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Abstract

The Maximum Entropy power spectrum estimation problem for two dimen-
sional signals is discussed. The problem involves obtaining a correlation match-
ing power spectrum estimate that can be represented as the reciprocal of the
spectrum of a two dimensional polynomial, whose order is the same as that of
the known correlations.

The differences between the one dimensional and two dimensional prob-
lems are pointed out. new algorithm for solving the highly non-linear two
dimensional problem is developed. The "alternating projections" type of algo-
rithm iterates between the correlations and the polyromiai coefficients apply-
ing the requisite constraints in each domain to obtain the desired solution.

Implementations of the algorithm for main frame and mini-computers are
described. The algorithm is used to investigate the properties of two dimen-
sional Maximum Entropy power spectra, and the performance of the Maximum
Entropy estimator is compared to the Maximum Likelihood and Bartlett esti-
mates.

The algorithm is also shown to be applicable and useful for obtaining the
power spectrum estimates for one-dimensional signals with missing correlation
values.

A computer program for implementing the algorithm on a mini-computer is
provided.
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Chapter 1

Introduction

The problem of power spectrum estimation (PSE) arises in various fields

such as speech processing, seismic signal processing,2 image restoration, 3

radar,4 sonar,5 radio-astronomy etc. and its applications range from identifying

signal source parameters and transmission channel characteristics, to remov-

ing noise from images. 3 Consequently, this problem has received considerable

attention in the iterature, and a wide variety of techniques for PSE have been

developed. One technique that has been widely investigated due to its high

resolution characteristics is the Maximum Entropy method. The primary

interest of this thesis is to investigate the Maximum Entropy method of power

spectrum estimation for two-dimensional signals.

1.1 Background

The power spectrum of a zero-mean N-dimensional signal x[n] is defined as

the N-dimensional Fourier transform of its autocorrelation function (ACF); that

is,

Px(_) A F(Rx[n])

where

P,() : power spectrum of x[n]

Rxn ] : ACF of x n

and

n A (nl.n2 .... nN)

XA (Aol. 2-- ~N)
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and FN denotes the N-dimensional Fourier transform operation. Thus, to obtain

the power spectrum of a signal, its autocorrelation function must be known

over all "time"'.

The basic problem in PSE is that of forming the "best" estimate of the

power spectrum of a signal given only a finite segment of the signal or its ACF.

The commonly used approaches to PSE include:

Classical or conventional PSE:

- Autocorrelation estimates 6

- Periodograms, averaged and/or modified periodograms 7 a

Parametric signal modeling 9

Data or ACF extension techniques' 0, 1

The Maximum likelihood (ML) method 12

The Maximum Entropy (ME) method 1 3

1 he motivation behind and shortcomings of the traditional or classical

approaches are well known. When the power spectrum estimate is obtained as

the Fourier transform of the sample ACF, the implicit assumption made is that

the data are zero outside the known region. Further, if unbiased estimates of

the ACF are used, the power spectrum can display meaningless negative

regions. In addition, when the periodogram is obtained via the Discrete Fourier

Transform (DFT), the data are assumed to be periodic. Further, the variance of

the periodogram does not decrease with increasing data length. 7 Tne variance

can only be traded off against the resolution of the estimate. The major advan-

"Time is used here as a general concept. Sgnals of dimensionality U.-gher tnaz one wi; uIsu-
ally have spatial as well as temporal dependence, and what is implied here is that to otain
P.(w, 4xnJ must be known for al n.

-
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tages associated with the conventional approaches are that the power spectrum

estimates are easy to compute and the methods extend in a straightforward

manner to two and higher dimensional signals. Further, the classical methods

offer good performance when a large amount of data are available for analysis.

Another general approach to PSE is to obtain a rational model for the sig-

nal generating process. The PS estimate is then obtained directly from the

model parameters, arious modeling techniques, such as autoregressive (AR),

moving average (MA) and autoregressive-moving average (ARMA), have been

successfully developed for the one-dimensional (1-D) case. 9 These techniques

can also be extended in a straightforward manner to some two-dimensional 2-

D) signals but they have not achieved the same degree of success.1 4

If the original signal is assumed to be bandlimited and sampled sufficiently

fast to avoid aliasing problems, then various iterative extrapolation

schemes 1 I , 15 may be tried. The major problems associated with these methods

are the typically slow: convergence rates and the problems encountered in han-

dling noisy data.1 0 Although these techniques offer a viable alternative in the

1-D case, the computational burden involved in handling 2-D data can become

enormous as the storage and computational requirements increase quadrati-

cally.

The Maximum Likelihood approach to PSE has its basis in array process-

ing. 12 It was originally motivated by one of the shortcomings of the conven-

tional PSE methods. In the conventional methods the windowing of the ACF

implies that the spectrum is smoothed by a fixed window. The ML method

smooths the spectrum with an adaptive window that attempts to minimize the

leakage or interferene from neighboring frequencies, thereby achieving better

resolution. The extension of the ML method to 2-D problems is straightforward.

__�I
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Another approach to the PSE problem is the Maximum Entropy method.

This approach imposes far fewer constraints on the data than the conventional

methods and assumes that all the information that can be obtained about the

signal generating process, i contained in the available data segment. A meas-

ure of the information, usually the entropy, is then chosen and maximized

under the constraint that it must be consistent with the known information.

This procedure then leads to the so-called "Maximum Entropy" method of power

spectrum estimation, first expounded by Burgl 3 in 1967. Pendrell1 4 has shown

that the ML method can also be considered as an information maximization

method, with a different approximation used for the entropy of the process

than is employed in the ME procedure. The resolution of the ML approach lies

between that of the conventional and ME methods, a fact that was very neatly

quantified by Burg.1 6

The ME method which has better resolution characteristics than the ML

method, can also be viewed as a technique for extending the ACF beyond the

known limits. It always leads to an all-pole or autoregressive model for the

spectrum and in i-D the problem is identical to autoregressive modeling of the

signal.' 7 This leads to a linear problem formulation that is analytically tractable

and corrputationally attractive. Unfortunately, the corresponding 2-D problem

is highly non-linear, and although the form of the spectral estimate is still

autoregressive, no closed form solution to the problem has been found so far.

In fact, the previously proposed solutions are computationally expensive, and

are sually approximations to the true solution. The main objective of this

thesis research was to develop and characterize a new algorithm for obtaining

the true 2-D Maximum Entropy power spectrum estimates. Although the algo-

rithm was developed primarily for the 2-D problem, it has also proved applicable

��_I·_I _
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and useful for the case of I-D signals with missing correlation values. In such

cases, the I-D ME PSE prob:.em is also non-linear and a closed form solution

does not exist, and therefore the algorithm developed in this thesis proviaes a

viable alternative for obtaining the power spectral estimates in these cases.

1.2 Thesis Outline

The maximum entropy problem is defined and discussed in Chapter 2, and

the form of the PS estimate is obtained. The differences between the -D and

2-D problems are outlined, and the previously proposed solutions to the 2-D

problem are discussed.

Chapter 3 is devoted to developing the new algorithm for 2-D ME PSE. The

algorithm is introduced at the conceptual level, and then developed into a prac-

tical technique.

Chapter 4 discusses the implementation of the algorithm on large (main-

frame) computers with unlimited on-line storage capability, and on mini-

computers with limited on-line storage. Three different implementations are

compared.

Chapter 5 characterizes the properties of the ME PS estimates of 2-D

sinusoids buried in white Gaussian noise (WGN). The characterization is done in

terms of the effects of signal to noise (S/N) ratio, size of the known ACF array,

and the starting phase of the sinusoids, on the ME PS estimates. The resolution

properties and the accuracy of peak location estimation of the ME estimates

are compared to conventional and ML estimates. In addition, the application of

the algorithm to a practical example using real data is shown.

_.____ ___ __^_ I
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Chapter 6 discusses the application of the algorithm to the case of 1-D sig-

nals with missing correlation points. This situation can arise when the data are

sampled over a non-uniform grid. In such cases, even the -D ME PSE problem is

highly non-linear and no closed form solution has been proposed.

Chapter 7 summarizes the thesis and indicates directions for future

research.

Appendix A contains the source program for a mini-computer (PDP-11.

UNIX system).

1.3 Notation

Standard notation is used throughout this thesis. The under-bar indicates

vector valued quantities. Thus.

n a (n,n..._..tr

C; A (W i s W - N)

x[] : N-dimensional time signal.

In the context of this thesis, N will generally be equal to one or two.

[n] : ACF of x[n]

P,t(X) Power Spectrum of x ]

P(c) : An Estimate of the Power Spectrum of xn]

X[n] : AR coefficients corresponding the power spectrum, that is

xln] = F-' rP,( )]

F: Fourier Transform operation

F-4 l: Inverse Fourier Transform operation

The dimensionality of the Fourier transform will usually be clear from the con-

text.

The region of support for the known ACF segment is referred to as the

region "A". Due to the Hermetian symmetry of the ACF. the region A is always
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symmetric about the origin, and is assumed to contain the origin for both i-D

and 2-D signals.

Power spectrum estimates of the form F[x[1] are referred to as all-pole

or autoregressive (AR) estimates regardless of dimensionality.
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Chapter 2

The Maximum Entropy PSE Problem

2.1 The Maximum Entropy Method

The formulation of the Maximum Entropy method of power spectrum esti-

mation was first expounded by Burg' 3 in 1967. In order to circumvent the

artificial assumptions made about the data by the conventional methods of PSE,

Burg suggested that the data, or equivalently, its ACF, be assumed non-zero

outside the known segment. The assumption was that the entropy-density was

not a function of the unknown correlation values. Since the entropy is a meas-

ure of the information about the process, this is equivalent to assuming that all

the information about the generating process is contained in the available seg-

ment, and thus, that the value of the entropy is the maximum possible that is

consistent with the known data. This is the reason why the technique is

referred to as the Maximum Entropy method.

22 Entropy of a 2-D Prtcess

The term "entropy" used in the context of power spectrum estimation

represents a measure of the information content of a signal. The amount of

information contained in a signal can be quantified by the length of the mes-

sage required for its transmission. It is easily seen that encoding of information

requires a number of digits proportional to the logarithm of the inverse of the

probability of occurrence of the event.l8 When not all events are equally prob-

able, the average information is measured by
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H = l1 pj log pj

a quantity termed the "entropy" by Shannon. 19 Here, pj represents the proba-

bility of occi-rrence of the j'th event, and 'r' is the base of the number system

used to measure the entropy (e.g. r = 2 means binary digits). The unsubscripted

logarithm is taken to be the natural logarithm

When the random variable can take on a continuum of values, the sum in

the definition of the entropy is replaced by an integral. Further, when one deals

with the realizations of a process, the probability is replaced by the

corresponding joint probability density function (PDF). The expression for the

entropy therefore becomes:

H = -ff() log(z) dz (2.1)

where f(z) represents the PDF o the process z. In order to obtain the power

spectrum estimate of a wide sense stationary process, only its first and second

order statistics are required. Therefore, in this context, one cannot distinguish

a given time series from one which can be fully characterized by its first and

second order statistics only, namely, a Gaussian process.

Suppose we have a 2-D Gaussian process z:

Z21 21 2 Z1 M

Z2 1 Z 2 z

ZN1 ZN2 ''' ZN

The PDF of the process is given by

N N W 

f(z B) = (2 e2 (2.2)

where the symbol '*' represents the complex conjugate, 1tNM is the NM x NM

matrix of autocorrelations. It consists of an M x M equidiagonal array of N x N
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Toeplitz ( equidiagonal ) matrices. It is often referred to as a "block Toeplitz"

matrix. ijkl represents the element in the i'th row, j'th column of the block

matrix which lies in the k'th row and l'th column of the array of biock matrices.

Its value is

ijkl = Ezikzl = (i-jk-l)
Similarly, i'-kl represents an element of the inverse of NM-

Substituting eq.(2.2) into eq.(2.1), we obtain

H(z_) = Ln i !NMl

In the limit, N,M-,, H(jXM) diverges, and it becomes necessary to define the

entropy density:

H lim jW H(2ENy)

- ln NMI
NM-- 2NM

The entropy density can now be related to the power spectrum by the use of

Szego's theorem-20 In 2-D, the theorem is:

im F(A) 2 f (4 p(f.)) df, dfY
N-M- NM

where the Xi are the NM eigenvalues of the matrix Min. P(t.xf y ) is the spectral

density at the frequency (fx,fy), and fN Is the Nyquist frequency ( assumed to be

identical for the x and y directions). F(.) is an arbitrary function. Choosing F(.)

= In(.), we obtain

hm .~ NH fN

l- ia 1 n(fX) r2 ff ln(4ftP(ff)) dfx dfy
NM- - - i=N M4 N

which gives

N.M- NM 4 fN f4
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or

H - f f (4fN2P(f,f,)) dfdfx d2.3)

which is the expression relating the entropy density to the log of the power

spectrum. This is the 2-D analog of the expression derived by Smylie et al.' 8

2P3 The Problem

The technique of ME PSE can be quantified by considering the expression

for the entropy, eq.(2.3). Rewriting eq.(2.3) in terms of the radian frequency ,

and dropping the constants which do not affect the methodology, we get

H = fInP.(w)dw

Writing the power spectrum as the Fourier transform of the ACF. we obtain

H = fln R [n ]e j- d (2.4)

Now, suppose that R[n] is known only over a finite region "A". Separating the

summation in eq.(2.4) into the known and unknown regions, we obtain

H = EI' R 4n e- + [nie1jl dab (2.5)

Now, mairrizing the entropy with respect to the unknown ACF values, we obtain

dH_ = 0 = . d O for m A
dRm[] s R[n]e. -

or

f p(_ ) d; = 0 for m A (2.6)

But this is just the inverse Fourier transform of one over the power spectrum.

Hence, if we write,

____ _
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G() = P( )(2.7)

then Gx(t) is also a valid power spectrum, snce Px(w) > 0 for all w. Therefore,

it can be represented as the Fourier transform of some ACF, say X[n]. That is,

G,(_) = CA[n]e-.n (2.8)

or equivalently

fG()0-':d = X[n] (2.9)

Blut eq.(2.6) then indicates that A[n] is zero outside the region A. This leads to

the very important conclusion that the ME PS estimate can be represented by

an autoregressive model, whose coefficients have finite support. Further, this

support is exactly the same as that of the known ACF of the signal x[n]. Hence,

PuHM(_) = (2.10)

Since the above discussion was completely general, eq.(2.10) shows that regard-

less of signal dimensionality, the form of the ME power spectrum estimate is

always autoregressive in nature

The above derivation implies that the ME problem can equivalently be

stated as follows. Given R[n] for n : A. determine P,(_) such that Pe(c) is of

the form:

P,(a) A= ]e _.:(2.11)

and

PF-'l(a)j = P an] for n EA 2.2)L L)] RxLU.

---
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2.4 Signal Dimensionality And The Maximum Entropy Problem

The above problem statement applies to all signals regardless of their

dimensionality. The solutions to the problem however, depend strongly on the

signal dimensionality. For -D signals, when the ACF is known over a connected

region, the mean- square error minimization of the prediction filter based on

autoregressive signal modeling requires solving a set of linear equations for the

filter coefficients. Further, the power spectrum estimate obtained from these

filter coefficients is identical to the ME power spectrum estimate.2 1 For 2-D sig-

nals, unfortunately, this is no longer the case. Specifically, even though

minimizing the mean-square error of the autoregressive filter sJill requires

solving a set of linear equations, the power spectrum obtained from the

estimated filter coefficients is no longer the ME PS estimate. The reason for this

can be seen by examining the form of the normal equations for the filter

coefficients in the autoregressive signal modeling case. The derivation of the

general form of the normal equations for 2-D signals is completely analogous to

the 1-D case. Minimizing the squared prediction error with respect to the filter

coefficients gives

jEaR,(r-i.s-j) = R(r,s) for (r.s) E B (2.13)

where the aij represent the autoregressive filter coefficients to be estimated,

and the set B consists of all the points where the filter mask has non-zero

values. The power spectrum obtained from the aij is given by

jPX(.:WIz) E 1 (2.14)

E[~ akl, ee 112

From eq.(2. 13) for any non-trivial choice of B, that is, if B does not consist of a

set of coUinear points, the number of independent values of P.(nl,nz)
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Fig. 2.i: Twc dimensional autoregressive signal modeling. (a) First.

quadrant autoregressive mask of size 4x4. (b) Independent autocorre-

lation points required to solve the normal equations for the mask of

(a).

required to solve the abov- set of equations for the filter coefficients is greater

than the number of filter coefficients. For example, consider the filter mask

shown in Fig. 2.1(a). in which the dots represent the region for which the aij are

non-zero. Fig. 2.1(b) shows the independent values of P(n,,n2 ) required to solve

for the aij in Pig. 2.1(a) by eq.(2.10). Clearly, the number of correlation points is

greater than the number of filter coefficients. Since the estimated power spec-

trum given by eq.(2 14) is completely determined by the filter coefficients alone,

it does not possess enough degrees of freedom to satisfy eq (2.11) which is

required for the ME PS estimate. Thus we see that the AR model obtained by the

linear least squares formulation does not coincide with the ME problem in 2-D.

In fact, the 2-D ME PSE problem is highly non-linear and a closed form solution

_���___

i
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has not yet been found.

In the absence of a closed form solution, it is important to know the condi-

tions for the existence and uniqueness of the solution. In this regard, Woods2

has obtained the theoretical result that if the given Rx(n l,n z ) is a part of soime

positive-definite correlation function, meaning that its Fourier transform is

positive for all (,:02)]. a unique solution to the ME problem does exist. In gen-

eral, it is difficult 2 2 to determine if the given segment of the ACF s a part of

some positive-d.efinite correlation function, even though this is generally the

case in most practical problems. For example, if the ACF is obtained from the

data using the biased estimator for the ACF 6 as is done generally, the correla-

tion function is always positive-definite. The problem of the extendibility of the

given segment of the ACF has been discussed by Lang.2 and a mathematical

characterization of the problem has been offered. n this thesis, we assume

that the given segment of the correlation function is indeed extendible, so that

the ME PS estimate exists, and is unique.

25 Proposed Solutions

In his Ph.D. thesis Burg24 describes a general variational approach to

estimating any function, which can be applied to the problem of 2-D ME power

spectrum estimation. The proposed solution is iterative in nature and requires

the inversion of a matrix in each iteration where the dimension of the matrix is

of the order of the number of given autocorrelation values. However, no results

using the techmque have been presented.

Wernecke and D'Addario z5 have attempted the Maximum Entropy recon-

struction of images from noisy data. Again, the algorithm proposed is iterative

� I_ _ .- 
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and attacks the primal problem, that is, the entropy is maximized under

appropriate constraints. The maximization is done by continuously adjusting

the power spectrum estimate and evaluating the expression for the entropy and

its gradient. A few optimization algorithms are proposed, which are computa-

tionally expensive and require large amounts of storage. However, the results

shown are encouraging.

Woods2 has given a constructive proof for the existence and uniqueness of

the 2-1I ME spectral estimates, under the condition that the known ACF values

form part of a positive definite autocorrelation function. He has also proposed a

solution to the problem based on the assumption that the power spectrum can

be expressed as a convolutional power series (a power series in the frequency

domain). However. the algorithm is not proved to converge, and the very nature

of the formulation leads to an approximation to the true solution. Further, the

approach is limited to power spectra which can be expressed in the form of the

proposed convolutional power series.

Lang2 3 has tackled the general multi-dimensional ME problem for sensor

arrays. The problem of the extendibility of the given ACF segment is character-

ized. The ME power spec-um estimation problem is reduced to the solution of a

finite-dimensional convex optimization problem and iterative algorithms using

the method of steepest descent are proposed. The algorithms are proven to

converge, and results for both the one-dimensional and two-dimensional prob-

lems are shown.

Jamn and Ranganath 2 6 have also developed iterative algorithms for the solu-

tion of the ME problem However, their algorithms do not use the method of

steepest descent, and are typically sloswer than those proposed by Lang.

__ I _ _�
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Other attempts to solve the 2-D ME PSE problem have been made by Ong.2 7

Roucos and Childers,2 8 Newman29 and others, but none of them has achieved

any high degree of success.

II_ _ _



- 28 -

Chapter 3

The Algorithm

In this chapter, a new iterative algorithm for obtaining ME PS estimates for

2-D signals is developed. This algorithm has also proved useful for the case of

one dimensional signals with missing correlation points. That application is dis-

cussed in Chap. 8.

3.1 The Conceptual Algorithm

Recall from Sec. 2.1.1 that the 2-D ME PSE problem can be stated as fol-

lows:

Given ir n ] for n E A. determine P1(c) such that Px(X) is of the form:

Px(J) = 1 (3.1)

and satisfies the consistency constraint

-~1[P(C))] = R[pn] for n E A (3.2)

In this section we develop a new iterative algorithm for obtaining the 2-D

ME power spectrum estimate.

Suppose we are given R1(nl.n2) for (nl.n2) E A such tat R,(nl,n) is a seg-

ment of some positive definite correlation function. To find the unique ME PS

estimate, we express a power spectrum PT( 1l.Z) as follows.

Pr(O1i2,) = F[R(nln 2 )]

= ~ E R(nl,n)e'n.le - r", (3 3)
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and

= F[X(n.,n2 )]

= E X(nl.n 2 ).e-*1n e fel 2n1 (3.4)
nl-.n=-.

From eq.(3.3) and eq.(3.4) it is clear that Ry(nl,n2) can be obtained from

X(nl,n2 ) and vice versa through direct and inverse Fourier transform opera-

tions. Now, from eq.(3.1) and eq.(3.2), Py(G1,Cw2) is the unique ME PS estimate if

and only if X(nl,nz) = 0 for (n,nz) A and R(nl,n2 ) = R(nln 2) for

(nl,n2 ) E A Thus, we see that for Py(0 1.O 2) to be the desired ME PS estimate,

we have a constraint on RT(nl,nz) (consistency) and a constraint on X(nl,n 2)

(finite support). Recognizing this, it is straightforward to develop a simple

iterative algorithm to find the unique ME PS estimate. Specifically, we go back

and forth between R(nl,n2). (the correlation domain) and X(nl,n 2) (the

coefficient domain) and each time, impose the requisite constraints on the

correlation and coefficient values. Thus, starting with some initial estimate for

(n1,,n 2) we obtain an estimate for Ry(n,,nz). This estimate is then corrected by

the given R(n,nz) over the region A and is used to generate a new X(nl.n2).

The new (nl,n2) is then truncated to the desired limits and this procedure is

repeated. The above iterative procedure is illustrated in Fig. 3.1 and forms the

basis of the new iterative algorithm for 2-D ME PS estimation.

The iterative procedure discussed above is very similar in form to other

iterative techniques, 30 31 that have been successfully used in image processing.

Even though the conditions under which the algorithm converges are not yet

known, if the algorithm converges, then the solution satisfies both eq.'3. ) and

eq.(3.2) and consequently is the desired ME PS estimate.
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INITIAL ESTIMATE of X(n.,n)

- __ l 1 1

P. nckninn2 = r F[(nl.nz)] I

r (nl.,n) WITH R,(n:.n 2) FOR (n.n 2) A

X(nln 2 ) = rl k I

(n,.n,) = FOR (n,.n. A

P1(cG1.c2) = F[R,(nl,nz)]

fTg. 3.1: A new approach to 2-D maximum entropy power spectrum

estimation.

32 The Practical Algorithm

The conceptual algorithm outlined above and illustrated in Fig 3.1 cannot,

in general. be used directly to obtain the ME PS estimates. Issues such as the

spectral zero-crossing problem, choice of adequate DFT length, error criterion

for convergence decisions etc. arise, and require elucidation before the algo-

rithm can assume a practical form. These issues are discussed below.



- 31-

3.2.1 The Spectral Zero Crossing Problem

The algorithm shown in Fig. 3.1 requires two inversions of the spectral esti-

mates in each iteration, and thus the iterations cannot be continued if the

power spectrum estimate (or the inverse power spectrum) hs any zero cross-

ings at any stage in the iterative procedure. Unfortunately, zero crossings can

occur in two different ways in each iteration. One is the truncation of the

coefficients and the other is the correction of the ACF. To see this, let 1h\(nl,n 2 )

and R;(nl,n2 ) represent (nl,n2 ) and R(nl,nz) after the m'th iteration, and

suppose that the following conditions hold:

F[Am (nl.nz)] > 0 for all (lz 2 ) (3.5)

F[Rm(nl.n)] > 0 for all ( 1.oz2 ) (3.6)

and

X\(nl.n2) = FL~t 1 mZI w(nln 2 ) (3.7)
[ F[m (aj.n2)]

where w(nl,n2 ) represents a rectangular type window such that

wn i for (n 1,n 2 ) E A
w(nl n2) 0o otherwise (3.8)

Similarly, let Aml'(n 1 ,n2) and Rm+(nl n2 ) represent X(nlnz) and Ry(nl,n 2 ) after

the m+l'th iteration. In the iterative algorithm of Fig. 3.1, Xr+l(nl.n 2 ) and

Rm+1(n.n 2 ) are obtained from Xm(nl n2 ) by

R'(nlnz) = F1F[Xnl (3.9)

P (nl.n2 ) for (nl.n2 ) E A
Ry (n,n 2 ) = R'(nl,n 2) otherwise

= R'(nl,n 2) + .R(nl,n2 ) - R'(n.n 2 )] w(n 1 n2 ) (3. 10)

X'(n,,n 2) = F-( 3.11i)
[ F[Rm+ly(nl.n 2 )] 

and
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V'(nl.n2) for (nl,n2 ) E A
m+l (n ,n 2 ) = lo otherwise

= X'(nl,n 2 ).w(nl.nz) (3.12)

From eq.(3.9) it is clear that R'(nl,n 2 ) is positive definite since Xm(nl,n 2 ) is

assumed to be positive definite. However, Rym+l(nl,n 2 ) may not be positive

definite due to the rectangular windowing w(nl,n 2 ) in eq.(3.i0). Furthermore,

even if Rym+l(nl,n 2 ) were positive definite so that X'(nl,n 2 ) is positive definite.

Xm+l(nl.n2) may not be positive definite due to w(nl.n 2) in eq.(3.12).

In order to ensure that the resulting R,+l'(nl,n2 ) and Xm+l(nl.n 2 ) are posi-

tive definite so that the iterations can be continued, we make modifications to

eq.(3.i0) and eq.(3.12). Specifically, suppose that Rn+'(n1 ,n 2) is obtained by

using a relaxation parameter a to linearly interpolate between R'(nl,n 2) and the

known values Rn l,nz) for (nl,n2 ) E A. and suppose that Xm+l(nnl,n,) is

obtained by Linearly interpolating between X'(nl.n 2).w(nl.n 2 ) and Xm(nl, 2) via

the relaxation parameter . Then, in the modified iterative algorithm,

Xm+l(nl .n 2) and Rm+l (nl,n2 ) are obtained from Xm(nl,n 2 ) by

R'(nl,.n 2 ) = F Fm( in2)] (3.13)

a.R'(nl.n 2) + (1 -a).R(nln 2 ) for (nl,n2 ) E A

R+l(nln2) = R'(nn2) otherwise

= R'(nl.n 2) + (1 -a)[R,(n 1,n 2 ) - R'(nl,n 2 )].w(nl.n 2 ) (3. i4)

A(n,nz) = r Flr+1Kn! 2[]j (3.15)

and

Xm+l(nl,n z ) = 9.Xm(nlnz) + ( -).(Xn.ln 2).w(nl.n2) (3.16)

Comparing eq.(3.10) and eq.(3.14), the latter reduces to the former when a = 0.

With any other choice of a eq.(3.14) represents a nonideal correction of
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R'(nl.a 2 ) with the known values Rx(nl,.n2) for (nl.n2) A.,with a larger deviation

of a rn zero corresponding to a more nonideal correction. The important

consequence of introducing the relaxation parameters a and is that the

resulting R+sm'(nl,n 2) and Am+l(nl,n2) can be guaranteed to be positive definite

with the proper choice of these parameters. This can be seen by noting that

AmJ-nl,n 2 ) and therefore R'(nl,n2) are assumed to be positive definite. Hence, by

choosing a sufficiently close to unity, Rm+l(nl,n2 ) can be brought arbitrarily

close to R(nl,n2 ). Similarly, eq.(3.16) reduces to eq.(3.12) when 8 = O. With any

other choice of , Xnm+l(nl,n 2 ) now corresponds to an autocorrelation function

which is a kind of "parallel resistor average" of Rm(nl,n 2 ) and R 1n+n(.n 2 ). With

a proper choice of 6, Xm+l(nl.n2) can also he guaranteed to be positive definite,

which can be seen by noting that XA(nl,n2 ) is assumed to be positive definite

and by considering B sufficiently close to I so that Xm+l(nln 2 ) can be brought

arbitrarily close to Xm(nl,n 2 ). Therefore, by correctly choosing a and A in the

ranges Oa < I, 0o_< 1, R+l'(n 1,n 2) and Vm+l(nl,n 2) can be guaranteed to be

positive definite, and thus the spectral zero crossing problem can be avoided

and the iterations continued.

From eqs.(3.9)-(3.12), it is clear that if Xm(nl,n 2 ) and Ry(nl,n2 ) satisfy

eqs.(3.5)-(3.7), then so do Xm+l(nl,n 2) and Rg+l1 (nl,n2 ) obtained by the modified

iterative algorithm. If 0 °(nl,n 2 ) and OR(nl,nz) , the initial estimates of \(nl,n2 )

and PR(nl,n 2 ) are chosen to satisfy eqs.(3.5)-(3.7), then with a proper choice of

the relaxation parameters a and . the iterations specified by eqs.(3.5)-(3.8)

and eqs(3 13)-(3.6) form an iterative algorithm. This algorithm is shown In

Fig. 3.2.
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POSITIVE DEFINITE INITIAL ESTIMATES

R7 (n,nz) AND Xk(nl,n 2)

.. . [ 1 I

YES

RED SOLTIO ?N

NO

+'(nl.n) = R'(nl,n:) + (l-x)[R.(nl.n2) - R'(nl,n)].w(nl.na)

WHERE 0 s a < 1 IS CHOSEN SUCH THAT F[Rl'(nl,n2 )] > 0

X A'(n,.n2) = . +1-l(n,. n2)

_ .Attncn) = BlYnln2) + (l-B)i'(nnz;.~rn(n t))

WHERE 0 s < 1 IS CHOSEN SUCH THAT F[A+'1(nl,n 2)]>O

P(1ic,.2) = F[R'(n1,n 2 )] = 1
F[m,(ni.n 2)]

Fig. 3.2: An iterative algorithm for 2-D ME PSE based on Fig. 3.1.

I
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3.2.2 The Relaxation Parameters

The relaxation parameters a and P were introduced above to transform the

conceptual algorithm of Fig. 3.i into the implementable algorithm of Fig. 3.2.

The choice of a and P is dictated by two considerations. One is the requirement

that the resulting Rm+l1 (nl,n2) and Xm+l(nl,n 2 ) be positive definite. The second

is our desire to choose ax and as close to zero as possible so that the maximum

amount of correction is made at each iteration. In this regard, it has been

empirically observed that choosing the smallest possible values of a and con-

sistent with the positive definite requirement on Rnm+(nl,n2) and m+l(nl,n 2 )

can lead to a limit cycle behavior where the algorithm does not converge. A

similar behavior has also been observed to occur if the value of a is decreased

adaptively, over the course of the iterations. Further, it has been observed that

the correction rates of the correlation function and the coeffcients must be

decreased if the normalized square error as defined in Sec. 3.4 below, between

R'(n1 ,n 2 ) and R 1(nl,n2 ) for (n 1 ,n 2) A increases from one iteration to the next.

In light of the above observations, the following method has been developed

to obtain the values of a and P in the course of the iterations.

The initial values are chosen to be ao = 0 = 0. These values are updated

in the following manner;

~f Frmin F[ R'(n n)]
am+ = maxamx, '-k. n(ln1) R(n7)MzF1l ( m miF(Rn -R'(nn2))w(nn2 

The denominator of the second term in eq.3.17 is simply the minimum of the

correction spectrum, that is. the Fourier transform of the correction ACF. Since

a is used to interpolate between the numerator, which is the spectral estimate

at the m'th iteration, and the denominator, the term represents the maximum
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deviation from unity that can be used for a. This value is then scaled by the

factor 'k', in keeping with the empirical observation that the minimum value of

a is not the ideal value. Similarly,

r+ 1 = 1+( k). [ _ m (3 .8)

if min F[X'(nl,n 2 ).w(nl ,n2 ) < 0

and

rn+1l = 0 otherwise

where

I min FR'(nl,n2).w(nl,n2)] i
(Wl.e) '

n min F[1X(n 1.n 2 )] + min FLX(.n 2).w( 1 ,n2 ')]

In eqs.(3.17) and (3.18). a i and Bi represent the values of a and in the i'th

iteration; Pmg. represents the minimum value of B that results in a positive

definite estimate for the coefficient set; max[,] represents the maximum of two

arguments, min [ represents the minimum of the argument expression over

(:l,~z), and "k" is the convergence rate parameter which governs how close a

and are to their minimum (ideal) values. The initial value of "k" is chosen to

be moderately large (k - 0.5) and then subsequently reduced if the error

between R'(nl,n 2 ) and RI(nl,n 2 ) for (nl,nz) E A increases. Thus, the algorithm

moves towards the desired solution rapidly at first, and, if necessary, it is

slowed down as convergence is approached. When a and B are chosen accord-

ing to eqs.(3.17) and (3.18), it is straightforward to show from eqs(3.14) and

(3.16) that the resulting Rym+l(nl,n 2) and Xm' 1 (nl,n 2 ) are guaranteed to be posi-

tive definite. Further, computing aC+ 1 ad /fml1 by eqs.(3.7) and (3.18)

requires little extra computation since the individual terms m the two equa-

-
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tions are available in the course of the iterations.

33 Choice Of DFT Length

The ME method of PSE can be viewed as an attempt to extrapolate the

correlation function beyond the limits of the known segment. The algorithm

described above uses the Fourier transform to perform this extrapolation.

Since the DFT is used in the implementation instead of the true Fourier

transform, the length of the DFT used should be chosen such that the extended

correlation function corresponding to the ME PS estimate is essentially zero

beyond the DFT limits. If the DFI length is too short, the ACF estimates at each

iteration will undergo severe aliasing and the true solution may not be

obtained. Typically, the requirement that the estimated power spectrum be

consistent with the known ACF values, cannot be achieved, and the ACF match-

ing error as defined in Sec. 3.4 below, remains high. Another possibility that

may result when too short a DFT length is used is that . lthough the desired

error level is achieved, the resulting coefficient set may not be positive-

definite. This is because the DFT samples the true Fourier transform. and hence

the DFT values obtained during the course of the iterations may be all positive

vhile the true Fourier Transform of the coefficients, which is the reciprocal of

the power spectral estimate, may not be positive for all frequency values. In this

case, the coefficients cannot be used to form an acceptable PS estimate. On the

other hand, using too large a DFT length will involve unnecessary computation.

However, it is clear that if an error is to be made in choosing the DFT length,

the error must be made in the direction of over estimation.

The choice of the proper DFT length is discussed further in Sec. 3.4 below
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and the length requirement as a function of S/N ratio is discussed in Chap. 5

3.4 F.ror Criterion

Another important issue to be considered in implementing the algorithm

shown in Fig. 3.2 is the decision on when the algorithm converged so that the

iterations can be stopped. Recall that the ME method imposes the consistency

constraint on the ACF values and the finite support constraint on the

coefficient set. The constraint on the coefficients is imposed by the algorithm

at each iteration. On the other hand, the ACF is gradually cor. ected to achieve

consistency with the known values. Thus, a reasonable approach is to consider

that the algorithm has converged when the following condition is satisfied:

C IR'(nl,n2 ) - Fxnl,n2 )]1
tnA2- (3. 19)

Z(n2nE A

Clearl, if e = 0 with R'(nl.n 2 ) computed from Xm(nl,n) using the discrete

time Fourier transform rather than the DFT, the resulting solution corresponds

to the }qE PS estimate. However, due to a finite DFT length and finite precision

arithmetic used, it may not be possible to reduce the error exactly to zero. On

the other hand, the use of a short DFT length may reduce the error to a very

small value without leading to the desired ME PS estimate. This again brings

into sharp focus the fact that the DFT length must not be underestimated m

implementing the algorithm. However, to avoid unnecessary computations, the

algorithm can be started using a reasonable DIF' length and a one-time test for

the solution made at the end. Specifically, with a reasonable choice of the DFT

length, the iterations are continued until the error reaches a very small value,

typically i0-4. If this error level cannot be attained, then the DFT length has to

-1_
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be increased. The coefficient set AjB obtained as the ME solution is then tested

for positive definiteness over a much finer grid ( much larger DFI length) than

that used in the iterations. If the solution is not positive definite, the use of a

longer DFT length is indicated. If the coefficient set X is positive definite, then

the error given by eq.(3.19) is rechecked by computing R'(nl,n2 ) using a much

longer DFT. If the new error is of the same order as that obtained during the

iterations, the solution is declared to be good; otherwise, more iterations are

required. Since the minimun error that can be achieved with a given DFT

length is dictated by the anounL of aliasing that is undergone by the ACF, if it

becomes necessary to continue the iterations after the test, it is preferable to

use a longer DFT length than that used in the iterations.

Fig. 3.3 shows a more detailed flowchart of the algorithm which incor-

porates the important implementation issues discussed above. It is not theoret-

ically known under what conditions the algorithm in Fig. 3.3 converges. How-

ever, it has been observed empiracally that the algorithm always converges to

the MiE PS estimate in the sense that the requisite constraints on the

coefficients and the ACF values are satisfied, the former exactly and the latter

to within the error criterion E specified, when a sufficiently large DFT length is

used. Further, the error has been observed to decrease very rapidly in the

course of the first few iterations, and reasonable estimates of the power spec-

trum can usually be formed fairly rapidly.

H __ 1
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Fig. 3.3: A detailed flowchart of the new iterative algorithm for 2-DU ,E

power spectrum estimation.
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3.5 Convergence Issues

The algorithm developed in this chapter is an empirical procedure for solv-

ing a highly non-linear problem_ Although no proof of convergence is available

so far, the algorithm has not failed to converge to the desired solution in a very

large number of both one and two dimensional examples that have been tried so

far.

The algorithm is an 'alternating-projection' type of algorithm. However, it is

quite different from other alternating-projection algorithms such as those pro-

posed by Papoulis l' or by Gerchberg.l 5 The two domains that the algorithm

iterates between are the correlation domain and the domain of the autoregres-

sive coefficients. Thus, the two domains are both 'time' domains rather than the

'tirne' and frequency domains of the other algorithms. Further, going from one

domain to the other requires the obtaining of a spectrum (the frequency

domain) and its reciprocal. This is what sets the algorithm apart from the oth-

ers, and causes problems in trying to prove convergence. For example, all the

operations performed locally on either the autocorrelation function or the

coefficients can be shown to be non-expansive mappings. However, when com-

plete mappings across one iteration are considered, it is no longer possible to

show their non-expansiveness due to the reciprocal operation on the spectrum

Thus, it has not been possible to show that obtaining a new ACF estimate from

the previous one through one complete iteration, is a non-expansive mapping. A

similar situation holds for the filter coefficients. Given that the Maixmum

Entropy solution exists and is unique. showing the non-expansiveness of either

mapping would be sufficient to provide a proof for the convergence of the algo-

rithm.

� __.__ � _____
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Chapter 4

Implementation Strategies

4.1 Introduction

A new algorithm for 2-D ME PSE was developed in Chap. 3. Several alternate

strategies are available for the implementation of this algorithm These stra-

tegies are dependent on the type and size of computer employed and make

trade-offs between execution speed and on-line and off-line storage or memory

requirements.

In comparing the different strategies it is simplest to consider the concep-

tual algorithm of Fig. 3.1. The salient features of the comparison that follows

are then directly applicable to the practical algorithm depicted in Fig. 3.3. It is

clear from Fig. 3.1 that the major expense involved in implementing the algo-

rithm is the computation of the forward and inverse Fourier transforms. In the

actual implementation, the true Fourier transform operations are approxi-

mated by the Discrete Fourier Transform (DFT). The strategies discussed below

differ primarily in the specific method used to compute the 2-D DFT's. Three

approaches are outlined: one which uses a conventional 2-D Fast Fourier

Transform (FFT) algorithm to obtain the desired 2-D DFT's. another which

makes more efficient use of 1-D FFT's to obtain the 2-D DFT's and the last which

computes the 2-D DFT's by direct computation.
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4.2 1ain Frame Computer with Unlimited On-Line Storage

4.2.1 Conventional 2-D FFT Approach

When the algorithm is implemented on a main-frame (large) computer with

unlimited on-line storage. the FT algorithm can be used to compute the 2-D

DF's on-line and in place. The 2-D DFT is conventionally obtained by computing

the 1-D FFT of the rows of the data, followed by the transforms of the columns,

that is. for an FFT size of NxN, one needs to perform 2N N-length FFT's. each

requiring on the order of NlogN operations. Thus to obtain a forward or inverse

2-D DFT of size NxN, 2N21ogN operations are required. The resulting arrays are

stored on-line.

422 Effient use of the FFT

The use of the FFT outlined above, is simple to implement and is the most

straightforward. However, it is an inefficient use of the FFT. A cursory study of

the algorithm depicted in Fig. 3.2 reveals that in the forward transform opera-

tions, the starting array size is always ?MxM, which is the size of the region over

which the ACF is known. In the case of the coefficient set Xj this is obvious. On

the other hand, in the case of the ACF, since the transform of the current ACF

estimate has been computed. only the transform of the correction ACF,

[Rx(n.n 2) - R'(nl,n 2 )].w(nl,n2 ) needs to be computed to update the spectral

estimate. Thus, the starting data array in either case is of size MxM, and one

needs to perform only (M+N) FFT's to obtain the entire 2-D DFT.

Similarly, in the case of the inverse transform operation, only an M.xM

array needs to be computed from the NxN spectrum arrays: the ACF estimate is

required only over the region 'A' for correction, and the cefficient array size is

also only MxM. Thus the inverse transform operations also require only (M-N)
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inverse FFT's, or on the order of (M-N)NlogN operations per inverse 2-D DFT.

Typically, the size of the DFT needed is much larger than the size of the

ACF array, i.e. N>>M. Thus the efficient use of the FFT requires substantially

fewer operations than the conventional 2-D FFT approach. The on-line storage

requirements are the same for the two approaches. and no off-line or disk

storage is used.

4.3 Implementations for Mini-Computer

When implementing the algorithm on a mini-computer with limited on-line

storage, it becomes necessary to use off-line or disk storage. Disk access times

are typically much longer than machine cycle times, and therefore the amount

of disk access demanded by a particular implementation strategy should be

kept in mind.

There are two possible alternatives in the mini-computer implementation.

One is to use the efficient FFT approach outlined above for the main-frame com-

puters, and the other is to use a direct computation of the DFT's.

4.31 FFT Inmlementation

The FFT implementation on a mini-computer is basically the same as for a

main-frame machine, except that for large DFT sizes. it is not possible to store

the spectrum arrays on-line. Disk, or off-line storage becomes necessary. As was

mentioned earlier, disk access times are typically much longer than machine

cycle times and hence, it is advantageous to minimize disk access. The method

of obtaining a large NxN size 2-D FFT on a mini-computer is usually as follows. Ni

rows of the data are transformed and written out to disk. The disk array is then

transposed, read in row by row, transposed, and written out to disk again. A
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further transpose is then required to obtain the result in correct order Thus,

apart from the 2N FFT's required, a total of (N - 4NlogN) disk accesses are

required, where the number of disk accesses required to transpose a NxN array

is of the order of 2NlogN.3 0 In order to avoid this excessive amount of disk

access, it is necessary to look at alternate strategies.

The efficient use of the FFT outlined above required only (M+N) FFT's per

forward or inverse transform If a complex array of size MxN can be configured

in core, then this approach can be implemented on a mini-computer with only N

disk accesses required per 2-D transform operation. This can be seen as follows.

For the forward transform M rows of the ACF or the coefficient array are

transformed and the results saved in the MxN complex array, in core. The tran-

spose of the data is then affected on-lirne, and the resulting N columns are

transformed via the FFT and written out to disk in transposed form, thereby

requiring only N writes. Similarly the inverse transform requires only N disk

reads to read in the columns of the spectra (the array is in transposed form).

Each column is inverse transformed and only the first M values are stored in

the intermediate MxN array. M inverse transforms then result in the required

MxM ACF array or the new coefficient estimates.

This implementation via the FFT is, of course, imited by the size of the

available memory and the values of M (the ACF size) and N (the DFT size). How-

ever, the implementation is highly efficient, and although disk storage of size

NxN is required for each spectrum array, the number of disk accesses is negli-

gibly small.
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4.3.2 Direct DFT Inlplementation

When the size MxM of the known ACF array (the region 'A') becomes large,

or when the S/N ratio is high, DFT's and IDFT's of large size are typically

required to implement the algorithm, and the efficient use of the FFT as dis-

cussed in section 4.3.1 above, is no longer feasible. It is then possible to fall

back onto the conventional method of performing 2-D FFT's. However, the

number of disk accesses involved in this approach are excessive, and hence the

execution speed suffers. Further, the amount of disk storage required my also

become prohibitive for modest sized systems. In this case, an alternative imple-

mentation is possible: compute the 2-D DFT by direct computation. This tech-

nique, described below, is specifically tailored towards the limitations of small

mini-computer systems.

Referring back to Fig. 3.1, a careful observation shows that the direct com-

putation of the DFT's and IDFT's does not significantly increase the computa-

tional burden. Specifically, let m(n,n 2) and Xm+(nl,n 2) represent the

coefficient set Xi after the m'th and m+i'th iteration respectively. Using this

notation, it is straightforward to show from Fig. 3.1 that

Xm +l (nl,n 2) is related to Xm(nl.n z) by

Xml(nl.n2) = F-1 ,nL>)

(4.1)

where

Ri'(n,.n 2) = F tFlA F (nn2)] (4 2)
]~~~~~~~~~~~a2

and
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i for (nln 2) A
w(nl'n 2 ) = to otherwise (4.3)

From eq.(4.1), Am+lnl,n 2), X(nl,n2) and R(nl,n2) - Ry'(n 1.n 2)J.w(nl.n 2)

are finite extent sequences of size 'A'. As a consequence, directly computing

each of the DFT's and IDFT's in eq.(4.1) requires on the order of M2N2 arithmetic

operations where, as above, the size of 'A' is MxI and the DFT size is NxN. The

direct 2-D FFT approach would require 2N21ogN operations. Since N is typically

much larger than M. direct computation does not significantly increase the

nutuber of arithmetic operations relative to using an FFT algorithm. As an

example, when the size of 'A' is 5x5 and the DFT size is 512x512. direct compu-

tation requires about 40 percent additional arithmetic operations relative to

using an FFT algorithm. However, it should be remembered that the FFT

approach would require a large amount of disk access which could conceivably

offset the computational advantage.

Although the comparison between the different implementation strategies

has been made on the basis of the conceptual algorithm, it should be pointed

out that in the practical implementation of the algorithm as shown in figure 3.3,

the minimum value of the Fourier transform of the correction ACF is required

to compute the value of the relaxation parameter a Since a must be evaluated

before the updated spectrum can be obtained, it becomes necessary to com-

pute one extra two dimensional Fourier Transform as compared to the imple-

mentations which store the spectrum. Thus, the direct implementation is

slightly more expensive computationally than a simple comparison between the

various 2-D DFT computations would show.

The major advantage of direct computation is the significant reduction in

the amount of memory required. Whereas the FFT algorithm requires N2 + M2
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memory locations (some of which would be off-line for the mini-computer), the

direct computation only requires memory locations on the order M2 , which are

easily configured on-line. Additional advantages of the direct computation

approach include the potential to exploit parallel processing. and no restric-

tions on DFT size. In fact, the DFT size need not be a power of two as is usually

required by most FFT routines.

The implementation strategies discussed above are compared Ln Table 4.1

below. The memory requirements common to all schemes are not listed.

TABLE 4.1

Comparison of implementation strategies for

computers.

main-frame and mini-

OPERATIONS ON-LINE OFF-LINE DISK ACC.
PER PER

MEMORY MEMORY
ITERATION ITERATION

CONVENTIONAL 2
COIN FRAME 2- ONAL 8N2 logN 2N

2 None None
MAIN FRAME 2-D FFT

COMPUTER EFFICIENT 2
FFT 4(M+N) logN 2N None None

CONVENTIONAL 2 2
r2-D IAL 8N2 logN None 2N

2
16N ( logN+1 )2-D FFT

MINIEFFICIENT 4 M+N) loqN MN 2N
2

4N
FFT

COMPUTER DIRECT 2 2
COMPTATIOl 9M N None None None

COMPTAT I ON
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Chapter 5

Experimental Results

5.1 Introducon

The algorithm developed in Chapter 3 has been applied to the ME power

spectrum estimation problem for 2-D sinusoids buried in white Gaussian noise.

For one set of experiments, it is ass;umed that the exact correlation values are

available over the region 'A'. The region 'A' unless otherwise noted, is taken to

be a square, symmetric about the origin in all cases. For the case of M real

sinusoids, the exact ACF values are given by

R(nln 2 ) = ai2 Cos(c.lnl + i2zn2 ) + 2 6(nl.n2 ) (5.1)
1=1

where Rx(nl.ne) represent the ACF values, a is the pcwer of the i'th sinusoid.

al and c2 give its frequency location, and o2 represents the noise power. For

the case of M complex exponentials the exact ACF is given by

(n a ) = a e%2 l +n) + o2 6(nn 2) (5.2)
1=1

!'or both eqs. (5.1) and (5.2), R(nl,n2) is assum3d known for (nl.n2) E A.

A parallel set of experiments uses ACF values estimated from synthetic

data sets. In this case, the ACF is obtained via the biased estimator. That is if

the data is available in a square array of size PxP. the ACF is estimated as

R(nln2 ) = p x [k, +n, + k2+n2]c[kl.k2] (5.3)

where x[n l. nz] represents the synthetic data set given by:

x[nlnz2 = EaiCos(ci-.n + Gc°2 + ) + + w[nn 2] (54)
1=1
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where the number of sinusoids is M, w[nl.n 2z represents white noise of power a2,

Pi is a random phase term associated with the i'th sinusoid, and the sums in

eq.(5.3) run over known data values only. For th,, case of complex data, the

cosine in eq.(5.4) is replaced by a complex exponential.

The unbiased estimate for the ACF was not used, because it can result in a

non positive-definite ACF estimate (that is, the Fourier Transform of the ACF

may not be greater than zero for all frequencies). In such ases, Woods'

theorem2 no longer holds, and the existence and uniqueness of the ME PS esti-

mates can no longer be guaranteed.

The 2-D spectra are displayed in the form of contour plots and a few com-

ments about their display are in order. All spectra are displayed with the

highest contour level being normalized to zero dB. Wherever the length of the

contours permit, they are labeled with the nearest integer value of the contour

level, in dB below the maximum (OdB). The contours are always equally spaced

and the increment between contours (CINC), in dB, is always noted. On all plots,

the true peak location is marked with an 'x'.

For real data, the power spectra are symmetric about the origin, and thus

only half the 2-D frequency plane is displayed. The full 2-D plane is displayed

for spectra of complex signals Finally, the frequency axes, and all frequency

values are in terms of the normalized frequency units of -. Thus, for exam-

ple, the interval (--r,r) is represented by (-0.5,0.5), and the peak location of

(hl),W2 ) = (0.2r,0.31r) is represented by the ordered pair (0.1,0.15).

All pertinent data about the spectrum being displayed is included with the

plot. Thus, the power and both the actual and the estimated frequency loca-

tions of the peaks are noted. Also, the S/N ratio (or the noise power) as well as

�� _____---��--
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the size of the ACF support region is indicated. Where necessary, the shape of

the ACF support region 'A' is also shown. In the case of the ME PS estimates, the

number of iterations (]iR) required and the size of the DFT used (NDFT), is

also displayed.

The 2-D ME power spectrum estimates are compared with the Maximum

Likelihood (ML) and the Bartlett estimates. The ML estimate for 2-D signals is

obtained by inverting the matrix of 2-D autocorrelations fNNM defined in section

2.2 of chapter II. The estimate is given by

PRL(i,Z) b T-1 NMEtt- E

where N- represents the inverse of the block Toeplitz matrix of autocorrela-

tions and Et is the complex conjugate transpose of the vector

COL(1,e e' i . - N ), e

E -'-, e- fi (N -lo x+ ~zj- --e - jt u - 1)l

. ., ei(N-)l + (W- ),;2)

The Bartlett estimate is obtained by taking the DFT of the ACF values which

are known over the region 'A'. The ACF is first windowed by a 2-D separable tri-

angular window to prevent the spectrum from displaying negative regions.

5.2 Special Regions in the 2-D Frequency Plane

For -D real signals. it is well known30, 3 1 that the symmetry of the power

spectrum causes errors in the peak location near ; = 0 and the periodicity of

the spectrum causes the same problem near = nr. This is due to the interfer-

ence with the correlated mirror peaks that occur at negative frequencies for

real data. For example, if the data is given by

x[n] = Sin(won) + o2 t(n)
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the power spectrum consists of two peaks located at = ,o, and X = -wo. If W is

close in value to 0 or iT, the interference between the peaks causes them to

move closer in the PS estimate, initially causing errors in the location of the

spectral peaks and eventually a complete merging of the two.

it 1IIf W ~
Is 1 j8 z o o 0

I W2' 2

s% w

(a) (b)

Fig. 5.X. The 2-D frequency plane for real data. (a) Symmetry and

periodicity. (b) Special regions for real data

The case for 2-D real sinusoids was found to be similar except that the

two-dimensional periodicity of the spectrum combined with its symmetry,

results in errors in the peak location at several points in the 2-D frequency

plane. FiC . 5.1(a) illustrates the symmetries and the location of the mirror

peaks for the case of 2-D real sinusoids. The upper half plane, which completely

specifies the power spectrum is indicated by bold lines. and the small geometric

shapes show the locations of rmirror peaks introduced by the symmetry and the

periodicity The shaded regions in Fig. 5. (b) indicate the special regions in the

upper half plane where the estimate of the peak location for real data can be

expected to suffer.

Li 24
Itr

0 _

0* 

0

-1

-t

t 0
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This observation is supported by experimental data, as shown in Fig. 5.2.

All the examples shown utilized a 3x3 region of support for the ACF ( the region

'A'). For the ME method, Figs. 5.2(a) and (b) show that when the sinusoid is

located within the special regions indicated in Fig. 5.1(b), the peak in the

resulting power spectrum estimate gets pulled in towards the center of these

regions, that is, towards (l,d 2 ) = (0.0). (r,0), (rr,rr), or (0,r). Figs. 5.2(c) and

5.2(d) show a similar result for the Maximum Likelihood and Bartlett methods.

As the peak location moves out towards the centre of either quarter plane the

single peak splits up into the desired pair of peaks, at first with erroneous peak

location but eventually resulting in a good estimate of the power spectrum. Fig.

5.3 illustrates the ME PS estimate for one real sinusoid when the peak is located

outside the special regions of Fig. 5.1(b).

Several examples have been obtained for the same ACF support but with

different S/N ratios and the results are essentially the same for real sinusoids.

As could be expected, the "region of resolution" increases in size with increas-

irng S/N ratio, since the peaks in the estimate become sharper, thereby reduc-

ing the interference between mirror peaks.

Finally to verify that the errors in the peak location were indeed being

caused by the interference of the mirror peaks in the real data, various exam-

ples using complex data were tried at the same S/N ratios and the ACF support

region 'A' as were used for the previous examples. The results were similar to

the 1-D case in that no special regions were discovered, (since there is no

Inherent symmetry in the power spectrum for complex data), and the resolu-

tion properties of the ME estimates were uniform throughout the
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Fig. 5.2 Errors in spectral peak locations for real sinusolds in the

regions shown in Fig. 5.(b), S/N ratio = -5dB, 3x3 ACF, DFT size
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-' -

- - -Am . Bartlett estimate;
::/f- -~~~ .... ~o .' IX . ) CINC

;2.5 ~- .~~~--'~' .85dB

.. -

i, ta -' ,3 .23 0 .2 2 .33 * .50

Fig. 5.2 (continued) (d)

.50 -

.45 - 2 /2

.40 

.35 - -25

.30 -

.25 -

.20 -

.;15 -

.:0 -

.0OS _ 

MiE estimate;
' = O. .24n,.24); CINC =

5.19dB

//"

-.50 -.40 -.30 -.20 -. o .00 .:O .20 .30 .40 .50

Fig. 5.3: Improvement in the ME P estimate as the peak location is

changed. SNR = 5dB, 3x3 ACF, NDFT = 128x128

frequency plane. Fig. 5.4 illustrates the results for complex data using the same

parameters as in Fig. 5.21a). The peak is well resolved and the estimated peak

location is excellent. Several other examples using complex data support this

conclusion.

____1__�_1__11_11_11____



- 56 -

.50- 

"0 -30 

.30 -

.Zo -

.10 -

a - ME estimate;
= O. mO.9,);

-.20 L

-.30- 

-.4C 0

-38
-38

-.50 -. 0 -.30 -.40 .0 -.10 .00 .10 ZO .30 .40 .50

' /2 -

Fig. 5.4: Uniform resolution for complex data regardless of peak loca-

tion. The SNR and peak location are the same as Fig. 5.2(a). NDFT =

128x128, CINC 7.6dB, ( i iterations, 308 seconds CPU time).

5.3 S/N Ratio Versus Resolution

To determine the effect of S/N ratio on the power spectrum estimates,

several examples using the same ACF support and the same peak(s) location

were considered. The signal to noise ratio (SNR) is defined as the sum of the

powers of each peak divided by the total noise power. That is, for the case of M

sinusoids with a 2 representing the power of he i'th sinusoid, the SNR is iven

by

E i2

SNR A

_ 1�_1
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where a2 is the noise power. As was mentioned in section 5.2 above, the peak

width in the spectral estimate decreases with increasing S/N ratio, and this

leads to two distinct effects. First, for real data, the interference between mir-

ror peaks decreases and this leads to an enlarged "region of resolution".

Second, two peaks located close together in the 2-D frequency plane, which are

not resolved at low S/N ratios, become resolvable at high S/N ratios.

Several examples were tried in order to verify these observations. For the

set of experiments with one real sinusoid, a 3x3 ACF support region was used.

The distance d I along the line o = w2 from the origin was used as a measure of

the size of the region where good spectral peak locations can be obtained for

real data. This distance indicates the closest that a sinusoid can be located to

the origin to result in an "acceptable" ME PS estimate for a particular S/N ratio

and the given ACF support. Table 5.1 summarizes the performance of the ME

method versus the ML and Bartlett techniques for various S/N ratios. It is clear

that the ME method affords the best performance of the three techniques, and

has the largest "region of resolution" for the case of real sinusoids.

Figs. 5.5(a) and (b) are representative of the effect of increasing the S/N

ratio for the case of a single real sinusoid. It is clear that the peak in the esti-

mate is considerably sharper for the higher S/N ratio case, shown m Fig. 5.5(b).

In fact, the peak location for the lower S/N ratio. Fig. 5.5(a), is quite erroneous.

This is because the location lies in the special region see Table 5.) for this

S/N ratio and the given ACF support.

Another set of examples were tried to determine the effect of changing the

S/N ratio on the PS estimates of two sinusoids located close together in the 2-

frequency plane. For this set of examples, it was decided that complex

__ ___._
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TABLE 5.1

Minimum distance from the origin along 'c = '2 where good peak loca-

tion estimates can be expected. ACF size 3x3.

3 x 3 Autocorrelation function

S/N ratio d

-5 dB 0 . 29r

0 dB 0.26rr

+5 dB 0.20rr

;3O -

.35s

SME estimate;
c=(0.2,0.2-,); S NR = Odb;
NDFT = 64x64; CINC =
2.7dB; 61 iterations

--.;, -.;5 - .11 IC C ..O

(a)

.30 -

.25 -

-22

///"- -

/ '/

.3 5- . 7 

-5 0 -A -.3 0 -.2 0 : -. O .; 'C .5 0

~~.b) ~ ~ '

VME estimate;
cw=(0.2r,0.27,); SNR = 5dB;
NDFT = 256x256; CINC =
4.57dB; 52 iterations

Fig. 5.5: Improvement in the ME PS estimate with increasing SNR. 3x3

ACF.

-;,-

.50 -2 2

.'0 -

�

t
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data would be used so as to separate the issue of resolution from that of the

special regions for real data as discussed above. The size of te ACF support

region was chosen to be 5x5 and both true and estimated ACF values were used.

The first observation that was made from this set of experiments was that

the PS estimates did not depend on the absolute location of the peaks in the 2-

D frequency plane. That is, the shape and size of the estimated spectral peaks

remained the same regardless of where the complex sinusoids were located, if

the same relative distance and orientation of the peaks was maintained. Figs.

5.6(a) and (b) illustrate this phenomenon. In these cases, the frequency separa-

tion between the peaks was held constant and the orientation of the peaks was

kept either horizontal or vertical. The results clearly show the invariance of

the spectral estimates under these conditions. Several other examples support

this conclusion.

Using the above observations, examples were run to determine the

minimum distance between two peaks such that they were resolved in the sense

that the estimated power spectra displayed two distinct peaks. One peak loca-

tion was held constant, while the location of the second peak was varied over a

range such that initially the peaks were not resolved, and as the distance

between the peaks was increased, the two peaks were resolved in the PS esti-

nate. Since the accuracy of spectral peak location was not at issue here. d2 the

minimum distance between the two peaks where they became resolved was used

as a measure of the resolution performance. It is clear that smaller values of d2

imply higher resolution, while larger values of dz imply lower reolution for the

various methods of estimating the power spectra.

Figs. 5.7 a),(b),(c) and d) are representative of the results obtained by
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Fig. 5.6: The ME PS estimates do not depend on absolute peak location

for complex signals. SNR = --5dB, 5x5 ACF, NDFT = 52x512.

.10 -

-.1 -

-.20 -

-.30 -

peaks:
and

CINC =

ME estimate; peaks:
(0.0rr,-0.25r,) j and
(0.0rr.0.25rr); CINC =
7.5 4tdB

-- r I,

Y

-.. -.



(a)

ME estimate;
( 0.r.0.25) 703dB
(0.5tT,0.257); 7.03dB

-.40 -.30 -.20 -.10 .00 .:0 .20 .30 .40
. 1/2-!

50

(b)

-36

-29 , .
' x ~ 0 ,XtX ' X

ME estimate;
i o0. 4r,0.25)

(0.7.,0.25r);
7.34dB

-.20 -

-.30 -

-.40 -

-. 0 -. 0 -. -.20 -. .00 .:C .:c "0 .40 .50

Fig. 5.7: Change in the ME PS estimates as the separation between two

peaks is increased. SNR = 5dB, 5x5 ACF, NDFT = 5i2x5i2.
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the ME method for a particular S/N ratio as the separation between the peaks

is increased. Initially the two peaks are not resolved, and the spectral estimate

consists of a single spectral peak, located approximately at the mid point of the

line joining the true peak locations. As the distance between the peaks

increases, the spectral estimate shows a distortion or stretching in the direc-

tion of the peaks, and eventually, the two peaks are resolved. The Maximum

Likelihood and Bartlett estimates for the same data set as in Fig. 5.7 (c) are

shown in Figs. 5.8(a) and (b). All the examples illustrated for the three methods

used a 5x5 support region for the ACF. The poorer resolution of the ML and

Bartlett techniques as compared to the Maximum Entropy method is apparent.

Fig. 5.9 summarizes the resolution performance of the three techniques. It is

clear that as in the 1-D case, the ME method affords higher resolution than the

other two methods. It may be noted here that the resolution performance of

the Bartlett estimates is determined only by the size of the ACF array available

for analysis, and is independent of the S/N ratio, as far as the resolution meas-

ure d is concerned. 7 The minimum distance d2 for the peaks to be resolved in

the ME and ML estimates decreases with increasing S/N ratio, with the ME

method consistently outperforming the ML method.

At this point, it is necessary to point out that the measure adopted for the

resolution performance evaluation is fairly arbitrary, and is used only to gauge

the relative performance of the different techniques under the same set of con-

ditions. It is obvious that the minimum resolution distance between two peaks

also depends on their orientation in the 2-D frequency plane, as well as on the

shape of 'A'. For example, when the shape of the ACF support region 'A' is a rec-

tangle, one would expect a higher resolution in the direction of the longer

dimension. This effect is shown in Figs. 5.10(a) and (b) for the ME method. The
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Fig. 5.8: Maximum Likelihood and Bartlett estimates for the data of Fig.

5.7(c).
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Fig. 5.9: Resolution properties of the ME. ML and Bartlett estimates.

shape of the region 'A' in these examples is a rectangle of size 3x5. Fig. 5.10(a)

shows the ME PS estimate when the orientation of the peaks is along the longer

dimension, and the peaks are seen to be resolved. In Fig. 5.10(b), the orienta-

tion of the peaks is in the direction of the shorter dimension of the region A',

and the resulting PS estimate shows only a single peak. These examples clearly

show that the resolution performance depends not only on the S/N ratio, but

also on the specific shape of the ACF support region employed. The resolution

measure adopted in this section is, therefore, only an indicator of the perfor-

mance of the various techniques, and should not be taken as an absolute meas-

ure.

-
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5.4 ACF Support Size Versus Spectral Estimates

Another experiment that was performed m order to quantify the perfor-

mance of the ME technique for 2-D PSE was to determine the effect of increas-

ing the ACF support region 'A'. This is similar to increasing the model order3 2

for 1-D signals. Again, exact ACF values were used and for a fixed S/N ratio, the

effect of changing the ACF support size on the power spectrum estimates w-as

noted.

The results obtained were similar to those obtained by increasing the S/N

ratio. That is, the peaks in the spectral estimates grow much sharper and the

size of the region of resolution for real data increases as the size of the ACF

support region is increased. Figs. 5.11(a), (b) and (c) show the results for the

case of a single real sinusoid in white noise. The ACF support region was fixed to

be a square, and its size was varied from a 3x3 to 7x7 region about the origin.

The change in the resulting PS estimates is fairly dramatic, but it should be

kept in mind that with a square shape fixed for the region 'A', changing the ACF

support from a 3x3 region to a 5x5 region increases the known information

about the signal by a large amount. Whereas the 3x3 ACF has only 5 indepen-

dent values (due to the Hermetian symmetry of the ACF), the 5x5 ACF has 13

independent values and for the 7x7 case the number of independent ACF values

available for obtaining the PS estimates jumps to 25. A more gradual change in

the power spectrum estimates would be expected if fewer new points were

added to the ACF.

As a direct consequence of the sharper peaks in the estimate, the resolving

power of the ME estimate increases with increasing size of 'A'., as does the

"region of resolution" for real data. This has been verified by various examples,

and one such example is shown in Fig 5.12 which shows the ME PS
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estimate for 3 sinusoids in white noise at a S/N ratio of -5dB. When the ACF sup-

port region has size 5x5,(Fi.. 5.12(a)) two of the peaks merge into a single peak

and the resulting estimate only shows two peaks. Fig. 5.12'b) shows the result

of using a 7x7 ACF support size. The peak estimates are seen to be sharper and

all three peaks are resolved.

Another effect which is common to increasing the S/N ratio or increasing

the size of the ACF support region 'A' is the accuracy of the resulting peak loca-

tion in the estimates. With a single sinusoid, the location of the spectral peak

(LOSP) is fairly accurate even for low S/N ratios or for small sizes of the region

'A'. However, when multiple peaks are present in the spectrumn the interference

between the peaks can lead to erroneous estimates for the spectral peak loca-

tions, especially for very low S/N ratios, or for small sizes of the region 'A'.

Referring back to Fig. 5.11, it is seen that the LOSP is totally incorrect for a 3x3

ACF support region, becomes better when the size of the region 'A' is increased

to 5x5 and is very accurate when the ACF support is of size 7x7. A similar con-

clasion is derived when one considers Fig. 5.5, where the accuracy of the LOSP

changes with increasing S/N ratio.

The sum of the errors in peak locations is used as a performance measure

in the accuracy of LOSP determination. The error in the LOSP is defined as:

i
error(LOSP) = -v(il.) z + (c.Ze - i;m)

i=l

where the number of sinusoids is M, Cqle and wi2e represent the estimated x and

y frequency locations of the i'th peak and c'ilt and 2 , represent the true x and

y frequencies of the peak location. Table 5.2 shows a comparison of the

_I^_�__��
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TABLE 5.2

Comparison of ME, ML and Bartlett estimates for peak location accu-

racy using exact autocorrelation values. The peak locations are listed

as the pairs (l/2cr.W 2/ 2r), and the peak location error, (LOSP

ERROR) is also in units of 2. SNR = +5dB, one sinut;oid cases: 3x3

ACF, two sinusoid cases: 5x5 ACF.

MAXIMUM X.A3 .X IMU. BARTLETT
ENTROPY LIKELIHOOD ESTIMATE

N TRUE ESTI'ATED LOS? 'ST:,%,ATED LOSP E ST I !': D LOSP
LOCATION LOCATION ERROR LOCATON; ERROR LOCATION ERROR

S
1 -.4000,0.4000 -.4000,0.4000 0.0000 -.4000,0.4000 0.0000 -.4000,0.4000 0.0000

U 0.0745,-.4456 0.0745,-.4456 0.0000 0.0745,-.4456 0.0000 0.0'45,-.4456 0.0000
S -.3000,-.3000 -.3000,-.3000 0.0000 -.3000,-.3000 0.0000 -.3000,-.3000 0.0000

I -.0500,-.0500 -.0500,-.0500 0.0000 -.0500,-.0500 0.0000 -.0500,-.0500 0.0000

D -.3125,0.3000 -.3125,0.3000 0.0000 -.3125,0.3000 0.0000 -.3125,0.3000 0.0000

-.4000,0.0000 -.4010,0.0040 -.4010,0.0000 -.4010,0.00200.0082 0.0020 0.0045
0.0745,-.4456 0.0755,-.4496 0.0755,-.4456 0.0755,-.4476

0.3000,-.3000 0.2760,-.3000 0.2970,-.3000 0.2810,-.3000 0.0379O 0.0480 0.0059 0.0379
-.3000,-.3000 -.2760,-.3000 -.2970,-.3000 -.2810,-.3000

S
0.3000,0.4120 0.3050,3.4060 00156 0.2990,0.4110 0028 0.3010,C.4120 0.0019

-.0500,-.0500 -.0550,-.0440 -.0490,-.0490 -.0510,-.0500

S 0.1234,0.3456 0.1374,30.3396 0.1304,0.3476 0.1374,0. 3416O 0.0304 0.014G 0.0291
r -.3125,0.3000 -.3265,0.3060 -.3195,0.2980 -.3265,0.2040
D
S 0.2000,0.3125 0.1950,0.3135 C.0102 0.1990,0.3115 0.0028 0.1990,0.3125 0.0019

-.1125,0.0330 -.1075,0.0320 -.1115,0.0340 -.1115,0.0330

0.3300,0.0000 0.3230,0.0070 0.0197 0.3300,0.0.0000 0.3300,0.000 0.0000

0.0000,0.3333 0.0070,0.3263 0.0000,0.3333 0.0000,0.3333

-.3000,-.2000 -.2900,-.2040 -.3000,-.2000 -.3000,-.2000
0.0215 0.0000 0 0.0000

0.1000,0.4430 0.0900,0.4470 0.1000,0.4430 0.1000,0.4430

-.lC00,-.000 -.l010,-. 1000 -. 1000,-.1000 -.1000 -.1000
0.0019 0.0000- 0.0000

0.3900,0.4000 00.0 .4000 .3900,0.4000 0.3900,0.4000
_ _ _ ~~~~~~~~~~~~~.0040

-
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ME, ML, and Bartlett estimates as regards accuracy of estimated peak location

for a few representative examples. The results are based on a 3x3 ACF for the

single sinusoid case and exact ACF values, whereas the two sinusoid cases are

based on a 5x5 region of support for the ACF. The frequency locations for the

two sinusoid cases were chosen to be such that the peaks were resolved by all

methods.

From Table 5.2, it is clear that all three techniques give excellent results in

estimating the location of a single complex sinusoid. In fact, the LOSP error is

precisely zero. For the case of two complex sinusoids, the situation is different.

In that case, all methods show some errors in the estimation of the peak loca-

tions. Although the ME estimates exhibit much sharper peaks, than the other

two, it is seen that when the peaks are located such that all three methods

would resolve them, then the ME method in fact, gives the worst results in terms

of spectral peak location estimation. The ML and Bartlett estimates track each

other quite closely, and give LOSP errors of approximately the same magnitude.

For he last three examples in Table 5.2, both the ML and Bartlett methods were

able to locate the peaks correctly. The ME method was never able to do so. The

situation is similar for lower S/N ratios, although it may be expected that the

2-D ME estimates would give much better results at higher S/N ratios, like their

1-D counterparts.

5.5 Data Length Versus Spectral Estimates

In most applications of power spectrum estimation, it is the actual data

rather than its ACF that is available for analysis. In such cases, the A.CF has to

be estimated from the data and then used to obtain the MIE PS estimates. As was

_ __
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mentioned earlier, the biased estimator for the ACF is used in all cases here,

since the unbiased estimator can lead to non- positive definite autocorrelation

estimates. However, it is also not certain that the biased estimator will always

give an extendible ACF.22

One important issue that arises is the effect of the size of the data segment

on the PS estimates. It is clear that if one has a large amount of data, the ACF

estimates will be very good, and hence the ME PS estimates will be better also.

Similarly, the smaller the amount of data, the poorer the ACF estimate and

hence the PS estimate can be expected to suffer. In order to quantify these

observations, several examples were run where synthetic data was generated

and the autocorrelation values were estimated from the data. The shape of the

2-D data segment was always taken to be square, and the ACF support region

was also taken to be square. Fig. 5.13 shows the effect of changing the size of

the known data set on the ME PS estimates, for the case of one sinusoid and a

3x3 region of support for the ACF. Data lengths ranging from 4x4 upto 60x60

were tried. As is clear from the figures, the shorter data length gives a spectral

estimate that seems distorted (stretched) and the LOSP is not very accurate. As

the data length is increased the shape of the spectral peak becomes more sym-

metric and the accuracy of the LOSP improves. The improvement of the spectral

estimates is very rapid and the difference between the estimates obtained from

a 12x12 data segment and the 20x20 or 36x36 data segment are negligible.

Several other examples support this conclusion.

Fig. 5.14 illustrates the results of similar experiments for the case of two

sinusoids with zero degrees relative phase, using a 5x5 region of support for the

ACF. The location of the peaks was such that they could be resolved with true

ACF values. The results are similar to the case of one sinusoid in that the
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spectrum initially shows some distortion and the spectral estimates improve

rapidly with increasing data length. The accuracy of the LOSP also improves

with increasing data length.

The results of the ME technique are again compared to those obtained via

the ML and the Bartlett estimates as regards the accuracy of LOSF determira-

tion. Figs. 5.15 and 5.16 show the results obtained by the other two methods for

the same data sets used in Figs. 5.13 and 5.14. The p.rforrmance vs-a-vis peak

location error is summarized in Table 5.3.

From Table 5.3, it is clear that the three metods again perform -ery -wel

for the case of a single complex sinusoid. However, the ME mnotho again gives

the sharpest estimate, and although it s ot apparent from. the table, he

improvement in the ME estimates is the mot rapid, with very little iprvetnt

being visible in the spectrum after a data ength of 12x18. The V-L enr B3artlett

estimates do not stablize for data lengtlis upt 44x44, and show contintuou-

improvement although the spectral contours donot ah?'eve the sIe syzmrtry

as the ME estimates till a data length of about 60x60. For the to-sinvwsod case,

the situation is similar except that now all techniques show J.rger LOSP errors.

Again. the ME estimates have been observed to stabilize most rapidly for very

short data lengths.
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TABLE 5.3

Comparison of ME. ML and Bartlett estmnates for peak location accu-

racy using estimated autocorrelation values. SNR = +5iB. One sinusoid

case: 3x3 ACF, initial phase = 0 . peak location = (0.27r.O.21r). Two

sinusoid case: 5x5 ACF, relative phase = 0° . peaks located at

(Q.21.C 2) and (0.7r,0.B8n).

MAXI.Mu
ENTROPY

EST I.ATED
L-OCAT i N

0.i09,0.097

0.130,0.101

C.100,0.101

C.100,0.100

0.I0.0.100

3.09- ,.100

0.10C,0.i100

0.1C,G.100

0.0.',0.1075

0. 375,0 .390.09-,0.103
0.35-,0.39C

0.095,03.1040.35.C. 2(

0.358,0Q.397

0.09,0.1'3

.361,0. 95

0.394,,.i32

0.356,0. 39a

0.3Q, 0.13

0.4S6,0.398

LOSP
ERROR

0. 0 094

0.0010

0.3010

3.0000

0.0000

0.3009

0.0000

0,.0030

C. 0536

C, 014 3

0.0W.44

o3C13S

. o063

"0.i126

). 126

.mAX IMUM
LIKELIHOOD

ESTIMATED
LOCATION

0.091,0.101

0.099,0.131

0.101,0.101

0.100,0.100

0.100,0.100

3.099,0.100

3.i00,0.100

3.100,0.1C0

0.099,0.075

0.375,0.375

0.1221,0.125

0.3k6,3.375

0.103, .,.04

O.345,0.3Sj

3.119,3.125

0.330,0.375

0.103,0.102

O.Y47,0.37

G.116,0.122

0. 334,0.38

3.1,0. '.21

3 334,0.37

J.iC3,0.i03

5. 48.. 298

LOSP
ERROR.

0.009

0.0014

0.0014

0.0000

0. 0000

0. 0009

0.0000

0.0000

0.0589

0. 067 3

0.634

0. 0544

3 . 0536

ESTIMATID

0.i01,0.O90
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0.100,0.100
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0.100, O..00o

0.109,0.393

0.366,0.375

0.102,0 .135

0.345,0.392

0.103,0.105

0.346,0. '.

0.101,0.' 3

0.348,0.397

0.102,0.173

. 34 8 ,0. 370.101,0.1:2
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i
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I
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S
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60x60

4x4
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5.6 Missing Correlation Values

It is clear that if the data were not available over a square segment the

spectral estimates would show a corresponding distortion. However, the above

results indicate that because of the rapid improvement of the spectral esti-

mates, the shape of the data segment would have a considerable effect only if

one of the dimensions was extremely small as compared to the other Of course,

the data need not be available over a rectangular grid, or over a rectangular

region. It is also possible that the ACF may not be available or estimated over

the full rectangular grid. When the data are sampled randomly. it is still possi-

ble to use the FFT implementation of the algorithm, as the randomly spaced

samples ACF values) can be placed on an underlying rectangular grid. Of

course, depending on the randomness of the sample spacing, the grid may

become extremely fine (very long FFT lengths). The ME spectral estimates

could still be obtained by the algorithm as long as the estimated ACF values

satisfied Woods' theorem,2 that is, the ACF was extendible. Although Woods'

theorem does not cover cases where the gaps in the ACF fall inside the outer

boundary of the region 'A', Lang22 has provided the necessary conditions when

the ME estimates could be obtained in these situations, and the algorithm has

been used to obtain ME PS estimates for such cases.

Fig. 5.17 illustrates the ME PS estimates for one and two sinusoids where

the shape f'! the region 'A' is arbitrary. In fact, for the two sinusoid case, Fig.

5.'7(c) the gps in the ACF he side the boundary of the region 'A'. Figs.

5.17(b) and (d) show the corresponding ME estimates when there are no gaps in

the ACF.

� __��__
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(a) ME estimate;
c= (0.24687r,0.4697r); ACF
lags (1,1) and (-1,-l miss-
ing; 3x3 ACF; SNR = 5dB;
CINC = 7.07dB
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(b) ME estimate;
= (0.24687,0.469ir); 3x3

ACF; SNR = 5dB; CINC =
7.42dB

Fig. 5.17: MIE PS estimates when the ACF has missing points. SNR =

+5dB.
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(d) ME estimate; peaks:
(-O.i Tr, -O.3 r) and
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5.7 Effect of Initial Phase on Spectral gstimates

When the data consists of a sinusoid in noise, and the ACF has to be

estimated from the data itself, it becomes Important to know the effect of the

miitial phase of the sinusoid on the spectral estimate. In the 1-D case, it has

been noted that the phase causes a shift in the LOSP in the periodogram and

the direct data Burg methods of PSE.3 0, 3 1 Although the algorithm used here is

not a direct data method, the ACF must be estimated from the data, and there-

fore the starting phase will have an effect on the ACF values, and hence on the

PS estimates, Several examples have been tried with the data consisting of a

single sinusoid in white noise, using a 3x3 region of support for the ACF The

results are similar to the l-D case in that the LOSP shows an oscillation about

the true peak location, the amplitude of the oscillation decreasing with increas-

ing data length, as could be expected. Fig. 5.18(a) shows the oscillation in the

LOSP for one example where the size of the data segment used is i2x'12, and the

initial phase of the sinusoid is varied from zero to 2. The size of the region 'A'

is 3x3 and the S/N ratio is OdB. The effect of the phase on the LOSP changes

with S/N ratio, with the amplitude of the oscillation decreasing with increasing

S/N ratio. Fig. 5.18(b) shows the LOSP oscillation for the same experiment as

shown in Fig 5.1i(a) except that the S/N ratio is -5dB instead of OdB. Figs.

5.18(c) and (d) show the corresponding results for the ML method and Figs.

5. 18(e) and (f) give the results of the Bartlett technique. The oscillations in the

LOSP for the three techniques are seen to be very sirrmar in amplitude. Again,

the behaviour of the ME method is different from the VML and Bartlett tech-

niques which show almost identical errors in the LOSP.
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(e) Bartlett; SNR = OdB

3x3 ACF,

peak location = (0.2r,0.2rr).
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5.B Results Using Real Data

To conclude the characterization of the new algorithm for 2-D ME PSE, the

algorithm was used to obtain the ME PS estimate for real data gathered by a 2-D

array of sensors. The sensor array consisted of nine microphones equally

spaced in a 3x3 format on a square grid. The data gathered was the sound of a

helicopter flying past the array. Each of the nine sensors was used to record

time series. Thus, the data was actually three dimensional, with two spatial and

one temporal dimension. However, since a large amount of data was available in

the time dimension, it was decided to do a simple periodogram analysis, and

then obtain high resclution estimates for the spatial power spectrum at a par-

ticular temporal frequency. The objective of the experiment was to determine

the location of the helicopter in terms of azimuth and elevation with respect to

the sensor array.

Given the time series at each of the microphones. the data was divided into

512 pont sections. Periodograms of each section were obtained via the FFT and

nine sections were then averaged to reduce the bias. The resulting temporal

spectra were then analyzed for spectral peaks which indicated the presence of

a strong signal (depending on the temporal frequencies being generated by the

helicopter engine and rotors). These temporal frequencies were then chosen for

spatial analysis. The nine channels were correlated at the chosen temporal fre-

quency, and the resulting ACF values used to obtain both Maximum Likelihood

and Maximum Entropy estimates of the spatial power spectrum.

The results of the experiment are shown in Fig. 5 9(a) and 'b) Fig 5 19(a)

shows the ME estimate while Fig. 5.19(b) shows the XL estimate. The location of

the helicopter is well determined by botn of the methods. with the estimated

location lying well within the error tolerance of the experiment. The spectral
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(a) Maximum

Entropy estimate.

Horizon is located at
I o = Tr. The centre point
is the location of the sen-
sors. 3x3 ACF; CINC = 3dB

(b) Maximum Likelihood

estimate.

Polar plot. Outer circle is
the horizon Highest con-
tour is OdB; CINC = idB

Fig. 5.19: -D ME and L spectral estimates for real data. Spatial power

spectra showing the location of a flying helicopter.
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peak, however, is much sharper for the ME case, as was to be expected, and tts

could prove to be the deciding factor when high resolution estimats are

desired in the presence of multiple targets.

5.9 Summary

This chapter has been concerned with obtaining a characterization of the

M4E method of PSE for t-o dimensional signals The experiments run were for

data sets consisting of sinusoids in white Gaussian noise, using both eact ACF

values as well as estimated ACF values. It was found that like the one dimen-

sional case, the estimation of power spectra for real data gives erroneous peak

location estimates when the peaks are located in certain regions of the 2-D fre-

quency plane. The special regions are caused by the periodicity and symmetry

of the spectrum and examples were run to demarcate the size of these regions

It was found that the errors in spectral peak location were most pronounced for

small sizes of the given ACF segment (corresponding to low model orders in the

I-D case), and for low S/N ratios. The size of these speciai regions also

depended on these two factors. Complex data caused no problems, and in fact,

it was found that the ME PS estimates for comp'ex data did not depend on the

absolute frequency location of the peaks.

Increasing the S/N ratio increased the resolution of the MiE PS estimates

For the case of real data, the special regions mentioned above, were fcund to

decrease in size inth increasing S/N ratio. while for both real aad cormplex data,

the spectral peaks grew sharper in the PS estimates and the pFeak Ioc~r.or

accuracy improved. It was found that twc peaks iocaee close t ,g t}.ae;' -'at

could not be resolved at low S/N ratios could be res-o;-ea .o;e c .g~ Au a rtCs
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The resoiution performance of the ME method w-as comrpared 'o that of the %VL

method and the Bartlett estimates It was found that like the :-D case, the ME

method afforded the highest resciution of the three techniques

The eect of changing the size of the known ACF gave results sirrular to

those obtained by increasrng the S/N ratio increasing the size of the .CF sup-

port resulted in sharper spectral peaks, more accurate peak location estilmates

aid, for real data, smaller regions where the peak location accuracy may be

expected to suffer. Changing the shape of the ACF support region results in dis-

torted spectrai estimates, with the dstortion being proportional to the devia-

tion away from a square support shape. Smiularly, aussing correlation valjes

cause a distortion in the shape of the estimates, with the amount of distortion

being proportional to the number of nussing values.

For the case of estimated ACF values. it ,-as fount that the ME' sectral

estimates improved very rapidly with increasing data ength. The effect of the

starting phase of sinusoidal data was investigated and it was found that he

location of the spectral peak oscillated about the true position for different

values of the initial phase, sirmlar to the -D case Finally, an example using

real data was shown and the results were compared to those obtained via the

ML method.

___
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Chapter 6

The 1-D ME Problem ith Missing Correlation Points

6.1 Introduction

The Maximum Entropy power spectrum estimation problem for i-D signals,

when the ACEF values are known over a uniform grid, is linear, and analytically

tractable. In fact, as was mentioned in chapter II, the solution to this problem is

identical to that obtained by the mean-square error minimization of the predic-

tion filter based on autoregressive signal modeling, which involves solving a set

of linear equations for the filter coefficients. However, in many important appli-

cations of power spectrum estimation, the sensors used to gather the data are

not placed on a uniform grid. In these applications. it is possible that the ACF

values may not be estimated over a connected region (that is, the ACF support

region 'A' may have missing points). In this case, the -D ME problem is also

non-linear and no closed form solution has yet been proposed.

There are two basic alternatives in this situation. One is to interpolate the

missing ACF values by some algorithm and then obtai an autoregressive filter

via the linear problem formulation. The other is to obtain the true ME solution

by using the new algorithm developed in chapter III to solve the non-linear

probiem. Althoigh the interpolation approach may impose a lighter computa-

.lonal load, it presupposes extra information about the signal which may not be

available, or which may impose unreasonable constraints on the data which is

the very problcm tnat the ME formulation tries to avoid. A recent study by

Dowla 3 0 has shown that the ME soectral estimates ive better spectral peak

locations than the nterpolation approach., especiatly when the AiCF valiues are

---~ ~~ ~~ ~~~ ~~~~~~~~~~ -~ ~ ~ ~ _
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spaced very non-uniformly.

62 Application of the New Algoritthm to -D Data

The algorithm developed in chapter II1 is completely general and is not res-

tricted by the dimensionality of the signal to be analyzed. As such, it is immedi-

ately applicable to the 1-D problem Further, a careful study of the algorithm

will indicate that it is not restricted to any particular shape for the ACF support

region A'. Thus, in the 1-D case, the region 'A' need not be a connected segment

of the uniform grid which is required to obtain the closed form solution. The ME

method can be viewed as a technique to extrapolate the known segment of the

ACF. n the case of missing correlation values, the ME technique not only extra-

polates the ACF beyond the known limits, but also interpolates the missing

values during the course of obtaining the solution.

62.1 Comparison With The Closed Form Solution

First, consider the case of 1-D signals when the ACF is given over a uniform

grid, for -N ; n < N. Due to the existence of a closed form solution, this rroblem

is ideal in illustrating that the solution obtained from the iterative algorithm

developed in chapter III is indeed the ME PS estimate. Fig. 6.1(a) shows the ME

PS estimate obtained via the iterative algorithm for the data parameters shcwn

in the figure. Fig. 6.1(b) shows the result obtained from the closed form solu-

tion. Fig. 6. (b) also shows the PS estimate of Fig. 6. 1(a) (dotted line). It is clear

from Fig. 6.1(b) that the two results are identical, and that the iterative algo-

rithm does Indeed lead to the ME power spectrum estimate. Many other exam-

ples have been tried to verify this conclusion.

�
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Fig. 6.1: The closed form solution compared to the iterative solution 

Fig. 6.1: The closed form solution compared to the iterative solution
for -D signals. (a) Itprative solution. Peak location = 0.447r, fourth

order model; SNR = 5dB; 11 iterations (5 secs. CPU ime). (b) Closed

form solution (solid line), solution of (a) is shown as a dotted line.
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6.2.2 issing Correlation Points

When the shape of the ACF support region 'A' is arbitrary, a closed form

solution is no longer available, and the new algorithm assumes practical

significance. Figure 6.2 shows the ME PS estimate obtained for the same data as

was used for the example shown in figure 6.1 except that now the correlation

values at lags n = 3 are missing. The figure also shows the results of figure 6.1

(dotted line) superimposed on the estimate. The peak locations are seen to be

shifted but the estimate retains its high resolution nature. Figure 6.3 shows

another example of ME PS estimation for data with missing correlation values.

6.3 Conclusions

in addition to the above examples, a variety of other 1-D examples have

been considered, and in all cases it has been observed that the iterative algo-

rithm developed in Chap. 3 leads to the ME PS estimates. In the cases where the

region '4' is connected (no missing points on the uniform grid), the results are

indistinguishable from the closed form solutions. Further, we have observed

that the iterative algorithm leads to the MIE solution for the PS estimation prob-

lem even when there are missing points in the ACF. In these cases, the ME

method has been seen to generally preserve its high resolution characteristics,

as long as the number of missing points is smll as compared to size of the

re gion 'A'.
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Chapter 7

Summary and Conclusions

7.1 Sunnmary

This thesis tackled the problem of two dimensional Maximum Entropy

power spectrum estimation. The problem was formulated and it was shown that

the ME PS estimate is always autoregressive in nature, regardless of the dimen-

sionality of the problem.The dependence of the solution on the signal dimen-

sionality was pointed out. In particular, it was noted that whereas the -D ME

PSE problem could be formulated as a linear one, with an analytic solution, the

2-D problem was highly non-linear, and no closed form solution existed.

A new algorithm for solving the highly non-linear 2-D problem was then

developed. The algorithm is iterative in nature and iterates between the known

correlation values and the AR coefficients that form the model for the spec-

trum. The requisite constraints are imposed in each of the two domains to

arrive at the desired solution. The algorithm uses the Fast Fourier transform

algorithm to achieve computational efficiency.

The implementation issues were then explored and different implementa-

tions for main-frame and mini-computers were developed. The mini-computer

implementation uses direct computation of the DFT and therefore requires a

minimal amount of storage. This implementation possesses viability for parallel

processing hardware, in which case the slight loss of computational efficiency

would be more than accounted for.

The properties of the 2-D ME estimates were then investigated and cornm-
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pared to the ML and Bartlett estimates. It was shown that the symmetry and

periodicity of the power spectrum for real signals causes problems in the deter-

mination of spectral peak locations when the peaks are located in certain

regions of the 2-D frequency plane. These special regions were demarcated and

it was shown that their size depends on the S/N ratio (SNR) as well as on the

size of the ACF support region 'A'. It was seen that complex data did not suffer

from similar problems. The effect of changing the SNR on the spectral estimates

was investigated. It was seen that closely spaced spectral peaks that could not

be resolved at lower S/N ratios could be resolved at higher S/N ratios. The ME

estimates were compared to the ML and Bartlett estimates and it was shown

that the ME afforded the highest resolution of the three.

The effect of the size of the ACF support region on the ME PS estimates was

also investigated and it w, s seen that the results were similar to increasing the

SNR and higher resolution was achieved when the size of the ACF support region

was increased. It was shown that the resolution properties of the ME estimates

depended on the specific shape of the ACF support. The accuracy of peak loca-

tion estimation for the ME ML and Bartlett methods were compared for the case

of exact and estimated ACF values. It was found that although the accuracy for

the three methods was comparable and excellent for the case of a single

sinusoid, the ML and Bartlett techniques performed better for the two-sinusoid

cases. For the case f estimated ACF values, the effects of the size of the data

and the Initial phase of the sinusoid were also investigated. It was seen that the

ME estimates improved most rapidly as compared to the other methods when

the data length was increased. The location of the spectral peak was found to

oscillate about the true location when the initial phase of the sinusoid was

changed. The amplitude of the oscillations was seen to decrease with increasing

�il_�_��
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SNR.

The algorithm was also shown to be applicable to the case when there were

missing points in the ACF. Examples illustrating the effect cf missing ACF values

on the ME estimates were shown. Finally, the algorithm was used on real field

data and the results compared to the ML estimate.

It was seen that the development of the algorithm was completely general

and did not restrict its application to signals of a particular dimensionality.

Thus, the algorithm was also seen to be applicable to the one dimensional prob-

lem and proved useful in obtaining the ME PS estimates when there were miss-

ing correlation values.

7.2 Conclusions

This thesis has been concerned with developing a practical algorithm for

2-D ME PS estimation and investigating the properties of the estimates. The

algorithm has been found to be a viable technique for obtaining the ME esti-

mates, and has even proved to be extremely useful for the case of -D signals

with missing correlation points. The extendibility problem of the ACF and simi-

lar theoretical issues have not been explicitly addressed in this thesis. The

works of Woods2 and Lang22 would form excellent complementary reading.

It has been found that the 2-D ME estimates, like their I-D counterparts,

afford higher resolution than the Bartlett and ML methods. Although as estima-

tors of the spectral peak location, the ME estimates show a larger deviation.

excellent power spectral estimates can be formed even with very short data

lengths at moderate S/N ratios, which has proved to be the strength of he ME

method. It is not yet known how to form estimates of the power in the spectral

peaks from the ME estimates. In the 1-D case, the area under the peaks is
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proportional to the power. It is conject.ured that for the 2-D case, the volume

under the spectral peaks would be proportional to the power. No proof of con-

vergence for the algorithm has been forthcoming. If such a proof were to

become available, it would place the new algorithm on a firm theoretical footing,

and possibly point out means by which the convergence rates could be speeded

up.



- 102-

APPENDIX A

COMPUTER PROGRAM FOR M-COMPUTER
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f/ MI NCONP. C
/* PROGRAI TO OBTAIN THE 2-D MElE PO WER SPECTRUM

ESTIMATES BY DIRECT DFT COIPUTATION. THE
/* STORAGE EQUIRENFJITS AE IIIMIPIZED TO ALLOW

IMPLENEITATION ON A NINI-COiPUTER
/* HANDLES COMPLEX VALUED AUTOCORRELATIONS.
/ FOR REAL ACF, COMPUTATION CAN BE FURTHER NIIIMIZED.

is NAVEED A. PIALIK
i/ AUGUST. 1980

'include <stdio.h>
'include <math.h)
#include <complex.h>

/* useful constants
define PI

# define TWOPI
3. 14159265
6.28318531

-define M1N 25 /* max ACF size. for C, se MN and
'define IN 26 /*
'define N2n 52 /* 25*MN for complex data
'define lN2 13 /* Centre point of ACF array etc.
'define NMN3 14 /*
-de fine MN4 26 /
-define ZTST l.Oe-4 /* Error level to be achieved
'define ZTSTI 2.5e-4 /* Alternate error level
-define ALPTST 0.99999 /* Maximum permissible alpha value

int n,nl,n2.n21,ml,2,gap[N[N] ,nsnngap,nl2;
float xl.x2,n4,pin,p[20], xfreq[20J, yfreq[20], noise:

ngap:
f/ nsin:

/ noise:

gap array specifying missing ACF values */
no. of gaps /
no. of sinusoids 5/
no ise power /

mrn in( arge. argv)
int argc

char ** argv;

FILE *fp. fid, *fopen();
complex xlam[HN]fl]lxoldMN3tNI]3,r.rN][(] ,pxNl[INl;

/x xlam: HEl filter values
xold: filter values from previous iteration
r: the given ACF values

float zold,sclf.alpha,betaden,z.rx,bmin,x3,x4.cft2();
float pxdu~l ,-N] . fdx;
int nitr, i,Jk, is.Js.gdumr fM].3s2,JS21;

/s REf'r.4iATING FROi SAVED DATA
/* - V¥:LXBLE IF YOUR SYSTE-1 IS PRONE TO CRASHES!!!

if(arge >= 2)1
fp = fopin(i"save',wr);

frea.l((char *)8n. 2, 1. fp);
frea'((ctnr 2)slx, 2. 1. fp);
frcad(¢-..- *)ln2. 2. 1, fp);
.:'ra(chalr )x.n2l. . 1, fp);
fre': (c..r )&nl, 2. 1. fp):

*/

indices */Fortran
z/

z/
5/

5/

5/

5/

5/

- _ -

_1�1
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frcad((char ) . 2,1. fp):
for is=; is<,x; is++) 

ireodd((char *)gdum. 2, MN, fp);
for(Js=O; Js<(Ni; Js++)

gap[is][Js = gdum[Js]:

for( is=O; is<Hl1; is++)[
fread((char )pxdum, 4. 1, fp);
for(Js=O; Js<NM: s++)(

3s2 = 2 * js;
js21 = 3s2 + 1;
px[ is][ s = zcpl( pxdumt Js2],pxdau s213 );

for(is=0: is<Mnl; is++)(
fread((char *)pxdum, 2, 2N, fp);
for(Js=O; js<MN; js++)(

js2 = 2 * s;
js21 = Js2 + 1;
xlaml is[3js] = zcplx(pxdumtjs2],pxdumtdJs2l]);

for( is=O: is<N; is++)(
fread((char *)pxdum, 4. M2R, fp);
for(js=O; js<(l¶; js++)[

js2 = 2 * Js;
JS21 = JS2 + 1:
xold[ is] Js] = zcplx(pxdun Js2] ,pxdmC Js21 );

for(is=O; is<MN; is++){
fread((char *)pxdum, 4, ?H2, fp);
for(Js=; js(<N; Js++)(

JS2 = 2 * Js;
js21 = Js2 + 1;
r[is]tjs] = zcplx(pxdum[js2],pxdumiJs213):

}
)
fread( (char
fread( (char
fread( (char
fread ( char
fread( (char
fread( (char
fread( (char
fread( (char
fread( (char
fread( (char
fread( (char
fclose(fp);

else 

*)Sxl, 4, 1, fp);
*)8x2, 4, 1, fp);
*)8u4, 4, 1, fp);
X)pin, 4, 1, fp);
*)Szold, 4, 1, fp);
:)8sclf, 4, 1, fp);

*t)alpha, 4, 1, fp);
*)8beta, , 1, fp);
*)6den, 4, 1, fp);
*)8z, , 1, fp);
*)xnitr, 4, 1, fp);

compute ACF, specify aps
cacf2d(r);

initialize all arrays /
zo ld 1 .e3;
Sclf=0.5;
a lpha=. 0:
be ta=o.0:
z= 1. e30;

7* *7

etc */

--
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for ( i = O; i < M; i++ ) 
for( = 0; j < N; j++ )(

xo Idli [j] zcplx(0.0,0.0);
xlam i][j] = zcplx(0.e,0.0);
px[i][JI = zcplx(0.0.0.0);

11

= zcplx(l.e,.);
= zctlx( . 0,0. 0);
zcplx( 1.0.0.0);

rmalizing factor

i++) (
; J<=m2; J++)
den=den + zag2(rIE] j]);

xlasm[ MN21 ( 12]
xo ldM[ 23 [HM23
pxt I123 [ 1MN2] 
xl =1.0:
x2 = 1.0;

error no
den = 0.0;
for( i= ml; i<=vm2;

for(J=ml

den=den- 1.0;
nitr=0;

nitr++;

/: obtain correction ACF and error z/
z=O.0:
for(i=ml; t<:m2; i++)(

for(J=l; J(<=.2; J++)(
px[ i3][J] zsub(r i]J] ,px[ i]]);
z = z + zg2(pxti][J]);

}
z = z/den;

/* end if statement

o/ ain loop for it rations */
while(z > ZTST )C
if((nitr 7. 1) == 0)(

printf('ITR = %d ALPHA = e ERROR = %e \n',nitr,alpha,z);
fp = fopen('save', w');
fwrite((char *)8n, 2, 1, fp);
fwrite((char *)8nl, 2, 1, fp);
fwrite((char i)Sn2, 2, 1, fp):
fwrite((char *)8n2l, 2, 1, fp);
fwrite((char *)8ml, 2, 1, fp);
fwrite((char *)6m2, 2. 1, fp);
for( is=O; is< l; is++)(

for(Js=O; Js<; Js++)1
g<l}um J9 = gaplisljs];

)

for(

fwrite((char *)gdum, 2, , fp);

is=0; is<l; is++)(
for(Js=O; js<lN; s++)(

J92 = 2Js;
Js2l = s2 + 1;
pxduumJ2] = (pxtIs3]Js]).r;
pxdumJs21 = (px is]js]). i;

fwrite((char )pxdu, 4, M2B, fp);
3
for( is=O; is<Mi. is++)(

for(Js=O; Js(<M; js++)(
J92 = 2*Js;



- 06 -

js21 = j392 + 1;
pxdum[s23 = (xlam isi [s]).r;
pxdun[js21] = (xlam is) s]) .i;

)
fwrite((char )pxdum, 4, 2N, fp);

for(is=O; is<?lW; is++)(
for(js=O; s<fN; s++){

js2 = 2js:
J921 = s82 + I;
pxdumtJs2] = (xold[is1[js]).r;
pxdum[js213 = (xold tss]]). i;

fwrite((char *)pxdum, 4, 2N, fp):

for(is=O; is<Ml: is++)[
for(Js=O; Js<MN; js++)t

Js2 2*Js;
js21 = Js2 + 1;
pxdumlJs2] = (r[is)]Js]).r;
pxdum[Js21] = (r(is][Js]). i;

fwrite((char *)pxdum. 4, MM , fp);

fwrite((char *)8xl. 4, 1, fp);
fwrite((char *)8x2, 4, 1, fp);
fwrite((char *)8n4, 4, 1, fp):
fwrite((char *)8pin, 4, 1, fp);
fwrite((char *)&zold, 4, 1, fp);
fwrite((char *)8sclf, 4, 1, fp);
fwrite((char *)&alpha, 4, 1, fp):
fwr.te((char *)&beta, 4. 1, fp);
fwrite((char *)8den, 4, 1, fp);
fwrite((char *)6z, 4. 1, fp);
fwrite((cbar *)gnitr, 4, 1, fp);
fclose(fp);

end if statement */

if(z > zold I bets != .8)(
if((beta == e.0) 8 (zold <= ZTSTI))C

/* accept higher error level as convergence.
Then, better estimate is the previous lambda set. $,

for( i:l; i<=m2; i++)(
for(J-ml; J<:m2: J++)

xlam[ i3[j3 = xold[ i][j];

goto 11888;

alpha (I.0+alpha)/2.e:
scif sc lf/2.e;

zold = z;

x/a compute minimum vlue of correction spectrum and update alpha x/
x3 = cft2(px);
xx = 1. + sclf x2/x3;
alpha = (xx > alpha)? xx: alpha 
if(alpha >= ALPTST)goto lab999;

compute lambda values for region A only /
c f t3(xold,pxalphaxlar);
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inimum value of F lambda], compute beta
x4 = cft2(xlam):
if(x4 > 0.0)c

beta =0.0;

else 
bmin = -=4/( xl-x4 );
beta = ( 1.+ (l.0-sclf)*(l.0/bmin-1.0))*bmin ;
alpha : 1.O+aipha)/2. 
printf( bete = e xn',beta);

)

/* obtain new lambda set /
for ( i=ml; i<=m2; i++)(

for(j:ml; j<=m2; j++)(
xlam[ i[J] = zadd(zscal(beta.xold i]J] 3,
zscal(( 1 .0-beta),xlam( iJ]));
xold[illJ] = xlam i][J];

id = fopen( filter, 'w'):
i = ;
fwri e((char *)81,2, 1,tid);
fwrite((char *)8nsin,2, l,fid);
for(i=l; i<=nsin; i++)C /* F

fwrite((char )8p(i3,4, 1. fi);
fwrite((char *)Sxfreqi],4, 1, fid);
fwrite((char *)8yfreq i],4, l,fId;

ORTRAN indices here!!!! */

fwrite((char *)8noise,4. 1.fid);
fwr ite( (char *) &nl2.2. 1, fid);
fwrite( (char *)8ngap,2, ,f id);
if(ng-ap != )C

for(i=0; i(ngap:; ++)[
for(j=nl; J<=m2; j++)(

for(k=ml; k<:m2; ++)(
if(gap[J][k] == 0)(

is = J-"n2;
Js = k-lM2;
fwrite((car *)8is, 2, 1, fid);
fwrite((char S*)/Js, 2, 1. fid);

}

fwrite((char *)&n, 2, I, id);
fwrite((char *)jnitr, 2, 1, fid);
fwrite((char *)6z. 4. , id);
for( i=ml i<=m2; i++)C

for(J=ial; j<=m:2; j++)(
fdx = (xlam[ i][J3).r;
fwrite((char *)&fdx, 4,
fdx = (xlaml i][j])i;
fwrite((char *)Sfdx, 4,

1, fid);

1. f id);

fclose(fid);
obtain new ACF over the region A only */

cft(px.xtam);

ni tr++;

obtain correction ACF and new error
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z= O. :
for( i=ml; i<=m2; i++)(

for( =ml: J< =m2; ++)(
px[ l][J] = zsub(r iJ] , px[ 1][j]);
z = z+ zmag2(pxt i 3 ]);

z=z/den;
) /* end while loop */

checkl; solution */
printf("Converged at iteration no. %Yd \n",nitr);
printf('TEST IN PROGRESS: PATIENCE ..... \a');
lb 1888:
if(z > zold)printf(' 2.0e-4 EFROR LEVEL, ITR = %d,nitr):
n= 4*n;
n2= n/2:
n21= n2+ I;
n4 = n :
n4= n4*n4;
pin=2. 0*P/n:
cft(px,xlam);

If non positive definite solution, error essage
issued by cft.c. If O.K., then error rechecked below: */

z=0.e;
for( i=ml; i<=-2; i++)(

for(j=ml; j<=m2: J++)
z = z + zmag2(zsub(r i]J] ,px i3IJ]));

z=z/den;
if(z <= Z T)

printf( CGood solution. Error is %e \n,z);
else

printf('Positive but high error e \n',z);
lab999:;
if(alpha >= ALPTST)

printf(' ALPHA = .9999; unse longer dft length!!! \n');
3 /* **x***EiD MAIW PROGRAMx* * **

caef2d(r)
complex r[lNNINNI;

float xx, wx, wy;
int i,J, i , i2, ia,Ja;
complex zw;

o/ request input data z/
printf( 'Enter no. of complex exponentials \n );

scanf( '%d', 3ns in);
printf('Number of complex exponentials is %d \',us in);
for il; i<=nsin; i++){

printf( Enter power. fx, fy for e xponential no. %d \n',i);
scanf( %e e e'.8p[ i] ,8xfreq[ i .8yfreq i]);
printf('power= e fx= %e fy= e .n,p[i].xfreq[l1 ,yfreq[i]);

printf( enter noise power \un):
scanf( '%e, noise );
printf(" noise power is e \n, noise):
printf(' enter dimension of smallest square containing 'A' \n');
scanf( ' ,'. n12) 
printf('ACF without gaps is %d x d \n",n12.n12);
printf(' enter DFT length n'):
scanf( Xdu , ):

�
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printf('DFT length s %d \n",n);
n2= n/2;
n21=n2+ 1;
n4= n;
n4 = n4*n4;
n =( n 12-1) /2;
ml=MN2-nl;
m2= 12+nl;
pin= 2.*P I/n;
printf("ACF array is from ( %d %d ) to ( %d .d ) \n",

ml, ml ,2,m2);

fill gap array /
for( i=; i<MI; i++) (

for(J=0; j<N;: ++)
gap i][J] 1;

find where the gaps are
printf(' no. of gaps in upper half plane ? \n');
scanf ( d" .8ngap);
if(ngap != )(
for( i= l ; < =ngap; i++) C

printf( enter coords for gap no. %d nS, I);
scanf(' d Sd,8il,8i2);
gapl il] i2] = 0:

calculate ACF /
for(l = 1; il<=nsin; il++)(
wx = 2.0PIlxfreqL i13;
wy = 2.0*Pl*yfreq il3;
for( i=ml; i<=m2; i++)(

ia- i-MN2;
for(J=ml; J<=m2; J++)[

ja=J-MNP2:
z = zcplx(0.0,(x * i + Ja));

zero out acf array before computing ACF */
if( i l=l1) r i][J = zcplx(0..O.);
if (gap 1 I [J == 1)

rli][j]=zadd(r i][J ],zscal(pl[l , zexp(z)));

/* add noise power and normalize x/
r[M1N2[1M23 = zadd(r[lM2)[NN2l,zcplx(noise,.0O));
xx=r N] [ 1l2] . r;
xx = 1.0/x;
for( i=ml; i<=a2; i++) 

for(j=ml; j<=m2; J++)(
r i][J] = zscal(x.r[ i[J]);

)
}
re turn(22);

c f t(px,xlam)
complex pxCNlI l ],xlaum(l][l¶];

complex zx,zx22.wz;
double npow();
float ainl(),amaxl(),xOOxll,x22,xkl,wx,wy;
int i.j,k, .m.nn,nnl;

_�
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*/ compute the (0,0) nd (n/2,n/2) values first */
zxO0 zcplx(O.0.0.0);
zx22 = zcplx(O.0,0.0):
for(i=ml; i<=m2; i++)C

for(jml; J<=m2 ; ++)(
X80 = zadd(zxee,xlamti]{J]);

zx22 = zadd(zx22,zscal(npow( - .,(i+j-tI4)),xlamE l] j]));
px[i][J] = zcplx(0.0,0.0);

x00 = zxOO.r;
x22 zx22.r;
if(xOO <= 0.0 1i x22 < .0)(
printf( BAD SOLUTION: F(LAIBDA) < 0 un')-
re turn(1 2);
3
xl=aminl(xO,x22);
x2=amaxl( xOO.x22);
x0 I. O/x00;
x22=1.0/x22;

place the idft contribution of zO0 and
x22 in the px array */

for( i=ml; i<=m2; i++)(
if( i< N2)

nn= Ml3;
else

nn= N2;
for(j=nn; j<=m2; j++)

px i13[] zcplx(xOO+x22npow(-Il.,(l+j- 34.)),.O .);

compute all other independent (k,l) values in the
plane using direct complex exp function calls */

zx = xlamIn lM23 1N23;

specify (k.1) values in the plane */
for(k=; k<n; ++)(
for(l10; I<n; 1++)C

if( (k==e) S8(==) )cont inue;
if( ( k==n)88( l==n))contiue;
zx22 zcplx(0.0,0.0);
for(m=ml; m=<m2; ++)(

if(a < MI2)
n1n =N3;

else
nnl MN2;

for(nn=nnl; nn<=-2; nn++)(
i fT (= W2)88( nn= = 2) )cont I ne;
wx = pin t (k(zrIl2) + l*(an-lM2));
wz zcplx(O.0,-wx);
wz = zexp(wz);

zx22 = zadd(zx22.zmul(rlarm[mnn].wz));

/x 4/

xkl = zx0.r + 2.*zx22. r;
if( xkl< :.) C

printf('BAD SOLUTION: F(LAIBDA) < 0 \n);
return(MN2);

xl=ainl(xl,xkl);

�__�___�3



- 111 -

x2=amaxl( x2, xkl);
xkl= . O/xkl:

Given the x(k,l) value, update th
ACF R'(m, n)

for(m=ml; m<=m2; m++)(
wx = pin * k (m- N2);
if(ml<M2)

nnl=N3;
else

nn I= N2;
for(=n=nnl; nun=m2; nn+

)
)

.e running sums for the
x/

·+) C
if(gap[ml nn]==O)continue;
wy = pin * I *(nn-1N2);
wz = zcplx(0.0,(wx+wy));
wz = zscal(xkl.zexp(w) );
pxlm][nn] = zadd(px[ml[nn],wz);

half array of ACF values computed.
rearrange to full array
and norma I ze /

for(m=ml; m<=m2; m++)C
for(nn=ml; nn<=MYl2; nn++)

px m [ nn] =ZCljg( px m l+m2-m] ml+m2-nn] );

xO0=(px 2][MHN2] ) .r;
xl = xOO/n4
zOO = ./xOO;
for(i=ml; i<=m2; i++){
for(J=ml; J<=m2; j++)(

px[ i][j = zscal(x0,px[i[j]D);
xlamli][J] = zscal(xll,xlam[ ijD33);

x2= 1. 0/( x2*xl 1):
xl=*xll 1;
return(ml);

float cf t2(px)
complex pxMN1[NMN]3;

complex zxOO,zx22, wz;
double npo3w();
float aminl(),aaxl(),xeO,x22.xkl,wx,xmin;
int i,J ,k, l.m,nn,al:

"S compute the (0,0) and (n/2,n/2) values first :/
zxO0 = zcplx(O.,O.0);
zx22 = zcplx(O.C,O.O);
for( i=ml; i<=m2; i++)(

for(J=ml; J<=(2; J++)(
zxO0 = zadd(zxO,px[ i]1J]);

zx22 = zadd(z9x29. zsca(npow(-l.O,( i+j-N4)), px[ i] ) );

xe = zxOO.r;
x = zx22.r;
min = aminl(xOO,z22);

)
)

-- -- -----
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compute all other :(k,l) values in the
plane using direct complex exp function calls x/

zx-0 p= xM(NN2] N23;

r* specify (k.1) values x/
for(k=O; k<n; k++)(

fort 1=0; l<n; 1++)[
if((k==e) 88( ==0) )continue;
if( (k==n)8( l=n) )cont ine;
zx22 = zcplx(O.0,e-.);
for(m=il; w<=m2; nw++)(
if(m < 12)

nnl = MN3;
e Ise

nnl = M12;
for(nn=nnl; nn<(=m2; n++)(

If( ( == N2)8( n==NI2) )cont tn;e;
wx = pin (X*(-MN2) + t(nn-MN2));

= zcplx(0.0.-wx):
wz = zexp(tz);
zx22 = zadd(zx22,zmul(pxml][n ],wz));

}

xkl = zxOO.r + 2.0*zx22.r;
xmin = aminl(xkl.xmin);

re turn(xmin);

cf t3(xold,px,alpha, xlam)
complex xold[lM] MN1] ,px[M] [N ,xlatm[ It[II;
float alpha:

complex z--, z >, wz. zy0O, zy22;
double npowt):
float aminl(),aaxl().xO,x22.xklyt.wx.,y;
int i.J,kl,m,nnnnl:

o/ compute the (0,0) and (n/2,n/2) values first *
zx4O = zcplx(O...O);
zx22 = zcplx(@.0.0.);
for( i=l; i<=m2; 1++)(

for(J=ml; J(=m2; ++)(
= npow-1-O,( l+3-P!4)

zx0 = zadd(zx0 ,pr[i I ]);
zx22 = zadd(zr22,zscal(wx. pxtil[j]));
zy0 = zadd(zye, xo ld i ] );
zy22 = zadd(zy22,zsca I(w, o ld i ] [j );
xlam[ i]J] = zcplx(0.0..0);

wx = zxOO.r;
wy = z.r;
X = 1.O/wy +( 1.0 - alpha)* wx;:
zoo= I. O/ ;
w = zx2.r;
wy zy22.r:
x2- = 1./w + I1.0 - alpha)* w;
x2 = 1.0/x;22;

�I�L_
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place the idft contributions of
x00 and x22 in the lambda array */

for(m=ml; m(=m2; m++)(
if(m< I2)

nnl= I3;
else

nn 1= N2:
for(unn=nnl; nn<-m2; n++)

xlam nn] - = zcplx( x+x22*npov-1.0,(mnn-N4)) ,O.O);

/* compute all other values in the plane :/

zxO = pxMAN2] [NM2;
zyO0 = xoIdlc'!3[lN2];

c/* specify the k,l values
for(k=O; k<n: k++)C

for(l=0; <n; I++)(
if( (k==) g( l==))cont iue ;
if((k==n)&( l==n))cont inue;

zx22 = zcplx(O.O9O.);
zy22 = zx22:
for(mml; m< =m2; ++) 

if( m< Nl2)
nal = M3;

else
nnl = MN2;

for(nn=nnl; nn<=2; nnu++)(
if( (m== 12)&(<nn==N2) )cont inue

wx = pin * (k*(-MiR2) + 1*(nnN-N2));
wz = zcplx(e.0,-wx);
wz = zexp(wz);
zx22 = zadd(zx22,zmul(px(m]nn],wz));

zy22 = zadd(zyZ2,zmul(xold[mnn], wz));

wx zx~.r;
wy zx22. r;
xkl = wx + 2.0*wy;

= zy]O.r;
wy = zy22. r;
ykl = wx + 2.0*wy;
xkl = l.Oy/kl+(l.O-alpiu)*kl;
xkl = l.0/xkl;

update the running sums for the lambda values */

for(m=ml: <=m2; m++)(
wx = pin k * (m - 2);
if(w <M R2)

nnl=i(13;
else

m 1== 12:;
for(nn=nnl; nn<=2: nn++)(

if(gap[l m]nn==O)cont iue;
wy = pin s I (n - n2);
wz= zcplx(0.0.(wx+wy));
wz = zscal(xkl,zexp(wz));
xlamtm[nn] = zadd(xla[mmlnna,wz);

)
)

_1__11_11
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/* half lambda array computed. rearrange and norma l ize */

for(m=ml; m-m2; m++)(
for(nn=ml; nn< =ll2; nn++)

x lam( m] [ n] =zcnJg( xlam[ ml+m2-m] [ ml+m2-nn] );

wx = l.e/n4;
for(m=ml; <m(=2; m++)(

for(nn=ml; nn<=m2; n++)
x la m ] nnl = zscal (wx,xlamf mJnl );

return(m2);

7/ function to obtain the inimmn of two numbers */
float aminl(, y)
float x,y;

re turn( (x<y) ?x: y);

/* function to obtain the maximum of two numbers */
float amaxl(x,y)
float x.y;

return((x>y)?x:y);
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