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Abstract

The Maximum Entropy power spectrum estimation problem for two dimen-
sional signals is discussed. The problem involves obtaining a correlation match-
ing power spectrum estimate that can be represented as the reciprecal of the

spectrum of a two dimensional polynomial!, whose order is the same as that of
the known correlations.

The differences between the one dimensional and two dimensional prob-
lerns are pointed out. A new algorithm for solving the highly non-linear two
dimensional problem is developed. The "alternating projections” type of algo-
rithm iterates between the correlations and the polynomiai coefficients apply-
ing the requisite constraints in each domain to obtain the desired solution.

Implementations of the algorithm for main frame and mini-computers are
described. The algorithm is used to investigate the properties of two dimen-
sional Maximura Entropy power spectra, and the performance of the Maximum

Entreopy estimator is compared to the Maximum Likelihood and Bartlett esti-
mates.

The algorithm is aiso shown to be applicable and useful for obtaining the

power spectrum estirnates for one-dimensional signals with missing correlation
values.

A computer program for implementing the algorithm on a mini-computer is
provided.

Thesis Supervisor: Jae S. Lim

Title: Assistant Professor of Electrical Engineering



To my parents

for their love, understanding and support



Acknowiedgements

1 would like to thank Prof. Jae Lim for enthusiastically guiding this thesis
research. Working with him has been a genuine pleasure, both academically and
personally. 1 would alsc like to thank Prof. A. V. Oppenheim who originally
motivated this research, and whose encouragement was always timely and dee-
ply appreciated. Special thanks are aiso 1ue to Prof. J. H. McClellan for finding
the time to serve as a reader for this thesis. His constructive criticism and

helpful comments have helped to smooth ocut the rough edges of this

manuscript.

Webster Dove deserves praise for maintaining the computer in a very reli-

able state, an undoubtedly mammoth undertaking.

Special thanks are due to my brother Saleem and my friends, Babar Khan,

Javed Bagai and Fuad Khan, whose crazy humor mixed with patience and under-

standing made these long years bearable.

Finally, | would like to thank my parents whose love and support have made

all this possible.



ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGEMENTS 4

TABLE OF CONTENTS 5

LIST OF FIGURES 8

LIST OF TABLES 10

CHAPTER 1:

11
12

1.3

CHAPTER 2:

2.1
2.2
2.3
2.4

2.5

CHAPTER 3:

3.2

INTRODUCTION 11

Background 11
Thesis Outline 15

Notation 16

THE MAXIMUM ENTROPY PSE PROBLEM 18

The Maximum Entropy Method 18
Entropy of a 2-D Process 18

The Problem 21

Signal Dimensionality And The Maximum Entropy Problem

Proposed Solutions 25
THE ALGORITHM 28

The Conceptual Algorithm 2B
The Practical Algorithm 30

3.2.1 The Spectral Zero Crossing Problem

31

23



3.2.2 The Relaxation Parameters 35
3.3 Choice of DFT Length 37
3.4 ErrorCriterion 38

3.5 Convergence Issues 41
CHAPTER 4: IMPLEMENTATION STRATEGIES 42

4.1 Introduction 42

4.2 Implementation For Main Frame Computer 43
4.2.1 Conventional 2-D FFT Approach 43
4.2.2 Efficient Use of The FFT 43

4.3 Implementations For Mini-Computer 44

4.3.1 FFT Implementation 44

4.3.2 Direct DFT Implementation 46

CHAPTER 5: EXPERIMENTAL RESULTS 49

5.1 Introduction 49

5.2 Special Regions In The 2-D Frequency Plane 51
5.3 S/N Ratio Yersus Resolution 56

5.4 ACF Support Size Versus Spectral Estimates 67
5.5 Data Length Yersus Spectral Estimates 72

586 Missing Correlation Values 82

5.7 Effect Of Initial Phase On Spectral estimates 85
58 Results Using Real Data 89

59 Summary 9!

CHAPTER 6: THE 1-D ME PROBLEM WITH MISSING CCRRELATION POINTS 93



6.1

6.2

6.3

CHAPTER 7:

7.1

7.2

APPENDIX A:

REFERENCES

Introduction 93

Application of The New Algorithm To 1-D Data 94
6.2.1 Comparison With The Closed Form Solution

6.2.2 Missing Correlation Points 96

Conclusions 96

SUMMARY AND CONCLUSIONS 98

Summary 98

Conclusions 100

COMPUTER PROGRAM FOR MINI-COMPUTER 102

115

94



FIGURES

Fig. 2.1: Two dimensional autoregressive signal modeling. 2%

Fig. 3.1: A new approach to 2-D maximum entropy power spectrum estimation.
30

Fig. 3.2: An iterative algorithm for 2-D ME PSE based on Fig. 3.1. 34

Fig. 3.3: A detailed flowchart of the new iterative algorithm for 2-D ME power
spectrum estimation. 40

Fig. 5.1. The 2-D frequency plane for real data. 52
Fig. 5.2: Errors in spectral peak locations for real sinusoids. 954

Fig. 5.3: Improvement in the ME PS estimate as the peak location is changed.
55

Fig. 5.4: Uniform resclution for complex data regardless of peak location. 56

Fig. 5.5: Improvement in the ME FS estimate with increasing SNR. 58

Fig. 5.6: The ME PS estimates do not depend on absoclute peak location for com-
plex signals. 60

Fig. 5.7: Change in the ME PS estimates as the separation between two peaks is
increased. 61

Fig. 5.8: Maximum Likelihood and Bartlett estimates for the data of Fig. 5.7{(c).
64

Fig. 5.9: Resolution properties of the ME, ML and Bartlett estimates. 65

Fig. 5.10: Resolution of the ME PS estimates depends on the shape of the ACF
support region ‘A'. 66

Fig. 5.11: ACF support size versus ME PS estimates. 68

Fig. 5.12: Increased resolution for multiple sinusoids with increasing ACF sup-
port size 'A’. 70

Fig. 5.13: The effect of changing the size of the data set on the ME PS estimate
for one sinusoid. 74

Fig. 5.14: The effect of changing the size of the data set on the ME PS estimate
for two sinusoids. 75

Fig. 5.15: The eflect of data length on ML and Bartlett estimates for one



sinusoid. 78

Fig. 5.16: The eflect of data length on ML and Bartlett estimates for two
sinusoids. 80

Fig. 5.17: ME PS estimates when tbe ACF has missing points. 83
Fig. 5.18: The variation of estimated peak location with initial phase. 86
Fig. 5.19: 2-D ME and ML spectral estimates for real data. 90

Fig. 6.1: The closed form solution compared to the iterative solution for i-D sig-
nals. 95

Fig. 6.2: The 1-D ME solution with missing correlation values. 97

Fig. 6.3: 1-D ME PSE example with 4 missing correlation lags. 97



TABLES

Table 4.1: Comparison cf impiementation strategies for main-frame and mini-
computers. 48

Table §.1: Minimum distance from the origin along w; = wy; where good peak
location estimates can be expected. 58

Table 5.2: Comparison of ME, ML and Bartlett estimates for peak location accu-
racy using exact autocorrelation values. 71

Table 5.3: Comparison of ME, ML and Bartlett estimates for peak location accu-
racy using estimated autocorrelation values. 77

References



-11-

Chapter 1

Introduction

The problem of power spectrum estimation {PSE) arises in various fields
such as speech processing,! seismic signal processing? image restoration,3
radar,4 sonar,d radio-astronomy etc. and its applications range from 1dentifying
signal source parameters and transmission channel characteristics, to remov-
ing noise from images.3 Consequently, this problem has received considerable
attention in the literature, and a wide variety of techniques for PSE have been
developed. One technique that has been widely investigated due to its high
resolution characteristics is the Maximum Entropy method. The primary

interest of this thesis is to investigate the Maximum Entropy method of power

spectrum estimation for two-dimensicnal signals.

1.1 Background

The power spectrum of a zero-mean N-dimensional signal x[n ] is defined as

the N-dimensional Fourier transform of its autocorrelation function {ACF); that
is,

Py(w) A Fy(Ry{n]

where

P,(w) : power spectrum of x[n}
R,in] : ACF of x{n]

and

=}

(n;.n5...0N)
(04.05....0y8)

-

e
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and Fy denotes the N-dimensional Fourier transform operation. Thus, to obtain

the power spectrum of a signal, its autocorrelation function must be known

over all "time"*.

The basic problem in PSE is that of forming the "best” estimate of the
power spectrum of a signal given only a finite segment of the signal or its ACF.
The commonly used approaches to PSE include:

Classical or conventional PSE:

- Autocorrelation estimates®

- Periodograms, averaged and/or modified periodograms?.3
Parametric signal modeling®

Data or ACF extension techniques’® 11

The Maximum likelihood (ML) method!?

The Maximum Entropy {ME) method!3

1he motivation behind and shortcomings of the traditional or classical
approaches are well known. When the power spectrum estimate is obtained as
the Fourier transform of the sample ACF, the implicit assumption made is that
the data are zero outside the known region. Further, if unbiased estimates of
the ACF are used, the power spectrum can display meaningless negative
regions. In addition, when the periodogram is obtained via the Discrete Fourier
Transform (DFT), the data are assumed to be periodic. Further, the variance of
the periodogram does not decrease with increasing data length.” The variance

can only be traded of against the resolution of the estimate. The major advan-

*Time is used here as a generel concept. Signals of dimensionality higher tnaa one wili usu-
ally have spatial as well as temporal dependence, and what is impiied here is that to octain
Py(<), x{n] must be kxnown fcr all o




- 13-

tages associated with the conventiconal approaches are that the power spectrum
estimates are casy to compute and the methods extend in a straightforward
manner to two and higher dimensional signals. Further, the classical methods

offer good performance when a large amount of data are available for analysis.

Another general approach to PSE is to obtain a rational model for the sig-
nal generating process. The PS estimate is then obtained directly from the
model parameters. Various modeling techniques, such as autoregressive (AR),
moving average (MA) and autoregressive-moving average (ARMA), have been
successfully developed for the one-dimensiconal (1-D) case.® These techniques
can also be extended in a straightforward manner to some two-dimensional {2-

D) signals but they have not achieved the same degree of success.14

If the original signal is assumed to be bandlimited and sampled sufficiently
fast to avoid aliasing problems, then various iterative extrapolation
schemes!!.15 may be tried. The major problems associated with these metheds
are the typically slow convergence rates and the problems encountered in han-
dling noisy data.l0 Although these techniques offer a viable alternative in the
1-D case, the computational burden involved in handling 2-D data can become

enormous as the storage and computational requirements increase quadrati-

cally.

The Maximum Likelihood approach to PSE has its basis in array process-
ing.’2 1t was originally motivated by one of the shortcomings of the conven-
tional PSE methods. In the conventional methods the windowing of the ACF
implies that the spectrum is smoothed by a fixed window. The ML method
smooths the spectrum with an adaptive window that attempts to minimize the
leakage or interferen:e from neighboring frequencies, thereby achieving better

resolution. The extension of the ML method to 2-D problems is straightforward.
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Another approach to the PSE probiem is the Maximum Entropy method.
This approach imposes far fewer constraints on the data than the conventional
methods and assumes that aill the informatior that can be obtained about the
signal generating process, is contained in the available data segment. A meas-
ure of the information. usually the entropy. i1s then chosen and maximized
under the constraint that it must be consistent with the known information.
This procedure then leads to the so-calied "Maximum Entropy” method of power
spectrum estimation, first expounded by Burgl3 in 1967. Pendrelll* has shown
that the ML method can also be considered as an information maximization
method, with a different approximation used for the entropy of the process
than is employed in the ME procedure. The resolution of the ML approach lies

between that of the conventional and ME methods, a fact that was very neatly

quantified by Burg.18

The ME method which has better resolution characteristics than the ML
method, can also be viewed as a technique for extending the ACF beyond the
known limits. It always leads to an all-pole or autoregressive model for the
spectrum. and in i-D the problem is identical to autoregressive modeling of the
signal.l” This leads to a linear problem formulation that is analytically tractable
and computationally attractive. Unfortunately, the corresponding 2-D problem
is highly non-linear, and although the form of the spectral estimate is still
autoregressive, no closed form solution te the problem has been found so far.
In fact., the previously proposed sclutions are computationally expensive, and
are ' sually approximations to the true solution. The main objective of this
thesis research was to develop and chara;:terize a new algorithm for obtaining
the true 2-D Maximum Entropy power spectrum estimates. Although the algo-

rithm was developed primarily for the 2-D problem, it has also proved applicable
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and useful for the case of 1-D signals with missing correlation values. In such
cases, the 1-D ME PSE problem is also non-linear and a closed form solution
does noct exist, and therefore the algorithm developed in this thesis proviaes a

viable alternative for obtaining the power spectral estimates in these cases.

1.2 Thesis Outline

The maximum entropy problem is defined and discussed in Chapter 2, and
the form of the PS estimate is obtained. The differences between the 1-D and

2-D problems are outlined, and the previously proposed solutions to the 2-D

problem are discussed.

Chapter 3 is devoted to developing the new algorithm for 2-D ME PSE. The
algorithm is introduced at the conceptual level, and then developed into a prac-

“tical technique.

Chapter 4 discusses the implementation of the algorithm on large {(main-
frame) computers with unlimited on-line storage capability, and on mini-

computers with limited on-line storage. Three different implementations are

compared.

Chapter 5 characterizes the properties of the ME PS estimates of 2-D
sinusoids buried in white Gaussian noise (WGN). The characterization is done in
terms of the effects of signal to noise (S/N) ratio, size of the known ACF array,
and the starting phase of the sinusocids, on the ME PS estimates. The resolution
properties and the accuracy of peak location estimation of the ME estimates
are compared to conventional and ML estimates. In addition, the application of

the algorithm to a practical example using real data is shown.




Chapter 6 discusses the application of the algorithm to the case of 1-D sig-
nals with missing correlation points. This situation can arise when the datla are
sampled over a non-uniform grid. In such cases, even the 1-D ME PSE problem 1s
highly non-linear and no closed form solution has been proposed.

Chapter 7 summarizes the thesis and indicates directions for future

research.

Appendix A contains the source program for a mini-computer (PDP-11.

UNIX system).

1.3 Notation

Standard notation is used throughout this thesis. The under-bar indicates

vector valued quantities. Thus,

=]

4 (ny.ng,....nx)
A (wnwz. ... oN)
x{n] : N—dimensional time signal.

le

In the context of this thesis, N will generally be equal to one or two.

Ry(n] : ACF of x[n}
Py(@) : Power Spectrum of x{n]
Px{w) : An Estimate of the Power Spectrum of x{n]
Aln] : AR coefficients corresponding the power spectrum, that is
Nn] = F'[Pe(w)]
F : Fourier Transform operation
F! : Inverse Fourier Transform operation

The dimensionality of the Fourier transform will usually be clear from the con-

text.

The region of support for the known ACF segment is referred to as the

region "A". Due to the Hermetian symmetry of the ACF, the region A is always
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symmetric about the origin, ard is assumed to contain the origin for both i-D
and 2-D signals.

i 1
Power spectrum estimates of the form FING]] are referred to as all-pole

or autoregressive (AR) estimates regardless of dimensionality.



- 1B -

Chapter 2

The Maximum Entropy PSE Problem

2.1 The Maxirnum Entropy Method

The formulation of the Maximum Entropy method of power spectrum esti-
mation was first expounded by Burg!3 in 1967. In order to circumvent the
artificial assumptions made about the data by the conventional methods of PSE,
Burg suggested that the data, or equivalently,. its ACF, be assumed non-zero
outside the known segment. The assumnption was that the entropy-density was
not a function of the unknown correlation values. Since the entropy is a meas-
ure of the information about the process, this is equivalent to assuming that all
the information about the generating process is contained in the available seg-
ment, and thus, that the value of the entropy is the maximum possible that is
consistent with the known data. Tris is the reason why the technique is

referred to as the Maximum Entropy method.

22 [Entropy of a 2-D Process

The term "entropy” used in the context of power spectrum estimation
represents a measure of the information content of a signal. The amount of
information contained in a signal can be quantified by the length of the mes-
sage required for its transmission. It is easily seen that encoeding of information
requires a number of digits proportional to the logarithm of the inverse of the
probability of occurrence of the event.18 When not all events are equally procb-

able, the average information is measured by



-19 -

—1_
logr

2 pjlogp;

j

a quantity termed the “entropy” by Shannon.1® Here, p; represen.s the proba-
bility of occirrence of the j'th even!, and 'r’ is the base of the number system

used to measure the entropy {e.g. r = 2 means binary digits). The unsubscripted

logarithm is taken to be the natural logarithm.

When the random variable can take on a continuum of values, the sum in
the definition of the entropy is replaced by an integral. Further, when one deals
with the realizations of a process, the probability is replaced by the

corresponding joint probability density function (PDF). The expression for the

entropy therefore becomes:

H = -[f(z)logf(2)dz (2.1)
where f{z) represents the PDF of the process z. In order to obtain the power

spectrum estirpate of a wide sense stationary process, only its first and second
order statistics are required. Therefore, in this context, one cannot distinguish
a given time series from one which can be fully characterized by its first and

second order statistics only, namely, a Gaussian process.

Suppose we have a 2-D Gaussian process zyy:

211 Z12 7 2N
Z21 Zz2 T Z2M
Zu A
N1 2Nz 7 INM
The PDF of the process is given by
G XN .
f(‘z“w) = (ZW)NWZiQng/Z € (2.2)

where the symbol '* represents the complex conjugate, dyy 1s the NM x NM

matrix of autocorrelations. It consists of an M x M equidiagonal array of N x N
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Toeplitz { equidiagonal ) matrices. It is often referred to as a "block Toeplitz"”
matrix. gy, represents the element in the i'th row, j'th column of the block

matrix which lies in the k'th row and I'th column of the array of biock matrices.

Its value is

eiga = EBlzgezg] = pli-jk-1)
Similarly, ‘Pij—ﬁl represents an element of the inverse of &yy.

Substituting eq.(2.2) into eq.(2.1), we obtain

Hizgg) = 2o |0yl
In the limit, N,M-o=, H(zyy) diverges, and it becomes necessary to define the

entropy density:

. 1
H 4 lim = H(zyg)

Nlilm 2NM Zxu 1 1l
The entropy density can now be related to the power spectrum by the use of
Szego's theorem 20 In 2-D, the theorem is:
In
1 2
F(A) = — F(4ig P(t,.L.)) df_df
N.! NH 2 Ax 4f§f~.{; N Xty x-y
where the A, are the NN eigenvalues of the matrix ®yy, P(fx.fy) is the spectral

density at the frequency (fx.f’), and fy is the Nyquist frequency { assumed to be

identical for the x and y directions). F(.) is an arbitrary function. Choosing F(.)
= In(.), we obtain

Jim —-—m(T]x) = ——ffln(4f2P(f S df, et

i=1

which gives

In
1 ! 2 pr
.._—.l = — .Pf R df. df
hm 2 NM Q|Q’Nﬂl 4f§fj;m(4fh \ly fy)) %y
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or

In
S 2
H = PYr f _[N In(4tF P(f,.£,)) df, df, (2.3)
which is the expression relating the entropy density to the log of the power

spectrum. This is the 2-D analog of the expression derived by Smylie et al.18

2.3 The Problem

The technique of ME PSE can be quantified by considering the expression
for the entropy, eq.(2.3). Rewriling eq.{2.3) in terms of the radian frequency o,

and dropping the constants which do not affect the methodology, we get

H = [inPy()dp

Writing the power spectrum as the Fourier transform of the ACF, we obtain

H = fiFR(nle e 2dp (2.4)
e &
Now, suppose that R .[n] is known only over a finite region “A". Separating the

summation in eq.(2.4) into the known and unknown regions, we obtain

H = [lo| L Rlnle 22 + T R[nleie 2ag (2.5)
] LLEA nrfaA
Now, maximizing the entropy with respect to the unknown ACF values, we obtain
dH e-jﬁ-E
_— = 0 = . 4 o for m £ A
R m] ISR mee e
n
or
eie.n
———dw = 0 form £ A (2.8)
{Px(g) =

But this is just the inverse Fourier transform of one over the power spectrum.

Hence, if we wrile,
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1
= 7
then G,(w) is also a valid power spectrum, since P,{w) > O for all w. Therefore,
it can be represented as the Fourier transform of some ACF, say A[n]. That is,

Ge(@) = TAlpleda-2 (2.8)
n

or equivalently

JG(w)el2-2de = A[n] (2.9)
2
But eq.(2.6) then indicates that A{n] is zero outside the region A. This leads to
the very important conclusion that the ME PS estimate can be represented by
an autoregressive model, whose coefficients have finite support. Further, this
support is exactly the same as that of the known ACF of the signal x{n] Hence,

1
L A[nlee-2 (2.10)
REA

Pugu( @)

Since the above discussion was completely general, eq.{2.10) shows that regard-
less of signal dimensionality, the form of the ME power spectrum estimate is

always autoregressive in nature.

The above derivation implies that the ME problem can equivalently be

stated as follows. Given R,[n]forn < A. determine P,(o) such that P,{o) is of

the form:

Bi(w) =

1
SAaleiE E (2.11)

and

PP (w)] = Reln] fornea (2.12)
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24 Signal Dimensionality And The Maximum Entropy Problem

The above problem statement applies to all signals regardless of their
dimensionality. The solutions to the problem, however, depend strongly on the
signal dimensionality. For lfD signals, when the ACF is known over a connected
region, the mean- square error minimization of the prediction filter based on
autoregressive signal modeling requires solving a set of linear equations for the

ter coefficients. Further, the power spectrum estimate obtained from these
filter coefficients is identical to the ME power spectrum estimate.?? For 2-D sig-
nals, unfortunately, this is no longer the case. Specifically, even though
minimizing the mean-square error of the autoregressive filter still requires
solving a set of linear equations, the power spectrum obtained from the
estimated filter coefficients is no longer the ME PS estimate. The reason for this
can be seen by examining the form of the normal equations for the filter
coefficients in the autoregressive signal modeling case. The derivation of the
general form of the normal equations for 2-D signals is completely analogous to

the 1-D case. Minimizing the squared prediction errcor with respect to the filter

coefficients gives

2 LaRy(r—is—j) = Ry(rs) for {rs)€B (2.13)
(1)eB
where the a;; represent the autoregressive filter coefficients to be estimated,
and the set B consists of all the points where the filter mask has non-zero

values. The power spectrum obtained from the a; is given by

-~ 1
Polwyog) = ! (2.14)

; ool 12
5 zakl'eﬂalk-e—’%i
\0c eB |

From eq.(2.13) for any non-trivial choice of B, that 1s, if B does not censist of a

set of collinear points, the number of independent values of R {n,.ny)
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o o o
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e o o
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e o o
¢ o ¢ o
e o o
i
(2) (b)

Fig. 2.1: Twc dimensional autoregressive signal modeling. (a) First.
quadrant autoregressive mask of size 4x4. {b) Independent autocorre-

lation points required to solve the normal equations for the mask of

().

required to solve the abov~ set of equations for the filter coeffcients is greater
than the number of filter coefficients. For example, consider the filter mask
shown in Fig. 2.1(a). in which the dots represent the region for which the a; are
non-zero. Fig. 2.1{b) shows the independent values of R,{n,.n,) required io solve
for the ay; in Fig. 2.1(a) by eq.{R.10). Clearly, the number of correlation points is
greater than the number of filter coefficients. Since the estimated power spec-
trum given by eq.(2.14) is completely determineqd by the filter coefficients alone,
it does not possess enough degrees of freedom to satisfy eq {2.11) which is
required for the ME PS estimate. Thus we see that the AR model obtained by the
linear least squares formulation does not coincide with the ME problem in 2-D.

in fact, the 2-D ME PSE problem is highly non-linear and a closed form solution




has not yet been found.

In the absence of a closed form solution, it s important to know the condi-
tions for the existence and uniqueness of the solution. la this regard, Woods2
has obtained the theoretical result that if the given R,(n,.np) is a part of some
positive-definite correlation function, [meaning that its Fourier transform is
positive for all (w;,w5)]. a unique solution to the ME problem does exist. In gen-
eral, it is difficult®2 to determine if the given segment of the ACF is a part of
some positive-definite correlation function, even though this is generally the
case in most practical problems. For example, if the ACF is obtained from the
data using the biased estimator for the ACF® as is dore generally, the correla-
tion function is always positive-definite. The problem of the extendibility of the
given segment of the ACF has been discussed by Lang,? and a mathematical
characterization of the problem has been offered. In this thesis, we assume

that the given segrnent of the correlation function is indeed extendible, so that

the ME PS estimate exists, and is unique.

2.5 Proposed Solutions

In his Ph.D. thesis Burg®® describes a general variational approach to
estimating any function, which can be applied to the problem of 2-D ME power
spectrum estimation. The proposed sclution is iterative in nature and requires
the inversion of a matrix in each iteration where the dimension of the matrix is
of the order of the number of given autocorrelation vaiues. However, nc results

using the techmque have been presented.

Wernecke and D'Addario®® have attempted the Maximum Entropy recon-

struction of images from noisy data. Again, the algorithm prcposed is iterative
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and attacks the primal problem, that is, the entropy is maximized under
appropriate constraints. The maximization is done by continuously adjusting
the power spectrum estimate and evaluating the expression for the entropy and
its gradient. A few optimization algorithms are proposed, whizch are computa-

tionally expensive and require large amounts of storage. However, the results

shown are encouraging.

Woods? has given a constructive proof for the existence and uniqueness of
the 2-D ME spectral estimates, under the condition that the known ACF values
form part of a positive definite autocorrelation function. He has also proposed a
solution to the problem based on the assumption that the power spectrum can
be expressed as a convolutional power series {a power series in the {frequency
domain). However, the algorithm is not proved to converge, and the very nature
of the formulation leads to an approximation to the true solution. Further, the
approach is limited to power spectra which can be expressed in the form of the

proposed convolutional power series.

Lang?®3 has tackled the general multi-dimensional ME problem for sepsor
arrays. The problem of the extendibility of the given ACF segment is character-
ized. The ME power spec.um estimation problem is reduced to the solution of a
finite-dimensional convex optimization problem and iterative zlgorithms using
the method of steepest descent are proposed. The algorithms are proven to

converge, and results for both the one-dimensioaal and two-dimensional prob-

lems are shown.

Jain and Ranganath?® have also developed iterative algorithms for the solu-
tion of the ME problem However, their algorithms do not use the method of

steepest descent, and are typically slower than those propoesed by Lang.




Other attempts to solve the 2-D ME PSE problem have been made by Ong,27
Roucos and Childers,28 Newman?® and others, but none of them has achieved

any high degree of success.
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Chapter 3

The Algorithm

In this chapter, a new iterative algorithm for obtaining ME PS estimates for
2-D signals is developed. This algorithm has also proved useful for the case of

one dimeasional signals with missing correlation points. That application is dis-

cussed in Chap. 8.

3.1 The Conceptual Algorithm

Recall from Sec. 2.1.1 that the 2-D ME PSE problem can be stated as fol-

lows:

Given R;[n]forn € A, determine P,(w) such that P, (o) is of the form:

5 - 1
Piw) = “"z )\—_{_g]e"jg—’-—l‘- (3.1)
REA

and satisfies the consistency constraint
F1[Pw)] = Rln] forn e A (3.2)
In this section we develop a new iterative algorithm for obtaining the 2-D

ME power spectrum estimate.

Suppose we are given R,(n,.n,) for (n,.np) € A such that R,{n,.ny) is a seg-
ment of some positive definite correlation function. To find the unique ME PS

estimate, we express a power spectrum Py{w,.w;) as follows.

Py(f-’p”z) F(Ry(nl -nz)]

T T Ry(n np).e O o Toe (3.3)
0y S—=ny=—w
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and
—L = FlA(n,.n,)]
P’-,(Ql,&)z)
= i i )\(nl.nz),e'i’m‘n’.e”"’2132 (3.2)
n‘=—.nz=-

From eq.(3.3) and eq.(3.4) it is clear that Ry(n,.nz) can be obtained from
A{ny.ny) and vice versa through direct and inverse Fourier transform opera-
tions. Now, from eq.{3.1) and eq.(3.2), Py(ol,oz) is the unique ME PS estimate i
and only if Appnp) = 0 for (n;.mz) £ A and Ry(ny.nz) = Ry(ny.np) for
(n;.np) € A Thus, we see that for Py(w;.w;) to be the desired ME PS estimate,
we have a constraint on Ry(nl.nz) (consistency) and a constraint on A{n;.np)
(finite support). Recognizing this, it is straightforward to develop a simple
iterative algorithm to find the unique ME PS estimate. Specifically, we go back
and forth between Ry(nl,uz). (the correlation domain) and A(n,.np) (the
coefficient domain) and each time, impose the requisite constraints on the
correlation and coefficient values. Thus, starting with some initial estimate for
A{n,.np} we obtain an estimate for }g(nl.nz). This estimate is then corrected by
the given R,(n,.n;) over the region A and is used to generate a new A{n;.ny).
The new A(n,.ny) is then truncated to the desired limits and this procedure is
repeated. The above iterative procedure is illustrated in Fig. 3.1 and forms the

basis of the new iterative algorithm for 2-D ME PS estimation.

The iterative procedure discussed above is very similar in form to other
iterative techniques,3%.31 that have been successfully used in image processing.
Even though the conditions under which the algorithm converges are not yet
known, if the algorithm converges, then the solution satisfies both eq.{3.1) and

eq.(3.2) and consequently is the desired ME PS estimate.



-30-

INITIAL ESTIMATE of A(ny,no)

e e nyng) = '} S S
Fy(ns.ne) F.{F[A(nx-nz)]]

CORRECT Ry(n,.nz) WITH R,(n:.n;) FOR (n;nz) ¢ A
! |

AM(ny.ng) = F~!

'

‘———t——— A(ny;,n;) =0 FOR (n,.ny) /A

g
F[Ry(n;.nz)]

Px(w1.02) = F{Ry(ny.ng)]

Tig. 3.1: A new approach to 2-D maximum entropy power spectrum

estimation.

3.2 The Practical Algorithm

The conceptual algorithm outlined above and illustrated in Fig. 3.1 cannot,
in general. be used directly to obtain the ME PS estimates. Issues such as the
spectral zero-crossing problem, choice of adequate DFT length, error criterion
for convergence decisions etc. arise, and require elucidation before the algo-

rithm can assume a practical form. These issues are discussed below.
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3.2.1 The Spectral Zero Crossing Problem

The algorithm shown in Fig. 3.1 requires two inversions of the spectral esti-
mates in each iteration, and thus the iterations cannot be continued if the
power spectrum estimate {or the inverse power spectrum) hzs any zero cross-
ings at any stage in the iterative procedure. Unfortunately, zero crossings can
occur in two different ways in each iteration. One is the truncation of the
coefficients and the other is the correction of the ACF. To see this, let A™(n,.n3)
and R{™(n;.np) represent A(n;.n;) and Ry{n;.np) after the m'th iteration, and

suppose that the following conditions hold:

FA™(n;.np)] > 0 for all (w;.wp) (3.5)
F[Rym(nl.nz)] > 0 for all (wy.03) (3.8)
and
af 1
= | P
A™n;.nz) = F lF{Rym(n,.nz)]}'W(nl'nz) ' | (3.7)

where w(n;.np) represents a rectangular type window such that

i for (nl.nz) € A
w(n;.ng) = 0 otherwise (3.8)

Similarly, let A®*}(n,.np) and R{®"(n,.nz) represent A(n;.np) and Ry(n; np) after
the m+1'th iteration. In the iterative algorithm of Fig. 3.1, A®™*!(n,.n;) and

Igm”(nl.ng) are obtained from A™(n,.n,) by

[ 1
R'(n,.nz) = F~! :
82 = T o )] 29
Ry(n;.np) for {n,.np) € A
Ry™*i(ny.ng) = {R'(nl.nz) otherwise
= R'(n,.np) + iR (n;.n5) — R'(n;.0;)]w(n,.n;5) (3.10)
A'({n,.np) = F"{ 1 ] (3.11)

lF[R‘“*"(nl.nz)} !
and
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Y\'(nl.nz) for (n,.ny) € A

)\m“(nl.nz) = lo otherwise

N'(n,.np) w(n;.nz) (3.12)
From eq.{3.9) it is clear that R'(n,.np) is positive definite since A™{n;.np) is
assumed to be positive definite. However, Rym”(nl,nz) may not be positive
definite due to the rectangular windowing w(n,.nz) in eq.(3.10). Furthermore,
even if Rym“(nl,nz) were positive definite so that A’(n;.np) is positive definite.
A™*1(n n,) may not be positive definite due to w{n;.np) in eq.(3.12).

In order to ensure that the resulting R;n“(nl,ng) and A™*1(n, ny) are posi-
tive definite so that the iterations can be continued, we make modifications to
eq.(3.10) and eq.{3.12). Specifically, suppose that Rym”(nl,nz) is obtained by
using a relaxation parameter a to linearly interpolate between R'(n,.ny) and the
known values R,/{n;.np) for (n;.np) € A, and suppose that A n,n,) is
obtained by linearly interpolating between A'(n;.nz).w(n;.nz) and A™(n;.5p) via
the relaxation parameter B. Then. in the modified iterative algorithm,

A™*(n, n,) and R™*!(n,.n,) are obtained from A™(n,.n) by

| 1
. _ -1
R(n;.np) = F~ lFD\m(nl.nz)]j (3.13)

“ aR(n,.n,) + {1 -a).R(n;.np) for (mymp) €A
R;n (n],nz) =

R'(n,.n;) otherwise
= R'{n;.ny) + (1 —a).[Ry{n,.n3) —- R'(n,.n,)] w(n,.ny) (3.14)
[ 1 ]
A{n;np) = F (3.15)
{F[R,m”(n,.nz)]
and
A™*Hn ny) = BAT{nng) + (1 -B)-A'{n;.ng).w(n,.ny) (3.16)

Comparing eq.{3.10) and eq.(3.14). the latter reduces to the former when a = 0.

With any other choice of a eq.(3.14) represents a nonideal correction of
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R'(n,.np) with the known values R (n;.np) for (n,.np) € A, 'with a larger devation
of & _.m zero corresponding to a more nonideal correction. The important
consequence of introducing the relaxation parameters a and f is that the
resulting R;*'(n;.n,) and A™*}(n, .n,) can be guaranteed to be positive definite
with the proper choice of these parameters. This can be seen by noting that
A™{n;.np) and therefore R'(n,,n;) are assumed to be positive definite. Hence, by
choosing a sufficiently close to unity, Rym“(nl.nz) can be brought arbitrarily
close to R'{ny,np). Similarly, eq.(3.16) reduces to eq.(3.12) when 8 = 0. With any
other choice of 8, A™*1(n;,n;) now corresponds to an autocorrelation function
which is a kind of "parallel resistor average"” of Rym(nl.ng) and Rym*'l(nl.nz)‘ With
a proper choice of 8, A®*!(n,.n,) can also be guaranteed to be positive definite,
which can be seen by noting that A™(n,.n,} is assumed to be positive definite
and by considering f sufficiently close to 1 so that A®*}(n,.n,) can be brought
arbitrarily close to A™(n;,n,}. Therefore, by correctly choosing a and 8 in the
ranges O0sa <1, 0=8<1, R (n;.n;) and A™*!(n, n,) can be guaranteed to be

positive definite, and thus the spectral zero crossing problem can be aveoided

and the iterations continued.

From egqs.(3.9)-(3.12), it is clear that if A™(n,.n,) and Rym(nl,nz) satisfy
eqs.{3.5)-(3.7). then so do A™*!(n, n,) and Rym”(nl.nz) obtained by the modified
iterative algorithm. 1f A%n,,n,) and Ryo(nl.nz) . the initial estimates of A{n;.ny)
and Ry(nl.nz). are chosen to satisfy eqs.(3.5)-(3.7). then with a proper choice of

the relaxation parameters a and f8. the iterations specified by eqs.{3.5)-(3.8)

and eqs {3 13)-(3.2.6) form an iterative algorithm This algorithm 1s shown 1n

Fig. 3.2.
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POSITIVE DEFINITE INITIAL ESTIMATES
Ry(ns,ng) AND A%(ny,ng)

l

| e S T
-+ R'(n.ng) = Fd{F[)\m(n,.nz)]}

YES

DESIRED SOLUTION ?

A RP*Yny.ng) = R'(ny,n2) + (1-a)[Ry(ny.ng) - R'(ny.nz)] . w(ny.ng)
WHERE 0Sa < 1 IS CHOSEN SUCH THAT F[R®*!(n;.nz)] > 0

. - 1[ 1
A (m.na) =¥ lF{R’m+l(n1,na)]}

'

L ——— A™(ny,np) = SA™(n,.ng) + (1-B)A'(n1.np).w(ny.0z)
WHERE 05 8< 1 IS CHOSEN SUCH THAT F[A™*Y(n,,nz)]>0

—

1

Po(04.92) = F[R(ny.np)] = FIA(ny.n2)]

Fig. 3.2: An iterative algorithm for 2-D ME PSE based on Fig. 3.1.
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3.2.2 The Relaxation Parameters

The relaxation parameters a and g were introduced above to transform the
conceptual algorithm of Fig. 3.1 into the implementable aigorithm of Fig. 3.2.
The choice of a and g is dictated by two considerations. One is the requirement
that the resulting Rym'”(nl.na) and A™*!(n,.n,) be positive definite. The second
is our desire to choose a and 8 as close to zero as possible so that the maximum
arnount of correction is made at each iteration. In this regard, it has been
empirically observed that choosing the smallest possible values of a and 8 con-
sistent with the positive definite requirement on Rf"*!(n;.np) and A™*'(n;.np)
can lead to a limit cycle behavior where the algorithm does not converge. A
similar behavior has also been observed to occur if the value of a is decreased
adaptively, over the course of the iterations. Further, it has been observed that
the correction rates of the correlation function and the coefficients must be
decreased if the normalized square error as defined in Sec. 3.4 below, between

R'(n,.n;) and R,(n,.n,) for {n, .n,) € Aincreases from one iteration to the next.

In light of the above observations, the following method has been developed

to obtain the values of a and § in the course of the iterations.

The initial values are chosen to be ayg = By = 0. These values are updated
in the following manner;

[

(%F[R’(n, n)]
O, = max|ay 1-k

gm.l )F{(R!(Dl.nz) -R'(nl'DZ))-w(nx.nz)] , l (3;7)

w).up

The denominator of the second term in eq.3.17 is simply the minimum of the
correction spectrum, that is. the Fourier trausform of the correction ACF. Since
a is used to interpolate between the numerator, which is the spectral estimate

at the m'th iteration, and the denomnator, the term represents the maximum
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deviation from unity that can be used for a. This value is then scaled by the

factor 'k, in keeping with the empirical observation that the minimum value of

a is not the ideal value. Similarly,

man

[
By = l1+(1-k).[-‘;lf—-1]].ﬁm (3.18)
if (%F[X(nl,nz).w(n,.nz)] <0

and

Bm+1 = 0  otherwise

where

| (xaxiiux;)}“[)\‘(n, ng).w(n;.no)] |
Bmin &

min F{A®™(n,;.np)] + | min F{A’(n;.ng). w{n,.ny)] |
(Ql""t) (“y“g)

In egs.(3.17) and (3.18), a; and @, represent the values of a and § in the i'th

iteration; B,;, represents the minimum value of 8 that resuits in a positive

definite estimate for the coefficient set; max[,] represents the maximum of two

arguments, (min)[] represents the minimum of the argument expression over
9y g,

(24.02). and "k” is the convergence rate parameter which governs how close a
and § are to their minimum {ideal) values. The initial value of "K"” is chosen to
be moderately large (k ~ 0.5) and then subsequently reduced if the error
between R'(n,.n,) and R,(n,.n;) for (n;.n,) € A increases. Thus, the algoritbm
moves towards the desired solution rapidly at first, and, if necessary, it is
slowed down as convergence is approached. When a and 8 are chosen accord-
ing to egs.{3.17) and (3.18), it is straightforward to show from eqs(3.14) and
(3.16) that the resulting R™*!(n;.n;) and A™*!(n;.n;) are guaranteed to be posi-
tive definite. Further, computing ag ., aud B ., by eqs.(3.17) and (3.18)

requires little extra computation since the individual terms in the two egua-
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tions are available in the course of the iterations.

33 Choice Of DFT Length

The ME method of PSE can be viewed as an attempt to extrapolate the
correlation function beyond the limits of the known segment. The algorithm
described above uses the Fourier transform to perform this extrapclation.
Since the DFT is used in the implementation instead of the true Fourier
transform, the length of the DFT used should be chosen such that the extended
correlation function corresponding to the ME PS estimate is essentially zero
beyond the DFT limits. If the DFT length is too short, the ACF estimates at sach
iteration will undergo severe aliasing and the true solution may not be
obtained. Typically, the requirement that the estimated power spectrum be
consistent with the known ACF values, cannot be achieved, and the ACF match-
ing error as defined in Sec. 3.4 below, remains high. Another possibility that
may result when too short a DFT length is used is that 7lthough the desired
error level is achieved, the resulting coefficient set may not be positive-
definite. This is because the DFT samples the true Fourier transform, and hence
the DFT values obtained during the course of the iterations may be all positive
while the true Fourier Transform of the coeflicients, which is the reciprocal of
the power spectral estimate, may not be positive for all frequency values. In this
case, the coefficients cannot be used to form an acceptable PS estimate. On the
other hand, using too large a DFT length will involve unnecessary computation.
However, it is clear that if an error is te be made in choosing the DFT length,

the error must be made in the direction of over estimation.

The choice of the proper DFT length is discussed further in Sec. 3.4 below
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and the length requirement as a function of S/N ratio is discussed in Chap. 5

34 E.ror Criterion

Another important issue to be considered in implementing the algoritbtm
shown in Fig. 3.2 is the decision on when the algorithm converged so that the
iterations can be stopped. Recall that the ME method imposes the consistency
constraint on the ACF values and the finite support constraint on the
coefficient set. The constraint on the coefficients is imposed by the algorithm
at each iteration. On the other hand, the ACF is gradually corrected to achieve
consistency with the known values. Thus, a reasonable approach is to consider

that the algorithm has converged when the following conditicn is satisfied:

( P )Z;ER'(nl.nz) - Ry{n,mp) PP
nl_ne €

z ZRf(nrnz)

(nynp)e A

A
[y

(3.19)

Clearly, if £ =0 with R'(n,.n;) computed from A™(n,.n,) using the discrete
time Fourier transform rather than the DFT, the resulting solution corresponds
to the ME PS estimate. However, due to a finite DFT lepgth and finite precision
arithmetic used, it may not be possible to reduce the error exactly to zero. On
the other hand, the use of a short DFT length may reduce the error to a very
small value without leading to the desired ME PS estimate. This again brings
into sharp focus the fact that the DFT length must not be underestimated 1n
implementing the algorithm. However, to avoid unnecessary computations, the
algorithm can be started using a reasonable DFT length and a one-time test for
the solutiou made at the end. Specifically, with a reasonable choice of the DFT
length, the iterations are continued until the error £ reaches a very small value,

typically i07™*. If this error level cannot be attained, then the DFT length has to
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be increased. The coeffcient set {A] obtained as the ME solution is then tested
for positive definiteness over a much finer grid { much larger DFT length) than
that used in the iterations. If the solution is not positive definite, the use of a
longer DFT length is indicated. If the coefficient set A is positive definite, then
the error ¢ given by eq.(3.19) is rechecked by computing R'(n;.ny) using a much
longer DFT. 1f the new error is of the same order as that obtained during the
iterations, the solution is declared to be good; otherwise, more iterations are
required. Since the minimum error that can be achieved with a given DFT
length is dictated by the amount of aliasing that is undergone by the ACF, if it
becormes necessary to continue the iterations after the test, it is preferable to

use a longer DFT length than that used in the iterations.

Fig. 33 shows a more detailed flowchart of the algorithm which incor-
porates the important implementation issues discussed above. It is not theoret-
ically known under what conditions the algorithm in Fig. 3.3 converges. How-
ever, it has been observed empirically that the algorithm always converges to
the ME PS estimate in the sense that the requisite cconstraints on the
coefficients and the ACF values are satisfied. the forrner exactly and the latter
to within the error criterion & specified, when a sufficiently large DFT length is
used. Further, the error has been observed to decrease very rapidly in the
course of the first {ew iterations, and reasonable estimates of the power spec-

trum can usually be formed fairly rapidly.
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Fig. 3.3: A detailed flowchart of the new iterative algorithm for 2-D ME

power spectrum estimation.
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3.5 Convergence Issues

The algorithm developed in this chapter is an empirical procedure for soiv-
ing a highly non-linear problem. Although no proof of convergence is available
so far, the algorithm has not failed to converge to the desired solution in a very

large number of both one and two dimensional examples that have been tried so

tar.

The algorithm is an ‘alternating-projection’ type of algorithm. However, it is
quite different from other alternating-projection algorithms such .a's.gﬁbse pro-
posed by Papoulis!® or by Gerchberg.1® The two domains that the algorithm
iterates between are the correlation domair and the domain of the autoregres-
sive coefficients. Thus, the two domains are both 'time"domains rather than the
‘time’ and frequency domains of the other algorithms. Further, going from one
domain to the other requires the obtaining of a spectrum (the frequency
domain) and its reciprocal. This is what sets the algorithm apart from the oth-
ers, and causes preblems in trying to prove convergence. For example, all the
operations performed locally on either the autocorrelation function or the
coefficients can be shown to be non-expansive mappings. However, when com-
plete mappings across one iteration are considered. it is no longer possible to
show their non-expansiveness due to the reciprocal operation on the spectrum
Thus, it has not been possibie to show that obtaining a new ACF estimate from
the previous one through one complete iteration, is a non-expansive mapping. A
similar situation holds for the filter coefficients. Given that the Maixmum
Entropy solution exists and is unique, showing the non-expansiveness of either

mapping would be sufficient to provide a proof for the convergence of the algc-

rithm.




Chapter 4

Implementation Strategies

4.1 Introduction

A new algorithm for 2-D ME PSE was developed in Chap. 3. Several alternate
strategies are available for the implementation of this algorithm These stra-
tegies are dependent on the type and size of computer employed and make

trade-offs between execution speed and on-line and off-line storage or memory

requirements.

In comparing the different strategies it is simplest to consider the concep-
tual algorithm of Fig. 3.1. The salient features of the comparison that follows
are then directly applicable to the practical algorithm depicted in Fig. 3.3. It is
clear from Fig. 3.1 that the major expense involved in implementing the algo-
rithm is the computation of the forward and inverse Fourier transforms. In the
actual implementation, the true Fourier transform operations are approxi-
mated by the Discrete Fourier Transform (DFT). The strategies discussed below
differ primarily in the specific method used to compute the 2-D DFT's. Three
approaches are outlined: one which uses a conventional 2-D Fast Fourier
Transform (FFT) algorithm to obtain the desired 2-D DFT's, another which
makes more efficient use of 1-D FFT's to obtain the 2-D DFT's and the last which

computes the 2-D DFT’s by direct computation.
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4.2 Main Frame Computer with Unlimited On-Line Storage

42.1 Conventional 2-D FFT Approach

When the algorithm is implemented on a main-frame (large) computer with
unlimited on-line storage, the FFT algorithm can be used to compute the 2-D
DFT's on-line and in place. The 2-D DFT is conventionally obtained by computing
the 1-D FFT of the rows of the data, followed by the transforms of the columns,
that is, for an FFT size of NxN, one needs to perform 2N N-length FFT's, each
requiring on the order of NlogN operations. Thus to obtain a forward or inverse

2-D DFT of size NxN, 2N%logN operations are required. The resulting arrays are

stored on-line.

422 Efficient use of the FFT

The use of the FFT outlined above, is simple to implement and is the most
straightforward. However, it is an inefficient use of the FFT. A cursory study of
the algorithm depicted in Fig. 3.2 reveals that in the forward transform apera-
tions, the starting array size is always MxM, which is the size of the region over
which the ACF is known. In the case of the coefficient set {A} this is obvious. On
the other hand, in the case of the ACF, since the transform of the current ACF
estimate has been computed, only the transform of the correction ACF,
[Ry(ny.n5) = R'(ny,np)] w(n,.np) needs to be computed to update the spectral
estimate. Thus, the starting data array in either case is of size MxM, and one

needs to perform only (M+N) FFT's to obtain the entire 2-D DFT.

Simitarly, in the case of the inverse transform operation, oniy an MxM
array needs to be computed from the NxN spectrum arrays: the ACF estimate is
required only over the region 'A’ for correction, and the cceflicient array size is

also only MxM. Thus the inverse transform operations also require only (M~N)



- 44 -

inverse FFT's, or on the order of (M=N)NlogN operations per inverse 2-D DFT.

Typically, the size of the DFT needed is much larger than the size of the
ACF array, i.e. N>>M. Thus the efficient use of the F¥T requires substantially
fewer operations than the conventional 2-D FFT approach. The on-line storage

requirements are the same fcr the two approaches, and no off-line or disk

storage is used.

43 Implementations for Mini-Computer

When implementing the algorithm on a mini-computer with limited on-line
storage, it becomes necessary to use off-line or disk storage. Disk access times
are typically much longer than machine cycle times, and therefore the amount
of disk access demanded by a particular implementation strategy should be
kept in mind.

There are two possible alternatives in the mini-ccmputer implementation.
One is to use the efficient FFT approach outlined above for the main-frame com-

puters, and the other is to use a direct computation of the DFT’s.

43.1 FFT Implementation

The FFT implementation on a mini-computer is basically the same as for a
main-frame machine, except that for large DFT sizes, it is not possible to store
the spectrum arrays on-line. Disk, or off-line storage becomes necessary. As was
mentioned earlier, disk access times are typically much longer than machine
cycle times and hence, it is advantageous to minimize disk access. The method
of obtaining a large NxN size 2-D FFT on a mini-computer is usually as follows. M
rows of the data are transformed and written out to disk. The disk array is then

transposed, read in row by row, transposed, and written out to disk again. A



- 45 -

further transpose is then reguired to obtain the result in correct order Thus,
apart from the 2N FFT's required, a total of {4N - 4NlogN) disk accesses are
required, where the number of disk accesses required to transpose a NxN array
is of the order of 2NlogN.30 In order to avoid this excessive amount of disk

access, it is necessary to look at alternate strategies.

The efficient use of the FFT outlined above required only {M+N) FFT's per
forward or inverse transform If a complex array of size MxN can be configured
in core, then this approach can be implemented on a mini-computer with only N
disk accesses required per 2-D transform operation. This can be seen as follows.
For the forward transform, M rows of the ACF or the coefficient array are
transformed and the results saved in the M¥N complex array, in core. The tran-
spose of the data is then affected on-line, and the resulting N columns are
transformed via the FFT and written out to disk in transposed form, thereby
requiring only N writes. Similarly the inverse transform requires only N disk
reads to read in the columns of the spectra (the array is in transposed form).
Each column is inverse transformed and only the first M values are stored in
the intermediate MxN array. M inverse transforms then result in the required

MxM ACF array or the new coefficient estimates.

This implementation via the F¥T is, of course, limited by the size of the
available memory and the values of M (the ACF size) and N (the DFT size). How-
ever, the implementation is highly efficient, and although disk storage of size

NxN is required for each spectrum array, the number of disk accesses is negli-

gibly small.



432 Direct DFT Implementation

When the size MxM of the known ACF array {(the region 'A’) becomes large,
or when the S/N ratio is high, DFT's and IDFT's of large size are typically
required to implement the algorithm, and the efficient use of the FFT as dis-
cussed in section 4.3.1 above, is no longer feasible. It is then possible to fall
back onto the conventional method of performing 2-D FFT's. However, the
number of disk accesses involved in this approach are excessive, and hence the
execution speed suffers. Further, the amount of disk storage r‘equirt_ad' may also
become prolibitive for modest sized systems. In this case, an alternative imple-
mentation is possible: compute the 2-D DFT by direct computation. This tech-

nique, described below, is specifically tailored towards the limitations of small

mini-computer systems.

Referring back to Fig. 3.1, a careful observation shows that the direct com-
putation of the DFT's and IDFT's does not significantly increase the computa-
tional burden. Specifically, let A™(n,.n;) and A™*!(n,.n;) represent the
coefficient set {A] after the m'th and m+i'th iteration respectively. Using this
notation, it is straightforward to show from Fig. 3.1 that

A™*(n, n,) is related to A™(n,.n;) by

[

ATHnyng) = P 1 - ‘~W(n1.nz)
F{A™(n,.n5)] + F{iRy(ny nz) -%'(nl'nz)g‘“nl-nz)]
(&.1)
where
al 1
: Y S S .

Ry(n;np) = F F[A’“(nl.nz)]] (4 2)

and
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'1 for {n,.n,) € A

w(n;.ng) = iO otherwise ‘ ' S

From eq.(4.1). A™*!(n,.n,). A™(n,.nz) and {Ry(n;.np) = Ry'{n;.np)} w(n,.np)
are finite extent sequences of size 'A’. As a consequence, directly computing
each of the DFT's and IDFT's in eq.(4.1) requires on the order of M®N? arithmetic
operations where, as above, the size of 'A’' is MxM and the DFT size is NxN. The
direct 2-D FFT approach would require 2N%logN cperations. Since N is typically
much larger than M, direct computation does not significantly increase the
nuruber of arithmetic operations relative to using an FFT algorithm. As an
example, wken the size of ‘A’ is 5x5 and the DFT size is 512x512, direct c;mpu-
tation requires about 40 percent additional arithmetic operations relative to
using an FFT algorithm However, it should be remembered that the FFT

approach wculd require a large amount of disk access which could conceivably

offset the computational advantage.

Although the comparison between the different implementation strategies
has been made on the basis of the conceptual algorithm, it should be pointed
cut that in the practical implementation of the aigorithm as shown in figure 3.3,
the minimum value of the Fourier transform of the correction ACF is required
to compute the value of the relaxation parameter a. Since a must be evaluated
before the updated spectrum can be obtained, it becomes necessary to com-
pute one extra two dimensional Fourier Transform as compared to the imple-
rmentations which store the spectrum Thus., the direct implementation is
slightly more expensive computaticnally than a simple comparison between the

various 2-D DFT computations would show.

The major advantage of direct computation is the significant reduction in

the amount of memory required. Whereas the FFT algorithm requires N+ \?
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memory locations {some cf which would be off-line for the mini-computer), the
direct computation only requires memory locations on the order MZ, which are
easily configured on-line. Additional advantages of the direct computation

approach include the potential to exploit parallel processing, and no restric-

tions on DFT size. In fact, the DFT size need not be a power of two as is usually

required by most FFT routines.

The implementation strategies discussed above are compared in Table 4.1

below. The memory requirements common to all schemes are not listed.

TABLE 4.1

Comparison of implementation strategies for main-frame and mini-

computers.
OPERATIONS | ON-LINE | OFF-LINE | DISK ACC.
PER PER
ITERATION |MEMORY | MEMORY TTERATION
CONVENTIONAL 2 2
MAIN FRAME | 2-D FFT 8N"logN 2N None None
COMPUTER ;f.FTICIENT 4 (M+N) logN 2N2 None None
%?D _EE':,.:.IO‘ AL BNZlogN None 2n? 16N {logN+1)
MINT i 4{M+N)logN | Mn 282 an
COMPUTER
DIRECT 2,2 .
COMPUTATION 9MTN None None None
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Chapter 5

Experimental Results

5.1 Introduction

The algorithm developed in Chapter 3 has been applied to the ME power
spectrum estimation problem for 2-D sinuéoids buried in white Gaqssian noise.
For one set of experiments, it is assumed that the exact correlation values are
available over the region 'A’. The region ‘A’ unless otherwise noted, is taken to

be a square, symmetric about the origin in all cases. For the case of M real

sinusocids, the exact ACF values are given by

- |
R,(n,.n,) = ¥} a? Cos(w;, n, + w;3n,) + 02 6(n,.n,) (5.1)

1=1
where R, (n;.ny) represent the ACF values, aiz is the pcwer of the i'th sinuscid,
w;; and w;p give its frequency location, and 2 represents the noise power. For

the case of M compiex exponentials the exact ACF is given by

R(n;ng) = 3 a2 efum*emnd o250 o (5.2)
i=1
Yor both eqs. {5.1) and (5.2), R,(n,.ny) is assumad known for (n, .1;2) €A

A parallel set of experiments uses ACF values estimated from synthetic
data sets. In this case, the ACF is obtained via the biased estimator. That is if

the data is available in a square array of size PxP, the ACF is estimated as

P
Ry(nyng) = 533 3 Ty +my + kg + nglali ] 53

ky=1kg=1

where x[n,.n,] represents the synthetic data set given by:

x{n;.np] = ’;aiCos(un.nl + wphy + @;) + w(n,.n,) (5.4)
1




-50 -

where the number of sinusoids is M, w[n;.n,] represents white noise of power o2,
®; is a random phase term associated with the i'tk sinusoid, and the sums in
eq.(5.3) run over known data values only. For th. case of complex data, the

cosine in eq.{5.4) is replaced by a complex exponential.

The unbiased estimate for the ACF was not used, because it can result in a
non positive-definite ACF estimate (that is, the Fourier Transform of the ACF
may not be greater than zero for all frequencies). In such rases, Woods'

theorem? no longer holds, and the existence and uniqueness of the ME PS esti-

mates can no longer be guaranteed.

The R-D spectra are displayed in the form of contour plots and a few com-
ments about their display are in order. All spectra are displayed with the
highest contour level being normalized to zero dB. Wherever the length of the
contours permit, they are labeled with the nearest integer value of the contour
level, in dB be'ow the maximum (0dB). The contours are always eqﬁa!ly spaced
and the increment between contours (CINC), in dB, is always noted. On all plots,

the true peak location is marked with an 'x".

For real data, the power spectra are symmetric about the origin, and thus
only half the 2-D frequency plane is displayed. The full 2-D plane is displayed

for spectra of complex signals Finally, the frequency axes, and all frequency

values are in terms of the normalized frequency units of £ Thus, for exam-

ple, the interval (—m,m) is represented by {(-0.5.0.5), and the peak location of
(wy.w2) = (0.2m,0.37) is represented by the ordered pair (0.1,0.15).
All pertinent data about the spectrum being displayed is included with the

plot. Thus, the power and both the actual and the estimated frequency loca-

tions of the peaks are noted. Also, the S/N ratio (or the noise power) as well as
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the size of the ACF support region is indicated. Where necessary, the shape of
the ACF support region ‘A’ is also shown. In the case of the ME PS estimates, the

number of iterations {iiTR) required and the size of the DFT used (NDFT), is

also displayed.

The 2-D ME power spectrum estimates are compared with the Maximum
Likelihood (ML) and the Bartlett estimates. The ML estimate for 2-D signals is
obtained by inverting the matrix of 2-D autocorrelations $yy defined in section

2.2 of chapter II. The estimate is given by

NM
ETéqd E

where ®yj represents the inverse of the block Toeplitz matrix of autocorrela-

Pyp(wy.0p) &

tions and E' is the complex conjugate transpose of the vector

COL(l,e'j“‘ efiZol., . ‘.:_‘---j(N—l)f.:,'e--jg2
E A - o ODeror il
T ity (ol

The Bartlett estimate is obtained by taking the DFT of the ACF values which
are known over the region 'A’. The ACF is first windowed by a 2-D separabie tri-

angular window to prevent the spectrum from displaying negative regions.

5.2 Special Regions in the 2-D Frequency Place

For 1-D real signals, it is well known3.3! that the symmetry of the power
spectrum causes errors in the peak location near w =0 and the periodicity of
the spectrum causes the same problem near w = n. This is due to the interfer-

ence with the correlated mirror peaks that occur at negative frequencies for

real data. For example, if the data is given by

x{n] = Sin{wyn) + a28{n)
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the power spectrum consists of two peaks located at w = w, and v = —w,. If &, is
close in value to O or =, the interference between the peaks causes them to

rmove closer in the PS estimate, initially causing errors in the location of the

spectral peaks and eventually a complete merging of the two.

- ° T 7847
a3 ) A S %//L ﬁw

(a) {b)

Fig. 5.i. The 2-D frequency plane for real data. {a) Symmetry and

periodicity. (b) Special regions for real data

The case for 2-D real sinusoids was found to be similar except that the
two-dimensional periodicity of the spectrum combined with its symmetry,
results in errors in the peak location at several points in the 2-D frequency
plane. Fiz. 5.1{a) illustrates the symmetries and the location of the mirror
peaks for the case of 2-D real sinusowds. The upper half plane, which completely
specifies the power spectrum is indicated by bold lines. and the small geometric
shapes show the locations of mirror peaks introduced by the svmmetry and the
periodicity. The shaded regions in Fig. 5.:{b) indicate the special regions in the
upper half plane where the estimate of the peak location for real data can be

expected to suffer.
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This observation is supported by experimental data, as shown in Fig. 5.2.
All the examples shown utilized a 3x3 region of support for the ACF ( the region
'A"). For the ME method, Figs. 5.2(a) and (b) show that when the sinusoid is
located within the special regions indicated in Fig. 5.1(b), the peak in the
resulting power spectrum estimate gets pulled in towards the center of these
regions, that is, towards (w,,wp) = (0.0), (m,0), (mm), or (0.7). Figs. 5.2(c) and
5.2{d) show a similar result for the Maximum Likelihood and Bartlett methods.
As the peak location moves out towards the centre of either quarter plane the
single peak splits up into the desired pair of peaks, at first with erroneous peak
location but eventually resulting in a good estimate of the power spectrum. Fig.
5.3 dlustrates the ME PS estimate for one real sinusoid when the peak is located

outside the special regions of Fig. 5.1(b).

Several examples have been obtained for the same ACF support but with
different S/N ratios and the results are essentially the same for real sinusoids.
As could be expected, the "region of resolution” increases in size with increas-
ing S/N ratio, since the peaks in the estimate become sharper, thereby reduc-

ing the interference between mirror peaks.

Finailly to verify that the errors in the peak location were indeed being
caused by the interference of the mirror peaks in the real data, various exam-
ples using complex data were tried at the same S/N ratios and the ACF support
region ‘A’ as were used for the previcus examples. The results were similar to
the 1-D case in that no special regions were discovered. (since there is no
inherent symmetry in the power spectrum for complex data), and the resolu-

tion properties of the ME estimates were uniform throughout the
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Fig. 5.2 Brrors in spectral peak locations for real sinuscids in the
regions shown in Fig. 5.1(b). S/N ratio = =5dB, 3x3 ACF, DFT size

(NDFT) = 128x:28 for {a) and (b)
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Fig. 5.3: Improvement in the ME PS estimate as the peak location is

changed. SNR = +5dB, 3x3 ACF, NDFT = 128x128

frequency plane. Fig. 5.4 illustrates the results for complex data using the same
parameters as in Fig. 5.2{a). The peak is well resclved and the estimated peak
location is excellent. Several other examples using complex data support this

conclusion.
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Fig. 5.4: Uniform resolution for complex data regardless of peak loca-
tion. The SNR and peak location are the same as Fig. 5.2{a). NDFT =

128x128, CINC = 7.6dB, (11 iterations, 308 seconds CPU time).

5.3 S/N Ratio Versus Resolution

To determine the effect of S/N ratio on the power spectrum estimates,
several examples using the same ACF support and the same peak(s) location
were considered. The signal to noise ratio {SNR) is defined as the sum of the
powers of each peak divided by the total noise power. That is, for the case of M

sinusoids with ai2 representing the power of the i'th sinusoid, the SNR is given

by
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where 0® is the noise power. As was mentioned in section 5.2 above, the peak
width in the spectral estimate decreases with increasing S/N ratio, and this
leads to two distinct eflects. First, for real data, the interference between mir-
ror peaks decreases and this leads to an enlarged "region of resoclution”. .
Second, two peaks located close together in the 2-D frequency plane, which are

not resolved at low S/N ratios, become resolvable at high S/N ratios.

Several examples were tried in order to verify these c¢bservaticns. For the
set of experiments with one real sinusoid, a 3x3 ACF support region was used.
The distance d, along the line v, = w, from the origin was used as a measure of
the size of the region where good spectral peak locations can be obtained for
real data. This distance indicates the closest that a sinusoid can be located to
the origin to result in an "acceptable” ME PS estimate for a particular S/N ratio
and the given ACF support. Table 5.1 summarizes the performance of the ME
method versus the ML and Bartlett techniques for various S/N ratios. It is clear
that the ME method affords the best performance of the three techniques, and

has the largest "region of resolution” for the case of real sinusoids.

Figs. 5.5(a) and (b) are representative of the effect of increasing the S/N
ratio for the case of a single real sinusoid. 1t is clear that the peak in the esti-
mate is considerably sharper for the higher S/N ratio case, shown in Fig. 5.5(b).
In fact, the peak location for the lower S/N ratio, Fig. 5.5(a). is quite erroneous.
This is because the location lies in the special region {see Table 5.1) for this

S/N ratio and the given ACF support.

Another set of examples were tried to determune the effect of changing th2
S/ N ratio on the PS estimates of two sinusoids located close together in the 2- -

frequency plane. For this set of examples, it was decided that complex
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TABLE 5.1

Minimum distance from the origin along w; = w, where good peak loca-

tion estimates can be expected. ACF size 3x3.

3 x 3 Autocorrelation function
S/N ratio dl
-5 dB 0.29m
0 dB 0.26™
+5 dB 0,20
53 = e e e e e
45
L35 . -
: ME estimate;
5 o L - @=(0.2r,0.27); SNR = 0db;
26 - ) L NDFT = 64x64; CINC =
" 2 L 2.7dB; 81 iterations
o= x
o) :
B e R T
(a) )
.80 T =
45 -/ .
40 - -
35 - /-zz ""‘\\ ~
30 - 5 ' \ . ME estimate;
25 - TN ‘:: L w= (0.27.’.0.27‘-’); SNR = 5dB;
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SN / B . ; ;
. _ . ///:{o; /.! } 4.57dB; 52 iterations
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(b) '

Fig. 5.5: Improvement in the ME PS estimate with increasing SNR. 3x3

ACF.
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data would be used so as to separate the issue of resolution from that of the
special regions for real data as discussed above. The size of tae ACF support

region was chosen to be 5x5 and both true and estimated ACF values were used.

The first observation that was made from this set of experiments was that
the PS estimates did not depend on the absclute location of the peaks in the 2-
D frequency plane. That is, the shape and size of the estimated spectral peaks
remained the same regardless of where the complex sinusoids were located, if
the same relative distance and orientation of the peaks was maintained. Figs.
5.6{a) and (b) illustrate this phenomenon. In these cases, the frequency separa-
tion between the peaks was held constant and the orientation of the peaks was
kept either horizontal or vertical. The results clearly show the invariance ot

the spectrai estimates under these conditions. Several other examples support

this conclusion.

Using the above observations, examples were run to determine the
minimum distance between two peaks such that they were resolved in the sense
that the estimated power spectra displayed two distinct peaks. One peak loca-
tion was held constant, while the location of the second peak was varied over a
range such that initially the peaks were not resolved, and as the distance
between the peaks was increased, the two peaks were resolved in the PS esti-
n_ate. Since the accuracy of spectral peak location was not at issue here, d, the
minimum distance between the two peaks where they became resolved was used
as a measure of the resclution performance. It is clear that smaller values of d,
imply higher resclution, while larger values of d; imply lower rezolution for the

various methods of estimating the power spectra.

Figs. 5.7 {a).{b).{c) and {d) are representative of the results obtained by
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the ME method for a particular S/N ratio as the separation between the peaks
is increased. Initially the two peaks are not resolved, and the spectral estimate
consists of a single spectral peak, located approximately at the mid point of the
line joining the true peak locations. As the distance between the peaks
increases, the spectral estimate shows a distortion or stretching in the direc-
tion of the peaks, and eventually, the two peaks are resolved. The Maximum
Likelihood and Bartlett estimates for the same data set as in Fig. 5.7 (c¢) are
shown in Figs. 5.8(a) and (b). All the examples illustrated for the three methods
used a 5x5 support region for the ACF. The poorer resolution of the ML and
Bartlett techniques as compared to the Maximum Entropy method is apparent.
Fig. 5.9 summarizes the resolution performance of the three techniques. It is
clear that as in the 1-D case, the ME method affords higher resolution than the
other two methods. It may be noted here that the resolution performance of
the Bartiett estimates is determined only by the size of the ACF array available
for analysis, and is independent of the S/N ratio, as far as the resolution meas-
ure do is concerned.” The minimum distance dy for the peaks to be resolved in
the ME and ML estimates decreases with increasing S/N ratio, with the ME

method consistently outperforming the ML method.

At this point, it is necessary to point out that the measure adopted for the
resolution performance evaluation is fairly arbitrary, and is used only to gauge
the relative performance of the different techniques under the same set of con-
ditions. It is obvious that the minimum resolution distance between two peaks
"also depends on their orientation in the 2-D frequency plane, as well as on the
shape of ‘A’. For example, when the shape of the ACF support region 'A’ is a rec-
tangle, one wculd expect a higher resolution in the direction of the longer

dimension. This effect is shown in Figs. 5.10{a) and (b) for the ME method. The
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shape of the region 'A' in these examples is a rectangle of size 3x5. Fig. 5.10(a)
shows ihe ME PS estimate when the orientation of the peaks is along the longer
dimension, and the peaks are seen to be resolved. In Fig. 5.10(b). the orienta-
tion of the peaks is in the direction of the shorter dimension of the region ‘A’,
and the resulting PS estimate shows cnly a single peak. These exarnples clearly
show that the resclution performance depends not only on the S/N ratio, but
also on the specific shape of the ACF support region employed. The resolution
measure adopted in this section is, therefore, only an indicator of the perfor-

mance of the various techniques, and should not be taken as an absolute meas-

ure.
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5.4 ACF Support Size Versus Spectral Estimates

Another experiment that was performed in order to quantify the perfor-
mance of the ME technique for 2-D PSE was to determine the effect of increas-
ing the ACF support region 'A’. This is similar to increasing the model order3?
for 1-D signals. Again, exact ACF values were used and for a fixed S/N ratio, the

effect of changing the ACF support size on the power spectrum estimates wa-

noted.

The results obtained were similar to those obtained by increasing the S/N
ratio. That is, the peaks in the spectral estimates grow much sharper and the
size of the region of resolution for real data increases as the size of the ACF
support region is increased. Figs. 5.11(a), (b) and (c) show the resuits for the
case of a single real sinusoid in white noise. The ACF support region was fixed to
be a square, and its size was varied from a 3x3 to 7x7 region about the origin.
The change in the resulting PS estimates is fairly dramatic, but it should be
kept in mind that with a square shape fixed for the region 'A’'. changing the ACF
support from a 3x3 region to a 5x5 region increases the known information
about the signal by a large amount. Whereas the 3x3 ACF has only 5 indepen-
dent values (due to the Hermetian symmetry cf the ACF), the 5x5 ACF has 13
independent values and for the 7x7 case the number of independent ACF vaiues
available for obtaining the PS estimates jumps to 25. A more gradual change in

the power spectrum estimmates would be expected if fewer new points were

added to the ACF.

As a direct consequence of the sharper peaks in the estimate, the resolving
power of the ME estimate increases with increasing size of ‘A’, as does the
"region of resclution” for real data. This has been verified by various examples,

and one such example is shown in Fig. 5.12 which shiows the ME PS
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estimate for 3 sinusoids in white noise at a S/N ratio of -5dB. When the ACF sup-
port region has size 5x5,(Fig. 5.12{a)) two of the peaks merge into a single peak
and the resulting estimate only shows two peaks. Fig. 5.12(b) shows the resuit

of using a 7x7 ACF support size. The peak estimates are seen to be sharper and

all three peaks are resolved.

Another eflect which is common to increasing the S/N ratio or increasing
the size of the ACF support region ‘A’ is the accuracy of the resulting peak loca-
tion in the estimates. With a single sinusecid, the location of the spectral peak
(LOSP) is fairly accurate even for low S/N ratios or for small sizes of the region
'A’. However, when multiple peaks are present in the spectrum, the interfereuce
between the peaks can lead to erroneous estimates for the spectral peak loca-
tions, especially for very lew S/N ratios, or for small sizes of the region 'A’.
Referring back to Fig. 5.11, it is seen Lthat the LOSP is totaily incorrect for a 3x3
ACF support region, becomes better when the size of the region ‘A’ is increased
to 5x5 and is very accurate when tae ACF support is of size 7x7. A similar con-

clusion 1s derived when one comnsiders Fig. 5.5, where the accuracy of the LOSP

changes with increasing S/N ratioc.

The sum of the errors in peak locations is used as a performance measure

in the accuracy of LOSP determination. The error in the LOSP is defined as:

)
error{LOSP) = Ex \/(Qne -c.;in)z + (030 — :.352,_)2
i=

where the number of sinusoids is M. o, and w;,, represent the estimated x and
y frequency locations of the i'th peak and v;,, and 2.5, represent the true x and

y frequencies of the peak location. Table 5.2 shows a comparison of the
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TABLE 5.2

Comparison of ME, ML and Bartlett estimates for peak location accu-
racy using exact autocorrelation values. The peak locations are listed
as the pairs (w;/2mwy/27), and the peak location error, (LOSP
ERROR) is also in units of 2m. SNR = +5dB, one sinusoid cases: 3x3

ACF, two sinusoid cases: 5x5 ACF.

MAXIMUM MAXIMUM SARTLETT
o ENTROPY LIXELIHOOD ESTIMATE
N TRUE ESTIMATED LOS? ESTIMATED LOSP SSTIMAITD Losp
= LCCATION LOCATION ZRROR LOCATION ERROR LOCATION ERROR
S
i -.4000,0,4000 -.4000,0.4000 | 0.0000 | -.4000,0.4000 } 60,0000 |~.4000,0.4000 } 0.0000
& 0.0745,-.4456 0.0745,-.4456 | 0.0000 } 0.0745,-.4456 10,0000 |0,0745,~.4456 | 0.0000
g -.3000,-.,3000 -.3000,-,3000 { 0.0000 } -.3000,-.3000 }0.0000 }~.3000,~.3000 ) 0.0000
I -.0500,-.0500 -.0500,-.0500 | 0.0000 | -.0500,-.0500 | 0.0000 }{~.0500,-.3500 | 0.0000
D -.3125,0.3000 -.3125,0,3000 | 0.0000 }-.3125,0,3000 }0.0000 }~.3125,0.3000]0.0000
-.4000,0.0000 -.4010,0.0040 0.0082 -.4010,0.0000 0.0020 ~.4010,0.0020 0.0045
T 0.0745,-.4456 0.0755,-.4496 0.0755,-.4456 0.0755,-.4476
w
o 0.3000,-.3000 0.2760,~.3000 0.0480 0.2970,~.3000 0.0059 0.2810,-.3000 0.0379
-.3000,-~.3000 ~-.2760,~.3000 -.2970,-.3000 ~.2810,-.3000
S
I 0.3000,0.4120 0.3050,3.4060 0.0156 0.2990,0.4110 0.0028 0.3010,C.4120 0.0019
g ~.0500,—70500 -.0550,-.0440 -.0490,-,0490 ~.0510,-.0500
s .
o 0.1234,0.3456 0.1374,0.3396 0.0304 0.1304,0.2476 0.0146 0.1374,0.3416 0.0291
I ~.3125,0.3000 ~.3265,0.3060 -.3195,0.2980 ~.3265,0.2040
2
S 0.2000,0.3125 0.1950,0.3135 6.0102 0.1990,0.3115 0.0028 0.1990,0.2125 0.0019
~.1125,0.0330 ~.1075,0.0320 -.1115,0.0340 ~.1115,0.0330
0.3300,0.0000 0.3230,0.0070 0.0197 0.3300,0.0000 0.0000 0.3300,0.9000 0.0000
0.0000,0.3333 0.0070,0.3263 0.0000,0.32333 0.0000,0.3333
-.3000,-,2000 -.2900,-.2040 5.0215 -.3000,~.2000 6.0000 ~.3000,-.2000 0.0000
0.1000,0.4430 9.0900,0.4470 0.1000,0.4430 0.1900,0.4420
-.1¢00,-.1000 -.1010,-.1000 -. = - -
’ 0.0019 1000 1000 0'0000 -1000. .1000 0.0000
0.3900,0.4000 0.3910,G.4000 0.3900,0.5000 0.3900,0.3000 :
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ME, ML, and Bartlett estimates as regards accuracy of estimated peak location
for a few representative examples. The results are based on a 3x3 ACF for the
single sinusoid case and exact ACF values, whereas the two sinusoid cases are
based on a 5x5 region of support for the ACF. The frequency locations for the
two sinusoid cases were chosen to be such that the peaks were resolved by all
methods.

From Table 5.2, it is clear that all three techniques giv‘e excellent results in
estimating the location of a single complex sinusoid. In fact, the LOSP error is
precisely zero. For the case of two complex sinusoids, the situation is different.
In that case, all methods show some errors in the estimation of the peak loca-
tions. Although the ME estimates exhibit much sharper peaks.than the other
two, it is seen that when the peaks are located such that all three methods
would resolve them, then the ME method in fact, gives the worst results in terms
of spectral peak location estimation. The ML and Bartlett estimates track each
other quite closely, and give LOSP errors of approximately the same magnitude.
For the last three examples in Table 5.2, both the ML and Bartlett methods were

“able to locate the peaks correctly. The ME method was never able to do so. The
situation is similar for lower S/N ratios, although it may be expected that the
2-D ME estimates would give much better results at higher S/N ratios, like their

1-D counterparts.

5.5 Data Length Versus Spectral Estimates

In most applications of power spectrum estimation, it is the actual data
rather than its ACF that is available for analiysis. In such cases, the ACF has to

be estimated from the data and then used to obtain the ME PS estimates. As was
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mentioned earlier, the biased estimator for the ACF is used in all cases here,
since the unbiased estimator can lead to non- positive definite autocorrelation
estimates. However, it is also not certain that the biased estimator will always
give an extendible ACF.22

One important issue that arises is the effect of the size of the data segment
on the PS estimates. It is clear that if one has a large amount of data, the ACF
estimates will be very good, and hence the ME PS estimates will be better also.
Similarly, the smaller the amount of data, the poorer the ACF estimate and
hence the PS estimate can be expected to suffer. In order to quantify these
observations, several examples were run'where synthetic data was generated
and the autocorrelation values were estimated from the data. The shape of the
2-D data segment was always taken to be square, and the ACF support region
was also taken to be square. Fig. 5.13 shows the effect of changing the size of
the known data set on the ME PS estimates, for the case of one sinuscid and a
3x3 region of support for the ACF. Data lengths ranging from 4x4 upto 60x60
were tried. As is clear from the figures, the shorter data length gives a spectral
estimate that seems distorted (stretched) and the LOSP is not very accurate. As
the data length is increased the shape of the spectral peak becomes more sym-
metric and the accuracy of the LOSP improves. The improvement of the spectral
estimates is very rapid and the difference between the estimates obtained from
a 12x12 data segment and the 20x20 or 36x36 data segment are negligible.

Several other examples support this conclusion.

Fig. §.14 illustrates the results of similar experiments for the case of two
sinusoids with zero degrees relative phase, using a 5x5 region of support for the
ACF. The location of the peaks was such that they could be resolved with true

ACF values. The results are similar to the case of one sinusoid in that the
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spectrum initially shows some distortion and the spectral estimates improve

rapidly with increasing data length. The accuracy of the LOSP also improves

with increasing data length.

The results of the ME technique are again compared to those cbtained via
the ML and the Bartlett estimates as regards the accuracy of LCSF deatermira-
tion. Figs. 5.15 and 5.16 show the results obtzincd by the other two methuds for
the same data sets used in Figs. 5.13 and 5.14. The performance v.s-a-vis peak

location error is summarized in Table 5.3.

From Table 5.3, it is clear that the threse methods again perform very welt
for the case of a single complex sinuso:d However, the MZ mothod again gives
the sharpest estimate, and although il 1s rot apparent from the taoie, the
improvement in the ME estimates is the most rap:d, with very iitlie improverent
being visible in the spectrum after a data length of 12x12. The XL end Bartlett
estimates do not stablize for data lengtiis upts 44x44, and show continuous
improvement although the spectral contours dorot achieve the saine syrwmetry
as the ME estimates till a data length of about 60x80. For the two-sinvsaid case,
the situation is similar except that now all techniques show Jarger LOSP crrors.

Again, the ME estimates have been observed to stabilize most rapidiv for very

short data lengths.
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TABLE 5.3

Comparison of ME, ML and Bartlett estimates for peak location accu-

racy using estimated autocorrelation values. SNR = +54B. One sinusoid

ase: 3x3 ACF, initial phase = 0° peak location = (0.27,0.27). Two

sinusoid case: 5x5 ACF, relative phase = 0° peaks located at

(0.2r.C 27) and (0.7m,0.87).

T
i MAXIMUM MAXTMUM SARTLETT
i ENTROPY LIRELIHOOD ESTIMATE
DATA ESTINATED LOSP ESTIMATED LOSP ESTIMATED LOSP
STZE LOCATION ERROR | LOCATION ERROP LOCATICN ERFOR
3 4x4 0.109,0.097 | 0.0094 | ©¢.091,0.101 | 0.009 6.102,0.22) § 6.0108
e i1zx12 | 0.290.,0.101 | o0.0010 | 0.099,0.101 | o0.0014 | ©.399,.0.20: | o0.0014
st 20x20 ] 6.300,0.161 | 92.0010 | 0.101,0.201 | o.0014 § 0.101,0.:01 | 0.0014
i 28%29 { €.200,0.1290 { 2.0%90 | 0.100,0.100 | 0.0000 § 0.100,0.100 } G.0000
3 36%36 § 0.140.0.1¢¢ | 0.000¢ | 6.100,0.100 | 0.0000 | 0.100.0.206 | 0.0000
31 4exsa } 0.09-,5.200 | 0.7609 | 0.099,0.100 | 0.0089 | 0.099,0.100 | 0.0009
v £2x52 | 2.10¢,0.190 | o.0cco t 9.100,0.100 § c.ococ | o.100,2.200 | c.oo000
P} sex6C | 0.1C¢,5.100 § 0.0630 § 3.100,0.10¢ | 0.000¢ | 0.100,0..30 | 0.0000
2 - Ans ~ -
4x4 €.085,0.075 § o noyo 1 0.099,0.075 | o oo | 0.209,0.093 | o o0
_ 0.%75,9.3%9 9.375,0.375 0.366,0.375
- ’ qQ ~ AN 3 A 19% 14
w E 12x12 | 2.094.0.303 | o 4y f 0-223,0.225 | o o0 | oa102,00005 | o0
0 0.357,0.39% 0.326,2.275% 0.345,0.292
5 20x20 | 0.095,0.204 | o 0y v 0.102,0.504 4 4 000 | 0.303,00005 | o000
}; 3.357.G.22¢ 3.345,0.557 0.346,0.23"
A. il Y 5 ~’- I 5 Y
G 28x28 | €.093,0.002 1 o pog0d ouli9,0.02s o 0az0n,00083 | ool
g 0.358,C. 397 0.330,0.375 5.348,.0.397
2 - ~ - - PPN
: 36726 1 0.097,0.103 | a0 f 0ud03,0.062 o oo b o0.182,0.103 | oo oooo
> 6.361,0.39% 0.347,0.3%7 3.348,5.357
o
r - a ] - ~ Y7 bl
$4x84 1 0-094,0.005 1 4 aigg | U-376,0.122 1 g hegy B CA10L9.203 | g 460
0.356,0.1%3 0.234,0.178 G.348,0,33°
3 o1 [ 3 ] b hetel
S2x5¢ | 0.294,0.002 § o aio0 | 0.226,0.121 | o0 | 0.101,0.2%2 | ol
0.356,0.338 5.23£,0.378 ¢.348,0.23°
§3x€0 | 3.094,0.102 } 5 oyo0 § 2.303,0.303 | o0 | 0.102,0. 008 | o oece
0.356,0.398 9.24€,0.29% 9.349,0.3%3
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5.6 Missing Correlation Values

It is clear that if the data were not available over a square segment the
spectral estimates would show a corresponding distortion. However, the above
results indicate that because of the rapid improvement of the spectral esti-
mates, the shape of the data segment would have a considerable eflect only if
one of the dimensions was extremely small as compared to the other Of course,
the data need not be available over a rectangular grid, or over a rectangular
region. It is also possible that the ACF may not be available or estimated over
the full rectangular grid. When the data are sampled randomly, it is still possi-
ble to use the FFT implementation of the algorithm, as the randomly spaced
samp:es (ACF values) car. be placed on an underlying rectangular grid. Ot
course, depending on the randomness of the sample spacing. the grid may
become extremely fine (very long FFT lengths). The ME spectral estimates
could still be obtained by the algorithm as long as the estimated ACF values
satisfied Woods' theorem?2 that is, the ACF was extendible. Although Woods'
theorem does not cover cases where the gaps in the ACYF fall inside the outer
boundary of the region ‘A", Lang?? has provided the necessary conditions when
the ME estimates could be obtained in these situations, and the algorithm has

been used to obtain ME PS estimates for such cases.

Fig. 5.17 illusirates the ME PS estimates for one and two sinusoids where
the shape ¢f the region ‘A’ is arbitrary. In fact, for the two sinusoid case. Fig.
5.:7{c) the geps in the ACF lie inside the boundary of the region ‘A’ Figs.

5.17(b) and {d) show the corresponding ME estimates when there are no zaps in

the ACF.
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5.7 Eflect of Initial Phase on Spectral Estimates

When the data consists of a sinusoid in noise, and the ACF has to be
estimated from the data itself, it becomes important to know the effect of the
mnitial phase of the sinusoid on the spectral estimate. In the 1-D case, it has
been noted that the phase causes a shift in the LOSP in the periodogram and
the direct data Burg methods of PSE30.31 Although the algorithm used here is
not a direct data methcd. the ACF must be estimated from the data, and there-
fore the starting phase will have an effect on the ACF values, and hence on the
PS estimates. Several examples have been tried with the data consisting of a
single sinusoid 1n white noise, using a 3x3 region of support for the ACF. The
results are similar tc the 1-D case in that the LOSP shows an oscillation about
the true peak location, the amplitude of the oscillation decreasing with increas-
ing data length, as could be expected. Fig. 5.18(a) shows the oscillation in the
LOSP for one example where the size of the data segment used is i2x.2, and the
initial phase of the sinusoid is varied from zero to 2. The size of the region "A’
is 3x3 and the S/N ratio is 0dB. The effect of the phase on the LOSP changes
with S/N ratio, with the amplitude of the oscillation decreasing with increasing
S/N ratio. Fig. 5.18(b) shows the LOSP oscillation for the same experiment as
shown in Fig. 5.1B(a) except that the S/N ratio is +5dB instead of 0dB. Figs.
5.18(c) and (d) show the corresponding results for the ML method and Figs.
5.18(e) and {f) give the resuits of the Bartlett technique. The oscillations in the
LOSP for the three technigues are seen to be very similar in amplitude. Again,
the behaviour of the ME method is different from the ML and Bartlett tech-

niques which show almost identical errors in the LOSP.
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(¢) ML method SNR = 0dB
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5.8 Results Using Real Data

To conclude the characterization of the new algorithm for 2-D ME PSE, the
algorithm was used to obtain the ME PS estimate for real data gathered by a 2-D
array of sensors. The sensor array consisted of nine microphones equally
spaced in a 3x3 format on a square grid. The data gathered was the sound of a
helicopter flying past the array. Each of the nine sensors was used to record
time series. Thus. the data was actually three dimensional, with two spatial and
one temporal dimension. However, since a large amount of data was available 1n
the time dimension, it was decided to do a simple periodogram analysis, and
then obtain high resclution estimates for the spatial power spectrum at a par-
ticular temporal frequency. The objective of the experiment was to determine

the location of the helicopter in terms of azimuth and elevation with respect to

the sensor array.

Given the time series at each of the microphones, the data was dinided inte
5i2 point sections. Pertodograms of each section were obtained via the FFT and
nine sections were then averaged to reduce the bias. The resulting temporal
spectra were then analyzed for spectral peaks which indicated the presence of
a strong signal {depending on the temporal frequencies being generated by the
helicopter engine and rotors). These temporal frequencies were then chosen for
spatial analysis. The nine channels were correlated at the chosen temporal fre-
quency. and the resulting ACF values used to obtain both Maximum Likelihood

and Maxamum Entropy estimates of the spatial power spectrum.

The results of the experiment are shown in Fig. 5.:19(a) and {b). Fig. 5 19{a)
shows the ME estimate while Fig. 5.19(b) shows the ¥L estimate. The location of
the helicopter is well deterrmuned by botn of the methods. with the estimated

location lying well within the error tolerance of the experiment. The spectral
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peak, however, is much sharper for the ME case, as was to be expectled, and th:s

could prove to be the deciding factor when high resolulion estimates are

desired 1n the presence of multiple targets.

5.2 Summary

This chapter has been concerned with obtaining a characterization of the
ME methed of PSE lor two dimensicnal signals The experiments run were for
data sets censisuing of sinusoids in white Gaussian noise. using 'bot.h exact ACYF
values as well as estimated ACF values. It was found that like the one dimen-
sional case, the estimation of power spectra for real data gives erroneous peak
lccation estimates when the peaks are located in certain regions of the 2-D fre-
quency plane. The speciai regicns are caused by the pericdicity and symretry
of the specirum and examples were run tc demarcate the size of these regions.
It was found that the errors in spectral peak location were most prenounced for
small sizes of the given ACF segment {corresponding to low mode! orders in the
1-D case), and for low S/N ratios. The size of these specia: regions also
depended on these two lactors. Complex data caused no problems, and in fact,
it was found that the ME PS estimates for comp'ex data did not depend on the

absolute frequency location of the peaks.

Increasing the S/N ratio increased the resolution of the ME PS estimates
For the case of real data, the special regicns mentioned above, were fcund o
decrease in size with increasing S/N ratio. while for both rea! and complex data,
the spectral peaks grew sharper in the PS estimates and the peak locaton
accuracy improved. It was found that twe peaks located close togelher

cculd not be rescived at low S/N ratios couid be ressives a. hgh
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o
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The resciution performance of the VE method was compared ‘o that of the VL
method and the Bartlett estimates It was found that like the -D case. the ME

method afforded the highest resclution of the three technigues

The eflect of changing the size of the known ACr gave results similar to
those coblained by increasing the S/N ratio. Increasing the size of the ACF sup-
port resulted in sharper spectral peaks. more accurate peak location estunates
ard, for ceel data, smaller regions where the peak location accuracy may be
expected to suffer. Changing the shape of the ACF support region resuits in dis-
torted spectrai estimates, with the distortion bewng proportional to the devia-
tion away from a square support shape. Sioularly, mussing correlation values

cause a distortion in the shape of the estimates. with the amount of distortion

being proportional to the number of missing values.

For the case of estitnated ACF values, it was founa that the MZ spectral
estimates improved very rapidly with increasing data iength. The eflect of the
starting phase of sinusoidal data was investigated and it wes found that the
location of the spectral peak oscillated about the true position for different

values of the mitial phase, sirlar to the (-D case Finally, an example using

real data was shown and the results were compared to thcse obtained wia the

V1 method.
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Chapter 6

The 1-D ME Problem ¥ith Missing Correlation Points

8.1 Introduction

The Maximum Entropy power spectrum estirnatior problem f{or 1-D signals,
when the ACF values are known over a uniform grid, is linear, and analytically
tractable. In fact, as was mentioned in chapter 1I, the solution to this problem is
identical to that obtained by the mean-square error minimization of the predic-
tion filter based on autoregressive signal modeling, which involves soiving a set
of lnear equations for the filter coefficients. However, in many important appli-
cations of power spectrum estimation, the sensors used to gather the data are
not placed on a uniform grid. In these applications, 1l is possible that the ACF
values may not be estimated over a connected region (that 15, the ACF support
region ‘A’ may have rmissing points). In this case, the 1-D ME problem is also

non-linear and no closed form solution has yet been proposed.

There are two basic alternatives in this situation. Cne 1s to interpolate the
missing ACF values by some algorithm and then obtain an autoregressive filter
via the linear problem formulation. The other is to obta'n the true ME solution
by using the new algerithm developed in chapter lll to solve the non-linear
probiem. Aithough the interpolalion approach may umpose a lighter computa-
ttonal isad. 1t presupposes extra information about the signal which may not be
available, or which may impose unreascnable constraints on the data which is
tie very problem tnat the ME formudation tries to aveid. A recent study by
Dowla3? has shown that the ME sovectral estimates give better spectral peak

locations than the interpolation approach, especially when the ACYF values are
P 3
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spaced very non-uniformly.

6.2 Application of the New Algorithm to 1-D Data

The algorithm developed in chapter I is completely general and is not res-
tricted by the dimensionality of the signal to be analyzed. As such, it is immedi-
ately applicable to the 1-D problem Further, a careful study of the algorithm
will indicate that it is not restricted to any particular shape for the ACF support
region 'A’. Thus, in the 1-D case, the region 'A' need not be a connected segment
of the uniform grid which is required to obtain the closed form sclution. The ME
method can be viewed as a technique to extrapoiate the known segment of the
ACF. in the case of missing correlation values, the ME technique not only extra-
polates the ACF beyond the known limits, but also interpolates the missing

values during the course of obtaining the soiution.

6.2.1 Comparison ¥ith The Closed Form Sclation

First, consider the case of 1-D signals when the ACF is given over a uniform
grid, for -N < n < N. Due to the existence of a closed form solution, this preblem
is ideal in illustrating that the solution obtained from the iterative algorithm
developed in chapter 1II is indeed the ME PS estimate. Fig. 6.1(a) shows the ME
PS estimate obtained via the iterative algorithm for the data parameters shcwn
in the figure. Fig. 6.1{b) shows the resuit obtained from the closed form solu-
tion. Fig. 6.1(b) also shows the PS estimate of Fig. 6.1{a) {dotted line). It is clear
from Fig. 6.1(b) that the two results are identical, and that the iterative algo-

rithm does indeed lead to the ME power spectrum estimate. Many other exam-

ples have been tried to verify this conclusion.
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68.2.2 Missing Correlation Points

When the shape of the ACF support region ‘A’ is arbitrary, a closed form
solution is no longer available, and the new algorithm assumes practical
significance. Figure 6.2 shows the ME PS estimate obtained for the same data as
was used for the example shown in figure 6.1 except that now the correlation
values at lags n = +3 are missing. The figure also shows the results of figure 6.1
(dotted line) superimposed on the estimate. The peak locations are seen to be
shifted but the estimate retains its high resolution nature. Figure 6.3 shows

another example of ME PS estimation for data with missing correlation values.

6.3 Conclusions

in addition to the above examples, a variety of other 1-D examples have
been considered, and in all cases it has been observed that the iterative algo-
rithm developed in Chap. 3 leads to the ME PS estimates. In the cases where the
region ‘A’ is connected {no missing points on the uniform grid), the results are
indistinguishable from the closed form solutions. Further, we have observed
that the iterative algerithm leads to the ME solution for the PS estimation prob-
lem even when there are missing points in the ACF. In these cases, the ME
method has been seen to generally preserve its high resolution characteristics,

as long as the number of missing points is small as compared to size of the

region ‘A’
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Chapter 7

Summary and Conclusions

7.1 Summary

This thesis tackled the problem of two dimensional Maximum Entropy
power spectrum estimation. The problem was formulated and it was shown that
the ME PS estimate is always autoregressive in nature, regardiess of the dimen-
sionality of the problem.The dependence of the solution on the signal dimen-
sionality was pointed out. In particular, it was noted that whereas the 1-D ME
PSE problem could be formulated as a linear one, with an analytic solution, the

2-D problem was highly non-linear, and no closed form solution existed.

A new algorithm for solving the highly non-linear 2-D problem was then
developed. The algorithm is iterative in nature and iterates between the known
correlation values and the AR coefficients that form the model for the spec-
trum. The requisite constraints are imposed in each of the two domains to
arnve at the desired solution. The algorithm uses the Fast Fourier transform

elgorithm to achieve computational efficiency.

The implementation issues were then explored and different implementa-
tions for main-frame and mini-computers were developed. The mini-computer
implementation uses direct computation of the DFT and therefore requires a
minimal amount of storage. This implementation possesses viability for parallel

processing hardware, in which case the slight loss of computational efficiency

would be more than accounted for.

The properties of the 2-D ME estimates were then investigated and com-
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pared to the ML and Bartlett estimates. It was shown that the symmetry and
periedicity of the power spectrum for real signals causes problems in the deter-
mination of spectral peak locaticns when the peaks are located in certain
regions of the 2-D frequency plar.e. These special regions were demarcated and
it was shown that their size depends on the S/N ratio {SNR) as well as on the
size of the ACF support region ‘A’. It was seen that complex data did not suffer
from similar problems. The effect of changing the SNR on the spectral estimates
was investigéted. It was seen that closely spaced spectral peaks that could not
be resolved at lower S/N ratios could be resolved at higher S/N ratios. The ME
estimates were compared to the ML and Bartlett estimates and it was shown

that the ME afforded the highest resolution of the three.

The effect of the size of the ACF support region on the ME PS estimates was
also investigated and it w.s seen that the results were similar to increasing the
SNR and higher resolution was achieved when the size of the ACF support region
was increased. It was shown that the resolution properties of the ME estimates
depended on the specific shape of the ACF support. The accuracy of peak loca-
tion estimation for the ME ML and Bartlett methods were compared for the case
of exact and estimated ACF values. It was found that although the accuracy for
the three methods was comparable and excellent for the case of a single
sinusoid, the ML and Bartlett techniques performed better for the two-sinusoid
cases. For the case of estimated ACF values, the effects of the size of the data
and the initial phase of the sinusoid were also investigated. It was seen that the
ME estimates improved most rapidly as compared to the other methods when
the data length was increased. The 'ocation of the spectral peak was found to
oscillate about the true location when the initial phase of the sinusoid was

changed. The amputude of the oscillations was seen to decrease with increasing
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SNR.

The algorithm was also shown to be applicable to the case when there were
missing points in the ACF. Examples illustrating the effect cf missing ACF values
on the ME estimates were shown. Finally, the algorithm was used on real field

data and the results compared to the ML estimate.

It was seen that the development of the algorithrn was completely general
and did not restrict its application to signals of a particular dimensionality.
Thus, the algorithm was also seen to be applicabie to the one dimensional prob-

lem and proved useful in obtaining the ME PS estimates when there were miss-

ing correlaticon values.

7.2 Conclusions

This thesis has been concerned with developing a practical algorithm for
2-D ME PS estimation and investigating the properties of the estimates. The
algorithm has been found to be a viable technique for obtaining the ME esti-
mates, and has even proved to be extremely useful for the case of i-D signals
with moissing correlation points. The extendibility problem of the ACF and simi-
lar theoretical issues have not been explicitly addressed in this thesis. The

works of Woods? and Lang® would form excelient complementary reading.

It has been found that the 2-D ME estimates, like their 1-D counterparts,
afford higher resolution than the Bartlett and ML methods. Although as estima-
tors of the spectiral peak location, the ME estimates show a larger deviation,
excellent power spectral estimates can be formed even with very short data
lengths at moderate S/N ratios, which has proved to be the strength of the ME
method. It is not yet known how to form estimates of the power in the spectral

peaks from the ME estimates. In the 1-D case, the area under the peaks is
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proportional to the power. It is conjectured that for the 2-D case, the volume
under the spectral peaks would be proportional to the power. No proof of con-
vergence for the algorithm has been {orthcoming. If such a proof were to
become available, it would place the new &algorithm on a firm theoretical footing,
and possibly point out means by which the convergence rates could be speeded

up.
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APPENDIX A

COMPUTER PROGRAM FOR MINI-COMPUTER
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X MINCOMP.C x/
'z 3 PROGRAM TO OBTAIN THE 2-D MEM POWER SPECTRUM */
’% ESTIMATES BY DIRECT DFT COMPUTATION. THE */
/% STORAGE REQUIREMERTS ARE MIRIMIZED TO ALLOV */
/% IMPLEMERTATIORN ON A MINI-COMPUTER */
/% HANDLES COMPLEX VALUED AUTOCORRELATIONS. x/
/% FOR REAL ACF, COMPUTATION CAN BE FURTHER MINIMIZED. x/
/X x/
Ve NAVEED A. MALIK L 24
/% AUGUST, 1980 x/
*inc lude <stdio.h>

#include <math.h>

finclude <{complex.h>

/% useful constants

b define PI 3.14159263

* define TWOPI 6.28318531

*define MN1 25 7% max ACF size. for C, use MN and Fortranm
#define MN 26 rE x/
#define M2N 52 7% 2¥MN for complex data x/
#define HMN2 13 7% Centre point of ACF array etc. */
#define MR3 14 Ve x/
=def ine MN4 26 Ve */
~*define ZIST 1.9e~4 /* Error level to be achieved */
#define ZTSTI! 2.3e~4¢ /% Alternate error level x/
#define ALPTST 0.99999 /*x Maximum permissible alpha value x/

int n,n1,n2,n21 . ml,w2,gap{ MN]J{MN) ,nsin.ngap,nl2;
float x1,x2,n4,pin,p{28]1, xfreql20], yfreq(20], noise:

X gap: gap array specifying missing ACF values %/
/% ngap? no. of gaps */
e nsin: no. of sinusoids x/
/X noise: mnoise power */

main{arge.argv)

int argc ;
char XX argv;
{

FILE *fp. *fid, *fopemn();
complex x1am[{HNIJ[{MR],xo 1d[MNIIMN] ,rIMNI{MN], pxi MNI I MR];

/X xlam: MEM filter values
xold: filter values from previons iteration
r: the given ACF wvalues */

flozt zold,sclf.alpha,beta,den,z.xx,.bmin,x3.x4.c{t2();
float pxdumli2N],fdx:

int nitr,i,J.K,is,)s.gduwml MN], 382, Js21;

/¥ RESTARTING FROM SAVED DATA */
/¥ VALUABLE IF YOUR SYSTEM 1S PRONE TO CRASHESt!!! =x/

if(arge >= 2)(
ip = fopen("save®, "r");
freal{(char %)&a, 2, 1,
fread((echar %3anl, 2, 1. fp):
frcad((echo- ¥)3n2, 2, 1
frend({char ®*}5n21.
frezi{(char *¥)owml, 2

*x/

indices */
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frecad((char ¥)&m2, 2, |, fp):
for{is=0: is(MN: is++)(
iread({(char *)gdum. 2, MN, fp);
for( 3s236: Jgsd(Mi: js++)
gapl is}iysl = gdumiysl:
3
for(is=0; is<MN:; is++){
fread{(char *)pxdum, 4. M2NK, fp):
for(js=0; Jjs(MN: jges++){
Js2 = 2 % 333
Js21 = 3s2 + 1;
pxlisl{3s] = zcplx(pxduml )=s2],pxdumi 38211);
}
3
for(is=0: is(MN; is++)(
fread((char *)pxdum, 2, M2N, fp);
for(js=0; j3s<MN; Js++)(
Js2 = 2 ¥ s
J4s21 = 3s2 + 1;
xlaml isliys] = zcplx(pxduml js2l,pxduml js211);
2
3
for{is=0: is<MN; is++)(
fread((char *)pxdum, 4, M2N, fp);
for(3s=90; Js<(MN; ys++)(
Jjs2 = 2 ¥ Js;
Js21 = 3s2 + 1:
x01d[l isl(Js) = zcplx(pxduml js2),pxduni 3s211);
)
for(is=0; is(MN; is++){
fread({(char *)pxdum, 4, M2K, fp);
for(3s=0; Js(MNK; jgs++)(
Js2 = 2 ¥ js3
Js21 = 382 + 1
rlislijs) = zcplx(pxzdumlys2l,pxdaml 33211):

3
3
fread({char *)8x1. 4, 1, fp);
fread((char ®)8x2, 4, 1, fp);
fread({char *)&n4, 4, 1, fp);
fread({(char *®)8pin, 4, 1, fp);

fread((char *)8z0ld, 4, 1, fp);
fread((char *)8sclf, 4. 1, fp);
fread{(char *)8alpha, 4, 1, fpl:
fread((char %)8beta, 4, 1, fp);
fread({(char *¥)8den, 4, 1, fp);
fread((char ®*)8z, 4, 1, fp);
fread{(char *®*)8nitr, 4, 1, fp);
fclose(fp);

\

else (

/¥ compute ACF, specify gaps etc */
cacf2d(r);

/% initialize all arrays */
z01d=1.030;

sc1f=0.3;

alpha=0.0:

be ta=0.9:

z=1.0e30;

3 *x/
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for ( i = O

i ¢ MN; i++ ) {
for( 3 = 9;

J < M g+ )€

xo1dl 11{ 3] = zcplx(90.06,0.0);
xlam[131{3] = zcplx(0.0,8.0);
px(i103] = zcplx(0.90,.06.0);
3
3
xlam MN21 I MN2] = z2cplx(1.6,0.€);
x0 1d{ MN2I L MN2] = zcplx(1.0,6.0);
px{ MR21I{MN2] = z2cplx(1.9.06.0);
x1 =1.0:
x2 = 1.0;
/x error normalizing factor *x/
den = 0.0;
for(i=ml; i<=m2; i++)(
for(J=ml; J<=m2; J++)
den=den + zmag2(riill31);
by
den=den-1.0;
nitr=0;
nitr++;
/% obtain correction ACF and error *x/
z2=6.0;

for(i=ml; i<=m2; i++){

for(j=mi; Jj<=m2; J++){
pxli]l3] = zsub(rlillyl ,pxlillyl);
z 3 z + zemag2(px{iJ(31);
b
3
z = z/den;
3 7% end if statement *x/
/% wain loop for it rations x/
while(z > ZTST )(
if{{nitr %2 1) == 0(
printf(*NITR = %d ALPHA = Re ERROR = %e \n",nitr,alpha,z);
fp = fopen( "save",*w");

fwrite({(char *)&n, 2, 1,
fwrite((char ¥)8nl, 2, 1, fp);
fwrite((char *)&n2, 2, 1, fp):
fwrite{(char *)8n21, 2, 1, fp);
fwrite((char ®*)8mit, 2, 1, fp);
fwrite({(char X)&m2, 2, 1, fp);
for{is=0; is(MN: is++)(

for(js=0; Jjs(MN: js++)(

gduml 3s] = gaplisligsl;

fp);

3

fwrite({(char *)gdum, 2, MN, fp);
3

for(is=@: is{(MN; is++)(
for(Js=0: Js<MN; js++)(
Js2 = 2%)s;
Js21 = 382 + 13
pxdaml 3s2] = (pxf[isI{y=sly.r:
pxduml 35211 = (pxlisligsl).i:
3

fwrite((char ¥)pxdam, 4, M2ZN, fp);
3

for( is=@; is<MN: is++)(
for(J)s=0; Js<(MR; js++)(
Js2 = 2¥)s;:



Js21 = 3s2 + 1
xduml 3521 = (xlamlis)(3s]).r;
pxduml js21]) = (xlaml is)ljsl).i;
3}
fwrite((char *)pxdum, 4, M2K, fp);

3
for(is=@; is<MN; is++)(
for(js=0; js<MN; Js++)(
)s2 = 2%3s:
Js21 = 382 + 1
pxdum{ js21 = (x01dlisli{jsl).r;
pxduml{3s21] = (xoldlisllgsl)).i:
)
fwrite{(char ¥)pxdum, 4, M2N, fp):
3
for(is=0; is<(MN: is++)(
for(ys=03; Jys<MN; gs++){
Js2 = 2¥)s;
Js21 = 3s2 + 1;
pxduml js2] = (rlisliysi).r;
pxduml js21] = (rlisllgsl).i;
b}
fwrite((char *)pxdum, 4, M2ZNK, fp):

h]
3

fwrite({char *)8x1l, 4, 1, fp);
fwrite((char *)8x2, 4, 1, fp);
fwurite((char ®*)8n4, 4, 1, ip):
fwrite{{char ¥)8&pin, 4, 1, {fp);
fwrite((char *)&zo0ld, 4, 1, fp):
fwrite{(char *)8scif, 4, 1, fp):
fwrite((char *)&alpha, 4, 1, fp):
fwr.te((char *)&beta, 4. 1, fp);
fwrite((char *)8&den, ¢4, 1, fp):
fwrite({(char *)8z, 4, 1, fpl):
fwrite((char X)8nitr, 4, 1, fp);
fclose(fp);

3 /% end if statement */

if(z > zold ! beta '= 0.0)(
if((beta == 0.8) 88 (z0ld <= ZTSTD)(

/¥ accept higher error level as convergence.
Then, better estimate is the previous lambda set.

for(izml; i<=m2; i++)(
for(j=ml; J<=m2: J++)
xlami 11{J] = xoldlil(3];
3
goto 1b13888;
3
alpha = (1.0+alpha)/2.0:
sclf = sclfr2.0;
3
zold = z:

/X cowpute minimum value of correction spectrum and update alpha
x3 = cft2(px);
Xxx = 1.0 + eclf * x2/x3:

alpha = (xx > alpha)? xx: alpha ;
if(alpha >= ALPTST)goto 1ab999;

/X compute lambda values for regionm A omnly x/
cft3(xold.px.alpha,xlam);

x/

x/
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/% Minimum value of Fi lambdal, compute beta */
x4 = cft2(xlam);
if(xd > 6.0 ¢(

beta =0.0;
3
else (
bmin = -x24/( x1-%4 );
beta = (1.0+ (1.0-sclf)*(1.0/bmin—1.0))*brin ;
alpha = (1.9+alpha) 2.9;
printf( " bete = Re “\n",beta):
H
¥ obtain new lambda set *x/

for ( i=mil; i<=m2; i++)(
for(y=mi; J<=m2; j+#)(
xlaml{ 11{3] = zadd(zscal(beta,x01d[ i1{33),
zscal((]1.0-beta) ., xlaml i1131)):
xold(il( 3] = xlaml i103];
N
}
fid = fopen("filter*,"w"):
i = 0;
fwrite((char %)81,2,1,fid);
fwrite({(char ¥)8&nsin,2,1,fid);
for{i=1; i<z=msim; i++){
fwrite((char ®)8plil,4,1.fid};
fwrite((char *)8xfreqlil,4,1.fid);
fwrite((char *)8yfreqlil,4,1,{1d);
3}
fwrite((char *)8noise,4,1.fid);
fwrite((char *)&nl12,2,1,fid);
iwrite({(char *)8&ngap,2,1,fid);
ifCogsp '= )(C
for(i=0; i<ngap: i++)¢(
for(g=ml; J<(=m2; J++){
for(k=ml: k<=m2; k++){
if(gaplylik]l == 0)¢(
is = J—-MR2:
Js = k-MN2;
fwrite{(char *)8is, 2,
fwrite{{char X)&js, 2,

b
3
fwrite{(char ®*)&n, 2, 1, fid):
fwrite{{char *X)&mitr, 2, 1, fid);
fwrite((char ¥)82. 4. 1, fid):
for(i=ml; i<=m3; i++)(
for{j=ml; J<=m2; J3++){
fdx = (xlam{i)J{31).r:
fwrite((char ®x)&fdx, 4, 1, fid);
fdx = (xlam{ i11{31).1i:
fwrite((char *x)&fdx, 4, 1, fid);

3
3
fclose(fid);
/¥ obtain new ACF over the region A only */

cft(px,xlam);

nitr++;

’x obtain correction ACF and mew error */

1,
I,

/% FORTRAN indices here!!!! x/

fid);
fid);




z39.90:
for(i=ml; i<=m2; i++)(
for(J=mi: j<=m2; J++)(
pxl 11031 = zsub(ri{ildlyl, pxIi1li31);
z = z+ zmag2(px[il(J3);

)
3
z=z/den;
) sk end whilz loop ¥/
rE check solution */

printf("Converged at iteratiom no. %4 \n®,nitr);
printf{( "TEST IN PROCRESS: PATIENCE..... \n");
1b1888: ;

if(z > zold)printf{* 2.8e-4 ERROR LEVEL, NITR = Rd".mnitr):
n=4Xxn;

n2=n/2:

n21=n2+1;

nd=n:

n4=né4xnd;

pin=2.0%P1/n:

cftipx,xlam;

/%
If non positive definite solution, error wessage
issued by cft.c. If 0.K., then error rechecked below: x/
z=0.0;
for(i=ml; i<=m2; i++){
for(g=ml; J<=m2; J++)
oz = z + zmagl{zsub{rl[illg),pxlill 1))
Al
z=z/den;
if(z <= Z1.D
printf("Good solutiomn. Error is %e \n",z);
elise

printf("Positive but high error %ie \n",z);
12b399: ;

if(alpha >= ALPTST)
printf(™ ALPHA = 0.99999; use longer dft length!!!'! \n");
] 7% xxxxxxEND MAIN PROGRAMtxx:xxX%x X/

cacf2d(r)
complex r{MNITMN];
{

float xx, wx., wy:
int i,J,1!,i12, ia,Ja;
complex zw;

7% regquest input data x/

printf( "Enter no. of complex exponentials \a ");

scanf( *"%d", 8msin):

printf{ "Number of complex exponentials is %d \m",nsin);

for(i=1; i<snsim; i++)(

printf( "Enter power., fx, fy for expomnentisl mo. Rd \m",i):
scanf( "Re %e Re”.8plil,8xfreqlil.B8yfreqlil);

printf( "powers Re fx= Re fy= Re “n*,plil.xfreqli),yfreqlil);
)
printf( "enter noise power \n"):

scanf( "Re ", Bnoise );

printf(" noise power is %e “\n", noised:

printf(" enter dimension of smallest square comtaining A’ \n"):
scanf( "Rd"., &nl2):

printf("ACF without gaps is %d x %d \n"*,nl12,n12);

printf(*“ enter DFT length \n"):

scanf( "%d ",8n);
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printf( *DFT length is %d “\n*",n);

n2=n/2;

n21=n2+1;

n4=n;

n4=n4¥néd;

nl1=(ni12-1)/2;

wl=MN2-n1;

m2=IN2+n1;

pin=2.0%P1/n;

printf(*ACF array is from ( %d %d ) to ( Rd %d ) “\n",
ml,ml,m2,m2);

/X) fill gap array *x/
for(i=0; i(MN; i++)(
for(j=6; J<MN: j++)

gapl il(g] = 1;
b}

/¥ find where the gaps are */
printf(" no. of gaps in upper half plane ? “\n");
scanf( *%d".8ngap);
if(ngap '= 9)(
for(i=1l; i<=ngap; i++)(
printf( "enter coords for gap no. %d “n",i);
scanf(*%d %4",811,8i2);
gapl i11(i2]1 = ©O:
b
2

/% calculate ACF *®/
for(il=1; il{zmsim; il++)(
wx = 2.0xPlxzfreqlill;
wy = 2.0%Plxyfreqlill:
for(izml; i<=m2: i++){

ias i~MN2;

for{g=ml; Jj<=m2; J++3({

Ja=3—-MN2:
zw = zeplx(9.0,(wx X ja + wy X ja));
/X zero out acf array before computing ACF x/

ifti1==DriillJ] = zcplx(0.9,06.0);

if(gaplil{yl==1)
r{ill3l=zadd(r{11(J),zscal{plill, zexp(zw)));

3

b
»

e add noise power and normslize x/
rUHR2]IMR2] = zadd{(r({MN2]{MN2],zcplx(noise,®.8));
xx=r{ MN2]1({MR2] .r;

xx = 1.6/xx;
for(i=ml; i(=m2; i++)(
for(y=ml; j<=m2; 3++){
rlill{J] = zscal(xx.rlil(g1);
3
3
return(MN2);
3
cft(px,xlam)

complex px{MNRIIMN],xlam{ MNI{MN];
{

complex zx06,zx22 ,wz;

double npow();

float amini(),amax1(),x00,x11,x22 . xkl,wx,wy:
int i,J,k.,l,m.nn,nnl;




/% compute the (0,0) and (n/2,n/2) values first x/
2x00 = zZcpix(0.6.06.0);
Zzx22 = zcplx(90.0,0.0);
for(izml; i<=m2; i++)(
for(j=ml;: J<=m2; j3++){
=x00 = zadd(zx00.xlam{ 11{91);
zx22 = zadd(zx22,zscal(npow(~1.0,(i+J-MN4)) ,xlaml 110 31));
pxi11(3] = zcpix(8.6,06.8);
3

H
x90 = zx00.r;
%22 = 2zx22.r;

if(x00 <= 6.0 1| %22 <= 9.0)¢

printf( *BAD SOLUTION: F(LAMBDA) < 0 “n*);
re turn{ MN2) :

3

x1=aminl(x00,x22) ;

x2=amax1( x00,x22) ;

x08:=1.06/x60;

x22=1.0-x22;

e place the idft contribution of x6® and
x22 in the px srray *x/

for!{ izml; i<(=m2: i++){

if ( i<MN2)
nn=MN3;

else
nn=ME2;

for(j=mn; Jj<=m2; J++)
pxL 110 3] = zcplx(x00+x22%npow(-1.0,(1i+J-MK4)) ,0.0);

.o

X compute all other independent x(k,1) wvalues in the
plane using direct complex exp function calls *x/

zx89 = xlam{ MR2]JIMN2]:

¥ specify (k.1) values in the plane */
for(k=0; k<n; k++){
for(1=0; 1<m; 1++)(
if((k==0)88(1==0))continue;
if((k==n)88(1i==n))continue;
zx22 = zcplx(6.0,0.0);
for(m=ml; m(=m2; wm++)(

if(m < MR2)

nal = MN3;
else ,

nnl = MN2;

for(np=nni; nnl{=m2; nnt++){
if((==ME2)88(nn==MN2))continue;

wx = pin ¥ (kx(aMN2) + 1x(nn-MR2)):
wzZ = zcplx(9.0,-wx);
wz = zexp(wz);
zx22 = zadd{(zx22 . zeul(xlan{miinnl.wz)):
b}
)
/X x/

xk] = zx00.r + 2.0%zx22.r;

if(xk1<=0.0)(
printf( *BAD SOLUTION: F(LAMBDA) < 6 \n"):
re turn( MN2) ;

3

xlzamini(xl,xkl);
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x2-amax1(x2,xkl);
xkl=1.06/xkl:
sk
Given the x(k,1) value. update the rumning saums for the
ACF R’(m,n) x/
for({mml; m=m2; mt+){
wx = pin ¥ k *(nr— MN2);

if (m<MN2)
nnl1=MN3;
else
nnl=MN2;

for{mm=nnl; nni<=m2; nn++){
if(gaplmlinn)==8lcontinue;
wy = pinm X 1 *(nn-MN2);
wz = zcplx(0.0,(wxtwy));
wz = zscal(xkl,zexp(wz));
pxlmlinn] = zadd(px({mlinnl,wz);

3
)
3
3
/% half array of ACF values computed.
rearrange to full array
and normalize */

for{im*ml; m{*m2; wt+){
for(nn=ml; nn{=MR2;: nn++)
) pximllinnl=zcnyg(pxl ml+m2-mlI{mi+m2-nnl);
x00=(pxi MN21 [ MK21) .r;
x11=x00/n%;
x00 = 1.06/x09;
for(i=ml; i<=m2; i++)(
for(j=ml; J<=m2: J++)(
pxli1(Jy] = zscal(x08,px(i1i31);
xlaml i103J] = zscal(xll,xlam{ 1113]1);
3
3
x2=1.6/(x2*xx11)
x1=x1%xll;
retarn(ml);

float c¢ft2(px)

complex pxIMNIIMNI;

(

complex zx08,2x22,wz;

double npow()};

float amini() ,amax1(),x00,x22 xkl, wx,xmin;
int i,J,k,l.m,nn,nnl;

’x compute the (8,68) and (n/2,072) values first */
zx98 = zcplx(60.0,0.0);
zx22 = zZcplx(90.6,0.0);
for(izml; i<=m2; i++)(

for(g=ml; 3<(=m2; J++){

zx®0 = zadd(zx09,.px[i1(31);
zx22 = zadd(zx22 .zscal(npow(—-1.0,(i+3-MN4)) ,pxf i1(31));
b

zx22.r;
xmin = aminl(x00,x22);




Sk compute all other x»(k,1) wvalues in the

vlane using direct complex exp function calls */
zx90 = px(MN2]IMN2];

/¥ specify (k.1) values *x/
for(k=0; k<m; k++)(
for(1=0; 1<n; 1++4)(
if((k==0)88(1==0))continue;
if((k==n)88(1==n))continue;
zx22 = zcplx(9.9,06.0);
for(m™ml; m(=m2; m++)(
if(m < MN2)
nnl = MN3:
else
nnl = MN2:
for(np=nnl; nn{=m2; no++)(
if((m==MN2)&8(nn==MA2) )continue;
wXx pin * (k¥(mMR2) + 1x(nn-MN2));
wzZ zcplx(0.0,~wx):
zexpl(wz) ;
zx22 = zadd(zx22,zmul(px{imlinnl,wz));

[

b}
Ve 3 x/
xkl = zx08.r + 2.9%zx22.r;
xmin = aminl(xkl,xmin);
)
3

return{ xmin) 3

cft3(xold,.px,alpha,xlam

complex xold[ MN](MN] . pxIMRYIMN] ,xlaml MNIIMN];
float alpha:

{

complex zx90,zx22 wz.,zy08,2zy22;

double npowl():

float amini() ,amax1() ,x00,x22,xk],vkl.wx, wy;
int i, J,k, 1, m,nn,nnl:

/X compute the (0,.6) and (n/2,n/2) values first x/
zx90 = zcplx(0.6.0.0);
= zcplx(9.0,06.6);
for(i=ml; i¢(=m2; i++){
for(j=ml; J(’u2 I+ (
wx npow(-1.0,( i+3-MN4));

szG = zadd(szO pxliligl):
zx22 = zadd(zx22,zscal{wx, pxlil(31));
zy9® = zadd(zy®®,x0ldl illj]);
zy22 = zadd{zy22,zscal(wx, xo0ldlill31));
xlaml i103] = zcplx(9.6.0.9);
)
D]
wx = zx08.r:
wy:zyoo s
=00 = 1. 0/wy +(1.9 - alpha)* wx:
200 = 1.6/x00;
wx = zx22.r;
wy = zy22 r;
x22 = 1.8/wy + (1.0 ~ alpha)* wx:
x22 = l 6/ x22;
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place the idft contributions of
x990 and x22 in the lambda array */

for(m=ml; m<=m2; m++){

3

/%

zx60
zy00

/X

if (< MR2)
nol=MN3;
e lse
nni=MN2;

for(nn=nnl; nn{=m2; nn++)

xlam{mllnnl = zcplx(x00+x22%npow(—1.0, (z+nun-MN4)) ,6.0);

compute all other values in the plane x/

pxIMN2] [ MN21;
xo 1d{ M 2 [ MN2];

specify the k,l values */

for(k=0; kin: k++)(

Vg 3

for(1=0; 1<n; 1++)¢
if((k==0)88(1==0))contiuune;
if((k==n)&&(1==n))continue:

zx22 = zcplx(90.6,9.0);

zy22 = zx22;

for{msmi: m<=m2; wm++){

if(m< MN2)

nnl = MA3;
e lse

onl = MR2:

for(nn=nnl; mn{=w2: nn++){
1f((m==MR2) 58(nn=MR2) )continue:

wx = pin * (k¥(or-MR2) + 1¥(nn-MN2)):
wz = zeplx(6.0,-wx);
wz = zexp(wz);

zx22 = zadd(zx22,zmul{px(mlinnl,wz));
zy22 = 2zadd(zy22,zmul(xoldiwlinn] ,wz));

A
wx = zx98.r;
wy = zZx22.r1r;
xkl = wx + 2.0%wy;
WX = zy®O.r;
wy = zy22.r:
vkl wx + 2.0*%xwy;

xk]l = 1.0/yk1+(1.9-alpha)*xxkl;
xkl = 1.0/xKk1;

update the running sums for the lambda values x/

for(m=mi: m(=m2; or++){
wx = pin ¥ k ¥ (m - MR2);

if (< MN2)
nni=MR3;
else
nn I=MN2;

for(nn=nnl; nan{=m2; nn++){
if(gap{mlinn]==0)continue;
wy = pin X 1 2 (nn - MR2);
wz = zcplx(90.8. (wxtwyl)):

wz = zscal(xkl,zexp(wz)):
xlam{mllnn] = zadd(xlam{mlliuonl,wz);




'

-

s

'p
)

/% half lambda array computed. vearrange and normalize x/

for(m=ml; m{=m2; wmwr+){
for(nn=ml; nn<{=MR2; nn++)

xlam(ml{onl=zcngg(xlaml mi+m2-m}{nml+m2~-nnl);
3

wx = 1.6/04;
for(m=ml; o=m2; mt+)(
for(nn=ml; non{=m2; na++)

xiasm{wl{nnl] = zscal(wx,xlam{ml(nnl):
)

re turn{m2) ;

2

s function to obtain the minimum of two numbers x/
float aminl(x,¥y)

float x,v3

{

return{{(x<Xy)?x:vy);
)

rx function to obtain the maximum of two numbers *x/
float amaxl(x,v)

float x.y:

return{(x>v)?x:y);
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