot interchangers networks exist whose growth in complexity as the number

of inputs is increased is proportional to the informational minimum. These results

are obtained by using an ensemble of systems in the case of connecting networks with
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finite blocking and by giving an explicit construction in the case of time-slot inter-

changers.

1. 1 BACKGROUND OF THIS RESEARCH

1. 1. 1 Network Complexity

The complexity of connecting networks can be viewed in three parts. First, a net-

work is composed of contacts that form electrical paths in the network. Second, the

network has associated with it a finite number of states each of which corresponds to

a different set of contact closings. A useful measure of this kind of complexity is the

logarithm to the base 2 of the number of states which corresponds, for standard relay

networks, to the number of relay coils in the network. Third, a certain amount of

computational complexity is required to calculate for each network the desired network

state, given the desired permutation that the network will implement. This is the

hardest kind of complexity to quantify because the choice of units is arbitrary. In

giving examples of networks the unit that is used to measure computational complexity

will be discussed for each case. In general, only orders of growth can be obtained and

even these may vary if different units are used.

It appears that these three types of complexity are closely interrelated, in that a

network designer can make tradeoffs between them to a limited degree. Little is known,

however, about the fundamental limits imposed by this interrelationship.

1. 1.2 Information Theory and Connecting Networks

In the past, several attempts have been made to relate information theory to con-

necting networks. In 1950, Shannon showed that the minimum number of states which

a connecting network must have could be considered an information theory problem. He

showed that since a network needed n! states to perform all permutations, at least

log 2 n! relay coils were needed for such a network. The Stirling bound2 gives
n 1 n 1

n e log + log Tn < log n! < nloge + log rrn + 8n, and this is approximately equal

to requiring n log n coils. Shannon's result gives no bounds for the number of contacts

required for such a network or for the computational complexity involved.

In 1953, Baker 3 discussed the relationship between Shannon's original work and con-

necting networks, but he gave no significant results. Syski, in 1955, published an

interesting study of the analogy between information theory and telephone traffic theory.

In particular, he compared the type of stochastic processes involved in certain types

of telephone systems with the type of processes which Shannon viewed as information

sources. Unfortunately, there was no follow-up of this work.

More recently, Elias 5 calculated the average number of bits necessary to encode

a permutation based on three representations: direct encoding, results of a sorting

operation, and the state of a rearrangeable network which performs the permutation.
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1. 1. 3 Previous Results for Connecting Networks

A straightforward implementation of a connecting network that will perform all

permutations is a square array of n contacts, where n is the number of inputs and

outputs. Such a network is called an n X n crossbar switch, or square switch. It

has n coils, even though it has only log n! - n log n meaningful states. The difference

between the number of coils and the logarithm of the number of states arises because

each contact has its own coil in such a network. In order to set up such a network for

a permutation of all of its inputs, n steps of computation are needed. Each of these

corresponds to setting a contact determined directly from the permutation. Each of

these steps involves a one-out-of-n selection, so the computation can be viewed as being

O(n log n).

Benes 6 has defined a class of networks called rearrangeable networks. These can

perform all permutations with the restriction that changing part of the permutation may

result in temporarily interrupting other connections in the network. Thus these networks
6-10a

are not practical for telephony. It can be shown, for values of n that are integral

powers of two, that such networks require n log n - n + 1 devices called elements,

each of which has one coil and four contacts. The number of coils used then is only

slightly more than the informational minimum given by Shannon.

The computational complexity associated with these rearrangeable networks has not

been studied much. Paull has given a bound for the maximum number of paths which

must be interrupted in one type of rearrangeable network to change an existing path.

Nakamura and Bassalygo et al. have expanded this somewhat to show that fewer

paths must be disturbed if the network has extra contacts.

Several algorithms have been given for determining the state of the coils in a

rearrangeable network, given the desired permutation. It appears that the complexity

of these algorithms is O(n(log n) ), although there has been no proof that this is the

minimal order of growth.
15

Clos has shown that it is possible to construct networks that are strictly

nonblocking, like square networks, but have fewer than n contacts. Clos gave an

algorithm for constructing such networks, but he did not give a closed-form expression
10b

for the minimum number of contacts required as a function of n. Keister has recently

found empirically that the minimal Clos networks for practical values of n have some-

what more than n(log n)2 contacts.

Cantor has used a somewhat different approach to show that strictly nonblocking

networks can be constructed with fewer than 8n(log n)2 contacts. While these construc-

tions may not be practical as compared with the Clos networks, their significance is

that through them an explicit bound for their complexity is given which holds for all

values of n.

No algorithms have been reported to set up nonsquare strictly nonblocking networks.

It seems likely, however, that such algorithms would be simpler than the algorithms
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required for rearrangeable networks, since no paths must be disturbed and there are

many possible routes for each path.

1. 1.4 Sorting Networks

Sorting networks have received much attention in recent publications 1 and pre-

sent many unsolved problems. Like connecting networks, sorting networks permute

their inputs in connecting them to the outputs. Sorting networks, by definition, have no

external control. They are built with binary comparators that can sense the signal

associated with each line and order a pair of lines so that the signal on the first is

always less than the signal on the second. The most convenient way of measuring the

complexity of a sorting network is by the number of comparators it contains. Each

comparator has two final states: input 1 > input 2, and input 1 < input 2. To permute

the inputs, 4 contacts are required. Since each comparator makes one and only one

binary decision, the computational complexity can be viewed as being directly propor-

tional to the number of comparators in the network.

The best-known general algorithm for constructing sorting networks comes from

Batcher 17 and leads to networks with O(n(log n) ) contacts. It has recently been shown, 19

however, that this algorithm is not optimal for n = 9, ... 16 so it is not certain that

Batcher's algorithm is best for arbitrary n greater than 16. Indeed, just as in the case

of strictly nonblocking networks, it has never been shown that sorting networks cannot

be constructed with O(n log n) comparators.

1.2 SUMMARY

In Section II some of the basic concepts of information theory are extended to con-

necting networks. The combinatorial information of a network, as well as the entropy

associated with a set of network tasks, is defined. An example of the usefulness of

these concepts is given by using them to prove that the basic sort-merge algorithm does

not itself imply that sorting networks which use sort-merge are informationally ineffi-

cient.

Sorting networks are studied in detail in Section III. Two algorithms from Batcher 1 7

are examined closely, and it is found that an informational approach helps to identify the

inefficiencies in these networks.

Section IV then discusses connecting networks with finite blocking probability. The

main question here is how many contacts are needed to implement a network, given the

number of inputs and the desired blocking probability. The most interesting result

shows that for any number of inputs n and blocking probability Pf there exists at least

one network with O(n log n) + O(n log 1/Pf) contacts which has the desired characteris-

tics. Since at least O(n log n) contacts are required on informational grounds, this

shows that the requirement of having an arbitrarily small blocking probability does not

increase the order of growth of the number of crosspoints. This result is proved by

defining an ensemble of systems and bounding the average blocking probability.
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In Section V time-slot interchangers are studied. As in the case of connecting

networks it is shown that these can be constructed with a complexity proportional to

the informational minimum. An explicit construction is given for such networks.

5
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II. NETWORKS AND INFORMATION

We shall now extend some of the basic concepts of information theory to the field of

connecting networks in order to gain insight into this class of problems and to get useful

results, which will then be explored in the rest of the report.

2.1 NETWORKS AND THEIR TASKS

We shall develop models of information and entropy for connecting networks and the

set of tasks which they are given to perform. These networks basically permute the

signals present on their input lines to produce the signals on their output lines. Many

practical networks, however, especially those used in telephony, can perform an incom-

plete permutation, that is, only a subset of the inputs may be connected to the outputs.

A given network can implement all of the functions in the subset TN , T N C T. If

a network is capable of performing the set TN it must have exactly TN states that can

be distinguished externally. We shall call these the external states.

DEFINITION 1. The external combinatorial information of a network N is

log 2 ITNI = Ic(TN). We call TN the task set.

This definition is related to Kolmogorov's definition of combinatorial entropy, 2 2 and

is the amount of information needed to describe the state of the network. No assumptions

about probability distributions have been made explicitly thus far, but the combinatorial

approach definition gives the same result as the usual probabilistic definition when the

probabilities of all possible network states are equal.

In general there may be a nonuniform probability distribution associated with the set

TN which is called PN(ti), ti E TN

1 N

t i E TN

The internal states of a network are the distinct states of the components of the net-

work. In many cases there are distinct internal states that are not distinguishable

externally. This is analogous to a similar situation with equivalent states which occurs

in the decomposition of finite-state machines.

DEFINITION 2. The internal states of a network N form a set SN. There is a

mapping T from the set SN onto the set TN.

If a network is to be implemented in the form of several interconnected subnetworks,

the task set of the whole network TN and the task sets of the subnetworks T i, i = 1, k

must satisfy the relationship

k
TN[ - n IT, . (2)

i=l
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Equivalently,

k

log TN] log Ti (3)
i=l

or

k

Ic(TN) Ic(Ti) (4)
i=l

Thus the information of the subnetworks must be at least that of the whole network.

The equality holds if and only if there is a one-to-one correspondence between elements

of TN and k products of states of the subnetworks.

We can also make informational statements about networks when the task proba-

bilities are not equal. Thus

DEFINITION 3. The task entropy of a network N is

Ht(N) = Pr (t) log [Pr (t)]. (5)

tET

The task entropy of subnetworks can be defined in an identical way. We can also con-

dition the task probabilities of the subnetworks so that we get the following definition.

DEFINITION 4. The conditional entropy of subnetwork i gives the states of sub-

networks 1, 2, ... k

n.
1

Ht(Ni N.. .Nk) = P(t N1 . . .Nk) log P(tlN 1 .. . Nk). (6)

j=l

In the same manner that we could decompose network combinatorial information, we

can also decompose network task entropy to give7

k

Ht(N) < Ht(Ni (7))
i=l

The equality holds if and only if each of the subnetworks takes on all states with proba-

bilities that are statistically independent of the states of the other subnetworks. We use

a product decomposition of the joint distribution into a product of conditional probabili-
7ties, take the logarithms, and average to get
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k

Ht(N) = Ht(N i N 1, N 2 ... N i _ 1) (8)

i=l

In many cases networks have more states and thus more devices than would be

dictated by first-order, or unconditioned, informational bounds of Shannon.l This infor-

mational approach helps us identify those parts of such networks in which informational

inefficiencies exist and helps find the reasons for such inefficiencies.

2.2 APPLICATIONS TO SORTING NETWORKS

As mentioned previously, little is known about the minimum number of binary com-

parators required to implement a sorting network. The most efficient known sorting

networks are based on the concept of recursive merging. As illustrated in Fig. 1 this

involves dividing the inputs into two groups of n/2 inputs which are then sorted with two

n/2 input sorting networks; then these two-ordered lists are merged to form an ordered

n/2 

INPUTS

n/2 {

n OUTPUTS

Fig. 1. Sort-merge algorithm for sorting networks.

S S S _

* S S

* S S

* 5 0

.

* * * 

Mn i n OUTPUTS

Fig. 2. n-Input sorting network using the sort-merge algorithm.
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list of all n inputs. This algorithm is then applied to the smaller sorting networks

recursively until the only remaining sorting networks are two input sorting networks

which are simply binary comparators. The resulting network has the general form

shown in Fig. 2.

Theorem 1

The sum of the combinatorial information of the components of a sorting network of

size n using sorting by recursively merging is just log n!

Lemma

The combinatorial information of a merging network with two sets of n/2 inputs and

n outputs is log 2 (n/2)'

Label the outputs according to which input list they came from. There are (n22)

such labelings, each of which corresponds to a distinct state of the merging network.

The information of the network is then log (nn2) = I(Mn)

Now

I(N) = 2I(Sn/2) + I(M n )

= 2 log n/2! + log (nn2)

(n/2) ! n!
= log

(n/) !2

= log n! (9)

Q. E. D.

Corollary 1. The component networks are independent.

Corollary 2. If the global network states are equiprobable, the states of each sub-

network are also equiprobable (by identity of combinatorial and probabilistic information

in the equiprobable case).

9
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III. SORTING NETWORKS

We shall deal with the analysis of sorting networks, an area in which much remains

to be learned. The concepts of information which we have derived will be applied to

this type of network and will be helpful in explaining the inefficiencies in known algo-

rithms. Two types of networks will be studied in detail.

A sorting network is a loop-free network composed of two input comparators. One

output is the minimum of the input signals, the other is the maximum. A sorting net-

work permutes the order of the signals presented on its inputs so that the signals on

its outputs are in increasing order. Thus a sorting network is a special case of a

connecting network in which the control of the network is very decentralized.

Software sorting algorithms are well known. These are computer programs which

order a list of numbers in the computer's memory. There are several algorithms which

on the average order n numbers in approximately n log n comparisons. It is obvious

that this is the minimal order of growth. The best known sorting networks, however,

require 0(n(log n) ) comparators. The reason for this difference is that software

sorting algorithms can be adaptive; that is, the numbers that they compare can be a

complicated function of the results of previous comparisons. By definition, sorting

networks must always make a fixed set of comparisons, enough for the worst case.

The literature of sorting networks has been comprehensively surveyed by Knuth. 19

The earliest reference to this type of problem was a patent by O'Connor and Nelson,2 4

18
in 1957. Nelson and Bose later showed that networks could be constructed with

(log 2 3 17
0(n ) comparators. In 1968, Batcher showed the two networks that are described

in detail in sections 3. 1 and 3. 2. These both require 0(n(logn) ) comparators and are

the best known general constructions. Knuth, on the other hand, reports that networks

very different from those of Batcher have a few less comparators for n = 9, 10, ... , 16.

Indeed, the apparent minimal networks for n= 9, 10, 12, 16 bear little apparent relation-

ship to each other. Thus the general question of establishing the minimal order of

growth remains in doubt.

3. 1 ODD-EVEN SORTING NETWORK

The first of Batcher's two networks which will be discussed is usually called the

odd-even network, and is the best known general algorithm for sorting networks. The

algorithm defines a merging network recursively in terms of two smaller merging net-

works and some comparators. The merging networks so defined are then used to con-

struct a sorting network.

The recursive definition of this network is shown in Fig. 3. Inputs and outputs are

labeled with subscript letters. The inputs with odd subscripts (a1 , a 3 , . .. a n-' bl' b3

.. bnl) are directed to the top half of the network, M/ 2 , while the remaining inputs

(a 2 , a4 . ' an, bi b... bbn) are directed to Mn/ 2. By using this algorithm, a net-

work for merging two lists of n elements can be implemented with n(log 2n-1) + 1

10



comparators rather than the informational limit of log Z (Zn) 2 Zn. Applying the second

step of the recursion, as in Fig. 4, results in a sorting network requiring a total of

n (log2 n-log n+4)-1 comparators.

T~~~~~~~~~~~~~~~~~~~~~~~UPT

OUTPUTS
OF

C k

C2k C2k+l

n -2

n

i -i a's

2k-i b's

k-i TOTAL

2n-. a's

n-,+2k b's

2n-2k TOTAL

Fig. 3.

Batcher odd-even merging network.

Fig. 4.

Schematic representation of
odd-even merging network.

the outputs of an

Several approaches can be used to study the cause of the inefficiency in the basic

merging network. First, it is possible to calculate the state probabilities of the indi-

vidual comparators to see if any of the comparators really had one bit of entropy. In

order to do this it is assumed that all the (2n) possible relative orderings of the two

input lists were equally probable. The key to calculating the state probabilities of the

comparators is to observe that the kth comparator k is in the zero state if and only

if output 2k of the merging network is from an input with an odd subscript.

Theorem 2

The first-order probability that k is in the zero state in a Batcher odd-even merging

network with a total of Zn inputs, under the assumption only that the relative order of

the inputs is random, is given by

n
k

min(Zkn)
Z Z( ik-1 2n-2n-i

i=max(1, 2k-n)
i odd

(Zn)n 

(10)

Proof: Figure 4 is a schematic representation of the n outputs of the merging net-

work. Consider any comparator, k' which has outputs Zi and i+l. Assume that Pk

is in the zero state and that output 2k is a i , where i is odd. There are 2k-1 outputs

11



before output 2k and 2n-Zk outputs after it. Since output 2k is a. and there is a total
1

of n a's which must be distributed over the outputs, there must be i-i a's before posi-

tion 2k and n-i a's after this position. These a's may be arranged in any sequence

with b's within these constraints. Therefore, there are Zki-il n-Zi) ways of

arranging these symbols, given values for i and k. Since the case where output 2k is

b. is symmetrical with the case above where it is a i , we can multiply this expres-

sion by a factor of 2 and get the total number of possible orderings as 2(2k- l)(n- k)

The total number of ways in which the a's and b's can be arranged is (2n). There-
n

fore, the Pk can be given ask

2 (2k- 1 (2n-2k)

n- v i-1 n-i

Pk (n)

the sum being over all possible values of i.

There are 2n-2k positions to the right of position 2k in which n-i a's must be dis-

tributed. In order that there be room for all of these a's, the following inequality must

be satisfied

n-i -2n-2k

-i n-2k (12)

i 2k-n.

Since i must be at least 1, these conditions give a lower limit in the summation of

i = max(k, 2k-n).

Similarly, i can be no greater than 2k or n, so the upper limit for the summation

is i = min(2k, n). Since it is assumed that i is odd, the summation is only over the odd

values of i. Q. E. D.

A computer program was written to get numerical values for the Pk 's. Table 1

shows the values for the case n= 8. Also shown is the entropy, H(Pk) for each value.

The general trend for the values is illustrated in Fig. 5. For large n, P is an even

Table 1. Numerical values for the Pk for n = 8.
k

k p8 H8

k k

1 .533 .996

2 .492 .999

3 .503 1.000

4 .497 1.000

5 .503 1. 000

6 .492 .999

7 .533 .996

12



function about i = n/Z. P alternates about the line P = 1/Z with I P-1/ZI reaching a mini-

mum at i = n/Z. As n increases, the maximum value for P-1/Zj is reached at i = 1, and

i = n rapidly approaches zero. Because of this rapid convergence to P = 1/2, the

Fig. 5.

\ Variation of Pk

,, N i 'N-1

AMAX. AMIN-*O AS N --- O

entropy associated with each comparator also rapidly approaches 1 bit per comparison.

Thus it can be said that the individual decisions made by the comparator are informa-

tionally efficient if all the inputs to the merging networks are equally likely and the

comparators know only about their inputs.

3. 1. 1 Joint Entropy of a Column of Comparators

We have calculated the individual comparator entropy for an odd-even merging net-

work. It is also possible to consider a column of comparators as a group and ask what

the joint state probabilities are. Thus for the a, given n, there are n - 1 comparators

in a column at the first stage of the recursion. These comparators have a total of
n-
n 1 states when taken as a group, all of which are reachable. As before, the total

number of states the network has is (2n). Since this is not divisible by Zn-1 for n > Z,

it follows that the joint states of the comparators cannot be equally likely.

For the case n = 4 it can be shown that the number of ways in which each joint state

of the comparators can be realized is listed as follows:

000 - 8 100 - 8

001 - 8 101 - 8

010 - 16 110 - 8

011 - 8 111 - 8

where the binary number is the state of the 3 comparators. The joint state probabilities

can be calculated from these numbers by dividing them by (48) = 70. The entropy asso-

ciated with this probability distribution is 2. 936 bits, which is very close to the number

of comparators involved.

These results can now be generalized. The most likely joint state is 0(10) . For

n = 4 this corresponds to 010, which can be realized with n different states of the

13



merging network. With this in mind we can state the following theorem.

Theorem 3

The joint entropy of a column of n comparators satisfies the bound

log n
H. n- - .825. (13)Jc > 2

Proof: The entropy is defined as

H. = M P. log P., (14)
jc j j J

where the index j is over all 2 joint states, and P. is the probability of joint state j.
* J

Since the most probable state is 0(10) , we can get the inequality

2n

P.-< (15)
J Zn)

Also, since P. is a probability distribution, it follows that
J

z P. = 1. (16)
j

Now we can get a lower bound for Hj . Since the entropy function is convex n, a lower

bound can be obtained for the total entropy by concentrating the nonzero terms of the

probability distribution. In this case we have assumed that all of the nonzero terms have

2 n
the maximum possible probability, , and all other terms are zero. There can be

(nn) (2n)

only n- such terms if the distribution is to sum to one. Therefore, we can say

(Zn)

H. ~ - P log P
JC 2n max max

zn
= - log 2Zn- log

= [nlog( Znn)

= log (Zn) - n

log Zn
2n - - .325 - n
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log 2n
>n - .325

2

log n
> n- .825 (17)2

Q.E.D.

The entropy per comparator can then be given as

log n
n - .825

H. n- (18)
1 n- 1

or as n gets large

H.- 1 as n- oo. (19)
1

Thus for large n the individual comparators are informationally efficient even when

the whole column is considered as a group. In other words, vertically adjacent com-

parators are essentially independent.

3. 1. 2 Conditional Entropy of Comparators

If both the inputs to a certain comparator are a's or b' s, there is no uncertainty

involved in making the decision about the state of the comparator, since the a's and b's

are already in ascending order within themselves. To consider this effect we have cal-

culated the conditional entropy of a column of comparators, given the state of the two

half-size merging networks in the recursion. This quantity, Hn('sl S(M/ 12 , Me/ 2 )),

can be defined as follows:

DEFINITION 5.

Hn(,'S S(Mno/2 Me / 2 )) = Sk Pr[Sk(M, Me)] H n('sI Sk) (20)

where Pr[Sk(M, Me)] is the probability of state k of the two half-merging networks,

and H (P's|Sk(M, Me) is the entropy of the column of comparators when the half-merging

networks are in state k. In the summation k is taken over all (nz2) possible states

of the half-merging networks.

The conditional entropy can be bounded as

n-1
H(3'sIS(M°,Me)) n- iPi, (21)

i= 1

where Pi is the probability that i of the n-1 comparators have inputs which are both

a' s or both b's.

Expressions for Pi have been found. This technique, however, does not lend itself

to closed-form solution, so another approximation was used to calculate the comparator
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entropy, given the states of the subnetworks.

The probability that the inputs to a comparator match can be calculated directly.

Figure 6 shows the n outputs of the merging network and the two outputs associated

with comparator j. Assume that these are both a's. There are n-2 remaining a's

and 2n-2 remaining outputs. The total number of ways in which these can be arranged

is (2nn2). Therefore, the probability that both inputs to a comparator are a's isis n-2 7'-

Zn-Z
( n-2 )

(2nn )

(22)

The case in which

match is

both inputs are b's is symmetrical so that the total probability of a

2 n-2)
2( n-2 /

\n 

2
n -n

2Zn -n
(23)

As n gets large, the probability that both inputs to a comparator match is 1/2 (in which

case there is a trivial decision to make). In the other 1/2 cases the decision takes at

most one bit. Thus, the entropy of each comparator must be less than 1/2.

OUTPUTS
OF
0i

C2 j C2 j+ 1

2n-2 OTHER, OUTPUTS
n-2 REMAINING a's

Fig. 6. Schematic representation of
entropy calculation.

the outputs in a conditional

3. 1.3 Entropy Accounting for the Case n = 4

The case n = 4 has been exhaustively studied to account for all entropy involved in

the network. There are (8) = 70 possible states for the whole network. Only the

35 states in which the smallest element in the list was an a were considered, as the

other cases are symmetrical. In these 35 cases there were 3 possible states for the
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odd subnetwork: abab, aabb, and abba. For each of these states the possible states of

the even subnetwork and the number of output sequences corresponding to each of them

is shown in Table 2.

Table 2. Possible states of the odd and even subnetworks.

Odd Subnetwork Even Subnetwork Number of
State State Sequences/70

abab aabb 2
abab 8
abba 4
baab 2
baba 1

17

aabb aabb 2
abab 2
abba 1

5

abba abab 2
abba 4
baab 2
baba 4
bbaa 1

13

Thus the probability of state abab for the odd subnetwork is 17/70, for state aabb it

is 5/70, and for state abba it is 13/70. The 3 other states have the same probabilities

so that entropy of the odd subnetwork is 2. 432 bits.

Given that the odd subnetwork is in state abab, the probability distribution of the

even subnetwork can be calculated quickly from Table 2 just by dividing the number of

sequences for each state by the subtotal associated with that state of the odd subnetwork,

in this case 17. The entropy of the resulting distribution is 1. 972 bits. The entropies

of the even subnetwork in the other two cases are 1.522 bits and 2.163 bits. The 3 cases,

including the 3 symmetrical cases, have probabilities 17/35, 5/35, and 13/35, respec-

tively. When these are used to weigh the entropies for the odd subnetwork a total

entropy of 1. 98 bits is found.

It was found by exhaustive study that in 16/70 cases all comparators had to make

nontrivial decisions (i. e., none of the inputs matched), in 24/70 two comparators had

to make nontrivial decisions, and in 30/70 cases only one comparator had to make a

nontrivial decision.

Under the assumption of an upper bound of 1 bit/decision where the decision was

nontrivial, this means an entropy of 1. 71 bits associated with the comparators. These

results are summarized as follows.
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2. 43 bits - odd subnetwork

1. 98 bits - even subnetworklodd subnetwork

1. 71 bits - comparators odd and even subnetworks

6. 12 bits- total.

From Len a 1, the lower bound for entropy in this network is log () = 70 = 6. 13,

which agrete ithin round-off error with the accounting procedure above.

3. 1. 4 Limiting Behavior

As n gets large the informational limit for the merging networks approaches 2n.

The exhaustive accounting procedure is not easily extended to large n, but it seems

appropriate to state what appears to be the trend. These n bits of entropy are some-

how allocated among three places: the two subnetworks and the comparators. At this

point it seems reasonable to guess that n bits of entropy are associated with the first

subnetwork accounted for. Furthermore, it appears that n/2 bits are associated with

the second subnetwork conditioned upon the state of the first subnetwork. Finally, the

remaining n/2 bits should be associated with the comparators which is consistent with

the upper bound found by considering the probability that the inputs to a comparator

match.

3.2 BITONIC SORTING NETWORK

Batcher' s second algorithm leads to the bitonic sorting network. While having the

same order of growth of the number of comparators as the odd-even network, it differs

in the lower order terms so that it always has somewhat more comparators. Its con-

struction is very similar to the odd-even network, although the analysis is rather dif-

ferent. Stone 2 0 has shown that this algorithm can be used advantageously in a hardware

sorting system in which several comparisons are made simultaneously.

Like the odd-even network, bitonic networks are based on sorting by merging.

Where the odd-even merging network is defined recursively in terms of two merging

networks, the merging network in a bitonic system is defined recursively in terms of

smaller bitonic networks. Batcher 17 discusses the meaning of bitonic as follows.

"We will call a sequence of numbers bitonic if it is the juxtaposition of
two monotonic sequences, one ascending, the other descending. We also
say it remains bitonic if it is split anywhere and the two parts inter-
changed. Since any two monotonic sequences can be put together to form
a bitonic sequence, a network which rearranges a bitonic sequence into
monotonic order, a bitonic sorter, can be used as a merging network."

Thus two ordered sequences can be merged by reversing the order of one and

placing them on adjacent inputs so that the network receives as inputs a bitonic sequence.

The recursive definition of the bitonic network is shown in Fig. 7. A merging network

that merges two lists of size n is composed of n comparators and two n input bitonic

networks which in turn are decomposed. Thus to merge two lists of n items requires

n log n + n comparators. A sorting network is constructed from these bitonic networks
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using the sort-merge algorithm and requires a total of n/4(log Z n+log n) comparators.

This is n (log n) + n - 1 more than are required for the odd-even network with the same

number of inputs. Basically, this is because each stage of the recursion of the odd-

even network yields the minimum and the maximum of the inputs involved directly with-

out using a comparator (see Fig. 3).

In order to investigate the inefficiencies of a bitonic network, the state probabilities

of the comparators in the first column of a network were examined in detail. These are

the same comparators that were shown in the recursive definition of the network (Fig. 7).

The inputs to these comparators are items from two ordered lists: (al, a 2 . . . an) and

(b 1, b . . ., bn). For simplicity, these will be called the a's and the b's. Comparator i,

labeled i, compares a i with bni+l There are two possible outcomes and these cor-

respond to the states of i. Either a. <b or a > bi

BITONIC TWO-
SEOUENCE ORDERED

SnQUErCE

dl a,
dz az

dn an

dn+l bn

d2 n-! b2

d n bi

a _k+l bn_j+ a.n-. .

n-, b's i-i b's

i-1-k a's n-i+t+k a's

2n n-k- TOTAL n+k TOTAL

Fig. 7. Fig. 8.

Batcher bitonic sorting network. Schematic representation of the output of a
bitonic network.

The probability Pr(ai>bn i+l) can be calculated explicitly by studying the ordered

lists of all inputs. Such a typical list for the case a i > bn i+ is shown in Fig. 8. The

element a. i is shown to the right of bn i+l' since it is assumed to be larger. There

must be n-1 b's to the left of bn i+I and i-i b's to the right of it. To the left of

nn-i- 1 there must be less than i-1 a's, since ai > bni+; in particular, it is assumed

that there are n - i + 1 + k b's to the right of b and i-i b's to the right of bni+l' The

possible values for k are 0 < k < i - 1.

The total number of sequences of a's and b's that have a i > bni+ is then

n-k- n-+k (24)
i-l0+k n-i+ l+k) (24)

k=0
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Since there are (Zn) ways in which n a's and n b's can be ordered, it follows that

i n-k- 1 n+k
i- l+k ) \n-i+ l+k)

Pr(a>bni+) = (25)

n)

under the assumption that all sequences are equally likely.

This expression has been evaluated numerically and the results for n = 8 are shown

in Table 3. The comparators near the top and the bottom of the column are almost

always in one state. The comparators near the middle have reasonable probabilities of

being in either state. Table 2 also shows the binary entropy associated with each

comparator and the sum of the entropies. This sum is an upper bound to the joint

entropy of the whole column. In this case the entropy per comparator is only .32 bits.

This trend is shown more dramatically when larger values of n are considered.

Table 3. Bitonic network state probabilities for n = 8.

Comparator Pr (ai>bni+ 1) H(Pr)
Number

1 .000077 .0012

2 .0051 .045

3 .066 .350

4 .309 .892

5 .690 .892

6 .934 .350

7 .9449 .045

8 .9999 .0012

Total 2.58

Entropy/Comparator -= 8

= .32

Figure 9 shows the comparator probabilities and entropies for the case n = 32. The

entropy of most comparators is less than 0. 1, indeed the average entropy/comparator

is only 0. 16 bits. For large n the entropy per comparator decreases slowly as is

shown in Fig. 10. It appears that the order of decrease is approximately 1/log n.

The conclusion drawn from these calculations is that most of the comparisons made

in the bitonic network are very poor, in that there is little uncertainty associated with

them as indicated by the low entropy. Some comparators do make reasonable decisions

with a high amount of uncertainty, however, as is indicated by their entropy being

close to 1.0.
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Comparator probability and entropy Entropy per comparator for bitonic networks.
bitonic network for n = 32.

3.3 SUMMARY

We have explored two sorting networks that require about the same number of

comparators and hence are equally inefficient. The inefficiencies in each network can

be attributed, however, to different causes.

In the case of the odd-even network the inefficiency is very subtle and was shown

to be due to the lack of independence between the two n/Z input networks in the basic

recursion. Since these networks are inefficient, in that they have some joint stages

with low probability, the individual comparators in them must be inefficient no matter

how they are interconnected.

The inefficiency in the bitonic network is easier to see. It is shown that it is due

to poor comparisons made by individual comparators. Since these comparators have

low state entropy, more comparators must be used so that the total entropy equals

log n!.

Can sorting networks be built with less than 0(n(log n) ) comparators? This remains

an unsolved question. Although the sort-merge algorithm is not inefficient in itself, it

appears that it may be impossible to construct efficient merging networks with 0(n)

comparators. This in itself does not rule out the possibility of efficient networks for

some values of n which are not based on merging.
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IV. CONNECTING NETWORKS WITH FINITE BLOCKING PROBABILITY

The connecting networks that are commonly used in telephone systems will now be

discussed. Although many practical models have been given for such networks, little

is known about bounds for the growth of their complexity. In order to get such bounds,

the concept of ensembles of systems, which has been used successfully in the context

of coding systems, is applied to connecting networks. Two types of ensembles of con-

necting networks are defined and their average blocking probability bounded. This is

used in turn to give a bound on the growth of network complexity. It is shown that the

requirement of finite blocking probability can be met with a complexity that has the same

order as the informational minimum.

4. 1 BACKGROUND

It has been said that the problem of telephone switching was first recognized when

the third telephone was built. Since then many ingenious systems have been developed

to solve practical problems. It was recognized at an early stage that the variable

demands of telephone users made it desirable to engineer the amount of equipment

to be installed to attain a suitable grade of service during "normal" use, rather than

to install enough equipment to handle all possible calls simultaneously.
v6

To approach this class of problems, traffic theory was developed. As Benes has

written,

"The first contribution to traffic theory appeared almost simultaneously
in Europe and the United States during the early years of the 20th cen-
tury. In America, G. T. Blood of the American Telephone and Tele-
graph Company had observed as early as 1898 a close agreement between
the terms of a binomial expansion and results of observations on the dis-
tribution of busy calls. In 1903, M. C. Rorty used the normal approx-
imation to the binomial distribution in a theoretical attack on trunking
problems, and in 1908, E. C. Molina improved Rorty's work by his (or
Poisson's) approximation to the binomial distribution."

Perhaps the greatest contributor to early traffic theory was A. K. Erlang who

worked for the Copenhagen Telephone Company. During 1909-1918 he developed the

first dynamic theory of telephone traffic which in many ways set the stage, in 1933, for

the more elegant and more general theory of stochastic processes of A. N. Kolmogorov.

Early telephone switching systems were easily modeled as a series of independent

obstacles through which a call had to pass. This was a result of the direct control of the

equipment by the dialed digits. In 1938, the concept of common control was introduced with

the Bell No. 1 Crossbar System. Rather than setting up part of a path as each digit was

dialed, the digits were stored and the common control sought to set up a path when the

whole number was dialed and available. This resulted in more efficient use of equipment,

but it also required the development of a new class of models of system behavior. Now it

was possible that links could be available in each stage of the network, but the call could

not be completed because it was not possible to interconnect the idle links.
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Approximations have been developed to estimate the blocking probabilities in cross-

barlike networks. Most results in this field are reviewed in the comprehensive work

of Syski. 5None of these models is simple enough to be both really tractable and on firm

mathematical ground. For example, Lee 2 6 and LeGall 27 have developed a model that

is very simple to deal with and is reasonably accurate in many cases, but, Benes has

recently shown that it is on very shaky theoretical grounds. The model of C. Jacobaeus 2 8

is more detailed, but is still based on assumed a priori distributions.

One of the most successful approaches to calculating blocking probabilities has been

the NEASIM program of Grantges and Sinowitz. 9 This is a hybrid approach, com-

bining both simulation and mathematical modeling. It does not give much insight into

the general problem, however.

The study of nonblocking networks has been more successful than the study of net-

works with blocking. This appears to be because nonblocking networks can be discussed

readily from a pure combinatorial viewpoint and definite statements can be made about

their behavior.

The first nonblocking network, derived in 1951 by Clos, is based on the algorithm

shown in Fig. 11. Clos showed that if s 2R-1, the network would be strictly non-

blocking; that is, any call between idle terminals could be completed regardless of the

state of the network. This algorithm can then be applied recursively to yield nonblocking

networks with more switches of a smaller size and more stages. In general, the number

of crosspoints decreases as more and more stages are used. No closed-form solution

exists for the optimum number of stages or the optimal factoring of n used in the recur-

sion, however. The best guide to the synthesis of such networks is an unpublished work

by Keister 10bwhich used a computer program to find by exhaustive search the

optimal networks, for n 16 < n < 50, 000.

More recently, Cantor 1 6 has used a somewhat different argument to show that the

number of contacts X(n) satisfies the following inequality X(n) 8 n log n. Then

X(n) = 0(nlog2 n). (26)

Benes has derived a class of networks called rearrangeably nonblocking. These net-

works are nonblocking if existing calls can be rearranged or moved before new calls are

added. This is not practical in conventional telephony so these systems have not been

manufactured. The algorithm is basically the same as shown in Fig. 11, except now the

condition is only s D r. In contrast to the case of strictly nonblocking networks, the mini-

mum possible number of contacts can be easily found for this type of network. The mini-

mum network has been shown by Benes to be a function of the prime factors of n. When

n is an integral power of two the case is much simpler. The minimal network is then

composed of 2 X 2 switches which Joel 9 has called elements. The resulting networks

are equivalent to those derived by the recursion shown in Fig. 12. These networks have

n log n-n+l elements, which is the minimum possible order of growth.
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In practical telephone systems, switching networks are designed with blocking

probabilities of order .001-.01, depending upon the actual purpose of the network.

Fig. 11. Definition of Clos network. Fig. 12. Recursive definition of rearrange-
able network of elements.

The inputs to the network can be very low utilization lines with offered load of the order

of . 02 Erlang, or in some cases they could be long-distance trunks with offered load

of the order of .5 Erlang/line. (The load expressed in Erlangs can be interpreted as

the average number of calls a line or group of lines carries or is offered.) For example,

a No. 1 crossbar district office with 80, 000 crosspoints might have 1000 inputs and out-

puts and handle 708 Erlangs with a blocking probability of . 003. In comparison, a Clos

network could handle 1000 inputs and outputs carrying 1000 Erlangs with no traffic and

have approximately 138, 000 crosspoints. It is not clear that nonblocking networks offer

advantages over conventional networks with practical values of n (less than 50, 000). One

reason for this uncertainty is that there have been no firm results for the order of growth

of networks with blocking.

There have been two basic papers on limits for contact growth in connecting net-

works. Ikeno has shown that networks can be built with X(n) contacts, where

X(n) < 10.9 A log A, (27)

with A the total carried load in Erlangs, or

A = na(1-B), (28)

where a is the offered load per input line, and B is the blocking probability. This

result does not furnish a direct relationship between blocking probabilities and network

growth because it only considers the total amount of traffic offered and may lead to

networks having expanders or concentrators so that the inputs to the network may

carry more or less traffic than the original lines in which we are interested.

A more direct approach to the problem of network size with blocking is the work of

Lotze, 3 1 which has recently been extended by Feiner and Kappel. 3 2 (In the nomen-

clature, a is called "A", and only this case n = 1 is relevant to the present discussion.)

They define an access factor a as
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kS(1 -a) s

a - , (29)n

where the networks are composed of k X k crossbar switches. Then the number of con-

tacts can be minimized by taking derivatives and setting them equal to zero. Feiner

and Kappel have shown empirically that this access factor is highly correlated with

blocking for several different networks. The minimum number of contacts is

X(n) = 4 e(nlog e n+n loge a). (30)

The biggest problem with this approach is that the relationship between A and the

blocking probability is not rigorously proved. Indeed, the authors give plots of

X blocking obtained by simulation as a function of A for several networks, and some-

times the curves are convex U, while in other cases they are convex n.

A similar approach to minimization is possible with the probability graph model of

LeGall 2 7 and Lee. 6 Even though this model has been helpful in engineering applica-

tions, there is no reason to believe that it will yield absolute bounds.

4. 2 INTRODUCTION TO ENSEMBLES OF CONNECTING NETWORKS

An ensemble of connecting networks will now be defined. Such networks have a

fixed number of inputs, stages, and crosspoint contacts, but different connection pat-

terns. We shall then study the properties of this ensemble of networks and of a similar

ensemble. A bound is computed for the average blocking probability for such an

ensemble with some arbitrary number of inputs and crosspoints. This result is then

turned around to give an upper bound for the minimum number required to achieve an

arbitrary blocking probability, given the number of inputs.

The major block to finding limits for growth of contacts with inputs is that there are

no mathematically tractable expressions for bounding network blocking. A similar prob-

lem arises in the context of error probabilities for error-correcting codes. In Shannon's

classic paper of 1948, he introduced a new approach to such problems, the average

performance of an ensemble of systems.

One of Shannon's fundamental theorems is stated thus.

"Let a discrete channel have a capacity C and a discrete source the
entropy per second H. If H < C there exists a coding system such
that the output of the source can be transmitted over the channel
with an arbitrarily small frequency of errors."

He then points out the key to proof of this and of others that followed.

"The method of proving the first part of this Theorem is not by exhibiting
a coding method having the desired properties, but by showing that such a
code must exist in a certain group of codes. In fact we will average the fre-
quency of errors over this group and show that this average can be made less
than E. If the average of a set of numbers is less than E, there must exist at
least one in this set less than E. This will establish the desired result."
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Wozencraft and Jacobs 3 4 have commented on the significance of this proof.

"It may be surprising that one can bound the average probability for a
collection of communication systems when one cannot calculate the proba-
bility of error of an individual system. Such was Shannon's insight."

The theorem is then proved by showing that the average error probability for memory-

less channels over the ensemble of all codebook codes decreases exponentially as the

block length increases, if the rate is less than the channel capacity.

The logic of this proof has been extended to more specific types of coding systems

than just codebook codes. For example, a result of Elias3 5 shows that for the ensemble

of all convolutional encoding systems such as the one shown in Fig. 13, the average

error probability of an ensemble of such systems when L bits are sent can be bounded

by

P(E) L2 exp[-vk(Ro-l/v)], (31)

where

v = number of modulo 2 adders used in the encoder

k = number of bits in the input shift register, also known as the "span length"

R o = binary symmetric channel error exponent
0

= 1 - log 2 [l+ 2p(l-p)]

p = channel error probability.

Such an encoder works as follows: Input bits are shifted from left to right in the k-bit

shift register. Every time a new bit is inserted the v modulo 2 sums of the shift regis-

ter contents are sent out. Decoder opera-

K-BIT SHIFT REGISTER tion has been described by Wozencraft and
34

J acobs.

Although such proofs do not tell how

to build an encoder that will work as well

as the bound, the knowledge of their existence

has led to the discovery of encoders with this

order of behavior. Indeed, from the Chebyshev

inequality 3 6

t
Pr(t > ) , (32)

we can see that most encoders must have

Fig. 13. Convolutional encoder. error probabilities of this order if proper

decoding is used.

The concept of using random structure for existence proofs can also be used in the
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context of switching networks. The objectives here will be to define an ensemble of net-

works with n inputs with a fixed number of crosspoints and to calculate the blocking

probability over the ensemble. Then a bound for the rate of growth of number of contacts

in such networks for a given n and P(B) can be given.

The first ensemble of networks that will be analyzed is an ensemble of homogene-

ously structured switching networks and a typical member network that is shown in

Fig. 14. In this diagram, inputs, outputs, and intermediate points are shown as nodes.

Contacts are shown as edges connecting nodes and are assumed to be normally open.

These networks can be classified with four parameters:

The network has n inputs and stages.

k is called the expansion factor. All stages except stage 0 and stage -1 have

kn nodes. k does not have to be integral as long as the product kn is.

c is called the fanout. All nodes except those in stage 0 are connected to nodes

in the next stage to the right by c contacts. The contacts between stage 1 and stage 0

i,-1, 1-2 1-3 STAGE NUMBER 2 1 0

C=FANOUT

INPUTS jn OUTPUTS

Kn NODES IN THESE STAGES

Fig. 14. Homogeneously structured connecting network.

are placed without replacement so that each node of stage 1 is connected to c distinct

nodes in stage 0. The contacts in all other stages are placed with replacement so it is

possible that two or more parallel contacts might join two nodes. This may seem some-

what inefficient, but it simplifies the mathematics. The blocking for such a network

must be larger than if only placing contacts without replacment was used, and if c <<kn

the fraction of the contacts involved in such parallel links is negligible.

Now an ensemble of such networks can be defined.

DEFINITION 6. N(n, Q, c, k) is the ensemble of all homogeneous randomly struc-

tured switching networks with the same value for parameters n, , c, and k as

described above, each with equal probability.

A bound for the blocking probability of such networks averaged over the ensemble

will be calculated in sections 4. 3 and 4. 4. In section 4. 5 a related ensemble will be

defined and similar results will be given which lead to a bound for the growth of networks

with blocking. As for the ensemble of all block encoding systems and the ensemble of

all convolutional encoders discussed above, it is impossible to calculate the blocking or

a good bound to the blocking for any particular network in N(n, , c, k). It is relatively
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straightforward, however, to calculate a bound to the average blocking over the

ensemble. This shows then that at least one network in the ensemble has a blocking

less than the bound.

4.3 ANALYSIS OF AN ENSEMBLE OF HOMOGENEOUSLY

STRUCTURED CONNECTING NETWORKS

A bound will be derived for the average blocking probability of the ensemble

N(n, , c, k). The blocking probability is the probability that an input output pair cannot

be connected for lack of a path, given that the end points are idle. In general, this

probability is a function of the traffic offered to the network and the resulting probability

distribution of network states. It is virtually impossible to calculate directly, or even

bound, the network state distribution or the blocking probability for a particular network.

It is possible, however, to bound the average blocking probability over the ensemble of

networks in a relatively straightforward manner. This then shows that at least one net-

work in the ensemble has the average blocking probability. In particular, the following

theorem will be proved.

Theorem 4

For any blocking probability E there is a c such that for any number n of inputs

there exists at least one connecting network with n inputs and blocking probability E

which has < cn log n contacts.

For such networks the requirement of finite blocking probability E results in net-

works whose number of contacts is a multiple of the informational minimum. It will

be shown that the constant c is 0(n log 1/E).

For any given offered traffic to the network (the sequence of paths which it is

requested to make), there exists a stochastic process whose states are the number of

calls in progress. With certain assumptions it can be shown that this process satisfies

the Markov property, but this is not important here. In equilibrium such a process

has a well-defined state distribution Pr(q), where q is the number of paths connected,

0 - q n. If the blocking probability of a network is known, given that qo paths are

connected, the overall blocking can be computed as follows:

n-1
Pr(blocking) = pr(qo) Pr(blockinglq= q).

qo=0

As we have stated, it is difficult to calculate Pr(q), but if Pr(blocking q = qo) is upper-

bounded for all q, then an upper bound for the overall blocking can be computed as fol-

lows:

Pr(blocking) s max [Pr(blocking q = q)]

Consequently, bounding the blocking probability of a network is reduced to bounding the
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probability of blocking, given that a certain number of paths are connected.

Now, consider the ensemble of all networks of the form N(n, , c, k) each of which is

in all possible states in which qo paths are connected. The next step is to calculate the

blocking probability from an idle point in stage j to an idle point in stage 0 averaged

over this ensemble. This probability is called Pj(qo), and can be shown to be given

by

j(q0 ) =[ ( _ .)(I -. l())j (33)

The 1 n )- term is the probability that the point in stage j-1 that a contact goes to is

idle, under the assumption that all routing patterns are equally likely. The (1-Pj_l(qo))

term is the probability that, given a point in stage j-1 is reached, a connection

can be made to the desired output point. The exponent c is used because there are

c contacts leaving every node. Equation 33 is monotonic, increasing as a function of qo,

so it can be upper-bounded by setting q = n - 1.

The value for Pl(qo) is independent of qo, since other paths do not interfere with

the possibility of connecting from stage 1 to stage 0. Then

P 1
= 1 n (34)

Now the problem of bounding the blocking probability of the ensemble is reduced to

bounding the iterations obtained from (33) and (34).

For mathematical convenience, it is helpful to use the following bound:

n-1 >1 n
1 ->1kn kn

1
> I-I

k

k-i
> 1 k (35)

This has a major advantage: it gives a bound on which P. is independent of n!
J

1 - ( (-Pj- 1 ) > 1 - <1 (-P- -. (36)

So

· < 1i - (kk) ( 1 )] (37)

approaching equality as 1/kn - 0.

Figure 15 shows graphically the meaning of this relationship. Here the bound on P.
J
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is plotted against Pj - The curve passes through the points (0, (l/k)c ) and (1, 1). At

Pj-1 = 0 the slope is c(k-l)/kc, and at P1 = 1 the slope is c(k-l)/kc. As c and k

become large the curve becomes shaped like a backwards "L".

Pi

( I)C

0 O PI 1

Pi Pj- 1

Fig. 15. Probability of connection from Fig. 16. Construction of values for P.
stage J as a function of proba- given P 1.
bility from stage J-1.

The manner in which the bound on P. changes as j increases can be shown graph-
J

ically by finding P 1 on the curve and then constructing steps between the curve and the

45 ° line connecting (0, 0) and (1, 1). All the derivatives of Eq. 37 are non-negative, so

if the slope at (1, 1) is greater than unity it can be shown that the curve crosses the diag-

onal once and only once. This construction is shown in Fig. 16 where the decrease

of P. as j increases is apparent. The blocking does not decrease without limit for, as

j-o, Pj- Po where Po > 0. The value of P can be found by solving the following

equation for the intersection between the curve and the diagonal,

Po= [1 - (k)(l ) (38)

No closed-form solution exists for P if c > 3, but if c( k-) < 1, then the only solution

is P = 1. This has a useful interpretation. The factor c( k-l ) is the expected number

of idle nodes in the next stage that a node is connected to, thus the "effective fanout."

Therefore the condition necessary for the blocking to decrease as more stages are added

to a network is that the effective fanout be greater than unity.

No closed-form general solution exists for Po for c > 3. But from Fig. 15 it is

clear that P > (l/k) . Also, from substitution it can be shown that P < exp[-c(k)]

Therefore,
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(k)C< [ k ) (39

A useful interpretation of part of this bound is that the probability that all c contacts

from an input go to busy nodes in the next stage is

n- 1 C
Vkn J

- (k~~~~10 \C( 40 )~~~~~(40)

Since all connections from each input must go through such a bottleneck, the overall

blocking cannot be decreased below this amount, regardless of how many stages are

used.

4.4 BOUNDS FOR P.

J
An upper bound for P. will be found using a two-piece linear bound for the defining

J
equation. The linear bound that is used is shown in Fig. 17. The two lines that are used

connect (0, (l/k)c) and (0, P(0)), and (0, P(0)) and (1, 1), where P(0) means the point on

the curve corresponding to P-1 = 8. Since these lines lie above the curve, any value

for Pj obtained by using them is an upper bound to the actual value for P.. In the

following derivation the primed variables such as P! will mean values obtained from

using the linear bound. Thus P! Pi. Now
i 1

P, P (P ,). (41)
P P 1 (P 1 -) - (P2-P3) - -(P- ) (41)

It can be shown that

P t - p'
m = i+1 (42)

i-1 i

Therefore

j=2

Pj < P (P-P 1 ) ml (43)
i=O

for P. > P(O). Now P = 1 - n' as was stated previously in Eq. 34.
31 n

From Fig. 17, it can be seen that

c c
P2 -P = c m c1n 

c (44)
n
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8
(a )

I

(b)

Fig. 17. (a) Linear bound for P..
J

(b) Detail of the corner of (a).
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Then

j=2
C i

Pj <P1 - n (m-l) m
i=0

<1 _c c (m-1) I _ 1

n -n -1
n n

C _j- 1
<1 -cmn

n

Now

1 - P(O)

m 1-
I1 -0

At this point it is convenient to set 0 = 1/2. Any value for 0

will suffice, indeed some may even yield tighter bounds, but 0

results with an interesting order of growth, other values of 0

order of growth, and 1/2 is a convenient value to calculate with.

ml =

such that P < 0 < 1
oo

= 1/2 appears to give

have not affected this

Then

1
2

l [1 2 1
1

= 2 ( 2k-k+l)c}

(2k ) ]

Substituting this in Eq. 45 yields

(46)

P. <1 z ( ( k+ c
j n2k

To find out how large jl must be to get to the breakpoint in the bound, substitute 0

for P. to obtain
J
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(47)

= 1/2

(45)

I -I -Kk (1- 2) 



c jl-1
2=1 (ml)

2 n 1

2c 1

n
log 2 = (jl-1) log m1

log n/2c

j 1 1 = log m 1

log n/2c

Jl log ml 1

log n/2c
= + 1. (48)

log [2(1 (k+l ))]

Since jl must be integral, it follows that

log n/2c
il < k + 2. (49)

log[2(1 - (k+l) ]

The significance of this equation is that for arbitrary k and c the blocking proba-

bility can be reduced to 0, in this case 0 = 1/2, with a number of stages which

increases only logarithmically with n.

A similar approach has been used to study the decrease of P. for P. < P(O). This
J J

analysis will be directed to the question: How many stages are required to reduce the

blocking from P(1/2) to some desired Pf? In order to do this, P' will be set arbitrarily

to Pf/2 and the value of j2 will be found that yields Pj+j = P. Other choices for Pf

lead to similar results.

First, a bound for m 2 must be found.

P(1/2) - P(0)
m 2 =

1/2 - 0

(k+l)c(I)c
2k ) (k)-

1/2

< z( k+, )C. (50)
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Then P' is the intersection of the diagonal and the line with slope m 2.

P = (l/k)c +m P'

PI (1-m 2 ) = (1/k)c

(l/k)c
P =

oo 1 - m 2

( /k)
<kc (51)

1 \-2k )

If k and c are limited to c 3, k 2 to simplify bounding, this yields

(l/k)c
P <

00oo 3

< 6 . 4 (1/k)c. (52)

Letting P = Pf/2, we obtain

Pf/2 = 6.4(1/k)c

Pf = 12. 8(l/k)C

log Pf = c log k + log 12. 8

c log k = log 12. 8 - log Pf

log 12.8 + log /Pf
c = (53)

log k

Now an expression similar to Eq. 48 can be derived for Region 2. Assume that P1 = 0 =

1/2 which is convenient, since the desired result is the number of additional stages

required to reduce the blocking from 1/2 to Pf. Then as before

P. <p = P -(P ) - (P_ )
3 J 1 2

j-2 i

< P1 - (P 1 -P2) m 2 .i=0
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P = P - (P2-P 1 )oo I

00

i=0

i
m 2

so

00

P1 =Po + (P2'P1) iO m2'
i=0

Substituting Eq. 54 in Eq. 45 gives

P T

J
= P + (P 1 P)

oo0-P

= P + (P -P)

= P + (P 1 -P)

v Mi

i=O

o0

z m2
i=j-3

j-3

1 - m 2 '

Similarly to Eq. 44,

2 2
1 2 2 \ 

= (1-m2 ) - (l/k)c2 

1
< (-m2),

< 1p +<P + (l-m 2 )co z 2

j-3m 2

1 - m 2
P!

3

< P + mj3O0z 2 
(57)

The first term in this expression has already been set equal to Pf/2; therefore, to get

the sum to be Pf, the first term is set equal to the second term.
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(54)

j-2

- (P IP2 ) i=i=O

i
m 2

(55)

so

(56)

( 1 c
+ D



6.4(1/k) = ~ m 2

log 6.4 - c log k = (j 2 -3) log m 2 - log 2

log 6.4 - c log k + log 2 = (j 2 -3) log m 2

log 6.4 - c log k + log 2

log m 2

log 6.4 - c log k + log 2

log (k+l)

log 6.4 - c log k + log 2

k+ 1
c log 2k

+3

+3

+ 3.

Since it was previously assumed that c 3 and k 2, we have

log 6. 4 - 2 log 2

3
3 log 3

+ 3

1. 85 - 2(.69)
< +3

-3(.29)

< .54 + 3.

Because k must be integral this yields

J2 < 4. (59)

This means that if k and c are chosen in accordance with Eq. 43, only four stages are

required to reduce the blocking from 1/2 to Pf, regardless of the value chosen for Pf.

Thus the value of Pf affects only the number of contacts by controlling the values of k

and c, not the number of stages.

The total number of contacts now required for the network is

x = n(jl+j2 ) ck

log n/2c
= n + 4ck,

log [(1 + )c )]
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where

log 12. 8 + log 1/Pf
log k

Thus

x = 0(nlogn+log 1/Pf), (62)

which proves Theorem 4.

4.5 AN ENSEMBLE OF NONHOMOGENEOUSLY STRUCTURED

-CONNECTING NETWORKS

The homogeneously structured connecting networks discussed above have constant

values of c and k throughout the network. It is possible to obtain different orders of

the growth of contacts in a network by using values of these parameters which change

from stage to stage. Chung L. Liu3 7 has pointed out, however, that for the type of

network discussed thus far P- < P kn, where k. is the expansion factor in stage j.

This follows from the fact that an input must have access to at most all k.n nodes in
J

stage j, each of which has blocking to the outputs of P.. This means that the first few
J

stages act as a bottleneck and dominate blocking. Thus such networks do not have a

lower order of growth than was found previously. This bound does not affect the net-
kn

works with constant c and k, since in such networks P 1 < P , so the overall blocking

is greater than the limit that was implied by the bottleneck.

Lower orders of growth of contacts can be reached by some modification of the net-

work definition. In the rest of this section a somewhat different ensemble will be

defined that will prove the following theorem.

Theorem 5

There is a constant c 1 such that given any probability of blocking > 0, there exists

a value n such that for any n > n a network can be constructed with <c In log n con-

tacts and blocking probability < E. Conversely, a network cannot achieve blocking prob-

ability E < 1 for large n with less than c 2 n log n contacts.

In particular, it will be shown that networks exist for any n and E which have

0(nlogn) + 0(n log 1/E) contacts. Alternatively, this result can be viewed as meaning

that for any E there exists a class of networks such that for large n the ratio of the

number of contacts in the network to log n! approaches a constant. The converse is

that it is impossible to achieve a lower order of growth.
-n

It should be observed that this bound is not useful for values of Pf less than e

since the second term then becomes 0(n 2 ) and networks with no blocking can be built with

only n contacts, that is, the square crosspoint nets. Also, the proof using randomly
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this point. Because of the nonblocking

square networks the bound still holds.

Actually, such low values of blocking

are not of practical interest because,
v ,z,~,n,, -n.1 I

ob o even or n = uuu, e is so small that

o... 0 blocking would never occur during the

, . -- , ·... physical life of the system. The type

CENTER NETWORK of network discussed here is called a
Kn NODES/COLUMN

FANOUT Co nonhomogeneously structured connecting
BLOCKING PROBABILITY=P

network and is illustrated in Fig. 18. It
Fig. 18. Nonhomogeneously structured

con ctn. No ogenetork, structured is fundamentally the same as the net-connecting network.
works already discussed with the fol-

lowing changes: The contacts between

the two end stages and the stages adjacent to them are placed differently from the other

contacts. In particular, every node in stage Q-1 has c1 contacts connecting it to nodes

in stage 1-2. Every node in stage 0 has c contacts connecting it to nodes in stage 1.

Thus the contacts are placed from left to right everywhere in the network, except

between stage 0 and 1. The rest of the network has fanout c placed as before.

DEFINITION 7. N'(n, I, c , c 1 , k) is the ensemble of all nonhomogeneous randomly

structured switching networks with parameters n, f, c, c 1, and k as described

above.

It has been shown that the end-to-end blocking of the center part of the network

can be PO if the network has 0(nlognlog l/Po) contacts. Now, if each of the overall

inputs and outputs of the network can reach m inputs and outputs of the center network,

the overall blocking can be bounded by Pf < (Po)m. This can be shown as follows. Pick

one of the m available inputs and one of the m available outputs. By definition, the

probability of blocking between these points is P. If the connection between these

points is blocked, the conditional probability of blocking between any other pair of points

is less than P . The conditional blocking can be viewed as the blocking in an ensemble of

homogeneous networks with at most n-2 calls and kn-l nodes in each stage. The original

center network had at most n-l calls in kn nodes. Since

n-l n-2
> n for k > 1, (63)

kn kn- 1

the blocking in this new network must be less than the blocking in the center network.
th

Similarly, it can be shown that the probability of blocking between the i input-output

pair, given that i-1 input-output pairs are blocked, is also less than P . Equation 63

then follows from the fact that there are m input-output pairs that can be used.

Actually, this is a very conservative argument. There are m possible paths which
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could be used. It seems likely that the probability of each of these being usable must
2

be of the order of P, so that the overall probability would be of the order of (P )m
0 0

This cannot be readily shown, however, and the bound of Eq. 63 is sufficient for the

proof of Theorem 5. Then, by the union bound, it follows that

Pf Pbeg + (Po)m + Pend' (64)

where

Pf = overall blocking probability

Pbeg = Pr[an input can reach less than m idle center inputs]

Pend = Pr[an output can reach less than n idle center outputs].

Now, given certain value of Pf, we find values of m network parameters which make

each term in (64) - Pf/3.

pm = Pf/3
Pbeg o = P end= f/3

log Pf/3
m > (65)

log P 0

Since the case 0 = 1/2 has been studied, it is convenient to set P = 1/2. The deri-

vation of the number of stages necessary to achieve this value is identical to the pre-

vious derivation, except that in this case P 1 = 1 . Thus Eq. 45 becomes

P. < 1 c m (66)
- kn

and by following the same steps it can be found that

log kn/2c

lJ o [Z(1 =2k ))k + 2 (67)

log Lz(i -

which is similar to Eq. 49.

Finding the appropriate value for c1 is more complicated. Since fewer than n of

the kn inputs to the center network are used at any one time,

Pr[a contact leads to an unavailable input] c kn

1

Hence
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Pr[a contact leads to an available input] > k - 1 (68)

Thus a given contact counts toward the desired total of m with a probability greater

than (k-l)/k.

The Chernoff bound 3 6 can be used to bound the value of c l which is necessary to

ensure that with probability -Pf/3 at least m contacts lead from each given input to

usable inputs to the center network. (This can also be modeled as the first passage time

in a pure birth process, but such an approach does not lead to a convenient bound for

C 1.) The problem is similar to asking how many times a coin must be flipped so

that the probability of having had less than r heads is less than some E.

A useful form of the Chernoff bound is

Pf[~L<m] < esm g (s) for all s < 0, (69)

where [L is the number of contacts going to available inputs, and g (s) is the s trans-

form of the probability density function of . Now 1i can be viewed as the sum of

c zero-one independent random variables which can take on the value one with proba-

bility (k-l)/k. Then

g (s) = [Pr(O) e s + Pr(l) e l s]c

= [ + k- e . (70)

Therefore

Pr[,<m] e-sm 1 + k-l es]C for s < 0. (71)

Let

P = e -sm + k es . (72)

Now the object is to solve for c as a function of P and m

log P = -sm + c log + k es]

log P + sm
c <1

log k+ k es] (73)

and thus finding the minimal value for c 1, or equivalently by minimizing Eq. 73.
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Neither approach leads to a closed-form solution. It can be shown, however, that

1
s = log 

-= log k (75)

is a good approximation for the optimal value of s, especially for large m. The fact

that this is only an approximation is not significant, since the Chernoff bound is good

for all negative values of s.

Now substituting this value of s in Eq. 75 gives

1log P + m log 1
c <

log [1 + k-l (1 )]

log P + m log 1/k

log 2/k

log P log k

< +m(log k - log2log 2/k

log 1/P log k

log / m(log k - log 2)* (76)log k/2

This seems intuitively correct, since it approaches m for large P and large m, and

slowly becomes infinite for very small P.

The total number of contacts required for the network in Fig. 18 is

n[Zcl+jcok]. (77)

Letting the overall blocking probability Pf be distributed as in Eq. 64 yields

log k/2x~)log 3/Pf + log 3/Pflog k - log 2log k/Z log 1
(78)

which can then be minimized as a function of k and c. As before, the important point

is the order of growth, which in this case is

x(n) = O(nlogn) + O(nlog 1/Pf) (79)
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which proves Theorem 5.

4.6 SUMMARY

Theorem 4 shows that the requirement of small blocking could be met with a number

of contacts which is the informational minimum multiplied by a constant that is a func-

tion of the desired blocking probability. Theorem 5 shows that the requirement of some

arbitrarily small blocking probability only requires an additive increase in the number

of contacts required so that for a large number of inputs and fixed blocking probability

the requirement of the informational bound predominates. For this second class of net-

works the term containing the variation with blocking was shown to be O(nlog /E). The

results of Lotze 31 suggest that a lower order of growth is possible for this term. How-

ever, it appears that the bottleneck phenomenon mentioned in section 4. 5 may limit the

average blocking probability of an ensemble to the order of growth which is shown. It

may be possible to show lower orders with different approaches.

Perhaps as significant as these results are the methods which are used. Apparently,

this is the first use of ensembles to show results concerning connecting networks. It is

hoped that this technique, which has long been used in coding theory, will now be

applied to other connecting-network problems.
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V. TIME-DIVISION SWITCHING NETWORK

We have shown that connecting networks with finite blocking can be built with a com-

plexity that has the same order of growth as the theoretical minimum. We shall now

study a related type of network that is used to switch time-multiplexed signals. It is

shown that a time-slot interchanger, a unit which permutes the time order of a sequence

of signals, can be constructed with a complexity which is proportional to m log m,

where m is the number of signals multiplexed on a line. As in the case discussed in

Section IV, this is the same order of growth as the theoretical minimum. The results

in Section IV were obtained from an existence proof based on the average blocking of

an ensemble, whereas those that will now be discussed are based on an explicit con-

struction which is given.

5. 1 INTRODUCTION TO TIME-DIVISION SWITCHING

In all networks discussed thus far, each input carried signals from only one source.

With current technology, it is often desirable to multiplex several sources together on

one line and to build switching and transmission systems that can handle directly such

multiplexed lines. Such multiplexing can be done by multiplying each signal by a wave-

form from an orthogonal set {Ti(t)} of waveforms and then by adding the products as

shown in Fig. 19. Demultiplexing can be accomplished with a similar process.

Si (t)

s2 (t)

sm(t)

Fig. 19.

Orthogonal multiplex system.

Almost all intercity telecommunication in the United States is now handled by

frequency-multiplexed transmission systems. Because of the expense of variable

frequency shifting equipment, direct switching of these frequency-multiplexed signals

has never been practical; consequently, signals are always demultiplexed to baseband

before they are switched.

Recent technology has led to a rapid increase in the use of time-multiplexing for

transmission equipment. Time-division switching has been used mainly in small, spe-

cialized systems. It is reasonable to expect, however, that the use of time-division

multiplexed transmission will increase rapidly as large-scale integration costs decrease
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and that it will become a major factor in the national network.

In general a time-division switching network has several time-multiplexed inputs

and outputs. The task of the network is to transfer signals from each time slot on each

input line to an appropriate time slot on the desired output line. Thus signals must be

switched in both space and time. It has been shown 3 5 that networks that do such

switching have at least one equivalent pure space-division network with the same traffic

properties.

Inose3 8 has published a survey of time-division switching techniques which shows

that time-slot interchangers (TSI), devices that permute the relative order of signals,

are basic components in a wide variety of systems. The rest of this section will be

devoted to discussing efficient techniques for the implementation of TSI's.

5.2 EFFICIENT IMPLEMENTATION OF TIME-SLOT

INTERCHANGERS

Time-slot interchangers (TSI's) are basic components in many different types of

time-division switching systems. A TSI is equivalent 3 9 to an m X m square switch with

m crosspoints. The usual structure for a TSI is an m-bit shift register with a tap at

each stage and a local memory with m words of log m bits each. Each word corre-

sponds to a time slot, and its contents is used to select the proper tap to be used for

the signal present in that time slot. In particular, the contents contains the difference,

modulo m, of the original time-slot number and the desired time-slot number. The TSI

then delays each incoming signal for an appropriate amount of time.

A serious problem with such a scheme is that direct implementation requires a

gate with a fanout of m which is impractical for reasonable values of m and high

speeds. Alternatively, a TSI could be built as shown in Fig. 20, in which case a binary

tree with log m layers and m-1 gates would be used. It will now be shown that TSI's

can be constructed using only 0(log m) gates at the expense of using more shift registers.

Since shift registers are less expensive than gates in some technologies, this can be a

desirable tradeoff.

The first type of TSI that will be discussed is based upon a rearrangeable network

of elements which was discussed in section 4. 1. It is necessary to redraw Fig. 12

slightly to get a modified form of the recursive definition. This change is shown in

Fig. 21 and does not change the properties of the network, since it involves only

changing the order of the inputs to the nonblocking center networks, but it does simplify

later steps.

The resulting network for n= 8 is shown in Fig. 22. In order to draw a time-division

equivalent a decision must be made about how to transform links in the space-division

network into corresponding time slots in the time-division network. The transformation

used is shown in Fig. 23 for the network of Pig. 22. The vertical dimension shows the

correspondence between time position and space position in the original network. For

reference, the "switches" are given the same numbers as in Fig. 22 to which Fig. 23 is
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isomorphic, as can be shown by simply redrawing the figure. Note that in a given

column the top output of each element is delayed, or slipped, by d units, while the

bottom output of each element is either not delayed, or delayed by Zd. Delaying every-

STATE IS
ARBITRARY

INPUT ~ LOCAL
MEMORY

SELECTING

OUTPUT l
/

m-I STAGES LOGm

Fig. 20. Fig. 21.

Direct implementation of a TSI. Recursive derivation of a rearrangeable network
of elements.

- 2
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- 4
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-6,

7
- 8
-9
- I0

-II
- 12

13
14
15
16
17
18
19
20

TIVE

I 2 31 41 51 

14 24 :4 4 q

Fig. 22. Fig. 23.

Rearrangeable network of P elements (m=8). Space-time transformation of Fig. 22.

thing is necessary at each stage because otherwise a slip going "up" would correspond

to advancing a signal in time (an upward slip could be implemented by delaying signals by

almost a frame, but this uses more delay elements), which is an unrealizable situation.

The TSI is built with several units, S i , in series as shown in Fig. 24. The general

structure of S. is shown in Fig. 25. Successive pairs of numbers are placed in two 1-bit
1

registers according to information stored in the local memory. This operation requires

m/Z bits of control information. After the two registers are filled, their contents are

shifted to the right to make way for more signals. The output of the top register is

always delayed by d while the output of the bottom register is either delayed by d or

not delayed at all. This corresponds directly to the structure of Fig. 23. The formulas

for d are
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log, m-i
d = Z L i = 1, . .. ,log 2 m -

i-log Z m+ 1
d= i = log m, ... ZlogZ m - l.

A switch determines whether or not the output of the bottom register is delayed by 2d.

This switch can be controlled by a systemwide square wave with period d for each

stage so it requires no local memory.

St ' ' ... I S2LOG2m-1

Fig. 24. General form of TSI based on a rearrangeable network
of elements (m=8).

1 ALTERNATE
POSITIONS

LOCAL PERIOD = d
MFMORY

dM2 LGm-i js ,/2 LOCAL O m
d=2 LOGm- i 1LOG,.....r-1 MEMORY 2-
d= 2 i-LOG2!n

-
I iLOG2 m...2LOG2 m-t

Fig. 25. Fig. 26.

Construction of Si. Alternate construction for S log m 1

An alternate form can be used for the last stage. This is shown in Fig. 26, and

eliminates some of the delays which would serve no useful purpose in the last stage.

The number of components needed for this type of TSI is shown in the second row

in Table 4 and in Table 5 for the case m = 128. The number of switches has been

reduced greatly at the expense of using more bits of delay. The maximum number of

layers of switches which a signal must propagate through asynchronously has been

reduced from log m to one, while the maximum fanout has remained two. The mini-

mum delay for a signal to be switched has been made nonzero by this approach, but this

is not important in most applications because it is comparable to transmission and

coding delays.

The contents of the local memories of the TSI is no longer as easily derived from

the desired permutation. A processor is necessary to calculate the local memory state

contents, given the desired permutation. It appears that this computation has a com-

plexity which is proportional to m(log m) Z (see section 1. 2). If a system has several
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TSI's, this processor could be shared, since it is only used when the desired permuta-

tion is to be changed.

5.3 ANOTHER TYPE OF TIME-SLOT INTERCHANGER

Sorting is similar to switching signals, in that the result is a permutation of the

inputs. We shall now derive a TSI that is based on a well-known software sorting algo-

rithm, and has a complexity growth similar to that of the TSI derived above. The sig-

nificance of this TSI is that it requires slightly fewer components and it illustrates the

applicability of sorting techniques to a class of connecting networks.

The contents of the local memories for this TSI are the binary decisions obtained

in the process of sorting the input destination list using the tape-merge algorithm. This

algorithm is illustrated in Fig. 27. In this case the input is a list of 16 numbers. Pairs

of numbers are sorted to give 8 lists a. of 2 numbers each. These lists are then merged
1

pairwise to form 4 bi lists of 4 numbers. These lists are again merged pairwise and

so on until only one ordered list of all of the inputs is formed, thereby completing the

algorithm .

Figure 28 shows one implementation of a TSI based on the tape-merge algorithm.

In the first stage pairs of signals are switched as their destinations would be sorted.

Alternate pairs go into the bottom shift registers, so at the end of a frame the top

shift register contains the pairs al, a3 , and so on, while the bottom shift register con-

tains a, a4 , and so on. This "sorting" requires m/2 bits of information in a local

memory. After the first-stage shift register is full, its ordered lists are "merged"

by a switch at its output. Signals going to low number time slots are dumped first at

this merging point. The merging switch is controlled by an m-bit local memory which

tells it which shift register to accept a signal from. Then the merged lists of size 4

are put into a pair of shift registers in the second stage. The first set of 4 which goes

into the top register contains b1 and b3, while the bottom one contains b2 and b4 . The

switch that selects the register to be used can be controlled by a system clock, since

it is always the same pattern. Thus no local memory is needed. This sequence of

operations is then repeated until one merged list of the signals is formed.

A practical TSI based on tape-merge with pipelining is shown in Fig. 29. Here

stage 1 comprises four 2-bit registers. Pairs of input signals are 'sorted' into r1 .

When r1 is full its contents is parallel-transferred to r. When both r1 and r are full

the contents of r1 is transferred to r4 , and the contents of r2 is transferred to r 3 . As

before this operation requires m/2 bits of control memory. The contents of r3 and r 4

are merged under the control of an m-bit local memory. The resulting sequence is

sent to stage 2 where alternating sequences of 4 signals go into the top and bottom

registers. When both registers are full their contents are parallel-transferred to outer

registers. These outer registers are then merged under the control of an m-bit memory

and so on. A total of log Z m- 1 merge stages is needed. The total amount of memory

used is m X (log Z m- 1) + m/2 or m log Z m - m/2.
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Fig. 27. Example of binary sort-merge (N=16).

'SORT' 0 050301 'MERGE' , 'MERGE' ' CSERGE'

O -4 at b b2 L cT
LOCAL ALTERNATE LTERNATE
MEMORIES POSITIONS POSITIONS

/I I 1 PERIOD 8 PERIOD 16 1

Fig. 28.

Basic TSI controlled by the tape-merge
algorithm.

STAGE STAGE STAGE STAGE
1 2 i LOG2 m-l

2 i m/2
'MERGE' 'MERGE' ' 'MERGE' 

/
' 'MERGE'

1 t L /,..r- Kirr-.....lOUTP UT

ALTERNATE ALTERNATE ALTERNATE
'SORT' POSITIONS POSITIONS POSITIONS

PERIOD 8 PERIOD-2i+1 PERIOD -m

INPUT

LOCAL
MEMORIES I

Cm/2
Im

Fig. 29

TSI based on the tape-merge algorithm
with pipelining.

The third rows of Tables 4 and 5 indicate the complexity of this type of TSI as com-

pared with the two previously discussed types. The amount of local memory needed is

the same as for the element TSI, but fewer switches and bits of delay are needed. Since

there are fewer bits of delay, the minimum delay is also decreased, but the delays

involved are insignificant from a systems viewpoint. The amount of computation involved

is 0(n log n) because it can be shown that this is the maximum number of comparisons

that must be made to sort the destination list for the inputs. The average number of

computations necessary is also of the same order (10).

In summary, two new types of TSI' s have been derived whose complexity is pro-

portional to the informational minimum. These TSI's have less local memory than the

direct implementation shown in Fig. 29 and also avoid the problem with propagation

delay that the direct approach has in trees of gates. Also, both have a lower order of

growth of the number of switches used than the direct approach. In those technologies

such as magnetic bubbles or charge-coupled logic where bits of delay are very inex-

pensive these new approaches are economically desirable.
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VI. CONCLUSION

6.1 SUMMARY OF RESULTS

In this work the techniques of information theory have been applied to connecting

network problems. Not only does this approach give insight into the problems asso-

ciated with connecting networks but it also yields several new results.

There are three significant results in this research.

1. The basic sort-merge structure does not of itself limit the efficiency of sorting

networks (section 2. 2).

2. There exist connecting networks with blocking probability whose order of growth

is 0(nlogn) + 0(nlogl/E) for arbitrary n and E. In Theorem 4 it is stated that this

result is analogous to C. E. Shannon's coding theorem for memoryless channels (sec-

tion 4. 3).

3. Time-Slot interchangers can be built with an order of complexity which grows

in proportion to the informational minimum (section 5. 2).

The approach that was used is perhaps as significant as the results themselves.

For example, the first result is obtained by extending the concepts of information and

entropy to network structures and to the tasks that they are asked to perform. The

second result comes from defining an ensemble of networks and calculating the average

performance, an approach that has been used previously in coding theory.

Two basic conclusions can be reached: (i) connecting networks can be built with

complexities proportional to the informational minimum, and (ii) the techniques of infor-

mation theory have been useful in dealing with these problems and may be serviceable

for still unsolved problems.

6.2 PROBLEMS FOR FUTURE WORK

The field of connecting networks is full of unsolved problems. Even the types of

networks used in telecommunication are not well understood theoretically.

One of the most obvious problems is the minimum order of growth that is possible

for sorting networks. It is clear that such networks require n log n comparators, but

the best known general constructions require 0(n(logn) 2 ) comparators. Perhaps a key

to the difficulty of this problem is that D. E. Knuth assigns it complexity "M50 ", his

most complex classification. A novel approach to this problem, suggested by Peter

Elias, would be to use an ensemble of networks of comparators and calculate the proba-

bility that a pair of outputs is in correct order. This would give bounds for networks

which sort with high probability.

Strictly nonblocking networks pose a similar problem concerning the minimum pos-

sible order of growth of complexity. A novel approach would be to view each state of

the network as a code word with each bit corresponding to a contact in the network. The

strictly nonblocking condition then means that incremental changes in the desired
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permutation must have equivalent code words whose Hamming distance is the number

of stages of the network. Then the problem becomes one of the code-word distance.

It appears that the minimum computational complexity required to calculate a func-

tion from the set of all permutations to the set of contact states of a network that imple-

ments that permutation is O(n(logn) ). This suspicion is based on the number of contacts

apparently required for a sorting network and the complexity of existing algorithms for

determining the state of a rearrangeable network. While this may not be correct, it is

surely an interesting problem for investigation.

More work remains to be done in the area of bounding the growth of network com-

plexity. The results in Section IV give the order of growth, but the coefficient of the
16

leading term must still be found. Similarly, the work of D. G. Cantor could be

extended to find a smaller coefficient for the number of contacts required in a strictly

nonblocking network.
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