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ABSTRACT

The passive tracking problem with narrow-band and linear
constraints on geometry and motion is considered.

In Part I a model is developed which exhibits explicitly the
nonhomogeneous received wave field structure induce d by the
spatial baseline (observer's array) and/or temporal diversity
(source motion). This model encompasses the basic phenomena
of many practical situations, and is sufficiently simple to be useful
in analytical studies. The fundamental question of global parameter
identifiability is pursued, with emphasis on passive ranging. The
structure and global and local performance of the optimal and sub-
optimal receivers is examined and, by considering two limiting
geometries (distant and close observer), analytical intuitively
pleasing expressions are derived which bound the mean-square
performance. The issues of spatial/temporal factorability and
coupling are investigated, with the focus on the implications of
processing complexitr and identifiability nonsingularity.

In Part It a practical hybrid solutic. to the passive tracking
problem is developed, and a compromise is achieved between
global parameter identifiability and receiver complexity. The
behavior of the hybrid algorithm and its sensitivity to the under-
lying model assumptions of linear path perturbations are ana-
lyzed. The theory of passive tracking is applied to positioning
in such situations as air traffic control, underwater acoustics,
and navigation (orbiting and geostationary satellites). Tradeoffs
among attainable accuracy. geometry, and statistical parameters
are discussed. Finally, Monte Carlo simulations are presented,
showing the existence of regions where the theoretical and simu-
lated results converge.
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Part I. Global Acquisition via Maximum-Likelihood Techniques

I. INTRODUCTION

Passive situations that do not involve the use of active radar or sonar equipment

arise in a variety of fields: oceanography (locating drifting buoys), meteorology
4-6

(tracking radiosondes or balloon-borne devices), passive sonar (positioning sub-

mersibles), navigation (obtaining position fixes), radio astronomy (sensing natural

radiation), and so forth.

In this report we are concerned with analysis and design of receivers for these

applications where a moving or a stationary source has to be located from noisy obser-

vations of its signature.

1. 1 POSITIONING AND NAVIGATION

In such problems we are interested in determining the relative source/receiver

geometry and in finding the ultimate geographical location of both source and receiver

from a priori knowledge of the absolute position of either one. We classify passive

tracking as navigational or positioning problems according to whether the location of the

receiver or of the source is to be determined.

Figure shows some typical navigational configurations. The basic characteristic

in (a) and (b) is the spatial separation or baseline at the source (beacons B1 to BN) or

at the receiver. In (c) and (d) this separation is synthetically generated in time by the

motions of the source and/or the receiver. In (a) and (b) the configuration is stationary,

unchanging significantly during the time interval of observation. The navigational

SW t t 2

, SAX ELLITE .p
PATH

e, ' R (t., ' - (.

R(t,l 1 - R(tll ) R

(a) (C)

R(t,l.) SOURCE r 
_ "t--"

R2 Rt, ) I I
RECI

I ' EMOVIGE
I - RECEIVER

! d" T

(b) RI (d)

Fig. 1. Typical navigational configurations: (a) extended
source, (b) extended receiver, (c) moving source,
(d) moving receiver.
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problem is solved from the modifications induced on the signals by the overall spatial

diversity. In (c) and (d) the signal is modulated by the relative dynamics. In general,

because of the nonnegligible source and/or receiver spatial extent and the relative

dynamics, we have a coupled spatial and temporal diversity signal structure.

To each navigational geometry there corresponds a twin positioning geometry, where

a stationary or moving receiver tracks a stationary or moving source. Given the dual-

ism, for the most part we shall restrict our discussion to positioning configurations.

We shall concentrate on the fundamental aspects that are common to all problems:

source/receiver parameter identifiability, optimal and suboptimal receiver design, and

performance analysis.

1.2 hIODEL

Figure 2 illustrates the passive tracking problem in a sonar context. A moving

source (MS) emits some kind of radiation (source signature) which propagates through

the surrounding medium and is sensed by the receiving devices, hereafter called sen-

sors or array elements.

TOWED ARRAY OF HYDROPHOWES

/ SIGNAL
WAVE FRONTS

' SOURCE PATH

Fig. 2 Passive sonar.

The source signature is either random or deterministic in nature, and depends on

both time and space. The global geometry and the relative source/receiver dynamics

affect the spatial and temporal field distribution characteristics, inducing modulations

on the spatial and temporal signal structure, as reflected at distinct points in space

and instants in time by differences in arrival times (delays), measured frequency con-

tent (Doppler modulation), and signal strength (spherical spreading, attenuation). If the

source signature is structurally krown, the passive tracking relates to a stochastic deci-

sion upon the source energy distribution function, sensed by the receiver, on a space/

time domain, or on its Fourier dual, a wave number/frequency space.

There are two modeling issues: The first involves the wave fields structure; the

second concerns the global geometry and the relative dynamics.

Our study is restricted to a simple class of random wave fields, in which narrow-

ban6 signals multiplied by a Rayleigh-Gaussian random parameter are observed,

imbedded in an additive, spatially homogeneous, temporally white Gaussian noise pro-

cess. The Rayleigh-Gaussian parameter, besides propagation losses and other model

inaccuracies, reflects the fundamental constraint of lack of absolute phase reference.

2
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As a consequence, passive tracking is achieved from the higher order phase modulations

and not from the absolute phase reference (travel time delay).

We assume a planar geometry with the following linear constraints:

a. The receiving aperture is either orrnidirectional or a linear structure.

b. The source/receiver dynamics is either stationary (with no relative motions) or

linear; for example, the source follows a deterministic constant-speed linear path, as

displayed in Fig. 3. In Part II, Section V, we discuss a more realistic model, with this

nominal linear path dsturbed by random accelerations.

Y T ROt.o)
MS LINEAR 

I-W_ ~ T PATH

IW , WFt T -

.I - R{t,o)

, i.

L- L . x

(a)

To t

T~ , ~(b)

Fig. 3. Fig. 4.

Passive tracking global geometry. Doppler modulations induced on the temporal
signal structure.

With these assumptions the resulting wave field distribution exhibits in time and

space a "narrow-band" modulated structure, and thus is temporally nonstationary and

spatially inhomogeneous. In Fig. 3, the distance between the source and the linear

array's geometric center assumes the parabolic form of Fig. 4a, thereby inducing the

time-variant Doppler modulation indicated in Fig. 4b. At point To of the stationary

Doppler modulation (closest point of approach) the line defined by the array's geometric

center and the source is normal to the path. Many practical positioning and navigational

techniques are based on this elementary observation.

Although the ideal tracking system would use all available information conveyed by

the received wave fields, we concentrate our analysis on the phase modulations of the

narrow-band signals. In particular, we ignore the observed changes in the signal strength

occurring either across the extended receiving aperture or during the finite time obser-

vation interval. These are of practical significance only, for example, when the total

array dimensions are much larger than the source/receiver separation and hence repre-

sent higher order corrections that will not be pursued here. The passive tracking

reduces then to a (nonlinear) phase demodulation problem.

1. 3 RELATION TO OTHER WORK ON PASSIVE TRACKING

Narrow-b-.d passive tracking has received considerable attention. 12,13 In most

3
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of the studies three important simplifying assumptions are made.

S1. Planar wave fronts: The incoming wave fronts are assumed planar, with no

curvature at global or lcal levels.

S2. Decoupling: The spatial and temporal aspects are decoupled.

S3. Finite parameter context: The relative source/receiver dynamics is stationary

or deterministic.

Under these assumptions, the problem reduces to a "bearings only" situation, where-

in the observable source/recciver parameter is the bearing angle and/or the source

(radial) velocity. Ranging is accomplished either by an auxiliary active system or by

ad hoc procedures such as simple triangulation or Doppler counting.

To our knowledge, only recently ' has some preliminary analytical work with

the (spatial) curvature of the wave fronts been reported, and inhomogeneous fields have

received scant attention in other applied areas. An exception is in optics 1 6 where qua-

dratic approximations to the wave front curvature are usually made in Fresnel diffraction

studies. Also, the measurement of the nonlinear modulations of the spatial structure

of the signals is emerging as a means of exploiting the wave front curvature in seismic

profiling. 1718 Another area is in wave theory where a mixture of plane and nonhomo-

geneous waves is considered when the distribution of a field scattered by a rough surface

is to be found. 9

We have previously studied passive narrow-band tracking when only S is

assumed. ' The motions were modeled by a stochastic finite-dimensional dynamical

system. A spatial/time integrated approach, with planar wave front structure, was

developed based on first-order approximations to the infinite-dimensional filter. Anal-

ysis substantiated by Monte Carlo simulations showed that the filter only tracked local

dynamics, and lacked global range observability.

We shall concentrate on the fundamental issue of identifying the global range and the

remaining source parameters. The model incorporates explicitly the spatially inhomo-

geneous, and/or the temporally nonstationary character of the wave fields (spatial and

temporal curvature). The absence of the hypothesis of SI is the essential underlying

characteristic of the present study.

In Part I, Sections 11-IV we assume S3, that is, classes of stationary or determinis-

tic motions, with the passive tracking fitting a finite parameter estimation problem. In

Sections II and III, S2 is naturally imbedded in the formulation, by restricting the anal-

ysis to stationary geometries (Sec. II) where no significant temporal diversity occurs,

or to point sources and omnidirectional sensors (Sec. III) where no meaningful spatial

diversity is available. In Section IV we consider spatially extended receivers and moving

sources, focusing on the implications of space/time factorability and space/time

coupling.

In Part II, Section V, we generalize the class of motions to include dynamics gen-

erated by a finite-dimensional stochastic system. We study a Whybrid" practical solution

to the problem resulting from a compromise between the two conflicting requirements

4
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of global identifiability of the relative source/receiver geometry and minimization of

the receiver's complexity.

In Section VI we discuss applications of the theory to three problems of practical

significance: (i) precision landing in air traffic control; ii) underwater acoustic

positioning; and (iii) navigation by passive meals, with orbiting and geostationary

satellites. We also present the results of Monte Carlo simulation studies.

We review our main conclusions in Section VII and also expand on possible general-

izations and extensions of the present work.

5
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II. SYNTHETIC ARRAY WITH STATIONARY SOURCE (SASS)

In this section we study a class of narrow-band passive tracking systems arising in

two extreme situations of practical significance. In the first, a stationary array detects

and estimates the location of a stationary source. n the second, a moving omnidirec-

tional observer that generates a synthetic array tracks a stationary source. We refer

to both as Synthetic Array with Stationary Source (SASS). We consider the simplest

estimation hierarchy, that of a finite pare neter estimation modeL In describing the

model we emphasize the space/time geometric dualism of both problems and establish

in which sense they are equivalent. We present a practical implementation to the

maximum-likelihood receiver and analyze the generalized ambiguity function character-

izing the processor's fundamental structure. Finally, we study the error constraints

on this receiver, derive performance bounds, and discuss threshold effects.

2. 1 MODEL GEOMETRY

We assume a planar geometry (Fig. 5) and a point source radiating narrow-band

RCE

AL WAVE FRONTS

rX- X

Fig. 5. Planar geometry for a stationary source.

signals, which at time t and point in space are given by

S(t, ) = X Re {(t, ) exp jct}. (1)

The wave fronts at the receiving aperture are

r(t, Q) = a Re {'(t, ) exp jct} (Za)

with

t, [) = '(t, ) + -w(t, ). (Zb)

The signal complex envelope is

(t, ) = (L) b expr Z t)j (2c)

where Er = total received energy during the observation interval [-T/Z, T/2], and by an

array of dimension parameter L; R(t, ) = distance (range) at time t from the source

6



to the array element at location ; -k - c = wavelength, and b = b exD(j4). HereC C 
b is a Rayleigh-distributed random variable and 4, is uniformly distributed in [O, 2T].

We note that b is a complex Gaussian random variable,

E!b1 =0 (3a)

-2 2
E b = 2 b (3b!

accounting for model inaccuracies that, for example, are due to variations on the radi-

ated signal power about some nominal value, fading in the transmission medium, etc.

More important from a structural point of view, the unknown phase 4q represents lack

of knowledge of the absolute phase (incoherent receiver). This is a fundamental con-

straint, modeling the fact that global range estimation is achieved from the modulation

induced on the signal structure, not from the absolute phase reference.

The complex noise w(t, ) is assumed spatially homogeneous and temporally wide-

band (white) Gaussian, with spectral height No .

2. 1. 1 Stationary Array/Stationary Source

In this case the point stationary source is tracked by a linear stationary array, as

shown in Fig. 6. The linear array is oriented along the x axis and the source param-

eter vector is A = [Ro 1.

sin

The choice of sin over the angle parameter itself corresponds to a wave number

type of dependence for the space/time processing techniques. This removes from the

model the ambiguity characteristic of a linear array, that it can only solve for

0 e - 2, .21 This is immediately apparent from Eq. 4. Nevertheless, we refer to

this parameter as the bearing angle or bearing information.

SOURCE

Fig. 6.

Stationary Array/Stationary Source geometry.

-L L X
2 2

The range function at the array location is

R(t, ) ={R 2o+l - ZRo sin 0}/ 2, E [-L/Z, L/, t E [-T/2,T2 (4)

We observe from Eq. 4 that the source parameters are imbedded in the spherical curva-

ture of the incoming wave fronts, as observed across the array (targets in the near field).

7
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2. 1. 2 Mloving Array/Stationary Source (Sometimes Referred to in the Sequel as MASS)

In this problem a moving omnidirectional sensor locates a stationary source. We

assume that the observer motion is perfectly known with respect to a rigid framework,

STATIONARY
SOURCE

Ro
8 / Re

Fig. 7.

/ Moving Array/Stationary Source configuration.

:Tt _T I t T x
10 

OBSERVER'S
LINEAR PATH

and is constrained to a linear path with constant speed v. Figure 7 shows the paramet-

rization to be used.

As in the preceding case, the source parameter vector is A = Io 1 At time t,

the range is

R(t) = {R + vtZ- 2vtRosinO}l / 2, t E -T/Z,T/2], E [-L/2, L/2]. (5)

Equation 5 represents the range function in terms of the source parameters at the

midpoint of the observation interval. This introduces no a priori reference location

assumptions, and allows further algebraic simplification of the final results. Note that

we have assumed that the omnidirectional sensor is a nonlinear array with dimension

parameter L.

Identification of the length with vt in Eqs. 4 and 5 emphasizes the theoretical

similarity underlying the measurement of the source parameters in both applications.

The quantitative results for one problem are immediately translated into the other's,

by substituting L for vT or vice versa. In the sequel we shall let

L vT
z = zor Z = 2 (6)

and define the spatial variable

x= or x= vt,

8
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depending on the specific application.

The mathematical equivalence of the two situations stresses their space/time dual-

ism. In the stationary array/stationary source context the spherical curvature of the

incoming wave fronts induces a nonlinear spatial modulation on the signal, which is mea-

sured by the spatially extended linear array. With the moving omnidirectional configu-

ration that we have just described, the range and angle information are conveyed by the

nonlinear temporal modulations induced on the signal stracture by the relative dynamics

(see Fig. 8). This can be contrasted with a synthetic aperture radar (SAR), which is

R(t)
V

T
._

R. / RANGE HISTORY

Fig. 8.

T Modulations Fig. 8.
' Modulations induced on the temporal

signal structure.

DOPPLER MODULATION

i-

an airborne system following a prescribed path (observer's motion constraints) and

carrying the scanning beam that illuminates the terrain. The observer's motion has

the net effect of generating a longer effective baseline array. The reflected echo arrives

at the SAR receiver phase modulated by the relative motion. These modulations give

to the two-dimensional signal a structure similar to a frequency-modulated signal,

compressing it in the angle direction (referred to as azimuth). SAR recovers the range

from an active modulation, while the azimuth is estimated from the "passive" modula-

tions induced by the relative motions. The SASS problem with the omnidirectional sensor

represents the other extreme where no "active" range measurement occurs. In other

words, the global target parameters are to be reconstructed solely from the modulations

induced by the relative motions.

The range phase, Eqs. 5 or 6, can be approximated by truncated Taylor's series

expansions. For targets in the far field, known as the Fraunhofer zone, a linear

Rx) 1

~N. -i
I

Fig 9.

Source in the far field (linear
II approximation).

. II' 
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expansion s vaiid f(se Fig. 9) and the phase is

R(x) = ( +x -2xR sin) R - x sin 0,
o

x E [-Z, +Z l.

Giver. the incoherent phase model assumed, the wave fronts are practically planar at the

receiver front end and with lack of any phase reference they convey no range informa-

tion.

For targets in the so-called Fresnel zone a second-order expansion is appropriate

(Fig. 10), whic-h leads to

(x cos 92
R(x) R - x sin + ZR

o

, xE[-Z,+Z].

The range may now e observed from the second-order modulations induced on the

spatial/temporal signal structure. A suboptimal estimation algorithm may be developed

R(x)

N,

I
I
1

/ SECOND ORDER
APPROXIMATION

LLINEAR APPROXIMATION

II

Z x

Fig. 10. Source in the Fresnel zone (quadratic approximation).

by first tracking the Doppler modulation and the Doppler rate by means of phase-locked

loops, and then performing the nonlinear transformation

(9a)

(9b)

sin = -a
o

R -R
0R

Ro

where

(i) diR(x) 
R 
o dxl

x=O

(9c)

We conclude that the identification of the source/receiver separation (range) requires

synthesis of the extended apertures measuring the higher order effects induced on

the signal structure.

10
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2. 2 RECEIVER DESIGN

Under the white and Gaussian assumptions on the noise and Rayleigh parameter

statistics, the optimum receiver for the parameter estimation problem that we have

described is a maximum-likelihood (ML) processor that is essentially a matched filter
23 Z4followed by an envelope detector (see Van Trees ' ). The filter maximizes a mono-

tonic function of the ML-function (its natural logarithm, on the parameter space. The

log ML-function 2 5 is

1 E/N
ln A (A) = _ L(A) (a)

o E
1 r
N

0

where A is the parameter vector,

Er = (0zT)Er = average received energy,

and

L(A) 1 T/2 dt 5 dr Lt,) s (t, , A) (10b)

Notation

1. The inner product in Eq. 10b is abbreviated

|L(A) = I (r, s(A)) . (10c)

2. The star stands for complex conjugation.

3. To avoid cumbersome expressions, we do not always show explicitly the func-

tional dependence of the several quantities on all variables and/or source parameters,

exhibiting only those of most concern in the specific argument; for example, the signal

will generally be represented by s(t) or s(t, ), although on occasion we use s(t, X, A).

The ML estimator is unrealizable in practice, since it requires the (stochastic)

maximization of j L(AX)2 over the (continuous) parameter space . A practical sub-

optimal receiver can be constructed, however, by exploiting the signal autocorrelation

function and the noise statistics.

Substituting the value of the received signal given by Eq. 2 in the expression for the

log ML-function, we obtain

L |(A){2 ((A, S(A)) +( w,A (10d)

where A and A represent the actual and scanning parameter values.

In the absence of additive measurement noise, the output of the ML receiver is

11
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I L(A) = I((A), (A)> 2 s(A,A)l = (A,A). (11)

This is a scaled version of the so-called generalized ambiguity function, which will be

discussed soon. The noise component in Eq. 1Od, w(A) = (W, ;(A)), is a Gaussian com-

plex random variable with zero mean and variance N .

At two scanning points Al, A 2 C Q

E[(L(A1)- 4 (A, A1 ))(L(A2)- yS(A, A 2)) ] E[(A 1 ) (A2 )] = s(A1 , A 2 ). (IZ)

This expression shows that since Ai is scanned over Q2, the noise samples at the

output of the matched filter exhibit a crosscorrelation given in terms of the signal auto-

correlation function. Because this function essentially has a finite extent, which will

be determined in the sequel, we define a coherence or correlaticn distance in 2. Points

whose separation is greater than this distance lead to uncorrelated noise components

w(Ai) at the output of the ML processor. This suggests a two-step implementation for

the ML algorithm. The first substitutes the continuous by a discretized search, where

the scanned points are separated by the coherence distance. The region of interest is

divided in cells (whose form and number M is to be determined subsequently', and in

each one we assume that the parameter vector takes only a fixed value (e. g., the center

of the cell). With this discrete structure for s2, we perform a crude maximization of

the log ML-function, by computing it at all grid vertices, and choosing the point at which

it is maximum. The receiver performs a largest of M-ary hypothesis decision with

uncorrelated signals; at this stage, it has a two-dimensional bank of matched filters

followed by square envelope detectors. Figure 11 illustrates the "largest of' receiver.

MATCHED FILTER SQUARE
WITH PARAMETER ~ ENVELOPE j M ,...,M)
VECTOR Aj DETECTOR

Fig. 11. Coarse search ML algorithm.

The coarse search returns a crude estimate Am = Ai for which i. = max (see
Fig. 11). 1 1

In the second step the mechanism accomplishes a local maximization of the log ML-

function about A n. It can be done by a finer search procedure or by any other method,

e. g., a steepest-descent. The approach in two steps to the ML receiver was first taken

by Woodward 2 6 in the context of (active) radar range measurements, and the technique

is referred to in the literature of frequency estimation as frequency-shift keying (FSK).

12



2. 3 GENERALIZED AMBIGUITY FUNCTION

We have seen that the statistical behavior of the ML receiver is determined by

qbs(A,A). We now give some preliminary definitions.

Definition 1. The signal autocorrelation function is

4(A, A) = ( n(A), sn(A) ), (1 3a)

where sn(A) stands for the signal normalized versionn

(A) exp J 2 I[t-RttA)]J tE- , L[ 2. 2 (13b)

Definition 2. The generalized ambiguity function (GAF) is

qb(A, A) = !+(A, A)J 2 . (13c)

Substitution of Eq. 1 3b in Definition 2 leads to

,(AA) = T / dt / d exp[Ij -- R(t, t, A, A) (13d)
kLT -T/2 L/2 L

where the range phase difference is

AR(t, t,A, A) R(t, ,A)- R(t. , A). (13e)

We observe the properties

PROPERTY 1. O(A,A)= 1.

PROPERTY 2. (A,A) -<q(A,A).

By applying these definitions to the SASS context, and working with the general vari-

able x, we find that the GAF is

rZ 12
(A, A) 2 -Zdx exp j AR(x, A, A) ] (14)

with Z defined in (6), and the range phase difference given by

R(x, A, + 2 R sin . + R sin_ R (15)

Equation 14 can be renormalized:

-- ~1 1/a 2
=|1 l 2Z (r + z2 _ z z r sin -r ° )(A, A)= d sine - ( Z zzF osin

R
X where z and r Since the GAF plays an important role in evaluating the
her =d o - Z'

13



iML receiver's ability to locate the source, it is important to have a clear idea of its

structure. From active radar system theory we know that an impulsive ambiguity, i.e.,

a narrow spike at the source location, is a desirable pattern. This idealized ambiguity

is physically unrealizable because of the volume invariance of the time frequency radar

ambiguity function, but it suggests an optimal limiting form to look for when designing

the radar modulating signal.

In the passive problem, we have no control over the signal design, since it is radiated

by the source. Our task is to analyze the GAF structure, in order to quantify the

receiver's capability to locate the target.

We observe that the GAF is not a function of the vector difference A-A but also

depends on the actual source parameter values. This contrasts with Woodward' s radar

frequency-time ambiguity function, but is similar to the dependence of the ambiguity

function associated with the problem of echo-locating, high-velocity, accelerating tar-

gets with active systems. 2 7

This report does not deal with the important questions of designing the array geom-

etry and weighting pattern. We restrict the analysis to linear structures with uniform

shading, addressing the basic questions of source parameter identifiability and ultimate

performance bounds for the least complex situation of practical significance, that of spa-

tially homogeneous and temporally white background noise. In the presence of direc-

tional noise sources higher order array processing techniques may be required, which

shape the array beam pattern to the statistical environment and provide for null cancel-

lations at the wave number space direction of the noise interference, at the cost of unde-

sirable sidelobes and/or deterioration in performance in the presence of the white

background noise alone. We shall not pursue here these high-resolution array processing

techniques, since they represent second-order complications in the problem, but
28 29

refer the reader to Baggeroer and Van Trees, who deal with these methods in the

"bearings only" context.

Figure 12 presents three-dimensional and contour plots of the GAF for typical values

of the parameters. The function exhibits a main peak centered at the source location,

whose contours are essentially ellipses, and some subsidiary structure outside the main

lobe. In the absence of the additive observation white noise the output of the filters is

a point on this curve, and the maximum-likelihood (ML) estimates are the parameters

for the matched filter whose output leads to the absolute maximum of the function. In

the presence of measurement disturbances, the noise contribution at the filter output

may lead to an absolute maximum that is in error. In order to quantify the statistics

of these errors, we need a better quantitative understanding of the GAF. We need to

know the dimensions of its main lobe and the size of any secondary peak in the subsidiary

GAF structure, i. e., outside the main lobe. Both graphical and analytical techniques

will be used.

In Appendix A we do an approximate analysis of the GAF by assuming polynomial

approximations to the phase range difference. We also derive bounds on the rate of

14
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Fig. 12. (a) Three-dimensional range/angle ambiguity
structure (X=1/4).

(b) Contour range/angle ambiguity structure

(X=1/4).
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falloff of the ambiguity structure for these approximations and for the general expres-

sion. We restrict our attention to the main results therein, and combine them with a

pictorial representation of the GAF for several values of the important parameters, to

obtain a complete qualitative and quantitative evaluation of the GAF.

2. 3. 1 Approximate Analysis of the Generalized Ambiguity Function (GAF)

In Appendix A we approximate the range phase difference by a polynomial expansion

n
AR(x,A,A) = Z A.x (16a)

i=O

where we define

~L 1 (i) 1 diR(x,A) diR(x,A) 
Pi i!- R i! di di ||'(16b)i! 0 i! dx- dxI

x=O

For a linearized expansion the GAF has a sine structure

(A,A) sinc sin sinc2 A -(sin ) Z (17)

A(sin 0) Z

as illustrated in Fig. 13. As we depart from the origin, the maxima decrease mono-

tonically along the angle parameter axis with the second maximum reduced to approxi-

mately 4.5% of the value at the origin.

Fig. 13. Linearized ambiguity sine structure.

The ambiguity pattern is constant ale;lg the range parameter axis, and the linearized

GAF presents no range focusing ability. This is not surprising, since the range is esti-

mated from the higher order modulations induced on the signal structure by the wave-

form curvature, and not from the absolute phase reference. In analogy to optics, this

amounts to saying that for targets at the Fraunhofer zone the incoming waveforms are

planar at the observer site, with no information on the range conveyed to the passive

receiver. The bearing is measured from the linear delays recorded either across the

array or by the moving observer along its linear path. For a quadratic approximation

16
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and along the radial line AR = O> A(sin 0) = 0, the ambiguity function is approximated

by

(A,A) = I~ l,( A) (18a)

where

r= e, ))(,O2Oy 2 (1 8b)

and ( ) is the (exponential) Fresnel integral, whose graph in the complex plane gives

the cornu spiral (Fig. 14). The ambiguity function along the radial-acceleration axis,

parameter ARo is shown in Fig. 15. The first minimum occurs at m 1.9, and the

second local maximum at 2M = 2.26, where J(AA) = .132; i.e., it is reduced to

Ct 

(t)

metric Cam

,y= t rc Caser. -- ~-'z: 2-
-0.5

Fig. 14.

Cornu spiral.

for =-0.5

222

2 2

45

Fig. 15.

Quadratic (Fresnel) arnbigu-
ity structure with local and
asymptotic approximations.
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approximately 13%o of its maximum value 1, at the origin. By establishing the equiva-

lence of the signal correlation function (A,A) =- (Y) and a certain ccnfluent hyper-
30

geometric function, we apply known developments in .npendix A to obtain local

expansions (about Z = 0; Eq. A. 19) and asymptotic (large Z; Eq. A. 20) expansions.

From the latter we find that the ambiguity function falls off along the radial-acceleration
- 1

line as (A,_A) 2 
2 '

For the general quadratic phase approximation te GAF is

(A, A) =- \1 [ f) -(2:i)] 2 , (19)

f 1 f 2 (Z+ ±I7'yandz. 1
where AZ = f- E., with =Y (Z

In terms of the cornu spiral representation of the Fresnel integral, (2zf) -

(Zi .) is a running vector based on the spiral, i. e., with both end points on the

curve (for a specific example see Fig. 14). The ambiguity function is given by the modulus

squared of this vector, divided by the square of the distance of the arguments Zf - Zi.

2. 3. 2 General Case

We now study graphically the structure of the GAF as given by the exact expres-

sion (14).

W- presented in Fig. 12 three-dimensional and contour plots of the GAF for source

parameters given by

a [Ro l = L6 X 10 ft

sin aj sin 1 5°

Z 1
with the geometric parameter X -= -= The line of sight for the three-dimensional

o
graph is given by the angles and illustrated in Fig. 16. For Fig. 12a these param-

eters are 0 = 150°, 6 = 210°; that is, the GAF is viewed from behind and below.

HT

Fig. 16. Line-of-sight definition for three-dimensional graphs.
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Figures 17 and 18 show the ambiguity structure for a smaller value of the geometric
1

parameter, X = 1-. Reducing X (smaller array or shorter observation interval, or

equivalently for the same synthetic aperture, larger range), results in a flatter main lobe

with a larger ridge. This means that whenever a' other conditions are identical (e.g.,

source/receiver separation, signal-to-noise ratio) the simultaneous range and angle

focusing requires larger synthetic arrays, as we would expect. In the sequel we shall

quantify these statements.

Finally, Fig. 19 displays the ambiguity pattern for a large value of X, X= 6, referred

to as the close observer configuration. It shows the asymptotic behavior of the GAF as

the (synthetic) array length grows compared with the source/receiver separation.

'v

.15

.15

/.

- 4.4 X o-

RAN .6xiO
$

ft

f15f

TIME 100 tO c
X 1/40

RANGE (ft) 1 26K0

- o C,,nV I

Fig. 17. Fig. 18.

Three-dimensional range/angle Contour range/angle ambiguity structure
ambiguity structure (X=1/40). (X=1/40).

We note the scale changes in the different figures. Along the sin O axis the ambiguity

function has been scanned at points whose positions were determined by the sine struc-

ture of Eq. 17; i.e., the elementary interval between scanning points was

A(sin n - , n some integer 2.

Along the range axis the scale is essentially the same as in Figs. 12b and 18, but has

changed drastically as shown in Fig. 19, reflecting the sharper lobe for large param-

eter X.

The graphs display the peaked structure of the GAF, and also show that outside the

19
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(b)

Fig. 19. Range/angle ambiguity structure (X= 6). (a) three-
dimensional structure, (b) contour.

main lobe the secondary peaks are negligible.

Both local and asymptotic analyses can be pursued in much the same terms. The

local analysis determines the GAF main lobe structure; the asymptotic analysis studies

the GAF rate of falloff.

From the figure we see that the equal height contours on the main lobe are approx-

imately ellipses. Since for higher dimensions this generalizes to ellipsoids, we
refer to it as the GAF main lobe ellipsoidal structure. Given the ellipsoidal struc-

ture, the dimensions of the main lobe are determined from a second-order analysis of
the GAF on the parameter space 2, i.e., on the errors on the parameters. That is
done in connection with our discussion of the performance of the ML receiver. The

20
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second-order analysis should not be confused with the second-order analysis carried

out in Appendix A, which is in the time variable.

The bounds on the subsidiary ambiguity pattern are derived in Appendix A by appli-

cation of the method of stationary phase, and are summarized by Eqs. A. 38, A. 40, and

A. 41. The bounds at each point

A Ro

sin 

of the parameter space 2 depend on the behavior of the range phase difference at that

point in the observation interval [-Z,Z], that is, on the order n of the first nonzero

derivative of the range phase difference in x, x [-Z, Z]. If n is even,

- 1 r(l/n) 2
4(A, A) . (20a)

n nn o ARxo)/n 5

If n is odd >1,

2
r(l/n) cos 2

n n(A, A) n _nj (20b)
n R(x)/n u

where xo[-Z, Z] is the point where the lower order derivatives vanish at A e 2. For n = 1

(A, A) ~ < (20c)

L Zz I kRZ IAR(-)1

Equations 20 exhibit the decaying of the ambiguity pattern in terms of the inverse of a

certain power of the errors of the least order nonvanishing derivative at xo; that is, in

( (n)y /n
terms of \ARJ We refer to this rate of decay as the GAF hyperbolic rate of falloff.

For the problem at hand, and except for degenerate condition (end-fire), n= I or n= 2.

To summarize briefly, we have now analyzed the ambiguity pattern for the SASS prob-

lem with narrow-band passive signals. For targets in the far field no range focusing

is possible, and the stationary array/stationary source problem reduces to the classical

passive bearing measurement problem. The moving omnidirectional sensor with station-

ary array compares conceptually with the "passive" azimuth measurement in SAR sys-

tems. The ambiguity function has a sinc structure that is constant along the range axis.

For targets in the Fresnel zone (quadratic approximation) or in the near field, the ambi-

guity structure is concentrated on a main lobe, and no significant sidelobes arise. By

a bounding procedure, coupled with the pictorial representation of the GAF, we have con-

cluded that the limiting behavior of the GAF for large parameter errors is essentially

21
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negligible. We can then extrapolate the graphic displays to the whole parameter space

by assuming that the ambiguity function is concentrated in its main lobe and is zero in

the remaining space.

2.4 PERFORMANCE ANALYSIS

We have described a practical two-stage implementation for the maximum-likelihood

(ML) receiver. In the first stage the parameter space is discretized by a grid. The

algorithm performs a coarse search, aiming at the grid point that is closest to the actual

parameter values. In the second stage a finer search about the previous value returns

the approximate MlL estimate. In other words, the maximization of the ML-function is

accomplished by a global step, performing a multiple hypothesis decision ("largest of'

receiver ), which chooses a cell from the assumed discrete grid, followed by a

local step, maximizing the ML-function (or equivalently its logarithm) on the chosen cell

of the parameter space.

We now discuss the estimation errors induced by the algorithm for this implementa-

tion and find bounds constraining its performance.

Let Aj represent the jth component of the source parameter vector A. From the

previous description, the mean-square error on the estimate Ajm, will be

E E (A -E[(A .~^jm) | =E(AZ iE) Pr(E) + E(AZ Ec)(lPr(E)), (21)jE i -

where is the event that a decision error or diversion occurred, i.e., that the wrong

grid interval was chosen by the 'largest of" receiver; c is the complement of , i.e.,

the event that no diversion occurred and the correct cell has been chosen on the first

step; and Pr(E) is the probability of the event E.

The computation of the various quantities in Eq. 21 depends on the design and dimen-

sion of the grid discretizing the parameter space. Given the ellipsoidal structure of the

ambiguity function, we assume an ellipsoidal mode grid, i.e., that the grid cell blocks

are approximately ellipsoids. The size of these elementary cells is determined from

the dimensions of the GAF main lobe. Retention of up to second-order terms in its

Taylor's series expansion about the actual source parameter value Aa leads to

(A,Aa) ,(AaA ) + (AA, Aa)AA + 8AA. AA .

L ' aj awhere AAa
where

AA = A A _a

and VA = grad A . Since (Aa,A a ) = 1, and by direct substitution
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V4~~ 4(A, A ) ,(22)
VA{(AAa) A=Aaa

the GAF is approximated by

4(AAa) 1 - AAT ,A (23)

where we used the following definition.

Definition 3. The mean-cq: -.Lre spread matrix (MSSM) .X' is given by

1
2

. .
1!

Given the quadratic approximation (23), we note that the spread matrix quantifies the

extension of the main lobe of the GAF, thereby determining the coherence distance of the

noise samples previously referred to. Let Q(AA) = AA T 4W AA. Then

q(A, A a ) 1 - Q(AA). (24)

The ambiguity function will have a stationary point that is a maximum at A = A a when,

besides (22), we also have 4'> 0, i.e., whenever Q(AA) is a positive-definite quadratic

form. Since the ambiguity function by definition is *(A, Aa ) a 0, we see from Eq. 24 that

its first minimum occurs approximately when

Q(AA) = 1. (25)

Equation 25 gives the dimensions of the ellipsoid defining the elementary cell of the

discrete grid, whose form and size are determined by .4, in particular, by its eigen-

values and eigenvectors. As we shall see, this matrix also plays an important role in

the Cramer-Rao performance analysis.

The exact computation of Eq. 21 is difficult in general. First, we resort to he cal-

culation of bounds for the mean-square error. A well-known and general bound results

from the Cramer-Rao inequality. 4 We return then to the definition of the mean-square

error and evaluate directly an approximation bounding the right-hand side of expres-

sion (23). Finally, we discuss the conditions under which the estimation algorithm is

efficient; that is, when is its performance accurately predicted by the Cramer-Rao

bounds, or when and where do threshold effects occur with the processor's expected per-

formance deteriorating faster than predicted by the Cramer-Rao bounds.

2.4.1 Cramer-Rao Performance Analysis

It is well known that if A - [ij is the error covariance matrix of the paraneter

estimates, then
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-1A EJ (26)

where J is the Fisher information matrix (FIM). For the general signal model des ribed

earlier, FIM is given by

a2In A(A)
J =[Ji]= -E 2 AAj. (27a)

Under general regularity conditions, which are satisfied by this problem, we can

interchange the partial derivatives with the expectation operator. Doing this, and

replacing the log ML-function, as given by Eq. 10a, we get

1 G' (A, Aa )
J. 2= - 'a(27b)ij 2 aAiaA '

1 3 A=A
a

where G' is a multiplicative gain

E R E RG' =Z N_ (2 7c)
o N +E

o r

Recalling the matrix .X defining the ellipsoidal structure of the GAF main lobe, we

rewrite FIM as

J = G' . (28)

The spread matrix .4 is computed in Appendix B, where closed-form expressions

are presented. Apart from scaling factors (Eq. B. 15), the elements of X. are only

L sit
2

Fig. 20.

Geometric interpretation of parameter X.

-L L x
2 2

functionally dependent on the bearing angle and the geometric parameter X=Z/Ro.

From ig. 20 we obtain

tan a = X cos 
- X sin '

i.e., X relates directly to the angle a spanned by the receiver at the source location Ro

For a broadside geometry = 0 and tan a = X.

As in the delay/Doppler radar, the elements of X' are additively given by two terms

(see Eqs. B. Z2 B. 3, B. 4). With active radar, and except in multitone applications, the

elements of .X can usually be made zero by convenient choice of time origin and carrier
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frequency. With the passive problem, and inspecting Eqs. B.8 through B.14, only for a

broadside geometry, = 0° , do we find that

I sin= 0 (29)

is the first moment centralized.

In order to obtain a more intuitive quantitative description for the Cramer-Rao

bounds, we carry out a local analysis by a Taylor's series expansion of Eqs. B. 2

through B. 14. Then we study their asymptotic behavior as the array length increases

without bound. Finally, we plot the Cramer-Rao bounds as computed exactly with a digi-

tal computer, and compare these results with the local and asymptotic expressions.

a. Short Observation Interval Analysis of the Cramer-Rao Bounds

In most applications, we face the fact that the geometric parameter X will be small.

As long as X = or X = VT < 1 a Taylor's series analysis is valid, and leads toZR ZR
0 0

meaningful results. Accordingly, we consider this approach.

Truncation after the first nonzero term leads to

2
Cos0X 4 11 sin cos2ox (30a)

45 o 45

2 X2

I : R 

Similar expressions for the diagonal elements of -X', for the short observation interval

analysis, with a different model, have also been found previously. 14 ' 15

For the Cramer-Rao bounds we are also interested in the inverse matrix

= (2-)
45 1 33 sin 

cos 4 0X 4 R cos20X

3 1

R2 X2
fn

(30b)

The determinant is

R2 os4X6

det (# -1 + 3 1 + 5 7 (-llcos 28+29 sin O)X . (30c)
3 5 -

We remark that in the expression of det X the coefficient of X8 has been computed by

using the higher order terms contributing to it. but not shown in Eq. 30a.

The eigenvalues and eigenvectors of X up to first order are
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o (2 2 cos4eX4

0

) R2 X2

sine - --'k ) 3 esin j

The Cramer-Rao bounds are obtained by readjustiug ,4' by a gain.

28 we obtain

A(: ARo

0

IA
R sin 

>- G

(31b)

From Eqs. 26 and

(32)

sin Asin 

The standard deviations are

aR = A 1 /2 >
o R0 0

in = A1iesmi 0 si 0
( x )2]Ih7

cos OX Z

1/2

ER

N +E Ro R

R X'
o

Recall that

ER = average received energy = PnTL (2t)

where we renormalized the received power as

P

2 (33d)

with R r standing for the nominal range of operation for which the

designed.

The bracketed term in Eqs. 33a and 33b can be rearranged as

G-1/2= [ + .
1 + ° LT

p (2 ) LTbn"b

i/2

I
1

(2 2)(2 )2

7'

system has been

R 1

Rr q LT
o

(34a)

2P
N

o

26

o0· :
(3Ia)

(33a)

(3 3b)

(33c)
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Define

SNR eq= p( b () (34b)
N

SNR
eq

SNRef f = (34c)

Nf 1 /2

a = L (34d)
2P n b

SNReq is an equivalent signal-to-noise ratio taking into account the channel Rayleigh

fading (factor Zab ) and the effect of the modulation index

2w
P -y. (34e)

SNReff is the effective signal-to-noise ratio at the receiver level, after normalizing the

emitted power with the inverse of the squared distance to take into account the spherical

spreading of the propagating signals.

The gain can now be rewritten as

G-1/2 a 1 (35)

(SNRef)L/2 eff

and the standard deviations as

QR oa 3 _ g (0,X) (36a)
o (SNReffLT) / cos OX (SNR ffLT)1/Z o

sine 0a g0 (R ,X). (36b)

(SNReffLT) (SNReLT) T ) I/ (SNRf LT)

These expressions are separated into two factors. The first is due to power-level con-

siderations, and involves detailed model specifications. The second reflects how the

modulations induced on the signal spatial/temporal structure affect the performance. The

bearing estimation is fundamentally dependent on linear effects such as linear delay

across the array or observed Doppler modulation. The range performance deteriorates
-2

with X , since the range focusing is achieved from the second-order effects, such as

the spherical curvature of the incoming wave fronts (stationary array/stationary source)

or the chirp modulations induced on the signal temporal structure by the relative

dynamics (moving omnidirectional sensor with stationary source). We also note
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that oR increases monotonically as we go from broadside to end-fire, as a consequence
o

of a reduction on the effective array length. The angle estimation grows worse as the

source/receiver separation increases.

Finally, the crosscorrelation between the errors on the parameter estimates, as

predicted by the Cramer-Rao inequality, is

PR , sin 
o

11 sin OX

4%1h
(37)

For small X the errors are almost uncorrelated. A similar conclusion follows from

the eigenvalues of , as given by (31a) and (31b). Up to truncation to the lowest non-

zero power of X the estimation problem is essentially uncoupled.

b. Asymptotic Behavior of the Cramer-Rao Bounds

In Appendix C we study the asymptotic behavior of

parameter

Z
X = '-- 0

or equivalently

R
= - O.

Z

the elements 4 i.. as the geometric
t3

(38a)

(38b)

We stress that the analysis considers only the phase information, neglecting amplitude

attenuation effects across the observing array.

We summarize here the nain results.

2 7' I -
- -() sin20 + cos O cos 20 -Y 

LR(-Sin S + l Sin 20 Y ( cos 20 Y)idet I0 -h (F) { cos0 2 

det~-(2> 4 R2 YZ o Z cos0

(39a)

(39b)

2 cos 2
7 -cos 20?r Y

I 2_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (39c)

1 (Z cos sin + 2 o
IR

0
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The Cramer-Rao bounds are obtained by scaling 4' with the signal energy-to-noise

ratio gain G given by Eq. 35.

If the estimation problem reduces to a single range parameter estimation, with the

other parameter assumed known a priori, the standard deviations are given by

R - G-1/2 12 (bearing known)
o sin 0

Tsi -~ G 1/2 1 (range known).

(40a)

(40b)

(41a)

Because

G- / Z 0G-1 /a 0
L-we obtain

we obtain

(41b)

or

(41c)sin . 0.OL-oo

This reflects the unrealistic assumption of an array with infinite gain. For large

but finite array gain L, the individual parameter performances depend on the relative

source/receiver geometry, as illustrated in Fig. 21. Both curves present an intuitively

02

b

4.

be

be

r/6 T/3 T/2

(o)

Fig. 21. Asymptotic behavior of
SASS parameter.

01' 10
°

K)

(Ro/R )

(b)

single mean-square spread matrix

satisfying behavior. As the geometry progresses from broadside to end-fire, and when

the effective array length is larger than the source/array center separation R o , the per-

formance of the single range parameter estimation problem improves. Similarly,

29
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expression 40b) or Fig. 21b says that the single parameter angle performance for large

arrays is determined by the source/receiver separation.

We consider now the full SASS problem. The mean-square range and bearing asymp-

totic spread functions

2 cos 0 
rR (Y,0) = C - cos 20 (42a)

2 2=1 cos sin 20 2
f0 (Y,0) = I Y + cos 0 cos Ze

o

(42b)

are studied analytically in Appendix C and also displayed in Figs. 22 and 23 where

ca
49

H 0

9

4

a: 

0 20 40 60 80
8

Fig. 22.

Asymptotic behavior of mean-square
spread matrix range parameter (SASS).

0 20 40 60 80

Fig. 23.

Asymptotic behavior of mean-square
spread matrix angle parameter (SASS).
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it is seen that for large effective array length the receiver's behavior is highly sensitive

to the relative geometry of the problem. This is due to the high correlation between the

errors in the estimates. The crosscorrelation for 0 * 0, 

2 sln2 -sing0 - 2 Y sin sin 20

PR ,sin cos 2
0 sin8 + Y cos 

-1 2 2 1 1 ,
sin 0 cos 0 Y-0

tends asymptotically to 1 (perfect correlation), and X becomes singular as Y goes to

zero. For small nonzero Y, the behavior is highly dependent on the geometry as illus-

trated in Fig. 24.

0.8

0.6

0.4

0.2c

oCr

-0.2

-0.4

-Os

Fig. 24. Asymptotic behavior of crosscorrelation for
SASS parameters.

The asymptotic behavior of the mean-square performance bounds is obtained by

scaling the diagonal elements of X-1 in Eq. 39c. We obtain

GfR (Y, 0) = G- 1 cos8Cos 20
0 0

2 -1 -1[ 2 c os sin 20 2

sin G f (Y,0) = G 1 12 os + cos2 cos 20 ]
R

(44a)

(44b)
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As the array length increases

22 2 a 2 cos a
TR - - R 7r (45a)

o o00 (SNR T) T R

2 2
2 2 a 2 cos sin28

r R. (45b)
s0 s -inR 20in08 (SNReffT) o Reff o

with the relation

2 2

(R )2 (sin O0

V Ro \ sin (45c)

For large values of X, the range and bearing performances approach the finite

asymptotic values (45a) and (45b). But the estimation problem is highly sensitive, since

in the limit as X - oa, the spread matrix becomes singular. The asymptotic values (45a)

and (45b) combine this highly sensitive behavior with the unrealistic assumption of an

array with unbounded gain. In order to retain the simultaneous identifiability of both

range and bearing, we need at least the first-order terms in Y.

An intuitive explanation for this behavior is obtained by analyzing the range phase

history for the 0-observation interval. Rewrite the range phase as

R() = {(s-Rosin0)+RZ cosZ}1/2 E [ L 1i

R1f) = +R L 2 2 j

and define the range phase information content on the observations as the graph of the

range phase

R L {R() {('-Rosin0) +RZ cos20}1/2, f e L

Set

Rz = {R(z) = {z +R cos2o 1/2, zE [-Z +Z]}

L
For Z= - Ro0 sin we haveR RL= R; when L - Z - , and we obtain the isomor-

phism of the two information contents lim RL = RZ=o. But RZ=, is completely deter-

mined by a single parameter, the distance R cos from the source to the linear

observer, and so, for an infinitely large array, this is the identifiable parameter.

c. Very Long Baseline Staved Array

In radio and radar astronomy it is well known that Very Long Baseline Interferometry

(VLBI) achieves high angular resolution by using two or more widely separated radio

telescopes. 3 3 The quantity that is measured by VLBI techniques is simply a differential

delay the difference between the times of propagation from the source to two or more
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separated receiving sites. A complete analysis of the techniques for estimating this dif-

ferential delay from the data recorded simultaneously at several receiving stations,

and the accuracy attained, has been given by Hinteregger 3 4 and Rogers. 3 5 With

natural radio sources the attainable accuracy within each fringe of ambiguity is inversely

proportional to the carrier frequency and the available signal-to-noise ratio. The VLBI

concept has also been applied with coherent sources, i. e., sources whose emitted sig-

nals are slowly varying sinusoidals such as the artificial radio transmitters used with

the Apollo Lunar Surface Experiment Package (ALSEP) that were developed for tracking

the lunar rover vehicle. 3 3 , 11

With these VLBI techniques the source is assumed at infinity ("distant" observer).

We now study performance bounds for a simple geometry wherein a very long baseline

observer is generated by linear arrays located at distant sites, with sin ultaneous mea-

surement of the angle and range source parameters. The essential distinction with the

VLB interferometry is that now we analyze the possibility of measuring the source/

receiver separation from the phase modulations, by assuming that the source is within

the observer's finite geometry. This will be made precise subsequently.

Figure 25 illustrates a linear observer composed of three widely separated short

collinear arrays placed far apart. We derive the Cramer-Rao performance bounds for

the range and bearing parameters, under suitable assumptions made explicit below. In

Fig. 25. Long baseline (three-element) staved linear array.

Appendix C for R >> AL we linearize the range phase function across each individual

stave about its geometric center. For R0 <<L we approximate sin (O±L/2) by the arc. With

these simplifications the Cramer-Rao bounds (Eqs. C. 44 and C. 45) of Appendix C are

sin 2I
(SNReff)1 (ALT)1

and

R O-sin tan LiRo. (46b)R sin 0 L/2'

These expressions illustrate the performance achieved by triangulation with a linear

scheme, when the assumed simplifications hold. We conclude that the angle performance

33
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is determined from the central element, while the range observation is accomplished

by triangulation with the end point elements. Finally, from Eqs. 46 we see that the per-

formance deteriorates monotonically with the viewing angle L/2:

R P._~ 0- (46c)

L 2
2

d. Graphical Representation of the Cramer-Rao Bounds

We evaluate in a digital computer the exact closed-form expressions (B. 8)-(B. 14) in

Appendix B of the elements of the inverse mean-square spread matrix -h1, and the

Cramer-Rao bounds obtained after normalizing them by the gain G.

The nominal conditions that are assumed are

R = Rr = 6 x 10 ft
O o

= 15 °

X = 50 ft

= modulation indexX

SNR =P/N = -3 B

2
2 = 1

b

T = 250 sec for the stationary array/stationary source

L = 250 ft, v = 30 ft/sec for the moving omnidirectional sensor with stationary
source.

In Fig. 26 we represent the diagonal elements of -1 normalized by the square of

the modulation index

,-1

i = R sin 
ii (X/1)2 0

and the crosscorrelation R sin as a function of the geometric parameter X.
o

We observe the quadratic (convex cup) behavior of the range and bearing mean-square

spreads. This is the result of two different phenomena. For small X (distant observer)

the main lobe is spread out and flat at the origin (source location) with corresponding

large inverses of the second-order derivatives of the GAF. When X increases it

becomes sharper, but the crosscorrelation also decreases monotonically to -1 with a

shearing of the main lobe. As a consequence, the spread functions bottom down at a

value of X between 6 and 7, and then increase monotonically. Figure 26 also displays

the local and asyriptotic tangents to which the spread functions converge; these were
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Fig. 26. (a) Inverse range mean-square spread vs X.
(b) Inverse angle mean-square spread vs X.
(c) Range/angle crosscorrelation vs X.
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derived in sections 2.4. la and 2.4. lb.

Figure 27a and 27b shows the range and bearing standard deviations predicted by the

Cramer-Rao bounds when the parameter X varies. These curves are a consequence of

associating to the geometric effects displayed in Fig. 26a and 26b the energy-to-noise

ratio gain, which increases with X and leads to an overall steady improvement in the

predicted accuracy, as we would expect. But we stress that sensitivity problems arise

for large X, since the estimation errors become highly correlated, as shown by the right

ends of Fig. 26c, or as predicted by the analytical results of the asymptotic analysis.

Finally, Fig. 27c illustrates the behavior of R as a function of the bearing angle 0

1 0o
for a small value of X, namely X = 2 . The performance deteriorates when the geometry

progresses from broadside to end-fire, as concluded from the local analysis.

2.4.2 Global Performance

The Cramer-Rao bounds that have just been studied place theoretical limitations on

the accuracy of the source parameter estimates. We shall analyze how these bounds

compare with the mean-square errors in the algorithm implementing the ML estimation,

by working directly with Eq. 21.

From physical considerations, dependent upon the particular application, we delimit

the parameter space region of interest, iQ, to the two-dimensional rectangle

2

i=l [jm IA] [ omROM X [sinOm. sin OM] 47)i=l Jm m

By designing the elementary cell of the grid discretizing 2 on the coarse search step

as the ellipsoid defined by the quadratic form (Eq. 25) Q(AA) = (A) T .4((AA) = 1, it fol-

lows, from the negligible sidelobe structure of the ambiguity function (see sec. 2. 3), that

the signals evaluated at points in different cells are uncorrelated. These considerations

justify modeling the coarse search as an M-ary hypothesis decision testing problem with

orthogonal signals transmitted over a Rayleigh channel.

Under the hypothesis H n, n = 1, .. , M the received waveform is

Hn = in(t)= b ep j (R + x2 + 2xR0 sin O) + (x

exat -J x) 3n C M = {1 ... M}exp(-jcox)4 n I--m

with

M = total number of cells of 

An= IRo 1= center coordinates of each cell

in

w(x) = complex white' Gaussian noise with double spectral height No.
o
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(b) Angle standard deviation vs X.
(c) Range standard eviation vs bearing angle.
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The hypotheses are a priori equally probable, since no further knowledge of the

source parameters is assumed, apart from the overall dimensions of Q.

The first step of the estimation algorithm is then a "largest of" receiver choosing

the largest m of the sufficient statistics

Pn = 1n ! z = (7(t) (tAn )) I n E

and identifying the ML estimate Ame = Am.

We proceed with the computation of each quantity in Eq. 21.

a. E(A. J |E)

E(A- I) E E (Aj-Aj ) IE]

E{[(Aj-)- (Ajm - Aj)] 2 1

E[(Aj -j) 2 I ] + E[(Ajm-Aj) ]- 2E[(Aj-Aj)(A jmf -Aj)l ].

(48a)

where

AjM-Ajm A Aj
Aj = E(A j ) 2 2

The ML estimates have a MAP interpretation, that they coincide with the maximum

a posteriori estimates when the parameters' a priori distribution is uniform in iQ. For

the purpose of computing the mean-square error when a diversion occurs, we use this

MAP interpretation, and model A. as uniformly distributed in [AjmAjM], j = 1, 2.

The second equality follows because, by the original orthogonal signals assumption,

if a diversion had occurred, it is equally likely to have been decided upon any one of the

wrong cells. From this we also conclude that the last term in Eq. 48a is zero. The two

other terms will be bounded by

(AjM-Am)2 AM2A

E[(Aj-Aj z ] = E[(Ajmf -A j ) E] 12 12

where we have neglected the influence of diversions carrying no error on the Aj param-

eter. It follows that

(A -A 2 2AA2

E: (A j, Z -3 e) j 6 *, (48b)

b. Probability of a Diversion

The probability of a diversion is the probability of error of an M-ary decision with
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orthogonal signals transmitted over a Rayleigh channel. Several authors have studied

this probability of error for M-ary signaling over fading channels (see Pierce; for

additional references see Van Trees 24). The exact expression is

M /M-\ (-1)n+
Pr(E) = n n ' (49a)

where

2
ER 2bEt

= N 49b)
o O

Equation 49a is an alternating series of large terms posing numerical problems in
37

a digital computer. Sussman has derived more convenient equivalent expressions and

several approximations displaying the functional dependence of Pr(E) on the several

parameters. In particular,

r(t + I 1 )r (-)

Fr(E) = 1 -

r(M + 1I)

where r is the gamma function.

For B >> I a truncated Taylor's series expansion approximates the probability of a

diversion by

Fr() [(M) +y], (50a)

where +(M) is the digarnma or psi function,30 defined as

d r'(z)
0(z) = I- In (z = Iz ~r(z)

and y is Euler's constant y = 0. 5772156649.

From the asymptotic expansion for P(z),

k ~(z) 1 1 1
(z) - In 2z 12z2 120 4 252z +

we get approximately

Pr(E ) n M- 2M- + y]I (50b)

with an error smaller than 1/1ZM 2 .

Another useful expression follows from

M-1
(M) = -y + k

k=l
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and it leads to

1 M-1
Fr(e):-1 Z - 1 .

k=l

Figure 28 compares the probability of a diversion, as computed from the exact and

the approximate expressions, as a function of the energy-to-noise ratio (Fig. 28a),

and having M as a parameter (Fig. 28b). The curves demonstrate good agreement

between both expressions for sufficiently large energy-to-noise ratio parameter values.

c. E (A I )

This quantity represents the mean-square error when no diversion occurs, and the

coarse search leads to the correct cell in the n region of the parameter space. The fine

search proceeds within the main lobe, and this local mean-square error will depend on

the quantitative description of the GAF near the origin.

We note that for a rectangular grid aligned with the coordinate axis we have

(A.M -A) 2

0 --E(AZ IE~) IC M. j (51)

where Mj is the number of subintervals into which the Aj axis is divided by the grid.

As the geometric parameter X increases, we note a shearing effect on the main lobe,

with the grid tilting over both axes, so that the high bound in Eq. 51 does not hold. Alter-

natively, working with a quadratic description for the main lobe, as given by Eq. 24, it

is plausible to approximate the local mean-square error by the Cramer-Rao bounds com-

puted in section 2.4.1; i.e., we assume that E(AZ Ec) a, with ajj given by Eq. 33.

In summary, the total mean-square error is decomposed on a global and a local com-

ponent

2= E(A2) 2 2 (52a)
totj glj g loc j'

where

A

gl 6
2 M j

c = ar2jI [1- Pr(E)]. (52c)

d. Performance Graphical Analysis

The nominal values here are those assumed when studying numerically the Cramer-

Rao bounds at the beginning of section 2.4. lb. Furthermore, we take
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VQ = MRo AM sin ,

with A Ro =R - R0 = 10R ,A E=m = m 5° . We start by analyzing the depen-
oM m o

dence of the probability of error and the total number of grid cells on the geometric

parameter X.

We have

V
M V (53)

a

where

2
V2 =volume of = A A A AMR XA sin 8

j=l J R°

Va= volume of elementary cell.

For a fixed VQ the total number M decreases with Va. The volume of the elementary
-I

cell depends on the eigenvalues and eigenvectors of .' which determines the form and

dimensions of the cell. In particular, we have

= k n /2 = k(det ') (54)a i

where

ki = eigenvalues of .4 given by Eqs. 31a and 31b

det X = determinant of ..

k = constant dependent on the specific form assumed for a.

For the elementary ellipsoid,

(A )2

Q(AA) = ATWA = 2 - 1,
j=l 1__

we have k = k = 7. For the rectangular parallelepiped circumscribing this ellipsoid

k = k = 4. The total number of cells is then
P

1 = (de t ) . (55)

In Fig. 29a we show det X4 as a function of X and the local and asymptotic approxima-

tions. The convex cap behavior has essentially the physical interpretation already noted,

that for small X the main lobe is flat at the origin and well spread out, while for large X
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it approaches a sheared rectangular type format.

The total number M presents a similar dependence on X. We observe the large com-

putational work involved when actually implementing the M L receiver, because of the

large number of grid cells.

In Fig. 28c we showed the evolution of the probability of error with X. As X

increases, Mi not only changes according to the cap behavior of Fig. 29a bu. the signal

energy-to-noise ratio also increases. Since for very small X the main lobe spreads

over all the space, the grid reduces to one cell and the probability of error vanishes.

As X increases, M eventually gets larger than 1. Initially this dominates the corre-

sponding increase of p = Er/No, and the probability of error changes drastically to a

maximum value, after which it decreases monotonically as a In X/X law. Estimates on

the value of M can be obtained from the local and asymptotic expressions for det .

Specifically, for small X we have

M - Mlo M 1 R cos20X (56a)
loc q -- 5 o

and for large X we have

Masymp M (2) R , (56b)
(X cos ) 

where

VQ 2I2 A R AM sin e f 2 3
2 = XJk - X J* (56c)k -X) k

These expressions exhibit the rate of growth of M with the several parameters speci-

fying the model and the geometry, and reflect the elementary cell's volume dependence

on the source parameters.

Figure 29b and 29c shows the behavior as a function of X of the total, as well as the
2

global and local components of the performance bounds. loc follows essentially the

2 
Cramer-Rao bounds, while crgl reflects the behavior of Pr(e) with X. We note that for

small X, the local errors dominate the global ones, since the probability of error is

practically zero because of the wide spread of the main lobe. After a transitional value,

Xtr, between .02 and .04, the algorithm mean-square performance is essentially dom-

inated by the global errors. These threshold effects will now be discussed in more

detail.

2.4. 3 Limiting Behavior of the ML Algorithm for Large Signal-to-Noise

Ratio and with the Total Number of Independent Observations

Figure 29b and 29c exhibits a well-definmed threshold on the processor's performance.

For X < Xtr the system behaves as predicted by the Cramer-Rao bounds. For X > Xtr
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the global errors dominate the algorithm behavior, and the performance departs signifi-

cantly from that predicted by the Cramer-Rao bounds. For high signal energy-to-noise

ratio and with Pr(E) << 1, the ratio of the two mean-square error components leads to

2 (AMAj) 2 r 1
glj -I n - + y 

6 2 2= (57)

1locj (X-) fj(A, X)

where f. represents the dependence on A and X of the diagonal elements of .' . This

expression shows that for high signal energy-to-noise ratio 6 is practically independent

of the signal-to-noise ratio.

Depending on the several parameters, and as shown in Fig. 29b and 29c, 6 may be

greater or smaller than 1, with the expected performance dominated by the global or

the local errors. When 6 > 1, no matter how large we make the signal-to-noise ratio,

the mean-square error performance does not approach the Cramer-Rao bounds. This

inherent suboptimality is characteristic of the way the ML algorithm is implemented,

that is, in the two-step procedure.

We shall comment in section 3.4.5 that it is easy to prove that the ML estimates are

still asymptotically efficient in the signal-to-noise ratio sense.

In practice, this is not a major issue and can be circumvented by means of indepen-

dent measurements. In actual applications the channel characteristics have a finite

coherence time, and so multiple independent measurements are available. For N inde-

pendent measurements with

ri(t) = Re { Ii(t) +wi(t)] exp(-jOw t)} i = 1, . .N. (58)

where the bi are independent, identically distributed, complex Gaussian random vari-

ables, the first step of the algorithm can be modeled as a multiple hypothesis testing

with diversity, i.e., an M-ary decision with orthogonal observations transmitted over
31,24

N Rayleigh channels. For high signal energy-to-noise ratio the probability of

error can be approximated by

Pr(e) = ( 1 ) ( r/No)

r + r
N oo O/

The Cramer-Rao bounds are given by expressions equivalent t those derived before,

provided we normalize the signal energy-to-noise ratio by a factor of N. For N - 2, it

follows that lim 6 = 0 or lim 6 = 0, i. e., that the estimates are asymptotically effi-
SNR-- N-o0

cient in both signal-to-noise and classical senses (large N).
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III. STATIONARY (OMNIDIRECTIONAL) ARRAY

WITH MOVING SOURCE (SAMSo)

We have studied in detail tracking stationary sources with linear observers. The

problem reduced to the estin'ation of two parameters, range and bearing, from narrow-

band passive signals.

Now we shall enlarge the class of passive tracking problems to include nonstationary

sources. In order to resolve the fundamental issues, we restrict the source dynamics

to be deterministic and linear. For simplicity, we assume a stationary and omnidirec-

tional receiver. In Section IV we shall lift this restriction and point out the essential

features in a general tracking problem. We shall see there how these relate to and

include the features dealt with here.

First, we establish the model and discuss the constraints imposed on the problem.

Next, we design the receiver. Then we analyze the receiver structure and study its

error performance. The essential aspects of the theory (maximum-likelihood) follow

the details described in Section UI. We shall refer to the general results and proceed

to their application to the present problem.

3. 1 MODEL

As in the previous section the geometry is planar and the signals are narrow-band.

Equations 1, 2, and 3 describe in detail the assumed signal structure.

The functional form of the range function depends on the class of motions and param-

etrization chosen. We assume that the source moves along a deterministic linear path

with constant speed v, as illustrated in Fig. 30.

t=+T
2

Y
STATIONARY
OMNIDIRECTIONAL
CBSERVER

T
2

Fig. 30. Stationary Array/Moving Source.

The observer is stationary and has no bearing discrimination capabilities of its own;

it is either a short baseline linear array, or an omnidirectional nonlinear array with

dimension L. With this geometry the estimation problem is reduced to a three-parameter

estimation where

R(t, ) = {R 2 +v 2 t 2 2vtRo sin 0}1 / 2 t [ T (59a)0C 0 L ?. (59a)

0
2~~~~~~~~~~
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with he parameter vector

A= Ro (r59b)

sin 

Comparing this problem with SASS we have, in addition to the range and angle param-

eters, the source speed v, an unknown, to be estimated. We remark also that the prob-

lem as described is unrealistic from a practical point of view, since the angle in

Fig. 30 is not uniquely specified, and the geometry rotates about the observer location

on the plane defined by the source linear motion and the sensor. To solve this ambigu-

ity, the observer needs its own angle discrimination. This will be considered in Sec-

tion IV.

Equation 59a shows that for SAMSo the required information to describe the range

function in the entire observation interval is conveyed by three parameters. Conversely,

SAMSo represents the problem where the range function (the three source parameters)

is reconstructed solely from the temporal modulations induced by the relative dynamics.

By a Taylor' s series expansion, we approximate Eq. 59a:

v cos t v cos 2 v sin t3
0 0

Since the signal model assumes no knowledge of the absolute phase, the information on

the source parameters is on the modulations induced on the temporal signal structure.

For small observation intervals a linearized approximation is valid, and the observer

measures the source downrange velocity component. This finds practical applications

in navigation, with radiolocation systems, such as Loran, Decca, or Omega, utilizing

phase information to measure velocity. This velocity determination has also found

increased use when tracking remote platforms such as dropsonders, balloons measuring

wind, drifting buoys for collecting oceanographic data (e. g., ocean currents). A receiver

is installed on the moving platform and the radio navigation information is retransmitted

to the base station, which determines the velocity (downrange) from the recorded incre-

mental motion.

By further enlarging the observation interval, the second- (radial acceleration) and

third-order effects can be measured. Since the transformation of coordinates defined

by

= -v sin 0

2v 2cs 
R -

o R
0
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2 2
H v cos 8 v sin 

o R R
o o

has a nonzero Jacobian

a(Ro, R R) 6v5 z
- cos sin ,

a (R v, sin 8) R4
0 0

except for broadside ( =0), end-fire ( =/2), or stationary target/receiver (v= 0) con-

figurations, we conclude that third-order effects are sufficient for local specification

of the source position and dynamics (Implicit Function theorem). That the Jacobian is

zero for specific geometries, may serve as a warning about possible difficulties for these

configurations. Whenever the Jacobian is nonzero, we have

v Ro p1 0 | ( 6 1a)
o Ro o

sin =- (61c)

[ 0

and, besides an indetermination on the signal of v or sin 8, we have global parameter

identifiability; therefore, we assume v > 0.

3.2 RECEIVER DESIGN

We apply the maximum-likelihood techniques previously described. The receiver

is a matched filter followed by an envelope detector. The log ML-function is given by

Eq. 10a, but now the parameter vector is the three-dimensional vector of Eq. 59b. We

have a three-dimensional stochastic maximization that will be accomplished via the two-

step mechanization discussed in Section 1. The receiver is equivalent to a three-

dimensional bank of matched filters followed by square envelope detectors. We look

essentially for the network cell maximizing the signal-to-noise ratio. A local tune-up on

the source parameters follows the coarse search accomplished in the first step.

3.3 GENERALIZED AMBIGUITY FUNCTION (GAF)

The signal autocorrelation and the generalized ambiguity functions were given in

Definitions 1 and Z, and Eqs. 13. The range phase difference now is
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AR(t,A,A) := {[R +V2 t2 -ZvtR sin 0]l/ - [Ro+ ZtZ tRosn]/2}. (62)

As discussed previously, the receiver's ability to locate the source is intrinsically con-

nected to the GAF structure. Two main points have to be investigated, the form and

dimensions of the main lobe designing the grid discretizing the parameter space, and

the sidelobe structure resulting from significant secondary maxima of the GAF.

The first point, which is that of the main lobe, essentially requires a local analysis

on the parameter space; that is, the GAF is expanded in a truncated Taylor's series.

Graphical analysis confirms that a second-order expansion on the parameter errors

accurately describes the structure of the main lobe. The second point is made through

an asymptotic analysis studying the GAF rate of falloff and bounding the GAF structure

as the parameter errors increase. We have then two descriptions of the GAF, each of

which is valid in a certain region of the parameter space. By graphical analysis, we

may conclude that these descriptions essentially account for all the significant structure

of the ambiguity function.

Before proceeding, in analogy with Section II, we consider first an approximate

expression for the GAF that is obtained when the third-order polynomial approximation

(Eq. 60) is valid.

3. 3. 1 Polynomial Approximations to the Range Phase Difference

In Appendix A we analyze the ambiguity function when the range is approximated

by a third-order polyniomial, as in Eq. 60. The results are naturally interpreted using

the coefficients of Eq. 60 which represent, as seen before, the mismatch on the Doppler

modulation, radial acceleration, and third-order time derivative of the range. Since

the source parameters may be recovered from these (see Eqs. 61), we concentrate the

discussion in terms of the range time derivatives.

Given the form of the GAF along the parameter axis, we give the following definition.

Definition 4. The sinc function of the n order is given by

sincn()= Zj exp jn dT .(63a)

It is easily seen that

sinc2(E) = ,d cos Tn dT ; n odd. (63b)
n

sin 2{) = 5 exp jTn dT; n even. (63c)

nAlong the parameter axis the ambiguity function is given by these sincn functions. Spe-
cifically, along the Doppler axis it is the usual sinc function (see Fig. 13). For the
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2
radial-acceleration parameter the GAF is sinc 2 which relates to the Fresnel integrals.

Finally, along the third-order time derivative parameter axis the GAF is

sinc = cos T d . (64)

The integral in Eq. 64 is represented in Fig. 3 1a, with the limit for large being

given in terms of the value at zero of an Airy function,

Z 3 -rAi(0)
lim cos T dT -= = . 765. (65)

Z -c 0 31/3 3 rQ)

2 2
Figure 3b represents sinc3 and Fig. 31c compares the first three sinc functions.

We observe that for larger n, sinc is flatter near the origin, as would be expected, withn
the main lobe approaching a rectangle window type. Outside this main lobe we observe

ripples that are more significant, but also die out faster as the order of the function

increases. The rippling behavior is intuitively related to the overshooting of the inte-

grals (Gibb's phenomena, see Fig. 31c). The smoother behavior for the higher order

sincn relates directly to the cancellation of the integral, because of the highly oscillatory

character of the exponential function, and is the naive reason for studying these integrals

by the method of stationary phase (MSP) (see Appendix A).

For sinc3 the first minimum occurs approximately at Z - 1. 72, with sinc3 (Z M

. 1449, and the largest secondary maximum is the first one outside the main lobe at
2

ZM . 196, with sinc 3 (Z ) . 184. That is, the function is reduced to approxi-

mately 18. 4% of its maximum at the origin.

In Appendix A, and by a change of variable, we arrive at the signal autocorrelation

function for the general third-order polynomial range approximation

1C~f 3
e(A, A) ME exp jcT exp j dT

with

1 /3 3
3

- ~ ~/3F+ -T I 1/3 T + 1 2 13T.f i s Lz+ji. A3 3 [ 2 3 j 3

We shall not display this function graphically here, since we shall present graphs of

the exact ambiguity structure later. We turn instead to its asymptotic behavior. For
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Fig. 31. (a) Integral of cos X vs integration interval.

(b) Generalized third-order sinc function.
2

(c) eneralIzea sinc functions up to third order.

large observation intervals the signal autocorrelation function may be written in terms

of an Airy function (see Appendix A). We have

4(AI A) ' - -i__

A1/3 113

Using the asymptotic expansions for the Airy functions shown in Appendix A, for large w

we have

WJ 1(A 2 -- 5 1)
(A, A) _ I 13 e - 72- (6 6a)

X1/3 2X3 '3'
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if w > 0, and

+1/ ;(A, A/) sin (E+ - cos + -1 (66b)
1/3 31/3 4 

,/ 0 \3/2 1/3 Tif < 0, where =and Z A 3 -
31/3

Equations 66 show that for large parameter errors the ambiguity function decreases

with the inverse of a certain power of and , and hence of the mismatch on the range

derivative parameters.

3.3.2 General Case

The generalized ambiguity function, given by Eqs. 13 and 14, is studied graphically

for the SAMS context in Figs. 32, 33, and 34 (see also Fig. 12a and 12b). The source

actual parameters are assumed fixLed:

A = =.6 xlO ft.

v 30 ft/see

sin sin 150

Figures 3 2a and 33b are three-dimensional plots of the GAF on the coordinate planes.

The line of sight is given by the angles 8 and illustrated in Fig. 16. In particular,

for these figures = 150 ° and = 210 ° . That is, the GAF is viewed from below and

behind. Figures 12b, 3Zb, and 33b show the corresponding contour plots. In Fig. 33b

the shearing of the ambiguity function is like what occurs with chirp (linear frequency-
vT 1modulated) cw radars. The value of the geometric parameter is X = 2R - 8 Fig

0
ure 34a and 34b shows the ambiguity function on the range/velocity plane for a smaller

value, X = 1/16 as seen from two different viewing angles. Figure 34c is the corre-

sponding contour plot. In Section II we presented several three-dimensional and con-

tour plots of the GAF on the range/sin plane for different values of X. We shall not

repeat them here.

From these graphs we conclude qualitatively that the ambiguity function has a main

lobe, centered at the source geographical position at t = 0 (midpoint of the observation

interval) and negligible subsidiary peaks that will be ignored in the subsequent error
analysis. We recall that the generalized ambiguity function is the output of the ML

receiver in the absence of noise. Its peaked structure shows the model global identi-

fiability, and hence that it is possible to estimate globally and simultaneously all of the

source parameters from the array measurements.

Figures 12b, 32b, and 33b show the main lobe equal height contours on the three

coordinate planes as approximate ellipses; this suggests that the three-dimensional
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Fig. 32. (a) Three-dimensional range/velocity ambiguity structure (X=1/8).
(b) Contour range/velocity ambiguity structure (X=1/8).

Ii

(ao) (b)

Fig. 33. (a) Three-dimensional velocity/angle ambiguity structure (X=1/8).
(b) Contour velocity/angle ambiguity structure (X=1/8).
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(0) (b)

(c)

Fig. 34. (a) Three-dimensional range/velocity ambiguity structure (X=l/16).
(b) Three-dimensional range/velocity ambiguity structure (X=1/16).
(c) Contour range/velocity ambiguity structure (X=1/16).

4 A n 8

Fig. 35.

Main lobe ellipsoidal structure.
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equal height contours of the main lobe are roughly ellipsoids. This was confirmed by;

looking at the equal height contour plots of the GAF main lobe on planes parallel to the

coordinate axes planes. In Fig. 35 we show one of these ellipsoids generated from the

corresponding intersections (ellipses) on the coordinate axes planes.

This main lobe configuration will be referred to as ellipsoidal structure. As we shall

see, it plays an important role in performance studies, since it determines the form

and dimension of the elementary cells of the grid used in the first step of the algorithm

implementing the ML estimation.

Finally, we shall comment on the rate of fall of the secondary GAF structure, in

order to find how large the secondary main lobes of the GAF are, how they fall off as

we get farther away from the source location in the parameter space, and what is the

asymptotic behavior of this secondary structure as the observation interval is increased.

In Appendix A we resort to the method of stationary phase (MSP) to find the asymp-

totic behavior of the GAF and to bound its secondary structure. We find that at each

point of the parameter space !2 these bounds depend on the value of the first nonzero

range phase difference derivatives in the observation interval. For the actual form of

these bounds, refer to Eqs. A.40 and A. 41. These equations show that the ambiguity

structure decreases hyperbolically with the square of the nth root of the nt h range phase

d;fference derivative (which is the first derivative evaluated at that point of the param-

eter space which does not vanish in the whole observation interval). This asymptotic

structure also decreases with (T/2)- 2

We keep referring to this structure of the ambiguity function because it plays an

essential role in the global parameter observability, and in the mean-square perfor-

mance bounds. We normalize our nomenclature.

I. Main lobe ellipsoidal structure stands for a GAF that exhibits a main lobe well

approximated by a quadratic expansion on 2.

2. Secondary negligible structure means that the GAF is negligible outside its main

lobe.

3. Hyperbolic secondary structure refers to the GAF decay with the inverse of a

certain power of the parameter errors on 2.

The evolution of the form and dimensions of the main lobe as we increase the

observation interval will be quantified later when we study the asymptotic performance

of the mechanization of the ML algorithm.

3.4 PERFORMANCE ANALYSIS

We analyze the mean-square error performance of the two-step algorithm mecha-

nizing the ML, estimation of te source parameter vector A = R . The total mean-

sin 
square error of the component Aj is decomposed in two terms. The first, referred to

as the global mean-square error aglj results from decision errors or diversions. The
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second, the local mean-square error loc' depends on the flatness of the main lobe,

and is estimated from the Cramer-Rao bounds.

Because of the main lobe ellipsoidal structure, and the negligible secondary struc-

ture, the assumptions behind the derivation of the mean-square error expressions in

Section II still hold. In particular, the GAF can be approximated by a second-order

expansion about the actual source parameter values, with the result expressed in terms

of the mean-square spread matrix 4 ; and the first step of the ML algorithm modeled

as an M-ary decision problem with orthogonal signals over a Rayleigh channel.

Again, the total number M of hypotheses depends on the a priori region of interest 2

in the parameter space and on the matrix X*', namely on its eigenvalues and eigen-

vectors.

These circumstances underline the importance of the mean-square spread matrix

-. '. In Appendix B we compute this matrix and arrive at closed-form expressions for

its elements. Given its unappealing complexity, we first present a local analysis based

on truncated Taylor's series when the geometric parameter X - vT/ZR2 is small

3. 4. 1 Short Observation Interval Analysis (Distant Observer)

a. Full SAMS Problem
o

vT
In many situations of practical significance the geometric parameter X = -- < 1;

o
that is, the geometry corresponds to a distant observer type. With this condition, a

truncated Taylor's series analysis can be pursued, and it leads to meaningful results.

Accordingly, we consider this approach.

The range phase is approximated by an nth-order polynomial

R(t, A) R +v t ZvtR sin R (67)

i=O

(i) di
where R = R(t, A)

o dt 

In the sequel we are interested in the matrix .', its inverse, its classical adjoint

.' =(det .4).,-1 , and its determinant. As it turns out, the first nonzero coefficient

of he Taylor's series of det X is the coefficient of the 1Zth power in X. In order to

get its correct expression, it is required that we keep terms at least up to sixth ier

in the development of Eq. 67.

We present merely the results of the local analysis. Part of the algebraic manipula-

tions were carried out with the use of MACSY MA, a symbol-manipulating system at

Project MAC, M. I. T. For the sake of brevity and intuition, we display only the leading

term of the Taylor's series expansion for each element (i. e., its first nonzero term).

Higher order terms have to be included in actual computations (e. g., computing det X
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or -4 -1 from 41') so that we preserve the nonsingular character of .
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(68d)

The Cramer-Rao bounds re obtained by normalizing the mean-square spread matrix

by the gain G given by Eqs. 34. The standard deviations for the error parameters and

for the local analysis results are
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a 4-7s 1

R L1/2 sin cos X

v 2 R sin --
12 X

(SNReffLT) 1/ 

a Ja' 1 1

asin (SNR 2 Re X3'
(SNR ffLT)/2

(6 9a)

(69b)

(6 9c)

where we recall that X = vT/ZRo and SNReff and a are given in Eqs. 34. The source/

receiver geometry affects the performance in two distinct ways, which we have sepa-

rated in expressions (69). On the one hand, it renormalizes the received energy. In

particular, for the same emitted power and quality of sensors the standard deviation

performance deteriorates with the inverse of the source/receiver separation. On the

other hand, the performance bounds are directly affected by the actual source param-

eters and length of the observations, since they determine the spread out of the GAF

main lobe, measured by the matrix .4. We shall concentrate the discussion on the last

effects.

We note the third-order dependence of the standard deviations on the geometric

parameter X. This relates intuitively to the fact that the simultaneous estimation of

all three source parameters requires at least the observation of third-order time mod-

ulation effects.

The range standard deviation bound, given in Eq. 6 9a has two stationary points at

sin 0 = t± , for which = min 35. 26 ° (mod . Its second derivative with respect

to sin 0 is positive for sin 0 ct-1, 1]; it is a convex cup function of sin 0. This cup

behavior reflects the dependence of the range performance on both the downrange and

crossrange velocity components given by vs = v sin 0 and vc = v cos which vanish for

broadside and end-fire geometry. We conclude that the range performance standard

deviation for the distant observer geometry (or equivalently short observation interval

analysis) presents a minimum at 0mi n = 350 and deteriorates monotonically as we

approach both broadside and end-fire geometry. While this last behavior just reflects

the dependence of the range performance on the effective array length, which vanishes

for end-fire geometry, the former is a new phenomenon that is characteristic of the

SAMSo problem and does not appear with the SASS configurations.

The velocity standard deviation rv has a hyperbolic dependence on sin 0, increasing

drastically for 0 = 0° (broadside or closest approach geometry). The bearing perfor-

mance exhibits a hyperbolic dependence on the source/reeiver separation and is

practically independent of 0.

From Eqs. 69 we obtain the relations
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COsO.±2'=V sinG (70)
v sin 0

that reflect the tradeoffs in the performance errors as we vary the geometric param-

eters.

We indicate by superscript r the reference or nominal values assumed when

designing the receiver to meet a prespecified performance. In actual system operation,

when the source parameters are different from those assumed at the design stage (for

example, for the range parameter and with all other quantities assumed equal) the per-

formance changes according to

R at ) .i (7 a)

Rr Rr

To match the desired Cramer-Rao nominal performance, the observation durations

should be adjusted to

8/7

T TRo (71 b

We show in Fig. 36 a sketch of geometry in which the Cramer-Rao performance is

2 T,

x

Fig. 36. Cramer-Rao bound equivalent range performance geometry.

practically equivalent. The crosscorrelations of the parameter error, defined as

(,, -I)
1i

Pij = _ (72)
_] /vr

(.A - )ii (A -1) j]
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from Eq. 6 8c, are given by

RP = (0v) iR X (73)
Ro,v 1 Ro

PR o , sin Rsin 0(0) X (74)

P sin, - + a V )sin (75)P sin O, v V, sin()

where aij (), i, j = R o, v, sin 0 are suitable expressions in sin 0. These results show

that the parameter errors are highly correlated up to second-order effects. In order

to have a nonsingular estimation problem, i. e.,

Pi. < 1, i, Ro , v, sin}, (76)

we need a significant value for X. This point will be discussed further when we plot the

Cramer-Rao bounds.

£E3iore proceeding, we analyze the spread matrix and the Cramer-Rao performance

bounds when we assume that one of the source parameters is known a priori. This may

be the case either because it has been determined by some other means or because it

represents a higher order of complexity, which happens with the velocity parameter in

the Moving (Omnidirectional) Array with Stationary Source (MASS) context, or simply

because its incorporation in the estimation problem makes no physical sense (e. g.,

source speed in SASS). This analysis will shed light on the effects of the geometry, the

higher order modulations, and the coupling between the parameter errors on the SAMSO

receiver performance. Besides this, each of the situations that will be described has

its own practical significance that warrants further consideration.

The spread matrix is obtained by deletion of the corresponding line and column in

the three-dimensional result. We also present the inverse . and other useful

parameters.

b. Range/Angle Estimation (SASS)

These applications have been considered in detail in Section II. Knowledge of the

vehicle's own speed and/or the total array length makes the range focusing and the angle

measurement achievable from the linear and quadratic effects with a corresponding range

performance gain of one order of magnitude of X. Furthermore, for broadside geom-

etry and small parameter X, the errors on the parameter estimates are essentially

decoupled.

c. Range/Velocity Estimation - Application to Navigation

In this problem the bearing angle is assumed to be known. This might occur in
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some navigational applications, or when tracking satellites transmitting narrow-band

signals. The latter is illustrated in Fig. 37. The array on Earth observes the satellite

_ 5/.l..SATELLITE

'"

EARTH IRR

ARRAY

Fig. 37.

Satellite tracking geometry.

passing abeam. The duration of the observations is determined by the strength of the

emitted signal and the receiving array gain. Physically speaking, we assume that the

observations are symmetric about the rising angle (closest approach), determined, for

example, from the position and the orientation of the stationary observer. The essence

of the application is that the moving source follows a path that is prescribed or known

a priori, the only unknowns being the source/receiver separation and the relative speed.

The results or this problem parallel those for the range/angle estimation (SASS or

MASS) after rescaling the involved quantities.

The parameter vector is A = [Rol and the (local) approximate expressions are

R - 2
v =( )

det R ,
0

cos4 OX4

45

_

45

cos4oX4

o (11 sin2 0- 2) cos 
X4

, v 45

2
R 2

o sin2 X2
2 3

3(11 sin2 - 2)

Ro sinZ0 cos26X

2
v 3

R2 sin2OX2
0 

6 R 2 s4
(-21) o sin cos4 6 .

v X- 2 135

(77 a)

(77b)

(77c)

The degree of coupling is specified bv the crosscorrelation, which is

(11 sin2 O - 2)X

Ro' FJ sin 
(78)
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The eigenvalues and eigenvectors up to truncation are

()2 )cos 4 X4

R \X1 45
O eR [ (79a)

(79b)
2rX (Ro sinZx2 

A} v/ 3 v

As with SASS, the range is focused from the chirp (second-order) effects, while the

source velocity is measured from the linear modulations on the signal structure. We
note that the velocity standard deviation increases monotonically as the geometry

approaches broadside. This is intuitively clear: for broadside geometry the linear

effects are minimum, and the velocity is measured from zero Doppler effects.

d. Velocity/Angle Estimates

In this application we assume that the range is known by means of active range mea-

surement. The analysis brings up one of the major difficulties underlining the SAMSo

estimation problem, the high correlation between the errors in the velocity and angle

estimates.

The parameter vector is A = v ] and the quantities of interest are given approxi-

mately by sin 0

v, sin \ )

[6 X2 Cos+ 8 (4 31 sin e X R 2 sn X2 X4 sin (9 sin2 -
22 cosZ

-2 k x2 + 45 j 45

[I .. . 2 _. -1
+ 4s5 X 

+ 45 x 
L

2

v, sin 

det I& - ('v, sinO

v2 45
R2 X4

0

v 45 sin 
2 4X4

R0 4X

1 45 sin2

R 4X
O

4X
2 135'

v

We stress that the velocity and the angle mean-square errors, calculated from the
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diagonal elements of . -1, depend on the 4 t h power of X , as compared with SASS or

the previous applications, where they were a function of X One of the eigenvalues is

(22 R2X2 (sin l)

with eigenvector

e S X - 2

oriented along the downrange velocity component v = v sin 0. The other eigenvalue of

order X4 corresponds to the eigenvector along the crossrange velocity component

Vc = v cos 0. The crosscorrelation between the parameter errors is v, sin 

- + V, sinOe() X, which underlines the coupling between the errors on the velocity

and angle estimates.

3. 4. 2 Long Observation Interval Analysis (Close Observer)

We analyze briefly the asymptotic behavior of the Cramer-Rao bounds as the geo-

metric parameter X is increased, or equivalently as

2R
Y = X = - 0.

vT

The expressions for the asymptotic behavior of - 1 are presented in Appendix C. After

normalizing by G we obtain the asymptotic standard deviations predicted by the

Cramer-Rao bounds:

R CrR = Gl/2( 2 cos 1/ 2 v os 1/2

I/4 :y _r G (81b)

V V, R
U V00 Z~ 0 =G- (rSNReffL)L/2 T/2Z

sinO = sin 00 ( ) sin 0. (81c)sinO = ~sinO=

As with SASS, the range and bearing performance decrease monotonically to nonzero

lower bounds, while the velocity bound vanishes. The errors in the velocity estimates

are asymptotically uncorrelated to the other parameter errors; that is, for large geo-

metric parameter X the velocity estimation uncouples from the bearing and range esti-

mation. This is intuitively clear; for a large observation interval the problem tends

to the Doppler configuration illustrated in Fig. 38, for which the ambiguity function is
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given by

O(A, A) - sine 2[-Av T2 (AR, sin0, A). (82)

That is, the ambiguity structure is essentially decoupled in the velocity parameter.

L.4~Jm

LINEAR Fig. 38.
PATH

Doppler configuration.

Just as with SASS, the errors in the two other parameters are asymptotically perfectly

correlated, and involve sensitivity problems like the ones discussed in Section II.

3. 4. 3 Graphical Display of the Cramer-Rao Bounds

We return to the closed-form expressions for 4t (see Appendix B) and to the

Cramer-Rao bounds obtained from the diagonal elements of .4' , after normalization

by the gain G

The nominal conditions, unless otherwise specified, are assumed to be

SNR = emitted signal-to-noise ratio = . 5 = -3 dB

Rr= 6 X 104 ft
O

X = 50 ft

v = 30 ft/sec

0 = 15 °

L = 250 ft

2
b = .5.

Figure 39 shows as functions of X the diagonal elements of X-l normalized by the

squared inverse of the modulation index [B = 2-/), with the local and asymptotic tangents

arrived at by truncated Taylor's series expansions. The convex cup behavior of r -1R
0

and X.4 sine is due to the phenomena analyzed in Section I for small X, the lobe is

well spread over f2 with consequent small second-order derivatives of the GAF at the

source location; for large X, the main lobe approaches a rectangular type of window

in the range/bearing subspace. The inverse velocity spread . v is monotonically

decreasing, evolving from the local to the asymptotic tangent

Figure 40 shows as a function of X the crosscorrelation between the errors in the

estimates for the several parameters. For small X the errors are highly correlated.
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Fig. 39. (a) Range mean-square spread vs X.
(b) Angle mean-square spread vs X.
(c) Speed mean-square spread vs X.
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Fig. 40. Crosscorrelation vs X.

As X increases PR v and pvI sinG decrease monotonically [evolution to Doppler con-
0

figuration (Fig. 38)], while pR sin0 decreases first(reflecting reduction in correlation

as higher order effects are measured) to increase again for large X (rectangular type

of ambiguity function in the R/sin subspace).

For small values of the geometric parameter X (valid local analysis), Figs. 41-43

illustrate the dependence of the Cramer-Rao bounds on the source parameters and the

geometry. Figure 41 shows the behavior of acR as a function of . It displays the
O

4

2

0

SAM4=

lo' h/

I

e-o 

i1~ -

0.4X O
- 2

ai.2

0.2

0

1. .5.

BEAR4G (4

75.

Fig. 41.

Range Cramer-Rao bound vs bearing.

R = 6X K
4

Xl

X2

3' 60.

(a)

x

2

30- 60

(b)

Fig. 42.

(a) Speed and (b) angle Cramer-Rao bound
vs bearing.
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convex cup behavior referred to in the local analysis of the bound, and reflects the

strong coupling between the errors in the angle and velocity estimates (skewed error

ellipsoids) that are propagated to the range errors. A maximum range performance

is obtained for a geometry with 0 35 ° , as predicted by the local analysis. This

performance deteriorates monotonically, as the geometry approaches either broadside

(large errors in the velocity parameter) or end-fire (reduction of effective array length)

conditions.

Figure 42 shows the velocity and sin performance as a function of bearing. The

predicted behavior is confirmed: (a increases sharply at broadside (vanishing down-

range velocity) and decreases monotonically as we approach end-fire (downrange

velocity component is the source speed). The bearing performance is practically

invariant to the actual bearing angle.

Figure 43 a shows the dependence of the range performance on the absolute value of

R o , as we increase the observation interval proportionately, so that the geometric

parameter X is kept constant. The deterioration in performance is essentially due to

the signal-power dependence on the normalized inverse of the range squared.

Figure 43b presents the crosscorrelation between the errors in the several param-

eters as a function of 0 with X as a parameter. The strong coupling already noted is

displayed, which for small X is one order of magnitude stronger for Pv, sin The curves

for R v and R sin0 should be compared with the corresponding values obtained with
o o

the two-parameter estimation problem; the third parameter, either velocity or bearing,

is assumed known. It is immediately apparent that the presence of the third parameter

in the full SAMS° introduces a strong coupling between errors.

3. 4. 4 Global Performance

As we have already discussed, the total mean-square error for the mechanization
2 2

of the ML algorithm in two stages, tot , is given approximately (Eqs. 52) by local 1oc.
2 J J

and global argl components. We shall analyze the dependence of these quantities on the
j

several parameters. In the graphical representations we assume, unless otherwise

stated, the nominal conditions previously given. We also assume that the a priori

region 2 of interest in the parameter space is

A R = R - R 6 6xl ft

M m

AM °- 0M m = 

and that the sgnal-to-noise ratio is SNR = 0 dB.
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Fig. 43. (a) Range Cramer-Rao bound vs range (X=constant).
(b) Crosscorrelation vs bearing.
(c) Probability of a diversion X.
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a. Probability of Error and Total Number of Grid Cells

We begin by discussing Pr(c) and M. In Section II several expressions were pre-

sented for the probability of a diversion. For the high signal energy-to-noise ratio sit-

uation it is approximated by Eq. 50b. The total number of grid cells is given by M =

V t'V \, where the volume of the elementary cell is the product of the square root of the
~_ a -1

eigenvalues of - after normalization by a factor dependent on the specific form

assumed for the elementary cell. An analytic expression for the eigenvalues of '

is difficult to obtain, since it would involve the roots of a third-order polynomial. We

oh. erve, however, that the product of the eigenvalues is an invariant characteristic of

a linear transformation, its determinant, leading to M = (det X/ . For the dis-

-ant observer geometry (local analysis)

V 3 26
_o 2 sin cosX 6 (83 a)

M ioc k' 3 x 5 X ,3 x 5 x 7

For the close observer geometry (asymptotic analysis)

V 23R 2 1/2
IM - .Y) (83b)

asympt k . v 2 2\ 6 OY'

These expressions show analytically the rate of growth of the total number of grid cells

with the several parameters, for the local and the asymptotic geometry. In Fig. 44 we

represent det .4' as a function of X. We observe that it is monotonically increasing,

evolving from a local to an asymptotic tangent, thereby implying a change in the rate

of growth of M from X6 to iX.
Figure 43c shows the evolution of Pr(E) as we increase X, and for two regions of

a priori interest in the parameter space. We take

1 =

and

MR = 6 X 10 5 ft

' = 2 = AMv = 1.5 ft/sec

AM0: 1°

i. e., V2: V /10. We note first the concave behavior of Pr(£) with X. For small X

the GAF main lobe is spread all over and so M = 1, implying Pr(i! = G. As X increases,

the variation in M dominates over the signal energy-to-noise ratio -variation, until a

maximum is reached which could be arrived at analytically. Afterward Pr(E) decreases

69



2 2 cws//

7

Fig. 44.

Determirant of .' vs X.

70

le

.02

lOC

.00 got
X

c Auc

ba.
lI ;



monotonically, following a T in T law. The effect of changing Vi2 is more marked for

small X, essentially pushing the point for which the GAF main lobe is smaller than the

a priori region of interest to a larger value of X, and hence leading to M1 > 1. For large

X this has a vanishing effect because of the n T/T law.

Finally, we note that when X is small, so that the local analysis holds, and when-

ever all other parameters are kept identical, M = Mr(Ro/Ro)Z where Mr corresponds

to R (reference range). This expression says that the total number of grid cells

increases with the square of the source/receiver separation, and it underlines the vast

amount of computation time that may be required for very distant targets. When similar

conditions hold

r in ( /R )
Pr(e) -= R r [Pr(e)ir,

Rr Z 

where Pr(E)j r is the probability of error under reference conditions. This equation

displays the rate of growth of Pr(), as the source/receiver separation gets bigger. We

note that the first iator, = R /pr, accounts for the normalization of the received

power (spherical ropagation), while the bracketed factor reflects the change in te total

nun:be:' of grid points with the source,/receiver separation.

b_ Graphical Analysis cf the Total Perfc .rrnance o:-nds

2
In Fig. 45 we -epresein as a function of X the total iean-square error Otot and

its global and local components, for the two different a priori regions of interest,

,'2, >e note rst that for sall X the ocal compornena dominates the performance,

slice the P-(E) is zero-- for sai X. After a trans-tion region where both components

are of the satme order, the global errors dornnat mee pertlormance. We observe that,

un;ter the numerical conditions and the assume-i a priori region, ths transitional region

ccc-urs first for the range parameter, the;. for he sin 0 pa-iamet.r, and finally for the

xelocity parameter. Vie also note that it occurs for values of X ¢E[.1,1], which is a

region of interest in rriany applications.

The effect of reuucinc the a priori region of interest s tofold. One effect that is

noted is the change of Pr(E} which is purely reflected in Fig. 45a. The second results

from the change in the a priori uncertainty; of the parameters. ince in P., we have

reduiced A Mv ad A 0, the changes in Fig. s5b ad 45c reflect the coupling of both

effects.

3. 4. 5 Asymptotic Beha-ior of the NiL Algorithm

We have analyzed how the performance of the estimatic-n algorithm depends cn he

geometric parameter X. We hare seen that for X smaller than. a transitionai value

X-tan the performance s well predicted by te Cranmer-Rao bounds. mp-rovements cantran
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Fig. 45. (a) Speed total ML performance vs X.
(b) Angle total ML performance vs X.
(c) Range total ML performance vs X.

only be achieved by increasing the effective signal energy-to-noise ratio, for example,

by using better sensors. For X larger than the transitional value a threshold phenom-

enon occurs with the receiver performance departing from the Cramer-Rao bound,

because of the dominance of the (large) global errors.

The issues of asymptotic behavior as the SNR and/or N (total number of independent

measurements) become large can be pursued. The conclusions are essentially equiva-

lent to those in Section II. The relation between c2 and c for N = 1 and high signallent to those in Section II. The regl a loc
j 3

energy-to-noise ratio is essentially independent of the SNR This says that, under these

conditions, for a given geometry, because of diversions, we cannot make the mean-

square error term arbitrarily small with respect to the local mean-square error just

by increasing the SNR; the receiver presents threshold effects, with its performance

departing significantly from the one predicted by the Cramer-Rao bounds.

This suboptimal behavior is inherent in the two-step implementation of the ML
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receiver, and not intrinsic to the ML parameter estimation with signals propagating

through a Rayleigh channel. In fact, it can be proved that the ML parameter estimation

problem with signals over a Rayleigh channel is asymptotically efficient in the signal-

to-noise ratio sense, as we let SNR - . The proof follows essentially the arguments

of Kelly, Reed, and Root 3 8 for the equivalent problem of asymptotic efficiency in the

SNR sense, in he ML estimation of parameters embedded in signals multiplied by a

channel characteristic of constant unknown but nonrandom, with amplitude b and uniform

phase y. We merely have to be careful to further restrict their bounding argument to

the sample functions with unknown nonzero amplitude b. But since the set of sample

functions for which b= 0 is a set of measure zero, no essential modification of their

argument leading to the efficiency of the ML estimate in the SNR sense is introduced in

the more general ontext of signals over Rayleigh channels.

Finally, if we assume that we have N independent measurements, and if we let

2

AN - (84)
3 2

loc

we can prove the asymptotic efficiency in the classical sense:

lim AN 0 (85a)
N-00 J

and also if N 2,

lim AN = (85b)
SNR- J

i. e., the suboptimality of the two-step mechanization disappears, and the estimates are

also efficient in the SNR sense.
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IV. SYNTHETIC ARRAY WITH MOVING SOURCE (SAMS)

We have carried out the analysis for the equivalent positioning and navigation prob-

lems for moving platforms when the receiving aperture is omnidirectional (short base-

line) or the navigational station reduces to a fixed point source. These twin applications

were cast in terms of a stationary array/moving source model with omnidirectional sen-

sor (SAMS ), thereby reducing passive position navigation to estimation of three param-

eters: source/receiver separation Ro , relative speed v, and a suitably defined angle t

(Fig. 46). The temporal modulations induced by the relative dynamics convey no infor-

mation on the bearing angle 6[ which is unidentifiable with the SAMSo model.

HAVKGATIOt*

N

L

2 2 2 2

(o) (b)

Fig. 46. Stationary Array/Moving Source.
(a) Positioning. (b) Navigation.

We shall consider now the class of position/navigation problems illustrated in Fig. 46

where a spatial and temporal nonnegligible baseline inducing both spatial and temporal

diversity on the signal structure is generated. Keeping the tracking or positioning ter-

minology, we refer to this class as a stationary array/moving source (SAMS) problem.

We put the analysis of SAMS in the perspective of the results from Sections I and III and

pursue the study of the optimal XIL receiver structure, and of the processor perfor-

mance, for two configurations arising in most applications of practical interest. We

discuss in detail the space/time factorability of the ambiguity function, and the funda-

mental implications, in terms of parameter identifiability, introduced by the spatial/

temporal coupling.

4.1 I MODEL

Our assumptions on the planar geometry, narrow-band radiated signals, linear array

structures, and deterministic constant-speed linear path are kept. n particular, see

Eqs. 1-3, and section 2. 1 on the geometric model signal and noise structures.

We make use of two geometric parameters:

Spatial geometric parameter X£ = 2R (86a)
0
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Temporal geometric parameter Xt vT= '
o

(86b)

These parameters normalize the linear dimensions (half of the array length, or half of

the distance traveled by the moving source during the observation interval) with respect

to the source/receiver separation.

The range function R(t, ) is the distance between the source at time t and the point

at location { in the linear array, which may be completely described by four parameters

IOVIN6 SOLWCE
y x x LINEAR PATH

LItEAR ARRAY - -'

I , A
L o0
-~ itzo

N T

2

t-

O t T

i - - R j 2
- ", __ "I

L
2

N

l

Fig. 47. SAMS planar geometry.

because of the deterministic assumption on

array geometric center and the midpoint

parameter vector as

A= R

v
sin t

sin e8

the motions. Centering with respect to the

of the observation interval, we define the

where R is the source/receiver separation at t = 0, t = 0. angles sin i. i = 1, t are

indicated in Fig. 47, and v is the source speed. By solving triangles i-0£-t and t-Ot-0

successively, we obtain

R(t, , A) AR(t,) = {R 2o+ +(vt)2 -2Ro( tsinO8 +vtsinOt) +2vtcos (1 - t)l/2

(B7a)

which equivalently can be expressed as

R(t,. A) = { [Ro- sin v in 0t]2 +[t cos0f +vt Cos t]2}1/ 2

As discussed previously, we work with sin 6 i. i = ,t and not with the angles them-

selves. This wave number dependence does not uniquely specify the relative source/

receiver geometry but removes the known ambiguity introduced by the linear constraints
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from the model. To illustrate this point, consider a ship navigation problem. Then

either we know the side where the source center is (e.g., on port) or we repeat the

experiment with a different line course.

The measurement of the bearing angle 08 resolves the indetermination of the signs

of each individual factor in the product v sin t that was observed in Section Ill. For,

as we see in Fig. 48, the two georretric configurations I and II are clearly distinguish-

able.

ATKI tii Fig. 48.

Ambiguity resolution of the signs of v
and sin t in SANMS.

I

L L
2 2

4.2 RECEIVER STRUCTURE

The positioning/navigation problem with spatial and temporal diversity has been cast

in the context of an estimation problem with a finite number of nonrandom unknown

parameters imbedded nonlinearly on signals corrupted by additive temporally white, spa-

tially homogeneous, Gaussian noise. The maximum-likelihood ML) receiver is asymp-

totically efficient, and is composed of a matched filter followed by a square law envelope

detector. The receiver structure is determined by the signal correlation function and

by the generalized ambiguity function (GAF) given by Eqs. 13 and 14, and R(t, 1,A) is

given by Eqs. 87.

The ML receiver specified by Eqs. 13d and 87 represents a processing over two

dimensions, space and time. With the SASS and SAMS° of Sections II and III, the homo-

geneity introduced in one of these domains (the time stationarity of the relative dynamics

in SASS or the omnidirectional sensor with SAMS o ) leads to a simpler one-dimensional

processor. This call be viewed as a special case of a more general situation, where

the receiver's two-cimensional structure is decoupled on its spatial and temporal dimern-

sions; that is, the Signal autocorrelation function factors as the product of a time inte-

gral and a space integral

!JA, A) = 4'(A,, T) (A, .A, L), (88)

where Y(A,A.Z) = -/2 dz exp jAR(zA,A). z = or t.

The importance of his factorability or separability is twofold. First, it expresses

the processor in terms of two independent blocks, each representing a processing in one

of the domains. If there are changes in one of these that do not affect the underlying
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assumptions leading to the factorability of Eq. 88, they only affect the design of one

block, and leave the other unaltered. Second, this facterability may lead to a separa-

bility of the signal autocorrelation, and hence of the generalized ambiguity function over

the parameter space, which gives rise to considerable saving in the processing load

work.

In the detection context a different concept of factorization of the optimal processor's

structure has been considered by Middleton and Groginsky 3 9 who found conditions for

the factorability of the optimal detector in two operations. The first condition depends

only on the geometry of the array, the second on the statistics of the noise processes.

They point out that in general factorability in this sense is not possible in optimal sys-

tems. For active systems, and for detection and estimation problems, some conditions

on the signal structure that ensure the factorability of the processor have been found by

Urkowitz et al.,40 and have been generalized to the case of reverberation and colored

noise by Pasupathy and Venetsanopoulos. 4 1

With the present SAMS model the received random form exhibits a nonhomogeneous

spatial and nonstationary temporal structure, which leads to a complex receiver whose

inalysis is not conducive to intuitive closed-form expressions. To understand the struc-

ture of SAMS and the theoretical limitations of performance, we pursue the questions

of factorability in the sense defined by Eq. 88 and spatial/temporal coupling, by devel-

oping the analysis of SAIMS for two specific configurations. In the first it is assumed

that the temporal diversity dominates the spatial diversity. This leads to a decoupling

of the spatial and temporal operations of the receiver, which are reflected in a separa-

bility of the ambiguity function as the product of two reduced-dimension (on the param-

eter space SI) ambiguity structures. For this configuration, the passive ranging is

essentially accomplished by using the temporal modulations. SAMIS is put in the per-

spective of Sections II and Ill, decoupling into a SANIS 0 and a passive bearing problem,

with a Rayleigh model. The second configuration considers the problem where the spa-

tial and temporal baselines are comparable, and investigates the effects induced on the

receiver structure and performance by the coupling.

For both we pursue a least-order analysis, based on truncated Taylor's series

approximations to the range function, and compute the ambiguity function, as well as

bounds on the mean-square performance.

4.3 DECOUPLED SPATLAL/TEMPORAL SANIS STRUCTURE

We make two hypotheses concerning the geometric configuration of SAMS:

L

0

HZ: XO X1 vT0
t jo

These assumptions justify a linearized Taylor's series analysis on the spatial
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variable. The range function becomes

cos (8t- O) vt - R sin [
R(t,) = R(t, 0O) + - sin (89a)

R(t, 0)

= R(t, O) - sin 0 (t, ) , (89b)

where 6f (t, 0) is the bearing angle at time t with respect to the center of the reference

frame (Fig. 49). This linearized structure in the space variable simply states that, at

each particular instant of time, the wave field across the receiver's array is planar, and

that, as the source moves along its linear track, the spatial structure of the received

signals changes (Fig. 49).

X _T

f-- , x/-/

T4WF -
,- R(t t)

r- / 

L L

2 2

Fig. 49. Time-variant spatial structure.

We note that R(t, 0) = {R2 (vt)2 -2(vt R sinOt} l/ depends only on the reduced dimen-

sion vector

A: = R (89c)

V

sin t
L I

of the source parameters associated with the SAMSo model in Section Iu, while 0 (t, 0)

depends on the full parameter vector A.

4. 3. 1 Ambiguity Structure

The signal autocorrelation function can be rewritten

- ' ('T/2 21T A)' l bL/2
tr A, \ L df

dt ex-p .t ~&Rjt, 0, A ,Ao) L "-L/2

x exp -j o, A sin 0e (t, O,A.A) 
L J

(90a)
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or

0(A,A) = - '/2
T -T/2

dtexpj 2IT AR(t, 0., ,A o ), V( sin (t, 0, A, A)), (90b)

where

(sin(t0,A,) sin Asin (. A) L.
g£(L sin 0[(t,0,A,A)) = sine A sin 0[ (t.0,A,A) - . (90c:)

Since the wave fronts are planar across the array, we assume that spatial diversity

techniques (array processing with beam forming) are used to match the bearing angle,

so that as the source sweeps the horizon the receiver updates the bearing estimate. The

function pj(A sin0f(t,O,AA)) is kept practically constant across the source travel

(approximately tuned to 1), with the array sequentially steered to the source varying

bearing, as illustrated in Fig. 0.

11 

NX SOURCE
ARY TRA K

RRAY OAl

Fig. 50.

Sequential beam steering.

To compute the number of updates, we define the array bearing resolution2 8 by

4t(sint(t1, 0)- sin eO(t2 , 0))> 
-Y2

(91)

That is, under the assumption that the aperture is steered at e6(t1, 0), the resolution

is given by the bearing interval over which the (spatial) aperture response does not drop

below the 3 dB cutoff. Since LIf is the sine function of Eq. 90c, we obtain

sin O (t 1 ,O) - sin (t2,0) < 2 82 T

Xk

By taking t = 0, the resolution is given by

A sin = sin n - sin (t 2 , O) < 278f ~~~~I t )<2ir. 
X JL-

The total bearing variation across the source travel is approximately

79

L L
2 2

I

1..



sin O- sin (- T ,0) = cos ( -0 X | 1 +
4 vT R sin Et 1

2( o t 
R(4.TO) ]

2 cos (-8t)Xt

so that the number of updates is

Nu I= .5 cos (et) i )-

where ( ) J stands for the largest

bars.

For Of =
t

LXt
N - 4.5u x

L (vT)
= 2.25

O

integer contained in ( ). In the sequel we omit the

(9Zb)

Returning to the ambiguity structure, if Nu = 1, we have

A (AsinO((t,O.AA)) sine (A sin 8) z

and

4(A,A) = o(Ao Ao) sin (A sine) L],~~ sin (~~sinet)2Ji (93)

where o(Ao. Ao ) is the signal autocorrelation function associated with the SAMSo model.

This says that when the angle spanned by the source travel is smaller than the

receiver's aperture beamwidth (Fig. 51) the SAMS signal autocorrelation decouples in

its spatial and temporal aspects, with a corresponding factorization over the parameter

t-Tj

/ t. 

AWGLE RESOLUTION LINEAR
)/ PATH

x oRRAY SEAM

r(to.)

r(t,C)
L L
2 2

Fig. 51.

Source dynamics within a reso-
lution cell of the linear array.

Fig. 52.

Decoupled receiver structure.
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space Q. The range, speed, and angle sin t are estimated from the temporal diversity,

and the bearing from the spatial diversity. If Nu > 1, and the sequential beam steering

shown in Fig. 50 is assumed, the receiver's structure is still practically decoupled:

~(A, A) - o(Ao, Ao ) ~(a sin OE (t, 0,A,. A)). (94)

The important difference between Eqs. 94 and 93 is in the time updating of FT. 94,

which yields a sequence of bearing measurements instead of a single bearing. The

receiver structure is mathematically equivalent to the block diagram in Fig. 52.

We now study the mean-square performance of the decoupled structure. We concen-

trate on the analysis of the mean-square spread matrix X and its inverse.

4.3. 2 Computation of the Inverse of the Mean-Square Spread Matrix

The mean-square spread matrix (SSM), given in Appendix B by Eqs. B.6 and B.7,

requires the computatic of the gradient of the range phase with respect to the source

parameters. The spatially linearized range function (see Eqs. 89) is

R(t,[.,A) R(t,0,Ao)- sin 0(t,0,A)[. (95)

Here we explicitly exhibited as arguments the vectors A and A, to show on which source

parameters each term depends. The gradient is

?AR(t, ,A) R(t Ao,0o- sin (t. O.A) f

We note that the first term does not depend on , in the second term this dependence

is linear, and by using the assumed symmetry of the array geometry., it follows that the

MISSMI can be written

x2

A' 4R +A'0 3 (96a)

where

-At'R = o (96b)

_ I 

L I

3 of 'm

I

mT t
44 0

_ 

(96c)
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,X0 is the MSSM associated with the SAMSo model in Section III,

z sin -(et-[ )
-44 : (-t) L tc--Q H +H oR (96d)

44 N cos2 2

In Appendix B, 2I is given by Eq. B. 10b and Ho by Eq. B. lOa. The exact expression0t 0

for the matrix -A and the vector m does not concern us.

In order to compute the inversion of ., we rearrange the terms in Eq. 96a. We

define

0 YR R

44ie 3

.2
- 3 - Xf

~ 3

mT 

Since . R
> 0. we can define a suitable unique square root matrix such tat 9 R

R /2- ,l/2 where

R o

c 1/2 o 1/

the inverse of leads to

,-1 z-1/2 I +_Xf /2 1l/2 -4 -1/2 (97)

For a valid mearn ,quare expansion of the inverse of the bracketed matrix in Eq. 7. we

need to satisfy39

max i ( , < 1, (98)

where the X)i(A) are the eigenvalues of
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R ~k ~R 3 _ _ _ 10 .

I - i

I jT Im A , 
I 

mA 440 0

L -1/2 1/2
3 J

By a continuity argument, or by analyzing the trace and the determinant of A, we car

show that i(A) O0(X), i.e., is at least of the order X£, or is zero and of the order (X2 ).

For sufficiently short baseline arrays, condition (98) will be satisfied. It follows that

( ) ,-1/2
'! (99)>- = &-1/2 I + Z

R ~n=I

which up to the le.st nonzero order in A is

W- _X 1/2(I _A -1/2
R Z a

(100a)

T-1
o

T
m

m

-1

3 

2
-1 3 I X I

_ ° x 'A1 I

1

0

0

(100b)

I

where m -1 -1
44 o m.

#
39

A sufficient condition for Eq. 100a to be a reasonable approximation to Eq. 99 is

XTAX
max T << 1, which will certainly be the case for a sufficiently small array baseline,

XX
i.e.. whenever XI << 1.

Equation 100a represents the inverse of MSSM for SAMS when. because of the overall

geometry, the signal wave field presents instantaneously a planar wave front across the

array. The second term of the right-hand side of Eq. 100b represents the first-order

correction, when the sequence of bearing measurements obtained by processing the time-

variant spatial signal structure is coupled to the inf-ormation conveyed in the temporal

modulations, to lead to the estimates of the remaining source parameters, that is, the

reduced parameter vector A .

When this coupling is neglected, as suggested by the decoupled receiver in Fig. 52,
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the inverse NMSSM is given by the first term of Eq. 100b and leads to a detericoration in

the mean-square performance as seen from the oscillating character of the 2ecm,,:rt:'ic

series in Eq. 99.
-1

The 3 x 3 minor 4 °0 in Eq. 100b is equivalent to the inverse of MSSM fr the SAMS

model. The global and local results on tre mean-square performance of the para smeters

in A are then equivalent to those derived for SAMIS 
0 0

The crosscorrelations between the parameter errors, as computed frcmn the inverse

of .MSSM, are Pij = Pi for i, 3, and

-1

Pi4 1/2

t ( )ii(-W )44j

= Pi4(A Xt) Xf.

That is. the crosscorrelation between the components of A is as in SAMS but we note

that a crosscorrelation of the order of X is introduced by the weak coupling, between the

errors on the parameter estimates of A o and the bearing angle 0.

4.4 COUPLED SPATLAL/TENIPORAL SAMS STRUC'TURE

We consider the problem where the spatial/temporal structures are coupled, because

of the overall geometry and relative dimensions. The source travels in the near field

of the array, and is observed by the receiver for a sufficiently large time interval.

Significant (spatial) curvature and higher order (temporal) modulation effects are

available, as illustrated in Fig. 53, to be joint - processed, and to yield the estimation

of the four source paranreLers. The range function R(t, ) exhibits a significant variation

at each instant across the linear array, and at each array point across the source travel,

as illustrated in Fig. 54 for a broadside (e = 0) and closest approach ( t = 0) geometry,

/\ \"\

% . \

/ . .) 2"I : - _~

N I

0 i I
tSw 2 1

.~~~~~~~~~~~~~~~~~~~~~
Ft,) I

\I% ~I

\ I

e,- An .* .I

R(t. )

Rlt~t)

I

t
_i eo T t
1
1

_ - ·o X L 2 2 2 2
2 2 i ) By 

Fig. 53. Fig. 54.

Spatial/temporal coupled curvature Spatial/temporal cross coupling (X[=Xt).
geometry. (a) Geometry. (b) Range fmnction.
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and for the special case where the array length equals the source travel.

To obtain closed-form expressions and an intuitive understandirg of the coupling

issues, we pursue in detail the analysis for the following case.

HI: < If ZR
o

vT
H2: Xt = Z < 1.

o

In Hi1 the range is larger than half the array length, and in 1-12 larger than half the source

travel. These conditions justify a higher order truncated Taylor's series study in both

space and time variables about the geometry center t = C, i = 0.

In operator form the truncated Taylor's series is given by

N n
t, - t + ) R(t,f ) (101)

n=O t:O
f=o

The lower order terms lead to

cos ot (vt)
R(t.A)= Ro- sin vtt) 2R

0

2 r2

sin f + ZR +
O

cos ea cos et(vtj)
+ +... (102)

In compact notation, letting Rt R(t, 0) and R - R(0, ), and recalling their Taylor's

series expansion, we have

cos Of cos e t
R(t, ) + R(O.0) = Rt + R + R( + (vt) + higher order terms. (103)

Equation 103 represents the decomposition of the range function in terms of unccupled

terms (Rt and R), and the cross coupling, which is approximated by a polynomial

expression. Figure 55 illustrates several terms of the decomposition. We note that due

to the incoherent model, the R = R(O,0) term in Eq. 103 plays no essential role in the

phase estimation process, and can be absorbed in the uniformly distributed random sig-

nal phase. Accordingly, it will be ignored in subsequert discussions.

First, we consider the structure of the ambiguity function or the parameter space S

and second, the mean-square matrix ., from which the performance bounds car be

obtained.
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Y

Fig. 55.

Range function decomposition.

4.4. 1 Ambiguity Structure

In general, the signal autocorrelation and the ambiguity functions will be too complex

to lend themselves to exact analysis, since they involve the doable integration in time

and spact: of a highly nonlinear function. We obtain a qualitative, as well as quantitative,

description of their structlre for SAM.S, by exploiting the harmonic nature of the inte-

grand, a.pplying the method of stationary phase (ISP). and coupling the results for the

SAilS and SASS models.
o

;irst, we analyze the secondary structure by discussing the asymptotic behavior of

the exact atocorrelation function for large parameter eviations in the parameter

space . Then, we use the Taylor's series approximation to the range phase, and inves-

tigate analytically the effects of the cross oupling on the ambiguity structure.

a. Asymptotic Behavior and Rate of Falloff of the

Ambiguity Structure

The signal autocorrelation function is

cT/2 L/2 2-(
~(AA) = I-T dt df d :p j- - AR(tr,A,A) i- (104)

-T/2 -L/2 L

If large errors in one or more of the source parameters occur, we can apply the MISP

to obtain the dominant term on the right-hand side of q. 104. It requires an extension

of the NMSP to two dimensions, which reduces to a sequential application of the one-

dimensional MISP results to each one of the integrals of Eq. 104 (see, for example,

Papoulis42).
* *

For a phase stationary point (t , ) in the domain of integration

b~Ad aR(t, t\ r L 1 (105)
t at i f , = 0, (t t) E l T T x (105)at t=t 2 

the signal autocorrelation function behaves asymptotically (i A-A ! becomes large in n):
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'(A A)- v exp 21- ~aR' (106)

s a2Zh , 82A\ ,
i 8Z3\ t2IR

2 2

where AR. taeR ,/af, etc. stand for tne evaluation of AR. a ARaH/ , etc., at the

point f stationary phase t* £.*). The denominator in Eq. 106 is assured to be nonzero.

if it vanishes, we obtain a bound involving higher ocde- derivatives. Substituting in

Eq. 106 the expression for the range phase AR(t,t,A, A), and computing the several

derivatives, evaluated at the stationary phase, we obtain the asymptotic behavior of

4(A,A), and hence thie rate of falloff of the ambiguity function for large parameter

errors. These bounds are essentially inversely proportional to a certain combination

of powers of the errors on the parameters. We refer to this as the hyperbolic decay of

the secondary ambiguity structure (see section 3.3.2). We obtain similar bounds, if

only one or neither of Eqs. 15 is satisfied. They express the dominant behavior of the

signal autocorrelation for large parameter deviations, in terms of the first-order partial

derivatives of the phase range difference evaluated at the extremes of the integration

intervals.

Because of the unappealing analytical nature of these bounds, we do not write therm

explicitly but note that they can be computed in a straightforward way. They lead to a

hyperbolic decay of the secondary ambiguity structure. Our previous experience has

shown that these types of bounds are tight (see Fig. 15), and so for large parameter

errors the ambiguity function is negligible in Q2.

b. Analytical Expression for the Coupled Ambiguity Structure

We proceed with the evaluation of the double integral defining the signal autocorre-

lation function 4(A.A) in Eq. 104. We use the polynomial approximation to the range

function given in Eqs. 102 and 103. The rarnge Fhase difference function is written

I LLR(t I AR + AR + At (107a)

where

f ZRlC + .* =I- Aisine ) + RO ) (10b)

L 
a~ t· v cosg t2

1 4 I 2 2
ARt t + -t 14 sin E)) t + A (107c

o~l t l ~~ + ' +..
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2-t (cos cos t v 2n cos o cos t v cos 0 cos tv) 0d)

0

We make several remarks:

1. The A( ) notation is explained in Eq. 107d. It represents the difference of the

argument evaluated at the sourcte parameter vector A and at the scanning value A.

2. As noted below Eq. 103, due to the incoherent model, the constant phase factor

RO that should appear in I -s. 107 contributes nothing to the GAF, and hence is ignored.

3. ARf depends only on the bearing angle sin 0A and the range R o . In the sequel

we let the two-dimensional parameter vector associated with the SASS model be

A R (108)

sin 

ARt depends only on the reduced three-dimensional vector (Eq. 89c) associated with

SAMS° . Only the cross coupling, reduced to its lowest order term Aft in Eq. 107a,

depends on the full parameter vector A. When a specific dependence is to be underlined,

we explicitly exhibit as argument A s , A or A, as the case might be.

The signal autocorrelation becomes

4(A,A) LT T/Z dt / dt exp[j(ARt +ARf +Aitit)].

For example, we integrate over the space dimension and, after some algebraic manipu-

lations,

+(A, A) = s(AsA s ) o(AoA o) + J£t' (109a)

where the signal autocorrelation associated with SAMSo is

4(Ao',A) = dt exp[jARt1 (109b)

the signal autocorrelation associated with SASS is

- (AA) L d expljAR], (109c)
%s(As'As) = -L/d

L/Z

and the term exhibiting the coupled nature of the processor is

ST/2 $0 t- exp

iJt = T _T/ dt exp jrRtL do exp j(+ i+Li ) . (109d)

The definitions of AL, Lf , etc. are as follows:
o
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AL= Lf -L = a2 L
o o

O 2

L aIL. =-a
1o 

Ait
Yt =

2-

9~() = Jo exp j d (exponential Fresnel integral).

For a quadratic range phase expansion, for example, we recall that we can rewrite

Eq. 109c:

-- 1 [F(Lf )-(Li)j. (110)
~s(As'As) - Lo Li At Lio)-. ( 11)

The quantities defined above have the physical interpretation presented in Appendix A

below Eqs. A. 1l.

Equation 109a presents the coupled signal autocorrelation as given by two terms. The

first represents the product of the ambiguity structures associated with each individual

dimension of the problem (space and time). The second introduces the correction that

is due to the coupling. We see that the ambiguity structure is not separable, unless yt =

0, or ytT is large.

In order to interpret the cross-coupling term, we rewrite its expression. Let

y.t

f(t, ) = - d exp j( +1)2
0

F(t, ) - f(t, E dt

t tft df(t, )
T f(t - t t dt

yT i {( t+) [( Ytt +Z)-)- ; eIp j(Ytt+ Z) exp(jZ )] }.

We then have

Jet = J(T, Lf ) - J(T,L i ' (lla)
o 0

where
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J(T, ) =F(T, ) exp JR()]-F( T expjR( )

-F(t, ) exp[jARt] dt. ( lb)
_T/2

For the quadratic expansion of ARt

dAR(t)

dt i + 22t* = O
t=t,

> t, = - O.
2

For T sufficiently large, t. E [-T/2,T/2], and by the MSP

C T/2 dAR(t)

-T/2 F(t' ) dt exp[jARt] dt 0.

For a large cross-coupling parameter t, when the coupling is more evident, and for

sufficiently large T

F( ±-, - 2) L- :2 T (Z. (112)
large ytT

This leads to

J(T,Lf )-JT,L. ) * - exp Tj2( T ) cos (¢1 T) s(AsAS)
o o1 large ytT 

Here we use Eq. 112 in Eq. Illb, and assume a quadratic range approximation.

Finally,

(A, A) s( AS (A' s) c Cos 
2T2(

+ o(A,A) - cos ( 2) sin ( 2)1]} (113)r

where + O I j o

Equation 113 shows that whenever T and tT are large, the signal autocorrelation is

still separable in to parts, one dependent on the space domain and the other on the time

domain but the latter factor is not simply the SAMS signal autocorrelation. Similarly,

we obtain equivalent results, if we start by integrating over time, and assume large L

and y L, where y has a definition equivalent to Yt.

We now look at the coupled ambiguity structure along specific subspaces in Q, that is,

the coordinate axes or planes.
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(Av, A sinOt) Plane

Let 7n be the subspace (plane) in Q given by ARo = and A sin °0 = 0.
vt

The signal autocorrelation function in 7v becomes
vt

O~(A, A) T dt exp[j&Rt] sine (A[tt ).

Consider the locus Y on wrv, whereXve t

Alt < * L T'
2 2

or equivalently,

R _

A(vcos t ) < 6 =cos e ( t)< 6 Cose L T'
2 2

as shown in Fig. 56.

a sin 81

Fig. 56. Locus on 
vot

For points in Ž

0 < sinc &att - < 1 for t E 2 '2

which leads to

4(A,A - *o(Ao. o) sine (A t t* (115)

where sinc (ttt 2) is either computed at the stationary phase, if t* C , ], or

is an average value.

Outside Y the sinc is negligible whenever t > to , where t = , and hence
2 Lft

r t

Bu, 2t ) dt exp[JARt] sinc (Att by the sme argument,

But, by the same argument,
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(A, A) - 2 (oAo) sine (t ) (116)
o

In Eq. 116 the index 2to makes eplicit the "modified' total observation interval.

The effect of coupling is to sharpen the ambiguity structure while maintaining its fun-

damental aspects, a main lobe and a secondary negligible structure. The quantitative

analysis, in terms of the dirensions of the main lobe, will be pursued when we study the

MSSM.

A sin 0 Subspace

The analysis parallels the preceding one. We find

qJ(A, A) - L/Z df expjAR[] sine A(t I)
-L/<

Similarly, we define ct.e locus Y by Eq. 114a, which now implies

R
A(cosof) < 6 = v c{ 0 L T 117)

g 2

For points in the locus

'4(A, A-s, A s ) sine (A It ) (118)

Outside .° we define
R 

=o
o vT

-2 cos etla(cos t)j

to obtain

2T
,P(A, A) ° + (As As) sine -t (119

0

The conclusions are equivalent to the previous ones.

Radial Parameter

Along the radial parameter subspace

T/Z CL/a2 2 a 1 2
I(A, A) LT J-T/ dt d expLJ i(cosef0 +cos0tvt)2 R1 (120)

Define the change of variables: = cos 0B. + cos O.vt, and recall the defitions

L L t
Xc 2R cos = R

0o 0o
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vT Ltc
Xt = 2R cos t = R '

c o o

Performing the double integration in Eq. 120 along the dashed lines illustrated in Fig. 57,

where the integrand is constant, we obtain

- Li 

k V C LI,+ LtI aI

Lt -- Lc

.r t Cos et

'Ltc

Fig. 57. Reduction of double integration to single integration.

(X +X tc )2

XIcXtc

with

t'(A,A) = ( Xt) exp[j(AK) ]do, (121b)

C X

where we defined the wave number paramet AK = A and the equivalent total
0

geometric parameter X = 2 (X + Xt. Performing the integral in Eq. 121b, we

have

4'(A,A) -+ K (122)
At j(AK t)

with AKt = Xt

Equation 121b shows that the spatial/temporal coupled signal autocorrelation along

the radial parameter subspace, apart from a normalizing factor, corresponds to the sig-

nal autocorrelation for a one-dimensional problem, with the source at broadside con-

dition, where the equivalent total linear dimension(Fig. 58a) is Ltot = Los e + vT cos t,

and the array shading is triangular and not uniform, as illustrated in Fig. 58b.

Finally, we comment that Eq. 121b generalizes the usual one-dimensional distribu-

tion of the (Fresnel zone) diffracted field for a plane wave in optics, to the case where

the line source (equivalent in our problem to the temporal baseline) and the receiving

aperture (spatial baseline) are not parallel (0 *Ot), and there is a wide angle ( 0) and

oblique incidence ( t 0).
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-L tot L tot

2 2

(O) (b)

Fig. 58. (a) Equivalent SASS problem.
(b) Triangular shading.

4.4.2 Mean-Square Spread Matrix

We study the mean-square spread matrix (MSSM) . which exhibits the essential

geometric aspects of the problem, and how they are reflected in the mean-square per-

formance of the ML estimator.

In order to obtain intuitive closed-form expressions, we pursue a Taylor's series

analysis in terms of the geometric parameters X = R and Xt = vT First, we con-ZR t2R
o o

sider a Taylor's series expansion of the range function in operator form given by

Eq. 101. Although we restrict our attention to the lowest order term of det 4' that is

needed to compute X4' and the volume of the elementary grid cell, the dimensionality

of X/ requires that we keep a relatively large number, N, of terms in expansion (101).

The consequence is an extensive burden of algebraic manipulations leading to a not less

extensive list of expressions. In Appendix D the results are given for the least order

terms of .4', its classical adjoint X, the inverse 1, and det 4. Here we limit

the analysis to det .' the diagonal elements of X4 from which the performance bounds

can be obtained, and the parameter error crosscorrelations defined from the elements

of .

a. Determinant of 4

The determinant is given by

8 6
det .4( X ) 61 X Xt ( +f X2 x 2 +x

3 5 cos c c c c v

where

L cos 
Xp = X cos O= 2R

c o

vi'' cos et
Xt = Xt cost = 2

c oZR

We make the following remarks:
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1. The lowest order term in det 4 contains terms in

4 66 48
XIXt , XIXt, XfXt

and is of order n = order of least order term of det X4 = 12. In Section III we con-

cluded that for the SAMS° problem nSAMS = 12. On the other hand, the single-parameter
0

bearing estimation leads to nsin = 2.

We see, because of the coupling, that nSAMS < nSAMS + nsin , while for the decoupled

structure just discussed equality holds. The spatial/temporal cross coupling improves

in a nontrivial way the joint estimation of all source parameters, thereby reducing the

overall order of the problem. Intuitively speaking, with the decoupled problem at least

third-order effects have to be measured from the temporal diversity, while only the lin-

ear delays can be estimated from the spatial curvature (bearing). The cross coupling

reduces to second order the lowest order effects that have to be measured but now from

both spatial and temporal diversity. Figure 5 shows that for he coupled geometry the

range function depends significantly on both time and space, and this intuitively suggests

an improvement in performance.

2. The terms in

12 12 10 _2 2 10
X ' t t' X Xf t

2
are absent. This follows from the fact that 4Z2 and .z33 depend on at least Xt , and

,X44 on X;. Finally, the last term has to be absent, since it would correspond to a

decoupled structure, for which nSA S n + nsi n 14 corresponding to lowest

order terms 2Xt .

3. The matrix .4 is positive-definite, as can be concluded by direct application of

Sylvester's rule.

4. We observed in section 4.4.1 that on the parameter subspace Wvet, the ambiguity

structure, although separable, leads to a sharper lobe. Comparing the determinant for

the v, sin Ot parameters for the SAMS

det Av, sinOt 22Z33 25

\ 2 3 t 14 R X cos tzx" ) v20 33 5 t Cos 0

with Eq. 80c, we conclude that the last term, which reflects the cross coupling, quanti-

fies the correction to the main lobe dimensions on vet .

5. If we let Xi , cos e, Xt = Xt cos t remain constant while increasing t from

0° (closest approach) to 2 (Fig. 59a), det A4 increases. This is a result of the crossO" (fosst pproch)to 
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Fig. 59. Determinant of 4 dependence on angle t as
a result of cross coupling.

coupling observed in Fig. 59b. As 0t increases but Xt is kept constant, the total

source travel increases, with a larger variation of R(t, ) over the total observation

interval and across the array.

b. Mean-Square Parameter Spread

We discuss briefly the diagonal elements of the inverse matrix X , which measure

the spread of the ambiguity structure along the different parameter axes.

Range Spread: From Appendix D we obtain

4 
-R 1 = (k2rX 32. 5 5 Y

= ')11 2 XTJ 4 1+4 2 + 4'

where y defines the relation between the temporal and spatial effective baselines

ct vT cos 0t

- Xc L cos 0'

i. e., as seen from the oblique angle 0t and bearing 0I .

We consider three cases.

1. Spatial baseline much larger than temporal baseline: If y <<1, we obtain

( ) ( 2 3x5 (X -1)
I cip SASS

Thiis equation shows the range performance approaching the SASS result in Section II;

the range parameter is essentially estimated from the spatial curvature effects observed

across the array.
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2. Comparable spatial and temporal baselines: f y = 1, we have

(1) ( 23Z 2 5 9
(G R) ( 7 X4 25 1)

Cf

Comparing this with Case 1 for y = 1, we have

I 9
-1 14

which shows that the cross coupling reduces the range standard deviation to approxi-

mately 80%.

3. Temporal baseline much larger than spatial baseline: If y >> 1, we get

( 1) ( X )2 22 X 32

Ct Co

Comparing this with the corresponding expression for the SAMSo problem in Sec-

tion Ill, we have

(4) Z 2

(° 1)SAMS
0

where Xt = Xt sin t =2R -sin t.
5 0

We recall that with the SAMSo model the range performance deteriorated sharply

for 0t 0, i.e., for broadside geometry. Equation 123 says when there is a small but

nonzero cross coupling, that as long as

Xt 

< 1,
5

the range performance is sharply improved.

Velocity and sin t Spread: From Appendix D we obtain

j~l (.Z-1 2 32 x 5 cos2t 1+5 + y4
4 = t } 2 ( 27)AR cs2et X2Z t4 (124)

v )2Z _21 2 osO Z 2
R Cos XXi 1 + 4y + 5y

0 ~
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and

sine0

sin = (,l = X-1 (125)

-2 -2
These lowest order terms are in , X representing an improvement of order two

over the decoupled problem performance (recall that for the decoupled structure the

speed and angle performance is essentially given by the SAMS results, whose first non-

zero term is of order X t ). As in the discussion of point 1 for det .I, this represents

the reduction on the order of the estimation problem introduced by the cross coupling.

We note that the relation in Eq. 125 is only for the coefficients of the lowest order terms.

From Eq. 124 we can consider, as we did for the range spread, three cases.

1. Spatial baseline larger than the temporal baseline: We have y << 1 and

2 2 3 X 5 cos (41) = ( ) v - - t

I R cos X X

2. Comparable spatial and temporal baselines: For y =1 we obtain

I ) 7 832

(,;),10 8
(· v JI

3. Temporal baseline much larger than the spatial baseline: If y >> 1, we get

v 1 43

{,X-1A 5
\ v J

These results exhibit the improvement in the speed performance when the geometry

changes from spatially dominant (Case 1) to temporally dominant (Case II).

We can obtain similar relations for sinsin t

Bearing Spread: The lowest order term for the bearing mean-square spread, from

Appendix D, is

-1 1 ) 1 3 2 (126)
( sin 8 - (126)

o I

which is exactly the expression obtained for the decoupled problem.

c. Parameter Error Crosscorrelations

The crosscorrelations between the several parameter errors, and as computed from
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the elements of . , are algebraically complex expressions. We present below approx-
2

imations obtained by Taylor's series expansions on both geometric parameters Xt and
2

X aboutXt = 0 and X = 0.

Range/Speed Crosscorrelation: The first terms of the Taylor's series of the range/

speed crosscorrelation lead to

2 _ 51 2
P .v [ 1 - + (Taylor's series in X) (127)

2 2 4 4 2

P 5Y 2 - 2 5y4 + ... (Taylor's series in Xt), (128)
PR ,v t

o

where

vT cos t

Y L cos 0 

We note in Eq. 127 that for very large y the range and the velocity parameters are

perfectly correlated. This is in accordance with our previous results because for

large y the temporal diversity dominates the sprtial diversity. Furthermore, for

X small the spatial curvature is negligible, and the SAMS problem is decoupled on its

spatial and temporal aspects, having as net effect that the lowest order term in det J

becomes of order 14 and not 12.

Equation 128 states that for a significant spatial diversity (y<< 1) the range and veloc-

ity parameter errors are relatively uncoupled, the range being estimated from the spa-

tial diversity and the speed from the temporal modulations.

We now study the range/speed crosscorrelation for special configurations of prac-

tical interest.

1. Let the spatial/temporal geometry be symmetric and parallel as illustrated in

Fig. 60.

fT

VT Fig. 60.

Spatial/temporal symmetric and parallel
configuration.

L L x
2 2

Then cos = cos t' X = Xt, and the range/speed crosscorrelation becomes

R ,v 9 
0
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2. We study the cresscorrelation PR v as a function of the bearing angle. We con-
O

sider a specific geometric configuration, the symmetric closest approach with cos t = 1

and Xt = Xt (Fig. 61a), as it changes from broadside (= 0) to end-fire ( t = 2) config-

uration.

4 + 20 cos 0£ + 25 cos 

0 4cost=l 4 + 25 cos 0 + 29 cos O + 5 cos 8

t=tX =X t

This function is represented graphically in Fig. 61b. We note that at end-fire (cos 0[ - 0)

condition the errors on the range and the speed parameters are perfectly correlated, and

I

et - 0

_T CLOSEST OBLIQUE 
a2 zAPPROACH

K i \i i T
'I- .' 

L L
-T i | x O CI

(a) (b)

Fig. 61. (a) SAMS geometry (closest approach).
(b) Range/velocity crosscorrelation vs

cos 0 (closest approach).

this correlation decreases monotonically to the minimum 3 0. 88347583 at the broad-

side (cos = 0) condition.

3. In Fig. 62b we study PR v as a function of the spatial geometric parameter

L
X = 0R for the parallel geometry cos 0 = cos t displayed in Fig. 6 2a, when Xt = .1.

o

-I

-T T
2 1 2

I / 083

! ° ]; ,T VT
x, 0.1 0

0-49
L L x 0.05 0.5

2 2 t

(a) (b)

Fig. 62. (a) SAMS parallel geometry.
(b) Range/velocity crosscorrelation vs

Xl (parallel).
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Under these conditions

2 + 0OX + 125OX4

Rov Z + 125x2 + 145O0X +250X

We note that this expression is valid for all 06 or 0t , as long as the geometry remains

parallel. From Fig. 62a we see that as X increases the crosscorrelation error

decreases monotonically.

Range sin 0t Crosscorrelation: Remarks and results are equivalent to the preceding

ones.

Range, Velocity, or sin Ot, and sin 8O Crosscorrelation: For the crosscorrelation
2between R ,v or sin Ot, and sin 80 we obtain essentially i sin e f(Xt) Xt , where f(Xt)

is a certain function of Xt , cos Ot, cos O . The important thing to note in this equation

is the homogeneous behavior on X expressing the fact that for small X the errors

between sin t and the remaining parameters are practically uncorrelated.

Velocity-sine t Crosscorrelation: We have P sine -1 + aX i.e., in order to

uncouple the estimates, we require some finite, nonzero, observation interval (equiv-

alently, and more intuitively, in order to estimate speed v and sin 0 t , we need to

observe these motions).

For the special case of a symmetric and parallel geometry, i.e., for Xt = Xl, cos 0 =

cos 0i, a Taylor' s series expansion leads to

sin + 28

Pv, sint - 1 + + 891 sin - 465 cos sin X.

We present this expression as an illustration of the complicated algebraic form that these

crosscorrelations take.

4.5 SUMMARY

We have considered positiolning/navigation problems, when both spatial and temporal

diversity are present. After a brief description of the model and receiver, we pursued

two main classes of problems. The first was characterized by the dominance of the tem-

poral over the spatial baseline. It was shown that this dominance leads to a decoupled

processing structure, with the receiver estimating the bearing angle from the spatial

delays, and the remaining source/receiver parameters from the temporal diversity. The

SAMS reduced to the direct sum" of a SAMS o, and a time-variant bearing angle esti-

mation. We derived an expression for the required number of beam steering updates,

and expressed the mean-square error performance in terms of the SAMSo results. In

the second class we assumed a balanced geometry; that is, that the spatial and temporal
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diversity parameters X and Xt are of comparable size. This leads to a coupled

receiving structure. The cro' s-coupling term was isolated and an expression was

derived. Its effects were analyzed for several limiting geometries and along special

subspaces of the parameter space 2. We concluded that the cross coupling represented

a nontrivial improvement, with a decrease of two on the order of the overall problem.

Recall that this order is twice the sum of the lowest orders of the modulation effects that

have to be measured in order to obtain a globally identifiable parameter estimation prob-

lem, and that it is also given by the order of the lowest order nonzero term of det X.

For both problems we derived expressions for the ambiguity structure and for the

mean-square spread matrix, from which the local and global performance bounds can

be computed.
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Part II. Applications to Positioning and Navigation

V. HYBRID ALGORITHM: A PRACTICAL SOLUTION

TO PASSIVE TRACKING

We now explore important issues arising in the design of practical systems for pas-

sive tracking. There are three principal issues.

1. Global identifiability of the source/receiver relative parameters.

2. Mirimization of the involved computational effort.

3. Sensitivity of the actual processing to model perturbations.

As we shall see, the first and second points motivate a practical integrated solution

which is referred to as the hybrid algorithm having three steps.

1. Global acquisition via ML techniques.

2. Tracking of the local dynamics by a recursive linearized structure.

3. Reacquisition every T. second.

We shall discuss the design and expected performance of each block of the hybrid

algorithm, the sensitivity of the ML global acquisition to modeling assumptions, obtain

the overall receiver mean-square performance, and finally, integrate the analysis in

terms of four characteristic regions of behavior for the hybrid algorithm.

5. 1 HYBRID ALGORITHM

The proposed procedure is illustrated in the context of the decoupled SAMS where

the available spatial baseline is much smaller than the one synthesized by the source

travel. The bearing angle is estimated from the spatial diversity and the remaining

parameters are observed from the temporal diversity, with SAMS equivalent to a pas-

sive bearing measurement decoupled from a SAMSo problem. We concentrate on the

latter where only the time dependence arises.

Under narrow-band and linear constraints, passive tracking reduces to a phase

demodulation. The phase of the received waveform signal component is

2frft + N(t) o- 2ft - + 2'rfT(t), (130)

R(t)
where T(t) C is the observed delay and 4' is the absolute phase reference for the

incoherent model. Note that 4(t), as given by Eq. 130, represents the total phase mod-

ulation shown in Fig. 63 and not its modulo 2 version.

From either Eq. 130 or Fig. 63 we obtain

Ret) X ZrA(t)= 2X q(t)-],t AO~t) 01,

where Xf = c, and Ac'(t) represents the total, integrated, absolute phase variation. From

Fig. 63 we also write
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(131a)

with

(131b)-R(O) t- A](O)

AR(t) = R(u) du= 2r [A(t - A(O) = [(t) - 4(o)I.Zir~~~~~- [q)- ~()] (132)

Equations 131b and 132 suggest that the range estimation be performed in two steps.

The first acquires globally the source/receiver separation R(O) at a particular time

+ (1)
Fig. 63.

Absolute phase evolution.

2: R (O) [+0)- ]l(O) 1I

o ..

reference t = 0; the second tracks the instantaneous phase variation, in order to obtain

the range increment. The corresponding receiver structure is presented in Fig. 64,

and is referred to as the hybrid algorithm.

The hybrid algorithm represents a compromise between two conflicting requirements,

observability of the parameters and computational effort. The upper block in Fig. 64

accomplishes the global identifiability but is nonrecursive; the lower block is recursive

but tracks only the local dynamics.

R(O)
GULBAL ACUISITION W 

DATA

AR(t)

Fig. 64.

Global Acquisition/Tracking hybrid algorithm.

Subsequently we shall explore the design of both blocks, and their sensitivity to the

geometry, to the statistical parameters, and to the model assumptions.
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5.2. GOBAL ACQUISITION

In active radar systems and in certain coherent and synchronized passive navigation

systems (o0=0 in Eq. 131b) global ranging is achieved from a direct measurement of

travel times. From Eq. 131b,

R(0) = 2 (O) = ( ) C, (133)

where T(O) is the delay estimate. Equation 133 shows that ranging with coherent and

synchronized clocks is based on absolute phase measurements. They may require, how-

ever, sophisticated and expensive equipment; and more important from a conceptual

viewpoint, they assume an unrealistic model for many practical situations.

We have introduced an incoherent and asynchronous phase model. The absence of

receiver/transmitter synchronism precludes global range estimation techniques based

on absolute travel time measurements. By imposing motion constraints, we have been

able to develop an inherently nonlinear receiver structure that achieves basically global

acquisition, by estimating the higher order spatial/temporal modulations induced on

the signal.

In this context the upper block of Fig. 64 is the nonlinear ML processor previously

derived where the influence of the geometry and other statistical parameters on the

receiver structure and performance have been analyzed.

There are two other points demanding further study.

1. The ML receiver requires a nonrecursive multidimensional stochastic maximi-

zation, which makes it impractical for tracking the changing geometry continuously. To

alleviate the associated computational effort, we shall inveL:tigate recursive structures

for the hybrid algorithm phase tracker block.

2. The ML receiver is sensitive to variations in the source travel, because of the

underlying assumption of a deterministic constant speed path. We assume that the path

perturbations are random accelerations. Because this more general model is used to

design the phase tracker, -we postpone discussion of the sensitivity issue.

5.3 PHASE TRACKER

Once the ML receiver has acquired the source, the range time update can be accom-

plished as given by Eq. 132, by measuring the range differences from the Doppler

effects. This may be achieved with a digital Doppler counter, or with any other phase-

estimation structure. We have previously 2 0 used linearizing arguments to derive

recursive filters based on extended Kalman-Bucy (EKB) techniques.

5. 3. 1 Model for Random Acceleration Motions

The model that we have used 21 incorporates more realistic relative dynamic

assumptions than those that we have assumed thus far. Specifically, they are described
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by a set of finite-dimensional, nonlinear, stochastic differential equations, modeling a

nominal constant-speed linear path perturbed by random accelerations. In the state-

variable framework the model can be described as follows.

Dynamical System

dX(t) = f(X(t)) dt + g(X(t)) du(t) (134a)

= F o iX(t) dt+ gR du(t) (134b)

L FLgo J

with

=XL I; R = F=0 J0j (134c)

r ; ge=[o0 ]; du(t) = dut) (134d)

sin 0 cosej Lcos -sinJ Lduy(t)

Equations 134 are to be interpreted in the Ito integral sense. We note, however, that

the Wong-Zakai correction term20 is zero for the specific g(X(t)) in Eq. 134d.

The observations are narrow-band and corrupted by an additive white Gaussian

noise

dr(t) = h(X(t)) dt + dw(t) (135a)

with

Lcos (tj)]

y(t, Z) = - [R(t) - sin 0(t)] + (t). (135c)

The phase drift process (t) is generated by a finite-dimensional system uncoupled

from the state process, and it is independent of u(t) and w(t). The driving du(t) and the

disturbance dw(t) are stochastic independent, Gaussian white noise with spectral
N

matrices Q I and -2 I, respectively, where I is the 2 X 2 identity matrix. We assume

that the power level associated with the process (t) is much smaller than Q and No/2.

5. 3. 2 Linearized Mathematical Equivalent to the Extended

Kalman-Bucy Filter (EKB)

Several linear approximations to the infinite-dimensional optimal filter have been
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studied prevrcusi. z TU'nder the assumptions on (t), since the portion of the linearized

receiver associated v;ith the phase drift (t) may be decoupled from the remaining part

of the filter. we ignore it in the sequel.
20

We limit ou:l attention to a brief discussion of the EEKB. It can be shown that the

EKB is matiterratcall; equivalent to two bearing beam form operations, which are the

inputs to phasse-lockcd loops tracking the bearing and range waveforms. Under linear-

izing assurrtions ,:n he receiver behavior, and for a centered geometry, these loops

>V

(a)
a= cos (pAb I)

B =Z Pi sn ( pAbl)
.AilK UkAfI111 ATCn PV

b,= WC (sin xsin 3)

{b3= C ( x,-s )3 c

{0}= Os 0,wc - sin O ws

p co s
X3

BEARING CHANNEL

cosAb 3

MODULATION BY
THE DIFFERENCE (x - ,)

(b)

Fig. 65. (a) EKB mathematical model (polar coordinates).
(b) EKB decoupled structure.
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IL.. -. . ILI_ I- I - U.....L: -....... is 
ai-e uCouvpltu. I tut'-eulg :,l -ei_- J , dS - . I.UU. V il ig . 65a, which is

rearranged in F ig. 65b.

RELMARK. Figure 65 is taken from our previous work 2 0 where the discrete-time,

discrete-array version of the continuous-time, continuous-array waveform tracking

problem described above is implemented. The quantity T in the diagrams, which is

associated with the (continuous-time, discrete-array) signal-to-noise ratio ZP/N o , is

a normalizing factor relating it to the (discrete-time, discrete-array) signal-to-noise

ratio. Other quantities in Fig. 65 are the following.

P = error covariance elements, given by an EKB Riccati equation.

Pi' i = 1,...,N, gives the location of the array elements.

Wl, W3, = equivalent noise terms.

Z I, Z3 = range and bearing beams.

Under a small error assumption,

CGS{ Ax (sin 0(t) - sin 0(t)) = 1,
J

and neglecting P1 3 as compared with P11 and P 1 2 (as previously 0), we can further rear-

range the range channel of Fig. 65b in the decoupled loop shown in Fig. 66, with the

gains

G' = SNR L (13 6 a)

2
a(t) = (0(t)) . (136b)

Wl
'

-N(O, I/G)

Fig. 66. Mathematical equivalent for signal source channel
and EKB range loop.

5. 3. 3 Linearized Decoupled Range Loop

Under linearizing assumptions, the range phase tracking can be described by the

following decoupled problem.
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Dynamical System

dx(t) = FRX(t) dt + gR(X(t)) du(t)

with

FR ° 0 1 ;

a(t) 0

X(t)= t);

LR(t)

Observation Process

dr(t) = h(X(t)) dt + dw(t)

h(X(t)) = 2PL sin [T R(t)I

LcOs R(tj

The "steady-state" solution for the EKB covariance Riccati equation applied to the

decoupled problem given by Eqs. 137 leads to

(2P1· :-_ (138a
el =I- ~ 

P22 - (H 1 P 1 2 -a) 2P1 1/2 (138b)

P

- a a I ]

where H1 is an equivalent signal energy-to-noise ratio

H = k-) -L_
0

Note that in Eq. 138d the "modulation index"

P = ( ) 

(138c)

(138d)

(138e)

Since

a(t) = (t) T v
|R(T C,

(13 9a)<< 1,
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(137b)

(137c)
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where v is he source nominal speed, and R(T o) is the source/receiver separation at

the point of closest approach, for a strong signal energy-to-noise ratio assumption

QH 1
>?1. (139b)

a(t)2

Equations 138 can be approximated by

_- 1 1/4P - (QH )/2 (139c)

P1 H1 1/4 (139d)

2Q
P 29 = - (139e)

(QH 1/4(4QH 1 )

Equations 138 and 139 express the filter gains of Fig. 66 in terms of the nominal

geometry and statistical parameters, and can be precomputed. In the subsequent anal-

ysis, for economy of notation, we shall work with Eqs. 139. If condition (139b) is not

satisfied, the results remain valid, as long as we use the more correct Eqs. 138.

Figure 67 represents a rearrangement of Fig. 66 and shows a block diagram for the

steady-state configuration of the EKB decoupled range loop.

W"
'

N(O,I/H,)

1<_.__- 4
~~~R~~~~~~~~t)~(b)

(a) (b)

Fig. 67. EKB decoupled range loop.
(a) Phase-locked range loop.
(b) F(s) diagram.

a. Steady-State Loop Parameters

Figure 67 has the structure of a second-order phase-locked loop with filter

F(s) k(l +-), (140a)

where

k= (2) SNR L P1 (140b)

110



P
b p (140c)

11

The EKB range channel performs like a second-order phase-locked loop tracking the

waveform O(t) = R(t).

Using the steady-state error covariance values (Eqs. 139) the filter gain is

1/4
k = (4QH 1 ) (141a)

and

b 4 ) . (141b)

Important parameters are the noise bandwidth B L and the signal-to-noise ratio a in

the bandwidth loop (see Van Trees24). For the second-order filter under consideration

B = k + b = 3 4QH 1/4 (141c)
L 4 + b_ 

(SNR)eq H

BL (H1/4 (141d)

1(4QH 1)

In terms of the noise bandwidth loop we rewrite Eqs. 139:

8 BL
~~~~~~~P - I~~~~~~~~~~(141e)

.3 Q

P22 3B 4 BL(141f)

Equations 141e and 141f are intuitively satisfying expressions. They say that in the

steady state, the mean-square error on the range increment increases with the loop

bandwidth (more noise is allowed in the system), and decreases with the equivalent sig-

nal energy-to-noise ratio H i . Also, the mean-square error on the range phase rate

decreases with the loop bandwidth BL (for larger BL the loop inertia decreases) and

increases with the driving noise power level Q.

5.3.4 Extended Kalman-Bucy Filter (EKB) Linearized Performance

vs Maximum-Likelihood (ML) Performance

Equation 141e contrasts with the Cramer-Rao performance bound derived in Sec-

tion m for the incoherent parametrized model
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2 ! 5 x7 1
n H 2T~ 4 (14Z)

Rloc HIT 2 sin0 cos t X (142)

vT
where the geometric parameter Xt - 2R The conceptual difference is that the ML

algorithm acquires the range estimation from the modulations induced on the signal

structure, while the EKB achieves only the range local tuning. The EKB is not globally

observable, exhibiting "lock-in" points separated by wavelength on the range param-

eter axis, as observed experimentally 2 0 and illustrated in Fig. 68. The EKB assumes

Ro - X Ro Ro+ XR R-X R 0R +X
...- .· I -------O------

-2 R+ 2

Fig. 68. EKB range "lock-in" points.

that its a priori range estimate R(O) satisfies

R(O) - < R(O) < R(O) + - . (143)

When

(N -2) R(O) - R(0) < (N +) x (144)

for N * 0, the original global offset ( NX) is not resolved by the EKB, which simply

integrates the linear effects.

The global acquisition sensitivity to the random modulations and, in particular, the

validity of Eq. 142 will be analyzed in section 5. 4.

a. EKB Simulation Results

Simulation results have shown that the error covariance propagated by the

EKB Riccati equation predicts the filter performance correctly in the linear region.

Figure 69 shows2 1 representative runs for the four-dimensional problem of Eqs. 134.

In particular, Fig. 69b illustrates the range and range rate standard deviations,

indicated by s(l) and s(2), computed via Monte Carlo simulations. The curve for

s(f) indicates that as long as the filter is started within the right range X-cell, the

filter range error standard deviation converges to the filter's predicted value. The

curve for s(2) illustrates the filter's insensitivity to large initial errors on the range

rate parameter.

5. 3. 5 Extended Kalman-Bucy Filter (EKB) Nonlinear Behavior

Because of the presence of noise, the actual range phase error at the output of the

phase-locked loop (Fig. 67) undergoes diffusion that results in the so-called cycle skip-

ping phenomena studied in conjunction with the nonlinear behavior of phase-locked loops.
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The range increment error process at the EKB output can be decomposed as

lREKB(t) R(t) + XJR(t), (145)

where ER(t) (ERKB(t)) (modk) is the error associated with the EKB range loop, when-

ever the loop performs in its linear region; JR(t) is the counting process accumulating

the number of cycles skipped by the loop in [0, t]. This error decomposition is illus-

trated in Fig. 70 where we assumed that the filter was originally started within the right

X-cell.

EK
AER(t)

JR( t) 2)

2

Fig. 70.

Cycle skipping phenomena.

JR(t) has been described by Lindsey and others,4 3 ' on the basis of experimental
45, 46

evidence, as a Poisson process, with the rez:ulting approximate probabilistic

structure for the range phase jumping

(J Rt exp(-JRO
Pr {JR(t) = exp(-R t) (146)

j!

JR represents the total average number of phase jumps per unit time, and is usually
referred to as the frequency of skipping cycles. Exact analytical results for JR are

extremely hard to obtain for higher order loops, with or without modulation. A good

approximation for the high SNR case, however, can be worked out.4 7 The resulting

expression is equivalent to that for the first-order loop, with the parameters depending

on the system dynamics obtained with sufficient accuracy from the linearized model

of the phase-locked loop structure. The analysis 4 7 has received good experimental

confirmation for a second-order loop.4 5

For the loop shown in Fig. 67 we obtain

2B

JR = frequency of cycle skipping Z (147(a) 

For a >> 1 it can be approximated by

4 BL -(
R ' e (147b)

JR =
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In Eqs. 147 I(a) is a modified Bessel function of the first kind. Substituting Eqs. 141c

and 141d in Eqs. 147a and 47b yields

R 16 (i)l (I (a))-Z 3 (QH 1 ) /4exp(-Za).
large Ir I

The average time between cycle skips is given by the inverse of the frequency to skip

a cycle

Tskp =(JR) (148b)

For the EKB range phase-locked loop with bandwidth and signal-to-noise ratio in the

bandwidth loop given by Eqs. 141, in Fig. 71 we represent the average time between

cycle skips Tskp as a function of SNR at the receiver site for several values of the spec-

tral driving noise power level Q, and for wavelength X = 50 ft and array length L = 250 ft.

Fig 71.

Average cycle skipping time vs signal-to-noise
ratio for several values of Q.

-20 -I0 0

SR (dB)

We note that for large SNR the curves approach an exponential behavior, and the cycle

skipping phenomena will not be an issue in most applications. For smaller SNR, and

as Q increases, the larger bandwidth causes the loop to skip cycles at a much higher
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rate, with the curves approaching zero as SNR - 0 or Q - c

The mean-square error associated with the EKB phase tracker can be computed from

Eq. 145. We assume

H1: In the steady state the two types of errors ER and kJR (t) in Eq. 145 are sta-

tistically independent. (This is a common assumption. 4 5 ) We have in the steady

state

E(EKB(t)) P 1 1 + X (JRt). (149)

Equation 149 shows that the EKB error variance grows without bound with t. It jus-

tifies the third step of the hybrid algorithm, reacquisition every Ti second.

Finally, the probability k .p of the loop loosing lock in the interval [0, t] is

sk p Pr (JR(t) > 1) 1 - exp(-J Rt). (150a)

For large signal-to-noise ratio and reasonable t, using Eq. 147b, we obtain

4 BLt _ b
I n skp - l T (150b)

=-2a. (150c)

5.4. SENSITIVITY OF ML GLOBAL ACQUISITION TO PATH PERTURBATIONS

In the error performance analysis of the ML global acquisition algorithm a deter-

ministic constant-speed linear path was assumed. We now investigate the sensitivity of

this analysis to random path perturbations, by using the state-variable model.

The range function is decomposed as

R(t) = Rd(t) + Rn(t),

where

Rd(t) = deterministic component, parametrized by the source parameter vector

Rn(t) = noisy component, caused by random perturbations of the nominal source
course.

Working with the decoupled description of Eqs. 137, we have

Rd(t) ' a(t) Rd(t) + gud(t)

Rn(t) a(t) Rn(t) + gun(t)

R(t) - a(t) R(t) + gu(t),

where u(t) = ud(t) + un(t) = Un(t).
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Under the assumption that at the starting point Ti the noisy component is zero, the

second-order statistics of R(t) are ER(t) = Rd(t) and Cov (R(t)) = Z1 1 (t). Defining
R(tR(t) d R

R(t) = Cov ~) A , we obtain the usual propagation equation

d ()FT g T
dt ZR(t) = R(t) FRZR(t) + ZR(t) F R + IgI (151)

where FR and gR are given in Eqs. 134 and 137. Equation 151 can be integrated.
2

Neglecting higher order terms in a (t), which is consistent with a second-order approx-

imation in Xt , we obtain

3

Z 1R(T) _ 3 +(152)

where, for simplification, we assume at the starting point t = T i that ZR(Ti) = O. Using

the nominal bound on a(t) given by Eq. 139a, we have

T3QF 4X 1
11 R

( ) 3 L+ -

where, as before, Xt = 2. We give the following definition.
o

Definition 5. Root-Mean-Square Range Error Caused by Path Variations

9 {Ho 11RZ (t) dt}

To shorten the notation, we refer to ':R more simply as the rms range path vari-
ation. After substitution

[/2 +'·; t(1I 53a)
/2: = / 12 30 /

and for small Xt this leads to

QT 1 T=/2 (153b)

This quantity is represented in Fig. 72 as a function of the acquisition time T and for

several values of Q.
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Fig. 72.

Root-mean-square range path variation vs
acquisition time with Q as parameter.

10 10t
2

Io

T (sec)

Notation

In the sequel we let

2 gT3
;R (1 ;1/2 R 1 Q (153c)

and refer to it as the mean-square range path variation.

The total range error at the output of the ML processor can be written

EML = d + gn
R R R'

d
where ER = error induced on the ML algorithm by the additive measurement noise, after

R ~n
an acquisition time Tacq; E R = error induced on the ML receiver by the path random

perturbations. We assume

H2: The additive measurement noise and the path random accelerations are uncor-

related.

We have

FR E E( (Ed + E(E R (154a)

2
O aR + ZR' ( 54b)

0 tot

2
where aR is the mean-square error associated with the ML deterministic linear

°tot
path analysis of the preceding sections, and ZR is the mean-square range path variation

given by Eq. 153c.
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2In Fig. 73 we represent the range mean-square-error performance 0-R at the

output of the ML processor as a function of the total acquisition time Tacq. The

2
Roi

O-2
Ro rain

Trax Tacq

Fig. 73. Decomposition of the mean-square error at the
ML processor output.

main consequence of the path perturbations, as illustrated by Fig. 73, is the existence

of a maximum acquisition time Tmax, or equivalently of a minimum mean-square error
2

aR' ; beyond Tmax the path random acceleration effects dominate, and the ML
o min 2

performance deteriorates. We should note that R decreases as the signal-to-noise
o min

ratio increases, while Tmax decreases when either signal-to-noise ratio or the driving

noise level, Q, increases.

5.5 HYBRID ALGORITHM ERROR ANALYSIS

Synthesizing our error analysis, we decompose the range error at the output of the

hybrid algorithm as

ML EKE
ER(t) R(t) - R(t) N M L + R KB(t) (155)

where NMLk = [EMLJ = total error offset in integer number of wavelengths resulting
EKB

from the global acquisition step of the hybrid algorithm, and ER (t) = error associated

with the EKB phase tracker. Besides hypotheses H1 and H2 we further assume

H3: The steady-state behavior of the EKB phase tracker is independent of the ML

estimator output.

H3 formalizes in the model the phase-locked loop structure insensitivity to the abso-

lute phase reference.

Under HI, HZ, and H3, the mean-square error at the output of the hybrid algorithm,

from Eq. 155, is
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E(E R(t)) u1 + 2 (JRt)

E(E(t) ( ) (NPI + (RtRLJ (jRt)'

E(ER(t)) r= 
0 tot

+ R + X2(Rt),
0

ML 2 z
if E(ER L) > ()

if (E\L)2> (Xj

if E( ML >
(X)2

5. 6 REGIONS CA EHAVIOR FOR THE HYBRID ALGORITHM

We have now carried out in detail the error analysis at the output of the two blocks

of the hybrid algorithm. Besides the error analysis associated independently with each

one, the hybrid structure raised some additional points as follows.

1. A maximum acquisition time Tmax determining the minimum attainable ML

mean-square-error performance, as illustrated in Fig. 73, which is imposed by the

errors induced on the global acquisition by the path variations.

2. A maximum usable time for the EKB recursive structure, determined by the

average time Tskp for the occurrence of a cycle skip.

3. Suitable statistical independence assumptions on the errors, H, H2, and H3,

which lead to the mean-square-error approximation given by Eqs. 156.

Integrating, we distinguish 4 regions of behavior for the hybrid algorithm, which

are summarized in Table 1. Figure 74 illustrates these regions for three signal-to-

noise ratio parameter values, by sketching the range mean-square-error performance

Table 1. Regions of behavior for hybrid algorithm.

,:(EML HA
Region Tacq T ( ) Mean-Square Remarks

Error

I. Tracking 2 EKB saves computa-
within Eq. 156a tional effort and deter-
Phase mines final HA mean-

square error

>T
II. Tracking Tm acq Eq. 156b EKB saves computa-

within max > or tional effort; ML
Geometry 156c determines final HA

mean-square error

II. Acquisition T cqEq. 156c EKB not used for
significant time

IV. Large >T System has to be
Errors max redesigned (e. g.,

larger SNR)
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as a function of acquisition time. Later we shall quantify them exactly in the context

of specific applications.

SNRn

REGION Un , 

aY /

REGfo4IV

REGI I

T. I i 

lawq T) Fig. 74.
(0)

Typical regions of behavior for the hybrid
i

z:

4
v

algorithm: (a) Regions I, II, IV; (b) Region Il.

SkRm

: REGcOm :,- ZR

Tm Tom T.m

Tocq Sc)

(b)

Region IV, Large Errors" (Fig. 74a), represents an underdesigned system, with

the acquisition errors exceeding the required accuracy. In the other three regions, the

path variations are not fundamental constraints. In Region III, "Acquisition" (Fig. 74b),

the average time for cycle skip is smaller or of the order of the required acquisition

time, so that no recursive tracking is accomplished, and the hybrid algorithm just

achieves the global acquisition step. In Regions I and II, the phase, and thus the range

increments, may be recursively tracked via the EKB, with a corresponding saving in

the associated computational effort. But only in Region I, "Tracking within the Phase,"

curve SNRI (Fig. 74a), does the hybrid algorithm performance attain the EKB accuracy.

In Region II, Tracking within the Geometry," curve SNR. (Fig. 74a), the acquisition

errors are larger than half the wavelength, so that the original offset in wavelengths

acts as a bias at the output of the EKB and of the hybrid algorithm.

We do not want to accumulate range errors Prising from cycle skipping phenomena;

hence, a practical strategy for the hybrid algorithm in Regions I and II is indicated in

Fig. 75. It has the following steps.

1. Global acquisition with the ML processor.

121



2. Initialize the linearized recursive structure with the estimates resulting from

step 1.

3. Reacquisition every Tskp second with the nonlinear ML filter. At this stage the

current EKB estimates and the associated variance errors are used to determine which

parameter region of interest is to be scanned.

D

T GLOA ACISITION LINARZED ElIM V SOULCE

ML ALGORITtH IMI1 (DOPPLER INTEAAT ) 

FEEDBACK PIOI ESnTMAE FOR NEXT LWATE

Fig. 75. Hybrid algorithm.

For Region III the hybrid algorithm reduces to the global acquisition step with the

nonlinear ML algorithm.
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VI. APPLICATIONS TO NAVIGATION AND POSITIONING

We shall r - -- apply the passive tracking theory that we have developed to problems
drawn from practical situations. We consider distinct underlying physical environments

(underwater and free space), and illustrate the applicability of the theory to different geo-

metric and statistical conditions.

For each application the fundamental phenomena are considered and cast in the

framework of one of the passive tracking classes that we have considered. We choose

a nominal range of values, based on physical considerations, and discuss the tradeoffs

among the geometry, the statistical parameters, and the desirable accuracies.

First, we study two passive positioning problems, and then show how navigation can

be cast in the context of passive tracking by exploiting its dualism to positioning. We

discuss the significant novel issue of discretization arising in the latter application.

Finally, we present Monte Carlo simulation results for the ML acquisition step of the

hybrid algorithm.

6.1 AIR TRAFFIC CONTROL PRECISION LANDING

6.1.1 Problem Description

There is a need for improved accuracy in locating a plane in three-dimensional space

as it approaches landing. The airport control tower must decide whether the plane is

following a nominal path leading to a safe landing. If not, it declares a missed approach,

and the plane is directed to circle the airport to prepare for a new approach. An impor-

tant source of location error derives from altitude and speed measurements, which may
be affected by large inaccuracies. Very high structures cannot be used on an airport

surface, and active systems may produce unacceptable interference problems. We shall
investigate the feasibility of a precision landing monitor involving passive measurements

of aircraft position by ground sensors.

Figure 76 shows plan and side views for ideal landing geometry. At the left of both
views is the runway, which is approached by the plane from the right. The aircraft

PLANE PATH --

3W.WAY , " -- - -

PASSVE OUTER MARK

(a) (b)

Fig. 76. Landing geometry: (a) plan view, (b) side view.
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course may be given by an azimuth a and an elevation angle , both usually between 3°

and 60. To make a safe landing, the plane must follow a certain nominal path, defined

at different ranges by shrinking cylindrical volumes V1, V, ... (see circular sections

on the plan view and vertical sections on the side view) that measure the allowable error

in the aricraft position. At the threshold of the runway the plane's position should be

known with a very small residual error.

It is assumed that there are passive antennas along the landing path monitoring

narrow-band signals such as a single tone modulated by some coding for identification

purposes transmitted from the aircraft. In order to avoid end-fire configurations, which

lead to a considerable loss of performance, the passive structures are not placed at the

end of the runway but are mounted along the approach path before the threshold of the

runway, as indicated by outer marks M1 and M 2 in Fig. 76a. The passive location prob-

lem is to position the plane with respect to these outriggers. In a particular application

it may be necessary to have several pairs of marks, placed along the landing path.

Although in the half three-dimensional space a single passive receiving element, for

example, MII1 , locates the airplane only up to the intersection of a half cone and a half

sphere (see Fig. 77), we shall consider only the simpler problem of a planar geometry.

T T
- V

II L xAIRPLANE

. : PATH

PASSIVE ARRAY

L L x

Fig. 77. Fig. 78.

Three-dimensional ambiguity associated Precision landing geometry.
with single linear array.

The idealized version of this precision landing problem is sketched in Fig. 78. The

aircraft position and dynamics are parametrized by the range R o , the speed v with

respect to the ground, and the two viewing angles 0 and Ot .

6.1.2 Hybrid Algorithm

a. Model

The hybrid algorithm achieves two main tasks, global acquisition, followed by local

tracking and integration of the dynamics. For the global acquisition step we model the

parameter vector A = [RO v t 0 ]T as nonrandom, unknown. For the linearized part

of the hybrid algorithm, the dynamics is assumed to be described by a finite-

dimensional system of stochastic differential equations (Eqs. 134).
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Inside the plane, a crystal radiates a single tone at frequency f that is observed to

be corrupted by additive, white, Gaussian noise. Because of the lack of synchronization,

the phase of the received signal has a uniformly distributed random variable component.

With these assumptions on the radiated signal and those or, vector A, the global acquisi-

tion step of the hybrid algorithm fits the stationary array /moving socrce (SAMS) general

model. Accordingly, we shall use the appropriate results on the ML receiver's struc-

ture and performance.

b. Nominal Parameter Values

For a jet plane in an airport traffic area, the altitude is below 104 ft, and the speed

is required to be below maximum, taken here as approximately 200 knots. The speed

measurement with respect to the ground may be in great error (depending on air circu-

lation, wind speed, etc.h; knowledge of the altitude may also be considerably inaccurate.

In air traffic control the frequencies used are in the VHF or L-band. These considera-

tions lead to the choice of numerical values indicated in Table 2.

Table 2. Numerical values for precision landing.

f = 1 GHz, X = 1 ft

R 104 ft (typically 6000 ft)
0

v < 200 knots = 337 ft/sec (typically 300 ft/sec)

6t = 15°; 6 = 15°

AMY - 80 ft/sec

AM sin 6t = 1

R

AMR o 0

L = 30 ft, T = 8 sec (typical value), Xt = .2

In Table 2 we have used the notation in Sections II-IV. In particular, we recall that

AMAi stands for the a priori uncertainty on the parameter A i.

c. Review of ML Performance Results

For an aircraft speed of 300 ft/sec and an observation interval larger than 1 sec, the

temporal baseline is much larger than the spatial baseline. That is,

TY > 10 >> 1.L

In accordance with Section IV, the spatial/temporal ML receiver is practically decoupled.
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with the reduced parameter Ao = [Ro v sin t ] T being estimated from the temporal diver-

sity and the bearing sin Ol from the spatial diversity. The performance analysis reduces

to the corresponding analysis for SAMSo and bearing estimation.

In order to concentrate on the basic aspects of the problem, we restrict the discus-

sion mainly to tradeoffs and demands imposea by the range accuracy requirements on

the geometric and statistical parameters. In particular, for the resulting signal-to-

noise ratio values the attainable accuracies on the speed v, the bearing O, and the

inclination Ot are well within the desirable limits.

The mean-square performance at the output of the ML processing block of the hybrid

algorithm (Eqs. 52) for parameter A. is
J

2 = 2 2 57a)
totA loCA. giA'j

J 3 .t

with

2a = 2 CR [1-Pr() ] (157b

A. A.
J J

and

2 (AMA )2
0a' 6 Pr(e), ( 157c)
glA 6

where CR is the Cramer-Rao bound, and Pr () is the probability of a decision error.

For the large signal energy-to-noise ratio case (Eq. 50)

1 1
Pr () In 2n + '

where M is the total number of grid cells in the first step of the ML algorithm.

For the decoupled SAMS problem, and whenever Xt = vT/2Ro < 1 we have the analyt-

ical expressions

\y- / R A AMR oVAMl sin t (2~l3 R 2 2 sin t co t 6 t X (
AX 52 (det ) _ R-V sin s (19a)

k 8 ( X v 3 Xt ( 158a)
3 x 5 x 105

x 5'1 1
R Gain 2 2 3 (158b)

°CR sin t COS t Xt

5 7 v 1
aCR = Ga 2 R in sbt X (158c)

t

sine 4Z7 T2 R3' (158d)
LCsin 0t 2 R 3CR o Xt
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where

N I 1 /
aGain = + Po 1

- 2r 

1

422 1/2
P n b

N LT)N

For the high signal energy-to-noise ratio

Gain 1
2' SNR LT

where SNR represents the effective signal-to-noise ratio at the receiver site, i.e.,

Pn 2
SNR = N 2b

0

6.1.3 ML System Curves

Unless otherwise stated, in the subsequent set of figures,

values listed in Table 2.

Figure 79: Study of range accuracy vs SNR for two values of

Xt -= R - .1; .2, and the a priori range uncertainty AMR =

NOTE.

we assume the nominal

the geometric parameter

500 ft; 103 ft.

1. The curves for the local (Cramer-Rao bounds) loc , global glR , and total

0 0
'totR errors are linear, and thus reflect the modeling assumptions on the SNR depen-

O0

dence.

2. For Xt = .1 and AMRo < 103 ft, the performance is well predicted by the Cramer-

Rao bound.

3. For Xt = .2 and for AMRo in the range of values indicated, both the local and

global errors contribute significantly to the mean-square performance (transitional

region, referred to in sec. 3.4.4b).

4. We indicate in Fig. 79 the /2 threshold separating the tracking within the phase

(Region I) from the tracking within the geometry (Region IIH) (see sec. 5.6). The tracking

within the phase requires 50 dB for Xt = . 2, and 60 dB for Xt = .1.

Figure 80: Tradeoff between required SNR and actual aircraft passive receiver separa-

tion, for two typical accuracy requirements:

R =2 ft (Regioa I, upper curve)

= 50 ft (Region H, lower curve)

127

(158e)

(158f)

(158g)



Ro=6000fl L:30ft
V=300ft/sec A 80ftsec
8,=150 A sn I

20 30 40
SNR (dB)

Fig. 79. Range accuracy vs SNR.
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Fig. 80. SNR vs range.
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NOTE.

1. The extra 40 dB required to go from Region II (tracking within geometry) to

Region I (tracking within phase).

2,. The additional SNR required with respect to the value predicted by the CR bound,

which is due to the global errors induced by the large a priori uncertainty.

Figure 80 suggests an iterative global acquisition scheme, where several pairs of

receiving elements are placed along the airplane landing path, with increasingly greater

accuracy requirements. This strategy is in accordance with the vanishing sequence of

uncertainty cylinders in Fig. 76. As the plane travels through, AMRo is reduced fromn

one iteration to the next, with the net effect of diminishing glR and of the performance

approaching the Cramer-Rao bounds. 0

Figure 81: Study of total acquisition time T required by the MIL receiver as the actualacq
range changes for an SNR = 40 dB, and two accuracy requirements

X
OR =- ft (Region I), aR = 50 ft (Region II).

O O0

NOTE.

1. The tracking within the geometry (lower curve) is linear, thereby reflecting the

Cramer-Rao dependence o-n Tacq
2. The tracking within phase (upper curve) changes from the Cramer-Rao depen-

dence to a global dependence, with a sharper slope.

Since we cannot arbitrarily increase the acquisition interval, because of the limita-

tions imposed by the path random perturbations (recall Fig. 73), Fig. 81 says that if

the overall geometry does not lead to a Cramer-Rao dependence, it is unrealistic to

expect to improve the estimation accuracy significantly by increasing the acquisition

time; any significantly higher performance standard has to be met with enough SNR.

Figure 82: Speed accuracy vs SNR, for two different mean-square speed accuracies.

NOTE.

1. For slower avionics the total temporal baseline is shorter, and hence leads to

a deterioration of performance (left end of both curves). This can be partly compensated

by increasing Tacq, depending on the path perturbation.

2. The change in the curve slope as the speed increases from Crarner-Rao to global

(In v) dependence.

3. Even for = .1 ft/sec, which may be thought of as an upper bound on the desired

speed accuracy in most practical situations, the necessary SNR is less than 50 dB, which

is below the SNR demanded by the tracking within the phase acquisition mode.

6.1.4 Related Hybrid Algorithm Issues

In the context of the precision landing scheme, we consider the issues of sensi-

tivity of the ML algorithm to path disturbances, linear performance of the extended
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Fig. 82. Speed accuracy vs SNR.
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Kalman-Bucy filter (EKB), and average time to skip a cycle.

a. Sensitivity of the ML Receiver to Path Perturbations

As a function of the acquisition time the mean-square range path variation is given

by Eqs. 153:

QT3 1 42X21

ZR(T) -lZ + 30

Table 3 summarizes the values of 41/2 for several Q and T, extracted from Fig. 72.

It shows that the effects of the path variation may be a limiting factor on the final attain-

able range accuracy.

Table 3. Root-mean-square path variation.

R1/2 (ft)
R 

4X10 3

4 X10- Z

4 X 10- 1

4

20

Q (ft 2 /sec3 )

4 8

.15 .35

.46 1.3

1.45 4.12

4.6 13

10 30

b. Extended Kalman-Bucy Linearized Performance

The source parameter estimates returned by the ML processor initialize an extended

Kalman-Bucy filter (EKB) as discussed in Section V. A simple calculation using Eqs. 138

and 139 shows that for the SNR values required by the global range acquisition, the EKB

linearized mean-square performance is well within most actual practical requirements.

In particular, for a low SNR (in terms of the precision landing application), SNR = 10 dB

and Q = 1, from Eq. 139c, we have

41/4

111 ( 4) 367 ft2

and for the steady-state range rate mean-square performance

ZQ 2 2
P. Z_. 365 (ft/sec)

(4QH 1 / 4
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c. Average Time for Cycle Skipping

From Eqs. 148, we have

--I VNI-2. -1/4
Tskp = JR 3 (Q1 exp 2a.

3 3For an SNR = 10 dB, we obtain a 12 X 10 which leads to n Tk p 12 x 10 . The prob-
skp

ability of a cycle skip is extremely low (In Pskp -2a).

6.1.5 Conclusion

The preceding analysis shows that the range global acquisition is the determining fac-

tor of the hybrid algorithm performance in the passive precision landing. There are two

main sources of inaccuracy: errors incurred by the ML receiver, because of the addi-

tive noise disturbances, and errors induced by flight turbulence.

A practical solution to the passive precision landing, with two sets of passive out-

riggers, is illustrated in Fig. 83. Relatively early in the approach path we place the

passive receiving element (Set 1) designed for tracking planes at 104 ft range with

300 ft/sec speed. Between Set 1 and Set 2 the plane is recursively tracked by the EKB.

Set 2 is placed deeper in the landing path, and is designed for tracking planes at

PLAE LANDMNG PTH -. -, 

T." 2 j R.- 10
4

R < ;Re - 10 4 r

.Ro 50 ft

Set 2 Set I

(a) (b)

Fig. 83. Practical solution to passive landing.
(a) Tracking within phase. (b) Tracking
within geometry.

103 ft range, with nominal speed of 150 ft/sec. From then on the plane is tracked by

the EKB. We assume that the passive receiver elements in each set have L = 50 ft, and

the SNR level at the receiver site is SNR = 50 dB. The rest of the nominal values are

listed in Table 2. With this choice of parameters, we study in Fig. 84 the attainable

range accuracies for light (-i = g/10) and medium (Q. = g/2) turbulence flight condi-

tions, where g 32 ft/sec is the gravitational constant.

The upper curves in Fig. 84 correspond to the expected performance at Set 1 of the

outriggers in Fig. 83, and the lower curves to Set 2. For the indicated turbulence condi-

tions, the range acquisition accuracy depends on both the ML receiver performance
ML and the rms path variance, which limits the maximum acquisition time and

atotR

attainable accuracy.
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Fig. 84. Range accuracy for two different flight turbulence
conditions vs acquisition time.

As a final remark we note that, by working with higher carrier frequencies, we can

obtain improvement in range accuracy.

6.2 PASSIVE POSITIONING via UNDERWATER ACOUSTICS

We analyze the problem of locating an undersea platform in time and space by pas-

sive acoustic techniques. We utilize the radiated signature of the platform source to

determine a collection of parameters, called a fix, from which the source/receiver

geometry can be reconstructed.

We explore two different configurations of important practical implication. With one

we study the issues involved with passive ranging by measuring curvature with a large

array; with the other we concentrate on the tradeoffs and limitations of passive tracking

of the modulations induced by the relative source/receiver dynamics on the temporal

signal structure.

We assume a planar geometry and linear structures. As before, we work with the

narrow-band assumption on the radiated signals (single tone). Generalizations of this

model, to which the analysis can be straightforwardly extended, will be discussed in

Section VII.

6.2.1 Underwater Acoustic Model

We consider two nominal geomtries, sketched in Fig. 85. In Fig. 85a a large

array observes the spatial diversity of the source signature, with the source con-

sidered practically at rest during each observation interval. In Fig. 85b a short

array observes the temporal modulations induced on the signal structure and tracks the

source motion. We model the platform relative dynamics as a nominal constant-speed

linear path.
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R·. , e,

(o) (b)

Fig. 85. Underwater acoustic geometry.
(a) SASS. (b) SAMS.

We study the applicability of the hybrid algorithm to both problems. For the global

acquisition step we assume

HI: The problem of Fig. 85a fits the SASS model in Section II; As [R 0 sin o0]T

is a nonrandom, unknown parameter vector. Furthermore, the source is at rest and

the measurement noise is temporally white and spatially homogeneous.

H2: The problem of Fig. 85b fits the decoupled SAMS model in Section IV; A

A 0o sin e]T, with A = [R v sin t]T, is a nonrandom, unknown parameter vector.

Also, the source follows a deterministic constant-speed linear path, and the measure-

ment noise is temporally white and spatially homogeneous.

For the phase tracker of the hybrid algorithm we assume that the nominal dynamics

is disturbed by random accelerations, as described by the finite-dimensional stochastic

differential equations (134).

We explore subsequently the tradeoffs among the geometry, the statistical param-

eters, and the attainable accuracies for the global acquisition and the linearized tracking,

the issues of global step sensitivity to path variations and of linearized Kalman-Bucy

filter cycle skipping.

Because of the dualism of the two problems illustrated in Fig. 85, and in order to

avoid repetition, we discuss both in parallel.

6.2.2 Nominal Parameter Values

Table 4 summarizes typical values for the several parameters. Unless otherwise

stated these are the assumed conditions. We recall the notation AMA i = A. -A i
max mmin

the a priori region of uncertainty for parameter A. in the parameter space 2.
1

For the values in the right column of Table 4 the ratio between the spatial and the

X[ L 1
temporal geometric parameters is y = 48 << 1, and according to the analysis

in Section IV, SAMS decouples in SAMS° and becomes a bearing angle estimation prob-

lem. In the sequel we concentrate on the novel SAMSo aspects, since the passive

bearing estimation has been widely documented.
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Table 4. Nominal values for passive acoustic positioning.
A Z R=21 4 f

A R = 2xR = 12X 104 ft
AMo o

AMe: 50

R = 6 X 10 4 ft
0

SAMS

8, = 0°; T = 250 sec

L = 12 X 103 ft;

6f= 0; t = 15°

LX = L =
0

.1 v = 30 ft/sec; MV = 3 ft/sec

L = 250 ft; T = 400 sec; vTX = = 1t ZR
0

6.2. 3 Review of ML Mean-Square Performance

In the following equations subscripts s and o refer to SASS and SAMS o , respectively.

The global acquisition ML mean-square performance (Eq. 52 a) is given by

2

A
3

- 2
= -loc

3

2
+t (i59)

2 2
where ,loc agl , and Pr (E) have been reviewed by Eqs. 157.

Jrm eco 3
from Section II the Taylor's series results:

z0

M ~Vs 

R
oCR

For SASS we recall

- (d1et t1)1/2 - (AMR )(AM sin0) ({Z 2 R cosZe X3

s G-12 35
s cos 0o X

S

G-1/2 IT
s RX

O

(160a)

(160b)

(160c)

(zr -1/2
\XK2

- E (2t)2-1/2ZE i 
= r x )

0N\

E r = (SNR) (2b) LT,

where SNR represents the signal-to-noise ratio at the receiver site.
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For SAMS , the corresponding results have been cited in Eqs. 158.
0

REMARK.

Since the discussion here is intended as an exploration of the fundamental design

aspects, we concentrate on the range. With respect to the other parameters, the reader

is referred to the performance curves in Sections II and III where they are drawn for a

50 ft wavelength. As before, the higher SNR demands are placed upon the system by the

range accuracy requirements.

6. 2.4 ML System Curves

We now present several system curves for the global acquisition step of the hybrid

algorithm. First, we discuss the SAMSo aspects of the problem illustrated in Fig. 85b,

and then the SASS problem of Fig. 85a. The sensitivity issues of SAMSG to path varia-

tions will be dealt with in section 6.2.6.

SAMS
0

Figure 86: Mean-square range performance vs available SNR at the receiver site,

for several regions of a priori indetermination AMRo = Ro(=6x 104 ft); ZRo; 5R; 10Ro;
5 o

20Ro (=12 x 10 ft), which are indicated as parameters on the curves.

NOTE.
Z

1. We have only one curve for rloc , since the Cramer-Rao bound depends only on

the actual source/receiver separation but not on the a priori length, AMRo , of the asso-

ciated region of indetermination.

2. We observe that for an a priori indetermination, A MRo 2R = 12 x 104 ft. the
2 2

global errors -glR are negligible compared with the BlocR , and the Cramer-Rao bound

0o 
predicts well the system performance (local region). For AMRo Z 20R = 12 x 10 ft

exactly the opposite is true (global region). For 12 x 10 ft = 2Ro A MRo 20R
5 o Mo o

12 X 10 ft both errors affect significantly the total performance (transitional region).

As we have observed, this transitional region is determined by the problem geometry

(Xt' AMRo ) but is independent of the statistical parameters.

3. The tracking within the phase requires SNR above 60 dB which is not available

in most practical situations. This can be improved either by enlarging Xt (increasing

the observation interval) or having a larger receiving array (larger array gain).

Figure 87: Mean-square range performance vs the length of the range region AMRo of

a priori uncertainty. There are two sets, each of which has three curves. The three

upper curves correspond to X t = . and the three lower curves to X = .25. For

each value of Xt we considered three distinct SNR values: SNR = 1 (0 dB); 10 (10 dB);
2

100 (20 dB). The curves are essentially translations of each other. The Crlo c are
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practically horizontal (independent of A5Ro). The transitional region, as we have noted,

is independent of SNR but does depend on the diversity geometric parameter X.

Figure 88: SNR vs actual range of operation. for two values of the desired rms per-

formance:

aR = 2 25 ft (tracking within phase)
o

R
O = 0 ft (tracking within geometry).

rR 10
0

NOTE.

1. The sharp threshold exhibited by both curves at R = R = 12.5 x 103 ft, which
oOth

is practically determined by the geometric parameter Xt = . 1 and the a priori uncertainty

AMR =2R . This threshold corresponds to the sudden tranition fro a local to a
M o o

global region. For R <R , RRo is small, and the main lobe of the ambiguity func-
th

tion structure spreads all over the region of interest in the parameter space f2. As R

increases, so does AMR o , and at R we have M = 2, and hence a nonzero probability
°th

of decision errors, which coupled to AMR o leads to a nonzero, large glR

0

2. Because the curves are drawn for a constant diversity geometric parameter Xt =

2RT 1, for larger range the acquisition time is increased, and as a consequence the
O

curves decrease at their right ends.

SASS

2
Figure 89: R vs SNR. The discussion is similar to that for Fig. 86. Note that the

o R
transitional region occurs for --- A R 2R .

5 Mo o

Figure 90: R as a function of A R for two values of the diversity parameter X =
O

.1, .Z5, and for two values of SNR. The discussion follows that for Fig. 87. Note that

the curves shown are below the X/2 threshold line. In comparison with Fig. 86, we see

that for equivalent SASS and SAMSo geometry, the same range performance requires an

excess of approximately 40 dB in SAMS o . The alternative for an equivalent performance

at the same SNR levels is to increase the SAMSo diversity parameter Xt to approximately

three times the SASS diversity parameter X. In practice, however, there exists an

upper bound Tmax on the acquisition time because of path variations, as we shall see

in section 6.2.6.

Figure 91: SNR vs actual range for two different range accuracy requirements erR
R o

ft and aR - ft. The discussion is similar to that for Fig. 88. Note, however, the
o 10
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much smoother transition.

Figure 92: We explore the performance deterioration experienced by a fixed system (L=

12 x 103ft)as the actual range increases. We adjust the observation interval so that

SNR T = -3 dB = constant. After a sudden transition from a global region (left end of

the curve) to a local one (right part), the receiver's range performance changes very

slowly over a wide range interval. It suggests, as a practical rule, that we over-

dimension the system slightly, by increasing the SNR level at the receiver (e.g., with

improved sensor quality), to achieve the required accuracy at the nominal source/

receiver separation. For more distant platforms the system accuracy can be readjusted

by augmenting the duration of the observation interval.

6.2.5 Linearized Performance of the Extended Kalman-Bucy Filter

The linearized block (phase tracker) of the hybrid algorithm has been analyzed and

simulated in the context of undersea acoustics, 2 0 and the results have been reported. 2 1

The motions are modeled by a finite-dimensional, stochastic, dynamical system (see

Eqs. 134). For representative runs, see Fig. 69. We limit ourselves here to a brief

discussion of the EKB linearized range and range rate performance. For X = 50 ft and

L = 250 ft, in the steady state, from Eqs. 139d and 139e, we obtain

11 2 SNR ( SNR)l

Q
(22
(Q SNR) 1 / 4

10

6 oo

-20 -10 0 -20 -10 0
SNR (d) SR (dB)

Fig. 93. EKB mean-square performance vs SNR.

Figure 93: We show the expected EKB steady-state linearized mean-square performance

as a function of SNR for several values of Q. Comparing these curves awith the range

performance curves for the ML acquisition step, we conclude that for underwater
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acoustic tracking the linearized performance of the EKB filter is well within the required

accuracy.

6. 2. 6 Root-Mean-Square Variation and Cycle Skipping

The EKB loop cycle skipping phenomena and the effects of the rms phase variations

on the ML receiver may introduce important limitations on the hybrid algorithm perfor-

mance .

The average time for the loop to skip a cycle, from Eqs. 148, is

Tskp -1 32w2 (S NR)1/Z
Tskp zR - 3 Q

2 exp 2a
Io (a) Q
o0 3¼Q SNR

As the driving noise power level Q increases, the larger loop bandwidth required for

tracking the dynamics causes the loop to skip a cycle at a higher rate. For large values

of SNR, Tskp grows exponentially. But for SNR equal to or smaller than 0 dB the cycle

skipping phenomena may cause the loop

behavior to depart significantly from the

linearized prediction.

The rms range phase variation, given

by Eq. 153b, is

240

0lo

T. (sc)

(a)

b
b:~

o10

T ,( (Q

T., 

10 41 10z 10
T~ (tc)

10o 7xI0

Fig. 94.

Underwater acoustic positioning modes of

behavior. Q = 4, Q2
= 4 10 3 (ft/sec).

In Fig. 94 we show the effects of the path

variations on rR for two different ran-
0

dom acceleration levels. In Fig. 94a

SNR = 0 dB is assumed, and in Fig. 91b,

SNR = -10 dB. The other nominal param-

eter values are indicated in Table 4. For

small acquisition times Tacq the con-
1/2 acqtribution of R is negligible. But for

larger Tacq it may become the limiting

factor on the attainable accuracy, and

hence determine the maximum acquisition

time Tmax and the maximum range per-

formance R

0min
We have indicated the corresponding

Tskp values in both parts of Fig. 94. For

an undisturbed path (Q2 = 4 X 10 ft2/sec3 )

cycle skipping phenomena is not a
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problem, even for SNR = -10 dB. For larger Q1 = 4 ft /se, ay significantly

determine the hybrid algorithm performance. In Fig. 94a for SNR = 0 dB, Q = Q1 we

have Tskp 32 min. Tmax = 3 min and the EKB has to be reacquired every half hour.

In Fig. 94b for SNR = -10 dB, Q = Q1 we have Tskp = 21 sec, Tmax 4 min and the

hybrid algorithm is in the acquisition mode, with no tracking by the EKB possible for a

practically significant time interval.

6.2.7 Summary

We have analyzed the hybrid algorithm mean-square performance and operation

rodes for the passive underwater acoustic position problem for both SASS and SAMSo

configurations.

Because of the small geometry diversity that is synthesized, the problems usually

fall near the boundary of transition and threshold regions where the predicted perfor-

mance changes from a local to a global bound; because of the low SNR available at the

receiver site and the path disturbances, the rms range phase variation and the cycle

skipping phenomena determine significantly the performance and the behavior mode of

the hybrid algorithm.

6.3 PRECISION NAVIGATION via SATELLITES AND OTHER

NAVIGATIONAL AIDS

Many radio navigation aids serving a wide variety of purposes are available, for

example, for guidance of ships on the high seas, surveiilra;., of intercontinental com-

mercial air traffic, radio tracking of ocean drifting buoys ,- of free-sounding balloons,

location of speeding trucks on highways, etc.

These navigational aids (navaids) are based on measurement of frequency Doppler

shifts and/or of travel time delays of signals transmitted from a station (passive navi-

gation), or signals initiated or transponded at the user's platform (active navigation).

The measurements are converted to platform geometric parameters (e.g., range) and

coupled to the known geographical location of the navigational station to provide for a

platform fix.

Basically, we group the navigational systems into earth- and satellite-based. Earth-

based systems include the low- and very low-frequency navaids. Usually, these are

chains of a centrally located master, and several slave transmitters, such as Omega,

Loran C, or Decca. Surveys of these have been made.8 ' 4 8

The only satellite-based system now available for general use is the Navy Naviga-
49 50

tional Satellite System (NNSS) also referred to as TRANSIT. 9 ' Several programs

have been implemented for restricted purposes and integrated into specific missions,

such as EOLE (monitoring meteorological collecting data balloons),6 TWERLE (Tropical

Wind, Energy Conversion and Reference Level Experiment), etc. Numerous experi-

ments have been proposed for navigation, collision avoidance, and traffic control, such

as the NASA Position Location and Communication Equipment (PLACE), the Department
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of Transportation's (DOT) Advanced Air Traffic Management Systems concepts, the

Federal Aeronautics Administration (FAA) Astro-Dabs, the DOT/FAA Aerosat experi-

ment, etc.1 0

Two important desirable characteristics are accuracy and global coverage. The

coverage of Omega with eight sparsely located stations is worldwide, and its accuracy

for ship navigation is 1 mile at 1500 mile range. Decca is a coastal navaid with 200-300

meter accuracy at 100 mile range. The satellites represent the trend for future navi-

gation systems, since they may provide global worldwide coverage with very significant

improvement in accuracy.

In the sequel we concentrate on satellites. They are either orbiting (low altitude,

1000 km for NNSS, or medium altitude, up to 20 x 10 km) or geostationary (at ~40 x
3

10 km). Table 5 summarizes pertinent data.

Table 5. Navigational satellite data.

Transit Carrier
Satellite Altitude (km) Time Coverage Frequency (MHz)

Orbiting Low 10 - 7000 15 min Global VHF (150,400)

Orbiting Medium 20 X 103 2.5-4 h Global VHF, L-band

Geostationary High 40 X 103 Permanent -Earth VHF, L-band

First, we shall discuss orbiting satellites, applying straightforwardly the theory that

we have developed. Then we shall discuss navigation with geostationary (also called

geosynchronous) satellites, after we extend the continuous space passive tracking results

of Sections II and IV to the case of a discrete space domain.

6.3. 1 Orbiting Satellites

Figure 95a illustrates a navigation configuration with an orbiting satellite. The

moving platform monitors the signals radiated by the satellite as it passes overhead.

Figure 95b casts this navigation problem in the SAMSo context of Section III.

The identifiable source/receiver parameter vector is [Ro v sin t]T, where

v ={v2 +v2 +Zv v cos(86s-p)} 1 /2
S p s p s p

v sin 0 + v sin 
s s p p

tan 8 =
t v 5 cos + v cos 

s s p p

The satellite speed vs is usually predicted accurately and radioed to the passive user,

and the satellite bearing sin Es can be measured b auxiliary means, for example,
S
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optically, so that from these equations the platform speed v and bearing sin 0 are

determined. In any case, we work with the parameter vector A = [Rvsint] T . P

T
SATELLITE ---

SATELLITE t T
t ,.- 2 o 

at 2

tI - ',8, Re

j-. PLATFORM p

LINEAR MOTION T2 

o) (b)

Fig. 95. (a) Moving platform orbiting satellite configuration.
(b) SAMSo navigation problem.

To illustrate the application of the results of Sections III and V, we consider a ship

navigating the high seas. A reasonable choice of parameters is v = 7 km/sec (=v s

since vp << ), Ro 5000 km, t = 30, SNR = 3 dB (at the user's site), L = 250 ft, f =

400 MHz (X ' 2.46 ft). We also assume a path disturbance level Q = 1 ft/sec 3 and

an a priori range uncertainty of approximately 20 miles. Figure 96 shows the range

_ L SAMSO

0 6xi0

b2x

2 X109

,II R

---GrR, ...- -- I"~' Ro -= 5000 km
SR 3 dB

I ft/
3

Qrte/ c

,O iot ,3w

T. ( sec)

Fig. 96. Range accuracy vs acquisition time for
ship navigation satellite problem.

accuracy as a function of the acquisition time. For smaller Tac q the performance is

essentially predicted by the Cramer-Rao bound (Eq. 69a):

1 5'7 x 1
CR = R =2 3

'tot °loc (2 SNR LT)1 /2 sin ot C t 

For large T the rms range phase variations dominate (Eq. 153b):
acq

1/2 (QT)

For the maximum Tacq , Tm = 120 sec the minimum rms error R 450 ft, which
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is below the . 1-. 5 mile accuracy set as a goal for merchant ship high seas navigation

in the post-1985 year period.1 0

For this choice of parameters the EKB exhibits a linearized performance well within

the required accuracy, and leads to a very large value for Tskp. We conclude that the

basic limitations are imposed by the global acquisition step.

6.3. 2 Geostationary Satellites

Figure 97 illustrates a navigational problem with geosynchronous satellites. We

assume that the passive user recognizes the signals originating at N different satellites

(by coding a common subcarrier on distinct carrier frequencies). The navigational prob-

lem with N spatial point sources is then the dual of a positioning problem with N sen-

sors. Accordingly, we do not make a distinction and we keep the positioning nomencla-

ture (SASS, SAMS, etc.).

The satellite constellation may be viewed as an ensemble resulting from the spatial

sampling of a continuous source. Two questions arise as to the applicability of the pas-

sive tracking theory developed previously:

1. What are the effects of sampling on the sidelobe structure of the ambiguity func-

tion?

2. How does discretization affect the ML receiver resolution, i.e., the mean-

square-error performance?

GS, 6S t GS,
Rem 2-9------------------- o

" , - MovingFig. 97.

~',) -'' Moving Platform/Geostationary satellites.

- MIN"GW PLATFORM

Because of the modulation nonlinearities of passive tracking, the answers to both

questions are nontrivial. We consider them briefly for a stationary array/stationary

source configuration, and for a second-order approximation (Fresnel zone) to the range

phase function.

a. Discrete Ambiguity Function in the Fresnel Zone

Figure 98 illustrates a centered geometry with an array of N equally spaced ele-

ments. The range phase difference for the Fresnel zone is

[a~ct~AX)- R o] ( a2
R(t,,AA)-R s(ine) tA +0 ) -(161a)

k1i + k2 f2 . (161b)1 l k lZ
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Fig. 98. Discrete SASS geometry. (a) N = 2M. (b) N = 2M + 1.

For the equally spaced geometries of Fig. 98, the discrete generalized ambiguity func-

tion (DGAF)

(kl'k2 ) = Z exp (ki +k2zI)I (162a)

becomes

1. N = ZM + = odd

+(kl, k2 ) 
2 cos [(M+1)klALI sin [Mk1AL]

sin (klAL)

M Z 2)
+ 4 cos (k 1 AL) Cos k2 m AL)

I

M M-1
+ 8 : M cos (kmL) cos

m>n n=l
(klnAL) cos [k 2 (m2-n2 )

2. N = 2M = even

= ( 2)4(klkZ 

+Z Z Z cos [k(m- 2) AL]
m>n n=l 

cos [k2 AL2((m-m - (n- n)) ]}

We see that for

k = sin ml L)

cos [kl(n- ) AL]

(162c)

(163a)
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27
k2 = m2 2'

s AL 2 '

= m 2 L 2 '

AL

for N odd (AR = m L2X 

for N even R= m2 =L2

the discrete ambiguity is

~(k l k2z ) = 1.

In the (kl,k2 ) space, let

1 AL A] [ AL2 AL 2]
for N odd

[ k A xL aL 2:L 1, for N even.

] [i h A 2

The structure of the DGAF within 1l, referred to as primary cell, depends on the

sampling rate and, as in the linear theory, important distortion may result. For an

oversampled array

AL << 1, AL << 1x x (165a)

we expect that the DGAF approaches the continuous GAF. The intuitive reason is remi-

niscent of the method of stationary phase, since a large number of sinusoidals with large

and slightly different frequencies tends to cancel their mutual effects. In R1 the DGAF

will present a quadratic main lobe and a negligible secondary structure. In Fig. 99 (see

Van Trees for the Siebert plot) the dashed areas indicate the regions where the DGAF

is significant (main lobe and its equally spaced repetitions), and the unshaded areas indi-

cate where the DGAF is negligible (secondary structure).

II A
II
I

/6
W

LA

L_ _
AL

X.

Fig. 99. Discrete ambiguity function for an oversampled array.
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For an undersampled array

AL >> or AL2 >> (165b)

aliasing results, and the DGAF exhibits important secondary structure within 1' and

hence a detailed study is required for each application.

b. Discrete Mean-Square (Local) Performance in the Fresnel Zone

For the Rayleigh signal model the discrete mean-square spread matrix (DMSSM) Jd

is obtained by substituting sums for integrals in Eqs. B. 3 and B.4 in Appendix B.

We define the nth geometric moment associated with the linear array of N sensors

as

1 n
L t (166)n N i 1 '

where [i is the ith array element location.1
In the Fresnel zone and for a centered geometry

) 0 (167)

I

I L2

The Cramer-Rao bounds are obtained by normalizing the elements of Jd 1 by

G' =E /N L 0+ (168a)

2Er/N o L Er

where

Er \ ) NT, (168b)
r = rb

with

( ) = (spatially discrete) SNR level at the receiver site. (168c)

\ d

6.3. 3 Discrete Ambiguity and Performance for Geostationary

Satellites

For economic reasons the number of satellites simultaneously available at each loca-

tion 0 is usually 4. It is easy to see that a centered geometry (with source parameters

defined with respect to the array geometric center) requires at least three satellites to
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measure the apparent curvature from which range is inferred. The results for a four-

satellite constellation may be summarized as follows.

The DGAF is

f(klk 2 ) = sin2 (klAL) sin( AL) + os (3-Lk) cos ( AL cos (kzAL ) ,

(169a)

with the primary cell

n Ir V I I "~i2hL . (169b)

Study of Eq. 169a shows that the main lobe is limited to

[ _ 2 1x [ Vr -r ,$ (170)
A-3A LL' 3L 2AL AL 2

and important secondary maxima exist in 1 such as

2
(3 A ' AL2) )= ( *171)

We shall refer to A2 as the discrete resolution cell for the four-satellite constellation

problem.

The pnread of the DGAF main lobe may also be quantified by using the quadratic local

approximation in terms of X d and its inverse. For the four-satellite problem, from

Eq. 167,

()-Jr = 11 
4R4 1

4 2 I
cos 0 L4 - L2

IO 1L, ILZ

(172a)

where

L2 AL L 4 , L4 L = AL 4 . (172b)

Substituting Eq. 172b in Eq. 172a and normalizing by means of the signal energy-

to-noise ratio leads to the Cramer-Rao performance bounds for the discrete SASS with

a four-satellite constellation.

R = G-/2 (A1 )1 / 2_ G-1/2 X 9 1 (173a)

o R (Xcos 0)
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C sin- G d-1/2 3, (17 3b)
sin d ZQd in 0 d I -l)1, d

where X = geometric spatial diversity parameter = 2R 32RL 3L
0 

6. 3.4 Global Acquisition Strategy for a Constellation of

Geostationary Satellites.

The discrete ambiguity function exhibits a structure, reproduced in the parameter

space at equally spaced intervals. To avoid global ambiguities, the important side-

lobes (peaks in Ql) must be shifted beyond the a priori region of uncertainty AMf In

(k1 , k2 ) space

AMQ[ 'I k 1 k 'k2 ]- (174a)min max rnin max

Inr. the passive user parameter space

Mi i = - i A (174b)

which for the discrete SASS simply reduces to

AM = [sin mi n , sin Oma X R 0 Rmin, (174c)

This may be achieved by matching the resolution cell A2 to AMI, for example,

through proper choice of wavelength. For the four-satellite constellation, from Eqs. 170

and 174a, we have

> max ((AM sin6)AL,(AMRo)AL Z ) (175a)

where

AM sin0 =- A k (l- 1 -k = sin ma- sin n (175b)
M 2W I max minn

ARo 2Ak X (k-Z k )' (175c)M 0o 2t LOuk2 = k 2 -
max min

Alternatively, when using the quadratic representation for the main lobe given by

the mean-square spread matrix we want the diagonal elements of the inverse discrete

spread matrix to satisfy

(d-1 1)/ a AMAi = A i - A i for every i. (176)
A. max r in

This leads to the condition for :
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>Max ((dl) AlAi), 177a)
1 A.

where

A.

d )A. X (177b)
1

Equations 175 or 177 may lead, however, to unacceptable resolution, that is, to large

Cramer-Rao bounds. A practical strategy, which can be implemented whenever

(E /No)
G Z - > 1, (178a)

N
o

is a sequential procedure with the global ML acquisition repeated with decreasing wave-

lengths

k X 3 = 1(178b)

Gd (Gd 

with k 1 given by Eqs. 175 or 177. Since the approach behind Eqs. 177 generalizes in a

straightforward way to arbitrary N and to other classes of problems such as discrete-

space, continuous-time SAMS, and is also consistent with the quadratic (local) analysis

for GAF and DGAF, we assume that 1 has been determined by Eqs. 177.

The sequential procedure stops with the smallest order step

j = J (179a)

for which the corresponding mean-square performance

J
A < aA for every i, (179b)

i 1

where A. is the desired rms performance. The corresponding wavelength is

mx Ai
Xg =

(180a)

(Gin)

and

maxA ')ZZ) (.--l-di) (180b)
rAi = (G1/2) J )A'

d 
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Let

( A = max MA m) (d ) (181a\
AM mmax mma x m

maxm

If m i in Eq. 18ia, we obtain
max

a (AMAm )
J ~pmax

'A (181b)
max (G

Finally, the number J is the smallest integer containing all J, where

([( -( 11/2 1 })1/2 
In{(AAm A/d d na

max 

J = · (181c)

In (G 1/2 )

6. 3. 5 Commercial Avionics Surveillance with Geostationary

Satellites

The preceding considerations are applied to the air traffic control situation illus-

trated in Fig. 100. The signals radiated by each geosynchronous satellite are coded for

identification purposes and for relaying to the passive users the satellite ephemeris,

which is necessary for the ultimate geographic position determination. The signals are

also modulated by a common set of subcarriers that is available for refinement of the
relative position estimates.

We summarize in Table 6 the nominal relative parameter values for the configuration

of Fig. 100.

-jA~L -~- aL

es, G …… -

ALTITDE

EARTH

Fig. 100. Commercial avionics surveillance with
geostationary satellites.
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Table 6. Nominal values for commercial avionics surveillance.

R 4X 10 4 km

30
3 0°

0 15o

V 2000 knots = 103 m/sec (SST)

Elementary Observation Time = AT =. 5 sec

Surveillance Update Cycle T 30 sec (SST)

T 90 sec (subsonic)

rv = 5 ft/sec, rR = 250 ft
0

Carrier Frequency f 1. 5 GHz (L-band)

Satellites Interspacing AL 6000 km

Again, we stress that Eqs. 177-181 not only apply to the SASS context but also to

SAIMS or SAMS.o

REMARKS

1. For N 4 the rationale behind this sequential global acquisition procedure

remains, but the values of and i+l are not simply determined by Eqs. 177a and 178.

If the problem geometry leads to a local type of configuration where the global errors

are negligible and the mean-square-error performance is correctly predicted by the

Cramer-Rao bounds, Eq. 178 is still valid. When atotA > aCR A the sequence of X. can

be determined graphically from both the local and global error components. For large N.

when no significant secondary lobes arise in the primary cell fl1 1 should be determined

from the dimensions of Q1 (see Eqs. 164).

2. To avoid ionospheric propagation losses and simplify the implementation, we

assume that each satellite rauiates a carrier modulated by a set of common subcarriers

with decreasing wavelengths. The passive user refines its resolution by sequentially

processing these subcarriers.

a. Model Considerations

In order to apply the hybrid algorithm concept to this navigation problem, we make

the following assumption for the global acquisition step.

H AlL 1: The problem fits a discrete-space, continuous-time SAMS model. That is,
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1. The source/receiver parameter vector (see Fig. 100) A = [R 0 v sin Ot sin 0f] T

is nonrandom, unknown.

2. The plane follows a constant-speed linear path.

3. The additive measurement noise is white.

4. The narrow-band signals originating at the point sources (discrete space) are

continuously available in time.

For the linearized phase tracker this model is generalized by substituting the fol-

lowing for points 1 and 2.

H EKB 1:

1. The plane follows a nominal constant-speed linear path disturbed by random

accelerations (Eqs. 134).

b. ML Mean-Square Performance

For the norrinal parameter values in Table 6 the ratio between the temporal and the

spatial diversity

Xt vT/Ro
Y = - < 1,t L/2Ro

and the rms performance for range R0 and spatial bearing sin e[ are given by Eq. 167.

The cross coupling plays an important role in the estimation of aircraft speed v and

temporal bearing sin Et . Adapting the results of Eqs. 124 and 125 for the coupled SAMS

to the discrete spatial baseline satellite configuration of Fig. 100, for the Cramer-Rao

performance we obtain

-i2 1 -1/2 1/2 X v t XI(csa

-/2(1/2 sinl

where Gd is given by Eq. 168a.

c. ML System Discussion

We assume the values in Table 6 unless otherwise specified. For the signal-to-

noise ratio (SNR) at the user site we consider as a nominal value SNR = 0 dB, and as

comparison value SNR = 6 dB. The total time interval for the range global acquisition

is the elementary observation interval AT in Table 6, AT = s.

Range Accuracy. Figure 101 studies the total number of steps given by Eq. 181c,
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that are necessary to achieve a desired accuracy rR , when the a priori uncertainty is
o

18

16

14

12
J
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4

10 Io2 o3

MRo (kin)

Fig. 101. Number of updates vs a prior range uncertainty.

AMR o . We considered three values for oR : R = 1 m, 10 m, 10 m, and the two indi-
o o

cated SNR values. As an example, we read from the curve that to go from a relatively

large uncertainty AMRo = 10 km to a very small final rms error aR = 10 m with SNR =R

0 dB, requires 14 sequential updates. If the SNR level is increased to 6 dB, only 7 steps

are necessary. The starting value for X, from Eq. 177a, is

1= AMR(kR M : l od )RR o
- 1315 m (183)

and the final value, from Eq. 178b, is

1
XR l

14 O 17m.
R =)13 13

Speed Accuracy. For the example described above, we let the a priori speed uncer-

tainty AM = 10r m/sec. From Eq. 182a we obtain
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( / (-A) 22 83
(-,-d)X T
v

To solve the original uncertainty given by aM = 10 z m/sec, the wavelength must be

greater than

= 4.38T.
v

For any reasonable T this is rmuch smaller than ,R given by Eq. 183. The final accu-

racy is 0

r k (,-1) 1 / 2

v SR d v
z 8.071

SNR
T-3/Z

For X = 1 m Fig. 102 studies the speed accuracy as a function of the acquisition time

Teo for two levels of SNR.

If we take T = AT=. 5
acq

a = 4.5 m/sec. Since thev
velocity measurements, the

ized EKB.

E

b

SNR = 0 dB SNR = 0 dB
sec --> o = 22.83 m/sec. If T 3AT -

v acq
EKB is insensitive to large a priori inaccuracies on the

range of av in Fig. 102 is acceptable for starting the linear-t- v

SNR 3 IdB

50

I0

0.1

T4ocq

10

(sc )

Fig. 102. Speed accuracy vs acquisition time.

Similar considerations could be pursued for the other two parameters.

d. Extended Kalman-Bucy Filter

Concentrating the discussion on the range and range rate parameters, for the linear-

ized phase tracker we find that the steady-state cvariance values, from Eqs. 139d and

139e, are
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Hi (4QH1/411 H I

ZQ

P2 1/4
(4QH 1)

2

For moderate turbulence flight conditions Q -) 5 m /sec 3 , and for Xk I m,

SNR = 0 dB, we obtain P1 z .1182 m, P22 = 5.286 m/sec. The loop bandwidth and the

equivalent signal-to-noise ratio in the bandwidth loop BL 8 (4 Q H 1/4 3.546, and
8 HI

c 1 1/4 22. 55. The average time between cycle skips is
(4QH 1 )

T~kp = -z e z 1.4 x 10 sec.skp 4 BL

The results for P1 1 P22' and Tskp show that the EKB loop performs well within

the limitations imposed by the global ML processor.

6.3.6 Conclusion

We have considered two typical navigation problems involving satellites. With

orbiting satellites the continuous-time formulation of SAMSo is particularly suitable.

With geosynchronous satellites we had to adapt the passive tracking results to a

discrete-space formulation. Although the general principles extend in a straightforward

way, the details of the resulting structure depend largely on the number of available

satellites, and on ratios of powers of the satellites interspacing AL and wavelength X.

The main issue deals with the ambiguity function periodic structure and, within each

primary cell 21 with the important secondary lobes that may arise from aliasing effects.

We have presented a sequential updating algorithm where the wavelength is reduced

by a factor equal to the square root of the available signal energy-to-noise ratio which

achieves both the global acquisition and the desired resolution..

We have studied the tradeoffs between the necessary number of updates, the a priori

uncertainty, the available signal-to-noise ratio at the user site, and the desired accu-

racy in the context of an SST commercial avionics surveillance application by using a

constellation of four geosynchronous satellites.

The large spatial baseline available allows very accurate final estimates. Starting

with a large range a priori uncertainty (100 km), we saw that an accurate estimate(r R
=

0

10 m) could be achieved in 14 steps, with a final wavelength of approximately 1 m. Here

there is a tradeoff between computation time and complexity, in that these 14 steps can

be processed sequentially in time by a single processor unit or simultaneously by

14 processor units. We analyzed the EKB performance, and concluded that the Linear-

ized performance was within the required accuracy, and that the cycle skip phenomena

will not be an issue unless the EKB is used with larger wavelengths.
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6.4 MONTE CARLO SIMULATION RESULTS

We report the results of simulating the ML processor in the context of the passive

positioning with underwater acoustics discussed in section 6.2. The linearized EKB

structures have been previously analyzed, 2 0 and the results reported. 2 1 See Fig. 69

for some illustrative runs.

There are three main points concerning the Monte Carlo simulations. The first is

the actual implementation on a discrete environment (computer) of the simulation of a

stochastic problem, with the discretized" version of a white noise process and the

design of (stochastic) maximization routines. The second relates to the statistical con-

fidence associated with the simulation results themselves, with a tradeoff between the

finiteness of the computation time available and the number of samples aken in the

ensemble average. The third relates to the closeness of the simulation results to those

predicted by the theoretical analysis, with the determination of regions where both con-

verge (in a statistical sense).

We shall now discuss these points briefly.

6.4.1 Algorithm Implementation

We implemented the two-step algorithm mechanizing the ML estimation receiver for

both SASS and SAMS contexts.
o

Because of the discrete environment, the noise levels were normalized by the (space

and time) sampling intervals. 0 If AL = array sampling interval and AT = time sampling

interval, we obtain

2P
(SNR)d N (SNR)c AL AT,

0
AI.AT

where the index d stands for discrete, and c for continuous environment. The maxi-

mization algorithm was essentially a search procedure, superimposing grids of varying

overall and elementary cell size. This technique bounds the accuracy to the size of the

smallest elementary cell used (quantization errors) but avoids the implementation of

costlier maximization routines.

Because of limited computer time availability, we restricted ourselves to testing

the local results on the mean-square performance. i.e.. to the statistical test of the

Cramer-Rao bounds by bounding the a priori region of uncertainty so that

2 2 2 2
gl loc - tot 'loc'

6.4.2 Confidence Intervals Associated with Statistical Averages

The simulation results had as the main objective to compare the performance pre-

dicted by the analysis with that computed by statistically averaging the simulated runs.
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Because of the stochastic nature of the problem, the performance measures com-

puted by the Alonte Carlo runs are themselves random variables. For example, for a

random variable with known mean and variance r the variance computed from the
x

ensemble averaging,

N
-2 1 N 2

x N.i

2
for all practical purposes, is an unbiased estimate of a- , normally distributed with mean

2 2 2 2 X
ax and variance 20- /N. We have then Pr{(l-a)¢ < <(1 a)-} erf ("2N ), wherex x x x x

2 x 2
erf (X) = exp(-y ) dy,

with a a positive constant. We are particularly interested in the 3 confidence interval

(a=2).

6.4.3 Simulation Results

We simulated one geometry for each problem, for several values of the signal-to-

noise ratio. Table 7 summarizes the important data.

Table 7. Simulated configuration parameters.

X = 50 ft; R 6 X10 3 ft
0

(b= 1; =0

SASS SAMS
o

AL == 25 ft v = 30 ft/sec

L = 3980 ft e t = -15 °

AT = T = I sec aL= L = 50 ft

X = .331 AT = 5 s, NT = 24

X t = . 287

Figure 103 represents the SASS simulation results for 15 Monte Carlo runs. We

distinguish a threshold region below SNR = -30 dB. Above this value the statistical

results are within a 3 confidence interval I (3ro) of the Cramer-Rao bounds. The point

for SNR = -34 dB is approximately (ne order of magnitude apart from the Cramer-Rao

curve.
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Fig. 103. SASS simulation results.
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Fig. 104. SAMSo simulation results.
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Figure 104 presents !he SAMSo simulation results, averaged over 15 runs, for

varying SNR. The curves show that all statistically computed standard deviations are

within the 3 confidence interval I (3cr) of the theoretically computed Cramer-Rao stan-

dard deviation.

As a final comment on these simulation results, we note that when the Rayleigh

amplitude Ib! of the complex multiplicative Rayleigh parameter b is kept constant

(unknown) and equal to IbI 2 = o2b the agreement between the theoretical and practical

results is even closer than that indicated by Figs. 103 and 104. The reason is that for b

a zero-mean complex Gaussian random variable there are runs for which Ibt is very

small, and regardless of SNR, this deteriorates the statistical performance computed

via the Monte Carlo simulations.
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VII. CONCLUSIONS AND EXTENSIGNS

7.1 CONCLUSIONS

We have considered the passive tracking problem with narrow-band and linear con-

straints.

In Part 1, Sections I-IV, we developed a simple model, designed optimal and sub-

optimal receivers, and analyzed their structure and associated errors. The main con-

tributions of this research are the following.

1. A simple model that encompasses the fundamental global and local character-

istics of the passive tracking problem and exhibits explicitly the symmetry between

the space and time aspects.

2. A systematic treatment of the passive global identifiability of the parameters

defining the relative source/receiver geometry. We emphasized the passive global

range observability, as obtained from the higher order phase modulations induced on the

radiated signal structure by the spatial and/or temporal diversity.

3. Analysis of the global ambiguity structure associated with nonhomogeneous pas-

sive narrow-band tracking, with bounds or. its asymptotic behavior.

The ambiguity structure for the distant observer was considered extensively. The

range phase was approximated by a truncated n th-order Taylor's series, and the

resulting ambiguity function assoiated with generalized nth -order sinc functions

(secs. 2. 3, 3. 3, and Appendix A). We bounded the asymptotic behavior of these approx-

imate structures; for example, for the generalized third-order sinc the bound was

related to an Airy function.

By application of the method of stationary phase (MSP), we have shown that the gen-

eral ambiguity function is negligible for large parameter errors. Coupling the analyt-

ical studies to graphical displays, we concluded that the generalized ambiguity function

(GAF) presents a quadratic ellipsoidal main lobe, with negligible secondary structure

(see end of sec. 3. 3. 3).

4. Global and local mean-square error bounds. Graphical displays exploring the

effects of the geometry and of the statistical parameters on the mean-square perfor-

mance, were presented. We considered the distant and close observer situations and,

by means of Taylor's series, we derived simple, intuitively pleasing, approximate

expressions, showing bow they compare with the exact bounds.

Depending solely on the geometry, we concluded that independent of the signal-to-

noise ratio the two-step practical implementation of the ML receiver exhibits two dis-

tinct performance behaviors: a local region where the mean-square performance is

well approximated by the local bounds and determined by the sharpness and dimensions

of the ambiguity structure main lobe; and a global region where decision errors

induce large inaccuracies on the average and the performance is given by the global

bounds. In practice, the global bounds may be circumvented by means of independent
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measurements (see secs. 2.4.3 and 3.4.5).

5. Study of the space/time factorability and coupling issues in passive tracking. We

analyzed in detail the distant observer situation, and reached the following conclusions:

(a) When the temporal diversity (source travel) dominates the spatial baseline, the

ambiguity structure factors. The spatial bearing angle is observed from the available

spatial diversity, and the rest of the parameters from the temporally induced modula-

tions. Intuitively, the decoupled receiver incorporates beam steering (spatial oper-

ation), and a bank of matched filters, over a three-dimensional parameter space

(temporal processing). We derived an expression for the total number of steering opera-

tions and, by putting the problem in the perspective of previously obtained results, ana-

lyzed its mean-square performance (sec. 4. 1).

(b) When the temporal and spatial baselines are comparable, the receiver is not sep-

arable. This coupling, although it results in more complex receivers, represents a non-

trivial improvement on the global identifiability of the source parameters. The order of

the estimation problem is reduced with respect to the decoupled situation, and hence only

requires measurements of second-order effects in both space and time domains (Fresnel

zone). Again, by using Taylor's series techniques, we arrived at intuitively satisfying

analytical expressions quantifying the mean-square spread of the main lobe and the

(local and global) mean-square performance bounds (sec. 4. 2 and Appendix D).

In Part 2, Sections V and VI, we presented a practical hybrid receiver for passive

tracking, and applied the preceding theory and results to positioning and navigation prob-

lems. The main results are as follows.

1. A practical hybrid algorithm achieving a compromise between the continuous

global estimation of the relative source/receiver geometry and the complexity of imple-

mentation.

Global acquisition is accomplished by an ML processor requiring a multidimensional

stochastic maximization. The local dynamics is recursively tracked by a linearized

filter, an extended Kalnan-Bucy filter (EKB).

2. Sensitivity analysis of each receiver block to the geometry, statistical param-

eters, and modeling assumptions, leading to four characteristic modes for the hybrid

algorithm's behavior:

(a) For high signal-to-noise (SNR) applications, the errors associated with global

acquisition dominate the hybrid algorithm's behavior, and the results of Part 1 predict

well the overall performance. In practice, because of random perturbations, the source

deviates from the assumed nominal linear constant path, and imposes a maximum acqui-

sition time, after which the induced errors are larger than those arising from additive

measurement noise (sec. 5.4).

(b) For low SNR (the breakdown occurring approximately at 0 dB noise ratio), the

errors associated with the EKB nonlinear behavior (cycle skipping phenomena) may sig-

nificantly deteriorate the EKB performance, and tracking is impossible.

3. An illustrative design of practical passive systems for use in precision landing
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air traffic control, underwater acoustic positioning, and navigation with orbiting and

geostationary satellites. The precision landing problem (sec. 6. 1) is typically a high

SNR application (approximately 40 dI3 is available at the receiver site), with the global

acquisition imposing the harder limitations on the hybrid algorithm performance. Flight

turbulence conditions determine the maximum acquisition time, and the corresponding

ML mean-square error.

The underwater acoustic problem (sec. 6. 2) is highly sensitive to the geometry and

statistical parameters. For higher SNR and certain geometry tracking is possible, with

the rms path variations determining the maximum allowable performance. For lower

SNR the hybrid algorithm reduces to the acquisition step, with the time updating accom-

plished nonrecursively by the ML processor.

Passive navigation with satellites (sec. 6.3) presents practical situations, with a large

baseline synthesized by either orbiting or geostationary satellites, leading to geometry

that yields accurate ranging. Examples are given of tradeoffs and attainable accuracy for

ship navigation and SST commercial avionics surveillance (secs. 6. 3. 2 and 6. 3. 5).

4. Analysis of the sampling effects on the nonhomogeneous second-order (Fresnel

zone) ambiguity structure.

5. A sequential procedure for resolving the ambiguities resulting from discretiza-

tion effects associated with the geostationary satellite passive navigation.

6. Monte Carlo simulation studies (secs. 5.3 and 6. 4) demonstrating the existence

of regions of statistical convergence between the theoretical and the simulated results.

7.2 EXTENSIONS

The generalizations and extensions of the present work relate basically to the

modeling assumptions and to the receiver complexity. A selected list includes the fol-

lowing points.

1. Signal Assumptions. A narrow-band source signature was assumed. In many

practical situations a better model would be a combination of broadband and narrow-band

components, 5 1 while in others the signals would be broadband. A forthcoming thesis5?

deals with the last situation. Our results may be extended in a straightforward manner

to the case of a long observation interval, compared with the signal and noise correla-

tion times, and to the travel time of the wave field across the array. These processes

admit a Fourier representation with uncorrelated coefficients, and the problem reduces

to a multitone problem where the relative source/receiver geometric parameters enter

through phase modulations, as in the single-tone model.

Using the results of Bangs,4 we find that the Fisher information matrix for the

multitone problem is given by

J = G .. , (184a)

with
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F. [S (wk)/WS(W)J 2
G S( k (184b)

k= I Ss(Wk) ~kk
I + G(w k ) S(J

L Sn(Wk)

Here Ss(Wk), Sn(wk) are the power spectra of the signal and noise processes at wk. G(wk)

is the array gain, 4 is the mean-square spread matrix normalized by (2v/kXk) 2 ,

as defined in Appendix B. The matrix J, given by Eqs. 184, is the product of a gain G

that incorporates the new signal modeling assumptions (multitone) and of the mean-

square sprea.d matrix reflecting the geometric aspects, which remains the same as in

the single-tone situation studied in this report.

2. Noise Assumptions. We considered unstructured additive measurement noises,

spatially and temporally white Gaussian. When the measurement exhibits a significant

structure it may e combated by high-resolution array processing methods. 2 8 But this

involves a generalization of these procedures to nonhomogeneous wave fields.

3. Dynamics and Geometry. We assumed nominal linear motions and linear array

structures. The effects of nonlinear motions and/or nonlinear receiving structures can

be analyzed by using the approach considered here, by incorporating the new geometry

on the range phase function.

4. Higher Order Receivers. The hybrid algorithm developed in Section V is

decoupled in two blocks. From the illustrative studies carried out in Section VI,

we anticipate that in many practical applications the sensitivity of the global step to the

path perturbations constitutes a limiting factor on the mean-square performance of the

hybrid algorithm. Higher order receivers, designed along the lines of the more sophis-

ticated techniques of nonlinear waveform estimation theory, may then be necessary.

The problems with these techniques relate not only to added conceptual difficulties but

mainly to a large associated computational effort. 5 3
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APPENDIX A

Generalized Ambiguity Funcion

A. 1 INTRODUCTION

The generalized ambiguity function (GAF) for the narrow-band passive problem is

given by (A, A) = |4(A, A) 2 , where (A, A) is the signal autocorrelation function:

- 1 -2a
4(A, A) = dx exp[j AR(x, A, -A). (A. ' 

With SASS or MASS the parameter vector [Ro sin 0]T is two-,irlmensional, while

for SAMS the parameter vector [Ro v sin 8]T is three-dintensional, since we esti-

mate further the relative source/observer speed v.

The analysis for the two-dimensional SASS or MASS paralleis that for SAu-MS and

can be obtained as a special case by assuming in the final result=, that v = v. ir order

to reduce the unnecessary details to a minimum, -we concentrate the discussion on the

more general SAMS configurations of Section Ill. The implications of he restsuls of

this appendix have been discussed in Sections II and II.

Since we are dealing with SAMSo the spatial domaiil is x -- vt and we rewrite the sig-

nal autocorrelation function as

T/2 L i
(A A) = -T/2 dt e j A R(t, A, A)] A. 23

with the phase difference

R(t, A,A)= R +(vt) -2(vt) R si(t) -2(t)RoSir.9 (A. 3)

The analysis of the GAF is carried out in steps. First, we consider poy.yrom-'al pprox-

imations to the phase difference and study the approximate structure of the GAF so

obtained. Second, we return to the general expression of the GAF and concenr'rate on

presenting bounds on the asymptotic behavior of the function.

A. 2 POLYNOMIAL APPROXIMATION

The range phase difference is approximated by finite-uegree pclyrcmiaLs, obtaiied

by truncation of Taylor's series expansions. We have

2 At,AlA)= i, t -T

where
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i 1 2 d i

A i! X2 R = i! X l [R(t,A)-R(t, A)]1 - i! ol

Subsequently we study linearized, second-order and third-order polynomial expansions.

A. 2. 1 Linearized Analysis

By linearizing the phase difference,

Altt, A, A) = AR~ - A(v sin O) t, (A. 4)

where AR = BP0 - R, and QAv sin6) = v sin - v sin 8. This approximation is valid

whe never

AR Afv sin 0)
(A. 5)

0p, jl'C_____-L P v Cos-

tnat is, whe- te Dopple: rn:isn.:.ch ŽA is much greater than the error AR T inducedo2
in the Doppler by the range ac.celeratici rismato:. This may happen because either

T i small (short bse-vaticin interval) r AP is smeEl; that is, we are analyzing the
ambiguity structure in thc neighborhood of the Doppler parameter axis.

The mnbiguity function is given approximate!y by

A_, A) = sine 2 [ s O) -21 [¢' (A.6)

See Fig. 13 fcr the graphical representation of this function. The zeroes occur at
A(v sin )= k k = 1 , ... , an.d the mnEima at A-vsin )= anu A sin)= ±(k +) T
k = 1,2, 3 ... The marma of sinc decrease maniotonicai2y as we depart from the

origin. Tne relation between aolute maximum fat the origin) ad the second .relative

maximum is

: 22.5;

that is. the second maxrmnum is rduced to approximately 4. 5% of the value at the
or-igin. This rielation is idependent cf the specific values of the parameters nd,
in fact, is an intrinsic relation of the sinc function.

A. 2.2 Quadratic Analysis

The phase variation is appromnlated by the quadratic expansion
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AR(t, A, A) = AR - A(v sin O) t + A Q )2 (A. 7)
R

where we also have

/2 2 2 v2 ( l - - 2)
v cos e v cos __ _

R = Ro
o

This approximation is valid in the region

(2 2
v cos O

AR \ o
AR°

2 2 3'
aR A,.3v2 cos 6 v sin 

R Ro

that is, whenever T is small but not so small that relation (A. 5) holds, or AR is small

(the ambiguity structure is analyzed in a neighborhood of the AR o , ARo plane). For econ-

omy of notation we define

A 2-F
o X o

Zr
Al = v sin 0)

2 = 2k -' R

so that

. AR(t, A. A) A + Ait + At 2 (A. 8)

The GAF is approximately

AA) |T , T/ exp (A t+At dt (A. 9)

When A2 = 0, the GAF has approximately the sinc structure that we have just dis-

cussed. We assume therefore A2 * 0, and rewrite the right-hand side of Eq. A. 8 as

2 2 2
a(t_2 + a = A +A + t (A. 10)

o 
2re

where
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a = A2-A ( cos 20a = A : - -2 i R
0

A(v sin )

Ao )aA V CO 

(A. 1 lc)
y=[4- 

We note that a corresponds to a normalized version of the error on the range accelera-

tion parameter, while is a shift on the observation interval caused by the nonzero

mismatch on the Doppler parameter and the radial acceleration parameter. Given that

we assume an incoherent phzse model, y which corresponds to a normalization of the

phase reference is ignored in the sequel. We change variables

(A. 1 2a)t = (t-p)

and define

If 4 ( - )

i= -x- "Z i

1 i (f 2
A = f Z i = -,J T

(A. 12b)

(A. I Zc)

(A. 12d)

(A. 1 2e)C - f

i

1i

sing(r t 2 ) dt. (A. 12f

Tabulated Fresnel integrals are

s)= Src 0
'IC

-fs(1) = 
S

os (-t 2 ) dt

sin (t) dt

(A. 13a)

(A. 13b)

with symmetry relations Fc(z) = c(-J -), J ())= --' - (-). We define the complexc c S S
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Fresnel integral as

FW(Z) = z ) +j ts()= 5Z exp J( t2 ) dt. (A. 14)

Then the signal autocorrelation function is simply

-- IA, A) = [ (Ef) - (Zi) ], (A. 15)

with the ambiguity function given by its amplitude squared. We now analyze the behavior

of these functions.

a. GAF Radial Acceleration

For A1 = we obtain

1 1
%(A, A)= j -(Z) (A. 16)

and

2
~4(A, ) = j-(Z)t , (A. 17)

where

; = e v= o6'2

The graph of (l) n the complex plane is given by the cornu spiral.42' 54 In Fig. 15

we represent Eq. A. 17. The first minimum is at m 1. 9, and the second local max-

imum at = 2. 26 where the ambiguity function (A. A) = . 132; that is, the GAF is

reduced approximately to 13% of its maximum value 1, which occurs at M = 0.

We proceed with local and asymptotic analyses of expressions (A. 16) and (A. 17).

From Abramowitz and Stegun55 we find that the complex Fresnel integral is equivalent

to f() = ZM( 1 3 j - 2), where M(a, b, z) is a confluent hypergeometric function

defined by the series

(al z n

M(a, b, z) = 1 + + (bnnb (b)n'

with

(a)n = a(a + ... (a + n-!}, (a)o = 1.
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Then letting = ;-, we obtain

,t(AA) = M~z,2 ' j)

OC 1 ~n
1+ Y

1 + 2n n!n=l

This can be rearranged in real and imaginary components as

(A, + 2 (-1 k }
5 (2)! k=2 I +4k (2k)!L~~~~~~~~~2)

3

7 - (3)! k

)2k+l
k (- 3 + 4kI 

k=2 (2k+l )! 

In the neighborhood of = 0 we have the local approximation for the ambiguity function

4
-_ = 2~ 4

(A,A) = 1 - -5 + 3 2 t
3 X5 X7

+ higher order temns. (A. 19)

From the asymptotic expansion of the confluent hypergeometric function, 6 for large

Z: we obtain

2~~-/

+ -( )-1 3 -2+ 3 5 (j5)-3

2 2

s 1 - 3 -5 ... (2n-1)

where the remainder converges to zero as

0(I !-S) = -3... (2s-1 )-s s+(j+( -1 

Up to least order we have

. 7

,(A, A) - (3) e 1

( t)

+42
l (A. 18)

r(2) eji

r(2) A

n=4 2n=4 2n
(j)-n + 0(-s (A. 20)

(A. 21a)
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and so

(A,A A r(2) | 1 (A. 21b)

b. General Quadratic GAF

We examine directly the quadratic GAF structure as given by Eq. A. 15. The asymp-

totic behavior of the GAF as the parameter errors become large is studied by means

of the method of stationary phase (MSP). 4 2 The MSP analysis is applied to the inte-

gral form

N(k) -= fb exp[j k(x)] dx (A. 22)

based on the fact that for large k the exponential term varies rapidly and the integral

tends to zero. The asymptotic analysis quantifies how fast it converges and follows

from a Taylor's series expansion of the integral (A. 22). As it turns out, the MSP result

depends on the particular behavior of the phase Hi(x) in the observation interval, that is,

on its stationary points in [-X,XI, i.e., on x _ [-X,X] where U'(x) = 0.

The MSP analysis can be applied to other integral forms where large parameter

values are involved (e.g., large observation interval) when with a suitable change of

variables the form can be reduced to (A. 22).

To show that the Fresnel integral defined by Eq. A. 17 can be written equivalently

as Eq. A. 22, let Z be a fixed constant and define = t and'r T- k . We have

"{9E) = f-k f0 exp(jk 2 ) dS

which has the form of (A. 22). Clearly k - c as - c. But 4

Jz + e 2 0(-1
--~g)=~k S*.Xpcj~',~- - IFOT?- e0 A Z.g'() = /k & exp(jkE ) dt + o x| (A. 3)

whee O(x1 ) is a function such that

X-1 ox-. U

Substituting in Eq. A. 15, we have

(AA ziEj i [Z iexp i() _ exp(j 2 ) (A 24a)

and recalling the definitions in Eqs. A. 11 and A. 12, we obtain
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and so

(A| r( I3 )I 2 = l (A. 21 b)

b. General Quadratic GAF

We examine directly the quadratic GAF structure as given by Eq. A. 15. The asymp-

totic behavior of the GAF as the parameter errors become large is studied by means

of the method of stationary phase (MSP). 4 2 The MSP analysis is applied to the inte-

gral form

N(k) = fb exp[j kP(x)] dx (A. 22)

based on the fact that for large k the exponential term varies rapidly and the integral

tends to zero. The asymptotic analysis quantifies how fast it converges and follows

from a Taylor's series expansion of the integral (A. 22). As it turns out, the MSP result

depends on the particular behavior of the phase (x) in the observation interval, that is,

o,.. its stationary points in [-X,XI, i.e., on x E [-X, X] where i'(x) = 0.

The MSP analysis can be applied to other integral forms where large parameter

values are involved (e. g., large observation interval) when with a suitable change of

variables the form can be reduced to (A. 22).

To show that the Fresnel integral defined by Eq. A. 17 can be written equivalently

as Eq. A. 22, let be a fixed constant and define = t , and T = T/ i. We have

F(lg) = F f exp(jk 2 ) dt

which has the form of (A. 22). Clearly k - -e as I - c. But4 2

I 2
x 2 j r/4 e- -

g-(x) = k - 0 exp(jkg2) d j \+ e~ - + x + (x - 1 (A. 23)

where 0(x ) is a function such that

x (x-1 ) -0.

Substituting in Eq. A. 15, we have

and realling the definitions in Eqs.f exp 2 (A. 24a)

and recalling the definitions in Eqs. A. 11 and A. 12, we obtain
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(A, A) 2 2

( Th ) (2ea, T

which decays hyperbolically with A2, as concluded from Eqs. A.21.

From (A. 25) and when (A. 26) does not hold, we obtain

O(A, A) - < -- (A. 29)

(T )2 [ T1+2 i[ 2 I
¥J: T ¥ -

2(2 2, ) 1

(2A22T) +Al
ZA + 2

A. 2. 3 Third-Order Approximation

We pursue the approximation analysis a step further, since for SAMS third-order

effects are required for global identifiability of the three source parameters, as dis-

cussed in Section III.

The signal autocorrelation function is simply

1 yT/2
,(A, A) - T/2

J-T/2
exp j(Alt + 2t 2 + 3 t3 ) dt,

where, as before, we have ignored the

change of variables, we obtain

-(A, A) 

contribution of the phase reference AO. By a

exp j-r exp j d'r,

1ii

where

1 = /3 lT
A 3

f 3 

x2 
_-

3A3

1 2\

· i;·: " - T+ -

A = fI- i i = A1/3 T.

Along the A3 axis, i. e., whenever A = 0 and A2 = O the GAF is simply

175

(A. 30)

(A. 31a)
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(A. 31c)

(A. 31d)

(A. 31e)
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(A, A = I(A, A) = | cos diT (A. 32)

where 2: = A/3 2 This function is represented in Fig. 31b. Returning to the general3 2
third-order polynomial GAF structure (Eqs. A. 31) and assuming that the observation

interval goes to infinity ( - -X, f- +), we can rewrite the asymptotic ambiguity

function structure as

(A, A) - - rcos(: 'wT+ T) d.
'"'O0

(A. 33)

From Abramowitz and Stegun the integral representation of one of the Airy functions

3 a )/3 dt
Ai ± 'X - \ cos(at ±xt) dt;

(3a) /3

hence, we see that the signal correlation function goes asymptotically as

4(A, A) 
31/3

(A. 34a)Ai t 3 
31 /3

For the Airy functions we have the following asymptotic expansions:

z)1 (122-/4 eg 1: ( 1 l)k cS-k
Ai(z) ~ z) e m )k

2 - ~1/4 C (1)k Cos+ k k+l
0 0

Ai(-z) ( 2 (z)- '/ 4 k+ k

where

Z 3/2

0

I'(3k + )

5 4 k k! r( + )

(2k+1)(2k+3) .. (6k-l)

216k k'.

in particular, the first few terms lead to

Ai(z)- (z )-i/4 e i 5 ]-' 
t I77
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Ai(-iz) (2z) 1/ sin + i ) cosd (o + 72 

Substitution in Eq. A. 34a yields for > 

i I2
(A, A) -31/3

31/3

and for L < 0

(A, A) ~ - 7 2
31/3

(2 31/) 1/4
sin ( + 4)

where now

3 3/

with

1 3 
A1/3 3/
3~

Along the A3 axis (i. e., whenever Eq. A. 32 holds),

(A. 34d)
3 QC 3 vAi(O)

Cos T d- COS T d- = Ai(O)
-oo 31/3 3r(2/3)

Along this line, and asymptotically,

3 1 2 /
3r( /3) 1

(A. 34e)

A. 2.4 General Expression of the GAF

Finally, we consider briefly the asymptotic behavior of the GAF as given by its gen-

eral expression. We apply the method of stationary phase (MSP). Let n be the first

positive integer for which

(n) d"nAR(x, A, A)
AR(x ) =

dxn
x~O

As the observation interval increases we have the following behavior:
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(A. 34c)
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= 2fn(x o, A, A) exp j/2n, n even

= fn(xo, A, A) 2 cos . n odd> 1

fn(x A, A) = exp[ ij AR(,XoA, A)]
r(l/n)

n/ 2r dARn x
k dxn

x

For n = 1, we obtain

2d - e 1_dx exp j AR(x,A,A) VI- -
-J i-

2! AR( T A,x 2 j)] exp[i

dAR
dx T/2

T AR(-T A)

dx -T/2

(A. 37)

The asymptotic behavior of the GAF is as follows.
If Eq. A. 37 holds,

exp[j R( )] expj R(- T

T ( )

which by algebraic manipulation leads to

( A - 1 (,2 . 1 2 + ,2 - 2 AR cos2 2 T2 A + aa + o-r
(- )R -

< 1

(2X T)2

1 + }1

ii~~i l&A I TA a+ -
where AR = AR(* T A, ).

If Eq. A. 35 holds, we obtain

(A, A) r 1
T/2

(1/n)

n 2 (n)
n / - AR(xo )/n!

j2

J (A.41)

If Eq. A. 36 holds, the bound (A. 41) is multiplied by cos 2 ()
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(A. 36)

T/2
-T/2
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APPEND B

Mean-Square Spread Matrix Computation

The mean-square spread matrix (MSSM) X.4 has been defined (sec. 2.4) as

1

A=A i 1i.i
-- J

This matrix is a measure of how flat the GAF main lobe is, and it reflects the effects

of the geometry on its structure and on the receiver performance. The Cramer-Rao

bounds are obtained by scaling 4' with a signal energy-to-noise ratio-dependent factor,

and the total number of grid cells in the "largest of" step of the estimation algorithm

is directly related to the eigenvalues and eigenvectors of ., in particular, to det .C.

We shall compute the spread matrix expression and work in general with the SAMSo

problem. We write

4'(A, A) = 14p(A, A) =(AA ),) (A, A
a a a a

where Aa is the actual source parameter vector, and 4t(A, A ) is the signal correlation

function defined by Eqs. 13. Differentiating with respect to A., we obtain

8A = 2 Re A3}.

Then differentiating with respect to A., we have
1

@A aA. -Re (B. 1)
aA.a A A + BA. BA.

j j I 121

Because of the total signal energy normalization,

X

5 -X isn(A)l jIn(Aa )Id x = 1.

Differentiating this equation twice, we can obtain

n n
A aA. BA nA

Ia A i i A=A
a a

where the inner product notation introduced in Eq. 10c has been used. The first term
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in Eq. B. 1 is

LI

i J IA=A
a

where * stands for complex conjugation. The matrix A is then given by

-,ff= -- I

where

r/-s as \ 

eij A aA J

ii 1 3 J

(B. 2)

(B. 3)

(B.4)

All quantities are evaluated at the source location parameters, and sn is defined by

expression (13b). The Fisher information matrix (FIM) is given by

(B. 5)J = G'( Xo - 1) '

where the gain G' is defined in Eq. 27b.

By direct substitution of the signal expression

/8S n asn

\SA i ' aAj/

-2 X1 rX R(x, A) R(x, A)

J2X * X 1 d

/ a -n .'n~ 2r I X R(x,A)
-A. n j i, x&ac.A-T- dx.

1A i - 1 A

The matrices 0
0

and A1 are then

J - (2I)2= KX] VAR(xA) dx Ls VAR(xA) x,

where VA is the

A, and X = Z/Ro.
0

gradient column vector operator with respect to the parameter vector

Computing the integrands and defining
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1 - x sinO

S- ((lxsinO) 2 +x cose)L/2

I x - sin 

NER ((l x sin)Z+ X2Cs 2)1/2

f3 (x, ) = R
3 ~0 J

X

((l -xsin 2 +x2 cos2)1/2

we obtain

2 SX dx
-Alj = (- _ X ifj dx

=AY ()2 [0 fi d f dx
1j cX X 3

By application of the Schwarz inequality, we can see that i = 1, 2, 3,

except for the degenerate conditions X = 0 (no observer) or = r/2 (end-fire geometry).

Performing the computations, we obtain

o = (2)2 1 - cos H = I =

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(B.8)

v° -sin OH + cos OH2)

-Ro(H 1 -sin OH 2 )

, (- )( cos H2)

- (-sin H2 +3i!

(F - sin6F1 ) I -

I I

R 1 2
v- (Fo - sin F)(F2 sin F 1) )

I I

-Ro( F - sin F1) F1
L

R 2

V (F2-Sin6F 1 ) Fl
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R

f2(x, ) = 2V
x

_= (2 )2

R-H
2

(B. 9)

R 2 F 2

o 1

I

I

!

I

I

I

I



z L/2
X = -R R0 0

for SASS or vT for MASS and SAMS
0

R = 1 + x2 - 2x sin 

X 1 R os dx a arctan

1 - X X dx = I A In + tan A arctan

z 2 R =X 2

H = I x 2 cos 2,H 1 (-)X dx = + sin A I Aarctan
r- z 'X )XR cos 

H 3= 2X X - dx 2 sin 9 + a - Cos tan (1 +2 cos 2) A arctan
2

Fo 2I X dx = arsh
X-X I R

1 X

sin -X rsh

F2 2X I X 2 =)l/zF-1 d = (+X+ZX sin)+/2 1 (1+XZ - 2XsinO)

2 
3 sin0 %R + (3sin -1) A arshl,

where

1A arctan 2X f arsh (-tan + c e)j1
X)

= 2X [arctan (tan + c e)

arctan (tan

i'Iarsh: 
2); - arsh (-tan + c

L ~~Cos 0 

A<rR = IIr jX

A n = [In RjX2X I _

I8Z

where

(B. 1Oa)

(B. lOb)

o8-sX (B. 11)

(B. ,%

,B. i3)

(P. 14 



REMARK. With the SASS or MASS problems the second line and co!urnn of . are

deleted.

Analyzing the elements of ao and -1 in Eqs. B. 8 aid B. 9, we note that we can

rewrite the spread matrix as

_ = S .'S, (B i5

where S is the scaling diagonal matrix

c I 1 (B. 16

L v 11
'c 

and .4' is the spread

eter vector is

R
A = 

n L v
a r

matrix for the normal:zed estimation problem, where the param-

V sin 91 .

a |
(B. i7)

'he elements of o4' depend only on the source bearing angle and on the geometric

parameter X = Z/R o.

3
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APPENDIX C

Asymnptotic Behavior of the Mean-Square Spread Matrix

C. I GENERAL DERIVATION

As discussed in Sections II and III, the mean-square spread matrix (MlSSMI) A

reflects the effects of the geometry on the receiver performance. We shall study its
Z

asymptotic behavior for large values of the geometric parameter, i. e. , as X = R- -,

or equivalently as Y = - C. 0
-1

We start with Eqs. B. 8 to B. 14 and make the change of variables y = x . We define

the trinomial R±(x) = 1 + x2 ± 2x sin 0, which is abbreviated R or R when the variable

is understood from the context.

We perform one of the integrations in detail.

1 x dx=- dy
1 2X I -R 2 {y y2 z yZ -+

Y2 X zIz 2 d1 § Ldy.

These integrals have been tabulated by Gradshteyn and Ryzhik. 5 The final resuls fr

all quantities of int: rest re given below. Set

Y 13*. =Y\ d-2 Oy i dy.± ? y y R±

From G'radshteyn and Ryzhik 9 we have

-2k
arsh z = n 2z- / k z -

L 2 (kl) 2k
k=l

With

Iz [ j ±Y sin 2

Y cos8 

which is satisfied when > 1 + sin , or equivalently when Y < 2, we obtain Y[a+arsh]
-3 E

of the order YLn Y + OY ) as Y- 0 .But lim Y LnY = 0 for any > O.
Y-O

The Taylor's series expansins of Eqs. B. 11-B. 14 lead to
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atar 2 os OY + 0(Y 3)
A atan = 2 cos OY + (Y )

R
-4 sin OY + O(Y3 )

A arsh -2 sin Y + O(Y 3 )

.AfRR -2 sin eY + (y3)

FiR + -ii 2 + cos2 y 2 .

Substituting in the expressions of Hi anL Fi, we obtain1

H1 = 3Q2 - 3C1 =!tan Y +
I- I+ 

H2 = 3C + JC2- +
= 1 cos 20 ir sin 

cos 2 2

I R- y tane [A a] YY -- T-ta] 

--I
R +j

R_
R 

+ cos __ [a atan] Y
2 cos 0

H3 = 3 - 3C 3
-+

sine -1 - 4 sin20 Y
2 2

tan e(3 - 4 sin28) Y [V - & atan 1

(C.3)

Fof1 -9- = [arsh (tan 8)]Y + [_arsh]Y
- 1+

F = - -
+

F 2 =- 3 + 3
+

1 A Nr +sin 0 [A+arsh]Y

=4i +3 2

= 1_ (4-R + -R) + sin A',-R + (3sin2 - 1[a+arsh],4Y -

where

?atan = atan (-tan + c + atan (tan + cs

V~7.- = -N - = = (1+Y -2Ysin0)I/2 - (1 +y2+2Ysin0)1/2 (C.8)

harsh = arsh Ycos8 -tan ) arsh( Ycos +tan(C.

These expressions can be expanded in a Taylor's series about Y = 0, except for A arsh.

But we note that lirn Y [+arsh]= 0.
Y-0

202 (C. 1)H = tan Y - 2 sinY (C. )1 2
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cos201 2 2 2H 2 Cos 2 Y + (cos20 - 3 sin20) y2

H3 sin 0 1-(3-4 sin 2 0) s +4 cos (2) y2]
3 = sin 2 cos +

F Y[arsh (tan 6)- sineY 

F1 -sin OY + s [A+arsh] Y

2 2Y1 Y J.

(C. 11)

(C. 12)

(C. 13)

(C. 14)

(C. 15)

R
The asymptotic behavior of the MSSM up to first order in Y X Z is given by

() 1
tsin e; cos cos t 6) V Y , v° e -j )Larsh tan0) - 25arsh - ! c +s-nCls e

sin8 0 os 2 cos 21 YO * arsh + cos-2r 2

Ro(-Lbnj+ slnm2Z)Y) , varsh)- s o + 2 Y) 
LJ

(C. 16)

Before tackling the inversion of this three-dimensional atrix- we shall first consider

the diagonal elements, then the principal minors, and finally return to the full three-

dimensional matrix.

C.2 LIMITING BEHAVIOR OF DIAGONAL ELEMENTS

This analysis provides the asymptotic behavior when only one parameter is to be

estimated, and the other two are assumed known a priori. We obtain

lirm a = lim
Y-O Y- sin2 + cos cos (20) - sin

-I I k -2 /\2
lim O= lim ( oo 12Y
Y--0 Y-0 22

-1
lim Ai li rn
Y'--0 Y--

2

os 7 2 I

R20( 1 cos 2 IT Y)\2 R
0 ' cos 2 1 0

(C. 17)

(C. 18)

(C. 19)

I r



C. 3 LMITITNG BEHAVIOR OF PRINCIPAL MINORS

C. 3.1 Range/Angle Estimation

R ,sine
o

= (2) sin20 + cos cos (2) Y RI - n 2S )Y1
R -sin0+- -sin(280) Yo0. 2- I

I - cos 8 2 Y
cosOi

The determinant is

det AR sinO
Ro i

The inverse is

I

( I

(C.20)

(C.21)

\ /
2 cos 
yI Y cos 2

sin 20
R
o

I cos 1

cos 8 sin20 2
y + Cos 0

L
r2KI

_ I _IR2 
Ro

We study briefly the normalized spread function

2 cos 8
f (, Y) = C y cos 28R IP Y

cos 2 1

(C.2)

(C.23)

1 L cos 0 sin20
f(e, Y) = 1' y + cos20 cos 20

f ( Y) sin 20 -os 0].
Note that and f are even functios of and f is odd.

Note that fR and f n-Square even functiors of and fR3 is obtdd

a. Mean-Square Range Spread. From Eq. C.23 we obtain

d2n+1

dO2 n + l fR(,Y) = (ln L

dZn n+
dn fR(0 'Y) = (-1)do n 

2 sin + 2 2n+ sin 20 ,

Z cosO+ 2 nco 2 nZn

L Y + Ios ZEi n .2,...L J

In particular, the zeros of the first derivative for 0 C [O 2J are

-1
R sinO

o

(C. 24)

(C.25)

n= 0, 1,Z, . . .

I

-(2r; 2 -x Y
x R 2 os 



d (e, Y)
= O-

dE

At 1= 2(-1
Ate=0 f =z- +

or= 

cos 1
2TY

fR < 0

2) - =0

>0

1 2-
At cos8 -e = =-4 sin < 02TY R

ifY = 22

if Y > 2

for 0 0

1 _ (iv)
For 0 = , Y -- fR 0 but fR = -12 < 0.

Conclusions:

For (a) Y > 02r 8 = 0 is a local minimum.

For (b) Y 2r', 0 = 0 is a local maximum

In case (a) a local maximum occurs at cos = while in case (b) the function

decreases monotonicaily to 1 at = /2.

b. Mlean-Square Bearing Spread. We obserze that f (0 = 1, f (2) and f for

0 = 0, which is a stationary point. For Y << a second stationary point, which is a maxi-

mum, occurs at app.'oximately cos 0 55'.

A pictorial representation of these functions is given in Section II, Figs. 22 and 23.

C. 3.2 Rnge/Velocity Estimation

We obtain from Eq. C. 16 the inverse range/velocity minor

- 12Y [cos -2 - arsh tan0 - si0 Aarsh
_ _ __sinZ O 2L

7 -- - - - - - - -- - - - - - - -

IR ( ) 12Y2

o, v 2 sin2

L

(C.26)

where the determinant

det c/R
, V

( k ) (v)
sin20
12y 2

I n

(C.27)



Up to lowest order

(X\ ie
(C. 28)

(C.29)

C. 3. 3 Velocity/Bearing Estimation

Again, from Eq. C. 16, for the inverse of the velocity/bearing minor we obtain

v, sine 2- F(R) lZ2y2 v sinO 1
R2 2

O

-I

2 A4arsh 1ZY

- - - - - - - - - -

(C. 30)

1
R

I 

det v, sin O
o 12 2 '4

x k V2 12Y2

Finally, we consider the full three-dimensional proble .n.

C.4 SAMS MEAN-QUARE SPREAD IMATRIX

The determinant and .-1 are computed directly from Eq. C. 16.

2t ( 6
det ( -

R4

o 1 1 I
2 2 12 cos Y'

V

~ y co 9 R 0_ e_ arsh tane) iz 12 os y I s 

2 r oe sin2 e ' 12 s 

w = ' / (v\R \ y 2 a 
2

sin e 1 - e -i2 arsh (ta. 9)]j 12 Z os eY

: s oc o s 2 j -1RI !' 2 Cos inZ e Cs20 Cos 20 2Iry Cs 2]
(C. 33)

C.5 VERY LONG BASELINE iNTERFEROMNvETRY (RANGE/BEARING)

In Fig. 25 we illustrated a linear observer composed of three widely separated short

collinear arrays. We shall derive the Cramer-Rao performance bounds for the range

R, V/,
o

- RolvV

(C. 31)

(C. 32)

-1 2\ZZy
-( if Y /, 1 

I



and bearing parameters, under the following assumptions.

H1: R0 > AL, i.e. the source/observer center separation is much larger than the

physical dimensions of the individual linear sensors.

H2: Ro < L, i.e. . the source/receiver center separation is much smaller than the

total observer system dimension.

Under HI we linearize the range phase function across each individual stave about

its geometric center. We obtain

R(x) =(r + 2 -2xr oin 0)1/2r - sin x for x E (-E,)

= R(1) - sin L/2(x-1) for x E ((-E),(l +E))

= R(-l) - sin 9_L/(2 x+l) for x (-(1+E),-(-E)).

But

sin L/2 = cos 2L/ = -cos eL/z 

Under H2

eL/2 -- L/= eL'

and we can approximate

Also

os (- sL/) 1 -

Z -0 sin (2-01 2 L\ L

(' )2 1

R cos 
tan (r -0 eL)L o - r cos 0,

- - R sin 02 o

so that

2 2V r cosOl

sin 0
±L/2 LI - 01

We then have

r - sin Ox for x [-E,E]

r 2 co2\r COS 

R(1) + 0 (x-l)2

(C. 34)

(C. 35)for x E [1-E, +E]

1 - - r2 cos 2 f
R(-D - 01 -° 2 (x+l) for x E [-(l+),-(l-E)]I I (C. 36)

To comrpute the spread matrix, we need the gradient of R(x) with respect to the

R(x) 



parameter vector [Ro sin 8] . Because of the Rayleigh model, in subsequent compu-

tations we ignore the presence of the zeroth-order term in the phase approximations

Eqs. C. 34-C. 36. We arrive at

4 I 21 32 cos40 _ cos 8 sin 
- E r 2~ I - sin r

(I)3 o' (L/2)

-1 sin2 r2
I 2 0
i 0

(C. 37)

det A_ = [(2
1 3 cos 40

j (L/2) r2
0O

m

2\Z
L/2 L/2 sin r

2) 2 cos?-( cos 

3
L/2 sin 0 r 3

2
cos O

2r
I o0

LI) I2 2 I3 2
m = er-Rao bounds are given by

The Cramer-Rao bounds are given by

ff =~'2y '1 1 G-1/2 1,51 (L/2

as' G 1/2( - 1 2 G-1/2 / 1 (L/2

-L/z \2 1 Ei. ·e ·a ·i·r sin

/ cos AL/ Lr in
(C.4 1)

(L/X \

But from Eq. 27c

G-1/2 a I

(SNRefcf) /Z 'LT

We obtain

(C.42)

(C.43)

L/2 2-0= t-F X 

(C. 38)

where

(C. 39)

(C. 40)

1 I
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APPENDIX D

Taylors Series Approximation to Four-Dimensional

SAMS Mean-Square Spread Matrix

We present the local analysis expressions for the mean-square spread matrix A,

its classical adjoint 4, the inverse - , and the determinant det _A. The results are

so extensive that most of the time we restrict ourselves to the last-order terms. In

actual computations we have used the required higher order terms to obtain the exact

coefficients for the terms of interest in det A, and also to preserve the positive-

definite character of n. In particular, we stress that when certain equalities between

elements of t or A occur such as 1 3 3 22 sin O they are intended only as
v

an economy in notation, and it is to be understood that the equality holds only for the

least order terms exhibited in this appendix and not for the higher order terms that have

to be considered when manipulating the matrices. We use the notation

L
Xl = X Xcos = 2R cos 

Xt = Xt cos et 2R cos t
c o

X. = X. sin 0., i = [,t.
1 1 1
s

Mean-Square Spread Matrix

1 = (2)1 X4 5X2 X2 +X4 C

( )2 ( Xj) L 3e + T2 cos 0 cos(Ot + 2 t )

(cos etXt)z 4 cos t sine
+ t t) _ 3 sint 05 9

=R2X 2 K- cos2 2 2 
X 3 X Cos ( + 20 + 19

For i =3, a= t a =; for i = 4 a = t.

2 R Xt2 Z C in os 2 X os 
A12 (X) - _2 2 0 s(

--



X2z 1 cos 2 sin 

.I () Ro 5x i x2 + 2 cos 0 cos(f a .
The same convention applies for i, 

The same convention applies for i, a i, ae.

R2
X2

v t
[ s2nt +x t3 sin 2

2
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9
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R5 x4X4 4
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4 + 11 cos 
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Inverse Matrix

We present explicitly only the diagonal elements.

- I zz(- 11 = ( 2
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Determinant of A

8R cos F
e t1 I 36 4 44 2 +det J= XjX t + x- X
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