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ABSTRACT

In this dissertation we present a new approach to the problem of estimating multiple
unknown signals and/or parameters from noisy and incomplete data. We approximate
the various unknowns as being stochastically independent, then fit a separable probabil-
ity density approximation to the given model density by minimizing the cross-entropy.
Given the separable density, all the unknowns can then be estimated independently of
each other using conventional methods. Surprisingly, all the well known Maximum A
Posteriori and Maximum Likelihood methods for this problem can be viewed as degen-
erate forms of this cross-entropy approach, in which one or more components of the
fitted separable density are constrained to be impulse functions. We solve for the
Minimum Cross-Entropy and MAP separable density approximations by iteratively
minimizing with respect to each unknown component of the density. This iterative
approach takes a particularly simple form when the probability densities belong to an
exponential class of densities. Each iteration decreases the cross-entropy, and conver-
gence can be proven under mild conditions. Applications discussed in the thesis include:

a) grouped, truncated, quantized data

b) optimal signal reconstruction from time/frequency constraints
bandlimited extrapolation
phase-only reconstruction
magnitude-only reconstruction

c) multidimensional FIR filter design

d) multidimensional Maximum Entropy spectral estimation

e) optimal signal reconstruction from timelShort Time Fourier
Transform constraints

f) penalty functions for constrained minimization
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Chapter 1

Introduction

1. The Subject of the Thesis

Using noisy and incomplete data to reconstruct a signal or identify parameters of

the signal model are two of the most common problems in stochastic estimation theory.

Applications abound throughout all engineering disciplines. In controlling a chemical

plant subject to unknown disturbances and sensor errors, it is necessary to estimate tem-

perature and pressure profiles (the parameters) as well as material flows (the signal) in

order to maximize the yield of the reaction. Bandwidth compression or enhancement of

noisy speech benefits greatly from accurate estimation of the vocal tract and voicing

parameters. Optical images blurred by motion or by instrument inaccuracies can often

be restored if an accurate estimate of the distortion is available.

In a these cases, we start with a model of the signal and observation processes.

The model describes the inputs and outputs of the system, and mathematically charac-

terizes its internal behavior as well as characterizing its overall environment. The model

may be incomplete, with only vague information about the values of various internal

parameters. Our measurements of the system may also be poor. Noise may be

present, the values being measured may be distorted through transmission, samples

may be missing, suspect, or coarsely quantized, and sometimes only short segments of

data may be available. Given whatever information we have, the partial model and the

partial data, our goal in all these applications is to try to estimate the unknown aspects

of the model, reconstruct the internal state of the system, and try to fill in any missing

observation data.
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Unfortunately, deciding what is the optimal" estimate of these unknowns depends

strongly on how we choose to define optimality". If we have a specific goal in mind,

such as maximizing the plant yield or improving the intelligbility of speech, then

optimality of the estimation algorithm can be measured in terms of the improvement in

our application. Unfortunately, optimality criteria sch as these are usually difficult to

quaatify in a form that is convenient for processing. A common approach, therefore,

is to choose a method which is relatively simple yet works well (though perhaps not

'optimally") in a wide variety of applications. Numerous techniques, both ad hoc and

theoretical, have been discussed in the literature. Throughout this thesis we will assume

that a statistical model for the unknowns is available. If a cost function is also given,

describing the relative cost of various types of estimation error, then the "optimal'

Bayesian estimation approach is to choose the estimate which, given the available data,

would on average result in minimum cost 11] . If the cost function is the mean square

error between the actual unknown and the estimate, then the resulting Minimum Mean

Square Error estimate would calculate the conditional expectation of the unknowns.

Unfortunately, while this may be the best one could do, the multidimensional integrals

required to estimate several unknowns simultaneously are usually extremely difficult to

evaluate.

The most commonly suggested compromises are Maximum A Poseriori (MAP) or

Maximum Likbcod (ML) methods [1,2,3,4] . These approaches try to choose the

values of the unknowns which are likeiest' given the available observations. In effect,

these methods replace the multidimensional integration of the Minimum Cost Bayesian

method with a computationafly simpler maximization of a probability density. Perhaps

the most important property of MAP and ML is that, although they give higher costs

than the optimal Bayesian approach, for many stationary and ergodic systems these
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techniques yield asymptotically consistent, efficient and nornal parameter estimates

[5, 6,7] . In these cases, MAP and ML are optimal" in the sense that no ther asymp-

totically consistent technique can yield estimates with asymptotically lower variance.

The problem is that for short data lengths, these methods may be quite biased. More-

over, when there are multiple unknowns, there are miany ways in which we can apply

these methods to the problem, some of which are significantly better than others. In

fact, this thesis will treat three fundamentally different ways to apply MAP or ML to a

stochastic estimation problem with two unknowns.

The main thrust of this dissertation, however, is to develop a new approach to the

problem of stochastic estimation with multiple unknowns and noisy or incomplete

observation data. What we would really like is a method which works about as well as

the Minimum Cost Bayesian approach, but which doesn't require complicated multidi-

mensional integrations. The real problem with the Minimum Cost approach is that the

unknowns are usually closely correlated, and it is the interaction between all the unk-

nowns which causes the computational complexity. If we could uncouple all the uncer-

tainties and deal with only one unknown at a time, then the problem would be substan-

tially simpler.

We start with what is admittedly a shaky basis. Let us pretend that all the unk-

nown variables are independent, and approximate the given model probability density

p(z,y,' ) by a probability density q(a,Jy,---) that is separable. Thus

q(js ,,.. )= q(,x)q()' ' is simply a product of individual densities involving only

a single unknown. Once we have computed such a separable approximation, we could

then use it to estimate each unknown independently of the others. The question is,

how do we best fit a separable density to the given model? The answer lies in informa-
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tion theory. Shore and Johnson [8] have proven that the "only" method of stochastic

inference which correctly incorporates knowledge about the form of the probability

density is to choose the density which minimizes the cross-entropy", an information-

theoretic measurement of the difference between the original and the new model den-

sity. Our Minimum Cross-Entropy Method (MCEM) thus consists of finding the best

separable approximation to the given model density by minimizing the cross-entropy

over the infinite dimensional space of separable probability densities.

Surprisingly, all the usual MAP and ML methods can be reduced to degenerate

forms of this single cross-entropy method, in which we not only fit a separable approxi-

mation to the given model, but also insist that one or more components of that separ-

able approximation b impulse functions. Cross-entropy thus serves as a unifying

framework for stochastic estimation of multiple unknowns; it provides a concrete meas-

ure for comparing the various MAP methods, and also suggests that better, lower

cross-entropies could be achieved by removing this impulse function restriction of the

MAP methods. Cross-entropy, like Minimum Cost Bayesian estimation, can also deal

properly with generalized probability densities containing impulses. MAP and ML can-

not. The cross-entropy approach also tends to retain any symmetry in the underlying

model, while the MAP methods often do not. In a number of examples we have tried,

cross-entropy also seems to yield estimates with less bias than the MAP methods, and

although we have not proven this, it appears to be asymptotically consistent whenever

an MAP method would be asymptotically consistent. All these features suggest that this

Minimum Cross-Entropy Method is the naturar alternative to Minimum Cost Baye-

sian Estimation.

Unfortunately, by introducing cross-entropy, we have converted an estimation

4
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problem involving a finite number of unknowns into an infinite dimensional functional

minimization over the space of _ ,ossible separable probability densities. We choose

the simplest possible approach to implementing this minimization, iteratively minimiz-

ing the cross-entropy over each component of the separable approximation in turn.

This is comparable to lsing a coordinate descent" mninimization technique, and though

gradient directed methods might be faster, none would be as simple. Minimizing the

cross-entropy with respect to a component q(x) of our separable density q(x)q(y) . . .

involves averaging the model log probability density over all unknowns except x, then

using the result as the estimated log probability density log q(x) of the unknown x. In

effect, we average the log model probability density over all variables except one, then

assume that the remaining variable must account for any remaining variation. We then

move to the next variable and do the same. Each iteration strictly reduces the cross-

entropy, and thus strictly improves the separable approximation. Furthermore, since

the MAP methods can also be stated in terms of fitting a separable model to the given

density, exactly the same iterative approach can be used for solving these problems also.

The only difference is that in the MAP methods, the components that are restricted to

be impulse functions are estimated by maximizing an averaged log density. Each itera-

tion of the MAP algorithms not only strictly decreases the cross-entropy, but also

strictly increases the corresponding likelihood function.

We're still left with some multidimensional integrations, the same problem which

curses the optimal' Minimum Cost Bayesian approach. However, if the given model

density forms an exponential class of densities, then the infinite dimensional cross-

entropy minimization problem reduces to iteratively calculating the expectation of a fin-

ite set of functions, each involving only a single unknown. This restriction to the

exponential class is actually not that limiting; included in this class are binomial,

-

----
- -
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multinomial, negative binomial, Poisson, Exponential, Gaussian, Gamma, Chi-Square,

Beta, and many other densities. In fact: under mild conditions, one an show [9] thai

every density which can be characterized by a sufficient statistic must be an exponential

class. When the model density is transformed to its "natural" exponential form, the

algoridlms take their simplest form. Cross-entropy simply alternates between calculat- 

ing the conditional expectation of each unknown in turn given the latest estimate of the

other unknowns. The MAP algorithms differ only in that some or all of the expecta-

tions are replaced by maximizations of the conditional density. MAP algorithms are

usually computationally cheaper than MCEM, but their estimates are usually worse.

Convergence of all the algorithms can be proven under mild conditions. Two

basic approaches are used for proving convergence in this thesis. The first relies on the

fact that the algorithms strictly decrease a cross-entropy expression on each iteration,

and the MAP algorithms also increase a likelihood function on each pass. Analyzing

the shape of these functions then leads to an understanding of how these estimates must

evolve. The other approach used is that when the cross-entropy or likelihood functions
I

are concave, each iteration often defines a contraction or non-expansion mapping on

the space of unknowns. Well known fixed point theorems can then be invoked to

prove convergence of the estimates.

The remainder of this thesis is concerned with applications of these ideas to a

variety of problems in statistics and signal processing. The first problem we consider is

fitting the parameters of a given model density to a set of data when the data has been

coarsely quantized, grouped into bins for convenience in collection, or similarly man-

gled. We propose four different cross-entropy and MAP algorithms for solving this

problem. All four algorithms alternate between estimating the exact values of all data

4
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measurements, fitting parameters to the model density using these data estimates, then

using the improved parameter estimates to further refine the data estimates. We com-

pare the performance of our algorithms with the Minimum Mean Square Error esti-

mates for a couple of examples involving Exponential and Gaussian densities. Cross-

entropy appears to give estimates which are virtually identical to those of Minimum

Mean Square Error estimation at a fraction of the computational cost, and its estimates

are asymptotically consistent. One of the MAP methods is almost as good, but for

small amounts of data it gives biased estimates. The two other MAP methods are

asymptotically biased (on the other hand, they take very little computation.)

The next class of applications we consider involves optimal reconstruction of Gaus-

sian signals corrupted by additive Gaussian noise, where we are given separate con-

straints on the signal and output values. Again we apply four different cross-entropy

and MAP algorithms to the problem. Each algorithm filters the output estimates, and

applies a conditional expectation or projection operator to estimate the signal. The out-

put is then reestimated by applying a conditional expectation or projection operator to

the signal. When the constraint sets are convex, each step defines a contraction map-

ping on the estimates, and geometric convergence to the unique global optimizing solu-

tion is guaranteed. If the constraint sets are not convex, convergence is only

guaranteed to a critical point of the cross-entropy or likelihood function, provided that

the estimates remain bounded.

We also analyze the limiting behavior of our algorithms when our a priori signal

density becomes asymptotically flat. We show that our algorithms for this case have a

similar form, except that the filtering step is omitted, and the resulting iteration is only

a non-expansive mapping. Nevertheless, by using a new upper bound on the variance
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of a log concave probability density, we prove that if the constraint sets are convex,

then the Fisher" algorithms converge to a global optimizing solution if and only if a

solution to the problem exists.

The case when the known constraints on the signal and noisy output are defined

by linear equalities is particularly interesting and elegant. All of our estimation

approaches give identical algorithms in this case. Each iteration uses a linear filtering

step, and two linear projection operations onto each of the constraint sets in order to

calculate its estimates. An alternatire dual" algorithm is developed which iteratively

calculates transformed Lagrange Mulip=.g., rather than the variables themselves, by

using a similar fiter/poject/project iteration. The dual projection operators, however,

are "orthogonal" to those of the original "primal' algorithm, and the dimensions of the

problems can be quite different. Numerous dosed-form solutions are developed, and

we also suggest several different conjugate gradient and PARTAN algorithms to solve

the problem in a finite number of steps. Noise sensitivity is analyzed, and shown to be

directly related to the convergence rate. Finally, since both the primal and dual prob-

lems define a linear mapping on the signal and output spaces, we can analyze the eigen-

structure of these mappings.

The simplest application of these reconstruction algorithms is to the problem of

reconstructing signals given noisy constraints on its behavior in the time and frequency

domains. We first consider the general linear equality time and frequency constraint

problem, and two special cases: bandlimited extrapolation, and reconstruction of a fin-

ite signal given the phase of its transform modulo f. For all these problems we develop

both primal and dual iterative algorithms, conjugate gradient algorithms, closed-form

solutions, and analyze their eigenvalues and eigenvectors. Next we consider applica-

4
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tions involving more general convex constraint sets. Reconstruction of finite length sig-

nals from noisy measurements of the phase modulo 2 is treated in depth, and we com-

pare its performance with the algorithm suggested by Hayes, Lim and Oppenheim [10].

Another application in this category is a new multidimensional Finite Impulse Response

filter design algorithm capable of designing FIR filters meeting arbitrary time and fre-

quency constraints. Finally, we discuss magnitude-only reconstruction, a problem

involving non-convex constraints, and present three different algorithms, one of which

is identical to that used by Fienup [11] and Hayes [12, 10]. When the constraint sets are

non-convex, convergence is only guaranteed to a critical point of the objective function.

As a result, our algorithms in this application tend to converge to a local minimum far

from the global minimum.

Next we consider more esoteric applications. A new development of Short Tunme

Fourier Transform is presented, in which we generalize the concept of 'windows to

arbitrary one-to-one linear operators, prove that the inverse Short Time Fourier

Transform is a projection operator, and develop a Parseval-like theorem equating the

energy in the time and Short Time Fourier domains. These properties are used to

develop gen.ral algorithms for reconstruction of signals from constraints on its time and

Short Time Fourier domain behavior. In fact, all the time/frequency domain results

generaize directly to time/Short Time Fourier domain algorithms. Next we present a

possible improvement to Malik and Lim's algorithm (we have not tested this yet, and

so there is no guarantee that it works.) We conclude with a new suggestion for penalty

functions for constrained minimization problems.
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2. Ongoing Research

There are a number of additional applications which were not included in this

thesis due to lack of time. These include:

* Iterative Multidiaensional Extrapolation/Interpolation/Smoothing, of Noisy

I
Finite Segments of Stationary Rational Processes (this iterates between a

Weiner-Hopf smoothing filter, optionally linearly predicts the signal tails,

then reestimates the unknown output tails from the signal tails.)

* Iterative Pole/Zero Estimation from a Finite Segment of Noisy Observations

(these iterate between a finite length smoothing filter, and linear prediction

and cross-correlation parameter estimation.) 4

* Iterative Pole/Zero Estimation and ExtrapolationlInterpolation/Smoothing of

Noisy Autoregressive Moving Average Models (these combine the above two

algorithms in order to implement the filtering in the frequency domain.)

* Recursive Versions of the Noisy Pole/Zero Modeling Algorithms

* A 3 way Separation Theorem for Optimal Control of Linear Quadratic Gaus- Z

sian Systems in Standard Controllable Form (these replace the expectation of

the quadratic cost function by an expectation operator using the separable

density approximation. The standard dynamic programming derivation of

the separation theorem then gives an algorithm in which we iteratively fit a

signal density, fit a parameter density, then refit a control.

Recursiveiterative versions of the algorithm are also possible.)

The first algorithm only involves linear equality constraints; it has been programmed

and works welL The MAP algorithms for solving the second and third applications 4

have also been programmed; these work best for estimating all-pole models from noisy

41
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data, since the zero estimates converge rather slowly. Using iterative extrapolation of

the noisy output is also a rather simple but very effective method of eliminating the

boundary effects one would normally encounter when using frequency domain filters on

finite data segments. The last two applications are areas of ongoing research effort.

3. Historical Background

The idea of developing connections between information theory and probability

has been investigated by numerous authors. Kullback's book [13] is perhaps the best

example, although it primarily concentrates on applying statistical analysis to informa-

tion theory rather than vice versa. Many researchers have tried to derive an axiomatic

information theoretic basis for statistical inference [14,15, 16, 17]. The most successful

of these, however, was Shore and Johnson 8] who provided a complete axiomatic jus-

tification for cross-entropy as the only viable estimation method for incorporating

observation data about the form of the model density.

Much has aso been written about stochastic estimation involving multiple unk-

nowns, but most analyses have focused on specific applications in which particular

features could be exploited to solve the problem. One common suggestion [18,19] for

dealing with pole/zero parameters of a linear state space model, for example, is to add

the parameters to the state vector, then iteratively or Tecursively linearize the equations

about the last parameter estimate and use a Kalman Filter to estimate improved param-

eter and state values. This quasilinearization extended Kalman Filter" technique,

unfortunately, does not necessarily converge. In statistics, extra parameters or signals

are often considered nuisance parameters" to be eliminated if at all possible. No

coherent theory seems to have developed for dealing with these extra parameters,

though several suggestions recur throughout the literature. We could estimate the

I
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nuisance parameters, then set them permanently to their estimated values. We could

jointly maximize over the parameters of interest and over the nuisance parameters. Or

we could integrate out the nuisance parameters, leaving only a probability density over

the desired parameters. It is well known that only the last approach seems to lead to

asymptotically consistent parameter estimates. However, I know of no proof of this, or

in fact any theoretically solid treatment of the subject.

The work in this thesis was motivated primarily b; research on two rather dif-

ferent subjects: pole/zero estimation, and optimal signal reconstruction. Bar-Shalom

[20] and Lim [21,22] independently suggested a new approach for solving autoregres-

sive modeling problems with noisy data in which they search for the combination of sig-

nal and pole parameters which are jointly most likely. Each iteration simply filters the

noisy observations using the latest pole estimates, then fits a new autoregressive model

to the clean signal estimate by using linear prediction. This method, which Lim called 4

LMAP, corresponds to our PSMAP approach. Contrary to Bar-Shalom's implication,

however, the pole estimates are not asymptotically consistent; in fact, the iteration tends

I
to pull the poles onto the unit irde and drops the model gain to zero, thus producing

exceptionally peaky sectra. Using an intuitive argument, Lim suggested a fix for this,

called RLMAP, in which he added the signal var;ance to the correlations of the signal

estimate when computing the pole parameters. He noticed that with this correction, the

pole spectra appeared to be mulch closer to the actual signal spectrum. In fact, except

for the gain calculations, this idea is exactly what our PARMAP algorithm would calcu-

late, and it exactly solves what we would consider to be the best MAP approach to the

problem. Our Master's thesis [23] develops ihe three MAP algorithms we use in this

thesis. By working backwards from Lim's RLMAP algorithm, we discovered a general

approach for iteratively computing MAP estimates of pole/zero models from noisy data.

4
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At that time, we did not understand the full applicability of the idea, and did not

understand the connection with cross-entropy. As a result, the derivation of the three

algorithms in the master's thesis was rather magical; various functions (now recognized

as cross-entropies) with exactly the right properties were invented out of thin air, and

used to solve the MAP problems. With the cross-entropy development in this disserta-

tion, this former work now takes a more sensible interpretation.

The second source of inspiration for this thesis was the large literature on signal

reconstruction from constraints stated in multiple domains. Most of this work, once

again, has narrowly focused on specific applications. This has allowed the authors to

exploit particular featres of the application, but has also tended to obscure the connec-

tions between all the problems. The best known signal reconstruction problem given

multiple constraints is extrapolating a fnite segment of data given that it is part of a

bandlimited sequence. Papoulis 124] originally treated this problem for continuous sig-

nals, and proposed an algorithm for solving it which iterated between bandlimiting the

estimated signal, and then replacing the known segment with its correct value. Conver-

gence was proved by exploiting the properties of Prolate Spheroid Wave Functions.

Sabri and Steenaart [25] proposed a single step, closed-form solution to the problem

using an "extrapolation matrix". Cadzow [261 reconsidered the problem, and by discre-

tizing the continuous time problem arrived at a much superior closed-form solution.

Gerchberg [27] considered same problem with the frequency and time domains

reversed; he uses a similar iterative algorithm to estimate the high frequencies of a finite

length signal when the low frequencies were given.

A conceptually related problem is that of reconstruction of a signal from samples

of the phase or the magnitude of its Fourier Transform, together with some extra infor-

I
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mation such as finite time domain support, a minimum phase constraint, rtc. Fienup

[111 considered the problem of reconstructing a finite length signal rom the magnitude

of its spectrum, a common problem in optics, and proposed two iteraivc techniques

which alternate between clipping the signal to the correct support and forcing it to have

the correct spectral magnitude. By varying the algorithm irregularly, he howed that

reconstruction was possible in some test cases. Gerchberg and Saxton coisidered the

case when the signal magnitude was known as well is its spectral magnitude This algo-

rithm alternates between forcing the correct magnitude in the time domain, hen forcing

the correct magnitude in the frequency domain. Hayes, Lim and Oppenhein [101 con-

sidered the related problem of reconstruction of a finite length signal from knowledge

of its spectral phase modulo 2r, and proposed an iterative algorithm for solving the

problem which alternated between forcing the signal to satisfy the known ime domain

constraints (finite support, known signal point) and forcing it to have the orrect spec- 4

tral phase (but keeping the spectral magnitude constant.) Quatieri and Oppenheim [281

used a similar procedure to iteratively reconstruct minimum phase signals from their

phase or magnitude. Finally, Hayes 112, 10] proved a set of simple condtions under

which one could uniquely reconstruct a signal with finite support from samples of its

spectral phase or magnitude.

The structures of these algorithms are quite siefar; we simply alternte between

forcing time domain and then frequency domain constraints on the signal. This simple

idea of iterating between two domains has encouraged many others to try apply the

same concept to more complicated problems. Malik and Lim [29], for example, solve a

multidimensional Maximum Entropy (MEM) spectral estimation problem by iterating

between the correlation domain and the convolutional inverse of the correlation

domain, forcing constraints on the model power spectrum in both donains in an

4
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attempt to find the MEM power spectrum. Finite Impulse Response filter design algo-

rithms, such as Remez exchange and others [30], have been deliberately designed to try

to iteratively adjust the filter coefficients in the time domain in order to decrease the

worst errors in the frequency domain. Another example is that in considering a statisti-

cal problem involving grouped data, Hartley [31] discovered one of our MAP algo-

rithms for the special case of fitting a discrete multinomial distribution to a given

grouped data distribution. This paper, which we only found after finishing chapter 4 on

grouped data problems, had the misfortune to be written in 1958 before the advent of

modern digital computers. Since the iteration did not converge in 4 to 5 passes, the

idea was apparently discarded. Even more extreme examples are the iterative ARMA

modeling algorithms suggested in chapter 7 of [18], or the Iterative Inverse Filtering

algorithms of Konvalinka and Matausek [321 which iterate between estimating residu-

als, poles and zeroes in a manner that appears to solve the corresponding modeling

problems.

Recognizing the conceptual similarit of all these algorithms. as well as their

resemblance to certain iterative deconvolution algorithms, numerous authors have tried

to unify the presentation and convergence proofs of these algorithms. The most suc-

cessful attempts revolve around the notion of non-expansive and contraction mappings.

Tom, Quatieri, Hayes and McClellan 33], for example, showed that when the solution

to the reconstruction problem is unique, then convergence of the bandlimited and the

* phase-only reconstruction algorithms cculd be proved by showing that each iteration of

the algorithms defined a strictly non-expansive mapping. Fixed point theorems of

Ortega and Rheinboldt [34] were then invoked to prove convergence. Schafer, Mer-

sereau and Richards [35] took an identical approach in proving convergence of decon-

volution and bandlimited extrapolation algorithms. Landau [36], Sandberg [37,38],

I
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and Zames 39] proved similar results for systems incorporatir; nonlinearities. Wiley

[40,41] used these nonlinear extensions to analyze iterative wideband FM demodulaton

algorithms.

Youla 142] considered the reconstruction problem from a different perspective,

recognizing that the Papoulis bandlirmited extrapolation problem was only one example

of a class of iterative projection algorithms involving two sets of constraints on projec-

tions of the unknown signal. By considering the more general reconstruction problem

in an abstract Hilbert space setting, he was able to characterize the properties of the

algorithm in terms of the angle' between the constraint spaces. The approach we use

in the special case of linear equality constraints will be somewhat similar to that of

Youla, although we will tighten some of his noise bounds, provide a convergence rate

analysis, characterize the eigenvalues and eigenvectors of te problem, and show that

additional properties can be proven for finite dimensional spaces. We will only treat

finite dimensional problems in detail; many of Youla's conclusions for infinite dimen-

sional spaces will follow, however, from limiting arguments. Perhaps the most impor-

taut difference between our approach and that of Youla, is that we show that many of

the properties of the class of iterative projection algorithms remain true even when the

constraints are not linear, but only convex, and even if we use expectation operators of

truncated Gaussians instead of projection operators. Mosca [43] also treated the same

subject in depth, analyzing the various degeneracies possible in solving ill-behaved

linear problems in infinite dimensional spaces. 1

The paper which comes closest to our approach is that of Jain and Ranganath [44],

published six months after this PhD proposal was submitted. They interpreted the

bandlimited extrapolation problem as solving a least squares problem. They derive

4
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Papoulis' iterative algorithm, they discuss closed-form solutions in terms of Discrete

Prolate Spheroid functions, and they show that Cadzow's closed-form solution is the

minimum norm solution to the least squares problem. The least squares approach leads

to a conjugate gradient iterative algorithm. It also suggests simple techniques for simul

taneously filtering out noise or certain types of clutter.' Our basic approach is conceptu-

ally similar to theirs in that we both start with (slightly different) optimality criteria for

judging the 'goodness' of a signal estimate. We both use this criterion to derive estima-

tion algorithms which can be made robust to noise. The major difference is that we

show that the properties of the algorithm which they derive are not particular to the

bandlimited extrapolation problem, but hold or an extremely wide class of signal

reconstruction problems with constraint sets defined by linear equalities. A these

problems have eigenvalues and eigenveztors with properties identical to the Discrete

Prolate Spheroid functions, all can be made noise insensitive, all have several different

types of closed form solutions, each of which can be efficiently solvec by conjugate gra-

dient or PARTAN algorithms in a finite number of steps. A can be solved by either

primal or dual algorithms. (Our dual iterative algorithm appears to be completely

new.) Finally, when the noise characteristics are known, and when the constraint sets

are convex, though not linear varieties, then cross-entropy and certain MAP

approaches provide better optimality criteria than simple least squares. In turn, our

major debt to Jain ad Ranganath is that their paper encouraged us to examine the use

of conjugate gradient methods for the general signal reconstruction problem.

Finally, we remark that fixed point theorems are a fundamental tool of analysis,

and the advantage of using this approach is that convergence can be proven even if the

algorithm involves non-linearities or convex constraints 37, 38,33]. On the other hand,

the non-expansive mapping approach is only useful for proving convergence of pre-

_ _
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existing algorithms and is not that helpful at suggesting algorithms for solving new

problems. A much more rewarding approach is to define an objective function measur-

ing the goodness' of our estimates, and then to optimize this function teratively.

When the objective function is quadratic, or sometimes even when it is only concave,

the resulting iterations are often contraction or non-expansion mappings, and we will 

have thus generated an algorithm whose convergence can be easily verified.

4. Outline of Thesis

The remainder of this chapter contains a brief summary of some concepts of real

analysis that will be used in the convergence proofs, and a list of symbols. Section A of

chapter 2 discusses the classical Minimum Mean Square Error, MAP and ML methods

of stochastic estimation, then introduces Cross-entropy and lists numerous properties of

this information measure. Section B considers stochastic estimation problems involving

two different unknowns, which we arbitrarily take to be a signal and a parameter. The

Minimum Mean Square Error (MMSE) estimate is briefly described, then three dif-

ferent MAP methods are introduced. One (PARMAP) finds the most likely parameter 4

value; the second (SIGMAP) finds the most likely signal value; the third (PSMAP) finds

the combination of signal and parameter values which are simultaneously most likely.

The Minimum Cross-Entropy Method (MCEM) is introduced, and we show that all

three MAP methods can be viewed as degenerate forms of MCEM. Section C discusses

existence and uniqueness theorems for optimization of functions over finite or infinite

dimensional spaces.

Chapter 3 develops iterative algorithms for solving our estimation algorithm. The

simple idea of minimizing with respect to the signal component and then the parameter

component of the separable density, is used to solve MCEM and the three MAP

4
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methods. For exponential families of densities, all four algorithms are shown to take a

particularly elegant form. Section B of chapter 3 painstakingly develops the mild condi-

tions under which convergence of these four algorithms is guaranteed.

Chapter 4 applies the four methods to statistical modeling problems involving

grouped or quantized data. These algorithms all iterate between estimating the actual

data values, then estimating the model parameters using these data estimates. Chapter

5 considers optimal signal reconstruction for Gaussian signals corrupted by Gaussian

noise, when the available observation information defines constraints on the possible

signal and output values. In all four algorithms the signa is estimated by applying a

projection or conditional expectation operator to the filtered output estimate. The out-

put is then reestimated by applying another projection or conditional expectation opera-

tor to the filtered signal estimate. Lavish attention is given to the case when the con-

straints are defined by linear equalities, and we develop primal and dual iterative algo-

rithms, conjugate gradient algorithms, closed-form solutions, noise sensitivity analysis

and analyze the eigenstructure. Chapter 6 continues analyzing the optimal signal recon-

struction problem by treating the behavior of the algorithms when the a priori signal

density becomes asymptotically flat. The limiting form and convergence behavior of all

our reconstruction algorithms is then carefully reexamined for the case when the density

is exactly flat.

Chapter 7 applies all this reconstruction theory to problems involving time and fre-

quency constraints. Special cases considered include bandlimited extrapolation, phase-

only and magnitude-only reconstruction, and mtidimensional FIR filter design.

Chapter 8 concludes by extending the algorithms to reconstructing signals given time

and Short Time Fourier domain constraints. This chapter also suggests a new MEM

__ ____ �II_



- 29'

spectral estimation algorithm, and a new penalty function for constrained optimization

problems.

5. Elementary Concepts of Real Analysis

Several ideas in functional analysis will be used quite heavily throughout this
4

thesis. The following is intended as a quick summary of some of the most fundamental

of these concepts. Other definitions and theorems will be introduced as needed. There

are many good references for this material; see, for example, Luenberger, [45] Gold-

stein, [46] or Demyanov and Rubinov [47] . (The casual reader should skip this section

and continue with chapter 2.)

In general, we will restrict our attention to finite dimensional normed linear vector

spaces such as the N dimensional real or complex Euclidian spaces RN or CN. Sets A

will be called bounded if there exists an upper limit M to the norm of every vector in

A, IISM for all x EA. A sequence of points {Xk} is called a Cauchy sequence if for

any E>O, there exists an N such that:

lix-x l for all n,m>N (.5.1

The spaces RN and CN are complete, which means that every Cauchy sequence in the

space converges to a point in the space. The set A is called "closed" if every Cauchy

sequence {x.} in A converges to an element of A. The complement A of the set A, con-

taining all elements not in A, is open if A is dosed. If xo is an element of an open set,

then there exists a ball of radius >O around 0 such that every element in the ban also 4

belongs to A (thus if II -xo tI< then EA.) Intuitively, dosed sets include their

boundary, and open sets do not. The closure of a se, is the union of the set with all

limit points of all infinite converging sequences in the set. A set A is called "compact if

every infinite sequence of elements in the set has at least one infinite subsequence which

4
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converges to an element of A. The Bolzano-Weierstrass theorem guarantees that every

closed and bounded set in RN or CM is compact. The "cluster points" ('limit points") of

an infinite sequence {x,,} are all points xa such that there is an infinite subsequence

{x',}C{x,.} which converges to ,-. Equivalently, every neighborhood of a cluster point

contains an infinite number of elements of {,,}.

A set A is called convex if for every two points

connecting x and y is also in A:

+ (1-X)y E A for O<X<1

x,y A, every point on the line

(1.5.2)

Non-Convex Convex

Convex and Non-convex Sets

The closed convex hull of a set, sometimes called the "cover", is the smallest closed con-

vex set containing A.

- S 

I
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k4

Convex Hull of A

A function f :A-R mapping a corvex set A into the reals is itself called convex if for all

,2 EA,

f( + (1-X) ) sXkf () + (1-X )f() for all O<k<l (1.5.3)

In other words, the line connecting ( xf(x)) and yf(y)) always lies above the func- 4

tion f. This function is called strictly convex if quatity holds in the definition above if

and only if x y . "Proper' convex functions also satisfy f (, )>- for all x. (We will

assume throughout that all functions are proper.) Convex functions are continuous in

the interior of their domain. If a convex function is also differentiable, then the follow-

ing relationships hold:

<f'(z), - > < f(Y) - f (X) (1.5.4)

<f'(2)-f'(x),--x > 0

If f (x) is strictly convex, then strict inequality holds above if #y=. Intuitively, these

relationships imply that the tangent to f () lies below the function. The function f ()

is called "concave" if -f (a) is convex.
4
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fO f

(x)

Y x
Non-Convex Convex

Convex and Non-convex Functions

We will also need to treat infinite dimensional vector spaces in this thesis. Unfor-

tunately, analyzing convergence in infinite dimensional spaces is considerably more dif-

ficult than in finite dimensions. For example, closed and bounded infinite dimensional

sets are not compact, and it is easy to find infinite bounded sequences with no limit

points whatsoever. This subject is ordinarily treated by generaizing our concepts of

convergence to a "weak" topology. We mention this only to stress that extending the

results of this thesis to infinite dimensional spaces is generally non-trivial, and we will

therefore concentrate primarily on finihe dimensional problems.

I
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6. The Cast of Characters

First let us introduce some notation.

A, B - capital Roman letters are matrices

, Q4 - capital Greek letters are sets

, - underlined Greek or Roman letters are vectors

ca, l - lower case Greek or Roman letters are scalars

F (),f (a) - functions

Indexing:

Aij or [Alj - the (i,j)' element of matrix A (the first row or column may be

numbered from 0 or 1 depending on circumstances.)

x i - the i element of the vector x

Ak - the Vk in a sequence of matrices A1, A2, -

- either the k& vector in a sequence, or a vector of length , depending on

use.

[Ak ]O - the (i ,j)' element of the k" matrix A. Analogously for vectors.

Transpose, Inverses, Conjugates

AT, aT transpose of A or a, i.e. A=Aj

A, complex conjugate of A or £

AH, a" - complex conjugate transpose (Hermitian) of A, i.e. A-=Af

A-1 - inverse of A

A -T, A-H - inverse of AT or AH respectively

Special Functions:

ij - Kronecker delta function, 8 ij =1 if i=j, and =0 else

8W-o) - impulse function, equals zero everywhere except to, but integrates to

4

4
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one over all neighborhoods of Lo.

IA - determinant of A

tr (A)= A ii - the trace of A

Special Vectors, Matrices

I - identity matrix, i = b =
(1

0
if i =j
else

I,, - the m xm identity matrix

Q - the zero vector, Q = (0 -- 0 )T

Q, - a zerc vector of length m

A = diag (a) - a diagonal matrix with elements A, =ai ij

Special Sets:

N (A) - the null-space of the matrix A

R (A) - the range space of the matrix A

Derivatives of a Scalar Function:

af () - is the column vector, [f] = a_f
ta aa ai iaz

f(A) - is the matrix, if = f
dA aA J 8A

a2f - isthe matix, _

3a a a k jij aaiabj

Derivatives of a Vector Function:

-a (s) - is the column vector daf(f) - ti (e)
/ct L t da t a

a (a) -isthematrix 2 = i
i C4 f i= aajiI

I
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Derivative of a Matrix Function

A(a) is the matrix IA 1 Aii
t ia Iia ija

Higher order derivatives will not be needed.

Probability - Let A be an event, and x a random variable

P(A ) - the probability of an event A

p(x) - the probability density function of x

p(x A ) - the conditional probability density of x given that A occurred

E[x] = f x p(x) d - the expeced value of x

E[x A = f x p(x A ) dx - the expected value of x given that A occurred

Covis = E (-Er ) ( - E[x ] = E[] E l = -E IE[xH ]
- the covariance of X

N(z ,V) - the normal distribution with mean z and covariance matrix V

Inner Products, Orthogonality:

<4,x >A = HA-l~ - an inner product, where A is a positive definite Hermi-

tian linear operator, AH = A

Il! = < -'the vector norm associated with this inner product

ij{B A max - the matrix norm associated with this inner product.

Clearly IB lltB | 11AiHYA for all .

11l 112 = (y) - the Euclidian norm

x I - means x is orthogonal to , <x ,y > = 0

a 1I - means z is orthogonal to every element of the set , < ,*> = O for all

41D - means every element of the set 4b is orthogonal to every element of set

4
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', <,>> = 0 for all E(E, tiE

' 1 - is the orthogonal complement of the set , i.e. the set of all elements z

such that <,,> = 0 for all _/E*'

N (A), R (A)i - the orthogonal complements of the null and range spaces of A.

Other Notation:

v <w - every component of the vector v is less than or equal to the correspond-

ing component of w, v < w i

A>O - the matrix A is positive definite, aHAx >0 for all x 0

A-z0 the mat is semipositive definite, HAx z0 for allo 

A>B - means that 'HA > HBx for allh

(a ,b) - the open interval between a and b

[a ,b ] - the dosed interval including a and b

fx4 = {( ,) : Efl, } ' - the Cartesian product of sets and 

Other notation will be introduced as needed.

I
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Chapter 2

Estimation Approaches

SECTION A - ESTIMATION METHODS

1. Introduction

In this chapter we will discuss the problem of parameter and signal estimation

given noisy and incomplete data. We consider two fundamentally different types of

estimation methods. Point estimation methods based on Minimum Mean Square Error

(M SE), Maximum Likelihood (ML), and Maximum A Posteriori (MAP) are

developed first. These methods use the given data to generate an estimate of the unk-

nowns, possibly together with a confidence interval for their value. We will also con-

sider a quite different approach, based on Minimum Cross Entropy (MCEM), which

uses the available observation information to estimate the entire probability density of

the unknowns. When only one unknown needs to be estimated (the "classicl' estima-

tion problem), all these methods are straightforward. When several signals and/or

parameter variables must be estimated from noisy and incomplete observations, how-

ever, there are many ways in which each of these criteria could be applied. We there-

fore propose and compare several different MMSE, ML, and MAP approaches. We

also propose a new MCEM method which uses cross-entropy to optimally fit a separ-

able probability density to the given model density. Surprisingly, all of our point esti-

mation MAP methods can be derived as degenerate forms of the cross-entropy method,

in which we force one or more components of the separable density approximation to

be an impulse function. Cross-entropy thus provides a framework which will unify our
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treatment of all the MNCEM, ML and MAP approaches we present. Iterative algo-

rithms for solving these problems are presented in chapter 3, and the remainder of the

thesis is concerned with applying the techniques to various problems.

2. Minimum Mean Square Error Estimation

The problems of parameter identification and signal estimation arise in many sys- 

tem modeling applications. Given a stochastic model relating the output of a system y

to the unknown signal x as a function of the unknown parameters , our goal will be

to optimally estimate b, ax, and y from noisy and incomplete observations of the sys- 6

tem. Unfortunately, the definition of what is optimal usually depends strongly on the

specific requirements of the application. In the fields of speech enhancement or
I

compression, for example, the ultimate criterion is whether the algorithm produces

intelligible. natural and pleasant sounding speech, and whether it can be implemented

in real-time with inexpensive computer hardware. Unfortunately, criteria such as this e

may be essential for engineering a good' system, but they are difficult to quantify or to

implement in a general-purpose estimation algorithm.

I
An alternate approach, the one which we will take in this thesis, is to use parame-

ter and signal estimation techniques which have very well behaved characteristics and

are applicable to a wide range of problems. Suppose we are given the conditional pro-

bability density PZ I.(Zi Ia) of the observation information given the unknown to be

estimated . Also suppose that the unknown can be treated as a Bayesian random vari-

able with a priori probability density p,(a). The observations are assumed to be con- I

strained to a subset of their domain (Z and the unknown is constrained to the set

%(A (we assume that and ix are finite dimensional vectors). Given all this informa-

dion, one of the best" approaches for estimating would be to use an estimator

I
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=s(z) which on average will have the least possible mean square error in locating the

true value of ct:

- min E.z [ l - () 12I ] (2.2.1)

where the arrow implies that a is the argument at which the minimum occurs. The

notation EA.ZI- 1z] implies that the conditional expectation is calculated over the set of

feasible parameter values (EA; for example:

Ez [f(g) = f ( ) tz(ct )da (2.2.2)
A

Evaluating the expression in (2.2.2) gives:

Ez [ lgl-(i) 2 ]~ ]= Var( | z) + -&(z) H2 (2.23)

where: n = EAII X i . ]

Clearly if the conditional expectation of given z is an element of A, then minimizing

(2.2.3) would give:

MMSE: (z) = EIZ[ % } ] (2.2.4)

Thus the Minimum Mean Square Error (MMSE) estimator of ct is simply the condi-

tional expectation of over A given . Assuming that the expected mean square error

in (2.2.1) is the best measure of the cost of estimator error, then MMSE must be the

best possible Bayesian estimation procedure.

MMSE unfortunately has several drawbacks. If the set A is not convex, then there

is no guarantee that the expectation of a will lie in the set A. Appendix A proves that

Theorem 2.2.1: The element =EAjz[1a'z] (if it exists) is an element of the closed

convex hull of A.

I0
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(The convex hull of a set is the smallest convex set which contains the set. See chapter

1, section 5 for more details on convex sets.) Theorem 2.2.1 is illustrated in figure

2.2.1. If the set A is closed and convex, then it is its own convex hull, and iEA. If A is

not convex, however, and Ez[1lz](A, then we will either have to accept this non-

feasible estimate of a, or else try to find the point in A' closest to the expected value. i

I

I

I

Figure 2.2.1 - MMSE Estimation

Another problem is that MMSE is quite sensitive to the tails of the distribution; in

fact, for many legitimate probability densities the expected mean square error in (2.2.1)

will be infinite. A related problem is that evaluating the conditional expectation is 

computationally intensive, as it requires a complicated multidimensional integral over a

domain which is often infinite in extent. Finally, MMSE can not be applied to prob-

lems in which the unknown to be estimated, , is most appropriat.,ely treated as a Fisher

non-random constant.

One possible solution to this last problem is to try to choose an a priori density 4

p(n) which contains the least possibkle information about the unknown, and then apply

I

-

I
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the Bayesian algorithm 'using this non-informative prior". Jeffreys [1] suggested an

invariance" approach for choosing this prior, while Jaynes, [2] Kashyap, [3] and Shore

and Johnson [4] have suggested using an information theoretic criterion. These

methods are controversial, since the notion of finding an a priori density which conveys

no a priori information is philosophically troublesome. A more conservative approach

would be to use a criterion somewhat similar to that in (2.2.1), except that we try to

find an estimator &=i(z) whose average value, given many repeated experiments, /,

will be the true value a.:

EzIA (it) I ] = a. (2.2.5)

(Note that this expectation is over the observation space Z, whereas the MMSE method

uses an expectation over the parameter space A.) Of all such unbiased estimates, we

choose the one with the least variance given a.:

a(r) - min Ez A[ It()-i.il2 | j (2.2.6)

Unfortunately, this Minimum Variance Unbiased Estimation method (MVUE) is not

guaranteed to have a solution, and there does not appear to be any constructive pro-

cedure for solving the problem. (See Rao [5] for an excellent discussion of this

approach.) We will therefore avoid the MVUE method in what follows.

3. Maximum Likelihood and Maximum A Posteriori Estimation

Because of the difficulties inherent in applying MMSE to many problems of

interest, it is worthwhile considering alternative estimation methods which are simpler

to apply. but are still well-behaved. Two techniques which have been extensively stu-

died in the literature are Maximum Likelihood (ML) and Maximum A Posteriori

(MAP) estimation. These procedures are applicable when we are given the conditional

___
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probability density, pz i;(z 2), of the observation information, , as a function of the

unknown to be estimated, a.

Maximum Likelihood (Fisher) estimation is used when the unknown a must be

considered a fixed but unknown constant (non-random variable). Thus no a priori

probability density can be assigned to ca. The ML estimate AtL is then chosen as that ·

value of which is most likely to have resulted in the given observation data:

ML - max Pz !( c ) (2.3.1)

The probability density Pz ,A( i ) is called the 'likelihood function" since it measures

the likelihood of the value x having caused .

Maximum A Posteriori (Bayesian) estimation is used when the unknown 2 to be

estimated can be considered to be a random variable with known a priori probability

density p(a). The MAP estimate am,< is then chosen as the likeliest value of given

the data :

4An - max pz( rI ) (2.3.2)

Bayes' Rule states that: a

Pz( )Pj(2I) -- () (2.3.3)
Because pz () is not a function of , (2.3.2) is equivalent to: a

SMAP - max PzlA( ) p.( ) (2.3.4)

In computing the maximum of (2.3.1) or (2.3.2), it is often more convenient to

use the logarithm of the probability density.

a
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The only difference between ML and MAP estimation, dearly, is this second term

log P(Q). As we let the a priori probability density of the unknown Q approach a flat

distribution over the space A (i.e. we know as little as possible a priori about the

parameter value) then p(X&) approaches a constant, and except in degenerate cir-

cumstances, 5jMwp will approach Ha. Thus in many cases ML estimation can be

mathematically considered to be a special case of MAP estimation in which the a priori

probability density is asymptotically flat.

In general, neither ML nor MAP are unbiased, and the variance of their estimates

can sometimes be high. In this respect, MMSE is clearly a superior estimation method.

However, if we consider the behavior of ML and MAP as the number of observations

grows infinitely large, then the performance of ML or MAP is often asymptotically

equivalent to MMSE. Although a great many theorems have been proven about the

asymptotic properties of ML and MAP, the most powerful of these theorems are quite

complex, and the assumptions they make about the probability densities are difficult to

verify in practice. Rather than state these theorems in detail, therefore, we will briefly

sketch their assumptions and implications. (See Bar-Shalom, [6] Bhat, [71 Crowder, [8]

Cramer, [9] Tse and Anton. [10] )

In the following, we will only treat the ML case, but similar remarks apply to the

MAP case. Suppose that the system generating the observation data is stationary and

ergodic, and that the finite number of unknowns % are structural" parameters which

�___�__
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control the evolution of the observation sequence for all time, rather than 'incidental"

parameters whose influence lasts for only a finite time. Then provided certain existence

and boundedness conditions apply, it can be shown that as the number of observation

data points N-a, that there exists at least one solution to the ML and MAP problems

which is asymptotically consistent, efficient and normal. This is perhaps the most 4

important property of ML and MAP estimation. Asymptotic consisterncy implies that if

the true value of a is a., then there exists at least one solution !j to the ML problem

(2.3.5) such that -d. as N-. (Of course, under certain conditions, there may be

other solutions to (2.3.5) which do not tend to . as N-.) Note that because z is a

stochastic variable, the estimate &=&(z) is also a stochastic variable. The Cramdr-Rao

Lower Bound states that the covariance of any unbiased estimator of the Fisher vari-

able a is bounded below by:

COvZ IA [i(Z) - a ,. j a Jfia) (2.3.6)

where: J .( a. ) Ez a log p( z ) 

The fact that ML is asymptotically consistent and efficient implies that the covariance of

the ML estimator -HL asymptotically approaches the Cramer-Rao lower bound. Thus

ML is "optimal" in the sense that no other asymptotically consistent estimator, not even

MMSE, can have asymptotically lower variance. Finally, asymptotic normality implies

that the probability distribution of the estimate 4i asymptotically approaches a Gaussian

(normal) distribution with mean .. and variance JL(g-). 

Because both ML and MAP are asymptotically efficient, the Cramdr-Rao Lower

Bound J-1 gives a rough estimate of the variance of the estimator A. This lower bound

is also sometimes useful in devising stopping procedures for deciding when an iterative

routine for locating a is 'dose enough' to the optimal answer.

4
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Several other features of ML and MAP estimation are quite interesting. It can be

shown that if an efficient estimator exists, then ML (and MAP) is efficient. It can also

be shown that MlA is invariant to one-to-one transformations of the space of unknowns.

That is, if b=4(a) is a one-to-one function of a, and if &ML is the ML estimate of a,

then *(aML) is the ML estimate of A:

*(fiu) - maxp(z j.) (2.3.7)

MAP, however, is only invariant to linear transformations of the unknown. Another

useful feature ofi oth IL nd MAP i. that bv focusing on the maximrlnn of the fpr^a-

bility density, they are insensitive to the shape of the tails of the distribution. Finally,

both the ML and MAP estimation procedures take an elegant and computationally con-

venient form for many common types of probability densities, particularly Gaussians.

ML and MAP unfortunately have certain disadvantages. The optimal asymptotic

properties of ML and MAP estimation only apply when the unknowns v. are a finite set

of "structural' parameters, and the number of observation samples N is 'nearly infinite".

Intuitively, we will need to accumulate an infinite amount of information about each of

the unknowns in order to estimate its value with infinite precision. Asymptotic con-

sistency will not occur if, for example, the unknown a is a stochastic signal of length N

and the observation ji is a noisy measurement of the signal process. In this case,

increasing the observation interval also increases the number of unknown signal points

to be estimated. Furthermore, in most stable, stationary and ergodic signal estimation

problems, the contribution of each new signal sample to the observations decreases

exponentially with time, so that only neighboring observation samples are significantly

affected by this value. Aumulating more and more observation samples located

farther and farther away from the unknown signal point will not significantly improve

b
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our estimate of that signal point.

Finally, even if the problem involves estimating a finite set of structural parameters

from noisy observation data, given only a finite (small) set of data there is no guarantee

that the ML or MAP estimates are the best"' we could find. This problem is particu-

larly severe for very short data lengths, when the bias in the ML or MAP estimates can

become quite noticeable.

4. Minimum Cross-Entropy Method

A completely different approach to the estimation problem is given by the

Minimum Cross-Entropy Method (MCEM). [4] The methods we have discussed so far

all start with observation data z, whose stochastic behavior depends on the value of the

unknown a. Using the conditional probability P A(Z- 1) of the data given the unk-

nown, these methods then construct a point estimator for the unknown. Confidence

intervals for this estimate can then be derived via the Cramdr-Rao lower bound, or

through direct calculation of the estimator's variance. In some circumstances, however,

we may be presented with observation information which is difficult to relate stochasti-

cally to the unknown. Suppose, for example, that the unknown a is a Bayesian random

variable with estimated a priori density pA(a). Now suppose that information becomes

available concerning the form of the true probability density q(a) of a. This informa-

tion may specify some moments of the density, or otherwise restrict the functional form

of q(a). Usually there is an infinite set of densities £l that are not ruled out by the given

information. The problem is to pick the '"best" estimate of the probability density q(a)

of the unknown which incorporates both the a priori information and the observation

information, but which makes the fewest additional assumptions about the density.

Standard Bayesian estimation is incapable of incoirporating information such as this.



Shore and Johnson, [4] however, have proposed a new method of probabilistic infer-

ence, called the Minimum Cross-Entropy Principle, which generalizes the Maximum

Entropy Principle [11, 12]. They propose four "consistency postulates" which any rea-

snnable method of inductive inference ought to satisfy. These postulates guarantee that

the method will give consistent results when there are different ways of taking the same

information into account (for example in different coordinate systems.) Given the

a priori density PA(a), and given that the actual density q(a) is an element of the set ~f,

Shore and Johnson proved that the only estimation method which obeys all the postv-

lates is to choose the density q(a) which minimizes the cross-entropy' function:

MCEM: 4() - min q(a) log () (2.4.1)
AE A PA(0)

This Minimum Cross-Entropy estimate of q() can be viewed as the distribution which

satisfies the constraints fI, but is maximally non-committal with regard to missing infor-

mation. Other authors have also proposed similar ideas; the name "cross-entropy' is

due to Good, [13] though the method was first proposed by Kullback [14] and has been

advocated in various forms by others under a variety f names, including expected

weight of evidence" and "directed divergence".

MCEM differs fundamentally from MAP and MMSE in that it uses observation

data to estimate an entire probability density for the unknown, rather than simply gen-

erating a point estimate . Should a point or interval estimate of the unknown be

required, we could first use the given information to calculate the MCEM density esti-

mate (a), and then apply more standard point estimation methods to 4((%).

The cross-entropy expression (2.4.1) has a variety of elegant properties which we

I
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will use extensively throughout this thesis. The theorems below summarize some of the

more important properties; proofs are contained in Appendix A, and a complete dis-

cussion may be found in Kullback [14] . The proofs of most of these properties rely on

the fact that logx < x -1 with equality if and only if x =1.

Let us define H (q) to be the cross-entropy function: 4

H (q) f= q(j) log ( dq (2.4.2)
A

In effect, H(q) measures the mean information for discrimination in favor of q(

against p() given that aqEA. [14] Define the measure:

O(A) = f q(a) dt (2.4.3)

for any measurable set A, and define P(li) similarly. Also define a finite partition P of

A as a finite collection of pairwise disjoint measurable sets P = {Ai} 1l with

Ai fnAj -= for i oj, which together span the entire set A U Ai.
i-i

Theorem 2.4.1 H(q) is strictly convex in q; that is, for any two probability densi-

ties q 1, q2:

H( Xql+ (1-AX)q 2 ) -< XH(q) - (1-X)H(q2) for XE(0,1) (2.4.4)

with equality if and only if ql(g) = q2 (a) almost everywhere in A.

Thorem 2.4.2 For any measurable set A\:

f q(a) log 5( d- - Q(A) log 0() (2.4.5)
.i p() P(A)

with equality if and only if q (
-

) - almost everywhere.
Q(A) P(A)

4



Theorem 2.4.3 Let P = {Ai) be any arbitrary partition of the set A. Then:

f q(g) log d (Ai) log Q(Ai) (2.4.6)

with equality if and only if q(x) = P() almost everywhere in ca A i for all i.
Q(A1 ) P(A,)

Theorem 2.4.4 Let P' = {Ai} be any subpartition of the partition P = {Ai}; that is

UAJi = i. Then:

Q(qji) log i(^,) Q(A,) log p(A) (2.4.7)

with equality if and only if 3 for all ij.

Q(A,) P(AA)

CZ~beo~r~m 2 'Q(A,)
f q(&) log Q(A) log = su(2.4.8)

.sAP i P(A,)2

where the supremum is calculated over all possible finite partitions P.

The first theorem is quite important, as the convexity of H (q) allows us to draw power-

ful conclusions about the convergence behavior of our MCEM algorithms. The second

theorem implies that if the original p() meets the observed constraints, then the

unique solution to the cross-entropy problem is just the a priori density q()=p(),

and the value of the cross-entropy at this minimum is zero. Taking A=A, this theorem

also suggests that H(q) -logp(A) 0 and so the cross-entropy is always bounded

below. Theorems 2.4.3 and 2.4.4 represent another type of convexity property for

H (q), and indicate that grouping values of the unknown always decreases the cross-

entropy. Theorem 2.4.5 can actually be used to define the cross-entropy for

I
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generalized probability densities (Radon-Nikodyn derivatives) where Lebesgue integra-

tion is used to evaluate H(q). (See Pinsker [15] for further discussion of this point.)

This feature is interesting because Maximum Likelihood methods can not be general-

ized to deal with continuous probability densities containing impulses. Finally, note

that if our a priori estimate P(-Q) were flat, then the MCEM problem (2.4.1) would be I

equivalent to Maximum Entropy.

I

4
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SECTION B ESTIMATION OF MULTIPLE SIGNAL AND PARAMETER UNK-

NOWNS

5. System MoCel

The most general system model we will need to consider in this thesis is illustrated

in figure 2.5.1:

EX

Stdchastic I Y

System Observer !6E (

* . .

Figure 2.5.1 - General System Model

We are given a stochastic system witl signal outputs x, y, ... and unknown parameters

t, i, - whose behavior, we will assume, can be described by a probability density

p(yX,'' 't, - ) Some of these parameters may be considered Fisher non-

random but unknown constants, others may be considered Bayesian random variables

with given a priori density. The observation data we are given is incomplete; rather

than specifying the signals exactly, the data simply constrains the signals to ie within

certain 6costraint sets (X, y Y, ... I The parameters g, J, ... are also known to be

--- -------------
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restricted to certain sets AEm, ,t(P, etc. Given this noisy and incomplete data, together

with the probability density p(a,,y, - - ,i, - ) and the a priori densities of the

Bayesian parameters, our goal will be to estimate all the unknown parameter and signal

values.

Unfortunately, the number of different estimation approaches which could be

applied to this problem grows geometrically with the number of unknowns that must be

estimated. We can develop the essential features of the problem, however, by consider-

ing the simpler problem in which the system has only two unknowns, a signal x and a

single set of Fisher or Bayesian parameters 4. The extension of the approaches we will

develop to the more general case of multiple signals and/or parameters is straightfor-
I

ward.

We will generally assume that the probability density of the signal ; given the

parameters J is finite and non-zero over its domain: E

0 < p(x i)X < = for all s EX, <) (2.5.1)

If the parameters d are considered to be Bayesian random variables, then we will also

assume that the a priori probability density p(6) is given and that it is finite and non-

zero over its domain:

0 < p(!) < for all E() (2.5.2)

In fact, unless otherwise indicated, we will assume that all probability densities we will

encounter are finite and non-zero over their entire domain. We will also generally

assume that x and are finite dimensional vectors.

From this point on, we will usually drop the subscripts of the probability densities,

since the space over which the probability measure is defined is usually obvious from

the context. Thus, for example, if x is an N component vector, p(x) will refer to the

4
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probability density of the unknown over all possible values of x ERN, thus

P(x)=PR,(,j). If X is a subset of RN, then we define the probability of the set X to

be:

p(X ) =f p(t) d (2.5.3)
X

The conditional signal density px(xt) given that X is restricted to the set X CRN is pro-

portional to the original density p(x) but renormalized to integrate to one over X:

P~X = P(X) ((2.5.4)
p(X)

In a simailar manner, we will define the probability p(X i) that the signbelongs

to the constraint set X given that the parameter value is d, by:

p(X fi)= p(x i',) d (2.5.5)
X

(This is well defined only because of assumption (2.5.1)). Define the probability den-

sity p(X ,d) by Bayes' Rule:

p(X, ) = p(X i ) p() = f ( ) d (2.5.6)

In general, probability densities restricted to particular subsets X or I) of the sample

spaces will be defined by renormalizing the unrestricted density so that it integrates to

one over the subset. Thus, for example:

px',(',) = p(X,') (2.5.7)p(X ,A)

Restricted conditional densities will be defined similarly. Thus, the conditional density

p~,t(diX) of the parameter value bE(4) given that the signal is an element of the set

X, is given by:

I
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£S~ p(,X)xpQ~ ; -- P(*X) x (2.5.8)
Pf p(t ) . di f. p(d,) dc d 

¢ X PX

6. Classical Filtering and Parameter Estimation Problems
I

Considerable insight into our estimation problem can be gained by first analyzing

the simpler 'classical" estimation problems which result when either the signal or the

parameters are known exactly. Suppose the parameters were known exactly, so that 4

the parameter constraint space contains only a single point, =)5{}. Then the MMSE

signal estimate would be calculated as:

E

/sE = min EXX,|[ illil 2 ]h-] (2.6.1)

or if X is a convex set:

IS EXIT X¢ d f x PX d ,D-T d (2.6.2)
X

If this is too difficult to calculate, the MAP signal estimate ;YAp could be used instead,

where we choose the most likely signal value given f. and given , EX:

mp - max Px 1
( i -) (2.6.3)

,z EX

It is sometimes convenient to express this in a different form. Using Bayes' Rule, and

noting that p(X 1k-) does not depend on x, equation (2.6.3) can be written in the form:

,u, - max p(z I_-) (2.6.4) .11

Finally, if , were Bayesian, then this maximization could be written in yet another

form:

,~a, - max p(z i S- ) p(5- ) (26.5)

I
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In the "classical" parameter identification problem, we assume that the signal value

is known exactly, so that the signal constraint space contains only a single point,

X ={)}. If b is a Bayesian random variable with a priori density p(j), then we could

estimate the parameters by using MMSE:

mMMS - min E¢g [ fil- i 2 js 1 (2.6.6)

or if C) is convex:

2MS-E4 ~ x[ ·[ i& ~ =b)d4 (2.6.7)

If this is too difficult to calculate, or if the parameters are Fisher unknown constants,

then we could se ML or MAP estimation to choose the most likely parameter value

given the signal . and given that JE~(. Applying Bayes' Rule, this maximization

problem can be put into the form:

Fisher: tML -max p( ,.l )

(2.6.8)
Bayesian: iMA - max p(,.- 1 ) P( g )

The only difference between the Bayesian and Fisher models is the term p(d).

Equations (2.6.7) and (2.6.8) give the "classical" filtering problems for estimating

the output of a known system given incomplete observations. Equations (2.6.2) and

(2.6.8) are the "cassical' system identification problems when the system parameters

must be identified from the system output. These "classical" algorithms provide a lower

limit to the complexity of any estimation algorithm we develop for noisy or incomplete

data, since the additional uncertainty when both the signal and the parameters are

imperfectly known can only increase the difficulty of the solution.

I
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Both these "classical" estimation problems are easy to solve for many signal models.

For example, if the probability densities characterizing the system are Gaussian, the

MMSE and MAP "classical" filtering problems (2.6.2) and (2.6.3) use the same linear

smoothing filter to estimate x. For signals generated by rational signal processes, this

filtering operation can be calculated by a smoothing Kalman filter, or by a finite inter-

val smoothing Wiener-Hopf filter. [16]

The classical" system identification problem can also be easy to solve for certain

system models. For example, suppose the signal process generating x is a Gaussian

autoregressive (all-pole) system, where !h are the unknown autoregressive coefficients.

The ML estimate of given . is then calculated by the covariance method of linear

prediction, which solves linear equations for the parameters. [17, 18]

7. Estimation of Unknown Signal and Unknown Bayesian Parameters

When neither the signal nor the parameters are known, the estimation problem is

considerably more difficult. We will discuss an MMSE estimation approach, as well as

three completely different ML and MAP approaches. One gives the optimal" parame-

ter estimates, one gives "optimal' signal estimates, and the third tries to estimate both

simultaneously and so falls somewhere in between. We will also present a separable

density Minimum Cross-Entropy Method, which appears to combine the best proper-

ties of all the MAP methods. Furthermore, all the MAP methods can be treated as

degenerate forms of this single MCEM method. To simplify the presentation, we will

only discuss the Bayesian case in detail. The extension to Fisher parameters is straight-

forward and is given in section 8.

4
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7.1. Minimum Mean Square Error Estimation (MMSE)

In most applications, the 'best estimates of the signal and parameters given p(& ,*)

and x EX, 4(E) would be calculated by the MMSE approach:

I)= EX, ( =ff pX(x, ) d aX (2.7.1)

If i (X and E (), then this estimator has the least possible mean square error. Unfor-

tunately, even in relatively simple applications this multidimensional integral can be

quite difficult to evaluate.

7.2. MAP Optimal Parameter Estimation (PARMAP)

An approach which is often easier is to first use MAP to estimate the parameters

from the known information. The signal value can then be estimated by assuming that

this parameter estimate is correct.

The best" MAP estimate of the parameters (PARMAP) is given by that parame-

ter value in 4) which is most likely to have resulted in our observation that x X.

Using Bayes' Rule in an obvious way, we get:

PARMAP: A - max p(X,.) = max f p(x,4 )d
*E4)X (2.7.2)

This method makes no assumptions about the exact signal value in choosing the param-

eter estimates, but instead integrates over all feasible signal values. Unlike the MMSE

estimate in (2.7.1), the PARMAP parameter estimate is sually biased for short data

lengths. However, for many signal models which are stationary, stable and ergodic and
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for which the parameters d are 'identifiable" and "structural", the theorems discussed in

section 3 can be applied to show that PARMAP's parameter estimates are asymptoti-

cally consistent, efficient and normal as the number of observations N-a. For these

models, no other estimation technique yields estimates with asymptotically lower vari-

ancle.

Once the parameter estimate has been calculated, the signal can be estimated either

by MMSE or by MAP techniques:

j = ElXi iM A] (2.7.3)

or:

x - max p X [ $MP ) (2.7.4)

It is interesting to note that if the parameter estimate fApy is asymptotically consistent,

so that mA-d'- as N-, then the PARMAP signal estimates will asymptotically

approach the classical filtering estimator in (2.6.2) and (2.6.3), in which the exact

parameter value R- is used:

Ex ![ i 4 jm, ]- EX .[z i 4- ] as N-- (2.7.5)

7.3. MIAP Optimal Signal Estimation (SIGMAP)

Since PARMAP gives the 'best" parameter estimates by averaging over all signal

values, it is tempting to think that the best MAP estimate of the signal (SIGMAP)

would be given by averaging over all parameter values:

4

4

SIGMAP: smep - max p(x, ) = max f p(4,) d (2.7.6)
j a x EX 4f

I
Ii

_ _ - - - ------ -- I-~
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SIGMAP thus chooses the likeliest signal estimate given that E(X and (4EI), and

makes no assumptions about the exact parameter values. As a result, this signal esti-

mate is usually quite different from that given by PARMAP in (2.7.3) or (2.7.4).

Unfortunately, the asymptotic consistency theorems of section 3 do not apply to

this problem, and so the signal estimate generated by this technique is not necessarily

asymptotically consistent or efficient, even when the system model is stationary, stable

and ergodic. This can be easily explained by the same argument used in section 3. In

the PARMAP parameter estimation case, each new observation adds new information

about the parameter values; as N-oc an infinite amount of information accumulates,

allowing perfect (consistent) estimation. In the SIGMAP signal estimation problem,

however, each signal value only affects neighboring observations, and gathering data

from the remote past or future will not significantly improve the signal estimate at time

n.

Given the signal estimate 4,p, a convenient and easily calculated parameter esti-

mate would be:

* - E,4,X |4AP] (2.7.7)

or

$ -max p( ) (2.7.8)

These parameter estimates are quite different from those generated by PARMAP in

(2.7.2), and as we wil see in a later chapter, for most signal models they are not

asymptotically consistent or efficient.

D
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7.4. MAP Simultaneous Parameter and Signal Estimation (PSMAP)

Although the preceding PARMAP and SIGMAP approaches are simpler than the

MMSE approach in (2.7.1), the probability densities p(sbX) and p(. I) can still be

quite complicated functions, and the optimization required may be computationally dif-

ficult. An alternative, and usually much simpler approach, would be to try to select the 9

combination of signal and parameter values which are simultaneously the most likely

given the known information:

4

The solution to PSMAP must also satisfy:

o n-max p(2, h)

although other points besides the global maxmimum might also satisfy (2.7.10). This

method is identical to the LMAP procedure of Lim [19,20] and Bar-Shalom. [21]

Unlike the previous methods, PSMAP does no averaging in seiccting the estimates.

Thus, since it is not necessary to integrate p( x,!) in solving PSMAP, the computation

required is comparatively simple. Contrary to what Bar-Shalom implied, however, the

asymptotic consistency theorems of section 3 do not apply to PSMAP, and thus the

technique usually yields biased parameter and signal estimates even as the number of

observations N-. For example, in an ARMA model estimation problem we will con- 4

sider later, we will show that this optimality criterion dramatica3y overestimates the

sharpness of peaks in the signal spectrum. The source of this bias can be made much

clearer by rewriting the probability density which PSMAP maximizes in the following

I
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two ways:

P( t , ) = (2.7.1t)p( ARM,X ) Px(estimat I or)

PARMAP estimator

P( x, ) p , ) P, ( I E ). (2.7.12)

SIGMAP estimator

The function whict this procedure maximizes is thus similar to that maximized by the

PARMAP or SIGMAP estimation techniques, except that it includes additional terms,

PX Ip,(x I4) or p (i X ), which bias the estimates. Because the parameter estimate

will be asymptotically biased, 4Ž., the PSMAP signal estimate . usually will asymptot-

ically differ from the dcassical filtering estimate, in which the correct parameter value .

is used.

7.5. Minimum Cross-Entropy Method (MCEM)

PARMAP estimates the parameters by averaging over the signal constraint space,

SIGMAP estimates the signal by averaging over the parameter constraint space, and

PSMAP estimates both the signal and parameters simultaneously without any averag-

ing. Considerations of symmetry would suggest that there ought to be a fourth estima-

tion method, with the same structure as the other MAP methods, in which we average

over both the signal and the parameters simultaneously in estimating the unknowrs& A

fourth method which will meet our needs is given by a somewhat unusual Minimum

Cross-Entropy Method. Let p(1,J) be the known joint probability distn'bution of X

and , and let the observation information impose constraints x (X and Et4). The

problem with using MMSE to estimate and is that the probability density p( ,t) is

usuaDy awkward to integrate. Let us therefore try approximating p(x ,4) with a separ-

able probability density q(& x,)=qX(x)q4,(4), and use Minimum Cross-Entropy to find

k

I

I

J

0
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the best separable approximation to p(r ,4) over the domain X x¢ .

4

where H () is the cross-entropy function:

H(qX,qp) = ff qx(x&)q,(4) log qx()q) (2.7.14)P(X -4b-) (2.7.14)
x 

and where qX and q are arbitrary probability densities constrained to integrate to one ,

on X and I) respectively:

f qx(S)dI = l and qx() > 0 for all xEX (2.7.15)
X

f q,( d = 1 and q(h) > 0 for all ()

This, we must admit, is an unusual approach, since the unknowns are ahlmost always

very closely interrelated. Intuitively, this separable density approximation qx (X)qb(?)

will never be able to capture the exact contours of the original density p( x,b).

Nevertheless, it ought to put peaks with about the right width in about the right loca-

tions.

A



- 66

( #1

II... x
Contours of p(&z I Contours of qX (x )q 4,(4)

Most importantly, once we have computed 4q and 4(, the signal and parameters can

be estimated' independently by applying point estimation methods such as MMSE or

MAP to this separable density qX()ac(dO For example:

-Ex 4x f x 4X () ,d (2.7.16)

We have thus decoupled the signal and parameter estimation problems, thereby (hope-

fully) reducing the complexity of the computation to the level of the classical estimation

problems involving only a single unknown. As we will see, the forms of qx () and

q4 ,(!) generated by minimizing (2.7.13) are often quite simple, and the values of i and

j found from 2.7.16) are not only easy to compute, but are also often doser to the

MMSE estimates than any of our MAP methods. We will also see in later sections that

these MCEM estimates are often asymptotically consistent, just like PARMAP and

MMSE.
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Superficially, MCEM would appeal to be unconnected with our first three MAP

algorithms; after all, MCEM estimates an entire separable probability density using an

information theoretic criterion, while the MAF algorithms only generate point estimates

using a purely Bayesian approach. It is possible, however, to treat PARMAP, SIG-

MAP and PSMAP simply as degenerate forms of MCEM in which we not only restrict

the fitted density q(xas ,) to be separable, but also restrict one or both of the densities

qX or q, to be an impulse function. Thus we can restate these estimation methods in a

cross-entropy framework as follows:

4

4

hLQf- We first consider PARMAP. The MCEM optimization criterion can be rewrit-

ten in the form:

H(q x ,q4 ) = -f qx () q(j) logp(s4,) d d If qx(x) ogq(,r) dx
X X

+ 5 q4(t_) log q4 >(d) d! (2.7.17)

Let q(!) approach the form of a delta function, q()=b(-d)), centered at some

value (. Note that although the term f q~4()logq 4 )(d)dt will become infinitely

large, its value will be independent of qx() and will also be independent of the loca-

tion of the delta function j. We can thus ignore this term. Let H (q, ,) represent the

A
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remaining two terms:

(qxI) qX log dd (2.7.18)

-f qx() log qx )

x P(Z A0
By theorem 2.4.2, this expression is bounded below by:

/H(q,2 ) a qx(X) log q(X) = -logp(X,) (2.7.19)
p(X4,)

and for fixed ~ achieves this minimum cross-entropy at:

.p(X ,) Px( i)

which is simply the conditional density of the signal given the parameter value . Sub-

stituting this solution into (2.7.18) therefore reduces the optimization over q and qp

to:

PARMAP: q,(S) - 8(-.)

iqX ) PX I1t(s ,5) (2.7.21)

where: - min [-logp(Xd) ]

- max p(X,2)

The estimate of the location of the delta function q6(t) -(-) is thus found by

maximizing p(X ,*), and then the signal density q(x) is simply estimated to be the

conditional density of z given the parameter value 1. This, of course, is identical to the

PARMAP procedure presented earlier.

The proof that SIGMAP results when we restrict q to be an impulse is identical,

except with the roles of x and k reversed.

_��_��_
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To prove the result for PSMAP, let both densities approach delta functions,

qx(z)=( -j) and q()=6(m- ). Although the last two terms of the expression

for H (qx,q 4 ,) in (2.7.17) will become infinitely large, they will be independent of the

location of the delta functions, j and , and can thus be ignored. The remaining first

term reduces to:

-fS (E -i)8(- ) log p(x ,*) 4 d = -log p(,j o) (2.7.22)
X4

Thus the cross entropy minimization problem reduces to:

LA: 4X(&) 5 (x-l)

4(sk) = s(o-4) (2.7.23)

where: A, min a -logp(U,) I
max p(s )

which is precisely the PSMAP problem. 3

This interpretation of PARMAP, SIGMAP and PSMAP as degenerate forms of

MCEM is etremely important, and wffil be heavily exploited throughout this thesis in

order to achieve a unified treatment of all these estimation methods. For convenience,

table 2.1 lists the cross-entropy expressions appropriate for each of our four MCEM

and MAP methods.

S. Fisher Model

Variations of the above PARMAP and PSMAP estimation approaches can be

easily devised which are suitable for use when the parameters are non-random (Fisher)

variables. The chief difference in the Fisher case is that because the parameters are

non-random, it win not be possible to calculate their oonditional expectation, nor wi it

4



70

q

W:

SV_

t

U

un

I=m)

0
rEE

-N.w;01

m:

E
r

--

0z

bri

go

- _

- u

'9 
'I ;r-

0-

go0

V

Z;

0tjCr

'-c

0-

si

cr 

a'

0

'j
O-q_elVI

11 .

i CZ

00
0
1h
-G

99

a,~

t

I 

cile-
3el

-,

-otI0

0' ·

0'

11-

co 

r= 

(^ (-

i I

r4 h
11 -f0_- _

v'Q

= a,I .3
J. 0

I-c

-I -
0M

tA
0' '--
v

tr

4

k
cr

cl
>C >

0.-

I-,Ca

c.

I-

o

C)0

E
-CO

.lm

r

44
ci-

JL .

I

__

-rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr - ml ml mmmlm m!l ~ ,~ , _ , , . .. ,

v,

r.
Q=

-Si

C-

k C
Cq ,

-9



6- 71 -

be possible to estimate the signal without making some specific assumption about the

values of the parameters. It will thus not be possible to devise a Maximum Likelihood

version of the SIGMAP algorithm, unless we are willing to invent a non-informative'

prior density for the parameters.

An ML version of PARMAP results when we choose the parameter value (<I) 

which is most likely to have resulted in a signal value x which belongs to the constraint

setX:

PARML: stLz - max p(X ]! ) (2.8. 1)

Similarly, an ML version of PSMAP results when we choose the combination of

parameter value (E4) and signal value , EX which are most likely:

PSML: i, - max p( lj!) (2.8.2)

. .

The only difference between the ML and MAP versions of these algorithms is that the

ML version effectively assumes that the a priori density p(O4) is flat over the range of

interest (compare (2.8.1) with (2.7.2) and (2.8.2) with (.7.9).)

A rather different approach to the Fisher problem would be to examine the

asymptotic behavior of our Bayesian algorithms as the a priori density p(d) becomes

"flat". It is easiest to examine this issue within the cross-entropy framework discussed in

the previous section. Substituting p( ,i) = p(, ) p(), into our cross-entropy expres-

sion H (qx ,qo) gives:

H(qx ,q) = HL (qx q,) - f q4 () log p(!) d (2.8.3)
Q)

I

I

I

I

I

4
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where HML is a Fisher' cross-entropy function in which the density p(, ,b) has been

replaced by p( i!):

mfL (qX . q4) = ff qx (x )q,(!) log qX ()qt(J) d dx (2.8.4)

As p(6) becomes asymptotically flat, the second term in (2.8.3j should become rela-

tively independent of q (). We would therefore expect that the separable density qx,

Cl, which minimizes the Bayesian cross-entropy H (qX,qc,) to also asymptotically

minimize the "Fisher" cross-entropy HML (qx ,q ) in the limit as p(c) becomes "flat".

We will therefore define the Fisher Minimum Cross-Entropy Method" as fitting a

separable "likelihood" function qx(x)qcb(j) to the given model likehood" function

p(t i)J by minimizing the Fisher cross-entropy:

The justification for this algorithm is that it is a limiting form of the Bayesian algorithm

as our a priori knowledge becomes infinitesimally small. Beware, however, that since

p(, &.) may not integrate to a finite number over X x(I, many of the properties of

cross-entropy presented in section 4 may not strictly apply to HML; in particular, its

minimum value may be -.

Constraining the parameter density q to be an impulse function results in an

algorithm which is identical to PARML, while constraining both the parameter and sig-

nal densities q and q to be impulse functions leads to the PSML algorithm. Con-

straining only the signal density qX to be an impulse gives a Fisher' form of SIGMAP.I
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9. Extension to More General System Models

When the system model has several signal outputs and several sets of parameters,

some Fisher and some Bayesian, the number of possible estimation approaches rises

dramatically. The different signals and parameters could be estimated separately or

jointly in many different ombinations and orderings. For example, suppose we have a

system with two signal outputs ,, y, a Fisher set of parameters t, and a Bayesian set of

parameters *. One "obvious' MCEM approach would be to hypothesize a flat a priori

density p(4q) for the Fisher parameters, and then fit a separable probability density:

q( , ,,)= q - ~)(yx ) (i)qO,(4)q(m) (2.9.1)

to the given density p(x ,y , ji) by minimizing the cross-entropy expression: 4

H ,qq,*dr 'f ;dk da4 &y ( Y)q44*Jq) log I (G) )q ( h()
P(& , IC

Alternative hybrid MAP/MCEM methods could then be devised by constraining one or

more of these densities to be impulse functions. Purely MAP procedures result when all

but at most one of the densities are constrained to be impulse functions. Still other esti-

mation methods could be devised by jointly estimating two or more variables within the

estimation procedures. Thus we could combine and y in the problem above by

choosing to fit a separable density of the form:

q(a :,3 yg,) = q~, ( 7,: )q,(S~)q({ (2.9.2)

to the given density. Since densities of the form (2.9.1) are a proper subset of the class

of densities (2.9.2), smaller cross entropies can be achieved by partially separated densi-

ties (2.9.2) than by fully separated densities like (2.9.1).

min H(q) min H(q) (2.9.3)
In q(~..i,)(,)( sq q(z)q(b)q(i I

In this sense, better estimates are achieved by combining variables as far as possible.

4
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The drawback, of course, is that generating point estimates of x and y from the joint

density (x . ) can be more complicated than generating estimates from separate densi-

ties 4(s:) and 4(y).

I
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SECTION C - OPTIMIZATION THEORY

10. Existence and Uniqueness of Global Maxima

All the MCEM, MAP and ML estimation approaches we have discussed require

maximizing or minimizing a function over a given domain. It is useful, therefore, to

consider under what conditions such a maximization has a finite solution and when this

solution is unique. The case when the unknowns X and /h are finite dimensional is well

understood, and a variety of powerful theorems can be applied. Similar theorems also

apply if x and/or j are infinitely long, or if we are minimizing a cross-entropy function

over an infinite dimensional space of probability densities. However, in this case it is

necessary to use weak topologies, and the wording of the tneorems is more compli-

cated. In this section, we will present some well known results for finite and infinite

dimensional Hilbert spaces. Proofs of the finite dimensional theorems can be found in

Luenberger [221 or Ortega and Rheinboldt [23]; proofs of the generalization to infinite

dimensional spaces may be found in Goldstein [24] Vainberg 125], or Demyanov and

Rubinov [261.

Because maximizing a function F (x) is equivalent to minimizing -F(i&), to sim-

plify the presentation we will restrict our attention to minimization problems.

10.1. Existence of Global Minima

Let F be a function mapping the domain A to the real line, F :A-R. We assume

that A has norm I 1'. A point a.(A is a local minimizer of F if there is an open

neighborhood S$= { t |xi- fl<, b>0 } of . with radius 8, such that: 4

4
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F(gx) a- F(a-) for all aSnA (2.10.1)

If strict inequality holds for aia. in snA, then t- is a proper local minimizer. If

F(/)>-F(-) for all aEA, then -. is a global minimizer of F on A. It is well known

that if F (x) is continuously differentiable in a, and if a. is a local minimizer of f in the

interior of A, then F'(.) = F( =0. If . is a local minimizer of F on the

boundary of A, then F'(.) must be inwardly normal to the boundary at a.. Techni-

cally, this means that:

F'(a,)Th 0 (2.10.2)

for all sequentially tangent vectors' h at a.. (A vector h is called a sequential tangent

of A at a. if there are a sequence {g} of points in A and a sequence of positive

numbers {tk} such that:

lim = h and im t = 0 (2.10.3)
k-. t -.

Fur further details, see Hestenes, chaptei 4 [27].) See figure 2.10.1 for an illustration of

interior and boundary local minimizers.

ca

Figure 2.10.1 - Local Minimizers

CI

I
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In general F (.) way not have any minimizing point. In order to guarantee that

F(a) will attain a minimum on A, we will have to restrict the domain A and the func-

tion F () appropriately:

Theorem 2.10.1: Suppose F (a) is a continuous function for all aEA, and suppose

that A is a compact set (if aL is finite dimensional, this is equivalent to requiring

that A be closed and bounded.) Then F(a) has at least one global miniizer

u. EA.

Unfortunately, in most of our applications the domain A will not be boundt and thus

will not be compact. Suppose, however, that we choose an initial es¢ixate i of , and

form the level set A0= { F ()sF () }. Then if AO is compact, F (%) must have a

global minimizer on Ao, and this global minimizer must ao cearly bc a global minim-

izer on the entire domain A.

10.2. Uniqueness of Global Minimizers, Convex Functions

In general, even if the problem min F (a) has a solution, this solution may not be
0.A i

unique. Furthermore, if F(ci) has multiple peaks so that it has local as well as global

minima, an optimization routine may have difficulty locating the correct global

minimum solution. A useful set of conditions for guaranteeing the uniqueness of ioibal

minima revolves around the notion of convex sets and functions. (See chaptez , sec-

tion 5.) To quickly review, the set A is convex if for any two points ,BNA the ine

connecting a and , is also contained within A:

Xn + (1-XA) A for all Oc<x< (2.10.4)

A function F :A~R is convex on a convex set A if, for all , EA: 4

I
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F( a+(- 1-X)aI) s X () + (1-x)F() for 0<A<1 (2.10.5)

The fun ,tion F will be called strictly convex on A if strict inequality holds in (2.10.5)

when 2aOE. F will be called uniformly convex on A if there exists a constan c >0 such

that for all rs,E A and 0<X<1:

kF(%) + (1-X)F(ff) -F( , x+(1-) ) >- cX(1-) Ill-ill2 (2.10.6)

For example, a quadratic function F ( =TQa, where Q is positive definite, Q'c I>0,

is uniformly convex. Clearly uniform convexity implies strict convexity, which in turn

implies convexity.

If F has a second ordcr (Frechet) derivative on a convex set A, then F will be con-

vex on A i F () = d2F i positive smidefinite on A. F will be strictly convex

on A if F"(.) is positive definite on A, and it wil be uniformly convex on A if and

only if F '~) is uniformly positive definite on A, so that there exists a constant c >0

such that:

TF (-) c iall 2 for all xEA (2.10.7)

The importance of convex sets and nvex functions, for our purposes, is that

characterizing the global and local minimizers of a convex function is easy.

Theorem 2.!0.2: Suppose F :A-R i5. c nntinuous and proper (i.e. nowhere ecual

to -) convex function over a convex, -s.ed and non-empty (but uot necessaily

bounded) set A. Then the set of all global minimizers of F on A is closed and cor-

vex (though possibly empty) and any local minimizer wifl also be a global minim-

izer. If in addition the set A is bounded, then F will have at least one global

minimizer on A.

Thus, as shown in figure 2.10.2, if F is convex on A and a, t are both gioba minimiz-

S
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ers on A, then every point on the line connecting a and a must also be a global minim-

izer:

F ( +( -,a) = F () = F ) (2.10o. )

F() I

.

global minima

a 4

Figure 2.10.2 - Convex Function with Global Minimum

Note that this theorem is true both for finite dimensional and infinite dimensional Hil-

bert spaces (see Demyanov and Rubinov 126] ). If we strengthen the conditions on F

to strict convexity, then any global minimum must be unique:

Theorem 2.10.3: If the conditions of theorem 2.10.4 hold, but F is strictly convex,

then F can have at most one global minimizer on A. If A is also bounded, then F

has a unique global minimizer on A. Furthermore, if the domain of F is finite

dimensional, and F has a global minimizer on A, then F(ci)-x as l1't1-, and all

level sets will be bouaded and compact.

Again, this theoren applies to both finite and infinite dimensional Hilbert spaces. If

the function F is uniformly convex, then it is guaranteed to achieve its minimum even

if A is not bounded:

� _�_
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Theorem 2.10.4: [ Vainberg Thm 9.4 [25] ] Let F :A-R be a proper uniformly con-

vex functional on a convex, closed and non-empty (but not necessarily bounded)

set A in a Hilbert space. Assume that F has continuous first and second order

(Frechet) derivatives on A. Then F is bounded below and has a unique global

and local minimizer a. in A. In fact, all level ets of F will be bounded, and

F(.x) - -as 1, lI--

Clearly these theorems will apply even if F itself is not convex, but there exists a con-

tinuous monotonically increasing function g R-R such that g (F ()) is convex. We will

also sometimes need to maximize a concave function F () over a domain A (we define

F () to be concave if -F () is convex.) Maximizing F () is equivalent to minimizing

-F (q), however, and thus statements similar to the above theorems can be made about

maximizing concave functions, or about finding local or global maxima in general.

A very useful special case for our estimation problem is when the logarithm of the

probability density, logp(,i), is concave. More precisely, we will call a function F ()

'log concave if

Fl( Xa- (1- X) ) F (a)XF () 1 - for all 0<,<1 (2.10.9)

Strict and uniform log concavity are defined in obvious ways. One reason this case is

so interesting is that Prekopa [28, 29] has shown that if the constraint sets X and () are

convex and p(x ,,) is log concave, then the PARMAP and SIGMAP densities p(X ,4)

and p( ,() are also log concave in h and x respectively. When p(x,-4) is log concave,

therefore, these convexity theorems can be used to characterize the existence and

uniqueness of the solutions to all three MAP algorithms. (See Appendix E.)

I
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11. Conclusion

In this chapter, we have discussed a variety of MMSE, ML, MAP and MCEM

procedures for estimating the signal and parameters of an unknown system. In order

to apply these techniques, a model of the system must be assumed in which the joint

probability density of the signal and parameters is specified. In the classical estimation

problem, either the parameters or signal values are known, and the estimation pro-

cedure is straightforward. Unfortunately, when several signals and/or parameters are

unknown, the estimation problem is much more complex and difficult to solve. The

best estimation method in general is Minimum Mean Square Error, in which we use the

available information to compute the expected value of the unknowns. This method

yields unbiased estimates with the least possible variance; however, evaluating the

multi-dimensional integrals can be quite difficult. The method is also not applicable to

Fisher non-random parameters, and if the constraint sets are not convex, then the con-

ditional expectation may not satisfy the constraints. Three different MAP and ML

approaches were also suggested; one gives the optimal' parameter estimates (PAR-

MAP, PARML), one gives the optimal' signal estimates (SIGMAP), and one tries to

estimate the parameters and signals together (PSMAP, PSML). A fourth Minimum

Cross-Entropy Method was also proposed, which optimally fits a separable probability

density to the given density. This MCEM approach serves to unify and generalize our

treatment of these estimation problems, since the other MAP methods can be con-

sidered degenerate forms of MCEM in which one or more estimated densities are con-

strained to be impulse iuncifons. Al of the MAP optimization approaches are

guaranteed to have solutions if the constraint sets are compact (or weakly compact) and

the probability densities are continuous (or weakly upper semi-continuous). If in addi-

tion, the constraint sets are convex and the objective function can be transformed into a

4



82 

uniformly convex function, then the global and local minima coincide, and can be

shown to be unique.

Because of the double uncertainty in the signal and parameter values, all of the

estimation techniques are considerably more complicated than the "classical estimation

problem. In the next chapter, however, we will derive iterative algorithms for solving

these problems which reduce the computation on each pass to something quite similar

to the classical- estimation problems. These algorithms therefore will provide a fast,

simple and elegant procedure for signal reconstruction and model estimation given

incomplete observation data.
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Chapter 3

Iterative Estimation Methods

1. Introduction

The drawback of all the MCEM, MAP, and ML algorithms presented in the last

chapter is that, even for relatively simple system models, they all require solving a com-

plicated nonlinear optimization problem. Of course, brute force can always be used to

solve these problems, evaluating the objective function on a coarse grid to roughly

locate the global optimum, and then applying a scoring method' (chapter 4 of [1] or

[2,31) or Newton-Raphson or some other gradient h-climbing algorithm [4,5,6]. In

general, however, such methods are complex and computationafly time consuming. In

this chapter we will focus on a group of iterative methods for solving these problems

which carefully exploit the structure of the stochastic system in order to simplify the cal-

culation. We start with a straightforward iterative procedure for solving MCEM; itera-

tive algorithms for solving PARMAP, SIGMAP znd PSMAP are then derived by inter-

preting them as degenerate forms of MCEM. A these iterative algorithms effectively

decouple the uncertainty in the various unknowns, thus reducing the estimation prob-

lem to a sequence of nearly classical" estimation problems involving only a single unk-

nown. Each iteration improves the appropriate objective function, thus improving the

estimates, and convergence of the algorithms to a stationary point can be proven under

mild conditions.

Once again, rather than treat the most general system model, we will restrict our

* attention to a model with a single signal and a single (Fisher or Bayesian) set of

parameters b. The key idea exploited throughout is that the log likelihood function

I
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logp(x,s,) is often a relatively 'benevolent" function in x and , and is much more

easily evaluated and manipulated than either logp(X ,) or logp( ,A), since no mul-

tidimnensional integration is required. It is this reduction of the MAP and MCEM

problems to a new form, which only involves the function logp(&,m), which permits a

radical restructuring of the estimation proLlem.

2. Minimum Cross-Entropy Method (MCEM)

The Minimum Cross-Entropy Method fits a separable probability density

qx (x)q4l(O) to the actual probability density p(a ,i) by minimizing the cross-entropy

function:

iX(, 4,( - min H(qX, q) (3.2.1)

where: H(q X q4 ,) = ff qx (q ) () log fxf( 4 dd

subject to the constraint that qX(x) and q4 )(4) are nonnegative and integrate to 1 over

X and 4) respectively:

f qx(r) dx = 1 and q() 0 for al EX (3.2.2)

f q4 () ds - 1 and q,(d) 0 for all (

Solving this problem directly is quite difficult, since the unknowns are functions and the

minimization is thus performed in an infinite dimensional space. Fortunately, an itera-

tive algorithm for minimizing this cross-entropy is quite simple to derive. We shall

'minimize (qx ,q 4 ) first with respect to the function qx 0, then with respect to qO,

iterating back and forth until the estimates converge:

E
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For k=0,1,· -

4(x, - min ( , qt, ) (3.2.3)

4<p.O - min H(q ,q¢)
'1*

This 'coordinate descent' method will not be as fast as more sophisticated gradient or

Quasi-Newton methods, but it has the advantage'of simplicity. T minimim with

respect to qX, first rewrite the cross-entropy (3.2.1) in the following form:

4x, () - min f q(x)O () og (3.2.4)

where: log v + () = i l o() bg p ( d

By theorem 2.4.1, this function is strictly convex in q and achieves its unique

minimum at:

4x*( -) vk +1() (3.2.5)

where: c,,, =f +la() dx

The value of the cross-entropy at this estimate is:

(x,4.,) = -logc,,X., (3.2.6)

Similly, H (X ,.,,q4) can be shown to be strictly convex in q, and has the unique

minimizer:

Q4 ̂(Q) 1 . +(1) (3-2.7)

where: log +1 = , +,) 5log p( .

4)1~lz



'88 s- 

The value of the cross-entropy at this estimate is:

H (4X ,.C14),. ) = - log C,+1 (3.2.8)

If the iteration has not yet converged, each step strictly reduces the value of H (qx',4',)

and thus improves the estimates of the separable probability density. Furthermore,

theorem 2.4.2 guarantees that the cross-entropy is bounded below:

H (qx,q ) QX (X log P(X= -log P(X,)) (3.2.9)
P(X ) 

Thus the cross-entropy of the estimates must converge monotonically downward to a

lower limit:

H(X,%c,) -H. as - (3.2.10)

Equations (3.2.6) and (3.2.8) also imply that the normalization constants c and cX

must converge monotonically upward to limits:

* · C - H ·as -(3.2.11)

Unfortunately, proving convergence of the estimated densities themselves is more diffi-

cult, and we will postpone this analysis until section 9.5.

Recognizing the integrals in (3.2.4) and (3.2.7) as conditional expectations of

log U 0 and log with respect to the densities q4, (J) and qX. (s) respec-

tively, allows us to write the algorithm in the following simplified forn:

4
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where appropriate normalization constants have to be added. Intuitively, the algorithm

can be explained as an attempt to compensate for the uncertainty in both the signal and

parameters in calculating the estimates. If 4x (x)4:l (4z) is a good approximation to

p( ,*), then log P(&) ought to be approximately independent of k. Averaging this

function over all parameter values 4 leaves only the x dependency of logp( ,), which

is used as the new estimate of the log signal density, logfii+i (). The parameter den-

sity is then reestimated by averaging the function log over al signal values,

thus recovering the dependency of log p(z ,). Because the 'correct' signal and

parameter densities are unknown, this averaging process is imperfect. Thus the algo-

rithm iterates, using the improved density estimates to improve the averaging on the

next pass, and thus further improve the next density estimates.

Note that the behavior of the expectation of log i) as a function of X, or the

behavior of log as) a function of !L, is just the same as the behavior of theq4 ( )

expectation of log p(,,*). The only reason, therefore, tha: we divide p(l A[) by qt(*)

or by qx () in (3.2.12) is to ensure that the expectation will be finite.

I
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If point estimates of and are needed, they can be calculated by running the

MCEM algorithm to convergence, giving estimates cX (x) and ql,(). and then calca-

lating the conditional expectation or MAP estimates of x and :

i = ·1 i x 4 = E,1 4i%

or: (3.2.13) 6
- max ) - max q(h)

The most important application of this algorithm, discussed in section 7, is when

the model density p(x,) forms an exponential family of densities. In this case, we will

see that (x) and 4, (4).willm also be exponential densities, and the MCEM algorithm

reduces to iteratively evaluating the conditional expectation of a few functions, each

involving only a single unknown.

3. MAP Optimal Parameter Estimation (PARMAP)

The PARMAP approach esTimates the parameters by choosing their most likely

value given that , EX:

MAp, - max log p(X ,) = max log p(,)d (3.3.1)

The difficulty with directly maximing this function is that to compute p(X ,!) we must

evaluate a multidimensional integral, and the resulting nonlinear function can be quite

complicated. W therefore propose an indirect iterative method for solving (3.3.1)

which reduces the computation to a form similar to that of MCEM. A previous deriva-

tion of a similar algorithm was given by Musicus [7] before the connection between

PARMAP and MCEM was understood. The derivation we present here exploits the

interpretation of PARMAP as a degenerate form of MCEM, as described in chapter 2, 

section 7.5. Wc start by minimizing the cross entropy function H with the addiftonal

4
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constraint that q4(2)= 6(-) for some (tC. As before, we retain only the first

stwo terms of the cross entropy expression (2.7.17). Abbreviating H(q ,()= (qX ,qp?)

where q,(h)=8(-~), we find that:

/f(qX,) -ff qX()b(f-) log p(,,) dad + qx(&) log q() 4
X IX

= q() log qX(x)d (3.3.2)

Let us iteratively minimize this modified cross entropy expression by minimizing first

with respect to q, then with respect to the location f of the impulse function q,

iterating back and forth until the estimates converge.

For k =0,1,--

i) - minH(qX ,) (3.3.3)

+tl - mi (x ,

Minimizing with respect to qX is easy; by theorem 2.4.1, expression (3.3.2) is strictly

convex in qx and achieves its unique minimum at the esiimate:

q4 d) Px !4(X(t j ) P (3.3.4)

The signal density estimate is thus simply the conditional probability density of , given

the parameter value d. Now minimizing H(xt,) over h yields:

il -maxf P1 1 ! Pf log I) - dx (3.3.5)
,E, x PX I. I )

Viewing log P(X). as a function of ;~, using the relation (3.3.4), and discarding a

constant term log p(X,j) for convenicnce, the algorithm can written in the simplified

IC
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PARMAP iterative algorithm:

Guess o

For k=O,i, - - ·

+ _,o Pi(, _ ) (33.6)

Clearly each iteration decreases the cross-entropy (x, ).). Furthermore, by sub-

stitution:

- (CtX,.,,~) = -log p(X -, ) (3.3.7)

and thus by construction of the algorithm:

log p(X.Iik -13 II NXI +I,b') = l(1Xt og p(X4,~) (3.3.8)

Each iteration therefore also increases the likelihood function p(X,) and thus yikeds

a better PARMAP parameter estimate.

In the special case of noisy z-ple models, this algorithm is very similar to the

RLMAP algorithm of Lim and Oppenheim [8]. For discrete multinomial densities and

grouped data, it is also the same algorithm suggested by Hartley [9].

Intuitively, the algorithm can be explained as follows. The quantity inside the

xpectation, log P(x ,) represents the log likelihood of the pair of values z 4 versus

the pair of values x, L. If the actual signal value . were known, then the MAP

parameter estimate could be calculated by maximizing this log likelihood fucion with

respect to h. However, since the signal value is not known exactly, but can only be

inferred via the incomplete observation that , (X, this algorithm instead chooses to

maximize the value of the function log PC&4 averaged over all possible signal valuesP(~,'

6

4

4

44
1



EX. Because the actual parameter values are unknown, this signal averaging is

im.perfect. Thus the -gorithm iterates, using each new parameter estimate to improve

the signal averaging calculation on the next pass, and thus improve the next parameter

estimates. Note that, as in the MCEM algorithm, the sole purpose for dividing p( ,)

by p(x ,~) before calculating the expectation is to ensure that this expectation is finite.

A similar algorithm can be developed for the Fisher system model in which the

parameters are viewed as non-random variables. We start by trying to solve the

PARML parameter estimation problem:

4,AP - max log p(X i) (.3.9)

The development of an iterative algorithm for solving this is then identical to the one

above, except that probability densities of the form log p(i ,) and logp(X ,) must be

replaced by logp(,x lh) and logp(X [1) respectively. The resulting iterative Fisher esti-

mation algorithm will then calculate:

If an estimate of the signal , is desired in additicn to the parameters, PARMAP

can be iterated to convergence, 4-A, and then we could calculate the expected

value or MAP estimate of q (t) = PX Iz !1Iys-a):

i = p 1 ds

z X

b

PARML iterative algorithm:
Guamess

For k =0,1, --

5, - max EX I l.og 4) I4 (3.3.10)
,EV j. P( 4k) 
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The advantage of this algorithm is that it reduces the complicated nonlinear max-

imization of p(X ,) to an iterative maximization of the expectation of log P(').

As discussed in section 7, in the very important special case when p(x ,d) is an exponen-

tial density, this expectation operator changes the details but not the overall difficulty of

maximizing logp(;r,). For these models, therefore, the maximization in (3.3.6)

requires about the same amount of computation as the maximization in the classical

parameter identification problem (2.6.8). If the latter is easy' to solve, then the PAR-

MAP algorithm will also be "easy" to solve.

4. MAP Optimal Signal Estimation (SIGMAP)

The SIGMAP estimation algorithm tries to estimate the signal x by calculating its

most likely value given the known information:

*A -max log p(a,) = log p(iah) (3.4.1)

The difficulty with this approach, like PARMAP, is that computing p(x,A>) requires

evaluating a complicated multidimensional integral, and the resulting nonlinear function

can be quite complicated. From a formal standpoint, this estimation problem is identi-

cal to the PARMAP problem in (3.3.1), except with the roles of X and s reversed.

Exactly the same iterative algorithm used for solving PARMAP can therefore be

applied to this problem, provided that we reverse the roles of X and A. 'ie SIGMAP

algorithm thus generates signal and parameter density estimates:

x,() = (z -4i) (3.4.2)

(where the signal estimates are iteratiely generated by:

where the signal estimates 4 are iteratively generated by:

�1�1_
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Each iteration of this algorithm not only increases the modified cross-entropy

H(4,it 4,,) but also increases the likelihood function logp(i,k(I)) and thus '"mproves'

the signal estimates.

This algorit"hm can be interpreted in exactly the same way we interpreted PAR-

MAP. If the actual parameter value . were known, then the MAP ignal estimate

could be calculated by maximizing the log likelihood function 1ogp( ,) with respect

to . However, since the parameter value is not known exactly, but can only be

inferred via the observation that iE(), this algorithm instead chooses to maximize the

value of the likelihood ratio log p-(;~)- averaged over all possible parameter values

*(DI Because the actual signal values are unknown, this parameter averaging is

imperfect. Thus the algorithm iterates, using each new signal estimate to improve the

parameter averaging calculation on the next pass, and thus improve the next signal esti-

mate. Note that the x dependency of the average of log P(4,) is the same as the r
p(i& h)

dependency of log p(:r,*); the only reason for dividing by p(4, ) is to ensure that the

expectation is finite.

As discussed in chapter 2, the SIGMAP procedure can not be used if the parame-

ters are non-random (Fisher), unless we are wiling to create a fictitious a priori density

for p().

SIGMAP iterative algorithm:
Guess l 0

For k=0,1, - - (3.4.3)

4+ - max ELx [ g i a EX pW ,m)

--
.~~~~- - - - _ _ -
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If an estimate of the parameters is needed, the above algorithm can be iterated to

convergence, 4-mA, and then we can calculate the mean or mode of the parameter

density estimate c4t() p X (<b ( iAp):

6=E([D MAP]

or (3.4.4) °

- max log p(4A, ,,)

The advantage of this iterative scheme is that we reduce the "diffiacult problem in

(3.4.1) to one involving the conditional expectation of the simpler" log likelihood func-

tion log p(x ,A)- As will be seen in section 7, for signal models in which p( ,4,) is an

exponential density this expectation operator does not significantly change the form of
I

the expression being maximized. In this case, if the classical" filtering problem is easy'

to solve, then each pass of this SIGMAP algorithm wII also be "easy' to solve.

5. MAP Simultaneous Parameter and Signal Estimation (PSMAP)

The simplest of the MAP problems to solve is PSMAP, in which we choose the

combination of signal and parameter values which are most likely given the known

information:

Ui,*- max logp( , ) (3.5.1)

As suggested by the interpretation of PSMAP as a degenerate form of MCEM, let us

estimate impulse signal and parameter densities qx (a)=(, -j) and q,(*)=(*-j) by

minimizing the first term of the cross-entropy expression in (2.7.17):

A = -f -o(E-)&(-) log p(&x,*) 
X4 

- log p(i ,j) (3.5.2)

4

_ _ ------ -
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Iteratively minimizing this modified cross-entropy expression with respect to qx and q,

is thus equivalent to simply maximizing the log likelihood function iogp(x,4) with

respect to each argument in turn:

PSMAP iterative algorithm:
Guess 2
For k=0,1, -- -

k+ l - max log p( ,k ) (3.5.3)

5k+1 - max log p(4 +1,i)

Each iteration decreases the modified cross entropy A, and increases the log ]ikeli-

hood logp(i ,$), thus "improving" the signal and parameter estimates. A Maximum

Likelihood version of this algorithm for solving the PSML problem in (2.8.2) looks

identical to this, except with the density p(x,*) replaced by p( l~).

The similarity between this algorithm and the classical" algorithms in (2.6.3) and

(2.6.8) is striking. In the PSMAP algorithm, each unknown is estimated as if the other

unknowns were equal to their latest estimated values. The algorithm then iterates to

improve the estimates. The PSMAP algorithm therefore requires exactly the same com-

putation on each pass as the "classical' estimation algorithms. If the latter is easy to

solve, then PSMAP will be just as easy.

6. Comparison of the Algorithms

The chief merit of all four algorithms presented above is that they reduce the com-

putation involved in estimating the unknown signal and parameters to a form similar to

the classical estimation case, in which only one of the unknowns must be estimated at a

time. Table 3.1 summarizes the Bayesian version of the four iterative algorithms we

---



W)

,:EI"
30

-ttSuL"c~
E-

~n
ml

¢
*_;1

L~

0

Q

C

-

0C_

3

-

I
t

L

5
3

r 

+

0

it

0

t,,

-

Q.m
0

Ci

I'd

ccr
tica

0

0
4

_--

:11*

11

4V

t5

IK

+

, 

t_
v

. IrXbC
It5-

_h
,t

m
0·I

- I 

cr

1 4s
_ X

bo0
.-

C

<Gj

4-

w

p-O

i
il

4

4
O

11

-

0e
'4I-CL.L

+

0X.9V
co 

rz -

IB0
0C

_t_

-a

tW

4A

C

4cii
V.g

..

CI

0

E.4

1
1-1

-

11

IIV.Qc11

.mS04

4

98

I i
II



9 99

have discussed,-in a convenient form for comparison.

Note the similarity in structure of all four algoritiuns. The Minimum Cross-

Entropy Method treats the signal and parameter unknowns symmetrically, and tries to

adjust its density estimates to match the given model density over the entire domain

X x¢. This symmetry and the attention to the tails bf the densities as well as the peaks

is similar to the 'optimal' MMSE method. PARMAP is asymmetric, integrating over

all signals in X, but then maximizing over the parameters. SIGMAP is asymmetric in

the opposite way, integrating over the entire parameter space but maximizing over the

signal space. PSMAP treats the signal and parameters symmetrically, but it completely

ignores the shape of the model density, ooking only for the peak. The cross-entropy

interpretations of the MAP methods and the resulting iterative algorithms reflect these

inherent properties of the estimation methods MCEM alternates between averaging

over the signal and averaging over the parameters, treating both equally and using the

tails of the densities to improve its estimates. P RMAP iteratively averages over the

signal, but maximizes over the parameter, space; this is a direct result of using an

impulse function to model the parameter density. SIGMAP does the opposite, itera-

tively averaging over the parameters and maximizing over the signal. PSMAP treats

both unknowns symmetrically, maximizing over the signal and then over the parame-

tzrs, and completely ignoring any shape information.

Despite these differences, however, the forms of the four algorithms are quite

similar, alternating between a signal estimation step and a parameter estimation step.

Every iteration decreases the appropriate cross-entropy function and increases the

appropriate likelihood function. In the remainder of this thesis we will apply these four

algorithms to a variety of signa' and parameter estimation problems, and in the process

I
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will discover numerous properties of these estimation methods. To simplify our conclu-

sions somewhat, we will usually find that MCEM is computationally the most difficult,

but also generally comes closest to the MMSEJ estimates. PSM AP is the simplest, since

it does no averaging, but it generally gives the worst estimates. For stable and station-

ary models in which we are estimating a set of structural parameters k and a signal , 

from noisy observations, we win generally find that MCEM and PARMAP give asymp-

totically identical results as the observation interval N--. Both will give asymptotically

consistent and efficient parameter estimates, and their signal estimates will be asymptot-

icany identical to the classical signal estimates generated using the correct parameter

values. SIGMAP and PSMAP, on the other hand, will give asymptotically identical,

but heavily biased parameter estimates.

7. Exponential Family of Densities

A very important class of problems for which all our iterative algorithms take a

particularly elegant form, is the case when the model density p( ,) forms an exponen-

tial family of densities:

p(X, 4) = h (h)g () exp ( wi( (D)Z() (3.7.1)

Examples of densities which can be put rmr-itts: orm include binomial, negative bino-

mial, multinomial, Poisson, Normal, Gamma and Beta densities. Distributions which

do not fit this form include Cauchy distributions, or any problem in which the space of

feasible signal values depends on the parameters. The exponential class of densities has

been very carefully studied because of its close connection to the existence of sufficient

statistics (for an extensive discussion of these densities, cf. Lehman [10], or Ferguson

[11].) Suppose we are given a sample of independently generated signal values

I
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X . ... , each with probability p(xi 1i~). If this density has the form (3.7.1), then:

T = (r., . )= ( E l(/ . tr(X-j (3.7.2)
=1 =1

is a sufficient statistic for estimating the parameters, as may be seen from the following

factorization:

P(l - - ) = 1-i P(j lo ) (3 .7.3)
J= 

Thus the relative likelihood of one parameter vclu, a, vesus another, 2, given this

observation sample, is solely a function of T:

log P( . .. , ) u (izl) ri( ) T. (3.7.4)

In effect, the values T 1 . . , T summarize all the relevant information in the sample

,l, . , for estimating the parameters. Most importanty, a converse of this result

also holds. If a density p(,: !j) has the property that there exists a sufficient statistic

T =(T1, .. , T,) of fixed dimension r, whatever the size of the sample drawn from the

distribution, and if the set on which p(x i) is zero does not depend on i, and if certain

mild regularity conditions are satisfied, then the distribution forms an exponential fam-

ily [12]. A variety of other interesting properties of exponential densities can be

derived, but these are all we need for the moment.

7.1. Estimation With an Exponential Class of Densities

Note that even if p(x ,) forms an exponential family of densities, calculating the

PARMAP or SIGMAP marginal densities p(X, ) or p(,K ) can be quite difficult.

Surprisingly, however, all four of our iterative algorithms take a remarkably elegant

_ �______
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form when p(x ,!) is an exponential density. For example, it is easy to show by substi-

tution tlat the iterative MCEM algorithm generates density estimates of the form:

qX ,() c1 g () exp I r n(h)ti() (3.7.5)

where: ir() E 7i Tri() ( di =

and:

1 h (!) exp ri (6)ti( ) 1 (3.7.6)

where: ti() Ex[ti(r) I f, ] +

and where cl and c,,, are normalization constants. The signal and parameter den-

sity estimates 4x,, 4t4, are thus also exponential densities of a form similar to p(x ,),

but with the functions wr (4k) and ti () respectively replaced by their conditional expec-

tations. The MCEM algorithm thus simply alternates between calculating the r condi-

tional expectations of the jrri(4) functions, and calculating the r conditional expectations

of the ti(x) functions, iterating back and forth until these estimated values and the

corresponding densities converge.

PARMAP, SIGMAP, and PSMAP closely resemble MCEM, except that one or

both of the estimated densities are constrained to be impulse functions. The derivation

of these algorithms is thus quite similar to that of MCEM, and so we simply summarize

the results in table 3.2. The chief difference between these algorithms and MCEM is

that one or both sets of conditional expectation calculations are replaced by a simpler

maximization step. PARMAP, for example, starts by forming the signal density esti-

mate uSing values of vi(4). (MCEM would have used the conditional expectation
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ri,().) The next parameter estimate is then calculated by maximizing a function

involving the r conditional expectations ti(xI). SIGMAP is similar, except that we cal-

culate the r conditional expectations of '- i (s) and then perform a maximization to find

a+k. PSMAP simply alternates between two maximization steps.

In most of the examples considered in this thesis, the probability densities are not

only exponential, but also the terms ri(!) and ti() are low order polynomials in the

components of and . All four algorithms then need only calculate low order

moments of or x, and/or maximize low order polynomials in X or A&. This symmetry

and computational simplicity is rather remarkable.

7.2. Natural Parameterization of Exponential Densities

Because of the fundamental role of the functions n(c) and t() in the construction

of sufficient statistics for exponential families of densities, these functions are con-

sidered to be the "natural" parameters for the family. Our algorithms take a particu-

larly elegant form whenever the probability density p(x,•) can be transformed into its

"natural parameter" form:

p(aX,*) = g ()h(A)exp (TD ) (3.7.7)

for some matrix D. Now the density estimates generated by our four algorithms have

the simple form:

4
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MCEM:

PARMAP:

SIGMAP:

PSMAP:

4 x* ,(X)

where these values of 4 and _ are iteratively calculated by solving:

MCEM:

PARMAP:

SIGMAP:

PSMAP:

Signal Estimate Output Estimate

+--Ex i~j[x] Ii - m~p.a] +l)

4+1 -max Pi( I ) +1 = Er[ 4l+lI]
X.X

,I. , * . . . . . . . . . . . . ..

4 + -maapX( 4 I)
X C'

zk+1 mn PaxpV(A 4+ 1 )
Ib1 I

MCEM alternates between calculating the conditional mean of the signal given the

parameters, and calculating the conditional mean of the parameters given the signal.

PARMAP also uses the mean of the signal, but chooses the mode of the conditional

parameter density for its parameter estimate. SIGMAP does the opposite, using the

mean of the conditional parameter density and the mode of the conditional signal den-

sity. PSMAP uses the modes of both densities. Intuitively, since using the means of

densities tends to be a better choice on average than using the peaks, we might expect

MCEM to give the best estimates. On the other hand, it is easier to maximize a density

than to compute its mean, and thus we would expect the MAP methods to be simpler.

I

b
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D

D
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Another feature of this natural" form is that the MCEM cross-entropy has a sim-

ple interpretation:

(4x, 4,)= log p X , ) (3.7.8)

Thus in this case the cross-entropy takes the form of a combination of the PARMAP,

SIGMAP and PSMAP likelihood functions.

8. Extensions to More General Signal Models

As pointed out in chapter 2, when the signal model has several signal outputs and

several sets of parameters, then the number of alternative estimation criteria rises

dramatically. Consider, for example, the two output, two parameter problem of

chapter 2, section 9. We start with the fully separable MCEM approach in which w:

must solve:

4 - min H(q,,q,,q,q) (3.8.1)

Starting with any set of initial probability densities, we can iteratively minimize this

cross entropy expression with respect to each unknown density in turn, in any order,

iterating back and forth until the estimates converge. Minimizing with respect to q,

for example, gives:

log = fff ~ log yd d + 6n
· , (Y )q*. (q*. ()

I, l (og. ( )q, ), + constant

Minimizing with respect to each of the other unknown densities gives similar formulas.

Hybrid MAP/MCEM estimation algorithms can be devised by forcing one or more of

the unknown densities to be impulse functions. Yet more estimation algorithms result

when unknowns are grouped and jointly estimated. All these algorithms will give
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different estimates, and will have differing properties and computational difficulties.

Nevertheless, all can be solved by the same simple trick of minimizing H with respect to

each unknown density in turn.

9. Convergence

The four basic MAP and MCEM algorithms we have discussed were all derived by

constructing a cross-entropy function H(qx,qp) of two density functions q and q,

and iteratively minimizing H with respect to each density in turn. Each iteration strictly

decreases the cross-entropy H , and if H is bounded below, the cross-entropy of the esti-

mate H (X ,flt) must converge monotonically downward to some lower limit HR. as

k-r. All the MAP algorithms also increase the corresponding likelihood function on

each iteration, and if the likelihood function is bounded above, then its value must con-

verge monotonically from below as k-c. Unfortunately, neither of these statements

necessarily imply that the estimated densities themselves converge to any particular

values, or that the himiting densities represent global or even local minima of the cross-

entropy function. In some applications, the densities may in fact not converge at all,

and the point estimates and could diverge to tc, or could conceivably wander

around in circles' without converging to any particular value. The fact that the set of

densities over which we minimize H is infinite dimensional further complicates the

problem.

In this section we will derive sufficient conditions to guarantee that the estimates

generated by our iterative algorithms will converge to the set of local minima and criti-

cal points of the cross-entropy (and also the local maxima and critical points of the

likelihood fui.ction.) We assume throughout that the unknowns and i are finite

dimensional. The MAP problems are all treated by converting the problem into a

__
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minimization over a finite dimensional domain. The MCEM convergence proof is

quite a bit more complicated, and our present versions contain some technical assump-

rions which are probably unnecessary. Because the arguments are rather detailed, the

casual reader is encouraged to skip this section.

9.1. General Convergence Theorems

We will first consider the problem of minimizing a function F(!t ; ) over a finite

dimensional domain g(A, d(Eb. To simplify the presentation, proofs of all the follow- 4

ing theorems are contained in Appendix B.

Assume that the function F (a;a) is continuous for all E( A, EbD and that A and <

have norms la l and Ilfil1. We will calculate the minimum of F by starting at some

initial estimate (o)(Ax(4 and then iteratively minimiing F with respect to each

variable in turn:

For k=0,1, - -

t* +1 - min F(g ; ) (3.9.1)
ixEA

i +1 - min F(_ +l ; )

We assume that each of these minimization problems has a finite solution, and in case

there are several solutions, we use some deterministic rule to choose one. Let us define

the set A,x 4) as the set of points satsfying:

A=x4b= { (I) |n E Ax4) and (3.9.2)

F( ;) =min F(; ) min F(;) ; i)
mEA )Q

A,,x4. is just the set of stationary points of the iteration; that is, if we started at an ini-

tial pair of estimates drawn from Ax4),, our iterative algorithm would not be able to

.

I



'109 -

improve on these estimates. If F(ct; J) has a finite global minimizer on A x , then this

global minimum (l) must dlearly be an element of A;x.), and thus A.,x4,, will be

non-empty. Otherwise, it is possible that Ax ,,( could be empty.

Let us define the sequence of points {(C4 ,C)} to be compact if it is contained

within a compact subset Ax4)CA xI of the domain, ( ,)(>ixz for all k. In partic-

ular, if A and (D are finite dimensional spaces and the sequence (t ,) remains

bounded, then the sequence {(k ,1 )} is compact. Appendix B then proves:

:eorem 3.9:. Assume that F (a) is continuous for all ( E,) (A x , and that the

domain Ax(Q is closed and non-empty. Suppose that the sequence of estimates

( ,k) generated by our iterative algorithm is compact. Then F(a~;) converges

monotonically downward to a lower limit, F( ; ) - F.. Also the sequence of

estimates (4 ,) must converge to the set A x4 in the sense that the distance

from (Gi, ) to the nearest point in Ax. goes to zero as k --- :

hm {+·- · ic· Il-zak + (3.9.3)

Furthermore, the value of F at any limit point (,) of the sequence ( 4,) must

be F( ; )=F. C

A useful corollary is the following. For the given initial estimate (o,o), let us define

the level set AOX
0o as the set of all values a, for which F (o;a) is less than F(io',):

AOx* 0
= {IJ (,)AxC( and F(x n;) F(o (3.9.4)

Then:

I
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Coroa ry 3.9. 1: If F is continuous on Ax4 and the level set A0oxo is compact,

then the sequence (k ,f, IT be compact and will converge to the set A,x1,,.

Proof: Since F(, 1 ;;+ l)<F(o ;) for all k, the sequence (4,4) is contained

within A0x Q and is thus compact. Applying Theorem 3.9.1 gives the result. C

The set Ax4> thus contains all limit points of the sequence of estimates (I ,i).

Note that if Ax4), contains several points, then this theorem does not necessarily

imply that the sequence (G,f) converges to any particular point in Ax4,; it is stil 

conceivable that the iteration could "skip around' the set Ax?,. As shown in figure

3.1, this set AxO. contains the global minimum of F (if it is finite). However, it

might also contain certain local minima, stationary points, or even certain local maxima

and points on sharp ridges.

I I I \

saddlepoint

Figure 3.1 - Sets A,x 4,

Requiring the function F (;) to have a continuous first derivative in and for al

ta(A, fiE eliminates the problem of ridges. With this restriction, Appendix B proves

that:

4

j"
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Theorem 3.922: In addition to the assumptions of theorem 3.9.1, suppose that

F (;) also has a continuous first derivative for all a, i(Ax. Then any point

(4,)(EA,,x4,, which is in the interior of the domain Ax4) must be a stationary

point of F( a;). If (,)(A,,x4),, is on the boundary of the original domain

Ax4, then the derivative of F is inwardly normal to the boundary at {(,t); in

other words for all sequentially tangent vectors bha and h of A and ·4 at !t and f

respectively:

x ST a , o (3.9.5)

aF(jT; B)T 

(see the discussion in chapter 2, section 10.1) °

Under these continuity and differentiability assumptions, therefore, the iteration is

guaranteed to converge to a set of stationary points or local minima of the function F.

This result can be strengthened considerably when the space Ax is convex and

the function F (t;a) is convex:

Theorem 3.93a: Assume that F (;a) is a continuously differentiable and convex

function on a convex, dosed and non-empty domain A x 4). If the sequence of esti-

mates (,f) is compact, then F (%;i) has at least one finite global minimizer,

and the sequence of estimates is guaranteed to converge to the closed and convex

set of global minimizers. (In fact, the set A,,x4x, is just the set of all global

minimizers of F.) If the level set Aox 0 is compact, convergence is

guaranteed. I
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Theorem 3.9.3b If Ax4 is finite dimensional and F is strictly convex, then if a

global minimum exists, it will be unique. In this case, the sequence of estimates

(64, 4) will be compact (and thus converge to the unique global minimum) if and

only if F has a finite global minimizer. C

Therem .3. Finally, if F is also uniformly convex, then it is guaranteed to

have a global minimizer on any closed domain Ax4 , and convergence to the glo-

bal minimum is guaranteed. 0

Note that all these theorems apply even if F (iki) itself is not convex, but there exists a

continuous monotonically increasing function g.RI-R 1 such that g (F (;)) is convex

and continuously differentiable. Finally, beware that extending these theorems to infin-

ite dimensional domains does not appear to be possible unless many more assumptions

are added.

9.2. Convergence of the PSMAP, PSML Algorithms

The application of these convergence theorems to the PSMAP algorithm is direct.

Rather than use the MCEM interpretation, we will use the simple interpretation of

PSMAP as maximizing the likelihood function logp(x4,) with respect to each variable

in turn. Then if the sequence (,_ ) is compact, and p(,4) is continuous over

X x'C), then theorem 3.9.1 guarantees that the parameter and signal estimates converge

to the set: - -

Xx,= = {(,(DI(i,| ) EX x) and p(, )= min p(x,) = in p(i,) }

In the Bayesian case, it is usually true that p(x4 )-O as 1x 11 - or l jl-" . Every level

set of p(,x ,) will then be bounded, the iterative sequence will be compact, and

-E
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convergence is assured. If p(,~) is continuously differentiable, then theorem 3.9.2

guarantees that each element (,I)(X=x4,= must be a critical point of p([,*), or else

if it is on the boundary of X xI) then the derivative of p(x ,) must be outwardly nor-

mal. In some applications we will consider, X x4) will be convex and p(x,6) will be

log concave on X xI). Theorem 3.9.3 then guarantees that if the sequence (I, 4) is

compact, then it will converge to the set of global maxima of p(x ,).

The conditions for convergence of PSML are similar to those of PSMAP, except

that we replace p(xr,m) everywhere above by p(x l1). Note that in this case, however,

there is no justification for assuming that p( Il)-O for all as ll, and thus the

level sets may not be bounded and PSML may diverge.

9.3. Convergence of the PARMAP, PARML Algorithms

Proving convergence of the PARMAP algorithm is slightly trickier. The key is to

use the cross-entropy interpretation of PARMAP, but to rephrase the minimization as

a finite dimensional problem. The PARMAP procedure iteratively minimizes the

cross-entropy H(qX,) over all signal probability densities qX and all impulse functions

q= 6(-i). Minimizing with respect to all possible signal densities, however, always

yields an estimate of the form x s, ()=Px l,(, It)- Exactly the same answer would

be found, therefore, if we restrict the signal density minimization to the finite dimen-

sional dass of densities of the form qX (x)=PX 1i4( |) for *(D. Let us define the new

cross-entropy expression:

/9 (~,g E) --- (x I ), ) (3.9.6)

= _ Ip l1g s !. d)
X Px (ro~ I*
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The PARMAP algorithm can now be written in the following form:

For k -0,1,---

f m+ - man /t ,) (3..7)

+ - ain +1)

Note that i4 +1 = i + We have thus reduced the problem to an iterative minimiation

over a finite dimensional domain. Assume that ( is closed and that the function

ii (,j) (and thus also the density p(X,t)) is continuous in k and *. Using the fact

that i l = +1, theorem 3.9.1 guarantees that if the sequence $ is compac, then it

converges to the set of limit points (i defined by:

(D. ={ {EI 0 and (,) = min Ri(L,)= min (, ) (3.9.8) 4

In the Bayesian case it is usually true that p(*)-4 as QI1-l. Since:

p(X ,>) < p(X !)p(6) 5 p() (3.9.9) 4

then it must also be true that p(X ,)-O as {- = . Every level set of p(X ,4) will then

be bounded, the iterative sequence will be compact, and convergence is guaranteed. If

p(X,J) and iH(*) are also continuously differentiable in A, , then Appendix B

applies theorem 3.9.2 to show that each point E (I) is either a critical point of p(X ,-)

or else if i is on the boundary of 4), then the derivative of p(X ,) at must be out-

wardly normal:

lbgp(X ,Ž) T /, Z O (3.9.10)

for all sequentially tangent vectors h, of 4) at t. Thus .E is either a stationary point at

which 8 log p(X,) = 0, or else it is a local maximum on the boundary of (4).

Theorem 3.9.3 can also be applied to the PARMAP algorithm. Suppose that X
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and 4( are convex, and that p(x ,6) is log concave and differentiable. Prekopa [13] has

proven that the marginal density p(X,h) will then also be log concave (see Appendix

E). In this case, the limit set (t), can only contain the global maxima of p(X ,), and

thus i the estimates remain bounded, they will converge to the set of global maxima of

p(X ,4b).

Finally, Appendix B proves that the difference between successive PARMAP

model estimates tends to zero, in the sense that for any measurable set X CX:

lim (p(X I a)-P(X 14 + ) 0 (3.9.11)

This usually, though not always, implies that the difference between successive parame-

ter estimates il + = (the step size") tends to zero.

9.4. Convergence of the SIGMAP Algorithm

The convergence properties for SIGMAP are identical to those of PARMAP,

except that the roles of x and i are reversed.

9.5. Convergence of the MCEM Algorithm

Proving convergence of the iterative MCEM algorithm is greatly complicated by

the fact that the domain of the minimization problem is the infinite dimensional space

of probability densities. Much of the familiar intuition concerning optimization on fin-

ite dimensional domains does not apply to problems such as this. The most general

proofs of convergence we have at present unfortunately require some technical assump-

tions in the middle concerning the rate of oscillation of the estimated densities and 'he

behavior of their tails, which are difficult to verify in practice. We therefore present

three separate convergence analyses for MCEM. The first requires minimal assump-

tions, but proves the existence of a limiting measure with lower cross-entropy than any
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of the estimates. Unfortunately, this proof does not show that the limiting measure is a

stationary point of the algorithm. The second proof considers the case when the con-

straint sets have a finite number of elements, and proves convergence to the set of sta-

tionary points of the algorithm and critical points of the cross-entropy. The third proof

analyzes the case of exponential families of densities and proves convergence to a sta-

tionary point of the algorithm provided certain boundedness conditions hold. Proofs

can be ound in Appendix B.

9.5.1. MCEM - General Convergence Proof

Let us first define some notation. Let QX O, Qy() and P() be the measures associ-

ated with q (x), q4 ,(I) and p(x,4):

Qx(X) = f q()x

= f qu,() d (3.9.12)

P(X A¢)-dff p(r ,s do d4

For technical reasons, it is easier to analyze the convergence behavior of the sequence

of measures xt, O, than to analyze the convergence of the sequence of densities qx ,

:,. It is therefore convenient to be able to define the cross-entropy of the separable

measure Q(X)Q,,(j)) without using any reference to density functions. We take

theorem 2.4.5 as our definition of the cross-entropy of the measures Qx, Q, P:

(Qox,Q) - sup Qx (X)Q 4() log (3.9.13)

where the supremum is taken over all finite partitions P of the space X x q) (for a care-
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ful development of cross-entropy from a measure-theoretic point of view, see Pinsker

[14].) When the measures QX, Q have Radon-Nikodyn derivatives qx, q, then

theorem 2.4.5 guarantees that this definition is identical to our previous definition.

The advantage of (3.9.13) is that it defines the cross-entropy even for measures which

do not have corresponding densities. We can now state our most general MCEM con-

vergence theorem in the following form:

Theorem 3.9.4 Assume that X and 4) are closed and measurable sets, and that

p(,) is a proper, strictly positive and piecewise continuous probability density,

so that p(x,)>O for all x X and *(> and O<p(X,~))<i. Start with strictly

positive initial density estimates 4 x.0(x)> 0 and ,40o()>0 for which

H (4tXo,:O c)<a. Then the sequence of density estimates generated by the iterative

MCEM algorithm has the following properties:

a) The densities cq A(x), 4(4) are all well defined.

b) H(4,(t ) converges monotonically strictly downward to a finite mit H..

The normalization constants c, and c4,, also converge monotonically strictly

upward to the finite limit e .

c) Ox,(X)>O and 0A, (4) >0 for all measurable subsets X, 4 of X, ).

d) The difference between successive measure estimates tends to zero in the sense

that:

mX lx,,,4,(X) () - (
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where X and d( are any measurable subsets of X and (I).

e) Let 'I be a measurable subset of X x (). Then the measure assigned by the

separable densities to "P is bounded above by:

f §X,((,3 dxd, L
*

H (+O,to) log p(X ,Y) + log2

-bg J p(E,) dxd
I,

This implies that the densities qX (E) and q ( 0) are stochastically bounded;

that is, for any 0<5<1, there exists a radius T such that:

J
x

r

qxk~x-)4 : : 1-&

4

I

for all k

I

J i 4t( )d _ -b

I

f) There exists at least one subsequence of measures {X,,q , } C {Xi,0<(,}

which converges to a proper limit measure QX, Q:

I

ox, (X) = Q(x) (3.9.14)

E.m 6 ( = ,(64)l~= 4,,'

for any measurable subsets X, (I of X, (.

g) The cross-entropy of this limit measure QX, Q>, is less than the limit of the

cross-entropies:

H(Ox,o,) im H(O5,4) = H.
kt-.= x 

4

4
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H(Qx,Q4,) < lm inf H ( Q, ) for all Q,

H(Qx,Q) < lm inf H (Qx,C4) for all Q

h) The limit measure QX, Q4 satisfies the same upper bound as in property (e):

H (OxoO4o) + logp(X,() + log2

log P(X A)

Statement a) implies that the iteration always produces a valid probability density esti-

mate. Statement b) was proven in section 2 and implies that every density estimate is

better than the last in the sense that the cross-entropy decreases with each iteration.

Statement c) says that all density estimates are strictly positive. Statement d) says that

the difference between successive density estimates (the step' size) goes to zero as k -.

Statement e) says thati he density estimates must not put significant probability at

values where the original model density p(:,4A) would not put significant probability.

In particular, the estimated measures can not become impulse-like, and they can't put

significant probability at infinite values of , or i; this is a boundedness property similar

to that we had to assume in our proofs of PSMAP, PARMAP and SIGMAP. State-

ment f) is a restatement of the Helly Selection Theorem ( [15) volume 2, or [16D, which

says that every stochastically bounded sequence of measures must have at least one

limit, and that limit must be a proper measure. Statement g) is a consequence of the

convexity of H, and says that the cross-entropy of any limiting measure QX, Q4 must

be ks than the limit of the cross-entropies of the timates A, lp . Statement h)

follows because this upper bound must hold for any measure Qx, Q, whose cross-

I
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entropy is less than H ('I'pe)

9.5.2. MCEM - Convergence for Finite Constraint Sets

The problem with theorem 3.9.4 is that it is not sufficient to show that QX' Qa is

actually a stationary point of the algorithm and a critical point of the cross-entropy

function. In fact, it doesn't even prove that this limiting measure corresponds to a den-

sity at all. This difficulty is caused by working with unbounded constraint spaces and

continuous probability densities. Let us therefore consider a much simpler finite 0

dimensional situation in which much stronger convergence results can be stated. Sup-

pose that the constraint space X actually contains only N distinct points {} and the

parameter space (D contains only M distinct points {,}. (N and M may be huge, but

they must be finite.) Also suppose that the original model density is atomic, assigning

a non-zero probability to each pair ( Aj): 4

0 < P(4 , I ) I for all i,j (3.9.15)
N M

E p(.P4)- t
i=lj =1 

The separable densities qx and q will also have to be atomic (otherwise the cross-

entropy would be infinite).

0 I i(,) -1 0 5 1c(j) ~ 1
N M (3.9.16)

= =1 J =1

We can now view each density 4x or 4,q as a finite dimensional vector, each of whose

components is the probability (x(i) or d4,(, j ) of the corresponding point in the pro-

bability spaces. Let us use an 1t norm on the space of the probability density vectors":

lIl -- 2 1 -l (Z.) (3.9.17)

4
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J=

Because of the constraints (3.9.16), IQx 1 = 144,1I = 1 for all qx' q, and the finite

dimensional set of all such probability density vectors is dosed and bounded.

The cross-entropy function in this case will be a simple summation:

H (qx ,q4) = E q( )q(* ) log X (3.9.18)

This cross-entropy function is analytic at all densities which are strictly positive,

X(x.,)>0 and 4<,(ij)>O for all i,j. Our iterative MCEM algorithm minimizes this

cross-entropy with respect to each density in turn, giving estimates cx, ( ), 4(4)

Appendix B then proves:

Theorem 3.9.5 Let p(x ,), qX (x), q() be atomic densities on finite sets X, .

Assume that p(x, ) is strictly positive, with p(1 /, j) >E > 0 for all i,j. Then the

sequence of density estimates generated by our iterative MCEM algorithm has the

following properties:

a) The estimates 4ix, , are all well defined. The cross-entropy H(4q,X4,)

converges monotonically strictly downward to a finite limit H..

p b) The density estimates are all strictly positive:

q(X) E for all i

4q,60 ( J1IE for a j

c) The difference between successive density estimates (the tep size') goes to

zero in the sense that:

as k-o- for all i ,j

.
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d) There exists at least one convergent subsequence qix, q,i with limiting den-

sity qX, q4) such that:

for all i ,j

I

hm q 4 , (!j) = 4(4j)

e) All such limiting densities are strictly positive:
t

X (x) -

_ (k ) 1E
M

for all i

for all j

f) All such limiting densities must be stationary points of the algorithm:

= min H (qX ,q.) = min H(xq,)
qI,

g) Form the Lagrangian for the problem of minimizing H (qX,qt) subject to

constraints (3.9.16):

L,.(qx ,qp ) = (qx ,q%) X -1 + AI qx(*j )(,•q -1

Then for appropriate values of the multipliers X, X, the limit qX, q is a

ritical point of L,,:

=0 and

Thus if the estimation problem involves a finite number of signal and parameter values,

then convergence of the MCEM algorithm to the set of critical points of the cross-

6

U (q4X 14)

4

4

4

I

4

4

4

aL., 4 (x 4zit at, ,*(4X qq')

0

lim 4Xi, = 4 s (i)
Al -= 

IV
7, qX (-,r)
1=1
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entropy is guaranteed. We conjecture that this conclusion also holds for the more gen-

eral case of continuous densities and unbounded constraint sets considered in theorem

3.9.4, but we have not been able to prove this.

Note that under the assumptions of this theorem, our MAP algorithms would con-

verge in a finite number of steps. (This is because a finite number of steps will test

every possible parameter or signal value.)

9.5.3. Exponential Densities

If p(x ,!) forms an exponential class of densities, then yet another type of conver-

gence proof can be given for MCEM. First of all, we assume that p(x ,*) has the form

given in (3.7.1). Substituting into our cross-entropy expression, it is easy to see that all

the density estimates qx, q4, generated by our iterative MCEM algorithm must have

the form:

qix .0z)- *g (a) aCit() (3.9.19)

- h()exp rs fi

where the normalization constants c, and c are given by:

c = (z)ex ai tit(x) (3.9.20)

C, = f h(*)ex[p ii (6) d

Lehmann 110] proves the following:

Lemma 3.9.6.1 Let Aa and AP be the sets of parameters and for which the

normalization constraints c and c are finite. Then A and AP are convex sets,

and c, and c are analytic and convex functions of a and g in the interior of the

I

________1_1�___�_�_______
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'natural" parameter sets Aa and AP. Furthermore:

We define

1°gcx = Ex (X') itx, ]

82log c[

ar s2log c
df ¢ [( ) Iq ] (3.9.21)

a2log c ov[-

R, and R, as the covariance matrices above for convenience in later discus-

sions.

Because all the estimates 4iX,, q,I generated by the MCEM algorithm have the

form given in (3.9.19), restricting the minimization to this class of densities will not

change the estimates generated, nor the solution to which they converge. With this res-

triction, the densities qX,., ,,, will depend only on the parameters -c, a and we can

view the cross-entropy as solely a function of these finite dimensional vectors and :

H(qA) H(qX , l,)

Appendix B proves:

Lemma 3.9.6.2 The cross-entropy H (,) is an analytic function of %, in the

interior of the natural sets A. and AP.

Now we can rephrase our iterative MCEM algorithm as minimizng the cross-entropy

H (a,f) over all s and fj in the natural parameter spaces A., AP:

a +1 - min (%£)

+1 - min H (1 +)
KAOx

(3.9.22)

0

0

t

I

I

I

4

or:
4

4
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.Qk +1 E4 D ) | D', ] (3.9.23)

Appendix B proves:

h"oremn3.9.6 Let k, ~ be the iterative sequence of estimates generated by

minimizing the cross-entropy H(c,1). Suppose the estimates are not only

bounded, but are also bounded away from the natural parameter set boundaries,

so that there exists a radius e>O such that all values of t, [ within distance of

any jk, X are in the interior of A, A s. Then the sequence (u ,%) converges to

the set A,, xA, = of stationary points of the algorithm:

AX tA, ( ) H (ia)= min H(,)= in H(_,) }

in the sense that the minimum distance from X, ~ to this set tends to zero:

lim Int _ 2+ _ 2 
kt- (&Ex)(A.,%XAAf

Every limit point (a,~) of the iteration must also be a critical point of the cross-

entropy:

an( ) 0 and aff (, ) = o
h01 at

All limit points must correspond to the same cross-entropy,

H (j,,) =imH (I ,). Finally, if we define:

F(a - min (&8)

G (a) - minH (a))
a

I



then at each limit point (,k):

aF () = 0 and 0
aua

As in our previous proofs, convergence is only guaranteed to a set of stationary points,

and not to any point in pSticular or necessafily to a global minimizer. The only unfor-

tunate part of this theoiare is that it appears necessary to assume that the estimates A,

L not only remain bounded but also remain bounded away from the natural parame-

ter set boundary.

To decide whether or not a mit point ()i,a) of the iteration is a local minimizer of

the cross-entropy, rather than just a saddle point or local maximizer, we can calculate

the second derivative of H (,,) at (,) and check whether or not it is positive defin-

ite. It is convenient to transform first to variables x3, defined as the expected values of

L(X) and i(•) given the densities qx, and i:

(in) EX ()Lq4.X. (3.9.24)

()-- E. [() I' 

The Jacobian of the parameter transformation is:

_a( _ - (R1O 0R (3.9.25)

where R, and R are the covariances of (x) and r() in (3.9.21). Theorem 3.9.4

guarantees that the cross-entropy density estimates remain non-impulse-like. Thus,

since the constraint spaces are measurable, the covariance matrices must be strictly posi-

tive definite, and the transformation from (,l) to (,lQ) is invertible. With this

transformation, we can view the cross-entropy as a function of and I,

H (,0) H(H (a,). Minimizing H over , is exactly equivalent to minimiing over , f

a- 126 -
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or over the densities qX, q directly. Because of (3.9.23), we will get estimates

= -I1 and j =. This conveniently implies that the limit of ( w ,) will be identi-

cal to the limit of (4,f3.

The second derivative of H (,g) is easily computed:

_a_____l _I,_)2 = _ - R; -(3.9.26)

_)2 t-I RaIO

If this second derivative is positive definite at the limit (v, = (A), then the limit

point must be a local minimum of H (T,), and the corresponding densities 4X, 4t, must

also be a local minimum. Thus a sufficient condition for the limit to be a loal

minimum is that:

p-1 > and R," > R, (3.9.27)

By using this second derivative, Appendix E proves the following useful result:

Theore 3.9.7 Suppose the model density p(E ,*) is in natural exponential form:

p(: ,*) = g( )h (*)exp(T) (3.9.28)

and that p( ,) is log concave. Then the cross-entropy H(i,;) is a convex func-

tion of the transformed vectors ,p and any limit point of the MCEM iteration

which is in the interior of the natural parameter space A xAp must be a global

optimizing solution.

10. Discussion of Convergence Theorems

These theorems prove that if the probability densities have compact level sets and

are continuously differentiable, then all three MAP algorithms converge to a set of esti-

mates where the likelihood function has zero slope, or else where the likelihood func-

tion has a local maximum on the boundary of the signal or parameter space. The

I
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MCEM algorithm also converges to a set of limiting measures whose cross-entropy is

lower than the cross-entropy of any of the estimates. If we add additional assumptions,

such as requiring the density to be an exponential class and require the estimates to

remain bounded, then the limiting densities can be shown to be stationary points of the

algorithm and critical points of the cross-entropy. All these algorithms thus act some-

thing like iterative steepest descent algorithms [4] converging to a set of local extrema

or critical points of the objective function. Unless the objective function is convex,

there is no guarantee that the convergent estimate is the global extremum. Further-

more, note that convergence is not guaranteed to a particular estimate, but only to a set

of estimates, and thus the estimates may actually 'wander around" the limit set and not

strictly converge.

In the Bayesian case, MCEM always yields stochastically bounded estimates, and

thus always has at least one limiting measure. Furthermore, in most Bayesian applica-

tions, the probability of extremely large values of or <k will be negligible, all level sets

will be bounded, and thus the MAP algorithms will also be guaranteed to converge.

The Maximum Likelihood version of the MCEM algorithm, however, is not

guaranteed to converge, since the a priori density p(4f) is implicitly assumed to be flat,

and thus p(x ,J) may not be a properly integrable density. Similarly, the level sets of

p(X A)d and p(x| lI) may not be bounded, and it is possible that the PARML and

PSML estimates could diverge to infinity. in any case, it should be remembered that

regardless of whether or not the convergence theorems apply, each pass of these algo-

rithms improves the value of the log likelihood and cross-entropy functions. Thus,

even though the estimates may not converge, in this sense each successive estimate is

'better' than the last.

4
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11. Geometric Rate of Convergence - Acceleration Techniques

In the following chapters, we will analyze a variety of applications and prove that,

in these examples, our iterative algorithms converge linearly at a rate that can be

approximately calculated in terms of the structure of the problem. In fact, it can be

shown heuristically that if F(j;a) is approximately quadratic near the minimum, then

each iteration of our algorithm defines a contraction mapping, and the sequence of esti-

mates (k ,a) will converge at a geometric rate. For simplicity, assume that a and 1

are scalars. Suppose that F (a ; 3) has a local minimum at (,) and that it can be

approximated as quadratic near (m):

F B + [ 2( P . (WIa 2 aO2 I (a

where: p l < 1

Let K,O and Kg() be the mappings from , to a and back again defined by our itera-

tion:

& = K,() - min F (a; 3) .11.2)

' - R(&' ) - min F (-' ;m )

Then it is easy to show that for any two scalars ' and A" near 1, and any two scalars

a' and a" near a that:

[2IK 1X( - JO-) I'1 s P '2 l law-Alpst l2 ](3.11.3)

F I K(' )-K(ad) 12 t Iae jactr 2

so that both the Ka and Kp operators are contraction mappings. (See Ortega and

Rhcinboldt 51] for an extensive discussion of contraction and non-expansion mappings.)

This immediately implies that the iteration must converge at a geometric rate; in fact:

__
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&k = - I P + (3.11.4)

a = 2& + 

Thus (&k , ) approaches (,) geometrically at rate p2 <1.

This rate of convergen e can be quite slow if the variables g and are highly

correlated (in the scalar case, if p=l). Figure 3.2 shows a typical convergence pattern 4

for the scalar case.

I

I

I

Figure 3.2 - Convergence Pattern of Iterative Algorithm

Note that the estimates zigzag back and forth in an attempt to reach the minimum of

F(a;a). If a and [I are highly correlated, then the elliptical contours of F ( ) will be

very narrow, and each zig and zag can be quite short.

The solution to this problem is to vary the iterative estimation procedure, either to

break away from the ridge in the probability density, or else to accelerate the conver-

gence rate along the ridge. This latter approach is quite feasible because, as is obvious

from figure 3.2, the estimates (+ +,+ ) and (t,f) are generally aligned in the

direction of the ridge. If we probe along this line, therefore, we ought to be able to

come very close to the global minimum. If the constraint sets are convex, then simple
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linear extrapolation of the estimates may greatly accelerate the convergence rate:

For k =0,1,--

Calculate k +1

54 - + + (1 -pOk (3.11.5)

Calculate X+1l

+1 - + (1-)

where p. is a relaxation parameter generally chosen within the range 0<i<2 (see, for

example, Dahlquist. [4] ) If the constraint sets are convex, values of , below 1 (under-

relaxation) will give new estimates inside the sets A and (b. On the other hand, values

of ;I greater than 1 (over-relaxation) can extrapolate a or outside the set A or 4. In

this latter case, we will have to project the extrapolated estimates back inside the set A

or (P.

A more effective approach, suggested by Hayes and Tom [17,18] is to adaptively

modify the relaxation parameter p4 in some optimal manner. Their idea can be applied

to our model as follows. Rather than use a fixed value of pu to extrapolate along the

line connecting ( +lk +z) and (, ), we will actually search along this line for a

minimum of F (a). Experimentation has shown that a particularly effective search

procedure is the following, suggested by Carol Espy:

Guess X o='o

For k=O,1,...

Xi +] -min F (g ;k)

i + - mi F ( t ;) (311.6)

('k+1,fi' +) - min F( t(a +I,f+4 + +1))(as ,) )

Note that this procedure searches along the line connecting the latest estimate with the

last pie-extrapolation estimate ( ,f). (Searching along the line connecting the latest

estimate with the last post-extrapolation estimate (;', 'k') does not seem to be as
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effective.) Of course, it will be necessary to restrict the range of the search values of .

so that the extrapolated values of a and a remain within the constraint sets A and 4.

Often a method such as this can accelerate convergence by a factor of 2 or 3.

Whether or not this line search is worth performing, therefore, depends on the relative

cost of the line search versus performing another pass or two of the iterative algorithm. ·

'Higher-order' acceleration methods could also be considered in which we search along

the q dimensional hyperplane formed from the last q 1 estimates of , 8:

aj, +1 max F (

q
where: ( ; fi)

i =0

Once again, in considering such methods we must consider the possible improvement in

convergence rate versus the cost of this hyperplane search. In some cases, a reasonable

compromise is to use a q order acceleration step after every q 1 steps of the usual

iteration.
4

In later chapters we will consider more sophisticated conjugate gradient methods

and PARTAN methods for accelerating the convergence of this algorithm. These

methods work best when F (;a) is quadratic, converging to the global minimum in a 4

finite number of steps. For further details, see chapter 5.

12. Summary

In this chapter, we have developed four iterative algorithms for MCEM, MAP and

ML parameter and signal estimation. A reduce the estimation problem to an iterative

search for a best separable density approximation to the original density p(x ,s), possi-

bly constraining one or more fitted densities to be impulse functions. The MCEM

4
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algorithm estimates a s;ignal density by averaging over all parameter values, and esti-

mates a parameter density by averaging over all signal values. PARMAP constrains the

parameter density to be an impulse function, and thus differs from MCEM in that it

only averages over signal values in an attempt to find the best parameter estimate.

SIGMAP is the exact opposite, averaging over all parameter values to estimate the sig-

nal, while PSMAP performs no averaging at all. Numerous variations of these basic

approaches can be duevsed when the signal model has multiple signals and parameter

sets. Convergence of the MAP algorithms to a local minimum or stationary point of

the cross-entropy function (and local maximum or stationary point of the likelihood

function) can be guaranteed when the probability densities are continuously differenti-

able and the estimates remain bounded. Existence of limit measures for the MCEM

algorithm is guaranteed under more general circumstances, though certain technical

assumptions must be added to show that these limits are critical points of the cross-

entropy function. If the level sets are convex and the densities can be transformed into

convex functions, then convergence of the MAP algorithms can be guaranteed to the

global minimum solution. We conjecture that a similar result applies for MCEM. The

convergence rate of all these algorithms is approximately linear, and adding line

searches or using other related techniques can often accelerate the convergence rate by a

factor of 2 or 3.



- 134 -

References

1. C. Radhakrishna Rao, Advanced Statistical Methods in Biometric Research, John
Wiley & Sons, New York (1952).

2. B.K. Kale, "On the Solution of the Likelihood Equation by Iteration Processes,"
Biometrika 48, pp.452-456 (1961).

3. B.K. Kale, "On the Solution of Likelihood Equations by Iteration Processes. The
Multiparametric Case," Biometrika 49, pp.479-486 (1962).

4. Germund Dahlquist and Ake Bjorck, Numerical Methods, Prentice-Hall, Engle-
wood Cliffs, N.J. (1974).

5. J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in
Several Variables, Academic Press, New York (1970).

6. G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control,
Holden-Day Inc., San Francisco (1976).

7. Bruce R. Musicus, An Iterative Technique for Maximum Likelihood Parameter Esti-
mation on Noisy Data, S.M. Thesis, M.I.T., Cambride, Mass. (Feb 1979).

8. Jae S. Lim and A. V. Oppenheim, "All-Pole Modeling of Degraded Speech,"
IEEE Trans. Acoust. Speech, Signal Proc. ASSP-26(3), pp.197-210 (June 1978). 4

9. H.O. Hartiey, "Maximum Likelihood Estimation from Incomplete Data,"
Biometrics 14, pp. 17 4-1 94 (June 1958).

10. E.L. Lehmann, Testing Statistical Hypotheses, John Wiley & Sons, New York
(1959).

11. Thomas S. Ferguson, Mathematical Statistics: A Decision Theoretic Approach,
Academic Press, New York (1967).

12. Koopman, "On Distributions Admitting a Sufficient Statistic," Trans. Am. Math.
Soc. 39, pp.399-409 (1936).

13. Andras Prdkopa, "On Logarithmic Concave Measures and Functions," (Szeged)
Acta Sci. Math 34, pp.335-343 (1973).

14. Pinsker, Information and Information Stability of Random Variables, Holden Day,
San Francisco (1964). translated by A. Feinstein

15. William Feller, An Introduction to Probability Theory and Its Applications, John
Wiley & Sons, New York (1966).

16. Patrick Billingsley, Convergence of Probability M±easures, John Wiley & Sons, New
York (1968).

17. Monson H. Hayes and Victor T. Tom, Adaptive Acceleration of Iterative Signal
Recontruction Algorithms, Technical Note 1980-28, Lincoln Laboratory M.I.T. (to
be published).

18. Monson H. Hayes mI., Signal Reconstruction from Phase or Magnitude, M.I.T.
PhD Thesis (June 1981).

4



- 135-

Chapter 4

Applications in Statistics

1. Introduction

In chapter 2 we presented four basic MCEM and MAP approaches for estimating

multiple signal and parameter unknowns given uncertain observations. In chapter 3 we

presented iterative algorithms for solving these approaches, and proved conditions

under which they converge. Though not necessarily unbiased like the Minimum Mean

Sauare Error estimates, these MCEM and MAP methods are usually straightforward to

compute, particularly for exponential fami'es of distributions, and they often have

good asymptotic properties. In the remainder of this thesis, we will consider a variety

of applications of these estimation algorithms. In this chapter we study a common

problem in statistics in which imperfect observations are used to estimate certain unk-

nown parameters of a probability distribution. W will concentrate particularly on the

problem of grouped, truncated, censored and/or quanfized observations, though the

basic approach can be generalized to an enormous variety of problems.

Suppose we are given the probability density p(g b') of a sample value . given the

parameter value A, where all that is known about is an a priori probability density

p(t) of its possible values. In order to estimate i, we draw N independent samples

x 1, .. , .N from the distrinbution; unfortunately, each measurement is inexact and only

indicates that the sample value is within a certain range, L; -x sUi. This might occur,

for example, if we measured the continuous valued sample with a coarse analog-to-

digitAl converter, or if for convenience in data collection, we simply divided the range

of sample values into a few subintervals (bins") and then counted how many samples

D
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fall in each bin.

If we had observed the sample values x l , .. ,xN directly (the classical parameter

estimation problem) then we could estimate the parameters by finding the mean or the

mode of the density p(x , - .. , XN). f the parameters were known (the classical sig-

nal estimation problem) then the actual sample values could have been estimated by

finding the mean or mode of the density p(xl, ... , xVN ) np(xi AI). Unfortunately,

in our problem neither the parameter values nor the sample values are known exactly.

Given that the sample xi is in the range X i =[Li,Ui], the most straightforward estima-

tion approach would be to first calculate the marginal density:

U,

p(,X .... N ) =p() H p(xi Id) d(4.1.1)
i=1 Lt

The parameters could then be estimated by calculating the mean (MMSE estimate) or

the mode (PARMAP estimate) of the conditional density:

p( !X 1, XN ) = P(? 1 1 . (4.1.2)

fp p i(JX , Xj)db

Needless to say, this may be quite complicated. Maximum Likelihood approaches are

also possible; for an exhaustive treatment of these, see Kuldorff. [1]

Fortunately, when p(.r !) forms an exponential family of densities, all four of our

iterative algorithms take a particularly simple form. In the next two sections we specifi-

cally consider the cases when p(x ].4) is Exponential or Gaussian. For these cases, all

four algorithms appear quite similar, iterating back and forth between an almost-

classical sample estimation step, and an almost-classical parameter estimation step.

Strong convergence results can be proven in all cases.
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2. Exponential Density

Suppose that p(x jdc) and p(4b) are both Exponential densities:

p(x 4) ( 4-x 2 1)x <~
p(xb) - ecI c(4.2.1)
p(<) =e O- eb<c x

(To simulate a Fisher estimation problem, we could choose E very close to zero, thus

making the a priori density nearly flat".)

2.1. Classical Estimates

If we were given the exact value of N independent random samples xl, .... x

drawn from this distribution, then the classical estimate of the parameter < would be

found by forming the a posteriori probability density:

(x(x ... ,) XN i4)P()

p(xl ... ,XN)

= KR() (Nexp( -, xi) (eoexp(-E ) ) (4.2.2)

and then calculating its mean or mode:

Classical Parameter Estimate:

1E[4<i~ ..... xy ]N (4.2.3a)

I1

or:

max P(+xt, * , xN) N (4.2.3b)

+ xi
i=1

Conversely, if the parameter value was known exactly, but the samples were not, then

we could estimate the samples by finding the mean or mode of the a posteriori density:

C'O aC~e for Li , xi SUi

PX(xi = oelse (4.2.4)
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where c is a normalization constant. Thus:

Classical Signal Estimate: ·

EX [i { =Li ' 4- (4.2.5a)

where: i = (Ui-Li )

or:

max p(x i( ) = Li (4.2.5b)
Li -s-i U;

In both these classical problems, the mean is usually a better estimate than the mode.

2.2. MMSE

If both the parameters are unknown and the sample data is only known to be

within certain ranges, the 'best" estimation procedure is to first calculate the marginal

densities:

U,

N 1p(X, ) = p( n P(Xi ', dxi=l L;

= exp(-E4O) ni [exp(-L4) - exp(-Ui,) ] (4.2.6)

and:

P( )= ..... N! 1 (4.2.7)

*0 + ];xi
f=1

With a large amount of effort, it is posm'ble to alulate the means of these densities

(the MMSE estimates.) Suppose there are M different bins [L,,Ui] for i =1, .... M

4
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and ni samples xi in each bin, ~ ni =N. Then the MMSE parameter estimate can be
i=1

written in the form:

E = [ rl (-1) ' (n - k)!ki! ] M k1

i=1

Unfortunately, this formula is not only messy to compute, but is also numerically ill-

behaved. A similar formula for the MMSE sample estimates can be given, but it

involves logarithms and is even messier and even worse behaved. Furthermore, if any

U =x then the expectation of xi happens to be infinite.

Fortunately, our four iterative MCEM and MAP algorithms take a much simpler

and more robust form in this problem. The reason is that the Exponential density

forms a family of exponential densities:

P(xI, '- Xi,) =[E ' ] exp 4 (--xi)]

h () exp [ 1T()t(X) ] (4.2.9)

where h (), ,r(4s) and t ) are defined in an obvious way.

2.3. MCEM

Substituting formula (4.2.9) into the MCEM algorithm of chapter 3 shows that the

estimated signal and parameter densities q and q, will be truncated Exponential and

Gamma densities respectively:

I
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N

qxAl(x , - -.x) - l X L(Xi) (4.2.10)

c., exp(- kxi) for L <xi<U

where: X, , (xi ) else

and:

¢t (+) C,,O exp F - (9 + ) ] (4.2.11)

where c,. and c are normalization constants, and and xi,._1 are conditional expec-

tations:

Pk = E* 1 i ]N (4.2.12)
0 o 

ia=1

and:

U'

-i 1 = E-Li j q tt f xi XA (xi) d

Li 1 

L= i 1 i (4.2.13)
[ l-e' J

In fact, from the last formulas, it is clear that explicitly calculating the densities qXk and

q, is unnecessary since we can directly calculate the conditional expectations 4bk and 

as follows:
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We start by guessing the initial sample values xi, 0 to be somewhere in the middle of

their known range. The parameter is then estimated exactly as if we were calculating its

mean value given the sample values x,t. (Compare with the classical estimate

(4.2.3a).) The samples are then reestimated exactly as if we were calculating their mean

values given the parameter value tk-. (Compare with the classical estimate (4.2.5a).)

The algorithm then iterates, using the improved sample estimates to improve the next

parameter estimate. Each iteration decreases the cross-entropy, and Appendix C

proves that the algorithm converges to the unique solution to the MCEM problem.

Furthermore, the convergence rate is geometric in the sense that:

\ for al k (4.2.14)
App +dix C ao hows th -1at:

Appendix C also shows that:

H(4x , =,) K - log [k P(Xk) (4.2.15)

where K is a constant. MCEM thus increases $ p(X ,) on each iteration, and

Appendix C shows that the limit point . will also be the global maximum of

4p(X ,4). This formula also implies that if PARMAP is asymptotically consistent with

MCEM Iterative Algorithm:

Guess i,o

For k=O,1, - -

N1

i=l

I 5ie -Si
-ii,k + = i + 1 [ 

$k +1 I-eC -6

where: i = k +l(Ui -Li)
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p(X ,4) approaching an impulse at the true value of 4 as N-, then MCEM will also

be asymptotically consistent.

2.4. PARNIAP

The PARMAP algorithm is virtually identical t the MCEM algorithm except that

we constrain the parameter density to be an impulse function 8(4-)). The resulting

sample density estimate will have the same form as in the MCEM algorithm:

N

qt, ( .....X ) = fil qX, A(x)

i=l

ciexp(-kxi )
where: qx (xi ) = c 0

where the parameter value 4 ,t is determined by:

4
(4.2.16)

for Li x i Ui

else

(4.2.17)k -max 4S exp -[i 2 i, -1
i=1

where: - = EX x 1i tX alg it( ) ]
Solving (4.2.17) gives the algorithm:

PARMAP thus iterates between calculating the mode of the parameter value as if the

sample values were actually xi,. (compare with (4.2.3b)) and then calculating the condi-

I

I

E

4

4

PARMAP Iterative Algorithm:

Guess xi
For k=0,1, - -

N
k +1 N _

E0 + i x
i-1

ii~,+l = Li + I1- i 1
w te l 1-e 

where: i = ,l(Ui -Li)

i
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tional mean of the sample value xi, +1 as if the parameter value were actually k- . Note

that, as might be expected from the relationship in (4.2.15), the only difference

between MCEM and PARMAP is that the formula for $k *1 in PARMAP has a factor

of N, while the MCEM formula has a factor of N-1. Each iteration increases the

likelihood function logp(X1, ... X,<XN,) and Appendix C proves that as long as at

least one U, is finite, then the iteration converges to the unique solution to the PAR-

MAP problem. Furthermore, the convergence rate is roughly linear, satisfying:

2</ ^ 1 - al i c * t _ l(4.2.18)
'ki k 4k 4 k-1

If al the Ui were infinite, then the PARMAP solution would be 4=0, and the parame-

ter estimates would converge to this estimate at a sublinear rate (see Appendix C).

2.5. SIGMAP

In the SIGMAP algorithm, we constrain the signal density to be an impulse func-

tion qX,(x . . ..x ) = (x 1 -. 1 ) - (X, -s ). The parameter density has the same

form as in the MCEM algorithm:

dl o ( ~b) = c c exp - o + ikt1 - (4.2.19)

where the signal estimate iik is found by solving:

-iik + Ia - max .xp (-dkXs ) (4.2.20)

where: <k = ES4 I t
Notice, however, that the solution to (4.2.20) wie always be ij, +1 =L,. and thus the

SIGMAP problem reduces to a single pass:

I
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The mode of the signal is calculated as if the parameter value were known - this always

gives the same estimate Li. Then the mean of the parameters is calculated as if the sig-

nal value were known to be ii. (Compare with (4.2.5b) and (4.2.3a).) No iteration is

ecsSay-. Note, ho-wever, that th siP . . iiiicanuly underestimates the

correct signal value, and thus we would expect the SIGMAP parameter estimate to be

strongly biased toward large values of 4 . Finally, note that this solution could have

been derived directly by recognizing that the SIGMAP marginal density:

p( cp) = N ! (4.2.21)

is maximized at xi =Li.

2.6. PSMAP

The PSMAP algorithm alternates between a maximization over the signal space

and a maximization over the parameter space. Substituting (4.2.9) into the PSMAP

algorithm gives:

FX, +- max cx, exp (-xi ) (4.2.22a)

+ -maxc exp -4 9 4 -ii +l} (4.2.22b)

The solution for i,-_ 1, however, is always i, .l=L-. Thus no iteration is necessary,

and the solution to PSMAP will be:

SIGMAP Algorithm:

i i = Li

-= N-1

=+ ii
i=1
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The signal estimate is calculated as if we were finding its mode given the parameter

value $. The parameter value is then reestimated as if we were finding its mode given

the signal value ii. Note that the signal estimate ii significantly underestimate- he

actual value of xi, and thus the parameter estimate will be strongly biased toward large

values of (,.

2.7. Maximum Likelihood Applications

In some cases, there is no justification for treating the parameter t as a Bayesian

random variable. This difficulty can be handled by treating as a Fisher non-random

constant, as in chapter 2 section 8, and deriving the PARML and PSML algorithms for

this example. Fortunately, in this example, an exactly equivalent but simpler approach

would be to make the a priori density flat" by choosing ~=0. No other changes are

necessary to the iterative algorithms themselves, although the convergence results must

be modified slightly. MCEM still converges at a geometric rate to the unique solution;

the problem is that if all Li =0 then + > N +1 $k and $ - as k (=C is the glo

bal minimum of the cross-entropy.) PARML is only guaranteed to converge to the

unique solution of maxp(X 1) if at least one value Ui is finite and at least one value Li
4

is non-zero. Three special cases must be recognized for PARML when %=0:

PSMAP Algorithm:

ii = Li

N

1 o X, ii
i=l I
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a) All Ui =x, but at least one Li is non-zero:

- then k -0, ji -x as k 

b) All Li =0 but at least one Ui is finite:

- then dk', i,i -O as k

c) All L =, all Ui =

- then k =$o and all values $z0 are global maxima of p(X iqj)

This last case is particularly silly, since it implies that nothing whatsoever is known

about the value of any of the samples. Finally, SIGMAP and PSMAP will have solu-

tions if %=0, but if all the Li =0 then $=

2.8. Comparison of the Algorithms

To compare the algorithms, we consider a specific example. We start with an

Exponential density with parameter =0.2, and choose a nearly flat apriori density

with E=10 -4 . We draw N independent random samples xi, and group them into 5

bins, 0Oxi<l, 1<xi<2, 2xi<3, 3<xi<4 and 4<xi. (Note that this is a rather lop-

sided selection of bins since the average value of xi will be about 5, and thus over half

the samples will fall in the last bin.) Given the count of how many samples are in each

bin, we apply each of our algorithms to estimate the parameters of the density. Figures

4.1 and 4.2 show histograms of the parameter estimates generated by our algorithms

for 500 sequences of N = 10 and N = 100 samples each. Table 4.1 below summarizes the

average value of d and its standard deviation for each method:
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, N =10 , N =100

Classical: 0.245 - 0.087 0.205 0.021
MMSE: 0.254 - 0.104 ?????
MCEM: 0.254 - 0.104 0.207 0.028
PARMAP: 0.216 + 0.097 0.203 _ 0.028
SIGMAP: 0.467 ± 0.116 0.409 _ 0.027
PSMAP: 0.424 t 0.105 0:405 ± 0.027

Table 4.1 - Average values of 4 for 500 sequences

(true value - 0.2)

The classical parameter estimate, using the actual values of x i is the best, of course,

since grouping the data into bins can only increase our uncertainty about the parame-

ter. MMSE and MCEM using the grouped data comes very close to the dassical esti-

mate, giving virtually identical parameter estimates centered around the same value.

(For N=10, MCEM and MMSE seem to agree to about 3 decimal places.) This is

somewhat surprising, since the MMSE estimate (4.2.8) appears quite different from the

iteratively calculated MCEM estimate, and is not only much more difficult to compute,

but is also numerically ill-behaved. In fact, even with 64 bits of precision, the MMSE

estimate (4.2.8) can not be computed reliably for N>20. (Note we were unable to

compute the MMSE estimate for N =100.) MCEM, on the other hand, is simple to

compute, numerically robust, and converges at a linear rate, cutting the error by about

half on each iteration. PARMAP gives estimates which are somewhat smaller than

MCEM, MMSE and the classical estimates, though they are still dose. Convergence is

at about the same rate as MCEM. (The fact that PARMAP actually comes closest to

the true value 0.2 is misleading; the standard for comparison must be the classical esti-

mate, which represents the optimal estimate of if the data were uncorrupted by

grouping.) SIGMAP and PSMAP are both heavily biased, and in this example are off

P
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by nearly a factor of 2 (Choosing a less lopsided selection of bins would decrease the

bias of these methods.)

Examining the histograms of the parameter estimates for N =100, the classical

method, MCEM and PARMAP all give estimates which cluster tightly about the true

value $=0.2. This indicates that both MCEM and PARMAP using grouped data are

asymptotically consistent. (Appendix C argue that MCEM will be asymptotically con-

sistent whenever PARMAP is consistent. For a detailed discussion of consistency with

grouped data, see Kulldorff [1] .) SIGMAP and PSMAP cluster tightly around a

heavily biased value of 0.4; these methods are definitely not asymptotically consistent.

To summarize, therefore, given grouped data the MMSE estimate is almost as

good as the estimates we could calculate when there are no uncertainties in the meas-

ured values. Unfortunately, even though an analytic expression for this estimate exists,

it is difficult or impossible to compute eliably. MCEM, PARMAP, SIGMAP, and

PSMAP, on the other hand, are numerically robust and quite easy to compute, since

they simply alternate between calculating the mean or mode of the parameters , and

the mean or mode of the samples ik. MCEM appears to perform exactly as well as

MMSE, while PARMAP gives estimates which are somewhat low. Both methods

appear to be asymptotically consistent, and both converge relatively quickly. Faster U

convergence could be achieved by using Aitken extrapolation or a related technique. [2]

SIGMAP and PSMAP are even easier to compute than MCEM or PARMAP, since no

iteration is required; however, they are both strongly biased toward large values of *4.

4



- 151-

3. Gaussian Density

Very similar conclusions can be drawn about the relative performance of our algo-

rithms when we consider the same problem but with a Gaussian distribution instead of

an Exponential density. Suppose that the probability density p(, ,;) is Gaussian,

N(,u2), with unknown mean . and variance 2:

p(x 'p., 2) = exp - I(i )- 2 (4.3.1)

We consider the case when the variance 2 is known in section 3.8. When 2 is unk-

nown, it is convenient to take the parameters of the sample distribution to be the mean,

1
p., and the inverse variance s =2. Let us assume an apriori density

p(.,s)=p(. js)p(s) in which p(is) is a Gaussian with zero mean and variance

v__ = , and p(s) is Exponential:

p(is ) t exp 4E(SYs ) (4.3.2)

p(s) = exp( -Is ) for s O0

By letting E,-0,, we can simulate arbitrarily flat a riori densities. Given only the

information that N independent samples xi were drawn from this density and that they

were in the ranges L -x i-Ui , we wish to estimate i., , and the actual values ofi .

3.1. Classical Approach

If the samples were known exactly, then the unknown parameters could be

estimated by finding the mean of the density p(p.,sk ) over the space

4)= {(ps)I > :

= E , ] = +E (4.3.3)

b
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i- N+2

The mean is estimated by averaging the samples, and the variance is estimated by com-

puting the sample variance. Slight corrections for the a priori density are included in

these formulas.

Conversely, if the mean and variance were known, then we could estimate the

samples by calculating their expectation:

1lt I exp(-Li) 
ii EX !i sI [er(i - erf(L,) (434)

where: erf(y) - exp( - ix 2) dx

Li -

Ui = U;

A much simpler, though less satisfactory estimate would be the sample mode:

Li ff maLx px

i = max pjP(xj!L,.s) = if Ls<Ut (4.3.5)

Ui if Ui < 

It is also sometimes convenient to know the variance of the sample:

Uiexp(-L~2 ) - Liexp( L 2 ) 1
Var,[xi ,s ] =2 1- ) -ixp(-i) ] )2 (4.3.6)erf(Ui) - erf((i)

These formulas represent a lower limit on the complexity of any estimation routine

which must deal with the far more complicated situation where both the parameters and

the samples are uncertain.
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3.2. MMSE

When both the parameters ,u and s are unknown and the measurements x, are

imprecise, the logical approach would be to compute the marginal densities:

U,

p(X ,ts) = P(ls) HI p(xi ls) dxi
l- Li

= p(,s) | erf - erf ) (4.3.7)i=1 or or

and:

p(s,x) f ds d p(xr,,s) dds
0 -r

-Kf d N exp [- ( T - ) I]
0

K (4.3.8)

1where: - I- I - I O(1 1)

and then we could calculate the mean (MMSE estimate) or mode (PARMAP or SIG-

MAP) of these densities. Clearly either of these approaches would be rather difficult.

Fortunately, all four of our estimation algorithms take a relatively simple form for

this problem. The reason is that p(x,I ,s) forms an exponential family of densities:

I
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N ,)

p(,,S = YEn S 
4

-exp - .s x N x i
i =1 i =1

(h (4) exp ( 1(p, )t(i) T 2(ps)t 2 () ) (4.3.9)

where these terms are defined in an obvious way. Note carefully that the natL,al"

parameters of the density are nl( =.1s)) and 2(.,s)= -; we will return to this

point later.

3.3. MCEM

By substituting the density (4.3.9) into the MCEM algorithm, we can show that

MCEM will generate a sequence of truncated Gaussian sample densities of the form:

N
qx() = il qxi(xi)

i=1

where: qx,(xi) = 0

and parameter densities q4(p,s ) = q4>(p is ),(s ) which

density q4(x js) and a Gamma density qi(s):

(4.3.10)

for L x i- Ui

else

are the product of a Gaussian

r.s (N+) -2 ( ((N t) .1 >IS) [ S ( + ecxp - I ]i. --' i (4.3.11)I2nt N2 i = 1

q( ) = lN2i ss esp( -V )(N ,,n)!

The coefficients i, , i, V of these densities can be iteratively calculated as follows:

I

4

exp s -9 .- ' ·KN E)L2 
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We start by guessing estimates of the sample mean and variance. The samples are then

estimated by calculating their expected value ik given 1k and 62 using formula

(4.3.4). The variance of tis estimate Vi k + is also calculated using formula (4.3.6).

We now reestimate the sample mean +1 by averaging the individual sample estimates.

The variance k2, is reestimated by combining the variance of the sample means about

the distribution mean, (i -4F)2, together with the estimated variance Iil1 of each

sample xi about the sample mean xi. Additional small correction terms which account

for the a priori density are also included. We then iterate, using the improved mean

P and variance estimates to improve our estimates of the samples. Each iteration

decreases the cross-entropy, and Appendix C proves that the estimates remain bounded

and thus converge to the set of stationary points of the algorithm and critical points of

the cross-entropy function. Appendix C also shows that:

H (q4x,.1, % = - log [ p(X , ) (4.3.12)

where K is a oonstant. As shown in Appendix C, each MCEM iteration thus also

increases s p(X , k ,), and the limit points of the algorithm will also be critical pointsk 11tJ/ ~ULC tl1tUWV l~;LIVIUI wU iUV~~l~r- VU

MCEM Iterative Algorithm:
I

Guess o, o= 2
o 0

For k=0,1, ·

ii,- 1 = EX Xi Ilk' kt i

i~k. I VarX, [x i k,, ]
Visel-Vxii 1, 1

NIk+1 = L.. N1 X1 ,k+1 N

cit~ ~'±

_ __ __ _ __

I

i
i

I

I
i
i
I
i
I

P
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of s p(X ,xL.s). This implies that MCEM will give parameter estimates which are simi-

lar to the PARMAP estimates found by maximizing p(X,pL,s), except that MCEM will

give larger estimates of , and thus smaller estimates of the variance c-2= 1 If PAR-

MAP is asymptotically consistent, with p(X ,pk,s) approaching an impulse at the actual
I

parameter value as N--, then (4.3.12) suggests that MCEM will also be asymptotically

consistent as N---. Lastly, we conjecture that both MCEM and PARMAP have a

unique global optimum and critical point, and that the algorithm converges to this solu-

tion; unfortunately, we have not been able to prove this. (The proof of convergence in

Appendix C only guarantees convergence to the set of critical points of the cross-

entropy.)

3.4. PARMAP

The PARMAP algorithm is derived in a similar manner, except that we constrain I

the parameter density estimate to be an impulse function.

4(,s ) = (L - i) (s -i) (4.3.13)

The signal density 4X (:=PX ;,(x I4,S) will be a truncated Gaussian density, exactly as

in the MCEM algorithm (4.3.10). The coefficients of these densities will be calculated

by the following:

4

.
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As suggested by the relationship in (4.3.12), the PARMAP algorithm has exactly the

same structure as the MCEM algorithm except that the estimate of the variance is

slightly larger. We start with an initial estimate of the distribution mean and variance.

Each sample is then estimated by calculating its conditional mean xil given ,k and

6a. The variance i,+l of this estimate is also calculated. The distribution mean R*+ 1

is then recalculated by averaging the individual sample estimates. The distribution vari-

anc a,l is estimated by combining the variance of the sample means about the distri-

bution mean, (.ji -) 2, with the variance ik l of each individual sample xi about

the sample mean ii. Note that in calculating r2,1, PARMAP divides by V +1 while

MCEM divides by N -2; this is the sole difference between the algorithms. Each itera-

tion increases the likelihood function p(X ,ik kt ), and Appendix C proves that the esti-

mates are bounded and converge to the set of stationary points of the algorithm and

critical points of p(X,~,s). We conjecture that this density has only a single critical

point, though we have not been able to prove this. PARMAP will generally be asymp-

totically consistent as N-.

I

PARMAP Iterative Algorithm:

Guess L, So = T:
c0

For k=0,1, -

Xtk - EXi [i PjkS i

v1, +,1 VarX -Xi lk ,S k

=1^k 4- 1 = i ' +I
N

2 1 i=1
>*X1 NiN+I

_ __ ____

I

I

I

Ii

II
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3.5. SIGMAP

The SIGMAP algorithm constrains the estimated sample density to be an impulse

function:

x (Ix) = (xi -ii) (4.3.14)

while the estimated parameter density 4q,(lk,s)=pV (,s !i) will be the product of a

Gaussian 4q,( Is) with a Gamma density 4,q(s), as in the MCEM algorithm (4.3.11).

Substituting these densities into the SIGMAP algorithm and simplifying yields the fol-

lowing algorithm for calculating the coefficients of these densities:

4

4

.4

4

4

I

This algorithm is considerably simpler than the MCEM or PARMAP algorithms. We

start with estimates of the distribution mean lk and variance 6 2. Each sample xi is

estimated by finding the mode of the conditional sample density x, (i i,it) (com-

pare with (4.3.5).) This is equivalent to finding the value of xi in the interval [Li,Ui]

which'comes closest to k. The distribution mean is then estimated by averaging these

sample estimates. Note that no estimate of the variance is required to calculate the next

II
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estimate of the sample. Thus we can iterate until the estimates of i and xi converge,

and then at the end estimate 2 by calculating the variance of the sample estimates i,

about the mean l. Each iteration increases the likelihood p( ,), and Appendix C

proves that the estimates remain bounded and converge to the unique global maximum

of p(i Q)). Furthermore, the convergence rate is geometric, with:

- At j N1 e t - >2-l (4.3.15)

While SIGMAP is quite simple, its estimates are unfortunately quite poor. The

sample estimates are heavily biased in the direction of the distribution mean ; this will

usually lead to poor estimates of p. Since the sample estimates -i will be too close to ,

and since the formula for 62 neglects the variance of the sample within the bin [Li,Ui],

the variance estimate 6 2 will usually be very low. This bias in the SIGMAP estimates

usually remains even as N- .

3.6. PSMAP

The PSMAP algorithm iteratively calculates:

-1 - max p(X,lk,dk) (4.3.16)
L, sxi sUj

k -1, Sk.-1 - max p(4ill,., )

Substituting the density (4.3.9) and simplifying yields te algorithm:
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PSM AP Iterative Algorithm:
1

Guess o, i 0 -
A

For k =01, -

L i if t -Li

Xik +i = l't if Li 1t kUi

Ui if U~-<t

k+1 1 f= %+1N

Iterate until convergence, then:
N

iN1
N+I

The PSMAP and SIGMAP algorithms are thus identical in this example, except that at

the conclusion PSMAP estimates 2 by dividing by N -1 instead of N -2. The same

interpretation and convergence results for SIGMAP thus apply to this algorithm as well.

3.7. Faster SIGMAP and PSMAP Algorithm

For this problem, it is actually possible to derive an algorithm for solving SIGMAP

and PSMAP which converges in a finite number of steps. The key is to note that:

p( ,) K= +) (4.3.17)

and:

max p (,-) K= (4.3.18)

where: -1 =i N- 14

Maximizing either of these densities (the SIGMAP and PSMAP problems) is thus

I

I1W

Ah
iz-1
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equivalent to solving:

m- in SxT-Ix (4.3.19)
L, sx, s Ui

Since E-l>0, this is a quadratic programming problem with positive definite quadratic

objective function and convex constraint sets. Numerous algorithms are known for

solving this problem in a finite number of steps. [3, 4] A particularly efficient algorithm

can be developed for the common statistical problem in which we have divided the sam-

ple space into M fixed bins:

-t = Lo U = L 1 < L.-. = L+ < U_ 1 = +C (4.3.20)

M-1
and we simply counted the number of samples ni which fall in each bin, ni = N.

i 0

Estimating involves two conceptually separate steps: finding in which bin must lie,

and then estimating its exact value within this bin. If we knew that )i were in the A

bin, L,<--iU,, then its exact value could be calculated by:

[ *-1 M-1
tl Nt U n A Ai i

1Nr -1 l -+

I-- niUi +- ni Li (4.3.21)
i 0 i -5-1

If this value falls within the v bin's boundaries, then we have indeed located the

unique bin containing , and have calculated its exact value. If, on the other hand,

Up<, then it is easy to show that the true SIGMAP solution must lie somewhere in

bins v1 through M-1; if ><L, then the SIGMAP solution must lie somewhere in

bins 0 through v-1. Using a binary search algorithm to efficiently search for the

correct bin then gives the following algorithm:
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Fast SIGMAP/PSMAP Algorithm:
O - O ; v = guess of which bin 4i lies in

size - M ; size = number of bins remaining where , could lie

- 0 ; initial guess for i

while (size > 0) {
v - + - size/2

1 w-1 M- 1

Guess ,i - nj t L i
N-n. i --1 t i=+!

if (L,-<iU,) then:

goto- V
goto DONE

else if (4i<L ) then

size - size/2

else if (1i> U,) then
size - size/2 - 1

V0 - v+size2-

}

DONE: vO is bin in which , lies

4 is estimate of mean
LI if <Li

i = fL i - -- U i

Ui if Ui <6i 

3.8. Known Variance

The analysis of the problem changes very little if the variance o is known and

does not have to be estimated. We will assume the same a priori Gaussian density p()

1
as before; an a priori density for s is no longer needed. The same estimation

approach used earlier can be applied, with the sole difference that the estimated param-

eter density 4t,(p.) will only be a function of the unknown mean L. Happily, the only

change in the algorithms will be that we do not need to calculate &6'. In the MCEM

and PARMAP algorithms, this also implies that the individual sample variances Vit, +1

4
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do not have to be calculated. MCEM and PARMAP thus become identical and are

considerably simpler than before:

MCEM/PARMAP - Known Variance r|
For k= 0,1, 

i A,+ = Ex, 1i , ]'

iN
-k4 =- N+*,E -i 4 

When &r is known, Appendix C proves that this iteration is guaranteed to converge to

the unique globally optimum solution to the PARMAP and MCEM problems. Furth-

ermore, the convergence rate is geometric:

NI~k +1 - G'k : t "k -t ~k-1 (4.3.22)where this guaranteed convergence rate is actually very conservative.

The SIGMAP and PSMAP algorithms will have exactly the same structure as

before; the only difference is that it is not necessary to estimate 62 at the end.

3.9. Maximum Likelihood Algorithms

If we are not allowed to treat Cu and &2 as random variables, then it is necessary to

use Fisher estimation techniques, rather than the above algorithms. Unfortunately, it is

not sufficient simply to set =O and l-=0. Forgetting the philosophical implications, let

us first derive the Maximum Liktihood version of MCEM. Substituting the model

density p( , s ) into the ML version of MCEM and simplifying yields:

I
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MCEM Algorithm - ML Version

For k=0,1, ·

I -I 1

VX,k= -rx , X i i,ik ]Vjrk*¶o1 - Varx, |-t p Ak ,S |

1 N

N

2 1 _ it1

+1- = X1 4

where the expectation and variance of xi are calculated as before. Note that in addition

to the terms and v being set io zero, the denominator in the expression for 2+1 has

been changed to N - 1 from N +2 in the Bayesian version. This makes the ML version 4

of the MCEM algorithm perform more like our Bayesian PARMAP algorithm in sec-

tion 3.4. Each iteration still decreases the appropriate cross-entropy expression and

thus improves the estimates. Appendix C proves that if any Li and any Uj are finite,

then the parameter estimates wil be bounded and thus converge to the set of stationary

points of the algorithm and critical points of the cross-entropy.

The PARML algorithm can be derived in the same manner as PARMAP, except

that we use the model density p(, !-.,s) instead of p(x ,,,s). The resulting algorithm is

identical to the ML version of MCEM, except that the variance is estimated by:

N + 2 ,

2 - , i = N (4.3.23)

Note that the denominator is N, not N -1 as in the Bayesian version of the algorithm.

Each iteration increases the likelihood function p(X I',A 4), and Appendix C proves

that if'any interval [Li,Ul is finite then the estimates remain bounded and converge to

the set of stationary points of the algorithm and critical points of the likelhood func-
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tion.

A Maximum Likelihood version of SIGMAP is not possible. A Fisher PSML

algorithm can be easily derived, however, by iteratively maximizing p(& ,s). The cal-

culation of i. and will be unmodified from the Bayesian PSMAP algorithm, except

for setting =O, but the calculation of 62 will be:

M2 _ • = t1 -- - (4.3.24)£ N

The denominator has changed to N from N l. Each iteration increases the likelihood

function, thus 'Timproving' the estimates. Appendix C proves that the iteration will

converge to the convex set of global maximum solutions to the PSML problem. (There

may be many such solutions.)

3.10. Comparison of the Algorithms

To compare these algorithms, we winl apply them to a problem similar to that used

in the last section. We start with a Gaussian density p(x i i1., 2 ) with mean x=O and

standard deviation cr=3. Nearly flat a priori densities for C± and x ± are assumed

with =r=10- 4. To estimate the parameters, we draw N independent samples xi from

the distribution, and count how many fall into each of five bins": x<O, xi<l,

1 xi<2, 2x i <3, and 3<x,. (Note that this selection of bins is rather lopsided, since

half of the samples fall into the first bin.) Given the count of how many samples fall

into each bin, we apply each of our algorithms to estimate the parameters of the den-

sity. Tables 4.2 and 4.3 below show the estimates of the natural' parameters ir= 

and Ir2 = - generated by our algorithms (see equation (4.3.9).) The classical parame-cr2

'I
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ter estimate, using the actual values of x, must be taken as the best that is possible,

since grouping the data into bins can only inccease the uncertainty about the parame-

ters. MMSE using the grouped data is orders of magnitude more difficult than the

other methods, since calculating each of the numbers in the table required a multidi-

mensional numerical integration involving 120,000 to 250,000 function evaluations, each

of which is as difficult as one iteration of MCEM or PARMAP. Surprisingly, MCEM

gives estimates of the natural parameters rl and nr2 which are very close to those of

MMSE. The convergence speed is moderate; starting from deliberately poor initial esti-

mates of - = -1 and 6a = 1, between 20 to 40 iterations were required to cnverge to

machine precision. (MMSE thus requires at least 6000 times more effort to calculate

virtually the same estimates!) As expected, PARMAP gives estimates of r;1=s which

are smaller than those of MCEM; as a result, its estimates of V2 =ss are also somewhat

different. Convergence speed is the same as MCEM. SIGMAP and PSMAP give

extremely large estimates of i1, and their estimates of r 2 are very different from

MMSE. The last line in these tables corresponds to a sequence where 8 samples fell

into the first bin, and the other 2 were in the second bin; beware that the iterative

methods required 5 times more iterations than usual to converge.

The above comparison is actually slightly misleading, since we are usually not

interested in the natural parameters rr1 and 2, but would prefer estimates of the

mean i and variance a2 . In our iterative algorithms, the structure of ensures that

E[ *:2iq,
E[ F i ] = E[l,, (4.3.25)

Similarly, for the classical method:

E ] = El 2 i (4.3.26)iE I

�__ �
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However, in MMSE the expectation of t. does not bear any simple relationship to that

of -n1 or r2. Table 4.4 compares the estimates of ,i generated by all our algorithms on

the same data as the other tables. Note that the MMSE estimates E[ L ' i EX ] do not

follow MCEM's estimates very closely, and in fact seem to be closer to PARMAP's

estimates.

Figures 4.3-4.6 show histograms of the estimates of i and 52 generated by the clas-

sical method and our four iterative algorithms for 500 sequences of N =10 and N =100

samples each. Note that both MCEM and PARMAP appear to be asymptotically con-

sistent, while SIGMAP and PSMAP appear to be biased. PARMAP's estimates also

appear to have more spread than MCEM's - in fact to make the histograms clearer,

about 8 outlying estimates of 62 were omitted from the PARMAP graphs. These

extremely large estimates, like the last lines in the tables, were caused by sequences in

which nearly all the samples fell in the first bin. PARMAP's estimates of p. appear

slightly closer to the correct value of 0 than MCEM's estimates, although the difference

is minor compared to the standard deviation of the estimates. (As pointed out above,

MCEM does best at estimating the natural' parameters.) MCEM's estimates of 83

were closer to the classical estimate than PARMAP. (Note that PARMAP is actually

closer to the true value of a2 than MCEM, but this is misleading since the standard for

comparison must be the classical estimate which uses the exact data values that were

generated.)

We repeated the same experiment in figures 4.7-4.8 for the case when the variance

o2=9 was known. Both the MCEM and PARMAP algorithms are identical in this

case, and converge at a fast geometric rate, cutting the error about in half on each

iteration. SIGMAP and PSMAP are also identical and converge even faster. When

I
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only p. is unknown, it is feasible to evaluate MMSE for all 500 sequences, since only a

single integration was needed. (MMSE still required about 20 times more effort than

MCEM or PARMAP.) Note that the MCEM/PARMAP estimates are very close to

MMSE, and appear to be asymptotically consistent as N-x. SIGMAPIPSMAP is

asymptotically biased.

To summarize, therefore, given grouped data the MMSE estimates are not compu-

tationaIly practical to calculate. MCEM, PARMAP, SIGMAP and PSMAP, on the

other hand, are numerically robust and easy to compute. MCEM's estimates of the

0natural parameters ri and r2 are very dose to MMSE's estimates. Both MCEM and

PARMAP appear to be asymptotically consistent and both converge relatively quickly. 4

Faster convergence could undoubtedly be achieved by using extrapolation. SIGMAP

and PSMAP are the easiest to compute, particularly since an algorithm is available

which converges in a finite number of steps, but their estimates are strongly biased.
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Seq- Classical MMSE MCEM PARMAP SIGMAP PSMAP
uence E[r, ,sI] E[-n,,xEX] E[=x~!BQ.] E[= '4] E[.:q4,] E. q4]

#1 0.216 0.496 0.480 0.350 3.000 2.750
#2 0.231 0.448 0.437 0.370 1.256 1.151
#3 0.104 0.371 0.362 0.294 1.059 0.971
#4 0.087 0.128 0.119 0.076 0.882 0.809
#5 0.216 0.235 0.228 0.177 1.000 0.917
#6 0.127 0.231 0.218 0.143 1.459 1.338
#7 0.130 0.176 0.166 0.108 1.174 1.076
#8 0.120 0.094 0.088 0.056 0.659 0.604
#9 0.202 0.221 0.211 0.153 1.188 1.089
#10 0.102 0.128 0.119 0.076 0.882 0.809
#11 1.128 5.521 10000.000 4926.108 58823,527 55555.555

1Table 4.2 - Estimates of rl 1 , Gaussian Density

(true value = .111)

Seq- Classical MMSE MCEM PARMAP SIGMAP PSMAP I
ueoce E[ 2 lI E[n21x EX] E['t,] E[nlt21I] E[1'r.q4l E[= 2 14(Q

#1 -0.332 -0.246 -0.255 -0.253 1.000 0.917
#2 0.103 0.491 0.478 0.397 1.535 1.407
#3 0.030 0.496 0.483 0.389 1.412 1.294
#4 -0.086 -0.018 -0.031 -0.045 0.706 0.647
#5 0.064 0.137 0.124 0.077 1.000 0.917
#6 -0.222 -0.173 -0.189 -0.176 0.649 0.595
#7 -0.139 -0.142 -0.157 .0.148 0.652 0.598
#8 0.113 0.153 0.143 0.091 1.024 0.939
#9 -0.018 -0.014 -0.028 -0.052 0.832 0.762
#10 -0.082 -0.018 -0.031 -0.045 0.706 0.647
#11 -0.912 -2.022 -84.160 -59.118 -0.118 -0.111

Table 4.3- Estimates of v2= 1-, Gaussian Density

(true value = 0)

II

p

- I- -

I

I
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Seq- Classical MMSE MCEM PARMAP SIGMAP PSMAP

uence E[I] E[b iAX] E[.C L ] E[flxq4 E[k qr] Et[pLq,, 

#1 -. 535 -0.837 -0.530 -0.722 0.333 0.333
#2 0.444 1.057 1.094 1.073 1.222 1.222
#3 0.291 1.314 1.337 1.321 1 .333 1.333

#4 -0.987 -0 731 -0.258 -0.589 0.800 0.800
#5 0.295 0.368 0.546 0.437 1.000 1.000
#6 -1.749 -1.421 -0.867 -1.231 0.444 0.444
#7 -1.065 -1.571 -0.944 -1.361 0.556 0.556
#8 0.944 1.628 1.628 1.630 1.556 1.556
#9 -0.087 -0455 -0.134 -0.339 0.700 0.700
#10 -0.807 -0.731 -0.258 -0.589 0.800 0.800
#11 -0.809 -0.472 -0.008 -0.012 -0.000 -0.000

Table 4.4 - Estimates of p., Gaussian Density

(true value = 0)

la

4

4
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4, Conclusions

Our four iterative estimation algorithms represent a numerically robust and com-

putatioually efficient approach for estimating parameters of exponential families of den-

sities from grouped or quantized data. Unlike the MMSE method or other Bayesian

Minimum Risk estimators which require a complicated integration, these methods sim-

ply alternate between estimating the sample values using the latest parameter estimates,

then reestimating the parameter values using the samples estimates. Each iteration

decreases the appropriate cross-entropy function, and in the case of the MAP algo-

rithms, also increases the appropriate likelihood function. Convergence of all four

algorithms can be proven under mild conditions. MCEM and PARMAP, in particular,

give nearly unbiased estimates even for small samples, and are asymptotically consistent

and efficient in most problems. In the cases we have tested, MCEM's estimates of the

"natural" parameters of the densities come especially close to those of MMSE.

While we have only considered Exponential and Gaussian densities in this chapter,

the idea is easy to extend to any other exponential family of densities, such as Gamma,

Binomial, Multinomial, Negative Binomial, etc. The only drawback in using these den-

sities is that the algorithms may need to compute special functions which are not always

included in standard mathematics subroutine libraries. To apply MCEM or PARMAP

to Gamma densities, for example, one needs to be able to easily compute the derivative

of a Gamma function, an operation not much more difficult than computing an Error

Fanction, but which is not readily available. The idea can also be extended to prob-

lems of censored or truncated data, in which the data collection process discards all data

outside a certain range X. Here, we simply modify the probability density for the

model by truncating it to the range X:

I

_I _
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P(_ ' for EX
p(X .>)

P( ,) p (4.4.1)
0 else

and then applying our algorithms to this truncated density. Offset parameters can also

be handled. Suppose, for example, that:

x ,exp( - (x -a)) for x ct
p (x a) 1 t (4.4.2)

and both the scaling parameter d4 and offset a must be estimated. By grouping the

offset parameter a with the data x rather than with -4, this probabli:y density can be

shown to form an exponential family of densities. We can thus use our methods to fit a

separable deasity q( ,c)q{4) to the given model density, and then use this simpler den-

sity to estimate the unknowns. Yet another possible extension would be to problems

involving non-flat measurement noise. It is this flexibility and wide applicability that

makes our algorithms both theoretically interesting and computationally practical.

4
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Chapter 5

Applications in Optimal Signal Reconstruction

Part I Bayesian Theory

1. Introduction

In this chapter we will consider a specific linear Gaussian system model in which a

stochastic Gaussian signal z is linearly filtered and corrupted by additive Gaussian noise

to form the output . After discussing the form of the probability density p( , [)

describing this system, we consider the problem of optimally reconstructing the signal

and output given certain constraints on their values, and assuming that all model

parameters are known. The MMSE approach is briefly presented for this problem,

then our four iterative MCEM and MAP algorithms are discussed in some detail.

Although these approaches generally give different estimates of the unknowns, the four

iterative algorithms all share a common structure, iterating between filtering operations

and a pair of projection or conditional expetation operators. Geometric convergence

of all four algorithms to the unique cslution is guaranteed when the constraint sets are

convex. Particular attention is giver to linear variety and simplex constraint sets

because these problems can be theoretically analyzed in great depth. For near variety

constraint sets, we show that two different primal" and "dual' approaches to the prob-

lean can be defined, each of which leads to a different closed-form solution. Each of

these can also be solved by conjugate gradient iterative algorithms in a finite number of

steps.

b
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2. Linear Gaussian Model

The 'generic" system model we will use most extensively is illustrated in figure 5.1.

4

W

signal

y

output
4

4V

Figure 5.1 - Generic Linear Gaussian System Model

Zero mean Gaussian noise w with covariance Q passes through a linear invertible filter

A - t form the N point signal ERN. The signal is then linearly filtered by B, and

independent zero mean Gaussian noise v with covariance R is added to form the M

point output X (R . Neither the signal nor the output are observed directly; instead,

the incomplete observation data which is available serves only to restrict the range of

feasible values for the signal, output and parameters to the sets X, Y and 4) respec-

tively:

4

4

where p(w) = N(O,Q)
Model: = A -

Y = B 

(5.2.1)
where p(x) = N(0,R)

where: A is invertible; Q>O and R>O

WE RN and v, yER

Observations: x tEX, y E Y, 6E ()

- -

I
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We will usually assume that the linear filter A-' is 'causal', so that A and A - 1 are

lower triangular with l's on the diagonal. We will also assume that the elements of A,

B, Q and R depend at most linearly on the parameters d. (These assumptions are con-

venient when we discuss parameter estimation in chapter 9, but are by no means neces-

sary.) We will assume that the variables are real, but complex ' ables could be incor-

porated with little effort.

Because the signal X and output y are linear functions of the Gaussian variables w

and a, the joint probability density p(, ,y ) of the signal x and output y given the

parameters d is Gaussian:

P(Xy 40 = N 31 Vy )(5.2.2)

where V = BA1QA ( I ) + R (O I

The covariance matrix R =Var(v ) can be loosely viewed as the distribution of power in

the noise, while the covariance matrices A-1QA - T and BA-1QA-TBT can be loosely

viewed as the distribution of power in the signal x and the filtered signal X =Bi respec-

tively. Beware that when the noise power R is very small or very large relative to the

filtered signal power BA-1QA-TB3T, then the covariance matrix of the Gaussian proba-

p bility density becomes very nearly singular and is numerically ill-conditioned. Thus at

very high or very low Signal-to-Noise Ratios (SNR) the solution to our estimation

problem may be numerically ill-behaved. This phenomenon is one that will arise again

in later sections, where very high SNR levels are shown to correspond to slow conver-

gence of our iterative algorithm and high sensitivity to computation noise. Let us stress

that all these phenomenon are closely linked, and that the difficulty lies in the problem

formulation itself, and not solely in the iterative algorithms.



The interesting aspect of this signal model is that it is not only quite general, but

also the log likelihood function log p( ,.y :) has a particularly simple form. If we

define the norm 2= a'rTP-l1, then taking the logarithm of equation (5.2.2) gives:

log p(V,y ) = -% iA + t! y-Bx i2 - log 2Q TQ log' 2R R (5.2.3)

where we have simplified this expression slightly by lsing our assumption that A is

lower triangular with l's on the diagonal, so that A -1 = 'A i=1. The interesting point

is that this function is not only quadratic in the signal , and output y for fixed parame- 4

ters i, but is also quadratic in the elements of A and B for fixed x, y. Maximizing this

function either with respect to x, y or with respect to i therefore only requires solving

linear equations. This quadratic structure also simplifies the calculation of its expecta-

tion over the sets X, Y or in the MCEM, PARMAP and SIGMAP iterative algo-

rithms, since we will only require the conditional mean and covariance of x, y or i.

Calculating the expectation of log p(~ ,y y) over X, Y or 4I also does not change its

quadratic behavior as a function of the remaining variables. It is this feature which

makes this system model ideally suited for use with our iterative estimation algorithms. 4

3. Minimum Mean Square Error Algoritbm IMMSE)

We will treat the problem of parameter identification in a later chapter; for now,

let us assume that the parameters I are all known, so that A, B, Q and R are fixed,

with A is invertible and Q>O, R>O. Our goal is to estimate the signal and output

given that x eX and y ( Y. Using the ideas developed in chapters 2 and 3, there are at

least five different approaches for calculating MMSE, MCEM or MAP estimates of x

and y. Unfortunately, except for certain special types of constraint sets to be discussed

later, each approach will generate different estimates. The "best" approach, in the sense

4

- 183 -



-. 18 -

of yielding minimum variance unbiased estimates, is to solve the MMSE problem:

MMSE: ~ m )- rin : Y E' Y (5.3.1)

If the sets X and Y are convex, then the solution will be:

Ex y [: i (X, ( Y ] (5.3.2)

S I.. P( ,) dy

X Y

J P( .)dxy

This can be rather difficult to calculate, however, except for certain simple types of con-

straint sets X and Y.

Fortunately, our four iterative algorithms are much easier to apply to this prob-

lem. The reason is that this density p(x,y ) forms an exponential family of distributions

which is in its "natural'" form:

p(aKY = e - % f( ', f 1 xII fii )]
[~~pc-~ li~a, ]Cr[-YTRQ I iR

| 12a . 12 R ||[ e (I y I ) I e p x R B I
| =gP ( A R ) xp - X R B |

- g ()h (y) exp I _ TR-'Bx I

where these terms can be defined in an obvious way. Thus we would immediately

expect our four iterative algorithms to take the simple form discussed in chapter 3, sc-

tion 7.2. Another important point is that this density p(4,x) is uniformly log concave

in , and y, a fact which will greatly simplify our convergence proofs.

I

W

(5.3.3)I
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4. Minimrnt Cross-Entropy Method (MCEM)

Because there are two unknowns, and y, there will be at least four different

iterative estimation approaches we can devise using the material of chapters 2 and 3.

The Minimum Cross-Entropy Method fits a separable probability density qX()qy(y)

to the given density p(x ,y) by minimizing the cross-entropy function H (qX ,qy):

q4xqy - min H(qx,qy) (5.4.1)

-min Jf q(6 )qy(Y) log ()qC d
Qx l, ff qp( ,x),x Y

To solve this problem, we iteratively minimize H with respect to q, then qy, iterating

back and forth until the estimates converge: 4

qx -min H(qx ,y ) (5.4.2)

qy, - min H (lx, ,qy)qr

Substituting the formula (5.2.2) for p( ,), it is easy to show that the estimated densi-

ties will have the form:

ilx,() = P~x y(s j'Y-1) (5.4.3)

{Kexp - x -Hfk ) for x (X

0 else

where: V= ATQ-1A BTR-1B

H = VBTR-

and:

4
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y (X) -~Py X G 4) ( 5.4.4)

= tXp ( yi5X- B t - R ) P for (Y

0 else

The estimated densities qX, and (y are truncated Gaussians centered at Hj and B4

respectively, where these centers are calculated as follows:

Conceptually, the computation proceeds through a series of filtering and conditional

expectation operators. Start with an output estimate j4. In order to compute 4 +l we

must first compute the center Hh of the signal density 4(X(). This operation

corresponds to a standard least squares filtering operation on , and would be our best

estimate of x given & if there were no constraints on x, i.e. if X =RN. n general,

however, additional knowledge is available concerning the signal, so that X is a proper

subset of R''. Thus we calculate the conditional expectation of , over the set X given

the truncated Gaussian density lX.(x) centered at Ho. According to theorem 2.2.1,

this estimate l1 belongs to the closed convex hul of X . Now to estimate the output,

pass this signal estimate through the filter B to form an output estimate BI +,. If there

were no constraints on the output values, Y =RM, then this would be the best least

squares estimate of y given 4l1. In general, however, more is known about the out-

put, so that Y is a proper subset of Rm. Thus we calculate the expectation of y over

'I

MCEM Iterative Algorithm

Guess o Y

For k=0,1,- -

4+=EXL[ !4x&+LI

1= E+ H 1h +. Y [XI 4y, 

II

i
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the set Y given the truncated Gaussian density y, () cntered at B,l1. This esti-

mate )ik-1 is in the closed convex hull of Y. We now iterate, refiltering the new output

estimate and then recalculating the expectation of r to improve our next signal esti-

mate. The algorithm thus iterates between a classic least squares filtering operation fol-

lowed by an expectation operation to estimate a-1, followed by another filtering and 4

expectation operation to calculate j 1-. Each iteration decreases the cross-entropy, and

thus improves the estimates. It is straightforward to show that:

H (qx, , qY , ) = log P ) ( 1 ) (5.4.5)
p(X & p)(.4 _1 Y)

and thus this combination of densities must also decrease on each pass.. Finally, Appen-

dices D and E prove that if X and Y are convex seis, then the conditional expectation

operator of a truncated Gaussian is a non-expansive mapping while the filtering opera-

tion is a contraction mapping. As a result, when X and are convex, the MCEM

algorithm is guaranteed to converge at a geometric rate to the unique solution ., r to

the MCEM problem:

i 1 f-s* * < , 2- 2 -y g v V(5.4.6)

where v, vy arc constants less than one which are determined b the relative signal-to-

noise level:

( = 4L <- 1< (5.4.7)

yTBA- QA -TsBTVwhere: = max -
, r B R BTRE

= max vTBTR-1By
r 0 TATQ-1Ai

4
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These formulas for the convergence rate factors v, and v simplify in the case where

the noise is white, R=cI, the dimensions of E and y are equal, N =M , and B=I:

v,, - v, 2 (5.4.8)

where -r - the largest eigenvalue of A -QA -T

Beware that at high signal-to-noise levels, T,>>U', and thus the convergence rate may

be extremely slow, v vl1. This phenomenon, as pointed out in section 2, is inti-

mately related to the possible numerical iil-behavior of the model density p(&,ry) itself

at high signal-to-noise levels.

If the sets X and Y are not convex, then the algorithm is no longer guaranteed to

give estimates of ;4 and 4 which are elements of X and Y, the convergence rate is no

longer guaranteed to be geometric, and the solution is no longer guaranteed to be

unique. We would st11i expect the measures 0Xi and Qyvh to converge to limits which

are stochastically bounded and are not impulse-like. This would seem to imply that the

center of these densities would have to be bounded and thus also converge, but it

appears difficult to prove this formally. If, however, the estimates 2, and k do remain

bounded, then theorem 3.9.6 guarantees that they must converge to the set of station-

ary points of the algorithm, and critical points of the cross-entropy.

S. Maximum A Posteriori Signal Estimation (XMAP)

A more conventional approach to estimating the signal x is to try to find its most

likely value in X, given that the output y is somewhere in Y. Such a Maximum A Pos-

teriorn approach can be realized by integrating the density p(,;, ) over the output con-

strain: space Y, and then maximizing the result over the signal constraint space:

XMAP: j -max p(.&,Y) = max f p(a )d (5.5.1)
X a Ey
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Unfortunately, unless Y has certain special forms, this density p(X,Y) will not be Gaus-

sian, and it will be difficult either to compute or to maximize.

Applying our ierative approach to solving this problem, however, is relatively

simple. As shown in chapter 2, an approach which is equivalent to solving (5.5.1) is to

iteratively minimize the cross-entropy function :f(qX sjy) in (5.4.1) but with the con-

straint that the signal density must be an impulse function, /4x(r) = b(s -i). The

resulting output density estimate will have the same truncated Gaussian form as (5.4.4):

9yr) -P p'(a C i) (5.5.2)

where the mean . is found by solving:

+i - max Ey log P (Y)

- minE[ I ! Hy ' v i] (5 -53)

_ min f 'i -Hx 2v y -( a) (d.
EX

where the expectation operator Ey[-' ] is defined by this last line. This algorithm thus

effectively chooses the signal estimate +1 in X which minimizes the distance to the fil-

tered output estimate Hy, where we average over all possible output values y 'Y.

Because the correct signal value is unknown, this averaging process is imperfect, and

thus the algorithm iterates, using improved signal density estimates to improve the

averaging on the next pass. Since lix -Hy I2 is only quadratic in , and because

py Lr(y jr) is a truncated Gaussian, the expectation and minimum is easily calculated.

The resulting algorithm has the form:

4

4
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First of all, to estimate the output, we pass the signal estimate 4 through the fiter B to

calculate the best least squares unconstrained estimate of y. To accommodate the addi-

tional knowledge that y ( Y, we then calculate the conditional expectation of the output

y over the set Y of the truncated Gaussian qy (y) centered at By. To reestimate the

signal, this output estimate is then filtered with the matrix H to calculate the best least

squares unconstrained signal estimate, H). In general, this estimate does not satisfy

the known constraints on the signal, and so to estimate 4 +1 we find the element of X

closest to Ho. (This operation can be viewed as projecting" the estimate Hh onto the

constraint set X .) If the space X is not convex, there could be several such signal

values; we assume that some deterministic rule is used to choose one of these. Each

iteration decreases the cross-entropy and increases the likelihood function p(4,Y) and

thus produces a better' signal estimate. Note in particular, that the only difference

between XMAP and MCEM is that rather than choose the signal estimate by calculat-

ing the expectation over X of a Gaussian centered at Hh4, we instead sin ly choose

the value in X closest to Hoj. (In effect, we estimate x by finding the mode of the den-

sity py(x IYE) rather than its mean.)

To prove convergence of the algorithm, note that not only p(x yx) but also p(x)

and p(y) are uniformly log concave. Since p(x,Y) =p(Y i:)p(x)<p(&), the likeli-

XMAP Iterative Algorithm

Guess ,fEX

For k=0,1, - -

- = Ey[Y I I= f PyX( ]i4) dy
4+1 -i' Y

+1 -sin I-Hji 2
Ea

-
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hood p( ,Y) must drop to zero as i I-a t. Each iteration of the algorithm increases

the likelihood function p( ,Y), however, and thus the estimates /4 must remain

bounded. Our convergence theorems then guarantee that the sequence of stimates 4

must converge to the set of critical points of p(x,Y) and/or local maxima on the boun-

dary of X.

If X and Y are both convex, much more can be proven. By Pre'kopa's theorem

(see Appendix D), p(Y l1) will also be log concave, and thus p(x,Y)= p(Y i;)p(.)

must be uniformly log concave. Theorem 2.10.4 then guarantees that p(S,Y) must

have a unique global and local maximum, which can also be the only critical point.

The algorithm must therefore converge to this unique XMAP solution. Appendix E

proves in addition that projection operators and conditional expectation operators of

truncated Gaussians are both non-expansive mappings, while the filters are contraction

mappings. This leads to the conclusion that the signal and output estimates c, con-

verge at a geometric rate to the unique XMAP solution x., y.:

IIt+1 -Y' jiR C Vy Ilk,+1- llV < VY-, v- H' R (5.5.4)

where v, v are exactly the same convergence factors as in the MCEM algorithm.

6. Maximum A Posteriori Output Estimation (YMAP)

Yet another approach to estimating the unknown is to try to find the most likely

value of the output y in the set Y, given that the signal X is somewhere in X:

YMAP: - max p(X,y) = max fp(,2) g (5.6.1)
tEY XY X

This, of course, is identical to the XMAP algorithm except with the roles of nd y

reversed. We would thus expect YMAP to behave similarly to XMAP; in particular,

the function p(X ,y) will usually be difficult to compute and unpleasant to optimize.

4
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One approach to solving this problem is to exploit the relationship between cross-

entropy and MAP which we discussed in chapters 2 and 3. Solving the YMAF problem

(5.6.1) is equivalent to minimizing the cross-entropy H(qXqy) given in (5.4.1) but

with the constraint that the output density estimate must be an impulse function,

ly(y)=-b(y -). The signal density estimate (iX&) will be a truncated Gaussian,

exactly as in the MCEM algorithm.

qx,,,(L) = PX ( i) (5.6.2)

and the location of the output density impulse 6(y -k) will be found by solving:

+~ ma E log ) xtl 

- mi E l I Xy-B_-II Ii h ] (5.6.3)

-min f I1-B- !1 P X (R y d
X(Y 

where EX[-E [ ] is defined by this last line. Thus we choose each output estimate

+4 1 (Y to minimize the average distance to the filtered signal vaue B. Since the

"correct" value of ~ is unknown, this averaging process is imperfect, and so the algo-

rithm iterates, using each new output density estimate to improve the averaging on each

pass. Because the expression in (5.6.3) is quadratic in both E and y, it is easy to com-

pute the expectation and to solve the minimization. The resulting algorithm takes the

form:

I



- 193-
I

4

We start with an estimate of the output a. Filter this, H:, to get the best least

squares unconstrained estimate of the signal. The additional information that X (X is

accommodated by estimating /4+1 as the mean of a truncated Gaussian distribution

over X centered at Hoj. The output is then reestimated by passing t'his signal estimate

through B, then finding the element in Y which comes closest to this. On the next

pass, the new output estimate is filtered and used to find an even better signal estimate.

Each iteration decreases the cross-entropy and increases the likelihood function p(X ,y),

and thus improves the estimates.

To prove convergence, note that p(X ,y)= p(X l)p(y) - p(y_). Since p(y) is uni-

formly log concave, pCy)-O as ly 11. Since YMAP increases p(X ,y) on each pass,

the estimates j4 must be bounded. Since p(Y ,) is continuously differentiable, the dis-

cussion in chapter 3, section 9.3 implies that 4 must therefore converge to the set of

stationary points of the algorithm and critical points or local maxima of the likelihood 4

function p(X,y).

If in addition X and Y are convex, then since p(j jy) is log concave, Prdkopa's

theorem (see Appendix D) guarantees that p(X IY) is also log concave. Since p(x) is

uniformly log concave then p(X ,y) = p(X iy)p(y) must also be uniformly log concave.

With Y convex, by theorem 2.10.4 p(X ,) must therefore have a unique global and

local maximum which can also be the only critical point. The iterative algorithm is

4
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therefore guaranteed to converge to this unique global maximum, i., y.. The conver-

gence rate can be proven to be geometric in the same way as before, with:

IlItY- -t W R < Vy I4+1-i' 1iV C VxVy ilYk -Y,' IR (5.6.4)

where v, vy are the same convergence rate constants as in MCEM (5.4.7).

7. MAP Simultaneous Signal and Output Estimation (XYMAP)

The last estimation method we will discuss estimates the signal and output by find-

ing the combination of values g and i which jointly maximize p(x ,y):

XYMAP: i , - max p(.,y) (5.7.1)

Substituting the log probability density (5.2.2) into this and simplifying yields:

x, _ - rmin JIAx II + il -IR I! (5.72)

XYMAP is thus equivalent to a least squares minimization problem which tries to find

the signal X with the least possible energy IlAx flQ for which B also comes as close as

possible to being a feasible output value y (Y. Despite the fact that this objective func-

tion is quadratic, it is usually difficult to solve this directly due to the constraint that

x X, y E Y. Iteratively minimizing this density first with respect to and then with

respect to y is often much simpler:

We start with an initial estimate of the output. Filter this estimate with the matrix H to

XYMAP Iterative Algorithm:

Guess o0 E Y
For k=0,1, - -

*k +1 Min II -Hh I
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find the best least squares unconstrained estimate Hik of the signal given A. Since this

is usually not an element of X, we use the element in X closest to H9x as our signal

estimate Xi - (this corresponds to "projecting" the filtered output estimate HFI onto the

space X.) Next we process this signal estimate through B to find the best least squares

unconstrained estimate of the output, Bt +1. Since this usually does not meet the out-

put constraints, we use the element in Y closest to B. +1 as our output estimate +1

(this corresponds to projecting Bi + onto the output space Y.) If X or Y are not con-

vex, the projection operators may have multple solutions; in this case, we use some

deterministic rule to pick one. On the next pass, the improved output estimate is used

to get a better signal estimate. Each iteration increases the likelihood function

p(t , ), and thus improves the estimates. To prove convergence, note that p(r ,2) is a

uniformly log concave function, and thus goes to zero as !lx it- or HS i. Since

XYMAP increases p(,Vk) on every iteration, the estimates must remain bounded,

and since p(x,y) is continuously differentiable, ou- convergence theorems guarantee

that the estimates will converge to the set of critical points or local maxima of p( ,y).

If X and Y are also convex, then each step of the iteration is guaranteed to have a

unique solution, and Appendix E proves that the estimates converge at a geometric rate

to the unique global maximum x., y. of p( ,):

Uj- ;1 X IR V, 1i+1 -X- Ilv < Vvy !la -. liR (5.7.3)

where v, vy are the same convergence rate constants (5.4.7) as in all our other algo-

rithms.

8. Comparison of the Algorithms

Unlike the parameter estimation problems of chapter 4, it will generally not be

possible to find an asymptotically consistent and efficient estimate of an unknown

I



196

signal. Judging the algorithms on the basis of their asymptotic properties is thus not

possible. A more workable approach is to define the MMSE estimates as the '"best" we

can do, and then compare our iterative algorithms to see how closely they match

MMSE.

To a large extent, the behavior of our algorithms can be predicted (albeit with

much hand waving) from the drawings of typical convergence patterns shown in figure

5.2. MMSE, which calculates the expectation of s (X and y E Y, will give estimates g,

5 which are in the interior of X and Y, and located near the :losest meeting of these

two spaces. MCEM, alternating between filtering and conditional expectation calcula-

tions, will also give estimates in the interior of X and Y located near the closest meet-

ing of the spaces. We might therefore expect its estimates to be "near" those of MMSE.

XMAP alternates between calculating the expectation of y, and projecting the filtered

estimate Hi, onto the signal constraint space X. The output estimate L will be in the

interior of the set Y, while the signal estimate 4 will usually be on the boundary of X

as near to H% as possible. Paradoxically, we would therefore expect the XMAP out-

put estimate to be close to the MMSE solution, while its signal estimate (the original

goal of the algorithm) will be far from the MMSE estimate. YMAP alternates between

projecting the filtered signal B4 onto Y, then calculating the conditional expectation of

X in X. The 4 estimates will be in the interior of X while the j4 estimate will gen-

erally be on the boundary of Y as near to B4i as possible. We would therefore expect

YMAP's estimates of the signal , to be near the MMSE estimate, but the output esti-

mate (the original goal of the algorithm) will be far from the MMSE estimate. Finally,

XYMAP alternates between filtering steps and projections onto X and onto Y. Both

signal and output estimates will generally be on the boundaries of the constraint sets,
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Figure 5.2 - Convergence Patterns of Reconstruction Algorithms
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and the algorithm will converge to the pair of points in X and Y which are as close to

each other as possible and have as little energy as possible. Both estimates of and Y

will thus be far from the MMSE estimates. In general, therefore, we might expect

MCEM to come closest to MMSE. XMAP will give good output estimates, YMAP will

give good signal estimates, and XYMAP will give poor estimates of both quantities.

This must be balanced against the fact that MCEM is the most difficult to calculate, as

it requires two conditional expectations per pass, while XYMAP is the simplest, since it

needs no conditional expectations at all.

To give some concrete basis to this handwaving, we will consider an illuminating

example, which happens to have direct bearing on a phase-only reconstruction algo-

rithm we will consider in chapter 7. Let us suppose that x and y are 2 element vectors

in R2 generated by a linear Gaussian system like the one in figure 5.1 with parameters:

N = 2 (5.8.1)

A=B=I

Q qI ; R = rl

so that:

P(J ' ) = (2r exp[-~ |-I-xT 1 + )T( ) ] (5.8.2)

(2.r q r

Suppose that the observation data available indicates only that the signal is some-

where in an infinitely long and narrow strip which starts at the origin, is oriented at an

angle of 0, and has extremely narrow width E>0. This observation data defines the

constraint space X. The output y is observed to lie on another infinitely long and nar-

row strip which starts at the origin, is oriented at angle 10 1<a--, and also has width .
2This defines the constraint space Y

This defines te constraint space Y.

I
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X = = xlj> O and - - -x2-< 2
2 2 2

' = cs v =2 sin0 |
~Y YI ( is n J 8 Y os YjIosO and

i-a) r'

E

f

(5.8.3)

-- - I
2 2

4

Y

X

T X22

Example - Constraint Sets X and Y

Technically, it is necessary to give sets X and Y non-zero width in order to ensure that

their measures will be non-zero. (Other methods could also be used for dealing with

this problem.) Computationally, we will simply set E=0, and estimate x 2 =-Y 2=0.

Let = -r and h = - (these correspond to the matrices H and V in (5.4.3).)
q +r r

Substituting the probability density (5.8.2) into our iterative procedure and simplifying

gives the four algorithms summarized in the table below. Because the constraint spaces

are simple half-lines, the projection operators are particularly easy to compute in the

MAP algorithms. The expectation operators, however, are somewhat more compli-

cated, since they involve evaluating an error function (this is a standard subroutine in

most numerical software libraries.)

I

I

I

0

0
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where:

() = v/' exp(- 2)0.5 + erf(a)

[({) .= /r exp(--~2 )0.5 + erf(P)

with a = hv l-_:coso

with P 3=I x1 kcosO

erf(w) 2 f exp(- 2) dT
V2 o

Because this example is so simple, it is also possible

Aour iterative algorithms, as well as MMSE:

to calculate the exact solutions of all

Method Signal Estimate Output Estimate

MCEM: ixk -= hY 1 ,- _cosO t(a) Y I, = 1xl COO -S(3)

XMAP: i 1, = hyk _-1cosO Y = - k l cos0 - ([)

YMAP: I 1Y = Xr9 l -IC oos + () = os

XYMAP: 1, = h',l- co s e Y l, =_ _tcosS

and:

(5.8.4)

(5.8.5)

1 I71

MMSE: X(X) 4(X)

MCEM: ((X) )(X)

XMAP: k/7r ql(X2) r(X 2)

YMAP: n(x 2) XVAT(x2)

XYMAP: 0 0

b
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where X= I cosO, n(X) is the solution to:

](k= 1 exp(-' 2 (X)) (5.8.6)
1-X 

f exp(--4(x -X()) 2 ) dx
0

and +(X) is the MMSE solution:

Jls(A3 = -------- -= 1 (5.8.7)

(1-X)fj exp ( -%(x 2 y 2-2Xy) ) dxdy
o O

Figure 5.3 also illustrates the convergence and final solutions of the five estimation

algorithms for the parameter values gq =3, r =1, 0=450° MMSE yields the best" esti-

mates in the sense that its estimates are unbiased and enjoy the pleasant symmetry

,'v = irv. Unfortunately, it requires evaluating a double integral. (Actually, scien-

tific software libraries such as ISL contain a subroutine call which evaluates this

integral. In more complicated examples, however, the integral required is usually

prohibitively difficult.) The MCEM algorithm requires evaluating an error function to

calculate each of the conditional expectations on every pass, and thus requires more

effort than any of the other iterative schemes. Its esimates, however, are the closest to

the MMSE estimates, and they sow the same pleasant symmetry = T. Note

from figure 5.3 that MCEM's convergence rate is geometric until near convergence.

XYMAP is the simplest algorithm, in that each pass only solves simple projection prob-

lems. Note also the simple geometric convergence rate in figure ^. T T-,,-, , in

this problem the signal and output estimates which are as close as possible and have as

little energy as possible, are =~ =0. Of all our iterative algorithms, these XYMAP
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estimates are the farthest from the MMSE estimates. The XMAP and YMAP alga-

rithms give intermediate performance and have intermediate difficulty, using one error

function evaluation per pass. Paradoxically, as noted before, XMAP has the better

output estimate and YMAF has the better signal estimate.

Our conclusion is that MMSE would be the method of choice if the computation

required were not excessively difficult. The MCEM algorithm is next best, provided

that the conditional expectations can be calculated easily, XMAP and YMAP are less

work than MCEM, since they require only one conditional expectation calculation per

pass rather than two, but their estimates can be more biased. Finally, XYMAP is the

easiest to calculate, but can give estimates which have a large bias.

9. Linear Variety Constraint Sets

These optimal signal reconstruction algorithms simplify considerably when the con-

straint spaces X and Y are linear varieties defined by linear equality constraints on the

signal and output values:

r i } where: G is a p xN matix
X j is ap xl vector

rY i 1 I G~ -P lwhere: G, is a q xM matrix

Y y is a q xl vector

'We will assume that the constraints on r and y are consistent and independent so that

Gx and G have ftdl row rank, and so that the constraint sets are non-empty. In

chapters 7 and 8 we discuss in great detail two applications of this type of model:

bandlimited signal extrapolation, and reconstruction of a finite length signal from

knowledge of the noisy phase or other projection of its Fourier Transform or its Short-

time Fourier Transform. From a theoretical point of view, this type of model is

l
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interesting because much more powerful analysis techniques can be applied to this prob-

lem than are available for the more general case of convex constraint sets. In particular,

we will prove:

a) MMSE and all four of our iterative MCEM and MAP algorithms all give the

same unique estimate of , and Y, and all can be viewed as solving a con-

strained least squares problem.

b) Two categories of closed form solutions can be stated, corresponding to pri-

mal and dual optimization problems.

c) Two types of iterative algorithms can be stated, corresponding to the primal

and dual problems, both of which are guaranteed to c , erge at a geometric

rate to the unique globally optimum estimate.

d) The computational noise sensitivity of the algorithm can be analyzed, and can

be shown to be directly related to the convergence rate of the algorithm and

the ill-conditioning of the problem.

e) Each step of the iterative algorithm defines a linear mapping from X to Y

and back again. The eigenvectors of the mapping form a complete orthonor-

mal set, and the eigenvalues are all real, non-negative and less than v v <i.

f) Acceleration methods are easily devised using line search extrapolation algo-

rithms.

g) Both primal and dual problems can be transformed into problems which can

be solved by PARTAN or a conjugate gradient algorithm. Each step of these

methods is virtually identical to our accelerated algorithms, but convergence is

achieved in a finite number of steps.
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9.1. All Algorithms Give the Same Result

Because X and Y are linear varieties, integrating the Gaussian density p(, , ) over

these spaces simply yields another Gaussian. Thus p,y(x,y) is Gaussian, as is

PX Iy( !y), Py X (a ) and all the other possible permutations. The signal and param-

eter density estimates will also be (non-truncated) Gaussians, 4X(x) = pX ly ( : I) and

y(y) = Py x(y Ii). Since the mean and the mode of a Gaussian coincide, the mean of

Pxy(xr,) (the MMSE estimate) is identical to the mode of pXy( ,x) (the XYMAP

estimate). In addition, our iterative algorithms differ only in that some estimate g or 

by calculating the means Ex l[r iY] or E [y i ], while others effectively calculate

the modes maxp(s 1*i) and maxp(y ix). Since the means and modes of a Gaussian

coincide, all four algorithms will generate exactly the same sequence of estimates if we

start them at the same estimate, and all will converge to exactly the same answer as a

MMSE. In discussing linear variety constraint sets, it is therefore sufficient to focus on

any one of the approaches we have discussed - we will choose XYMAP since it is the

easiest to understand.

9.2. The Primal Iterative Algorithm

The XYMAP log likelihood function is:

logp(x ,y) 2 { I1 Ax, 1,+ Ily-B. - , 4- K (5.9.1)

Because the constraint sets X and Y are closed, non-empty and convex, and because

this density is uniformly log concave in x and y, the XYMAP iterative algorithm is

guaranteed to converge geometrically to the unique global maximum estimate at a rate

-,vy given in (5.4.7). To solve XYMAP, we iteratively maximize the density (5.9.1)

4
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with respect to x and then wt respect to y, using Lagrange Multiplier techniques to

enforce the constraints G = :, and Gyy =y - (See, for example, Luenberger. [1] )

Given an output estimate 2, we maximize p(x ,:) over EX by forming the Lagran-

gian:

Lm +1logp( .r) + A [G-IX ] (5.9.2)

and then locating the stationary point of this function with respect to AX and r. Simi-

larly, given h +l, we can maximize p(4 ,1,Y) over y Y by finding the stationary point

of the Lagrangian:

L1= 1logp(4+1,y) + XTGl - (5.9.3)

Solving these problems gives:

Primal Iterative Algorithm:

Guess 0EY
For k =0,1, - -

4+1 = PHB+-

where:

P = [I-RGT(GRG)-IG , ]

X = VGXT(GVGXy)- x

x = RGr(GRG)- '

The matrix H, once again, is the filter which calculates the best unconstrained least

squares estimate of x from y. Matrices P, and P are projection matrices (see Appen-

dix G for a discussion of the properties of these matrices.) P effectively projects H4

onto the null space of the matrix G,, thus removing the component which is orthogonal

--
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to the constraint set X with respect to the inner product <-, >v. To get a signal esti-

mate which satisfies the constraints, we add back the vector, E, which satisfies GJx=y1
I

and which is orthogonal to the null space of G,. (The vector j is thus the minimum

norm ![' !Iv element in the constraint space X.) From figure 5.4 it is clear that the

resultin-g signal estimate 4 + 1 is the element of X which is closest to Ha. To reestimate g

the output, pass this signal estimate through the filter B, then project the result onto the

output constraint set Y by multiplying by P,. The matrix Py behaves in a similar

manner as Pt, removing the component of B~ +1 which is orthogonal to the constraint

set Y with respect to the inner product <-,>R. This leaves only the component in the

null space of the matrix G. The output estimate is then formed by adding back the

vector, Y, which satisfies Gyi =ty and which is orthogonal to the null space of G,.

-PxH k+X
A -~~~~~~

Figure 5.4 - Behavior of Projection Operator P, 

Each iteration increases the likelihood p(4i,~) and thus improves the estimates.

Since X and Y are convex, the algorithm is guaranteed to converge at a geometric rate 4

to the unique global maximum solution x., y.-:

4
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11 +1i- H RIR Vy 11ia-1 -S IV VxVy I Ik -uY hIR (5.9.5)

Appendix F gives slightly better upper bounds for the convergence rates v, v for the

linear problem:

+ Ix ! Uv P ?[ .59.6)

v =LV R ¥ R'2 FPBP 1 i,, i < 1

9.3. Eigenvalues and Eigenvectors of the Algorithm

Each iteration of the algorithm defines a liear mapping from the signal space to

the output space and back again. Some insight into the convergence behavior of our

algorithm can be gained by examining the eigenstructure of this mapping. Recognizing

that the solution ., y. is a stationary point of the algorithm, it is easy to show that:

4+l- &m = PHPB(. -.- ) (5.9.7)

jk+1- = PyBPH(4 -yX)

These equations can be put into a more symmetric form by recognizing that if 4 ,.(X

then -x_. must be in the null space of G, and must satisfy P (X} -) = -a-. Simi-

larly, -y. must be in the null space of Gy, and so must satisfy P (t-y.). This

implies that:

h+1 -a = PHPyBP, ( -x_.) (5.9.8)

tk+- :' X= PBPxHP, ( -)

Appendix G analyzes the eigenvalues and eigenvectors of these two matrices P, HPy BP,

and PBPXHPX and proves the following results:

a) The eigenvalues of both matrices are all real, non-negative and less than v, v,.

_�___�___
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b) The eigenvectors i of PXHPyBP1 form a complete orthonormal basis for RN

with respect to the inner product <-,'>-. Similarly, the eigenvectors A of

PBP, HPy form a complete orthonormal basis for RM with respect to the

inner product <-, >R.

c) The non-zero eigenvalus Xi of these two matrices are identical, and there are

less than min(N -p ,M -q) such eigenvalues. Moreover, there is a one-to-one

correspondence between the eigenvectors of the two matrices corresponding

to non-zero eigenvalues, efined by i = ' PyBi and •ki PH 

All such eigenvectors mi are orthonormal elements of the null space of G,,

Pdh =i, and the eigenvectors A, are orthonormal elements of the null space

of G, PY= : .

The fact that all eigenvalues of P BP, HPy and P HP BP, are real and are

between 0 and v,vr implies that the convergence rate will be underdamped, and sug-

gests that acceleration methods ought to be very effective at improving the convergence

rate. It also suggests that since v, v - as the signal-to-noise ratio -, that the eigen-

values of PyBP1 HP, and PHPBPx may be very close to 1 at high SNR, and thus the

convergence rate can be very slow. Finally, note that the eigenvalues and eigenvectors

of these two matrices have all the properties of the faImed prolate spheroid functions; in

fact, we will show that in the special case of bandlimited signal extrapolation, these

eigenvectors are the discrete prolate spheroid functions.

9.4. Closed-Form Solution - Primal Problem

A direct closed-form solution for this problem can be easily derived. The globally

optimum solution , must be a stationary point of the algorithm, and thus must

I
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satisfy both the equations in (5.9.4). Thus:

- ,B I L 3 (5.9.9)

Adding Py B times the first row to the second gives an alternate expression:

(I-PBPxH )}i + [ PB ] (5.9.10)

This can be put into a somewhat more convenient form by the same trick used in the

previous section. Because , 22 is a stationary point of the algorithm, it can be

expressed in the form: y = Py+ f. Substituting this into (5.9.10) gives a more sym-

metric formula for y:

(I-PBPHPY )!= [ PyBx 1 (5.9.11)

x = PXHi +i

Similarly, a direct formula for X can be derived from (5.9.9) of the form:

(I-PXHPBP ) [ t P Hi (5.9.12)

X = P,_ +

The chief problem with this closed-form solution is that in most applications the

number of variables N and M is quite large, and storing and solving such a large set of

simultaneous equations can be quite difficult. The iterative algorithm has the advan-

tage that if GXVGT and GRGT are diagonal or are easily diagonalizable, a situation

that occurs in all the examples of chapter 7, then solving each step of the iteration is

quite simple.

A much more robust approach to solving for and x would be to return to the

original constraint equation:

0[O :o ) [ [y)(5.9.13)
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and to recognize that our algorithms are simply solving for a minimum norm solution

to this underdetermined set of equations. Numerically robust algorithms such as

Householder transforms could then be applied to solve this problem directly. This sub-

ject, however, is beyond the scope of this thesis (see, for example, Lawson and Hanson

[21.)

9.5. Dual Problem - Iterative Algorithm

A rather different approach to solving this problem is to construct the dual optimi-

zation problem and solve that instead. Introduce Lagrange multipliers X and y , and

fo-m the Lagrangian:

Ls = logp(x,y) + A [G xE +Y X G (5.9.14)

The maximum of p(,y) over the domains , EX, y Y corresponds to the stationary

point of L with respect to Y, , -, and _y, It is also well known (see, for example,

Luenberger [1] ) that this stationary point is a saddle point of L,. and that it satisfies a

min-max law:

min [maxL. max [ minL ] (5.9.15)

The left hand side of this equation represents a dual algorithm for locating the solution

to our problem. First maximize L over all possible x, y; this gives the estimates:

liT 0 [T-: (5.9.16)

Substituting these values back into L, and simplifying leaves the dual problem:

Y 2 0 Y l GT & Y

z. I n G, 12 vT v I (5.9.17)
k_.yr,71
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This is a positive definite, uniformly concave quadratic function of ,, . A formula

for the solution is easily stated (see the next section), although the large number of

equations, p ?q. may make a direct solution prohibitively difficult. We therefore con-

sider an iterative approach, minimizing first with respect to , then with respect to y,

iterating back and forth until the estimates converge: The resulting algorithm can be

put into a very elegant framework if we first transform to new variables. Let Vx and

Vy represent the a priori variances of X and y respectively:

V = A-IQA -T (5.9.18)

V = BA-1QA-TBT + R

Then define:

e = A-QA-TG TX (5.9.19)

- [BA -1QA TT R ] Gy Y

Beware that these variables g, and gy have dimensions N and M, and are much larger

than the original p and q dimensional Lagrange multipliers and )y. The iterative

dual algorithm can now be put into the form:

I where: 

Q. YXG [GX VIG ] GX

I

Dual Iterative Algorithm:

Guess 

For k=O,1,- --

Ri = -Q H- 

Yi't, = - BB+1 

Iterate to convergence, then:

YX +1 = x,+, + HHY,

4 4 = BO~-k + AY +I

I

I
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Q, -VG. [GyV., GyI Gy (5.9.20)

y =VYGT [GyVyGyT ] 

nY=V,G [LGVVYGT ZI

and where H is the same filter matrix (5.4.3) used in our primal algorithm. Both Q,

and Q, are projection matrices, playing a role similar to that of P, and Py in our pri-

mal algorithms, except that these matrices project vectors onto the orthogonal compie-

menw of the null spaces of Gx and Gy respectively. We start with an estimate of the

"output multiplier" fy. Filter this with the matrix H, then multiply by Q, to project the

result onto the orthogonal complement of the null space of G,, with respect to an inner

product < , >v,. Subtracting this from the minimum norm I llv, element j, in X

gives the "signal multiplier" estimate fix.,t which points from Hy,, to the closest element

in X (see figure 5.5).

I

U

eYk
I

Figure 5.5: A = - QHf +A

Now to reestimate the output multiplier", we pass the signal multiplier estimate .t+

4

^ U A,
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through the filter B, then multiply by Q, to project the esult onto the orthogonal com-

plement of the null space of G,, with respect to an inner product <., ->. Subtracting

from the minimum norm 1' i!v, element 3y in Y, thus estimates fi,.1 as the vector

pointing from BS+,. to the nearest element in Y. On the next pass, this improved out-

put multiplier estimate is used to improve the signal multiplier estimate. Each iteration

decreases the quadratic objective function (5.9.17), and in fact all the convergence argu-

ments presented for the primal algorithm apply to this dual algorithm as well. In par-

ticular, Appendix F proves that the estimates are guaranteed to converge to the unique

global minimum solution g,., p.g at a geometric rate:

II 2+ 1, - . lv, I V y 11 0.,, - Px. !Ilv v, Vy IIL YI - l,. Iv, (5.9.21)

where v, Vy are exactly the same convergence factors as in our primal algorithms. We

can also show that:

,. - a. = Qx HQ, BQx ( ia - . ) (5.9.22)

ay - y. = QyBQx HQ, ( Y, - y. )

and the eigenvalues and eigenvectors of tQZHQyBQY and QyBQHQ have similar pro-

perties as listed in section 9.3. All eigenvalues are real, non-negative and less than

, vy, the eigenvectors form a complete orthonormal basis, and there are at most

min(p ,q) non-zero eigenvalues, and their corresponding eigenvectors are elements of

the orthogonal complements of the null spaces of G, and Gy respectively.

After the multipliers ps, f, converge, the signal and output are estimated by

adding appropriate multiples of the signal and output multipliers. Note that with the

formulas given, G. = , and Gy = , so that 4 +1 X and 1 Y.

I
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9.6. Dual Problem - Closed-Form Solution

Several different closed-form solutions can be found for this dual problem. Since

the solution must be a stationary point of the algorithm, one approach would be to sim-

ply combine equations (5.9.20):

[QyB I j (2 1 (Pe = (5.9.23)

Subtracting an appropriate multiple of the first row from the second or vice versa, and

recognizing that i = Q, -i, and ly = Qy ly + _y , gives alternate versions:

= -4QyB 

Or:

(IQYBQXHQ ) = - QyB [ -Q.H (5.9.25) 

= -Q H y Q .

One potential difficulty with these equations is that in using the variable transformation

(5.9.19), we have increased the number of variables from p -- q to N +M. A smaller

number of equations would result, therefore, if we returned to the original dual prob-

lem (5.9.17) and solved it directly:

; G, 0 ] i &T 0

0 G, V y 0 G T (5.9.26)

In some applications, this dual closed-form solution may be easier to solve than our pri-

mal closed-form solution.

r

I
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9.7. Computational Noise Characteristics

Because all the operations in these algorithms are linear, it is straightforward to

compute the effect of computational noise in our iterative algorithms. We will analyze

the primal algorithm only; the dual algorithm can be treated in exactly the same way.

We consider two sources of computational noise. Suppose that the correct values of x

and in (5.9.4) are given with errors , and y, and suppose that on each pass 4 and

are calculated with errors _,, and y,. Thus each iteration calculates corrupted esti-

mates 4 and % given by:

+1 = P, H + (g + , ) + ± .+l (5.9.27)

+ 1 PBi + ( +y) + t,,+

Expanding both the noise-free iteration (5.9.4) and noisy iteration (5.9.27) recursively,

using P Py =Py, and aking the difference:

2 _ (,BP., H) (ay g 3 + p B(%t ) (5.9.28)
m =0

Taking the norm of both sides:

Ik2-L IIR i IPBPXH1Ir { i, b t lRiR + IIPB(Z -X,3ii ) (5.9.29)5n
a-

The argument in Appeudix F proves that 0lPBP H jR v vY, and is thus less than 

If we assume, furthermore, that the computation noises , - and + - have

about the same norm 11 + , t iv and Il , +,, ItR on each pass, then as k .:

11Y 1 R l { lty +_ 11R + 11 P,B(a +± ) lv } (5.9.30)

If the signal-to-noise level is very high, then vvy- 1, and the computation noise sensi-

tivity Wiil be very high. Note that this is exactly the same situation in which we expect

slow convergence and ill-behavior of the closed form solution. The difficulty is clearly

I
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intrinsic to the formulation of the problem.

9.8. Acceleration of the Convergence Rate

As discussed in chapter 3, section 11, these iterative algorithms tend to zig-zag

along the ridge in the probability density p(x ,y) toward the global maximum. At high

SN, the contours o p ) will become very eiical, eah zig and zag il become

very short, and the convergence rate will slow to a standstill. One solution, as sug-

gested in chapter 3, is to recognize that a line connecting successive estimates will follow

the ridge, and thus searching along such a ine for a maximum should give an estimate

that is much closer to the global maximum. Since logp(_ ,) is quadratic, such a line

search requires little additional computation. The resulting algorithm has the form:

Guess ,o, Yo

For k =0,1, -

k = Px H +~

P ,ik =

(4 +1, +1) (1 -X)(4 , ) X( -14 ky -I ') 

TATQ -1A( '-t- k_ ) Ak TR-1(A -- At_ i ' )

-where: o -=
(11A4 '--) i!Q A i--1 R

ak' = ~ -Bi~'

In the above version, we use one iteration of our usual algorithm to estimate , ', Y',

then search along the ine connecting the last pre-extrapolation estimate _Y', 4 -1' and

4 ', _ ' for a maximum of log p(x,y). An alternative approach, which doesn't seem to

be quite as effective, would be to try searching along the line connecting 4', jk' and

the last post-extrapolation estimate 4, y for a maximum. These methods were sug-

gested, in a somewhat different form and with a rather different interpretation, by

4
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Hayes and Tom [31. Similar techniques could also be used to accelerate the dual algo-

rithmn.

9.9. PARTAN and Conjugate Gradient Methods

The interesting point about the above acceleration technique is that by using both

types of acceleration mentioned above on every step, we actually arrive at a PARTAN

algorithm which is guaranteed to converge in a finite number of steps! We discuss the

primal problem first. Let us start by trying to solve the closed-form problem in

(5.9.12). Multiplying on the left by V - 1 gives:

[V- - 'PXP,BP. , =V-1 [ (I+PrHPB) PH 1 (5.9.31)

It is easy to verify that the matrix on the left equals V - 1 - PTBTPrBP, and is thus sym-

metric and positive definite. Call the matrix on the left T, and call the vector on the

right b. Solving Tx =b is equivalent to minimizing ,xTTK -Tx_, a problem than can be

solved either with a PARTAN algorithm or a conjugate gradient algorithm in a finite

number of steps. PARTAN is the easiest to state (see, for example, Luenberger. [1] )

Start at an initial estimate .0- Search in the direction of the gradient of ¢,xTT -Tx

for the minimum i 1. On every step following this, calculate the gradient = T -b,

and search along this gradient for a minimum 4 ". Next search long the line connect-

ing 4t-1 and " for a minimum +-1. Repeat for N-p steps (the dimension of X)

and the final estimate of p will be exactly the correct global minimum to the prob-

lem. This simple approach can be simplified even further by several tricks. The gra-

dient of xTT -Tx happens to be calculated by one iteration of our original algo-

rithm; also doing a line search for the minimum of _rTTX - TK happens to give the

same answer as a line search of the function logp(x ,y). The final PARTAN algorithm

takes the form:
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Guess: -1 = o

-1 = o = PyB/o-'-

For k=O,, ,- - N -p

k' = PHh -

4 'ATQ -A(4 '-) + AkR -'R-(At'-Ak )

IIA('-) + i 

where: A' = k'-B

a, =Y -B

(g",") = (-a)(~ ',:) + a+ (k,hi)

='ATQ-tA(a-_n- + A"RT-A(Ak"- Ak _l) 

IIA(4 "-4-0)tll + !ia -a -1i2

(4+1i+D = (1-k)(k".Yk) + ,(A-,.-)

This algorithm is very similar to the accelerated iterative algorithm given in the previ-

ous section; it starts with the usual filter-project-filter-project step, followed by two sim-

ple line search steps. The major (!!) difference is that this algorithm terminates in N -p

steps. (Actually, meticulous analysis would indicate that the only directions searched

belong to the space spanned by the eigenvectors of P HP, BP whose eigenvalues are

non-zero. Thus the algorithm should theoretically converge in a number of steps equal

to the number of non-zero eigenvectors, which is at most min(N -p ,M -q).)

Another equivalent version of this algorithm is the conjugate gradient algorithm.

This version also terminates in at most N -p steps, but is more storage efficient. For

details see Luenberger 11]; the final computation takes the form:

Guess: 0O

I

--
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P, H2O + x-

- do = o-i 

k=0,l, -- -p

4 = d - P HPy Bk

& = &tTV-Ig

TkV
or: & = - TVl

Tk )

+1= +ctkd4

g t+l = g + & jtt

T +V- 1g

A+ = -9+ + kd6

( or: gki = + - P HPy B + 

or: 3k _ Ti V 1 a )
TVt J

The alternative formulas given above in parentheses are less convenient, though

theoretically equivalent methods for calculating the required values. Note that, once

again, each iteration requires one filter-project-filter-project step, plus two

extrapolation-like steps with factors &k and kt.

Although these two algorithms theoretically converge exactly in at most

min(N-p,M- q) iterations, in practice more iterations are often needed to solve

extremely ill-conditioned problems. If many more iterations will be needed, Luen-

berger suggests restarting the algorithm at intervals greater than or equal to

min(N -p ,M -q) in order to avoid convergence problems caused by build-up of errors.

Finally, Luenberger also suggests various ways to modify these algorithms to solve

problems with non-linear objective functions or non-linear constraint sets.

Another set of algorithms result if we start by trying to solve for y rather than x.

In this case we would have used equation (5.9.11) instead of (5.9.12) in beginning our

X1 =

O =

For

I

I

b
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analysis, and the algorithm would again terminate in at most min(N -p ,M -q) steps.

The dual problem could also be solved by a similar approach, starting either with the 

equations (5.9.24) or (5.9.25) using the transformed variables p, and i, or starting

with the equations (5.9.26) using the multipliers Ž. and Ay.

9.10. Infinite Dimensional Spaces

Although we will not prove this, nearly all the results above also apply to the case

when and y are infinite dimensional vectors. Assume that the infinite dimensional 4

linear operators Q and R satisfy Q-EI and R-I, for some >0, that A is a bounded

and invertible linear operator, and that B is a bounded linear operator. Then each

iteration of our algorithm still defines a contraction mapping on the linear varieties X,

Y. The difference between successive estimates must therefore decrease at the rate

v, vy, which implies that the estimates must converge at a geometric rate to the unique

global optimizing solution. For a more complete discussion of infinite dimensional sig-

nal reconstruction problems, see Youla [4] or Mosca [5].

10. Linear Ineqyality Constraints

Another. important special case is when the constraint sets X and Y are cones

defined by sets of linear inequalities: 4

.X {t ) (5.10.1)

Y {y GY C } 
A set of linear inequality constraints, or a mixture of equality and inequality con-

straints, defines a "simplex" constraint set, which is a convex, closed (though possibly 4

infinite) polytope. Since X and Y are convex, all of our iterative algorithms are

4
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guaranteed to converge linearly to the unique global solution of the MCEM, XMAP,

YMAP or XYMAP problems. In general, our different estimation criteria will give

different estimates of _ and y. Closed form solutions are difficult to derive except for

the XYMAP problem, which only requires maximizing the quadratic function

logp(x ,y) over a simplex constraint set X, Y. The Kuhn-Tucker optimality conditions

can be used to state necessary conditions for the point ( ,j) to be the global maximum

of logp(r,,y) (see, for example, Luenberger. [1] ) A wide variety of quadratic pro-

gramming algorithms have been developed for solving probl:ms like this. Most of

these are modified forms of linear programming which are able to calculate the exact

solution with a finite amount of computation. The disadvantage of these algorithms is

that most of them adjust only one variable at a time, and thus they can be very slow at

solving large XYMAP problems. Further discussion of these techniques is beyond the

scope of this thesis; for details see Boot6 or Kiinzi and Krelle.7 A dual XYMAP algo-

rithm can also be developed; it will involve minimizing the same quadratic function of

the Lagrange multipliers as in (5.9.17) but with the additional constraint that the multi-

pliers be non-negative.

11. Summary

In this chapter we have applied our MMSE, MCEM and MAP approaches to a

simple linear Gaussian system model of a stochastic signal corrupted by a linear filter

and additive noise. When the parameters of this system are known, four different

iterative algorithms were proposed for estimating the unknown signal and output given

only incomplete knowledge of the values of these unknowns. These algorithms all

iterate between filtering steps and a pair of projection and/or conditional expectation

calculations. Each iteration of the algorithms improves the estimates, and if the con-
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straint sets are convex, geometric convergence can be guaranteed to the unique global

optimum solution. The MCEM algorithm appears to come closest to the MMSE esti-

mates, but it involves more computation than the other iterative routines. XMAP and

YMAP have intermediate performance at intermediate computational cost, and

XYMAP is the simplest, though its estimates can be quite poor in some cases. If the 6

constraint sets are defined by sets of linear equations, then all our methods give identi-

cal estimates. Both primal and dual approaches to the problem can be formulated; each

leads to a different iterative algorithm whose convergence rate, computational noise

sensitivity, and eigenvalues and eigenvectors have been analyzed in detail. Closed-form

solutions for both primal and dul problems were derived. PARTAN or conjugate gra-

dient algorithms were also presented, which solve these primal and dual problems in a

finite number of steps; each step uses one pass of our usual iteration followed by two

line searches. Another case that can be treated straightforwardly is when the constraint i

sets are defined by linear inequalities. Here the Kuhn-Tucker optimality conditions can

be invoked to help find the solution, and quadratic programming algorithms are avail-

able for solving the primal or dual XYMIAP problems in a finite number of steps.

I

I
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Chapter 6

Applications in Optimal Signal Reconstruction

Part II - Fisher Theory

1. Introduction

The signal reconstruction algorithms presented in chapter 5 take a very interesting

form if we let the a priori signal covariance Q become uniformly infinitely large, thus

making the a priori signal density p(x) asymptotically "flat". In the limit Q =-, our

four Bayesian MCEM and MAP algorithms will be converted into Fisher MCEM and

MAP algorithms, in which the density p(x,y) in the cross-entropy expression has been

replaced by p(y i4)- In the case of XMAP and XYMAP these Fisher algorithms are

equivalent to Maximum Likelihood estimation problems; the philosophical interpreta-

tion of the Fisher YMAP and MCEM algorithms is less dear. All four of these Fisher

algorithms can be viewed as searching for a pair of signal and output estimates which

come as close to each other as possible and yet still obey the known constraints on their

values. Iterative algorithms for solving these Fisher algorithms can be derived which

are similar to those of chapter 5, alternating between projections or conditional expecta-

tions on the signal and on the output constraint spaces, except that no filtering steps are

used. Unfortunately, unlike the Bayesian algorithms, the Fisher estimation problems

are not guaranteed to have a solution, and even if a solution exists it is not guaranteed

to be unique. Our convergence rate factor v,,vy also approaches 1 in the limit as Q--,

and thus proving convergence of the algorithms is considerably more difficult; further-

more, the convergence rate can be sublinear. Once again, linear variety constraint sets

will be analyzed in great detail. We will show in this case that the convergence rate and

I
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computational noise sensitivity are a function of the "angle" between the constraint sets

X and Y. Closed form solutions, iterative projection algorithms and conjugate gra-

dient algorithms will be developed for both the primal and dual optimization

approaches.

2. Limiting Behavior of the Bayesian Algorithms as Qc

There are many practical signal reconstruction problems in which no real a priori

information is available about the energy in the unknown signal. One approach to this

problem would be to treat the signal as a Fisher non-random constant, and then

apply Maximum Likelihood to estimate its value. A more interesting and illuminating

approach, however, is to consider the case of no a priori information as a limiting

form of the Bayesian problem, in which the a priori signal covariance Q becomes infin-

itely large, thus making the a priori density p(tx) asymptotically flat. To avoid techni-

cal problems, let us assume that the dimensions of the signal and output spaces are

equal, N =M, and that B=I. Let the a priori covariance have the form Q = o,

where Q0 is a positive definite covariance matrix, Q0 > 0. Let p( ,:y) and p(r) be the

model densities corresponding to the a priori covariance Q = 1 Qo, and let H (qx ,q,)

be the corresponding cross-entropy expression for any of our algorithms. Given any

a>O, let X,(x) and (4() be the density estimates corresponding to the global

minimum of the cross-entropy expression for any of our algorithms. If we let NA(m ,V)

represent a Ga:lssian density with mean m and variance V which has been truncated to

the set A, then tte four estimation approaches discussed in chapter 5 yield density esti-

mates of the form:

4
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Bayesian

MCEM:

XMAP:

YMAP:

XYMAP:

4x,. 4"

NX(H~,Va) Ny(i,R)

( - i.) Ny(a, R )

X (H V,) 8(- -)

( -) 8( -)

where H,, Va are the matrices corresponding to Q= Q 0. If X and Y are convex,

then these global minimizing solutions are guaranteed to exist and to be unique for all

four algorithms. Even if X, Y are not convex, the MAP algorithms are still

guaranteed to have at least one global minimizing solution (we conjecture that MCEM

will also always have at least one global minimizing solution.)

As discussed in section 8 of chapter 2, as a-O and the a priori density p,,()

becomes asymptotically flat, we would expect our Bayesian density estimates lx, (),

qy, (y) to asymptoticaly minimize the "Fisher" cross-entropy expression HL (qX,qy)-

Remember that the Fisher cross-entropy is formed by replacing p(x , ) in the Bayesian

cross-entropy expression H=(qx,qy) by p(y r), and that it satisfies:

H,(qxqY) = HwL (q.,qy) - f q(x-) log p.(.x) d (6.2.1)

Note that p(y ) and thus HML(q x ,qy) are independent of ca. Since the integral of

p(y Ix) over X x Y is not necessarily finite, HML is not necessarily bounded below, and

may not have a global minimizer. If, however, the Fisher cross-entropy does achieve

its global minimum at a pair of densities qx, ~q, then this pair must satisfy:

qXr - min GAEL (qXqy) (6.2.2)
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qy - in HL (x ,qy)
qy

With some algebra, it is easy to show that these global minimizing Fisher estimates

must have the form:

Fisher

MCEM:

XMAP-

YMAP:

XYMAP:

q (X) q4 (Y-)
a

Nx(j,R) Ny( ,R)

( - ) Ny(i ,R)

NX(Y ,R) ( - ) 

( -g ) a( ) )

Two questions remain: does the Fisher problem indeed have a solution, and how does

the Bayesian sohlution X, /iy,~ behave as act? To answer these, let us return to

equation (6.2.1) linking the Bayesian and Fisher cross-entropies. Substituting our

model density into this expression yields: 

H.(qx,qy) = 2 L(qxq ) + - A 2 qx(-) + (6.2.3)
x 

The "Bayesian cross-entropy is thus equal to the Fisher cross-entropy, plus a term pro-

portional to a measuring the average signal energy for the density q, plus another

term which is independent of the densities qx, qy. From this relationship we would

expect that if a is very small, then the estimates which minimize the Bayesian cross-

entropy H, ought to be very similar to the estimates which minimize the Fisher cross-

entropy H"L. This intuition can be proven formally. Because the densities CX, ' lY,

and x, y always have the form given in the preceding tables, to prove that the Baye-

sian estimates converge to the Fisher estimates, we need only prove that the centers of

the densities converge. Appendix H proves:

4

4t
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Theorem 6.1 Let X, Y be closed and measurable sets. Assume that for any of

our four algorithms that for all ct>0, H(qx,qy) achieves its global minimum at

some value qXci, qy.a with means g,, %s. Also assume that HML (qX 'qy) achieves

its global minimum at some value qX, qY with means i, 22. Let P = {(lX qy)} be

the set of al density pairs which minimize HML Then:

a) For a>O, the average signal energy of any of our Bayesian estimates is less

than the average signal energy of any Fisher estimate:

IAj.!, ; If B i!a ! qX,(X) d < inf Af lAx q(x 
x

b) Let ao>l>- - be any monotonically decreasing sequence such that

lim ai = O. Then the means x,>, l, of the Bayesian density estimates remain

bounded as i-cc, and every limit point , of the sequence corresponds to

the means of a pair of densities 4q, 4,y which minimize the Fisher cross-

entropy and have minimal signal energy:

qx y - min HML (qX ,qy)
x ,qr

and:

f lia XiQ0 qx(x) d-- inf Si A 1 qx (X) dx
x x

c) If there is no finite global minimizing solution to the Fisher problem, then the

Bayesian estimates diverge:

f IIA Ilo qiX,aG(z)d -- as ctiO

The Bayesian algorithm therefore always generates estimates with less average signal
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energy than that of the Fisher agorithm's estimates. As a-O and our a priori estimate

of the signal covariance Q goes to infinity, the signal energy of our Bayesian MCEM

and MA? algorithms will gradually increase, and the estimates will converge to a

minimal signal energy solution to the corresponding Fisher problem. If the Fisher

problem has no finite minimizing solution, then the Bayesian algorithm will diverge as ·

a-O, with , , i _ 

3. The Fisher Algorithms e

Let us examine the Fisher versions of our estimation problems. XYMAP is the

easiest to analyze. The XYMAP cross-entropy expression satisfies:

HML (qX,qy) = - log pU ) (6.3.1)

Thus minimizing this Fisher cross-entropy function is equivalent to solving:

Fisher XYMAP: , - max p(y jux)
x ,, X Y

m- in Wx .- 112 (6.3.2)
xEX yY

The Fisher XYMAP problem therefore tries to find the pair of signal and output values

which ot only meet the known constraints x X and y Y, but which also come as

close to each other as possible. The signal estimate i will meet all the signal constraints

and come "close" to meeting the output constraints, while the output estimate will

meet all the output constraints, while coming "close" to meeting the signal constraints.

In particular, if there exists some vector which meets both signal and output con-

straints, a EX and v Y, then it will be the solution to the XYMAP Fisher algorithm.

Problems which are appropriately treated by an algorithm like this arise in a wide

variety of applications in which a signal must be constructed which meets two different

sets of constraints stated in different domains. For example, vwe might want to design a
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Finite Impulse Response (FIR) filter which meets certain impulse response constraints

and also certain frequency response constraiats. Direct calculation of the filter coeffi-

cients is often very difficult [1], so we might try to put this problem into the form of a

Fisher XYMAP problem. Let X and 2y be filter coefficient sets, let X be the set of time

constraints, and let Y be the set of frequency constraints. If there exists a unique filter

x which meets all these constraints, then the solution to (6.3.2) will exactly satisfy

= =Y xf . If no such solution exists, then the filter X will meet all the time constraints

and come as close as possible to meeting all the frequency constraints, while the filer _

will meet all the frequency constraints and come as close as possible to meeting all the

time constraints.

The Fisher version of XMAP is also relatively easy to characterize. We can easily

show that for this algorithm:

min HL (qX,qy) = - log p(Y :rx) (6.3.3)

and thus minimizing this Fisher cross-entropy is equivalent to solving the Maximum

Likelihood problem:

Fisher XMAP: ! - max p(Y ix) (6.3.4)

This algorithm effectively searches for the signal value x which comes as close as possi-

ble to the set Y.

The Fisher versions of YMAP and MCEM can not be stated in terms of tradi-

tional Maximum Likelihood estimation problems. We will therefore treat these two

cases simply as limiting forms of the Bayesian problem when all a priori knowledge is

absent.

�_ ___
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4. Iterative Fisher Algorithms

Starting with the Fisher form of the cross-entropy expression for our four algo-

rithms, we can iteratively solve for the global minimizer of HML by minimizing first

with respect to the signal density qx', then with respect to the output density qy, iterat-

ing back and forth until the estimates converge. Using precisely the same derivation

used in chapter 5, the resulting signal and output density estimates can be shown to

have the form:

Nx( -1 ,R)

N( - )

Ny ( ,R)

(y -h )

for MCEM, YMAP

for XMAP, XYMAP

for MCEM, XMAP

for YMAP, XYMAP

where the centers of these densities gk, y. are iteratively calculated as follows:

a

I

The XYMAP procedure alternates between projecting the estimate h onto the con-

straint set X to estimate 4 +1, then projecting this signal estimate onto the constraint set

Y to estimate h +1. Each pass therefore simply alternates between moving x closer to
a

I

.

aXk(E) =

q I , c -) =

6

(6.4.1)

Signal Estimates Output Estimates

MCEM: 4+1 = Ex[g i) = Ey I _ 41]

rEX

rsY

XYMAP: -m+1 ri n lix - 112 +1 = in 11 y- -4+1 12

. . . i .
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y and moving y closer to i. The MCEM, XMAP and YMAP algorithms are similar,

except that one or both projection operations are replaced by a conditional expectation

operation, using the truncated Gaussians NX(,,R) or JNy(jk,R). Using a conditional

expectation operator instead of a projection operator is usually more complicated, but

we would expect the resulting estimate to come closer on average to the actual value of

the unknown. Each pass of any of our algorithms strictly decreases the appropriate

cross-entropy expression unless a stationary point has already been reached. The

XMAP and XYMAP methods also strictly increase the likelihood functions p(Y ,4)

and p(i 4x) respectively on each pass. In the case of XYMIAP, this implies that:

h Y+i - ik+ 1R < Ii - k+ 1 < 1 - 112 (6.4.2)

so that the distance between the estimates strictly decreases on each pass.

5. An Example

Figure 61 shows the behavior of our four iterative algorithms for the same exam-

ple used in chapter 5, section 8. Here we have set the a priori signal covariance to

Q=109; all the other parameters have the same values as in chapter 5. For comparison,

the figure also shows the limiting estimates of MMSE as a-0. MCEM alternates

between a pair of conditional expectations on X and Y to calculate , o. Note that

of all the algorithms, MCEM again comes closest to the MMSE estimates, and also

shows the same symmetry as MMSE, setting . =Y. The convergence rate is roughly

Elinear. The XYMAP algorithm uses projections instead of conditional expectations to

calculate its estimates. As a result, the estimates converge at a geometric rate to the

pair of signal and output values which are as close to each other as possible, namely

=~3 =0Q. Unfortunately, these XYMAP estimates are the worst of all our algorithms.

XMAP and YMAP alternate between a conditional expectation and a projection

I
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operation. Note again the peculiar fact that XMAP generates better output estimates,

while YM AP generates better signal estimates.

6. Convergence of the Fisher Algorithms

Proving convergence of the estimates to a global minimizing solution is consider-

ably more difficult for these Fisher problems that it was for the Bayesian problems. In

general, our convergence theorems guarantee that if our estimates remain bounded,

then they must converge to the set of stationary points and local minima of the

appropriate cross-entropy function. However, in the Fisher problem there is no

guarantee that the estimates will remain bounded, and there may not even be a finite

global minimizing solution. Consider the example shown in figure 6.2, where the set X

is a convex set in R 2 bounded by a hyperbola, while Y is a (convex) half plane in R 2.

Clearly X and Y approach each other more and more closely as we go farther and

farther to the right, but though the infimum of the distance between the sets is zero, no

finite elements of X and Y attain this minimum distance. A of our iterative algo-

rithms will generate estimates A, y which diverge at a very slow rate toward the right.

I
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J-~~~~~~~~~~~~~~~~ 4

/

Figure 6.2 - Hyperbola Constraint Sets

When X and Y are convex, closed and non-empty, then our convergence analysis

can be strengthened considerably. The key property, as in chapter 5, is that projection

operators on convex sets, as well as expectation operators of truncated Gaussians on

convex sets, are both non-expaasive and uniformly continuous mappings. Appendix I

uses this fact together with the log concavity of the model density p(y 1X) to prove the

following theorem:

Theorem 6.2 Let X and Y be convex, closed and non-empty. Start at any initial

estimate i0EX, Po0Y. Then the sequence of estimates (,y) generated by any

of our four algorithms will converge to a finite global minimizing solution of the

appropriate Fisher cross-entropy function if and only if such a solution exists.

Furthermore, the distance from the estimates to any solution g, decreases on

each iteration:

11 i Y + IR: lR 1 s h I R 11 h -XS I R

--- ---

I

I

(6.6.1)
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(In the case of XYMAP, this distance strictly decreases on each iteration.) If the

Fisher problem has no finite minimizing solution, then the sequence (it,j) is

unbounded and diverges. E

The following corollary is sometimes useful:

Coronary 6.2 If X, Y are bounded, or if either'X or Y is bounded and the other

is convex, then all four Fisher algorithms are guaranteed to converge to a finite

solution. [

Let us leave the topic of convex constraint sets with one final warning. Although we

have proven that the iteration converges, it is not necessarily true that the convergence

rate is linear. For example, in the problem illustrated in figure 6.3, the constraint set

X is a disk of radius 1, while Y is a half plane. Clearly the unique solution to the

Fisher problem is =y = ( i 0 ).

Figure 6.3 - Non-geometric Convergence Rate for Fisher Problem

From the figure, it is evident that if 54 = (1 C ) then:

I
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[1 +-i i = cos(o ) tli -i ii

As t -j, then cos(a t )-l and the convergence rate will be slower than linear. We will

see in the next section, however, that if the constraints are linear equalities, then the ·

convergence rate is guaranteed to be geometric.

7. Linear Equality Constraints

When the constraint sets X and Y are linear varieties defined by the linear equa-

tions G.x=y, and Gy. =2y, then as in chapter 5, our algorithms are particularly easy

to analyze. Nearly all the results proven in chapter 5 for linear equality constraints hold

even when Q = o. The major change is that the convergence rate factor v v, equals 1,

and that the set of equations defining the closed-form solution is not necessarily inverti-

ble. Despite this, if the constraint spaces are finite dimensional, we will see that both

the primal and dual problems always have a (possibly non-unique) solution, and both

the primal and dual iterative algorithms still converge at a geometric rate. Conjugate

gradient algorithms converging in a finite number of steps can also be devised. Unfor-

tunately, if the solution is not unique, then the noise sensitivity of our algorithms is

infinite. The derivation of the dual algorithm is also quite a bit messier than in chapter

5, since the required limits may not exist. Finally, when the spaces are infinite dimen-

sional, many of our previous results will no longer apply because new forms of degen-

eracy can arise. We will indicate why these difficulties occur, though we will not treat

the matter in great detail (see Youla [2] or Mosca [3] for a treatment of the infinite

dimensional case.) Much of the material in this section has appeared in one form or

another in the literature (see, for example, [4, 5, 6, 7]), though our eigenvalue analysis,

the symmetric closed-form solutions, and the dual algorithm appear to be new.

I



. 239,

7.1. Primal Iterative Algorithm

We proved in section 2 that the Bayesian estimation methods of chapter 5 must

asymptotically converge to the solution to the corresponding Fisher estimation problem

as the a priori signal density becomes flat. We will show later that the Fisher problem

does indeed have a solution in the case of linear variety acnstraint spaces. Our previ-

ous proof then guarantees that as a-O our Bayesian algorithms will converge to the

solution to the Fisher problem with the smallest signal energy ilAx 1l[1. Since all our

Bayesian algorithms were identical, however, this suggests that all of our Fisher estima-

tion algorithms will also be identical We therefore only need to consider the iterative

XYMAP algorithm:

i, - rmin 1t l - : li (6.7.1)

The primal iterative algorithm solves this problem by minimizing with respect to a and

then y; using Lagrange multipliers in the same manner as in chapter 5 to calculate the

resulting estimates yields-

Primal Iterative Algorithm:

Guess 0 Y

For k=0,1, - -

4 +1 P + E (6.72)

; + =PA + 

where:

p = i- RGT(GXRG) 'G 3
'P = [I- RGT(G RG )-G, ] (6.7.3)

E = RG T(GR G3-l u

------ --
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= RG(GyRGO5-

Note the similarity between these equations and those of the Bayesian XYMAP prob-

lem in chapter 5; the only change is that by setting a=O and B=I, we get H=I and

V=R. Once again, P. and P, are projection matrices. To estimate the signal, we mul-

tiply the latest output estimate 4 by P to remove the component orthogonal to X,

then add back an offset which is the minimum norm IIR element in X (and is thus

orthogonal to the null space of G,.) The output is then reestimated by multiplying by

Py to remove the component of a +1 orthogonal to Y, then adaing back an offset 

which is the minimum norm I-l R element in Y (and is thus orthogonal to the null

space of G..)

The only problem with this algorithm, as we will see in section 7.4, is that if the

null spaces of the constraint matrices G. and Gy overlap, then although the algorithm

converges at a geometric rate, the solution it converges to will depend on the initial

starting estimate By

7.2. Primal Algorithm Closed-form Solution

A closed-form solution can be calculated by recognizing that any global minimizing

solution , y must be a stationary point of the algorithm, and thus must satisfy:

(I )P, I (f][X (6 7.4)

Adding P, times the first row to the second or P, times the second row to the first, and

using = Pg + and = Ply + gives alternate forms:

(I - P. P )i= + P. ( + P) (6.7.5)

i = P, +X Y~~~~~~~~~~

I
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or:

- P,PP., ) = + P, ( P (6.7.6)

i = P,, + 

The only problem with these cdosed-form solutions is that if the null spaces of G, and

Gy overlap, then although equations (6.7.5) and (6.7.6) can still be solved, the matrices

in the equations are non-invertible, and there will be many different solutions to the

problem.

7.3. Primal Algorithm - Eigenstructure

The proof given in Appendix J that the iterative algorithm converges and that the

formulas (6.7.5) and (6.7.6) can always be solved relies heavily on a careful analysis of

the eigenstrucure of P P, P and P, P P,. This analysis is quite similar to that given in

chapter 5, although the problem has several new features. Let N, and N, bc the null

spaces of the G, and G, matrices, and let Ni and Nj, be their orthogonal complements:

NI = {y IieR and <Yw>iR= for all N 3 (6.7.7)

and NI is defined similarly. Appendix J now proves:

a) All eigenvalues i of P PP, are real, non-negative and less than or equal to

1. The eigenvectors b. form a complete orthonormal basis with respect to the

inner product <,'>v-. mirar statements also hold for the eigenvahlues of

rgP P,PP, and its eigenvectors .

bj The matrices P, PZP and PPJP, have exactly the same non-zero Cigenvalues

Xi, and there is a one-to-one correspondence between the eigenvectors

corresponding to these non-zero eigenvalues:

I
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(6.7.8)

These igenvectors *, corresponding to non-zero ,i are elements of the null

space N, of G, so that P,* =*, and the eigenvectors k, are elements of the

null space NY of G., so that P, =t. This implies that there can be at most

min(N -p,N-q) non-zero cigenvalues. If the igenvectors i, corresponding

to non-zro igenvalucs are chosen to be orthonormal, then the igenvectors 

t constructed from (6.7.8) wil also be orthonormal.

c) AD elements of the intersection N, NW are eigenvectors of P and P, and

thus also of PzPP, and P, PP,, with eigenvalue of one. All other eigenvecc-

tors of P, PP, and P PP, are orthogonal to N. fN, and have igenvales

strictly less than one. I

d) There can be at most min(p,q ,N -p ,N -q) non-zero eigenvalues strictly less

than 1. (See also section 7.11.)

7.4. Primal Algorithm - Convergence Rate

We can analyze the convergence rate of this algorithm by methods similar to those

we used before. First of all, we recognize that the estimates ,t, can be written in the

form:

- Pit + (6.7.9)

i Py.i^ + 

Substituting these expressions into our primal iteration, and using some algebra gives:

'4+1- 4 = PP (h - -1) (6.710) 4

I

I �
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Analyzing the convergence properties of this algorithm is more difficult than in chapter

5, because with a =0 our previous analysis would give v v =1, which only implies that:

1IIXk+1 Xk IR < I4+l ik R Il l11 k-IR (6.7.11)

This is no longer sufficient to prove convergence. A more careful analysis must con-

sider two different cases.

Cas l N NW, ={}

The simplest case is when the intersection of the null spaces of G, and G , is the

zero vector, Nx lN., ={Q}. In finite dimensional spaces RN, this is equivalent to:

R = (N lN', )1 = row space of G} (6.7.12)

and thus N, try ={} is equivalent to requiring that the rank of equals N, the

dimension of x and y. Since the null space N rWt is empty, according to property (c)

of section 7.3 all the eigenvalues of PP,P. must be strictly ess than 1. If there are a

finite number of non-zero eigenvalues (a situation that will occur if

min(N -p ,J -q )<~), then one of these eigenvalues X, must be the largest, and it wil

be strictly less than one, X,,<I. In this case, Appendix J proves that the matrices in

(6.7.5) and (6.7.6) are invertible (since their smaIlest eigenvalue will be 1-kA 0>O) and

thus there is a unique solution to the Fisher problem. Furthermore,

IIPP, 112 =IIP,P ll = X < 1 (6.7.13)

and the iterative algorithm will converge at a geometric rate to the unique solution

( ):

Iah+1l IIR< IIPxPy l!R II + -j IIR o If -j, 14 1 _ II112 (6.7.14)
1l4+1 X IIR I R 11 R-X~~ 1 -(6.7.15)
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Case2: N, *r { 

If the null spaces of Gx and G. overlap, NX rW,O{Q, or equivalently in finite I

dimensions, if rank G < N, then the analysis is more difficult The problem, as

noted in property (c) of section 7.3 is that every elexient of N, tW, is an eigcnvector of 4

PxP,P and PPP,, with eigenvalue of 1. Thus the matrices (I-PzPPx) and

(I-P,P P,) will have a non-trivial null space N ClNy, and will not be invertible. Thus

although Appendix J proves that the equations still have a solution, that solution is not

unique, since ( +v_, +) will also be a solution for any x EN fVrN.

Proving convergence of the iterative algorithm is also more difficult in this case

because IPP I1= IIP P, Il will be equal to the largest cigcnvalue of P, PP, and

Py P, P, which is one. To prove convergence, we will have to decompose the space R

into a direct sum of N fWy and its orthogonal complement: 

B = (N, , ) (N Vrw,) (6.7.16)

Then we can show that the matrices P, PJ and P, P, map the space (Nx ftN) onto itself,

and also map (N fNr,) onto itself. Assuming that the number of non-zero igenvalues

kess than 1 is finite (a condition that is guaranteed if min(p,qN-pbN -q)< =), the

maimum eigenvalue X,, of PPyPX and PPxP, on the set (N, CW)I will be strictly 

Iess than 1. Let us decompose our initial guess j 0 into a component o0 in Nx yW, and a

component o orthogonal to N, rVy:

i = io + 0o where jo (Nr,) (6.7.17)

xo E (N ,wtN,)

Then Appendix J shows that if there is no quantization noise in the calculation, then

the algorithm converges at a geometric rate to the solution (Z,+vh+ 0 ):

I
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Ii&+i) -11 +rO) 112 I A, 4+i+l XO) i (6.7.18)
; X2 U. - .+y) I

where ij and _ are orthogonal to N, rW, and are thus the solutions to the Fisher

XYMAP problem with the smallest norm Rj .IIR.

!li.w111 s Il2 I 2

Il. 5 i i1 for any other solution j , (6.7.19)

and (+v,y+vo) is the solution to the Fisher problem which is "closest" to -0.

Thus if we wish to calcalate the minimum norm solution j.a, j-a, we need only start

with an initial output estimate jZ which is orthogonal to N x rN,; the easest way to do

this is to choose = , the minimum norm element in Y.

To summariz: the iterative algorithm converges at a geometric rate k to the

nearest solution to the Fisher problem, where Xa is the largest igenvalue of PP P,

and Py P P, which is less than 1. If N, fN ={Q} then the Fisher problem has a unique

solution.

,.5. Primal Algorithm - Noise Sensitivity

Beware that for practical computation, this proof of convergence must be treated

with some caution. If our computation uses finite arithmetic, so that quantization

errors occur, then the same noise analysis used in chapter 5 suggests that the error

between our computed estimate ji and the exa estim ate Y4 wll be:

k-1

)/t -2t = Y (PP.) [ (B+Y, _) + P,(]t/, ] (6.720)
N =0

Let us decompose the errors into compunents belonging to and orthogonal to N, rW :

·- ( +, ) + P ( +) = a + a (6.7.21)
wher 4 (, nrN) and A E (N N)y

b
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Then At is an eigenvector of Py and P, with eigenvalue 1 Liberally using the fact that

P,P=P, and P,P, =P gives:

j - = 1t-,, +i + + (P,.P)(PxP)]) (PP) 4I- (6.7.22)

Appendix J now shows that if the average energy of the errors 1I2A I1l and lbia11 is

about A and E rpctively, then:

11,- i |R s t + + 1 _ ~ (6.73)

The iteration is unable to affect any cnmponent in the null space N. r,; thus the com-

ponents of the computation error in N, r, simply accumulate, leading to a inearly

growing error term (the first term in (6.7.23).) Components of the computation noise

orthogonal to N, Cty,, however, are reduced by further iterations at a rate k, Thus

the error that accumulates orthogonal to N,tr, (the second term in (6.723) ) is

1
bounded above and proportional to 1 . f NfLNy{} so that the solution is

unique, then the first term does not exist, and the computational cror is bounded. If

Ns #Ny {, however, the noise sensitivity is infinite.

This infinite noise sensitivity is not necessarily fatal. Adding any vector in N rWN,

to a solution simply gives another solution; therefore since the linearly growing error

tem is in N fNW,, it changes which solution the algorithm is heading toward, but the

estimates wl stffl converge gcometricaly to the set of soltions Of course, if the error

term in N, rN grows infinitely large as -, then the estimates wi be unbounded. 4

Conceptually, the problem results from the algorithm's attempt to solve the pertrbed

probem:

(I-PPP,) U +B) + Py ((i+6 + P +4 ) 1] (6.7.24)

4

- -
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where the perturbation of the right hand side has a component orthogonal to the range

of I-P, P, P,, and thus the equation no longer has any solution at all.

7.6. Primal Problem - Infinite Dimensions

Much of this analysis an be carried over to infinite dimensional Hilbert Space (see

Youla [2] t ), but new complications arise. If the number of non-zero eigenvalues of

Py P, and PP P is finite, then we pointed out that the problem always has a solu-

tion, and the cotvergence rate is geometric because the largest eigenvalue A of

P P,P and P, P P, on the space orthogonal to N rNW, must be strictly ess than 1. If

min(N -p N -q)= and these matrices have an infinite number of non-zero igen-

values, however, then the eigenvalues of PP, PP in the space (N ftN,)l can get arbi-

trarily dose to 1, and the supremum of these, ., may in fact equal 1. The iteration

will still converge to a solution, since it is strictly non-expansive, but even if

NfVNy:-{Q}, the convergence rate can be slower than geometric, and the noise sensi-

tivity can be infinitely large.

7.7. Primal Problem * Geometric Angle Interpretation

Youla also pointed out an interesting geometric interpretation of the quantity

~k, = [PIP, 1 2= I IIP P, I2 1, which is the factor which determines the convergence

rate and noise sensitivity of the algorithm. In the simple example given in section 5,

the magnitude of the estimates generated by the XYMAP algorithm satiy:

IliX+1RllR= cOS- l1l 4 If s = I IIS HR (6.7-25)

Thus the estimates converge to the limiting value j =j =0 at a rate which is determined

t Note that while Yonla's arguments ae perfectly vaid, his error bounds and convergence
nte inits could be made mth tighter by using our analyis.
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by the cosine of the angle between the line X and the line Y. This idea was exploited

in depth by Youla. Let us define the angle between two arbitrary vectors x and y by

using the inner product <x.,y >j:

cos( ,) s- l___>R (6.7.26)
II&: Ilaily- lt

By Schwartz's inequality:

cos 4 x) I (6.7.27)

To define the angle between two linear varieties X and Y, note that X and Y are I

cosets of the inear subspaces N x and N,. Since they differ from N. and N, only by a

constant offset, X and Y arc 'parallel" to Nx and N, respectively. The angle between

X and Y can thus be defined as the angle between N and N,, which in turn is defined

as the smallest angle between any two elements x ENd, X EN,:

(X ,Y) = inf 0(,x y) (6.7.28)

or equivalently, since cose is a monotonic decreasing function of in the interval

Oa5s 2 
2

cos0(XY)= sup ... > I (6.7.29)

Youla then showed that:

L=Ml-mA coss(X,Y) = IIP Px IIR = -IP PP IIR = w

The proof is given in Appendix J. Our previous mssion of the properties of our

iterative algorithm can now be restated using this concept of angles. If the angle

between X and Y is greater than zero, cos (X ,Y)<l, then N, V, ={Q}, the problem

will have a unique solution, the iteration will converge at a rate cos2 9(X,Y) and the

noise sensitivity will be bounded. If, however, cos 8(X,Y)=I, then the algorithm still

I
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converges, but the noise sensitivity is infinite.

7.8. Dual Algorithm

Because the Fisher XYMAP objective function (6.7.1) is only a positive scmi-

definite, rather than a positive definite quadratic funetion, deriving a dual algorithm via

the Lagrange mutiplier saddlepoint theorem is no onger always possible We will

instead derive a dual algorithm for this problem by taking the limit as a-0 in our Baye-

sian dual algorithm of chapter 5, then verifying that the method actually gives the same

answer as the primal algorithm. We stress at the outset that this approach is unconven-

tional, and in fact does not entirely work without substantial fudging.

Let Q= 1Q o in our Bayesian dual objective function (5.9.17). Solving for ,,
a

Ay, letting = A-tQoA - T, then transforming to the variables p., g,, and finally letting

a-0, gives:

tQGx O G0GGY GG G G GJ 1 t (6.7.30)
, = 0 | o J0 I GQG G, J(

Beware that in deriving these equations, the estimated Lagrange multipliers , , tend

to Q as a-O; this effect is canceled out, however, in transforming to the variables A, ,.

Next note that the matrix R has disappeared, and its role has been taken over,

apparently, by the a priori signal covaiance matrix 0 = A-1Q0 A-T. This is rather

peculiar, since in the primal algorithm it is the matrix Q which disappear, not R.

* Another anomaly is that the formula deriving , from , , always sets i=j.

Finally, note that the matrix on the right side of the equation for , is not always

I
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invertible.

Blithely ignoring these difficulties, we will state a dual iterative algorithm for com-

puting , and , . If the constraint sets X and Y overlap, so that there exists a

single vector =j meeting both the signal and output constraints, then we will show

that the formula in (6.7.30) gives the solution (j,,,) to the Fisher XYMAP prob-

lemn (6.7.1) with the least energy IIA l h . Furthermore, the iterative dual algorithm

wi converge at a geometric rate to this solution. Thus the dual algorithm gives cxacCy

the same answer as our Bayesian algorithm in the limit a-O. This is also in sharp con-

trast to the primal algorithm, which will only converge to the nearest solution. Unfor-

tunately, in the dual algorithm if there is no single vector meeting all the cnstraint

then we will show that the formula in (6.7.30) has no solution at all. It is just a for-

tunate stroke of luck, therefore, that if we set Q=R then the dual algorithm we present

will still converge at a geometric rate to the minimal energy solution to the Fisher

XYMAP problem. We also present a dual dosed-form solution for A, and , i

which works under all circumstances.

We derive our dual algorithm by setting B=I and letting a-O in our Bayesian dual

iterative algorithm. Noting that H-I, V 1 (, V Q. we get:a 0 w gt
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where:

Qs- G. (G(GT) 'rGT

Q, = o, (Go, o)- G (6.7.32)

-=oG (G. G7r) .

= (G, (oGOG)-',

The structue of this algorithm is virtually identical to that of the primal algorithm. Q,

and Qy are projection matrices onto the rthogonal copmes N and N of the null

spaces of G. and G,. (In the primal algorithm, P, and P, project onto the null spaces

N, and N, .) Starting with an output muhiplier estimate we estimate the signal mul-

tipier by projecting QJ onto the orthogonal complcment Ns, then adding an offset A.

The output multiplier is then reestimated by projecting ti back onto the orthogonal

complement nun space NYI and adding an offset j,. After fficient iteration, the signal

and output are estimated by combining the appropriate multipliers.

h is not hard to show that G, = and G = , so that tk EX and E Y as

b

I

I
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daimed. More importantly, rearranging the equations of the iteration gives:

4+1 = (I-Q)i + (6.7.33) e

ik+1 +I(I-Q,)4 + 

This is precisely the primal algorithm that would result if we tried to solve:

, - min 11 x-x 110 (6.7.34)

Thus despite the flaky derivation, this dual algorithm stil solves the right type of prob-

lem; the only difficulty is that we seem to have switched to a different norm. We could

fix this simply by setting (=R in our dual algorithm; then the dual algorithm would

exactly solve the same problem as our primal algorithm. Moreover, the exact

correspondence between primal and dual, expressed in (6.7.33) guarantees that the final

signal and output estimates generated by this dual algorithm must converge at a

geometric rate to a solution to the Fisher problem.

I
The importance of the dual algorithm is that we do not actually compute the signal

and output estimates until the algorithm terminates. The projection operators used are

"orthogonal" to those used in the primal algorithm, projecting onto the orthogonal com-

plemnnts of the null spaces of G, and G, rather than onto the null spaces themselves.

More importantly, by only computing estimates of the multipliers A, i,, we are deal-

ing with a problem whose dimensions can be significantly smaller than the primal prob- 4

km, and which therefore may be much more convenient to solve. In analyzing the dual

algorithm, therefore, it is important to consider the convergence properties of the mul-

tiplies , themselves, rather than just the signal and output estimates.

The approach we use is quite similar to that used in our primal algorithm. Note,

first of all, that the signal multiplier a and the offset L are both elements of the 4

orthogonal complemet null space N 1, while the output mutipier A, and the offset Q,

I
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are both elements of the orthogonal complement null space N. This implies that

Q, O = and Qy , = y. Combining this with the iteration equations gives:

aXs, - 4. = - x Qy (~, - ._.) (6.7.35)

The fact that the projection operators are contraction mappings then guarantees that:

I II ,, " I - CLY1, 15 IIQ, 11 -Q* A., 15 ---- 11 Oy - yt -I 1 I 6(6.7.36)

This, however, is not sufficient to prove convergence of the multipliers. In fact, dose

analysis will show that in certain cases the mlltiplier estimates actually grow infinitely

large, despite the fact that the corresponding signal and output estimates converge at a

geometric rate. We will divide the analysis into two cases:

ase 1: N,'VW 1 {OQ

Suppose that the orthogonal complement null spaces 4N, and N of G, and G, do

not intersect except at Q. This is equivalent to saying that the constraint matrix has full

row rank:

rankG = P +q (6.7.37)

In particular, since this matrix has dimension (p +q)xN, we will need p +qV . This

also impies that:

O-'o+p I= IG G T G T) (6.7.38)

if and only if X, =0 and N =0. Thus this matrix on the right hand side must be positive

definite and invertible, and the closed form solution suggested in (6.7.30) for Ai and ,

P really-can be solved.

I
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Now to explain the anomalies of the dosed-form solution (6.7.30). Because

G } has full row rank, its range must indude al of R +, and its null space will have

dimension N -p -q. Thus there exists at least one vector =2 such that:

(GJ (, ) (6.7.39) 

This satisfies both the signal and output constraints simultaneously, i X and i Y;

also at this solution =j the Fisher XYMAP objective function is zero, so that i = is
I

not only a solution to the 'wrong" Fisher problem (6.7.34) with norm ]1W11], but is also

a solution to the original Fisher XYMAP problem (6.7.1) with norm ]j- lis.

If the null space of IG J is nontrivial, then there will be many possible solutions

to the Fisher XYMAP problem. Clearly, if v is any element of N, NN, so that

(Gy = Q, then the vector i + is sti an ement of both X and Y, and must also

solve the XYMAP problem. As proved in Appendix J, however, the dual algorithm

always calculates the solution with the minimal signal energy IIAj II. (This is unlike

the primal algorithm, which must be initialized at an output estimate io (N N,) in

order to find the minimal energy solution.)

Taking the norms of all sides in equation (6.7.35) gives:

- -_ 4112 s ilQ.(, 11417 I -12 1 (6.7.40)

YIIt , - 1 % 1 0l ,1 l ft - i12 

Appendix J proves that when NrINW = {]}, then the convergence factors are strictly lwe

than one: X, IQ.Q, II2= IQQQ, I ,. Il <. Thus the multiplicr estimates (and the

corresponding signal and output estimates) converge at a geometric rate Xa, to the

4
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unique solution to the dual problem.

Closed-form solutions for the multipliers fz and k, can be derived by the usual

methods. Recognizing that the solution must be a stationary point of the iterative algo-

rithm gives:

( I x)F t} [tJ (6.7.41)

Subtracting Q2 times the second row from the first, or Q. times the first row from the

second, and recognizing that Q, ix = ki and Q. il, = fl gives the alternative formulas:

( -Q.( Q QX ) = . - Qs (6.7.42)

A = -o Q + ,

or:

(I-QYQQ, ) = - QY i (6.7.43)

A= - Q,, + 

Cas 2 N,41N;I {Q}

When NI and NI have a nontrivial intersection, then the analysis is much more

difficult. This condition implies that:

rank G, < +q (6.7.44)

which means that the matrix:

O, GT G,OT G X o)

GA GT G OGY ( GGy ZG 0 (6.7.45)

will only be positive semidefinite and will not be invertible. Thus if NIVWi + 0, then

the formula in (6.7.30) for , ,, which uses the inverse of this matrix, may not be

solvable. The derivation of our dual algorithm when NINtl # {} is therefore
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completely bogus, and it is just lucky that it still solves the correct problem, provided

we set 6-RO

Analyzing the convergence behavior of the dual algorithm and finding a correct

dosed-form solution when N ON,1 {} is rather complicated, so we leave the details to

Appendix J. This Appendix proves:

Theorem 6.3 The following procedure gives a dosed-form solution to our dual

problem in all circumstances (provided we set =R).

a) Compute a best least squares solution io to:

(I- Q0.0, ) -a= tQXA (6.7.46)

with respect to the inner product <-,->Q. here may be many solutions -

any of them will do.)

b) Compute an output multiplier estimate and a second signal estimate ,: 

AY ='Y -A. + iY (6.7.47)

k= -Q Q + y

c) The signal and output estimates are then given by:

ci= + , (6.7.48)

ii- A.' + YI

These signal and output estimates will be the minimal energy solution to the Fisher

XYMAP probkm:

, i - min l -x IQ (6.7.49)

and:

!Imd..I! 1X Il where jj ar anyothersolution (6.750)
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By the best least squares solution" in part (a), we mean that if there is no single vector

, =y which will satisfy all the signal and output constraints simultaneously, then equa-

tion (6.7.46) will not have any solution at all. Thus we choose xo to minimize the

equation error:

R~| (I-QIQYQ)U .x-(Q-1 |m (6.7.51)

Any solution to this minimization may be used. A different, but equivalent dosed-

form solution would be:

a) Find a best least square solution to:

( - oQo, ) QJ Q- (6.7.52)

b) , =-Qa,. + (6.7.53)

A, = (-Q J + 

C) ., = Aye (6.754)

iXi· - A. + AY,

This set of estimates i, j is identical to that generated by the previous algorithm.

Appendix J also analyzes the convergence properties of the dual iterative algo-

rithm. In the general case, NlNl/ I { }, it shows that if the number of non-zero eigen-

values of Q Q,Qx and QQQ,y is finite, (a condition which will occur if

min(p ,q)< =), then the multiplier estimates 5., , are the sum of a constant, plus a

linear ramp k (j,-4i which grows on each iteration, plus another term which

decays at a geometric rate given by the largest eigenvalue , of OQ, y Q, which is not

one. The multipliers will thus converge in the usual sense only if the solution to the

Fisher. problem satisfies ji =. Otherwise, the multiplier estimates grow by a fixed

amount on each iteration. Fortunately, the linear ramp term cancels out when we

I
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compute the signal and output estimates. Thus if Xi, ,u is the minimal energy solu-

tion to (6.7.34), then:

11 +x-i4 +.1) - .U IIQ ~ x~ I1 0h-y +1)- Cm-i) IIQ (6.7.55)

7.9. Dual Algorithm - Eigenstructre, Noise Sensitivity, Geometric Atngie 

Because Q and Q, are projection matrices just like Px and P., the cigenstructures

of Qs Q, QX and Q,Q Q, will have exactly the same properties as P, P, Px and P, P P. 

In particular, all cigenvalues are real, non-negative and less than or equal to one, and

the eigenvectors form a complete orthonormal basis. The only difference is that Q.,

and Q, project onto the orthogonal complements of the null spaces N, and N, unlike i

P, and P, which project onto N, and N,. Every vector in N YW,1 wil be an agenve-

tot of QOQx with eigenvalue of one; all the other eigenvectors will have igenvalue
i4

strictly less than 1, and are orth gonal to N'WnN1. The number of non-zero eigenvalues

is no larger than min(p ,q), and there is a one-to-one mapping between the eigenvectors

£ and : of QQ,Q, and Q,Q,Q, corresponding to the same non-zero igenvalue. 

The number of non-zero eigenvalues strictly less than I is smaller than

mipn ,qN -p/ ~-q )-

7.10. Dal Algorithm - Noise Sensitivity

The noise senitivity analysis of the dual algorithm looks very similar to that of the

primal algorithm, and so we will not include the detais. Once again, the actual multi- 4

plier estimates are corrupted by computation noise which linearly accumulates in the

space NXClN i, plus additional computation noise orthogonal to N,4INI which is

reduced by further iterations at a rate X2 The major difference is that in computing

I
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the signal and output estimates from the multipliers, this linear error ramp in NWI

almost exactly cancels out, leaving only a bounded error term orthogonal to NtN 1 .

Thus the noise sensitivity of the dual algorithm's signal and output estimates is finite,

though still proportional to . (The noise sensitivity of the multiplier estimates,

however, is infinite if NlN~I: {1.)

7.11. Link Between Primal and Dual Algorithms

As equation (6.7.33) strongly suggests, there is a strong link between the dual and

primal problems. Set Q=R; then the primal algorithm's projection matricc P, P, are

related to the dual algorithm's projection matrices Q 1, Q, by:

P. = I - Q, (6.7.56)

P, = I- ,

Appendix J proves the following property:

The non-zero eigenvalues of Q Q, Q and Q,QxQ, which are strictly less than 1,

are identical to the non-zero eigenvalues of P,P, and P P . which are strictly

kss than 1. Furthermore, if ,} are an orthonormal set of eigenvectors of P. P,P1

with non-zero eigenvahlues less than 1, then the vectors:

1

1 ;; QP. (6.7.57)

ri =QxPi

value:

PY P,P,P:A = ,

I



- 260-

Q, x Q5, = i (6.7.58)

Q) QZ QrL = X 

Since 1 EN1, 4, (N, EN,1 , (N 1 , the total number of non-zero eigenvalues

stricty less than 1 must be smaller than the dimensions of all these aces,

qin(p ,q -p ,N-q).

The only difference betwcen the primal and dual algorithms, therefore, is in te

arrangement of eigenvectors with cigenvalues of exactly zero or one. Since the convcr-

gence rate is dctermi. byr the largcst cgcavaluc k. less than one, we would expe

both the primal and dual algorithms to converge at exacy the same rate.

The case N, rW,=[ and N1nV,1 ={J] is particularly interesting. This situation

occurs only if the number of constraints equals the number of points, p +q =.V, and the

matri G, Jis invertblc. Thus the Fisher solution wi not only be unique, but wi

also satisfy t =j. Both the primal and dual problems will be well behaved. Further-

more, the reasoning above guarantees that:

cose - X = IlP,P, l = IIPIP, IIR - 1,Q. iR = IQ0.Q, lR < 1 (6.7.59)
In this case, the constraint equations could actually be solved directly:

Gy )= [K) (6.7.60)

7.12. Estimatin the Convergence Rate

The convergence rate A,_ of these algorithms can be estimated by a variety of

methods. For example, the derivation in Appendix J suggests:

Alust ...... It (6.7.61)U4g+ 1 -4 112

4

I
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and:

X Z: I R 112(6.7.62)

An a priori estimate of the convergence rate can also be found from the primal cosed

form solution:

ILi II j (I-PPP,)1 i+P,(-iP.I)) ! (6.7.63)

S _ ! __~11 i+Py(i+Px-) IR
1-

or:

1 I+P(+PX-R IIR (6.7.64)

This last estimate is usually very conservative (X is usually much closer to on: than

this would suggest) but it will be very useful in getting a rough estimate of how 'well-

posed' various problems are.

7.13. Acceleration Techniques, Conjugate Gradient Algorithms

Exactly the same acceleration techniques which solve the Bayesian algorithms in

dcapter 5 can be used to accelerate these Fisher algorithms. The only change is that

with B=I and a=O, then H=I and V=R, so that the calculation rquired simpifies.

For example, the line search acceleration formula for PARTAN will take the form:

< -*+iAk+-Ak (6.7.65)

The interested reader can easily write down the appropriate PARTAN or conjugate

gradient algorithms for solving either the primal or the dual problems. Note that if the

global optimizing solution does not satisfy =J1, then exact dual dosed form solutions

do not cxists, and the dual conjngate gradient methods wil diverge. Conjupgatec
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gradient will always solve the primal problem, however, since the primal problem

always has a solution, even when the matrices are non-invertible.

S. Linear Inequality Constraints

The case when the constraint sets are defined by linear inequalities Gux<X, and

Gy y:~ can also be analyzed with relative ease. If the constraint sets are non-empty,

then the Fisher XYMAP algorithm is guaranteed to have a finite solution (se Kfnzi

and Krelle [8] or Golkstein [91 chapter 3). (We would conjecture that MCEM, XMAP

and YMAP will also always have a solution.) Lagrange multipliers can be used

together with the Kuhn-Tucker conditions to state necessary conditions for each

required maximization. Because the constraint sets are convex, dclosed and non-empty, 4

the set of solutions wi be convex and closd, and in the case of XYMAP, any two dis-

tinct global maxima (1,1) and (x2 2) wi satisfy:

Y-,X = 2-,X2 (6.8.1)

All four iterative algorithms will converge to a finite global optimum solution if and

only if such a solution exists, and the distance from the estimates ji, ji to any such 

solution is decreasing. Various quadratic programming algorithms, such as Wolfe's,

Beale's or Dantig's algorithms [10,8] are available for solving problems such as this

using a finite amount of computation. The chief drawback of these algorithms is that

they are based on the simplex method of linear programming, and thus adjust only one

variable at a time. Total computation time could therefore be worse than our iterative

algorithm, which though it never terminates, improves all the variable estimates simul-

taneously and can thus potentially give reasonably good answers relatively quickly.

4
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9. Summary

In this chapter we have examined the structure of our four iterative signal recon-

struction algorithms when we assume no a priori knowledge of the signal covariance.

We first showed that as our a priori signal covariance estimate Q-., then our four

Bayesian algorithms asymptotically locate the minimal signal energy solution to the

corresponding Fisher estimation problem. These four "Fisher ' estimation algorithms

can be interpreted as trying to find a pair of signal and output estimates which come as

dose to each other as possible. The iterative algorithm which solves these problems

uses projection or expectation operators to estimate the signal from the output, and

then the output from the signal, iterating back and forth until the estimates converge.

No filtering step is used because without a priori knowledge of the difference in the sta-

tistical behavior of the signal and noise, filtering is not possible. When the constraint

sets are convex, we showed that the iterative algorithms will converge to a global

minimizing solution if and only if such a solution exists.

When the constraints are defined by linear equalities, then all four algorithms are

identical. The primal algorithm is the most straightforward; the iteration always con-

verges at a geometric rate to the nearest solution, the dosed-form solution can always

be calculated, and if the solution is unique then the noise sensitivity will be bounded

(though it may be quite large.) The dual algorithm has the same form as the primal

algorithm, but it uses projection operators which are orthogonal to the primal

algorithm's projection operators. The effective dimension of the dual algorithm is

min(p,q), which is usually different than the the effective dimension min(N-pN-q)

of the primal algorithm. The dual signal and output estimates will always converge at a

geomeitric rate to the minimal energy solution regardless of how we initialize the algo-
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rithm, and the noise sensitivity will be finite. However, if the solution does not satisfy

j =, then the multiplier estimates actually grow by a fixed amount on each iteration,

and their noise sensitivity will be infinite. If the solution does not satisfy i =j, then the

dual closed-form solution will not have an exact solution, although signal and output

estimates can still be constructed from any best least squares solution to the formulas.

PARTAN and conjugate gradient algorithms could also be applied to solve either the

primal or dual problems in a finite number of steps. These algorithms use one pass of

our original algorithm followed by two line search acceleration steps. The primal and

dual algorithms are actually very closely linked; the eigenvalues which are non-ztro and

strictly less than one are identical v the two problems, and the convergence rates will

be the same. The difference is that the computational effort of one may be very much

smaller than the other. We ended by briefly treating linear inequality constraints, men-

tioning that the Fisher XYMAP algorithm will always have a solution in this case, and

pointing out the availability of quadratic programming algorithms to help solve the

problem.

4
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Chapter 7

Applications of Optimal Signal Reconstruction

Part HI - Time and Frequency Constraints

1. Introduction

In the last two chapters we have applied our MCEM and MAP estimation

methods to the problem of optimally reconstructing a Gaussian signal corrupted by

Gaussian noise, when we are only given constraints which the signal and output are

known to satisfy. In the next 2 chapters we will apply these algorithms to a variety of

specific applications. This chapter deals with several applications in which a signal must

be reconstructed given noisy information about its behavior in both the time and fre-

quency domains. We first consider a general model for this class of problems, and

show that the algorithms take a particularly simple form if the signal covariance matrix

is diagonal and the noise is white. All the algorithms start with a signal estimate, take

its Dincete Fourier transform, then find the 'nearest' output estimate whose frequcncy

samples obey the known frequency constraints. The output estimate is then inverse

Discrete Fourier transformed, filtered, and the nearest" signal is found which satisfies

the known time domain constraints.

When the constraint sets are linear, all four iterative algorithms give the same esti-

mates, and we can develop both primal and dual iterative algorithms, closd-form soh-

tions, and conjugate gradient algorithms. The best known application of this type is

extrapolating a band-lmited signal. We show that our analysis in the last two chapters

not only covers most of the known properties of this algorithm, as presented by

Papoulis Ill and Jain and Ranganath t2] , but also suggests some new ones. Another
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linear equality constraint application is reconstructing a finite length signal from

knowledge of its phase modulo r, a problem originally considered by Hayes [3] .

Several examples are given illustrating the various Bayesian and Fisher algorithms. We

also point out that this problem is inherently ill-conditioned as the signal length grows

large.

Next we consider some applications involving linear inequality constraints. Recon-

struction of a finite signal from knowledge of the phase modulo 2r is considered, and

we show that although the MCEM algorithm is somewhat more complicated than the

others, it appears to generate the best signal reconstruction. We also compare our algo-

rithms with that of Hayes, Uim and Oppenheim [4,5,3] who originally proposed this

problem, derived an iterative algorithm to solve it, and proved conditions for the

uniqueness of the solution. A second linear inequality constraint application we con-

sider is designing multidimensional Finite Impulse Response Filters to meet arbitrary 4

time and frequency domain constraints.

Finally, w, consider probklems in which the constraint sets are non-convex. Our

suwoss with these, however, has not been very good. We consider the problem of

reconstructing a multi-dimensional signal from the magnitude of its spectrum. Our

XYMAP algorithm for this problem is identical to that proposed by Fienup, [6] Ger-

chberg and Saxton, [7] and Hayes, Lhm and Oppenheim. [4,3] Unfortunately, although

Hayes has proven that reconstruction from the magnitude is theoretically posuible if the

finite sequence is irredua'ble, in practice the problem appears to have a very large

number of local minima and critical points. Convergence to the true global minimia r

is therefore virtually impossible unless the initial starting point is very close to the true

solution. 

4
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Section A - Reconstruction from Time and Frequency Constraints

2. The Model

The most interesting applications of our optimal signal reconstruction algorithms,

of course, are those in which the minimizations or conditional expectations required at

each step are easy to compute. The simplest case in which this will happen is when the

covariance matrices are diagonal and the constraints on X and Y are related by an

orthogonal transform. The most appealing and useful situation of this type is when we

must reconstruct a Gaussian signal x and noisy Gaussian output t, given only a set of

constraints on the time domain behavior of z, and a set of constraints on the frequency

domain behavior of y. In orcr to state this model concisely, let us define the N xN

Discrete Fourier Transform (DFT) matrix WN by:

WN = Cexp -j2. j (7.2.1)

It is well known [8,9] that the eigenvalues of WN are ±l, ±j (to prove this, note that

W =-I.) Its determinant is therefore WN= 1 , and its inverse is W-=W N=W3.

Let the vector x represent an N point signal z = (x(O) -.- x(N -1) )T, and let X(wg)

be its Discrete Fourier Transform (DFT):

x(,) I X z(,,),e for (7.2.2)·g (c~) Cr~rr~l -Irir for = - -

It is easy to see that:

,j £= WN = 1 where: i = .v (7.2.3)

= 1x( "~- OJv

I
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is the DFT of . Note that the signal x can be recovered from the DFT vector xi by:

X = Wh (7.2.4)

Because WNIv = WNWR = I, Parsevars theorem also follows easily:

M-1

E x (n'= w we

- Y W rrh

1 N-1
=- C

n 1"0

(7.2.5)

X (W,) 12

The model we will consider is the simplest example in which noisy time and fre-

quency domain constraints are given:

( ) EX.

_ -.e- .- Y - , t y

II

Figure 7.2.1 - TunedFrequency Constrain Model
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Model:

= X + .

where: Q=

R=

where: p(w) = N (,Q)
where: p() N (0,R)

diag(q(0 -. - q(N-))

diag(r - - - r )

Observations: x (n)EX. where: X =XoxX x - - xXN-l

(l)EYi where: Y=Y0xY 1x-- xYn-1

The signal x (n) is a white Gaussian random sequence with zero mean and time varying

variance q(n). All signal samples are thus assumed to be stocdastically independent of

eaci other. The output y is formed by adding white Gaussian noise with variance r to

t. The observation formation specifies only that each sample x (n) is known to Be in

aome range X., and each sample Y(wg) of the Discrete Fourier Transform of the ovit-

put is known to lie in a set Y,. These sets X. and Yj are assumed to be independent of

the value of any other samples of z or .

mn Y(Wi) )

I

k( )

-InBfi

X.

4-

x (n)

)

Signal Constraint
I

I

Output Constraint

Figure 7.2.2 - Typical Constraint Sets

Bocause the signals are assumed to be ral, their DFT's must be conjugate symmetric,

and so we. wi assume that Yi = Y 1 {Y'(,' ) =Y((i)Yi). (If complx signals are

p

(7.2.6)

-

I~r

! (f (W,) )
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considered, this restriction is unnecessary.) Given this data, our goal is to try to recon-

struct the most likely value of the signal i and the output i.

3. Separability of the Conditional Densities

The most important feature of this model, for our purposes, is that the conditional

densities pr IY(x i) =N(Hi,V) and pr X (y i) =N (iR) are separable. This fact

will allow us to estimate each time domain sample x (n) independently of al the other

samples of x, and each frequency domain sample Y (lw) independently of al the other

samples of Y ().

Note first that the covariance matrices R and Q are diagonal, and so the covari-

ance matrix V and filter H are also diagonal:

V = (Q-'+R-') - - where v(n)= q (n)
q(n)+r

H = - where h(n)= (-) (7.3.1)
q(n)+r

Furthermore, because the signal constraint set is tbe cartesian product of the sets

X, - - ,X-, the conditional probabilty of each sample x(n) will depend only on

the corresponding output sample Yi(n), and wil be independent of all other samples of

i. Thus the conditional probalit desity P y(x ) = N (Hi,V) ca be wittn as a

product of truncated Gaussian densities over each sample value x(n) and centered at

h ( ) ():

N-1

.P Iir( !) n I Px(n)1( ) (7.3.2)
i-0

I
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where:

p (x (n) 1(n)) NX (h(5(n),v (n))

1Kx x 4 ) (x(n)-h(n)I(n))j for x(n)EX

0 else

We can decompose pyi( 1xi) in a similar way, excpt that we must first

transform to the frequency domain. Let us define the DFT variables ,%, 4 by:

J= W - I
(AF -

r (N-O

Y WV -1. j

(7.3.3)

Then:

(7.3.4)

or because R is a multiple r of an identity matrix:

P(If Isf ) = Nr(xf ,w TrW) = N(j ,rI) (73.5)

Now becaus the covariance R is diagonal, and because the constraint set Y decom-

poses into an independent set of constraints on the components of , the probability

density p( 1a) can be decomposed into a product of densities over the individual

nmnnirnet nf ,

Pr( I/) =] P, Y(.,) -mX(w,)

where:

(7.3.6)

p,, ( Y ( ) (wi) =-N 1 (i),r1
k 7N-()

I

I
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t ,exp[- ( ( ) N for Y(Wi)(Y,

0 else

Each output frequency component Y (wi) has a truncated complex Gaussian distribution

centered at I (wl), and is thus stochastically independent of any ther samples of the

signal or output spectrum.

4. MCEM and MAP Estimation Algorithms

The four Bayesian MCEM and MAP estimation algorithms which we developed

for this problem in chapter 5 iteratively calculate signal and output estimates as follows:

Signal Estimate

j&,l = E [z I Hik i

, + - min I, -Hi& 11 V
a EX

i+1= E 1 I H:]

4 +1 -Min IL - Ha 11 2
I~~~~

Output Estimate
- Z~~~~~

h+1 Ey1x 14+11

.+ -min lx -4+ 1!t2

; +1 min l1 -4+1 1R
rV

where the conditional expectations are with respect to the conditional densities

N(H)4,V) and Ny(,i+l,R). Because of the separability of the conditional probability

densitics and the constraint sets, these formulas can bc dramatically simplified. In the

signal estimation step, the expectation of each component x (-) of Z can be computed

dependently using o the corresponding output component k (a). The minimum of

I{ -H. 112 can also be computed by expanding the norm as:

z- H$ All it.=,;) ,- ) ) ,2 (7.4.1)

MCEM.

XMAP:

YMAP:

XYMAP:

4

I

I

I

I

I
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and then minimizing with respect to each component x (n). The output can be

estimated in a similar way if we first transform to the variables l:, f in (7.3.3). The

conditional expectation of y is just the inverse DFT of the expectation of y, which in

turn can be computed over each component -- Y(wi) independently. Similarly, the

norm I1iy - +1 !2 can be computed in the frequency'domain by Parseval's theorem:

N (Y(n)-x -( (7.4.2)

r 1 N j( J +l(Z) 12

Thus we need only minimize over each output frequency sample Y (w i ) independently.

Putting this all together, our four algorithms take the form shown in table 7.4.1. All

four algorithms share the same structure. We start with an estimate of the output

Y (i)EYi . Inverse Discrete Fourier Transform to calculate the time domain value

Yk(n), filter by multiplying by (n)= () (a 'fme domain Winer-Hopf filter),

then apply a projection or conditional expectation operator to choose the best estimate

of each signal sample ik +l(n). To reestimate the output, we Discrete Fourier

Transform the signal, X, +(wi), and apply a projection or conditional expectation

operator to choose the best estimate of each output requency sample fk +1(w) given

Xk + l(w1 ). This improved output csrimate is used on the next pass to improve the next

signal estimate. The algorithm thus alternates between filtering, forcing the time

domain constraints, and then forcin, the frequency domain constraints. Each iteration

strictly decreases the cross-entropy, and the MAP methods also strictly increase the

corresponding likelihood function on each pass. Each iteration therefore generates

xbetter' signal and output estimates. If the estimates remain bounded (the MAP esti-

mates always remain bounded) then they converge to a critical point or local minimum
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of the cross-entropy function (and a critical point or local maximum of the likelihood

function.) If each constraint set X, and Y is convex, then the entire constraint sets X

and Y will be convex and geometric convergence is guaranteed to the unique global 0

optimizing solution g, :

N 1 (n) -(n) 2 5 V, ;() (n (7.4.3)

N-i 1 12' -S 1 Yk (n (n

where: v v max f ( n ) 
· q(n)+r 

Geometric convergence will be guaranteed even if N is infinite.

0
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itn (Y A')I

X

x ( )

Xt +1(

Re (Y(W,)

EM
AP

Yk +1(w4)

X a

i (n)

Yi

Re (r(ui, )

(MAP
YMAP

1 r Xx

Figure 7.4.1 - Iterative Estimates

Note that although we have stated the algorithm using one-dimensional signash, the

idea can be extended in an obvious way to multi-dimensional signals. Finally, note that

although the conditional densities are separable, in general the original model density

PIX j(z~) wil not be separable. Thus calulatiag the MMSE estimate will usually be

extremely difficult, since it will require a 2N dimensional integration.

Yk (n)
,_ )

k+1(t) /

MCEM
YMAP

3I

4

si* +1(n)

XMAP
XYMAP

x(n)

4

4

fk +(.) +I
Yk 4 At+i )

4

4

4

4
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5. Fisher MCEM, MAP Algoritbms

In many applications we really do not know the a priori covariance q(n) of each

signal sample. We will treat this Fisher estimation problem by assuming

q (n) =- qo(n), then letting a-O, so that the a priori density p(L) becomes asymptoti-

cally flat. As a-0, our four Bayesi-n problems' will asymptotically approach the

minimum signal energy solution to the corresponding Fisher problem, provided of

course that such a solution exists. In the limit as a=0, the resulting iterative algorithms

have exactly the same form as in table 7.1, but with the filter h(n)=l and the condi-

tional signal covariance v(n)=r. The Fisher algorithm thus simply alternates between

forcing the time domain constraints and forcing the frequency domain constraints.

Each iteration strictly decreases the appropriate Fisher cross-entropy function, and

XMAP and XYMAP strictly increase the appropriate likelihood functions. If the csti-

mates remain bounded, they must converge to a critical point or local minimizer of the

cross-entropy. If the constraint sets X,, Y are convex, then lie algorithms arc always

guaranteed to converge to a global minimizing solution if and only if such a solution

exists. The convergence rate, however, may be sublinear, and the solution may be

non-unique.

6. Alternative Time and Frequency Constraint Model

Our choice of settiag time domain constraints on x and frequency domain con-

straints on was cldearly arbitrary, and could easily be reversed. Thus an alternative

time-frequency constraint model would be:

I
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Model: = _ where: p(:) N(0,Q)

y = X +Y where: p(y) = N(Q,R)

where: [Q]i, = q(i-j)

[R]j = r6ij

Observations: X (w ) EXi

y (n)(Y,

We start with a stationaxy Gaussian signal with covariance Q. Nc that Q is a cyclic 

matrix, so that Q = W QWN where Q/ is diagonal with samples Q (wl) of the DFT of

q (n) on the diagonal. White Gaussian noise with variance r is added to form the out-

put. Constraints are given for the value of each signal spectrum sample X (to) and each

output time sample y (n ). The algorithm for cstimating a and y now looks exactly like

our previous algorithm, but with the time and frequency domains reversed. To esti- 

mate the signal, we Fourier transform the output estimate, k t(i), filter by multiplying

by (the Weiner-Hopf filter), then use a projection or conditional expectation
Q(wi)+r

to estimate Xkt l(wi). Inverse transform, then use a projection or conditional expecta-

tion to estimate yt l(n) from k l1(n). Each iteration thus alternates between forcing

the time constraints, filtcring in the frequency domain, and forcing the frequency con-

straints. Each iteration decreases the cross-entropy and improves the estimates. The

Fisher version of this algorithm is actually identical to the Fisher algorithm for the pre-
ious mt with tholes of 

vious model, except with the roles of x and y reversed.

6

6
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Section B - Linear Equality Constraints

7. Reconstruction from Linear Equality Constraint Sets

The first set of applications we will consider are models involving constraints

defined solely by linear equations. We will only treat the model in section 2; modifica-

tions to treat the model in section 6 simply involve swapping the time and frequency

domains. Because each signal sample is real, there are only two different types of

linear variety signal constraint sets. X could be zero-dimensional, consisting of a sin-

gle point, X = {x (n)}, so that this sample is known exactly. The other possibility is

that X, is one-dimensional, consisting of the entire real line, X. = R, so that the

sample's value is completely unknown:

Xs X,

x(

x (n)

zero-dimensional
x(n)

one-dimensional

Figure 7.7.1 - Linear Variety Signal Constraint Sets

Because the output frequency samples are complex, there are three different types of

linear variety output constraint sets. Y could be zero-dimensional, consisting of a

I

4
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single point, Y = {Y ( )}, so that the frequency sample is known exactly. Y could also

be one-dimensional, consisting of a ine Yj = {Y(W) Im (Y (i)e ) = Y } where

4i is the angle of the line, and Y is its distance from the origin. Note that in this case,

all samples on this line have values (v i +J'Yi)c J*' for some vi E R. Lastly, the constraint

set could be two-dimensional, Yi = C, so that the frequency sample Y () is completely

unknown. (Beware that if the signals are real, we will require that Y, = Yj since the

transform must be conjugate symmetric.)

1 1~~~~~~~~~~~~~~~~~~~~

- I .. . I

r,

. W ) )

I 4

4

zero-dimensional one-dimensional two-dimensional

Figure 7.7.2 - Linear Variety Output Constraint Sets

Because all these constraint sets are defined by linear equalities, all our results about

linear variety constraint sets can be directly applied. First of all, all four of our MCEM

and MAP estimation approaches will give results identical to MMSE; we therefore focus h

exclusively on the XYMAP algorIthm. To derive the iterative primal algorithm, we

could write down the equations G,, = X and Gr = ,, defining all the constraint sets

above, then plug into our general algorithm of chapter 5. An easier approach, how-

I
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ever, is to solve the original minimization problem directly:

xk l(n) - min x(n)- (n) (n (7.7.1)
,(X,. {r (n)-,

Y + ( ) mm | Y i()

This gives the following Bayesian algorithm:

Primal Iterative Alorilthm (Linear Equality Constrains)

Guess l;o(wi)E Y

For k =0,1,

x (n) if X, ={X (n)}

Y(w1) 'if if X, =R)

() if / = {r(W,) }

ji (Re(4+l(wi)e')+~jyi )eJi if is a inc

fk +1(i) if Y,=C

The Fisher algorithm is identical, except that q(n)== so that the filtering step is omit-

ted. We start with an estimate of the output o. A good choice is usually to pick the

minimal norm element in Y, since in the Fisher algorithm, this ensures convergence to

the minimum norm solution if the answer should not be unique.

Y(a,) if Y = {Y ()}

io() = J eY J*
1 if Y is a line (7.73)

0 if Y=C

Given this output estimate, we inverse Fourier transform to get the time domain

sequence Yt (n), and multiply by the time domain Wiener-Hopf filter" q()- (this isq (a) +

I
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skipped in the Fisher algorithm since q (n)= and - = 1). We then set the sam-
q (n )r

ples where x(n) is known to their correct values and use the result as the new signal

estimate. Now to reestimate the output, Fourier transform. the signal, I.(@o), then

find the output spectrum values which comes closest to this. f the output spectrum

sample is known, we use its correct value; if it is completely unknown, we set it equal to

,+* 1l(w). If the output sample is only known to He on a given line in the corplex

plane, then we retain the component of Xt, l(wi) parallel to the line,

Re (k,l(i)e - )", and add it to the known component jY-,e '". Figure 7.7.3

illustrates this calculation:

Xt (I,)

(Re ([. (wi )~t_ ) jY ) e

Y 4

*, .t _ i I

Figure 7.7.3 - Estimating Y (wi) when Constraint Set is a Line

Each iteration strictly decreases the likelihood function iI jI iL I ik - 2, and the

Bayesian algorithm's estimates (computed with finite q (n )) are guaranteed to converge

to the-unique global optimizing solution at a rate given in (7.4.3). This geometric con-

vergence rate is guaranteed even if N =. 4

1



- 24 

Analyzing the convergence rate of the Fisher algorithm (q(n)=x) is, as usual,

slightly more difficult. The number of signal constraints p and output contraints q is

given by:

p = number of zero-dimensional sets X.

q = 2 * number of zero-dimensional sets Yi for O<w <r

+ number of one-dimensional sets Y for O< <-i

+ 1 if Y 0 is zero-dimensional

+ 1 if N is even and YN2 is zero-dimensional

Counting the output constraints is complicated by the conjugate symmetry of the con-

straint sets, YN-, = Yi'. Now our previous results guarantee that a global minimizing

solution to the Fisher problem always exists, and the iterative agorithm above will con-

verge to the nearest global minimizing solution. Assuming no computation noise, if we

start at the minimum norm element in Y, as suggeted in (7.7.3), then the algorithm

corverges to the minimum energy solution (i,.j). If min(p,q V -p ,N-q)<=,

then the number of non-zero eigenvalues which are strictly less than one must be finite.

The supremum of these, , will therefore be strictly less than 1, and the algorithm

will converge at the rate X, to the limit ,J:

12 M-1 1 
?k ):- (7.7.4)

aI -o . ,

Fimaly, the sohtion will be nor-unique if the intersection N lN, ${J}, or in other

words, if there xists a nou-zero signal (n) sch that:

v(n) -- ) wherever e saple x (n) is known

V (i) = 0 wnerevex the sample Yl(wi) is known exactly (7.7.5)

Im V(u ') = e wherever tic sample Y(wi) is known to lic on a line

I



285 '

In particular, if there are fewer constraints than points, p -q <N, then there will be an

N -p -q dimensional subspace of such signals v(n). Then if ( ,) is any solution to

the Fisher problem, then ( -vy, -) wil. be another solution. If the solution is non-

unique, the computation noise can accumulate at a constant rate -as the teration

progresses, possibly growing infinitely large. If the solution is unique, the Computa-

1
tional noise sensitivity is proportional to

8. Dual Algorithm

The dual algorithm takes a form similar to that of the primal algorithm, except

that the projction operators are orthogonal to those used in the primal algorithm.

This can change the dimensionality of the problem quite dramatically. Substituting the

model density and constraint sets into the dual algorithm in chapter 5 gives the folow-

ing iteration:

Dualiterative Algorithm:

Guess ,0(wci)

For =0,1, ·

(n) - q(') +r((n if X. ={x(n)}

,.,(n)= 0 if X, =R

Y(Wi) - l(i if Y {Y(Wi )}

~ 1 (w 1) - 0 (Y -I (tk+(i)e ) )* c3' if Y isainC

O if YJ=C

4

4
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!teratc sufficiently, then:

) -- 4- (n) ()
q +(n) -r

The Fisher algorithm is dentical, except that the a priori signal covariance q(n) is

infinite, and so the filtering step can be skipped. Start with an estimate of the Fourier

transform of the output multiplier; the initial estimate is arbitrary, so we might just as

well choose PY(woi) 0. Inverse Fourier transform to find the time domain vector

0(n). To estimate the signal multiplier, wherever the signal sample is unknown, set

p,.(n) to zero; wherever x (n) is known, subtract a filtered output multiplier estimate

q (nn) from x(n) to estimate p,(n). Now to reestimate the output multi-

plier, Fourier transform the signal multiplier, giving bp,,(wi). Wherever the frequency

sample Y(w,) is unknown, set ,,.(Oi) to zero. At frequencies where Y(w') is known,

estimate On 1(wi) by subtracting 0,,pl(wi) from Y(wj). Finaly, wherever Y(w,) is

known to lie on he line Im (Y(i)e* ) = Y,, throw away all but the component of

,* ,,(i) which is perpendicJar to the line, and subtract from the known component Y

of Y (w ) (see figure 7.8.1).

I
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Y(oi) ) a

Im (, (w )e _i ) )e sJ*'

Figure 7.8.1 - Caculation of y (to;) when Constraint Set is a Line

After enough iterations, signal and output estimates can be calculated by adding the sig-

nal and output multiplier estimates. Each iteration gives better estimates, and the

Bayesian algorithm is guaranteed to converge to the unique global optimum solution at 4

the same geometric rate as the primal algorithm. The Fisher algorithm (q(x)==) will

converge to the minimal energy estimates (i,,i~) regardless of the initial estimate

',. If the signal and output estimates are not equal, however, the signal and output

multipliers , t, wl only converge to a linear ramp, growing proportionally to

k (,-4i). The signal and output estimates , f still converge geometrically, how-

ever. If min(p,q,N-p,N--q) is finite, then there are a finite number of non-zero

eigenvalucs less than 1. The largest of these, K., will be strictly ess than ce, and the

Fisher algorithm will therefore converge at the rate X.=

The major difference between the dual and primal algorithms is that the dimen-

sions of the problems can be quite different. In the primal algorithm, N -p signal com- 4

ponents and N-q output components are unknown and must be estimated. In the dual

4

I.- (- f ) ' A (WO>

Im (A (
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algorithm, p signal multiplier components are unknown and q output multiplier com-

ponents are unknown. In some applications, most notably the band-limited extrapola-

tion problem we discuss below, there may be a large computational advantage to choos-

ing the algorithm with the fewest unknowns.

9. Closed-Form Solutions

Formulas for x, y, , and g can be stated by constructing the equations defining

the constraint sets, Gx =t and Gy =y,, and substituting these into our formulas in

chapters 5 and 6. The chief point of interest is that the number of equations to be

solved can be reduced by solving only for the unknown components of these vectors.

Since N -p components of x, N -q components of y, p components of U, and q com-

ponents of Qy are unknown, we can minimize the computational difficulty by solving

for the variable with the fewest unknowns.

We will state the primal formula for x and the dual formula for p.; the derivation

of these is not very ilnuminating, and thus we will skip the intermediate steps. Te

hardest part is keeping track of the indexing. Let us define:

n 1 .. ,np known signal samples

n +l, . ., n unknown signal samples

i . ..i, known frequency samples

i, +l ... ., it frequency samples on line

/+1. - ' iN unknown frequency samples

The-. the primal solution for the unknown components of x is:

Mx' = : (7.9.1)

(.nv 1(n)

I
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where 1 is the signal estimate generated by one pass of our iterative algorithm starting

at:

go = x(n) n- =n1 , . .,np

else (7.9.2)

and the matrix M x is given by:

[M x ]J,
( (n,)

= (,ir q (n)+r 
IV 1i=1it

i :+ 2 t
-1

(7.9.3)

I
The rows and coumnns of M x have indices l ,m =p +1, . . ., N.

Similarly, the dual losed form solution for the unknown components of ~ can be

put into the form:

p. (n x ( j)--p (R

M, ' = ' (7.9.4)

where ~ is the inverse DFT of the known frequency components:

Y (w=i)

0

if Y (wi) known

if Y (wi) on line

if Y(wi) unknown

(7.9.5)

I

and the matrix M, looks similar to M., but with the indexing modified:

[M I' =I 1
q(xi) 1

q(i,)+r N
I e (
I =11

+ +l /+

(7.9.6)

I

I

G

4

I

a

I

+ e i (4-i (xi +,,%.) + UJ )
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The rows and columns of M, have indices ,m =1 ... ,p. Beware that if ;/,JIiJ.

then this dual formula will have no solution, and a best least squares solution for X

must be found instead. The remaining components of A., are zero. To calculate signal

and output estimates, run one pass of the dual algorithm, starting with t,, then add the

i.nal and noutput .U;tipl;,, toge'tlc. Formiulas for.y and ly also can be derived, but

they are somewhat messier.

The Lagrange multiplier solution used in the dual algorithm can be interpreted as

finding a minimum norm solution to the original constraint equations:

o0 Gt i a y (7.9.7)

where these equations always have at least one solution bemcause we have assumed that

G, and Gy have full row rank. A more numerically robust procedure for calculating x

and y, therefore, would use a Singular Value Decomposition to solve (7.9.7) directly

via orthogonal transformations. This topic, however, is beyond the scope of this thesis

(see, for example, Lawson and Hanson [10] ).

10. Conjugate Gradient Algorithms

Solving these closed-form solutions directly usually requires a lot of storage and

computation. The iterative primal and dual algorithms also tend to converge rather

slowly. A more efficient approach, therefore, is to use either a PARTAN or conjugate

gradient algorithm to solve any of our four formulas for x, Jy, 1, or y. Each step of

the algorithm looks like one step of our primal or dual iteration followed by two line

search extrapolation steps. Convergence, however, is guaranteed in a number of steps

equal to the number of unknowns. Common sense would therefore suggest using the
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procedure to estimate the variable a, y; A, or 1¥ which has the fewest unknown com-

ponents. We will not repeat the details of the algorithm, since we have already stated it

in chapters 5 and 6. We will note, however, that there are two strategies that could be

used. The key step in the conjugate gradient algorithm for solving:

(I-PxHP, P)i = + PH( +PY) (7.10.1)

for example, is multiplying the direction vector d by the matrix (I-P. HPP,) to get

k. This could be implemented by performing the indicated series of projections and

filtering steps on 4, thus making it unnecessary to compute or store this matrix

directly. Alternatively, in some cases it malf be easier to exploit the fact that p com-

ponents of x are already known, so that the conjugate gradient algorithm only searches

over directions d, A, Sk having N -p non-zero points located at sample values where

x(n) is unknown. We can therefore reduce'the dimensionality of the problem by

removing the p unn;eessary rows and columns from the matrix (I-PxHP,Px), thus

leaving a smaller number of equations to be solved. This is exactly the same trick used

to derive the reduced primal (7.9.1) and dual (7.9.4) formulas. Now it will be neces-

sary on each step to multiply the search direction d by the matrix M, or M, and thus

this matrix will have to be stored or be computed on each pass. In applications where

this matrix M or M, has a simple form, this brute force" approach can be easier and

faster than actually computing all the FFT's and projections.

11. Eigenvahes/Eigenvectors of Fisher Problem

Finally, we interpret the eignvalueeigc -vector properties discussed in chapter 6

for the Fisher problem. Let {.} be an orthonormal set of eigenvectors of P P P with

non-zero eigenvalues ),.>0. Thus VEN, which implies that ,. (n)=0 wherever the

signal (n) is known. Let us define = - P,*., or in other words:,



-292 -

0 if Y = Y(,.)}

Re(Re(,. (oe _ )e i . if Y., is a line (7.11.1)

if Y. =C

These vectors s,, which are simply projections of . onto the output constraint null

space, are orthonormal eigenvectors of Py P P with eigenvalue . Projecting 4 back

onto the signal constraint null space by setting its inverse transform to zero wherever

x (n) is known, gives back the original vector , = -I Px 1 .

Now consider the subset {*,} of orthonormal eigenvectors of P1 PyP, with non-

zero eigenvalues which are strictly less than 1, O<X.<1. Project , onto the orthogo-

nal complement null space of the output constraint, Q =- Q by setting the

frequency components of ,. to zero wherever Y (wi) is unknown. Then the vectors S,

are an orthonormal set of eigenvectors of the d ' iteration matrix QY Q Qy with eigen-

value X,. Furthermore, setting TI (n) to zero wherever x(n) is unknown,

Q = , gives an orthonormal set of eigenvectors of the dual iteration

matrix Q, Q Q, with eigenvalue ..

12. Special Case - Bandlimited Extrapolation

The best known example of an optimal signal reconstruction problem with linear

equality time and frequency constraints is the problem of extrapolating a finite segment

of a bandclimited sequence. The usual statement of this problem sets N ==, assumes

that x(O), . . ,x(p -1) are known, and assumes that the signal is low pass, so that all

frequency samples beyond a certain point are zero, Y (i)=0 for Jwi >we

'~. (i)=
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R for n=O,...,p-l
^X = ~}M else

fC for Iilwto¢

Yi =- {Q} else

Using these constraint sets, we can now apply our primal and dual algorithms above,

state four different closed form solutions for x, , R,, and a, and list the usual variety

properties which the cigenvalues and eigenvectors satisfy.

Due to its importance, this problem has been studied by numerous researchers.

The original results for this problem, developed in the 50's and 60's, concerned extrapo-

lating continuous-time bandlimited signals. The theory for continuous-tme signals has

many simlaries to that for discrete time signals, but there are some major differences.

The most important difference is that a bandlimited continuous-time signal is analytic,

and thus in theory the unique extrapolation can be calculated simply by representing the

infinite length signal by its Taylor series expansion about any point in the known inter-

val

f () f (o) + f(xo)(x-xo) + %f "(xo) (-xo) 2 + (7.12.2)

This procedure, however, is excruciatingly sensitive to errors in the measurement of the

derivatives. Slepian, ct. al. [11] and others at Bell Labs [12,13,14] studied this problem

in a search for a more robust extrapolation procedure. They analyzed the eigenfunc- 4

tions of the problem, caling them the prolate spheroidal wave functions", and showed

that the cigcnvalues were between 0 and 1, that the eigenfunctions formed a complte

orthonormal basis, and that the eigenfunction decomposition could be used to construct

the correct extrapolation. Papoulis [1] suggested an iterative procedure for solving the

problem, which is the continuous-time analog of our primal algorithm, and used the

properties of prolate spheroidal wave functions to prove that the algorithm converges.

4

4
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Gerchberg [151 suggested a similar algorithm for reconstructing the high frequency

componenits of a finite length signal which has been low pass filtered.

As digital computers became more available, attention shifted to the discrete-time

problem of extrapolating a bandlimited sequence. Unlike the continuous-time problem,

the extrapolation of a discrete bandhmited sequenceis generally non-unique. Sabri and

Steenaart 16] studied the discrete-time problem and presented a discrete-time solution

corresponding to our primal closed-form solution for . Cadzow [17] reconsidered the

problem and by sampling the continuous time problem derived a new closed-form solu-

tion, corresponding to our dual closed-form solution for g.. Jain and Ranganath [2]

present an excellent analysis of the problem which comes closest to our approach (it was

published half a year after this thesis proposal was submitted.) They use both Bayesian

and Fisher approaches to the problem and focus attention on the minimum norm solu-

tion to the primal problem, which they define as the unique best extrapolation of the

sequence They also present our dual closed-form solution, a conjugate gradient algo-

rithm (we borrowed this idea from them), a detailed discussion of the properties of the

eigenvectors and eigenvalues (the "discrete prolate spheroidal functions'), consider both

clutter and noise, and add a comparison of periodic versus non-periodic (finite N versus

infinite N) extrapolation. Our major improvements to this paper are recognizing that

the iterative algorithm is most naturally developed by starting with the problem of

minimizing iL -x II2, and also recognizing that virtually all the properties that have

been derived for this problem can be extended to the general problem of reconstruction

from linear equality constraints. Our dual iterative algorithm and its interpretation in

terms of Lagrange multipliers also appears to be new.

We will not repeat the presentation of our results for this particular problem, but

I
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will merely point out some features of the problem which are unique. The primal itera-

tive algorithm simply alternates between filtering, forcing the known signal samples to

their correct values, and then low pass filtering the result. The dual iterative algorithm

alternates between filtering, truncating the output multiplier to the length of the given

signal and subtracting it from the given segment, then high pass filtering and negating

the result. Both of these algorithms decrease the objective function on each iteration

and are guaranteed to converge to a solution. The problem with these simple iterative

algorithms is that if N is very large, then calculating the necessary FFT's will be

cumbersome. Also, since any computation will have to take N to be finite rather than

infinite, aliasing errors will be introduced. Another problem is that the total number of

known signal samples, p, and known frequency samples, q, is usually much smaller

than the number of points, p +q <N. In theory, this does not affect the Bayesian algo-

rithms (q (n )<cc), since these will always converge at a geometric rate to the unique glo-

bal minimizing solution. In the Fisher algorithms, however, with q (n)=x, the extrapo-

ation will be non-unique. The primal algorithm must therefore be initialized to start at

the minimum energy initial spectral estimate, Yo(w)=O, to ensure convergence to the

minimum energy extrapolation. The dual algorithm, on the other hand, will always

give the minimal energy solution. The total number of non-zero eigenvalues less than 1

will be bounded above by p <=; this ensures that both the primal and dual Fisher prob-

lems will converge at a rate of ,,< 1.

An a priori stimate of the convergence rate for the Fisher problem with q(n)=z

is given by:

x _ 1 T- J+xPY(iIPJ) 11 _,_ _____(7.12.3)



' 296 -

Thas the largest eigenvalue less than 1 is bounded below by the ratio of energy in the

known segment to the energy of the total reconstructed signal. If the reconstructed sig-

nal tails are large compared to the known signal segment, then X,,, must be very close

to 1, which will make the problem ill-conditioned, slow the convergence rate, and make

the problem very sensitive to computation noise. Our Bayesian algorithms try to cure

this ill-conditioning by using filtering. However, the resultant signal tail estimate will

have less energy than the Fisher algorithm's estimates (see chapter 6, section 2). Furth-

ermore, the closer the eigenvalue X, is to one and the more il-conditioned the Fisher

problem becomes, the more drastic is the effect Gf the filter.

Closed-form solutions for both the primal and dual problems are easy to state.

With some algebra, setting N = in the primal dosed form solution for i gives:

M, x = g 1 (7.12.4)

where:

x = result of one pass of primal algorithm, starting at:

x(n) else

and:

Mx1 tMt,~ =- q(I)+r tr(l-m) else

Unfortunately, since p +q <N, the solution for X is non-unique, and the matrix on the

left will be non-invertible.

The closed-form solution for p can also be easily computed. Recognizing that all

the components of pL will be zero except for n =0, . .,p -1, it is easy to simplify this

dual-form solution so that it involves only a p xp matrix:

II
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I X (0).
=~ix :1 - 1) (7.12.5)
) xW - 1) 4

~~Fwhere: M r 813 sin(p (,-m))
where i[ J {q(i)+r + q(l)+r R(lI-m)

Because p +q <N, there will be many solutions satisfying i =, and thus this equation

for A can always be solved. Moreover, it can be shown that since q p then A must

be unique and thus this matrix Mp will be invertible. Furthermore, M,~ is Toeplitz,

and so we can solve for by using the Levinson-Trench algorithm [18,19,20. 4

Finally, since , is finite length, we will not have any aliasing errors. Clearly this dual

problem is the method ef choice for the bandlimited extrapolation problem.

The conjugate gradient algorithm is also easily implemented for this dual problem.

The key step on each iteration wiff be computing the vector k =I-Q, HQ,Q)4d.

Although this could be done by performing the indicated series of high pass, filter and

truncation operati-ns, a much faster approach would be to recognize that only com-

ponents n =0,.. . ,p-1 of all the vectors &g, , dk and k will be non-zero. Elim-

ating the unnecessary rows and columns of (I-QxHQ,Q,) leaves the matrix M in

(7.12.5). Thus we only need to calculate f4 = Mo d4 on each step, an operation requir-

ing only a small amount of cakulation.

The eigenvectors of this problem are the dcrete prolate spheroid vectors. Our

previous analysis guarantees that they form an orthonormal basis and at most p of

them have non-zero eigenvalues less than 1. Furthermore, not only are the eigenvec-

tosn . of PXP, P orthonormal, but so are the low pass vectors =. P,*l, the

high pass vecors = 1 (I-P, )*, and the truncated low pass vectors

4

M P
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We could also extend our analysis to include arbitrary signal Q and noise R covari-

ance matrices. Jain and Ranganath [2] consider one particular choice. The only diffi-

culty will be that calculating the projection matrices and filter will be more difficult, and

the matrix M. in the dual algorithm will have a more complicated form.

We conclude by mentioning that there is a much simpler approach available for

the problem of extrapolating a band-limited finite signal segment, if we are willing to

approximate the bandpass characteristic by an autoregressive-moving-average (ARMA)

filter response. Musicus has developed an extrapolation/interpolation/filtering algo-

rithm for noisy ARMA models which is based on the linear equality constraint algo-

rithms developed in this thesis. This method iteratively filters the observed data in the

frequency domain, linearly predicts the signal tails, uses these tails as its estimate of the

noisy observation tails, then repeats the process. Convergence is usually achieved in a

very small number of iterations.

13. Special Case - Phase-Only Reconstruction Modulo w

Another application of recent interest is reconstructing a finite length sequence

given noisy samples of the phase of its transform. Hayes [3, 4] proved that it is possible

to uniquely reconstruct a finite length one- or multi-dimensional signal from samples of

its phase modulo 7r or 2 together with the value of its first non-zero point, provided

only that the signal has no symmetric factors (a situation which has measure-zro pro-

bability if the sequences are random.) Hayes, iUm and OppF.-heim suggested two

closed-form solutions for the signal given the phase modulo % or 2ir, and they also sug-

gested an iterative procedure for solving the problem given the phase modulo 2w. This

0
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procedure iterates between forcing the time domain constraints, and then replacing the

phase of the Fourier Transform with its correct value. Tom, Hayes, Quatieri, and

McClellan [21] use non-expansive mapping theory to prove that if there exists a unique

sequence meeting all the given constraints, then this algorithm converges to that solu-

tion. (Otherwise their algorithm can diverge.) Quatieri and Oppenheim [22] con-

sidered using a similar algorithm for reconstructing a minimum phase signal from its

phase, and Espy [23] investigated the noise sensitivity of the problem.

There is a much simpler approach to this problem than that used by Hayes, et.al.,

which also suggests iterative algorithms for reconstructing a finite signal from the phase

modulo ir, rather than 2. Knowledge of the phase 0 modulo r of the transform

sample Y (oi) is equivalent to knowing that the transform lies on a line in the complex

plane:

Im (1

r,)I

i ) ) 4

Figure 7.14.1 - Constraint Corresponding to Knowing Phase Modulo sw

This, however, is simply a one-dimensional linear equality constraint on the transform

sample, with angle 4i and offset Yi =0. The time domain constraints, knowing crtain

4
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signal points and being ignorant of others, are also linear equality constraints. There-

fore, we can directly apply our general linear equality constraint analysis to the phase-

only reconstruction problem. In particular, we get both primal and dual iterative algo-

rithms, closed-form solutions for e, y, p, and ,, and conjugate gradient algorithms

converging in a finite number of steps.

Suppose the signal is constrained to be finite length, x(0), .. , x(p -1), and also

suppose that the first point x (O) is non-zero and is known. Also suppose that the phase

4i modulo w of the noisy output transform sample Y (wi) is known at each sample of

the DFT. We now use our XYMAP algorithm to to find the minimal energy finite

length signal which comes as close as possible to having the correct phase. The primal

iterative algorithm for solving this has the form:

Primal Phase-Only Reconstruction Modulo n

Guess iY(wi)=O

For =0,1, - - -

x (0) for n =O0

xk+l( (n) Y( for n1,. p (7.13.1)
q(n)+r(n)

0 else

Y +1(@'i) -Re (k )eal

The signal is estimated by truncating the filterd output sequence to the right length and

setting x(O) to its known value. The output is then reestimated by projecting the DFT

k +l(i) onto the correct phase angle, thus yielding the output with the correct phase
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which comes as close as possible to the signal.

The dual algorithm uses ojection operators orthogonal to those of the primal

algorithm:

Dual Phase-Only Reconstruction Modulo 

Gues YO(wi)=O

For k =0,1, - -

x () - ()+r (0)

0

_ (n) r

for n=O

for n=l,. .. ,p-1

else

b(oi)= jim (l(w,)e )i ek

I

Iterate sufficiently, then:

I

Zk +l(n) = x+,.,( ) + ()+r (n )

a

hYk+i() = Pt,(n) + Ot.(At)

f
We start with an arbitrary output multiplier estimate. Set it to zero wherever x (n) is

unknown and subtract the filtered output multiplier from the known signal values else-

where.. To reestimate the output, project the signal multiplier transform onto the phase

angle orthogonal to that of Y(wi). Iterate sufficiently, then compute the signal and

I

t

A.X' " () 
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output estimates by adding the multipliers.

The Bayesian versions of both algorithms are guaranteed to converge to the global

optimizing XYMAP solution at a geometric rate. Because p is finite, the Fisher primal

algorithm, q (n)=-, will converge to the nearest solution a a geometric rate, X,<1.

Starting at the minimum norm estimate Y0(oi )-=O guarantees convergence to the

minimum norm solution. The Fisher dual algorithm will also converge at the same

geometric rate X,., although if no finite length signal exists with the given phase (a

situation that may occur if there are more than p+ phase samples) then the multipliers

actually grow proportionally to k .-. a) on each iteration. The signal and output

estimates, however, will always converge to the minimum norm solution.

The convergence rate of, the Bayesian algorithm is given by (7.4.3). A lower

bound for the convergence rate X,, for the Fisher algorithm is given by:

fl,..r 1 + P, -ll _ LO) ~ (7.13.2)

Thus a lower bound for the convergence rate is determined by the ratio of energy in the

known signal point x (0) to the total energy in the reconstructed signal. This suggests

that as the number of points p to be reconstructed becomes large, then the phase-only

reconstruction problem inevitably becomes ill-behaved. (Espy [23] observed this same

phenomenon experimentally.) The Bayesian approach cures this ill-behavior by using

filtering, however the Bayesian reconstructions will have much less signal energy than

the Fisher reconstructions, and when the eigenvalue Hk is very dose to one, very small

filtering levels, h (n)X., cause drastic changes in the reconstruction.

Closed form solutions can be stated for both the primal and dual problems; these

can be derived from the general formulas in section 9. The primal equations are:

I

________________________ __ __
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[ (1) 1=j (l) I 1

X-1)
x P-1) If- -1)J

where:

l-1 ( I i > + 
i1 (n) = -x(O) E cos4 e "+ ' )

i=o

q(n) 1 N-1

= q(nt)+r 2N iO t- c

for lm =1, . .. p-1

and the dual equations are:

P(0)

p. ( -1)

(Note the unusual indexing

X(0)

.. sX I N- 1

q(l)+r 2 i=O

for 1, = O,p, .. . ,N -1

of the rows and cohmns of Mp.)

G
(7.13.4)

4

If exactly p-1 phase samples are given, and it is known that there exists a finite

length signal with the given phase, so that =, then we could simply solve the con-

straint equations

(7.13.5)

directly or the solution. After some algebra, this gives:

Ix(1) sin41

G : 5 -X (0) 

(re) =s(oir ) 

where [ ], = sn(i +,)

(7.13.6)

4

(7.13.3)

4

a

I

a

4

4

M. II,
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This is the equation used by Hayes [3]. If more than p-1 phase samples are known,

then a best least squares approximation could also be calculated directly from (7.13.6)

by a Singular Value Decomposition algorithm using orthonormalizing transformations

(see Lawson and Hanson 110].

Conjugate gradient methods are convenient to use with this problem. The primal

problem is usually easier to solve, because if there are more phase samples than unk-

nown signal points, then there will be no exact solution to the dual problem. All of the

usual eigenvalue/eigenvector properties can also be applied to this problem.

We have programmed the iterative projection algorithm, the PARTAN algorithm

and the conjugate gradient algorithms for this problem in order to demonstrate the

relative performance of our schemes. Figure 7.13.2 shows the convergence of our pri-

mal iterative algorithm for reconstructing ten white noise sequences of 64 points each

using the exact phase of every sample of a 128 point DFT, together with the first point

x(O). Figure 7.13.2a shows the ten reconstructed sequences i,,,,I, from our conju-

gate gradient algorithm superimposed on top of the original sequence. Note that even

with double precision arithmetic (64 bits precision), 2 out of 10 sequences could not be

reconstructed. These two sequences appear to be very "close' to having symmetric

zero-phase factors; there is so little deviation between the reconstructed signal i and

output x, and the slope of the objective function valley" is so shallow, that none of our

algorithms were capable of driving the estimates to their true solution. To illustrate the

convergence rate of our various primal algorithms, we plotted the error 11 -. -112

between the original signal . and the reconstructed signal ik. Figure 7.13.2b shows

the convergence of our primal iterative algorithm without using any acceleration. Note

that even after 1000 iterations convergence is still nowhere in sight. From the formula

k
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ii -ilO ( ' I , XA2wx Io- . II2

we would estimate ,, for this problem to be greater than .9999! Figure 7.13.2c shows

the convergence rate of our conjugate gradient algorithm, which in theory is guaranteed

to converge in 63 iterations, the number of unknown signal points. Note that the first

55 or so iterations seem to have virtually no effect on the error. A of the improve-

ment comes in the last few iterations. Note, also, that somewhat more than 63 itera-

tions were needed to achieve convergence. Figure 7.13.2d shows the value of the objec-

tive function % 114 11Q + 41- 1 as the conjugate gradient algorithm iterates. Note

that, unlike the actual reconstruction error, it is driven to a small value in the first few

iterations; the remaining 50 iterations or so cause relatively little change in the objective

function, although they make a very large change in the signal estimate. We also tried

the PARTAN algorithm, which is also guaranteed to converge in 63 iterations. We do

not show its behavior because its estimates are identical to those of conjugate gradient, 4

but the computation appears to be slightly less numerically robust.

To summarize: this reconstruction problem is fantastically ill-behaved. In fact sin-

gle precision arithmetic was not sufficient to achieve convergence. Because some eigen-

values Xi are greater than .9999 but still less than 1, the rate of convergence is minute,

and the noise sensitivity, proportional to 1 is enormous. Worse yet, most of the
1-XL I

energy in the reconstructed signal seems to be generated by eigenvectors associated with

these few eigenvalues. As p becomes larger and larger, these igenvahles get even

closer to 1; reconstructing 256 point signals, for example, was impossible with our algo-

rithms.

To illustrate the effect of filtering in a problem which is this badly behaved, we 4

added a 128 point white noise sequence to our 64 point signal I., thus independently

4
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corrupting every frequency sample of the spectrum X.(wi) for a total signal-to-noise

ratio of 40dB. We then tried to reconstruct the sequence from the phase of the noisy

transform. Figures 7.13.3a and 7.13.3b show the reconstructed estimates generated by

the primeal Bayesian and Fisher conjugate gradient algorithms. The Bayesian algorithm

uses a filter h(n q(n) = .9999 on each pass;'the Fisher algorithm sets h(n)=1.
q (n )+r

Despite the apparent insignificance of this filtering, the Bayesian estimates have drasti-

cally less energy than the Fisher estimates. One of the Fisher estimates, on the other

hand, has a large high frequenc; oscillation caused by small amounts of noise being

amplified by the high gain of the iteration. The reason the effect of the filtering is so

drastic is that with h(n)=h constant, the eigenvalues of (I-PHP P )- 1 are .
(1-h Xi) 

Since X>.9999, the largest of these eigenvalues in the Fisher case will be well over

10000; in the Bayesian case with h =.9999, the largest of its eigenvalues will only be

5000, a difference of at least a factor of two. Note, finally, that the error between the

reconstructed and the original signals in the Fisher algorithm is about 1000 times

greater than the noise energy that was originally introduced.
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Section C - Convex Constraint Sets

14. Reconstruction of Finite Signal From Noisy Phase Modulo 2ir

When the constraint sets are convex, but not linear varieties, then the four MCEM

and MAP algorithms will give different results. The chief example we will consider

involving convex constraint sets is reconstructing a finite length signal from knowledge

of its phase modulo 2r. The examples in section 13 indicate that when the phase is

only known modulo 7r, reconstruction of 64 point sequences becomes difficult even at

signal-to-noise ratios of 40dB. With additional information, however, it is often possi-

ble to improve the reconstructions.

We first consider the case where each output spectrum sample Y(twi) is known to

he on an infinitesimally thin strip in the complex plane radiating outward from the ori-

gin at angle 4i. The signal x (), . x (p -1) is assumd to be finite, and the sample

x () is assumed to be known.

I
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Figure 7.13.1 - Phase Modulo 2ir Constraint Set

This type of output constraint set was used in the examples in chapter 5 and 6. Because

the signal constraint space is still defined by linear equalities, our four iterative algo-

rithms only give two distinct methods for solving the problem: MCEM/XMAP and

YMAP/XYMAP. Substituting the constraint set in the above figure into our iterative

algorithms in table 7.4.1 and using the formula in chapter 5 for the expectation of a

Gaussian random variable on a thin strip, we get the following algorithm:

MCEM/MAP Iterative Recougxuction

For k =0,1, --

x (0) for =0

J4+j(n) = -7 ..4 + A q(n)+r () for =, . . . p (714.1)

0 else

r

Yk+ l(Uwi)- 4 + 

L J

I

in, (.Y

(Wi))

el'j

- ---------
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0

where: = wRe(X(Wiej )
.

Grf() = I f exp(- 2) d

and:
I

YMAPIXYMAP Iterative Alorithm

For k=0,1, -

Xk+l1(n) = I x (0)

0 qln) (n)
q(x)+,
0

for n=O

for n=1, . . ,p-l

ejse

(7.14.2)

t

I Yk +l(i) = Max (, 0 ) e j

In both algorithms, we start with an estimate of the output spectrum. Inverse Fourier

transform, then impose the known time domain constraints, setting the known sample

to its correct value and truncating the signal to the correct length. The output is then

reessimatd in the YMAP/XYMAP algorithm by Fourier transorming the signal, then

projecting each spectral sample onto the correct phase angle. The MCEM/XMAP algo-

rithm is siilar, but it adds an extra correction factor which depends on the magnitude

of the projection X. relative to the standard deviation of the noise. This increases the

energy in the output estimate. Figure 7.14.2 explains the origin of this correction term

I

I

I

I4

¢

I
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by showing the conditional probability of Y (i) along the Yi constraint strip.

( I I

p Y(Wi) 1Xi

Re (Y (i)e' )

Figure 7.14.2 - Conditional Output Density

Figure 7.14.2 - Conditional Output Density

This conditional density is a truncated Gaussian. YMAPIXYMAP estimates Y(ti) by

choosing the mode of this density, *j. MCEM/XMAP chooses the mean of the density,

which will be located at a larger value of Y (i). Each iteration of either algorithm

strictly decreases the cross-entropy at each stage, and strictly increases the correspond-

ing likelihood function. Geometric convergence of the Bayesian algorithms (q(a)<=)

is guaranteed to the unique global optimizing solution at a rate v, = v max q ( )

The Fisher algorithms (q(n)=:) are guaranteed to be bounded and converge to a glo-

bal optimizing solution if and only if a global optimizing solution exists Note that this

does not require that a finite signal exists which has the given phase; all it requires is

that there be a finite length signal and an output sequence with the correct phase which

come as close to each other as possible. Because the constraint sets are simplexes

defined by linear inequalities, YMAPIXYMAP is guaranteed to have a minimizing

solution, and thus wi always converge (see Goldstein [24] or Kinzi and Krlle [25] )

I
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It is interesting to compare these algorithms with the Hayes, Lim, Oppenheim,

Quatieri algorithm, which was derived by a more intuitive and ad hoc approach to the

problem. We can state their algorithm in the following form: h

Hayes, Lim, Oppenheim, Ouaieri Phase-Only Reconstruction Modulo 2r

Guess Yo(w ) 

For k=0,1, - - -

.t(0) if =0

xk+1(n) - (n) if n -1,..., p-1 (7.14.3)

0 else

t+l(i)= bk+1(wi) idC J

Starting with an initial output estimate, truncate the sequence to the correct length and

set the known signal value to its correct value. Now take the DFT, retain the magni-

tude of the signal transform, but set the output transform phase to the known value.

Now the output sequence is no longer finite length, so we iterate, truncating the signal

and forcing the correct phase until it converges. Tom,'Hayes, Quatieri, Mclellan [21]

used the fact that lj -4 112 is strictly decreasing in this algorithm to prove convergence

if a finite length signal exists with the given phase. Figure 7.14.3 crmpares the output

spectrum estimates generated by our iterative algorithms.

41
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Im (Y (i) Have -1 (a. 

Figure 7.14.3 - Comparison of Output Spectrum Estim tes

Given noise-free phase, all of our methods will converge to the same estimate

(with r=0, MCEM/XMAP will be identical to YMAP/XYMAP.) We therefore tried

comparing the algorithms on noisy sequences. The convergence rate for 64 point

sequences was very slow, so we chose ten 32 point sequences instead; except for the

slow convergence rate and increased ill-behavior, the algorithms act similarly for 64

point sequences. Figure 7.14.4 shows the reconstructions generated by our three Fisher

algorithms (q(n)= =) with 64 noise samples added to the 32 point sequence, for an

SNR=3dB. The reconstructed signals are shown, superimposed on the original, and

also the reconstruction error 114 -x .112 is graphed as a function of iteration number.

We used a fixed over-relaxation procedure to acccerate convergence in these algo-

rithms; no real attempt was made to optimize the convergence rate. It is significant,

however, that while the conjugate gradient modulo it algorithm would converge in 31

iterations, these algorithms require several hundred iterations even with acceleration.

YMAP/XYMAP performs the worst. Surprisingly, in 8 out of 10 sequences, Hayes'

I

IY(i) 
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algorithm appears to give slightly better reconstructions than MCEM; the reconstruction

error seems to be about 80% or so of MCEM. This is difficult to explain. Figure

7.14.5 repeats the exercise at 20dB for the three algorithms. Now the relative perfor-

mance is reversed; MCEMIXMAP gives far better reconstructions than Hayes, with

reconstruction errors 2 to 3 times lower. At 10 dB (figures not shown) no method

works well The Bayesian .{CEM/XMAP and YMAP/XYMAP algorithms are not

shown because at 30dB and below they filter out most of the signal in their attempt to

filter out the noise.

To summarize, the method based on careful probabilistic analysis,

MCEM/XMAP, is best when the reconstruction difficulty is dominated by the stochastic

behavior of the noise. At higher SNR, the Hayes, et al approach appears to be slightly

better and is simpler to boot. Beware, however, that applying the line search accelera-

tion that they suggest will change the solution towards which their algorithm converges.

(In fact, it pushes it closer to our XYMAP solution.)

MCEM/XMAP achieves its superior low SNR performance by exploiting the fact

that the noise is known to be Gaussian. If the phase measurements have been distorted

by quantization error, for example, rather than by Gaussian noise, then

MCEM/IXMAP performs little better than Hayes. Other assumptions could be tried for

modeling flat quantization noise in our Gaussian setting. For example, we could try

modeling the constraint set as a wedge radiating out from the origin at angle 4).
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Im (Y(

(,i) 

Figure 7.14.6 - Wedge Constraint Set

Since the width of the wedge is proportional to the distance from the origin, if we

approximate the wedge as being very narrow, then the MCEM/XMAP estimate would

be:

-1Eye [Y( 1 ) Iri(wi) ] (7.144)

+ ..t. .. iV 1 + g

This calculation would bias the output spectrum estimate toward larger values than in

our thin strip approximation. Experimenting with flat phase noise, however, has not

shown any condusive advantage to the scheme. It also has severe numerical difficulties.

The basic idea can be extended to problems in which we know both the phase of

the spectrum and the phase of each signal point (i.e. the sign of each point.) Expcri-

ments with our algorithms has shown similar performance as in our example above;

I
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MCEM using expectations in both time and frequency domains works far better than

anything else at 20dB, while using the phase substitution idea of the Hayes algorithm in

both the time and frequency domains works somewhat better at 30dB.

4
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15. Multidimensional Finite Impulse Response Filter Design

Another interesting application of iterative signal reconstruction is to the design of

one- or multi-dimensional Finite Impulse Response (FIR) filters meeting arbitrary time

and frequency constraints. Problems like this arise when it is necessary to try to control

the response of the filter over the entire frequency range of the filter, even in the transi-

tion bands, and also control the range of coefficient values which are permitted. For a

very thorough discussion of this problem, see Rabiner and Gold [26]. The most gen-

eral algorithm for FIR filter design, suggested by Rabiner [27,281, uses a linear pro-

gramming algorithm, varying only one coefficient of the filter at a time in an attempt to

drive the filter towards the desired form. Convergence is slow, but the algorithm ter-

minates in a finite number of steps with the correct solution. The best known algo-

rithm for one-dimensional Chebyshev FIR filter design is Remez exchange, as used in

the Parks-McClellan algorithm. This appr ach builds the best high, low or bandpass

filter design by using an iterative multipoint adjustment scheme to decrease the worst

frequency domain errors in the filter. By exploiting the properties of finite one-

dimensional polynomials, the resulting algorithm converges to an optimal solution in a

finite number of iterations. Unfortunately, Remez exchange does not easily generalize

to multiple dimensions, and cannot handle arbitrary time and frequency constraints.

The algorithm we present uses no inteligence in the FIR filter design process, and

therefore is applicable to arbitrary time and frequency constraints in arbitrary dimen-

sions. The penalty paid for this flexibity is that the filters are optimal in a least

squares, not Chebyshev, sense, and the convergence rate is only geometric, so that

some stopping criterion must be invoked.

Suppose we are given two types of constraints the filter must satisfy; each filter

I
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coefficient must fit withir the set X,, and each frequency sample of the DFT of the

filter must fit within a set Y. The sets Yi therefore define the desired frequency

response together with the allowable tolerance we are willing to accept at each point.

For a zero-phase FIR filter, for example, we may constrain the lower and upper

bounds of both the coeffidents and the magnitude of thefrequency response, as in fig-

ure 7.15.1.

,. , x , I..... 

n
hi

4

Figure 7.15.1 - Possible FIR Filter Constraints

Let x be an FIR filter meeting all the time domain constraints, and let y be a (non-

finite length) filter meeting all the frequency constraints. Let us measure the 'error"

between the response of filters and .X by passing unit variance stationary white Gaus-

sian noise w(n) through both filters and measuring the mean square error between

their outputs:

Eo= E [ (w(n)- y(n)w(n)x(R)) 2 (7.15.1)

=IE ME (w()-(y(n)-(n))2]
N X-0

4
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- (; (A)-X(n) )2
a

= IIY- 112

We now choose the filter , meeting the time domain constraints and the filter I meet-

ing the frequency domain constraints which minimize this average error enevgy:

i,j- miin j1 y -~ l72 (.15.2)

This, of course, is just the Fisher XYMAP objective function. We can therefore use

the Fisher XYMAP algorithm to design the filter:

For k=0,1, - -

+lfn)= min (y(n)-(n))2 7.15.3)

fk +I(.)i)--Illin ly (mi)--_ k+t(Uoi) 2

We simply alternate between clipping the filter yk(n) to fit within the known con-

straints, giving the estimate Ik +l(n), then cipping Xt +(w,) to fit within the known fre-

quency constraints, giving tk+l(w1). Each iteration decreases the objective function

(7.15.2) and if the constraint sets X, and Yi are convex, convergence to a global optim-

izing solution is guaranteed if such a solution exists. If all the sets Y are bounded,

then Y will be compact, and thus convergence will be guaranteed.

I
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x (n)
-jI(n)

j--- x(n)

A Wi a

Figure 7.152 - Meat-Cleaver FIR Design

If a filter exists which satisfies both the time and frequency constraints, i , then the

algorithm is guaranteed to find such a sohrtion. Otherwise, it finds a pair of filters

(jF ) such that j meets the time constraints and "comes as dose as possible' to meeting

the frequency constraints, while I meets the frequency constraints and comes as cose

as possible' to meeting the time constraints. Since the algorithm uses no intelligence

about FIR filter design, it will work on arbitrary dimensional filters meeting arbitrary.

convex constraints. Of course, the convergence rate may be sublinear, and an infinite

number of iterations might be needed. A least squares criterion is also not always

appropriate, since a Chebyshev design will yield less peak error. Unlike Remcz

exchange, the method does not suggest the tightest possible constraints that could be

used. Finally, by relying on finite length FFTs, we are only constraining aple s of 4

the filter's response to fit inside the constraints. Peaks of the filter response could occar

between samples, and thereby violate the constraints. Using very dense FFT's wil solve

this problem, but especially in multiple dimensions, large FF's can be prohlibitively

i

,

)

J_
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costly. On the other hand, the advantage of our algorithm is that most Chebyshev or

Remez exchange algorithms cannot handle time domain constraints, and are limited to

one-dimensional filters.

We illustrate a typical FIR design procedure. (The following is intended to illus-

trate the behavior of this algorithm, and no attempt is made to present a practical

design methodology.) Our goal is a 25 coefficient zero-phase two-band low pass filter

with twice the gain in the second band than in the first. We define the edges of the

bands, set transition regions, and adjust the tolerance for the deviation we are willing to

allow in each band. Figure 7.15.3a shows the resulting FIR fiher after about 15 itera-

tions, with extremely tight tolerances used in the bands. The dashed lines indicate the

frequency constraints, and the solid line the FIR filter response. Note that the ripple

exceeds the tolerance levels and the transition regions of the filter are too wide. This is

the best that a least squares 25 point filter can do. We slowly relaxed the tolerances in

each band and continued iterating. After about 45 iterations, we achieved the filter

shown in figure 7.15.3b. Note that the ripple is much larger, though still not within the

constraints, but the transition regions have become narrower. Continuing to slowly

relax the tolerances in each band, we finally ended at the filter shown in figure 7.15.3c,

which exactly meets both the time constraint (25 points) and the frequency constraints.

Note that this is a dassic Chebyshev equiripple" filter design. Figure 7.15.3d shows the

FIR filter coefficidtts. We tried adding time domain constraints such as requiring all

coefficients to be less than 5; unfortunately, these types of constraints distort the resut-

ing filter so badly that it is not at all possible to match the esired response. Time

domain constraints that might be quite useful, however, would be to force small coeffi-

dents of the filter to zero, then adjust the remaining coefficients to optimize the

response. This could significantly save on the number of multiplications that would be
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necessary to implement the filter.
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Section D - Non-Convex Constraint Sets

16. Magnitude-Only Signal Reconstruction

We have not had as much success with constraint sets which are not convex. The

difficulty is that our convergence proofs only guarantee that if the estimates remain

bounded then they will converge to a critical point of the objective function. There is

no guarantee of convergence to a global optimizing solution, and the critical point we

converge to could be quite far from the global optimizing solution. The only example

we will discuss of this type is reconstruction of a finite length signal from the noisy mag-

nitude of its Fourier Transform. Let us assume that X is known to be a finite multidi-

mensional sequence, and that the magnitudes IY(n)l of the samples of the Fourier

Transform of y are known.

Im(Y(wi))

k

Y (W),

Re (Y(ui))

Figure 7.16.1 - Magnitude Constraint Set

I

-- f --
^ -- l 

)\~~~~~~~~~~~~~~~~

i
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Note that while the signal constraint is linear, the magnitude constraint on Y (wg) is not

convex. Hayes [3) has proven that a finite sequence is uniquely defined by its magni-

tude up to translation and rotation of its factors. We can easily apply our iterative

algorithms to this problem; the only tricky part is evaluai_ g the conditional expectation

of Y (a) given X(5i), an operation which requires using modified zero and first-order

Bessel functions 1o(z) and l(z) (these routines are available in many scientific subrou-

tine libraries.)

MCEMXMAP Magnitude-Only Reconstrucion

Guess Yo(wi)

For k=-0,1, -

fi Yt (a) wherever x (a) is unknown
.£,(nt) = ( o5 (7.16.1)

Io x .+lG(&)Y(.) I)

where:

1 (z) = 1Il J (zej'

J*(z) = r f e t ' os(n ) d

and:

YMAPXYMAP Magnitude-Only Reconstruction

Guess YfDo(i)

For k=t0,1, 

j () wherever x () is non-zero
4(n) =0 else (7.16.2)

.
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ik +,(t)= I O ) I

This last YMAPIXYMAP algorithm is identical to the one proposed by Fienup [6] and

Hayes [3] and is in the same category as Gerchberg and Saxton [7]. Corollary 6.2 in

chapter 6 guarantees that since the constraint set Y is bounded and closed, and X is

convex, then the estimates must remain bounded and must converge to a critical point

of the objective function. If initialized at a spectrum Y(wL) that is close to the true sig-

nal, this algorithm has a good chance to converge to the correct solution. In general,

however, due to the non-convexity of the magnitude constraints, there are an enormous

number of local minima of the objective function which are not at ail similar to the glo-

bal minimizing solution. If initialized randomly, the iteration inevitably locates one of

these local minima, and cannot find the true solution. We have not tried the MCEM

algorithm yet, and so can not report on its performance. Fienup suggested ggling the

iteration by switching extrapolation methods or varying the procedure in other ways.

However, we had no success with this.

An approach which was marginally better than that above was to restate the con-

straints in the following form. Let Mi be the magnitude of IY (wi ) 2. Then require:

X = (i () a finite sequence, and x2(,)= Mi } (7.16.3)

Y = {yYt) I y (.) 12M }

Here we constrain the output spectrum samples to be less than or equal to their known

magnitude, and indirectly enforce the fact that they must be equal by requiring the total

signal energy to add up to the maximum possible. Thus we have replaced N2 non-

convex constraints by a single non-convex constraint. Unfortunately, the resulting esti-
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marion XYMAP algorithm still has local minima, and still tends to converge to one of

these.

1. Summary

The examples presented in this chapter represent only a few of the many possible

applications of the algorithms presented in the thesis. The advantage of our approach

is that the MCEM, XMAP, YMAP and XYMAP algorithms are easily computed,

easily understood, applicable to many problems involving multiple constraints stated in

different domains-, and their convergence behavior is dominated by the fact that we are

minimizing a relatively simple and often concave objective function. This one unified

approach not only yields most of the well known iterative projection methods, such as

bandmliited extrapolation, but also suggests improved algorithms in problems such as

phase-only signal rconstruction modulo 2, in which the known noise statistics are

used to improve the estimates.

In general, our signal reconstruction algorithms work best when the constraint sets

are defined by linear equalities, or are convex. These applications, bandlimited extra-

polation, phase-only recontruction, and multi-dimensional FIR filter design, are the

most straightforward and are guaranteed to converge. Problems involving nonlinear *

constraints, such as magnitude-only reconstruction, are significantly more difficui due

to the presence of local minima.

4
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Chapter 8

Applications of Optimal Signal Reconstruction

Part IV - Short Time Fourier Transforms,
MEM, and Penalty Functions

1. Introduction

In this chapter we consider more esoteric applications of our optimal signal recon-

struction theory. We first propose a generalization of Short Tlime Fourier Transforms

(STFT), in which we divide the transform operation into an 'orthonormal' sectioning

operator followed by an array of Fourier Transforms. This more general viewpoint

indicates the proper methods for handling boundary conditions in the tranorms, sug-

gests more general windowing procedures, demonstrates that the inverse STFT is a pro-

jection operator, and yields a Parseval-like theorem relating the energy of the signal in

the time and Short Time Fourier domains. This allows us to directly apply an our pre-

vious theory to problems involving reconstruction of signals from a mixture of con-

straints on its behavior in the time and Short mune Fourier domains. This new frame-

work also provides a structure for evaluating algorithms such as that of Nawab [1,2] for

reconstructing a signal trom the magnitude of its Short Time Fourier Transform.

The remaining algorithms do not strictly belong to the stochastic framework which

we have developed in this thesis. We discuss them because of their intrinsic interest,

and because their structure is very similar to that of XYMAP, Both of these problems

iteratively minimize a least squares objective function involving several unknowns,

where the given constraints on each unknown are stated in different domains. I addi-

tion, the same convergence proofs used for XYMAP can also be applied to these algo-
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rithms.

The first of these applications was motivated by a "ping-pong" algorithm developed

by Lim and Malik [3,4] for solving multidimensional MEM problems. This algorithm

tries to extend a set of multidimensional correlations given that the infinite correlation

set is the inverse Fourier transform of one over a finite polynomial. We provide a

more systematic approach to this problem, and show that the problem actually involves

constraints stated in three different domains. The resulting reconstruction algorithm

then resembles that of Malik and Lim, except that a quartic equation must be solved at

each frequency sample to estimate the spectrum. Malik and Lim's algorithm appears as

a form of our algorithm in which a non-optimal decision is made at each iteration.

Since we have not yet programmed our algorithm, however, it is too early to conclude

which is the better approach.

Finally, we suggest a new method for constructing penalty functions for -on-

strained minimization problems. By introducing an extra variable belonging to the con-

straint set, we can convert the original constrained minimization into an iterative

sequence of unconstrained minimizations and projection operators.

2. Short Time Fourier Transformst

Stationary signals are particularly convenient to model or filter because, among

other reasons, the Fourier Transform of the data is a white noise sequence in which

each frequency sample is stochastically independent of all other frequency samples. 4

Thus by transforming to the Fourier domain, we no longer need to consider the

interaction between adjacent samples, and can process each frequency component

t The applcaion of this thesis to recosrmuction of .ipals using Sort Time Fourier
Trandorms was sggested by discussimo with Har-id Nawa.

4

_��_ ________________�_____
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independently. Unfortunately, when the data is non-stationary, as in speech or images,

its Fourier Transform can no longer be interpreted in such a simple way.

A common ngineering approach to this difficulty is to try to exploit the 'local'

stationarity of speech or images by sectioning the data with windows, then processing

each frame as if the data it contained were stationary. After w odifying each frame, the

sections must be stitched back together in some reasonable fashion to reconstruct the

complete signal. A desirable feature of this sectioning and resynthesis procedure is that

if no processing is performed on the data, then the procedure should exactly return the

signal we started with. This requirement of being an identity transformation is typically

used in the development of this topic to specify constraints on the shape of the windows

used to section the data. The overall procedure of sectioning the data and Fourier

transforming each frame is called a Short Tune Fourier Transform (STFT), and the

inverse procedure of inverse transforming each segment and then stitching the frames

back together is called an Inverse Short Time Fourier Transform (SIFT-1).

2.1. A Development of the Short Time Fourier Transform

We will present a somewhat unusual development of this subject, one which not

only provides an interesting and useful generalization of the procedure, but which also

highlights the implications of requiring the analysis and resynthesis procedures to be an

identity system. Let Bi} be a set of linear operators on the data . These 'window"

matrices could be diagonal with elements bi(n) on the diagonal, in which case multiply-

ing Bi times z would be equivalent to multiplying the signal x (n ) by a windowing func-

tion b(). This interpretation is not essential, however, and Bi could have any arbi-

trary form, subject to certain constraints we develop below. Let y- =B be the id

'windowed frame of data', and let X be the collection of all these data segments:
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Y-L BL I , (8.2.1)

Let B be the block matrix on the right. The matrix B can thus be interpreted as a sec-

tioning operator which converts a one-dimensional.signal into an array of signal

L
frames y. Let Bi have size M i xN, so that y, is a vector of length Mi. Let M = X Mi

i-l

so that y is an M element vector, and B is an M xN matrix.

In order that there be a resynthesis procedure which can reconstruct the signal x

given its sectioned representation y, it is necessary and suffiidcnt that tte mapping B be

one-to-one. This means that B must have full cohlumn rank so that it nun space only

contains the zero vector. With this constraint, there must exist a liear operator F

which will map the sectioned data y back onto the original :

(Ft.FL i 

( = F = = Fii = (8.2.2)

which means that the blocks forming the operator F must satisfy:

L
C FiBt = I (8.2.3)

i1

If the total number of points in the sectioned data vector y is larger than the number of

points in the original signal, M >N, then there will be many linear oprators - which

properly map the range of B back onto its domain. One choice for F which is particu-

larly convenient to use is the left pseudo-inverse of B:

F = B t = (BH~B)-IB = t BHB/) B (8.2.4)

This operator is well defined because B has full column rank, and erefore BfB is

4
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invertible. The pseudo-inverse F=Bt not only properly maps the range of B onto its

domain, but also maps the orthogonal complement of the range to zero:

B = A if = By(.2.5)
Btv = 0 if IBx for alla (8z2.5)

Another way of saying the same thing is that Bty is the signal i such that Bi comes as

close as possible to y:

Bty = - min [l)L-BI 12 (8.2.6)

The pseudo-inverse has several useful properties:

a) BtB= I. Thus sectioning the data (multiplying by B) followed by resynthesiz-

ing the signal by piecing together frames (multiplying by Bt) is an identity

operation.

b) BBt is a projection matrix. It is an identity on R (B), and its null space is the

orthogonal complement R'(B):

BBtv = v if =B forsomec
BBt= Q if v iB for all (8.2.7)

Thus if we decompose any M long vector v into v =vlvi2, where 1 is a

component in R (B) and 2 is orthogonal to R (B), then BBtv = vl.

It would be more elegant if the analysis and synthesis procedures were symmetric, so

that the synthesis operator F = Bt were just the Hermitian of the analysis operator,

B t = B H. We will call such a matrix orthonormal, since BHB = I implies that the

cohumns of B must be orthonormal. Fortunately, it is easy to convert any one-to-one

windowing matrix B into orthonormal form. Let (HB)V 2 be a square root' of BB,

so that (B) = (AB) 2 B)'BHn. Then an orthonormal windowing matrix B can be

defined in terms of B as follows:
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B = B (B) -a (8.2.8)

Note that:

BHB = (t3)-v2eHB( 3B)-:* = I (8.2.9)

so that the pseudo-inverse Bt is just the Hermitian of B. As an example, suppose that

all the window matrices B are diagonal with entries bi(n) on the diagonal. Then the n

blocks Bi in the orthonoralized window matrix Bi = B(BB)- I 2 would also be diago-

nalwith elements bi() 

b12(n)hi(.

Given an orthonormal windowing matrix B, we now define the Short Time

Fourier Transform (STFT) of the signal as the vector f of Fourier Transforms ~y of

each windowed segment y:

Xf IWMX '1 'mBl

srF(x) = = = _ (8.2.10)
JL WMYL J WLBL

Let WB be the matrix on the right. Note that:

I 2?Yj(ri
__= . where i Mi (8.2.11)

X (WJ - 1)

where Yj (w,) is the DFT of the ja frame y. Beware that the definition of the Short

Time Fourier Transform depends intimately on the choice of the orthonormal window-

ing matrix B; different windows lead to different Short Tunme Fourier Transforms.

The inverse Short Time Fourier Transform (STFTI- 1) is defined as the synthesis of

the inmerse transform of each segment:

STVF '(t,) = .t j:ftH] = (BHWHJ .BW. (8.2-12)
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Note that the inverse STFT matrix operator is simply WB, the Hermitian of the for-

ward SITF matrix operator. In fact, because the DFT matrices Wm, are orthonormal,

WWj W WW W = I, the inverse STF1 matrix W H is the pseudo-inverse of Ws and

satisfies the followig properties:

a) WB = I

b) W 3W is a projection matrix which is an identity on R (WB) and has null

space R 4WB).

Thus W-4 maps an arbitrary vector v into the signal x whose SIFT comes as close as

possible to . These properties also lead to a Parseval's relationship for Short Time

Fourier Transforms.

Thorem 8.2.1 Lt =Ba. Then:

2haa L '2 N-1i
Z Z _ (,) i( )-1 = 2 (8.2.13)

j=l iO Mj j 1 iO teO

Proof:

L

= x ~WIYyij=1L

XiH

and:

y = xHBHB&

Expanding these inner products in terms of their elements gives the theorem. C

I
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2.2. Reconstruction from Time and STFT Domain Constraints

Because of all these properties, it is easy to apply our optimal signal reconstruction

algorithms to problems involving a mixture of constraints in the time domain and the

Shon Tunme Fourier Domain. Consider the signal model shown in figure 8.2.1:

I

yl(n)

)EY,.1

Yw(n)

YM (wi) E Yij

Figure 8.2.1 - Short Tune Fourier Transform Reconstruction Model

Model: X = - where p(w) = N(0,Q)
=t = + where p(y) = N(,R)

where [Ql,. = q(l)~8,.

[RI, = rl,. (8.2.14)

B = orthonormal sectioning operator

Observations: x () EX.

Y () Y2

The signal is a white Gaussian sequence with zero mean and time varying variance

q(x). Each signal sample x(n) is thus stochastically independent of all other signal

samples. The signal is cut into sections by the orthonormal windowing matrix B, and

white Gaussian noise with variance r is added to every element of every frame of data.

a
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The available observation information indicates that each x(n) is in some range X.,

and each sample of the spectrum of each frame of the output data, Yj(wi), is in some

range Y,. These constraint sets are independent of any other signal or output sam-

ples. Given this model, our goal is to estimate the signal and the noisy sectioned out-

put Y.

The probability density for this model has the form:

logp(jy) 2 { I{ RI | B IE constant } (8.2.15)

which is exactly the form assumed in chapter 5. Plugging this into our algorithms,

using the fact that the conditional probability densities PX lr( ) and py X(yx i) will

be separable, and also using the Parseval relationship in (8.2.13), we get the reconstruc-

tion algorithm shown in table 8.2.1. These algorithms are virtually identical to those

suggested in chapter 7, except that we have substituted Short Time Fourier Transforms

for Fourier Transforms. Start with an estimate of the Short Time Fourier Transform

j,0(Xo;). Inverse transform each frame, giving Aj, then stitch together frames by mul-

tiplying by BH, thus generating the nearest time domain signal jk (n) corresponding to

this SIFT. Filter by multiplying by h (n) q(n) (the 'time domain Weiner-Hopf
q(n )-r

filter), and apply a projection or conditional expectation operator to estimate

ik(n) EX.. To reestimate the output, form the Short Time Fourier Transform of the

signal, t l(wi), and apply a projection or conditional expectation operator to esti-

mate the output Short Timne Fourier Transform, Jk+1(wi). Each iteration strictly

decreases the cross-entropy, and the MAP methods also strictly increase the likeihood

function. Each iteration thus improves the estimates. If the estimates remain bounded,

convergence is guaranteed to a critical point of the cross-entropy. If the constraint sets
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X. and YJ, are all convex, geometric convergence is guaranteed to the unique global

minimizing solution. In the Fisher case (q(n)=-c) if X., iYjj are convex, convergence

is guaranteed to a global minimiing solution if and only if such a solution exists. The

convergence rate is geometric in the Bayesian case, but can be sublinear in the Fisher

case.

In most speech or image processing applications using Short Time Fourier

Transforms, storing the entire sectioned output y is usually impossible (in fact, even

storing the entire original signal x is usually difficult.) In implementing this algorithm,

therefore, it is a good idea not to store the output , but to only tore the output's

inverse STFT . Furthermore, we can estimate each output frame separately, add in its

contribution to j, and then reuse the storage space to compute the next frame:

-a
For j-1 .,L

Estimate i (.) from I (wi) using table 8.2.1

i B DFT- (t") )

This frame by frame computation suggests an interesting variation on this algo-

rithm. Rather than minimizing with respect to the entire signal z and then with respect

to the entire segmented output y, we could instead minimize with respect to a frame of

output, the corresponding frame of signal, the next frame of output, etc. In the usual

application, the window matrices extract small overlapping segments of x. Because of

the overlap, improving the etimate of one output frame should be immediately useful

n: estimating the next output frame. By updating the signal estimate i as each new

output frame is calculated, the next output frame calculation wil rflect the improve-

ment due to the last. The complete reorganized frame by frame iteration will then take

the form: (we stripped off the iteration index k to simplify the notation)
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Guess j
For k=0,1, - - -

For j=l, ... . ,L

X(w) = DFT (B )

Estimate ij(w) from Xj(w) using table 8.2.1

i=-+B [ DFT (Y 1())-B, I
Estimate , from i using table 8.2.1

After the jd frame is reestimated, we update its inverse Short Time Fourier Transform

z by windownrag and subtracting off the old j frame, BjfBJ, then adding in the win-

dowed new frame, BjHDFT-(Yj( ()). The signal i is reestimated, then we move on to

the next frame, compute the DFT of the (j +1)d windowed segment of x and resti-

mate the corresponding frame of fj+l(w). Reestimating £ from j on the j* step above

is usually simplfied by the fact that only the ji frame of j has changed since the last

iteration. Thus, in the usual case where each frame only involves a few signal points,

only a small section of j will have to be recomputed after each new output frame.

Since the only difference between this iteration and our previous iteration is the order

in which we minimize the cross-entropy, the convergence properties of the two

approaches should be identical. In most applications, however, the convergence rate of

the frame by frame approach should be faster. (The difference between these

approaches is very similar to the difference between the Jacobi and Gauss-Seidel

methods of solving linear equations. See, for example, Dahiquist and Bjorck [5] .)

Another possible improvement, caled the Aitken double sweep method [6], would

be to cycle forwards and backwards through the frames of data, estimating frames 1

through L, then reestimating the frames in reverse order, L through 1. This scheme,

however, may be inconvenaiet when working with sequentially organized data files or
ft
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pipelined processors.

Al the algorithms we suggested ii the previous chapter can be modified for use

with Short Time Fourier Transforms. We leave the details to the reader.

An alternative model for this type of problem results when we switch he time and

frequency domains. Now assume that , is an array of vectors a, .. , with lengths

N 1,.. -. ,N L and that the M point output is formed by stitching the segments

together and adding white noise:

Model: xf = Wj
L

I Y B + 
J-1

where p(wj) = N(Q,Qj)

p() = N (,R)

Observations:

and each vector xj = ij

Gaussian sequence with

circulant

for j=1- . L

Xi (Wi) X
y(n) E Y.

is assumed to be one cycle of a stationary periodic zero mean

periodic covariance q (). Thus each covariance matrix Qj is

I t . = q(, -. ) (8.2.16)

and WNjQJWNR, is a diagonal matrix whose diagonal elements are samples Qj(wi) of

the power spectrum of q (,,). This type of model is excelent for problems involving sig-

nals such as speech which are 'locally stationary' but not 'globally stationary". A of

our iterative algorithms can now be applied to this problem. We will not go into the

details, but the general form is:

I

I
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For k =0,1, 

tj = Filter and Short Time Fourier Transform y by computing W Hy. 

Estimate X () from ij(w) by projection or conditional expectation.

Inverse Short Time Fourier Transform the signal, J = BjDFT-1(Xj())
1 4

Estimate y (n ) from X(n ) by projection or conditional expectation.

Frame by frame iterations are also easily devised. The tricky part of this computation

is the filtering step. Using the filter formula in chapter 5 gives:

H.= [ BQ-1+ BR- jBR'x (8-2.17)

QL

This is a huge matrix, since it is the size of , the total number of points in all sections.

An equivalent but more convenient formula is:

H = QB BHQjBj + R (8.2.18)

Note that the matrix in brackets is the non-stationary (i.e. non-circulant) covariance

matrix of the output y = Bjx + . Unfortunately, in applications such as speech,

this may stil be a huge matrix. When the B; matrix corresponds to windowing, then

this matrix is band diagonal, but the bandwidth is the width of the window, which

unfortunately, can be quite wide. The best approach would be to use an iterative block 

Gauss-Seidel approach to solving the filter equations [7]. This would be particarly

convenient in the frame by frame version of the algorithm where only one window sec-

tion of y wi change at a time, so that the last filtered estimate will still be close to the

new value except in the vicnity of the new section. The important point is that, unlike

4
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the frequency/time domain problem in chapter 5, section 6, the exact filter equations

are not easily implemented by a frequency domain Weiner-Hopf filter.

3. Multidimensional Maximum Entropy Method Power Spectrum Estimation

A well known problem in spectral estimation is to find the power spectrum of a

stationary process given only a finite set of correlations of the signal. Since there are

infinitely many power spectra with these same correlations, we need some criterion for

selecting one of these as our estimate. One approach is to find the power spectrum

which is maximally non-committal with respect to the unknown correlations by choos-

ing the spectrum with the largest entropy. Let R (n) be the correlations of our multidi-

mensional signal x(a), where = (n, 2 , · -- ) is the coordinate of the sample. Let

P (s) be the multidimensional Fourier Transform of R (i):

P ( ) = R () c (8.3.1)

where 1= (,,> - - - ) is the frequency coordinate of the spectrum. Suppose the

correlations R (a) are known within some set of values a E A (this set usually includes Q,

and is usually symmetric, A = -EA.) The Maximum Entropy Method (MEM)

then estimates P (w) by solving:

P() = max f logP( ) dwu (8.3.2)
P W

subjecto [ P()e- d = R(a) for a A

Using Lagrange Multipliers in the usual way to solve this constrained maximization

gives:

.i(~)- = R() (),'833)(8.33)
Sl %,,;"

MCA
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Thus the power spectrum, which is the Fourier transform of an infinite set of correla-

tions R (n) whose values on the set A are given, must also be a finite all-pole polyno-

mial with nonzero coefficients constrained to the set A. In one dimension, when A is a

contiguous symmetric interval centered at the origin, we can solve for the polynomial

cocffients by factoring the pole polynomia (w)- - kT,ci = A(ow)A (w), and
x(A

then using an autoregressive modeling technique. In multiple dimensions, however,

polynomials can not necesarily be factored, and so this approach for calculating the X,

coefficients fails. Some sort of iterative search must therefore be used to find the

appropriate polynomial coefficients X, such that the corresponding power spectrum has

the specified correlations

Numerous algorithms have been suggested for this problem (see, for example,

Lang 8] ), but the one of interest to us at present is a conceptually simple ping-pong"

approach suggested by Lim and Malik [3, 4]. Start by guessing the coefficients of a fin-

ite polynomial X(w) = I X,e j " whose spectrum is positive, X(w)>O. Compute the
&(A

corresponding power spectrum in (8.3.3) and inverse transform to find the set of corre-

lations corresponding to the polynomial. Force the known correlations R (a) for a EA

to their correct values, then transform to get the corresponding power spectrum P (la).

Inverse transform to reestimate the polynomial X(%); this inverse transform will
P(.)

no onger be finite in extent, so truncate it to the set A and start all over.

,R. +1(l) = [ for aEA (8.3.4)

D f, ik(aL )f J"lse

|+1(a) I rf Rk I(§for EA

10 1( 0else
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Unfortunately, it is also necessary to ensure that the power spectra of R t.(a) and

it,t(a) remain positive everywhere, something which the above simplified algorithm

does not do. Maik and Lim's solution was to use cautious adaptive under-rclaxation of

the algorithm, testing at every stage to make sure that the estimates generated do not

have negative spectral values. Directly allating the entire set of correlations R (a) on

every pass of their algorithm was also avoided by only caulating the corrections to be

made to the correlations inside A.

There is a more systematic approach to the problem. (Beware that we have not

yet tested the algorithm that follows, and so there is no guarantee that this idea -Ml

work at alL) There are really three different types of constraints to be satisfied in this

algorithm by' three conceptually separate variables:

lR(r) = R(n) for a(EA

Ai(n)= 0 for t (8.3.5}

° (ta) >- 0 for all f

Our goal is to find a set of correlations R(a), a finite polynomial (), and a power

spectrum P (L0) satisfying these constraints such that:

P (s, R1 (Y &kI = E s~1 (8.3.6)

m (A

Let R(a) be the transform of R (a), let k() be the transform of i(s), and let p(i)

and P -'(n) be the inverse transforms of P (%) and 4 respeivly.

A convenient objective function whose global minimum ocurs at the solution

(8.3.6) is given by:

,i o - min IP R 1+ 1 t (8..7)
P(m)

I
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where a, are arbitrary weights, and where the minimization is understood to be con-

strained to correlations, polynomials, and power spectra satisfying the constraints of

(8.3.5). Iteratively minimizing with respect to R, , and P gives:

For k =01, --

ARk+100 {R (() for nEA 3.8
+(s) = ~(. (8.3.8)

( j(nf) for aE(A

- 1 C) else

P + (W) - i C P(g() -R , (o) 1 P ()

Start with a model power spectrum P6(ud). To estimate the correlations Rtk:(a,),

inverse transform and force the values where R (_i) is known to their correct values. To

estimate Xt +1(n), inverse transform and truncate it to the right size. Now we

reestimate the positive model spectrum y locating the value which comes as close as

poi-ble to these correlaton and polynomial estimates. Each iteration thus alternates

between moving the correlations R (n) and polynomial .(a) closer to the given power

spectrum and itr inverse, then readjusting the power spectrum t; bring it zcos=e to these

new correlation and polynomial estimates. Each iteration decreases the objective func-

tion. and if the estimates remain bo%, .ea. convergence is guaranteed to a critical point a

of the objective function. Unfortunately, J-though the costraint sets in (8.3.5) are

convex, the objective function (8.3.7) is not convex, and therefore there may be many

local minima and critical points to confuse the iteration's search for the global

minimum.

Note that this algorithm is similar in spirit to that of Malik and Lim. One major 

difference is that we make no attempt to force the correlations R (a) and the

a
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polynomial X(t) to have positive spectra. Malik and Lim's algorithm can be viewed as

adding this constraint to the problem (8.3.7) and also not solving for the optimal value

of P(w) on each step, but instead simply setting k +l(u)=+l(o) and

fik 2 I) = on alternate passes.

The most difficult step in this algorithm is calculating the output spectrum estimate

/,k +1(a)- A direct solution could be found by setting the derivatives of the equation for

P (u) to zero. This yields the fourth order polynomial:

P2() - R () 3 (U2) + X(W)P () - 1 = 0 (8.3.9)

for every frequency component. Formulas for solving equations like this are well

known, and are given in any Mathematics Handbook [9] . These formulas, however,

are rather complicated, and so another approach might be to simply search for the best

value of P (s). The objective function in (8.3.7) tends to x as P (a) - 0 or P (5i) - ; thus

somewhere in between these extremen must be a minimizing solution for Pl -1(w) which

could be located by any simple search routine. (A good place to start the search is at

the last estimate P t (a), since then the new estimate will be at least as god as the old

one, and the objective function will be sure to decrerse on every step.)

4. Penalty Functions for Constrained Minimizations

One of the most popular techniques for solving constrained optimization problems

of the form:

- m L (x) (8.4.1)
alEX

is to add some multiple l of a penalty function P (:) which penalizes the distance from

r to the set X, and then solve the resulting unconstrained minimization problem:
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j - min L() + FNP(x) (8.42)

(see, for example, Luenberger [6] .) If ,k is large, there will be a large penalty attached

to choosing x outside X, and thus the unconstrained minimum will actually either be

inside the constraint set or very close to the boundary. n the limit as lk -", the uncon-

strained minimum wil be located inside the constraint set X.

One of the problems with this technique is finding an appropriate penalty function

which can be easily used inside a gradient optimization search routine. One possible

choice which we would suggest would be to use a penalty function which measures the

minimum distance to the set; for example:

P () - d(~r) = m. iy -a 12 (8 .4.3)

Substituting this back into (8.4.2) gives:

i-.min L()+ Iktmin I-II 12 (8.4.4)

- min [L() + it l-& 112 i

We have now reduced our original problem (8.4.1) to an optimization problem which

looks quite similar to XYMAP. The minimum of this new objective function (8.4.4)

could now be located by minimiing over all x without any constraints, then minimizing

over Y in the constraint set, y EX, iterating back and forth while slowly increasing the

penalty weight *.

+1 - rin -+ 1 I X-1 (84.5)

Mimizing over x is a standard unconstrained minimization problem; minimizing over

I simply involves projecting back inside the constraint set. As pL -- , the penalty for
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choosing k .1 far from the nearest element in X becomes infinite, and thus the uncon-

strained estimates 4 must converge toward the constraint set X .

The chief difficulty we would expect with this approach is that as ,u "-, the prob-

km becomes ill-behaved and convergence of i and y will be very slow unless we can

somehow vary X and y together.

I
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Appendix A

Proofs of Theorems in Chapter 2

1. Expectations on Convex Sets

Proof of Theorem 2.2.1 Let PA(t JL) be the a posteriori probability of gm given over

the domain A;RN. Suppose that i = EAz[IIz ] exists. Let the dosed convex hull of

A be A, and let () be the inner product on RN. If if X, then by the geometric

Hahn-Banach Theorem [11 there exists a separating hyperplane, descibed by the equa-

tion (2,o)=c, such that:

(~i,2) < c < (no) for all (A..)

_QO 20) <c

(M,0) = c

Separating Hyperplane Theorem

Since the expectation operator is incar, we can compute the conditional expectation of

both sides of (A.1.1):

(,) < c < EAIZ [(aa0) 1] = (, )

But this i a contradiction; thus si must belong to the dosed convex hull A.

(A.1.2)

C
I

I
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2. Properties of Cross-Entropy

In this section, we prove theorems 2.4.1-5.

Poof f Theore 2.4.1: We first note that x

I

log is strictly convex for x >0. To prove
Y

this, note that
I

ax2aX
xlog = 1>0 (A.2.1)

In particular, for any aEA:

(xq 1(a) + (1-)qz()) )log

I

Xql(c) + (-X)q 2(a)

p(G)
(A.2.2)

q_() q(2)
s q(um) log -- + (1-)q()log ()

(for all ) with a if and on if q) I nt g bo d o 

for all XE(0,1) with equality if and only if ql(.) = q2). Integrating both sides over A

gives the desired rcsult. C

aoof of Theorem 2.42: Lt A be any measurable set. We use the inequality

logx -1 where equality holds if and only if x = 1:

q(a) log 9
P(Q)

d = Q(A) f
t(A) I f

=Q(A) log

Q(A) [
o(A)

log
p(i)/P(A)

1 - p(-%kP(A)
q(a)/Q(A)

+ log P(A)

I + log Q(.A)

P(A) (A.23)
,(A)

and equality holds in the second line if and only if
a(A)0(A)

= p() almost everywhere

4

4

f
,i 11 4

I 4

4

I
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in. A O

Proof of Theorem 2.4.3: Applying theorem 2.4.2 to each set in the partition P = {AI}:

f q(ax) bg a) dga = 

p: )
l

f q() lg OX de

P(A )
(A.2.4)

Proof of Theorem 2.4.4: Applying theorem 2.4.2 to each subset AU of the set Ai:

[JQ( -] {(A I Q(UAI,)IXQ(A P)bg- ' , j
J

t~I PO(A,)
i~~~Ph 

(A2.5)

Proof of Theorem 2.4.5: See Piniker [] or GaIlager (chapter 1, [3] ).
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Appendix B

Proofs of Convergence of Iterative Algorithms in Chapter 3

1. General Convergence Theorems

Proof of Theorem 3.9.1

In this appendix we will prove the convergence theorems of chapter 3. Assume

that the function F(a;a) is continuous for all aEA, aE4. Let (*,f) be the sequence

of stimates generated by minimizing F (a-8 with respect to each variable in turn.

Assume that the set of estimates {( )} remain within a compact subset of A x4 (i.e.

for finite dimensional spaces, the sequence is bounded.) Because (,,k) is an infinite

sequence contained within a compact set, there exists at least one infinite subsequence

('k, J') of the qucnce (A , ) which converges to some limit point (.,.)(EA x )p:

(Ofk,') O- (-) as k- (..1)

Because F(;g) is a continuous function, it is bounded below on every compact subset

of Ax O, and thus F(j''k, ) must converge monotonically downward to a lower hlimit

F. as k-.. By construction of the iterative algorithm:

I· F (a;~',( ) k F (',+1; I'k 1) for a LE A

F (' ;) F (i' ;, ) .foran 1 (B1.2)

Because the estimates ('k 'k) and ('a+1'kt+) converge to (j-.-), taking the limit

~ as k -e in (B.1.2) giv:

(; a) a: F (;1-) for an an E

(; ) F (. ; .) for a (1.3)

We hve thus proven:

I
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Lemma B1 Under the conditions stated above, the infinite sequence of e- mates

(dl t) generated by our iterative algorithm must have at least one limit point

(i-,8). Furthermore, every limit point of this sequence must be an element of

the set A,,x4, defined in (3.9.2). a

Because F(a;1t) is continuous and Ax4 is closed, Ax ,, must also be closed. Ltr us

define the distance d (x, ) ; A,,x ) from a point (, ) E A x to the set A=x , by:

d( .)xA4. uln (. - } (B.1.4)

where: A , and 4I lo are norms on the spa A and e rzpectivcly

This distance function is continuous in a, (see Hoffman, [1] page 87). Now suppose 4

the theorem were false. Then there would exist an infinite subsequence ('k ,'rk) of

(Cie,f4) and an E>O such that:

d( (',k'tk) ;Ax ) 2E for a k (B.1 5)

Because the sequence {(i ,)} remains within a compact space, there would be at least

one infinite subsequence (f,) of ('t ,'k) which would converge to a limit point I

(a,B):

(k ,6) - (g*.*) (.1. 6)

But since the distance measure d((a,I ) ; hA x>,. ) is continuous:

im d ( ( i!); A.x ~ ) - d( (ff.); Asx , ) d A > O C.1.7)
k-

Thus we would have found an infinite converging subsequence of estimates (i, ) 4

whose mit point (-,I.) could not possibly be a member of A.x. This, however,

would contradict lemma B.I. The sequence (,t4) must therefore converge to the set

A,, rx O

4
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Note that since F ( ;l ) is continuous and converges downward to F. as k-.,

that for any convergent subsequence {(5',' )}£{( ,)} with mit point (A,.):

F(a; . m) = im ('; ') -m F; = F. (B.1. 8)

Thus if the sequence (~ ,$ ) has multiple limit points, they must all correspond to the

same value of F (;A) =F.. C

Proof of Theorem 3.9.2 Assume that the function F (;fia) has a continuous first deriva-

tive in a and Bf for a n, (Ax4. Applying equation (2.10.2) to the equation (3.9.2)

defining the limit set Axc4=, we can show that the derivative of F must either be zero

at every point (iI.fi,)EAex~=, or else if (-,J) is on the boundary of AxO4, then the

derivative of F must be inwardly normal to the boundary. In the latter case, the point

(ct,,~) would usually be a k>cl minimum on the boundary of Ax ,. C

Proof of Theorem 39.3 Assume that F(a;a) is continuously differentiable and convex

on A x4, and that Ax4 is a convex and dosed set. Suppose that the sequence of esti-

mates (,f) is compact. Theorem 3.9.1 then guarantees that the set A=xcl, is

nonempty and contains all the limit points of the sequence. To show that every element

in A.x ,x is in fact a finite global minimizer of F over A x , let (.,.f-) be any element

in Ax4)= which is not a global minimizr. Then there must be some element

(l',f')EA x such that

F ('; ') < F (a; i-) (B.1.9)

Because F is convex, property (.5.4) g:arantees that:

I aF ) 3F(. ' _) ) B)'; ) f) (B. 1 1- 0).as sS '-a. aa(n a) -(.;.)a
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unique finite global minimum of F. Thus if the iteration sequence is compact, it will

converge to the unique global minimizer. If, on the other hand, F has a finite global

minimum, and the spaces are finite dimensional, then theorem 2.10.3 guarantees that

every level set is bounded and thus compact. This then guarantees that the sequence

{ ,1 } is compact, and thus is guaranteed .o converge to the unique global minium 

in A x ,. If F is uniformly convex, then convergence to the unique global minimizer

is guaranteed since all level sets are bounded.

Finally, let g :R-R be a monotonicaly strictly increasing function. Suppose that all

the conditions of theorem 3.9.3 hold, except that instead of requiring F (:) to be con-

vex, we require g (F (-a)) to be convex. Then we can apply exactly the proof above to

the function g (F (;cL)) to show that the iteration converges to the global minimum of

g (F (%;g)). Since g is monotonic, however, this is equivalent to converging to the glo-

bal minimum of F (,).

2. Convergence of PARMAP

The only non-trivial part of the proof of the convergence of PARMAP is the

application of theorem 3.9.2. Suppose that p(X,6) and .(t,) are continuously dif-

ferentiable in jE(Di). Theorem 3.9.2 guarantees that for every point (~,b)E('x()2 ,,

and for all tangent vectors h, and k, of () at (,)

,afiS~ ( ^* = O tj)T~B.2. 1)

0

However, the solution to min (, ) is =j. Combining this with the fact that

i (*.h) = - klg p(X ,):

4
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h¢-~arrfX T+ 

0 (B.2.2)

for all tangent vectors h, of () at .

To prove that the difference between successive signal density estimates is asymp-

totically zero, note that:

(4x,,H) - (qx,+,E ) = f Px .(. 6) log da B.2.3)Zr !-r rla4 (B.2.3)
x P 1P(i 'I +)

Let be any measrable subset of X, and partition X into sets and XC X-X .

Applying theorem 2.4.3:

H (Q,,i )- '(4ixt. _)

.(. i + +1' _ g p lxl(Xi c i)

a 0 (B.2.4)

As k -x, the left hand side goes to zero, which implies that

px 4(X a) - pCX Iv(X o l + ) 0O as -

3. Convergence of MCEM

Proof of Theoreo 3.9.4

a) To prove that the sequence of densities 4cix, U, is well dened, note simply that

4x, (x)tO 4,, ( *)O for all (EX, lE(), and that the normalization constants

c,+,, c 1,, are all strictly positive and less than or equal to one:

> B(4tt,q4) (qX ,4l,) - log cq 2 . 2 --ogp(X ,)) > 0

I
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and similarly for c,.

b) This was proven in chaper 3, section 2.

c) Let ) be any measurable subset of , and = - .

FU4b c = (.) By theorem 2.4.3,

> H(I%, %,)e - H(,,%t, .,

4 4%() log ' d 0
0 ~4k+ )

2 0 () log + V,, (&) log
C0, (4Z)

0.,(4C)
0Q0.1,C)

By assumption 0o(t4)>O for any measurable subset t of 4). But

the second to last line in (B.3.1) an be finite onsy if 0, i,.)>C .

then for k =0,
0

Applying the

argument recursivet, (, ( ))>0 for all and for every measurable bset of

I). A milar argument shows that X (Y)>0 for al measrable subsets of X.

d) As k- :, then H(4X, l, 4 )- H(4X, , .,)-3. But from (B.3.1) this mplies

that:

%,(,O,) - ,,& (4) = (B-3 3)

for any measurable subset of (D. The proof that ((X)- - .(X) )-0 as

k-- is similar.

(B.3.1)

(B.3.2)

(Thus a4,n(D = o, 

Otjo)

0,0,4-1 (,T,)
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e) To derive this upper bound on the measures X, 9' , partition the space X x 

into a measurable region qP and its complement C (f0,Vc = Z and

Iutc =X x4.) By theorem 2.4.3:

1(0x ,) ks -log- + (1-,) log - lg p(X,<)

where: k = f qx )d,( , d (B.3.4)

= (X ,)f p(x') 

But:

8t log b - (1-S) log (1-6) Ž - log2 (B.3.5)

-(1-%) log (i-E) ~ 0

Combinivg af t-sce wi*bh (3.4 gives:

H (e, c o) iogp(X,()) j g2
h ~ ~~~~~~~~~~~~~~(B.3.6)

-kog E

This foraula providcs l upper bound on th. m-neure %t assigned by the separ-

able deisity to the set ', as a fvnction of te measure i assigned to the set by the

original density p( ). Note Ehat this ,Sound appiies to any mcaures with cross-

etropy less than H qx ( ,q4 ). Also note tat we could doose:

a'- { ( )Xx( < T and ! ' T B.3.7)

*C ={ ( ) X 4~ ' )
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Since p( ,) is assumed to be integrable over X x(), as T--= we must have -O.

Thus by ctoosing largt enough. we can make the upper bound on the tail pro-

bability 8k arbitrarily small for a k. Thus qX (.x), fl,(i) must be stochastically

bounded.

f) By the Helly Selection Theorem (see [2 volume 2] or [3]) every stochastically

bounded sequence of measures OX , (, has at least one convergent subsequence

with a limit Qx ,0, and every such limit must be a proper measure.

g) Let Xi, i be any finite partition of X, (). Let oQx, ( be a convcrgent

subsequence with limit QX, Q,. By theorem 2.4.3:

(B.3.8)
M) (Xi)O, (j)

"(OX .,, ) E Ox,.(Xi)O*t,.(45j ) g "-- ;

Taking the limit as k.,

6XI (Xi) - )Q(X,) and (Q () - Q(j)

and:

im inf H (x, , ) = im (OX, ) = H.

Thus taking the limit as k -- of both sides of (B.3.8) gives:

4

(B.3.9)

4

(B.3.1 0)

x (Xi, )Q4(J)
H. t Z ox (X,)Q ,(`) log

,r P(X,)

Since this is rue for all partitions P of X x ~.

(B.3.11) 4

4

H. 2 sUp : Qx x)Q%(j) log
I'

(B.3.12)

I

4

4

4

PVY'j'4) Ni, 
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But because a. must satisfy min F( ; D) = F (.; 1.), and because F is continuously
axEA

differentiable, theorem 3.9.2 guarantees that

F (- ; h'O(B.1.11)
iot

for all sequentially tangent vectors h of A at .. Because A is convex, the vector

&, = a' -X. must be a tangent vector. To see this, substitute d: = tt + (1- tk ) . and

tk ()t into the definition of tangent vectors in (2.10.3), giving:

Jim = '- and lim t: 0 B.1.2)
k.. k k-=

Thus:

F('-) -) 0 (B.1.13)
a

imiraly, because 1. must satisfy min F(g; ) F (, ;,), we can show tat

aF (.%. ; 1.) 
( ' - ,) m O (B.l.14)

Combining (B.1.10), (B.1.13) and (B.1.14) gives:

0 F(s' ;') - F.; ; .) (.1.15)

But this contradicts our assumption in (B.1.9) that (•t.,j.) was not a global minimizer

of F over Ax4 . Thus every element of A,x ~4= is a global minimizer; since every finite

global minimizer must belong to A, x , this set must in fact be exactly the diosed, con-

vex set of global minimizers of F. The iterative algorithm therefore converges to the

set of global mimni rs.

If F is strictly convex and continuously differentiable, then it can have at most one

global minimier on Ax. If the sequence of estimates (, ,) is compact, then we

have shown that it must converge to a non-empty set A=x4P, which will contain the
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H(QX,Q, ,)

The proof of the other assertions follows by noting that (4 Q4 converges to

QX QV and , converges to Q, Qb.

h) The upper t ound given in e) holds for any measre whose cross-entropy is lower

tban (qx,4+p-

Proof ofTheore 3.9.5

a) Folows from theorem 3.9.4.

b) By direct calculation, minimizing H (qx qt) over qX gives:

= 4Q, (j) log - logc,

- , P4(*)log p~(,,*J) - logc'_, (B.3.13)
j-Cl

where c,,+,, c ',+, are normaling constants:

c % = '. - , : log p( .r: (B .3.14)

Using the inequality 

E 5 p(~, ,*) 1 for all ij (B.3.U)

in equations (B.3.13) and (B.3.14) gives:

C PI +t (B.3.16)

I

O
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and

qt (x," 2 Ne (B.3.17)

The inequality 4,(+(ij) > ME can be proven similarly.

c) Proof is identical to property d) of theorem 3.9.4.

d) Because the constraint spaces have a finite number of points, the space of all pro-

babilty densities qx and q is finite dimensional. Because of the constraints

(3.9.16), the space is also bounded and dosed. Therefore the sequence X,, is

aompact, and the Bolzano-Weierstrass theorem guarantees that there is at lekast one

convergence subsequence 4lx, with limit qx, q,

c) Since the inequalies of propery b) are satisfied for all , they mst be satisfied in

the imit as well.

f) The .3-""c,,ro, - a..i.- -iii iiun oi qx and q, for all strictly positive den-

sities. Since the limit is strictly positive, H (qx,q,) is continuous in a neighbor-

hood about (Cx ,q,)- Let qx, q, be any densities Taking the limit in the follow-

ing inequalities:

(qX,4) (qx,, H ,,)

as i - then gives:

H C-xc , q,.) H c-x, 0) (B.3.19)

H(q,%) a (_q ,4)

I
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Since qx, q, were arbitrary, the result follows.

g) Caculating the derivative of the Lagrangian:

1+ Y] q4(!j)
8aL () j A

= I - log-C, +

log ( + xx (B.3.20)

and similarly:

aH i(qx ,4)
=1 - log c \, (B.3.21)

where we have used the fact that qX, q, form a stationary point of the iterative

algorithm, and therefore satisfy:

M
bgq1 (,) = Z:

jZ=1

lbg 4(j)

9q(4-) lobg

N

= I qx() obg
i-1

(B.3.22)

p(Z ) _ ga4,
q,(X) c

Choosing Lagrange multiplier values = - + logF5 and t = - 1 + bgc, then

proves the result.

Proof of Lema 3.9.6.2 Substituting formulas (3.9.19) into the cross-entropy expres-

sion gives:

(,) = - logc. - bgc, + nft() + -(~ _ - T()

where L(x) =Ex[OX) qx I = -LDg c,
ft

q ] = a log cq't, aB

Since c, and c+ are analytic functions of g, B in the interior of the natural parameter

space, the cross-entropy H (,fi) also must be analytic in the interior.

6

I

I

I

4

(B.3.23)

4

P(X.,*~) -- log .
U(*j) 

440 = E. [.a(-*) I
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roof of Theorem 3.9.6 Let x AP be a compact set contained entirely within the inte-

rior of A x A which contains all the estimates ( ,f4 ). Since H (a,A) is analytic in the

interior of AxAA, it is analytic at all points in A.xA0. Since the sequence (,&)

remains within the compact set AxA P, theorem 3.9.1 immediately applies, guarantee-

ing convergence tu stationary points of the algorithm. Theorem 3.9.2 also applies; since

any limit point of the sequence is inside A xA., it is in the interior of A xA s and

therefore must be a critical point of the cross-entropy. Finally, if a(g) is the value of .

which minimizes H (%,A) for any t, then at any limit point :

dF dd = r minH(,) ( 3.3.24)
dix. da La i

d- H (i) + ( 1

0 + R- O

=0

The proof that dG () = O at any limit is similar.
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Appendix C

Proofs of Theorems in Chapter 4

1. Exponential Density

MCEM

We first show that the marginal density p(X ,O) is strictly log concave provided

that some Ui is finite:

f" (Ui-L,)2
a&2gP(X = _ _ (Ui-L1 )2 o (C.A.1)

where equality holds if and only if all Ui =c. Log concavity follows from the discussion

;n chapter 2, section 10.2. Now to prove that the MCEM algorithm converges. By

direct substitution, it is straightforward to show that

r c tz(-xi ) for Li axsU,

(X ese ( __ (C.1.2)

where and i are parameters of these densities. Restricting the minimization of the

cross-entropy to densities of this form (C.1.2) will not change the sequence of estimates

generated nor the final solution. We can then view the MCEM algorithm as iteratively

inimizing ll(ti) H (4w,49, ith respect to and i:

+1 -min Ha(44)

i+i - mmin (+ 1 ) ((.3)
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By direct calcu'ation we can show that:

F () min (R) min (q,4 = - log ip(X,$)] (C.1.4) 
qr

where: 4=E[ 44 ] = N1
· 0+ EIi

I-1

where K is a fixed constant. Each MCEM iteration decreases H (x ,4 ),A and thus

must also increase 4$ p(X ,b). Note that pf() - as 4-O or 4>-. But:

,p(X,) =- p(X ) [p(+) ] Sp(+) (C.1.5) 4

Since 4 t) p(X,4t) increases on each iteration, $ p(h) must be bounded away from

zero, which in turn implies that St is bounded above and bounded away from zero.

From equation (4.2.13) for xf,, we can show that ii, 5L +1 and thus xt must

also be bounded above. Since the sequence , lt is finite dimensional and bounded,

by the Bolano-Weierstrass theorem it must be compact and have at least one conver-

gent subsequence with limit point , b.. Since ~$ is bounded away from zero. 4+>0

also. Thus 4. is in the interior of the natural parameter space ) = [0,x), and theorem

3.9.6 guarantees that the limit point ,., 4. is a stationary point of the algorithm, a criti-

cal point of H (+,) and a critical point of F (x). This last statement, however, implies:

dal=) N

ato~~ a ~p ,$j L ac+-r j lC.L6O

where: ) = N

EO + xi 
1=1

~Bt @e= _ - is nonzero, and thus:
axi, N+1

4

__��__
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d[ p(X,+-)]
8 X o0 (C.1.7)

and +. is a critical point of 4 p(X,4)). However, we showed in (C.1.1) that p(X,)) is

log concave. Thus 4 p(X ,) is strictly log concave and its derivative can be zero at only

one point. Thus the limit +. must be unique, and since x. is related to . by equation

(4.2.13), x. must also be unique. MCEM must therefore have a unique solution, and

the iterative algorithm is guaranteed to find it.

An alternate convergence proof can also be stated in terms of contraction map-

pings (see chapters 4 and 12 in Orega and Rheinboldt [1].) The MCEM algorithm can

be viewed as deing a mping T x from the parameter space to a sum of sample

values, and a mapping T back again:

T, I O xi = N (C.1.8)
i~l F-O+ Xi

t=l

T () 1[ i + |e 1 cS
l =l + 1 -e - e '

The MCEM algorithm simply calculates

$ + , - ' EL x (c.1.9)

I=1

Let x' and ' be any two sets of samples values. Sinac T, and T, are both continuously

diffcrentiable mappings, there must be an intermediate sample value , = )L' + (1-X)Xt

for some X((O,1) such hat:

T(T (Zx'~)) - T. (T 42xi)) x | (T*( i)) | ' - Ia( (C.)I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I 

I
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However,

aT (T,(xi)) aT, () aT,*(i )
a3_i) d, 0(.)

I=11 ; 1 - . 1 (C1)i= 4sinh2(% Si) 2

a(___________, )~~ ~z N + wher: i or equivalentLi and only if ev

I - I j=, _ )_ I (C. 1.3)

whii is equivalns 1 at i =. Thus:

The Contracti on Mapping theorem (see, for example, page 120 of Ortega and Rhein-f ve

The MCEM algoifim thus des a sti contraction maping on the ales of 

boldt [1D then guarantees that the agorithm must converge to its unique fixed point,

the unique solution to MCEM.

J
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PARMAP

To prove that PARMAP converges, assume that at least one U =c. We know

that p(X ,,)-0 as 4-O or -~ . Thus, since the PARMAP algorithm increases the likel

ihood function p(X, 4 ) on each step, k must remain bounded above and bounded

away from zero. The discussion in chapter 3, secti6n 9.3 then guarantees that the

sequence $k must have at least one convergent subsequence with imit point +-, where

6- is a critical point of p(X,4,). But as argued in equation (C..1l), p(X,O) is strictly

log concave, and thus has a single critical point occurring at the global maximum. If at

least one Ui <c, the PARMAP algorithm is therefore guaranteed to converge to the

unique global maximum of p(X ,4).

The PARMAP convergence rate can be analyzed in exactly the same way as

MCEM. The only change is that in the PARMAP algorithm the mapping T, from the

sum of signal values to the parameter space (I is given by

+ (C..15)

Using the same argument as before, with this change, gives:

1 11 _ 1 t (C.1.16)

with quality if and only if U =m for all i. If any U, is finite, PARMAP thus defines a

strictly non-expansive mapping on the values of 1
4,k

Note that if all Ui =, then the PARMAP solution is ivfAp =0, and the PARMAP

algorithm's estimate 4k converges to zero at the rate:

1+ ( (C. 1.17)

f-1

I
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Maximum Likelihood Algorithms

The proof of convergence of the ML versions of these algorithms exactly follow

the proof for the Bayesian version. The ML version of MCEM converges to the

unique global minimum of the cross-entropy because the contraction mapping in

(C.1.14) still applies; the only problem is that if all L4 =0 then

. N 1........ (C.1.18)
k+l N+I k

and lim = c, the MCEM estimate.

The PARML algorithm converges if at least one Li>O and one Ui <. The proof

relies on the fact that p(X 14) is log concave, strictly log concave if any Ui<=, and

p(X 14l+)-0 as +-- : if any Uc<o. These conditions imply that ik must remain bounded

if any Ui is finite. The three special cases discussed in section 2.7 follow by simple alge-

bra.

2. Gaussian Density - Unknown Variance

MCEM

In the Gaussian example of section 3, the MCEM algorithm generates density esti-

mates of the form:

Ic* XP -, (Ixi I for L-xi SUi2
a,(® = 0 eiS 4(XI) [ x i

h IS = ) exp - 2 i p. (C.2.1)

4,( ) = sNn d _ d ) for s O

4
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Restricting the MCEM minimization to the space of densities of this form will not

change the sequence of estimates generated, nor the final solution. With this restric-

tion, we can view the cross-entropy as a function of the coefficients of these densities:

H ( , ) - ( ,q4) (C.2.2)

and we can view the MCEM algorithm as iteratively minimizing H with respect to s ,l

and then i,.

~+1, '&+1 - in H( ,s, q, h )S (C-2.3)

Vk2+1, Xk+ - in H( t+l, +1, V, x )

After a considerable amount of algebra, we can show that:

F(V ,i) - min H(Fs,V ,) = min H (qx,q4,) = K - log sfp(X ,,i) (C.2.4)

where K is a fixed constant and i, .s is the solution to minH ( ,¢ ,):

:= L+e i: (C.2.5)

N+2i=

From (C.2.3), each iteration of IMOCEM must decrease the value of F ( ,), and thus

mr.st also increase the value of s*p(X ,ik t). Note, however, that s'p(i,,s)-O ass -O

or s --a or ,- . But:

s`P(X,,,s ) = p(X Is)s3p(~,s) S'p(6,s) (C.2.6)

Since MCEM always increases the left hand side, the right hand side must be bounded

away from zero, which implies that tit must be bounded for al , and sk must be

bounded above and bounded away from zero, 4k >>0 for some . By the Bozano-

Weierstrass theorem, there must exist a convergent subsequence of , Sk with limit

point ., s.. Clearly st>0. Let x, V. be the corresponding estimates of x, V.

I
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This limit point is in the interior of the natural parameter space, and thus theorem

3.9.6 guarantees that every Fmnit point of the iteration must be a stationary point of the

algorithm, a critical point of the cross-entropy, and a critical point of F (x ,V). If we let

i(x ,V ), ( ,V ) be the solution to min H (s , ,V) with the formulas given by (C.2.5),
Ase

+en:

aF (x.,V.)

ax
aF (&.,V.)

av

ax

a .. )
av

I
as(,.,V.) 

av

I

4

4
[ K - log i p(X, ,As) ]

aK -a K-g'(,,)

which implies

N +I ° a K- logs p(j! j ]

N +2 [ 
Vu p as I i-s X ) ,

that every limit point ,, s. is also a critical poi t of s p(X ,.,s ).

(C.2.7)

I

PARMAP

To prove that PARMAP converges, note that p(p,s)-0 as -- = or s-. or s -.

Since:

p(X ,4, ) = P( 1 4k) pp( >k) 5 p(4k) (C-2.8)

and since each iteration of PARMAP increases the likelihood function p(X,,-k),

then p(it ,k) must be bounded below, and thus .k must rmain bounded and St must

be bounded above and bounded away from zero. The Bozano-Weierstrass theorem

then guarantees that there must be a convergent subsequence of 4k, 4, with limit point

=

I

4

A

4

A

___
- -~~

j
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,, s.. Furthermore, since Sk is bounded away from zero, s>O also. Since the proba-

bility densities are continuously differentiable, the discussion in chapter 3, section 9.3

guarantees that every such limit point will be a stationary point of the algorithm, and a

critical point of the likelihood function p(X ,L,s).

SIGMAP

Because

~ :I +N 1 (C.2.9)

is positive definite, Y.-1>O, the SIGMAP likelihood function:

(t + )n~2+I. for LisXi<Ui, i=1,...,N

p(x )) = se (C.2.10)

is strictly log concave. It therefore goes to zero as any xi- -=, and has only a single criti-

cal point, located at the global maximum. Since each iteration of the SIGMAP algo-

rithm increases p(! ,AD), all estimates must remain bounded. The argument given in

chapter 3, section 9.3 then guarantees that the sequence converges to the set of critical

points of the density. Since there is oly one such critical point, the SIGMAP algo-

rithm converges to the unique global maximum of p(xE, ).

To show that the convergence rate of the algorithm is at least linear, define the

mappings T,, from the parameter space to the sample space, and T, back again by:

L for Ci<Li

T(L)L = .for L-<U i (C.2.11)

UJ . for U <p

r V 1 ~N
T xi N + 

1=1 = 'n jl

___
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Let pW', Ix" be any two values of . Suppose without loss of generality that .'>x"'.

Then:

0 < Ti(p') - T,(p < p' - " (C.2.12)

and thus:

o (T ,(') - () N(P-v (C.2.3U)
i-1

and:

.i=l, ) I TX ( J N (- ) (C.2.14)

or:

Ti ( T·, (P') - T4~ [ T,O,) N (C.2.15)
t =1 i=+

Thus, regardless of whether ' or "' is larger, SIGMAP defines a contraction mapping

on the parameter space; if we et ,;' = L and ,u -1 then:

| k I5 N +E Ilk - *- | (C-2.16)

PSM AP

Since the PSMAP algorithm is identical to SIGMAP except for the estimate of &2

at the end, the proof of convergence is also identical.

Maximum Likelihood Algorithms

To prove convergence of the PARML algorithm, we need only show that the esti-

mates it and &2 remain bounded. Now:

p(X I,&2) = ni (Xi 1,a
11

-- r[ f i j erf (C.2.17)i-H'~
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If any interval [Li,U] is finite, -oc < Li < U < , then p(Xi l,6 2) -0 as - -+ or

2-,. Since p(Xj l,&) < 1 for all j,

p(X I ,, 2) < p(Xi !l,a) (C.2.18)

and thus p(X 1,62) -0 as ti-+x or 2-. Since each iteration of PARML increases

p(X [i1,r4, if any interval [L,U,] is finite then both k, and O2 remain bounded, and

the convergence theorems can be applied to show that the iteration must converge to

the set of stationary points of the algorithm and critical points of the likelihood func-

tion. Conversely, if all intervals [Li,Ui] are infinite, with L i =-o or Ui == or both for

all i, then £-..

The proof that the MCEM algorithm converges follows by noting that:

F(i)-min H (ts ,)= - g [4p(X 4,S) ] (C.2.19)

where: ,, -min H (,s )

The same reaaning used for PARMAP then shows that if any L i and any Uj are finite,

then sp(X IlL,s)-O as u- or s-4 (i.e. oa2-.) Since each iteration of the Madmum

LAkeiliood version of MCEM increases iSp(X 1 kt ,4), the parameter estimates must

remain bounded if any Li and any Uj are finite. NMCEM thus converges to the set of

stationary points of the algorithm and critical points of the cross-entropy and of

P(X I.s).

To prove that PSML converges, note that:

max p(, !,s) = (C.2.20)

(Xi _,)2

The PSML algorithm maxmis this function with respect to Jx and I~ on each step. Let

L+=max(Lt ) and let i+ be the interval for which this maximum occaurs Also, let

I

_____�_I �______
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U-=min(Ui) and let i_ be the interval in which this minimum occurs. For p>U-,

max p(x 'Ils) -< (C.2.21) 
S Iu-- 11

and thus the density function drops to zero as Ix.-. Similarly, for ,u<L +:

max p(,x Ls) K (C.2.22)
' IL - I '

and thus the density function drops to zero as -a:. Since PSML must always increase

the value of the function (C.2.20), 4 must therefore remain bounded. This in turn

implies tha.t i,k and 02 will also remain bounded. Our convergence theorems can then

be applied to show that the algorithm is guaranteed to converge to the set of stationary

points of the algorithm and critical points of the function (C.2.20). This function, how- n

ever, is log concave and thus the only critical points are global maxima of the density.

If L + > U -, then we can also show that the global maximum of the density is unique

and lies between U- and L +. If L + 5 U-, then every value between U- and L + is a ·

global maximum solution to the problem.

3. Gaussian Density - Known Variance

PARMAP

To prove that the PARMAP iteration converges when a2 is known, note that q

p(tL)-0 as -C. Thus, since:

< p(X ,) = p I L) r P() (C.3. 1)

then p(X,p.)-0 as -- = also. Since the PARMAP algorithm strictly increases

p(X ,t ) on each iteration, k must be bounded above and below for all k. By the rea-

soning in chapter 3, section 9.3, the PARMAP algorithm is therefore guaranteed to

converge to the set of stationary points of the algorithm, and critical points of the den-

4
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To prove that PARMAP has a unique critical point, note that p(, 1i ) is log con-

cave, and X and c( are convex. Prdkopa's theorem (see Appendix D) then guarantees

that p(X L) will also be log concave. Since p(;L) is uniformly log concave for E>0, the

PARMAP likelihood function p(X ,L) = p(X Il) p(pt) must also be uniformly log con-

cave. Theorem 2.10.4 then guarantees that p(X,) has exactly one critical point,

located at the unique global maximum. The iterative PARMAP algorithm must there-

fore converge to the unique global maximum solution to maxp(X ,j).

It is also possible to analyze the convergence rate of the algorithm. Each iteration

of the algorithm defines a mapping T, from the sum of sample values to the parameter

space, and a mapping T back again:

T,,(l?-EX,[X. I ] (C.3.2)

I XiN r 1

One iteration of the algorithm can be written as:

N ~ N

i=l

Let L', ' b any two parameter values. Since the functions T, and Tz are contin -

ously diffrentiable, there must exist an intermediate value = KX' + (1-X))t" for

some O<k<1 such that:

T,(T.(.')) - T,(Tx(W)) s - a A - (C.3.4)

But:
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ar(T ()) 1 N 1 

aL N. al. L I

N +e S1 VarX, [Xi (C.3.5)

Our argument in Appendix D, however, guarantees that:

Var,1[Xi 1i 1 (C.3.6)

with equality if and only if L = - and Ui = +. Thus

T,(Tx(I.')) -T,(Tx(.")) - < N+ - 3 (C.37)

Each iteration of PARMAP therefore defines a contraction mapping. By the Contrac-

tion Mapping theorem (see, for example, page 120 of Ortega and Rheinboklt [1]) the

algorithm must therefore converge to the unique stationary point (fixed point") of the

algorithm. In particular, choosing '=. and "'=-il:

Fot +I- Ilk N N- _ Il_-I (C.3.8)

Note that this convergence rate - is extremely cojservative; if any L i is finite and

tha N
N +e

MCEM

Since the MCEM algorithm is identical in this case to PARMAP, geometric con-

vergence to the unique solution of MCEM is guaranteed by the fact that each iteration

is a contraction mapping (C.3.8). Yet another way to see the same result is to note

that:.

F(4) min H (qx1 ,,) = - gp(X) (C.3.9)
qx

I
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Thus minimizing cross-entropy is exactly equivalent in this case to maximizing the PAR-

MAP density (X, '.

SIGMAP

The SIGMAP likelihood function is:

Xp(¢) fpi(z,>) df= epp= p j (C.3.10)

where: - 1 =I- I 11 1)

Since . - 1 is positive definite, p(ax,)-O as any component xi--. Thus, since the

SIGMAP algorithm always increases the likelihood p( ,)), the estimate j must be

bounded for all k. By the argument in chapter 3, section 9.3, the estimate must con-

verge to the set of stationary points of the algorithm, and critical points of p(,(Ki).

Since Y->O, however, p(x,)) is uniformly log concave, and thus must have a unique

global maximum and citical point. The SIGMAP algorithm therefore converges to the

unique global maximum of p( ,().

PSMAP

Since the PSMAP algorithm is identical to the SIGMAP algorithm in this problem,

the above proof is sufficient to show that PSMAP must have only one global maximum

to which the algorithm converges. Another way to prove the same result is to note that

in this problem:

p(~,) = K max p(,.) (C.3.11)

for some constant K. Thus SIGMAP and PSMAP must give exactly the same esti-

mates.
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Appendix D

Projection Operators Onto Convex Subsets

In this Appendix we will prove that the projection operator onto a convex (possi-

bly infiite dimensional) set Y is a non-expansive and continuous mapping. We will

also prove that the distance d(,x,Y) from a point [ to a closed set Y is a continuous

function. If the set Y is zonvex, then we wil show that the distance function is also a

convex function.

Let H be any (possibly infinite dimensional) inner product vector space (ibert

space) with inner product <c4,y >, and let Ix II be the cor,?onding norm:

11 II= <-X > (D1)

Let Y be a dclosed and non-empty subset of H. Then we wll define the projection

operator K 0 as the function which maps eahd element x (EH to the nearest possible le-

ment =r() in Y:

Kg() - min 11- I 2 (D.2)

We'll start with the following projection theorem:

Theorem D uenberger [1] p. 691 Let be a vector in H, and let Y be a

dosed, non-empty and convex subset of H. Then there is a unique vector i (Y

such that:

l1 -i for ail- r Y @D.3)

Furthermore, a necessary and suffcient condition that y be the unique minimizng

vector is that:

< ,- , - > o for all EY D.4)

I
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With this theorem we can then prove:

Theorem D.2 If Y H is a dosed, non-empty and convex set, then the projection

operator K 0H1-Y is a non-expansive and uniformly continuous mapping:

for all x 1 ,2EH (D.5)

E Lf; Let yl=Kg (x) and y2=K(x 2 ). Because the norm is defined in terms of an inner

product:

o _ UX1-&-OYx1-X2)II= 1X-EZ + lYX1-121I2
But from theorem D. 1:

< x 1-1 1 , 2-Z > 5 0

< 2-2, l1-2 > 5 0

Subtracting these yields:

< (o1,-:)r-(-X12) , Y1-2 > > o

or:

< ,I-12, I -~2 > -> 111-212

(@-6)

(D.7)

(D.8)

(D.9)

Thus, by mtrinig (D.9) and (D.6):

- llxl-x2112

(D1.0)

Uniform continuity of K 0 follows immediately, since as rx2-x, equation (D. 10) implies

thatyK (X)-sK( ).

Thmrem D Let Y be a dosed and non-empty set (not necessarily convex.) Then

4

4
the distance fanction:

4

t

4

4

4

4

4

- ~1~Z~- z

II&,-,r2 J7 - 2< A1-_X2 , Y-1-Y >

2- 111 -12 11

I K Cx I) - K U /l.) rzl

= (zl)-K(x�)i
I
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d(.,Y) = 1in - 112
lEy (D.1)

is uniformly continuous.

EPmf: Let 1A 2 EH, and let yl,y2EY be their corresponding projections onto Y. By

the triangle rule:

l~2-Jl2lt+ I -Zl1112> ll(~2-x0+(X1-YD11

= 1z2-Y1112 (D.12)
But since y 2 is the projection of r2 onto Y:

I1z2-Y111 2 > l2-y212
Thus combining these:

1l12-x1l[ > 112-x2112 - 1X22-11 12
d 2 ,Y) - d2(0,Y)

imilry:

IX1-X2112 12-2i12 liX-:V2112 >

(D.13)

(D.14)

(D. 15)1XI-_1 112

and thus:

Ilrl-xr21 > d2(l,Y) - d(2,Y)

Combining (D.L16) and (D.14):

(D).16)

Id2( ,Y)-d 2(x2,Y) - Ii[1-hZ 11 (D.17)

Thus as r-a2, d(. 1,Y)-d(x 2,Y) and the distance function is uniformly contimmous.

Thcre D4A Let Y dH be closed, nonempty and also convex. Then the distance

function:

d(r,Y) = -in Il - 112
Jt (Y D-18)

I

I

I

I

I

I
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is a convex and uniformly continuous function of x.

Proof; Choose any laz2 EH , and define Y1,a2 as their projection onto Y:
6

1 = RaK() and 2 = K(,2) (D.19)

Because Y is convex, the point Xy 1+(1-X)y 2 is an element of Y for any 0O5X1. Then

because the norm is a convex function: a

ii
s X1 II1 -a, + (1-) 1Y2- 2-'I1

4
(D.20)

and thus d ( ,Y) is convex. Uniform continuity follows from Theorem D.3.

4
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d( )41+(1-X�x2, Y )
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Appendix E

Log Concave Functions

Conditional Expectations as Non-expansive Mappings

In this Appendix we will summarize some theorems on log concave functions

,which were developed by Davidovic, et al[l] Prekopa, 12,3] and others, [4,5,6] and

show how these theorems can be used to analyze the convergence of M CEM and

PARMAP-re algorithms such as XMAP and YMAP in chapter 5. We also present

some conjectures about upper bounds on the variance of log concave densities and con-

vexity of the cross-entropy; we used to call these theorems' until we discovered some

minor technical flaws in the proofs. Lack of time prevented us from fixing these,

though we believe the results are correct.

A function f 0O defined on R is said to be logarithmic concave if it is non-

negative and if for every pair of vectors ,l,z( RN:

f ( Xl+t( -X)X2 ) L f (1 (f (7)' - for an <Ac<l (E.A)

Strict and uniform log concavity can be defined in much the same way as for concave

functions. If the function f 0 is logarithmic concave in RN, theia it can be written as

f(I)=eQ(a) where Q(z:) is concave in the entire space and the v'alue -o is also allowed

for the function Q (). The set { Lf ()>O} is convex, and f 0 is continuous in the inte-

rior of the set. Many probabiity densities are log concave. For example, the Gaussian

density

N(,V) = 2rvl -(T)TV -(t-) } (E.2)

with V>O is log concave, as is the Wishart density, the multivariate beta density, the
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Dirichlet distribution (see Prekopa), the gamma distribution (see Davidovic) and many

others.

Log concave functions have a variety of interesting properties. The following have

been proved in the literature:

1) Let f (x), g (x) be log concave in RN. Then: 4

a) The product f ( )g (x) is log concave in ERN.

b) The convolution h (y) f , )s (-) d is log concave in E RN (see

Davidovic, Prekopa)

2) [Prdkopa's theorem] Let f (J,) be a function of N +M variables when xER, 4

ER. Suppose f O is log concave in R + . Let K be a convex subset of R".

Then the function of . defined by:

h()= ff(xX) d
K

is log concave for all ER (ER.

The foBlowing is not as well known, though it is easy to prove:

3) Let f (,y) be a log concave function of N +M variables as in (2) above, and let K

be a convex subset of Rl. Then the function of x defined by: 4

h(x) = Su f ([ Jl)

is log concave for all x ERN .

Proof of Property 3:

Letx l, X2ERN, and let X - su f( ,x) for i=1,2. Define (ji,) to be any point

on the line connecting (x1,X) and (x 2,Y2):

4
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(ii) A=^(~ 1 j 2 ) + (-)(z2,x2 ) (E.3)

Then:

/ f (i Ui)

f U 4( .4)f (rl1) (2,y '- 1

(xj (jl2)'-" (E.4)

and so h () is log concave also. In fact, if f 0 is strictly or uniform log concave, then

h(&) wil also be strictly or uniformly concave, respectively. C

Property (2) immediately implies, for example, that if our system model probabil-

ity density p(. II) is log concave in x , and the constraint seXs X,) are convex, then

the probabity density

p(X )= f p(rx I) (E.5)

wil also be log concave in + E.

An interesting theorem closely related to these properties of log concave functions

concerns the behavior of the mean of a truncated Gaussian as we move the center of

the density. (See lanter and Proppe [7J for a more complete discussion.) We first

show that

Thaom E.: Let x be a Gassian variable with density N(E,V). Thea if is

restricted to tie within a convex set X N its constrained variance must be

smanllr than the unconstrained variance V:

varX[ [V(.6)
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where:

f ( _)( _-X )T p(X Im,) 4 

Var- XM (tE.7)

f p( Im ) dx
x

f p(x it) x

rf The Gaussian density p(x aIm) is log oncave. Therefore, by property 2 above, if

X is convex. the the marginal density:

p(X la) = p(x Ir) (E.9)
x

is also log concave in m. Because this density is twice differentiable in m, the second

derivative of log p(X Ira) must therefore be negative semidefinite:

o0 -2 og p(X Im) (E.10)

Calculating this derivative gives:

o V-lVarx[i M V - , - V - 1 E.11)

Multiplying both sides of (E.l1) on the left and the right by V gives the desired reslt. 

NeWt we show that 

Thore E.2: Let r be a Gaussian variable with density N ( ,V), and let X be a

convex subset of RN. Then the conditional xpectation mapping K, R-R

defied by:

I
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fx P( Im) dA

K.() = Ex[x Im] X (E.)

f p(z la) dx
X

is a non-expansive and uniformly continuous mapping under the norm I llv:

I11 x(A 1 )-xK,(tI2) llyv ~ II rMl-2 liv (E.13)

Prof: Note that K,(m) is continuously differentiable in m. Therefore, by the mean

value theorem (see, for example, [8] chapters 1,3), there exists an & = Xall+(-X)m 2

on the line connecting m and alz such that:

K| xwijt)-K~ztl2 = d·- · · (E.14)

We now prove that | ' ) (d I for af ERN, which wil be suf evt to prove

(E.13). Substituting the Gaussian probability density into the formula for K0 in

(E.12) and differentiating with respect to m gives:

dJ .(&) = wrx[ M] V-1 (15)

Let V"2 be any square roo of V and let VD2 be its transpose, V/ZV2m=V. Then:

.d T V, 'T-Varx[1 a V-lVarx[L lm]V-z

= max f... 0 16)

where: = 

But multiplying E.6) on the eft and right by V - and V - resectively gives:

VT2arx Ira IV - -I (. 17)
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so that all eigenvalues of this positive semi-definite matrix on the left must be less than

1. The same must hold for the matrix squared, which implies in '.16) that:

|l dm ( <1 for al ERN (E.18)

Combining this with (E.14) proves that the conditional expectation operator is non-

expansive. It is also easy to show from (E.14) that it is uniformly continuous. 0

This last theorem implies that if X and Y are convex, then our MCEM, XMAP,

and YMAP algorithms in chapter 5 satisfy:

EyL IB X] - E[y I BX2 ]X 2 Bxl - Ba I (E19)

| E , Hyil- EX[x IHY2I | | Hy1- Hy2-

Thus the conditional expectation operators on convex sets resemble projection operators

On convex sets in that they are both non-expansive mappings. We therefore should

expect that since our four iterative signal reconstruction algorithms differ only in the

substitution of condftional expectations for projection operators, that all four iterative

algorithms will have similar convergence characeristic

The following results are stated as conjectures because at the last minute we found

some technical problems with their proofs. Nevertheless, we believe these to be true,

though some additional technical conditions on the existence of certain integrals may

have to be added.

I
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Conieure E1 Suppose p(s) has a continuous second derivative and that it is log con-

cave on a closed, convex set X. Then for all vectors v:

'TCovX[z Iv inf tTMv_
MEic positie definite matices defined b:

where P is the set of symmetric positive definite matrices M defined by:

(E.20)

P= {M jM=MT and M a n2 ldogp(X)(t [ !-'~~~~~~aEEfor allEX }

Coniectur E.2 Suppse that p(x,4) is a "natural' exponential family of densities:

(.,4) = ()h ((=p [ ] O-22)

which is also stricty log concave on a convex and dosed domain X x). Then the

cross-entropy expression H(rp) given in chapter 3 is positive definite everywhere:

a2HT - [Rt-1---R
ah zn ()2 t I

and thus B(vsg) is sictl

(E.23)
- I

RI > 

convex.

(E.21)

Zjf

I
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Appendix F

Convergence Rate of Signal Reconstruction Algorithms in Chapter 5

In this Appendix we will prove that when the constraint sets X, Y are convex,

then the iterative algorithm. of chapter 5 are guarateed to converge to the unique go-

bal maximum solution at a geometric rate. We will also derive an upper bound for this

convergence rate. Let us define the operators K0) and K 0 which map the signal and

output space onto the constraint sets X and Y by either a projection operation or a

conditional expectation operation:

min IlaJ-Hy II2 for XMAP, XYMAP (F.la)

K. EXlr, IHy] for MCEM, YMAP (F.1b)

m in I1y- il for YMAP, XYMAP (F.lc)

Eyr Ix] for MCEM, XMAP (F.ld)

where the conditional expectation operator Ex[x Hy] finds the mean of a Gaasian

density NC(Hy,V) truncated to the set X, and the conditional expectation operator

EryL IBl finds the mean of a Gaussian density N(B,R) truncated to the set Y. With

this notation, all four of our algorithms can be written in the form:

4 +1 - gK,(H) (F2)

+1 = K(Bi+)

Because the constraint sets are convex, theorem D.2 in Appendix D guarantees that the

projection operators (F.la) and (F.lc) are non-expasive mappings. Theorem E.3 in

Appendix E simlar]y guarantees that conditional expectation operators (F.lb) and

(F.ld) are non-expansive mappings. Thus for any of our four iterative algorithms, if

I
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z1'x2 are any elements of X and Y1,X2 are any elements of Y, then:

l. (x 1 )-K(x2) s 1_X-2 ( F.3)

i K,(-K,(ry D y, I-y - ( F.4)

We will now use these expressions to show that a single pass of any of our four iterative

algorithms defines a contraction mapping on the constraint sets. This result will

immediately lead to an upper bound on the convergence rate of the algorithms.

First some preliminary mathematics. Define the spectral radius matrix norm 1{ lv t

by:

_ITX W,¥ xTTTV-'T
JjT IJV = max = max (F.5) 4

Clearly:

IT Ilv IlTl. v II 11lv for alln (F.6)

The spectral radius norm IT I can be defined similarly. We win also need to factor V

and R; because V and R are both positive definite and symmetric matrices, it is possi-

ble to find matrices VL and R a such that: 4

V = VVT and R = R2Ra (F.7)

where the notation V' r rpresents the transpose of Vf2. We will also use V-1, and

V - T2 to represent the inverses of Vv2 and V T 2.

On to the derivation. Let x1, _! be any two elements in Y. Starting at 4, our

itrative signal reconstrction algorithms will caklate a new signal estimate of

-4 K1 (Hy) for i=1,2. Using the non-expansive mapping property of K.0 in (F.3),

using the defirtion of the norms l1-llv and 11 IR, and using the factorizaions (F.7)

gives:

4
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I X1-X2 IV 7- K. (HyO) - K, (HY-) | 

:5 HY1 -HI 2

= jy-_2)THTv-'H('-} 2 )

I tTHTV H

1, TR- i

yTR-1BVBTf

!TR-½l

I l-y)TR- l-(X)

i ) i!~l- ll= mlax

I

maxz~Q

IT [R-1 - [BA-QA-TTBT R -

YTR-Ly Lj11XxI - 12 IR

T R-IrBA-QA-TBTR-TI + I A

,0 A TM | II X2IIR

where: - R- Z

-Am"L I i - a Tit I IIt $2- AJIt. A,

1 .

= max 1
*1

LT [-_-v __-QA BI) _ __il ZIIKT I U21ATrtO 

-iTRr

T [BA-OA-TBT + R v I iiY1 2 R

(F.8)

I

whee t = max BA-QA-TB T5*0 ~ llr

b

I

where: z = Rs

I

- Lm+ Ll-:211IP.=+

-
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Similarly, let l1, x2 be any two elements in X, and let yl, y be the corresponding out-

put estimates generated by our iterative algorithm, ~y = K(*S&3 ). Using the non-

expansive mapping property of K 0 in (F.8):

1iix-Yz iR11 K,(B - K,(B z)

= ( a1-XITBTR-B(x1-z)

Xlmax (R1E - ( -I -5 { v- ~ } ( V-

,, tI BTR-1B~ + ]vATO-'Av_

11BTR-X211B

where = max TBTRB
[t*Q TATQ-IAv

(F.9)

To summar:

I IK(Hz) K-r(Hz 2) I V iI l-2 - IIR (P.10)

IIK ,) -( K )Is I!i -, l2v (F.li)

where: <= I l <1

= ,+1 <1

Let xl , be the estimates ji and 1l, and let Z2,t -2 be the estimates + ,i Substi-

tuting these values into (F.10) and (F.11) and using (F.2), these equations take the

form:

114+il-4 !I , II -h-1I I (F!.12
1, the diss drops at last at a go c

Snce v , <1, the disnce betwen successive estimates drops at kast at a geomtric

6

6

6

I

4

I

I

4

4

14
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rate. To show that these relationships guarantee convergence, let L be a (large)

number and let n, m be any integers such that n m ZL . Then:

a-I

I1 L IIR Z 11 +- IIR
k =m

a-I
(· V I k il ;10 IIR

· VVf 11 - 1 (F 13)
1 -vI V>

By choosing L sufficiently large, we can therefore make I j IIR arbitrarily small

for all n L . The sequence 4 is therefore a Cauchy sequence, and must converge to

a unique limit -y. as x -.. Smilarly, we can show that i--E- as n--. Let x1, x 1 be

the estimates +l}, , and let , y-2 be the global maximum solution T, en. Thn

since the global maximum must be a stationary point of the algorithm, .= K(H.)

and ~. = K,(Bx.), and equations (F.10) and (F.11) guarantee that:

11oo1-r-b1 vis lb-s vJX 1 -x. (F.14)
Thus the estimates converge to this unique limit point at the geometric rate , :,.

Finally, note that this convergence proof holds even if x and Y are vectors in an infinite

dimensional Hibert space, provided only that v,, vy, 1.

Linear Variety Constraint Sets

When the constraint sets X and Y are linear varieties, the operators K, 0 and g0

become simpk projection matrices P, and P. In this case, somewhat tighter conver-

gence bounds can be derived by exactly the same reasoning used above:

I~+1S- IIRU 9 -y} , 5 ( 1r (F 5)

"7 ~ 1K~ (2~ V
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Also it is easy to show that:

I P, HPB 5 sVv (F.16)

The proof that the dual algorithm als0 defines a contraction mapping on each step

looks quite simiar to the proof above. I:et 9,, .P be any arbitrary signal multipber

values, and let , R: be the corresponding output multiplier estimates,

a, = - Q,B + . Let V = BA-ZQA-TBT+R and V = A-1QA-T. Then:

- I QB(a.,-p) 1I,
s I BlQ, -Vl) 1 T

I a TV i7x }

XTBT R-1-R-lBVBTR- I B .
ET ' I!4-= | 11VY- V;%eIIII., ,V

IT v-l - v;'vv-JI I
ET[V. -V]Jv) I 1 IIV1 .

1TVv JV

ITV,-Y2VV,-T4

YTy

4

} IIa 1 2I11v,

T

4

4

e.

I6

a

q

I

I{Q
z ql

I

I

4

= max 1X* ,

I I 'Q, - ay. I I V'Y

V.

=ma~~+ I

YT (V,- U2VV.-TZ2 ) - v

1T -I

F-TV -11 V.L

.

r 00
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{ Ya rT[BTR-IB + AT7Q-dA] 
I #QY +AO ' IY

- ax
IV,- II+ - (F.17)

where this is the same convergence rate constant as in the primal algorithm (F.9).

Similarly, let g,, a2 be any arbitrary output multipliers, and let ,, R be the

corresponding signal multiplier estimates, = - Q, HPI, + . Then:

1A.,- P., IYv, QxH( , f ,I - Qy 2

S H(i-F) 2

(= -)THT.VlH(.-)

I *-

]TR-BW'lVBTR '-

Yw-Tv,
I

- tmax XT [R-ITIVBR-1 - RlBVBIBWB-lg IR- ] - 112

YTV-s ll J2 Vy

xT (R-1- -) (R-1 -V-')R(R 1 -V;') vY 

,T[-R ]z
TIV!R1

__

I

I
I

(F.18)

THTVlII4Tvlyt- 1

= MA1*0~

P-maxt

,,L. 4 1

I I, ay IIV

1141-4~V,

110Y1-V2 V,

1-1'41(
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where this is the same convergence rate cousant as in the primal algorithm (F.8).

These relationships imply:

which implies that the dual algorithm converges at a geometric rate to the unique global

minimum A., %,..- This also implies that: 1

+11 - 1k/ 1 -r 1 v 7 11 - ( 20)

4

I
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Appendix G

Introduction to Projection Matrices

Eigenstructure of Linear Signal Reconstruction Algorithms

L. Inner Products, Norms and Projection Matrices

In this section we will discuss basic properties of projection operators on linear

subspaces. More material on this subject can be found in Youla [1] or Kiinzi and

Krelle. 12] Many of the results below are well-known, and their proofs are therefore

omitted.

Let a, be elements of R , and assume we are given an inner product on R

dfined by:

< ,>>v = Tv- (G.1.1)

where the matrix V is positive definite and symmetric This inner product can be used

to define a vector norm:

It ilv = <zX> (.12)

and can also be used to define a spectral radius matrix norm:

{IT1 1!v
!Ir lv = T x (G.1.3)

This matrix norm satisfies the inequality:

11T'rIlv ; ItTIv 1{{ Iv for all ER" (G.1.4)

We will cal two vectors orthogonal, xllx2 if <,1,2>=O, and will can a vector

orthogonal to a set A if it is orthogonal to every element of that set. The orthogonal

ompklemet A1 of the set A is defined as the set of al vectors which are orthogonal to

A.
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Let gl,- ,g* be a set of linearly independent vectors in RN. Let ACRN be a

linear subspace defined by a set of linear equality constraints:

& T = for i=1, 4 .. } (G.1.5)

Equivalently, we can arrange these vectors g, - T as rows in a matrix G and

abbreviate this definition of A by:

A= {x G-.L} (G.1.6)

G is a p xN matrix; because g, - ,* are linearly independent, G has full row rank.

The set A is thus the nall space of the matrix G and has dimension N -p .

The orthogonal complement of A with respect to our norm is the set of all vectors

orthogonal to A. This set is spanned by the linearly independent vectors Vg,:

A 1 = {E j = x Vs for some, Ap - } (G.1.7)
i=1

or equivalently:

AI= {x =VGrT for some X LRP (G.1.8)

Clearly A1 has dimension p. The only point common to both A and A1 is the origin,

but together they span all of R. n other words, it is poss'ble to write any ERW 

uniquely in the form:

= A + ,A1 where xAEA and XAlEAl (G.1.9)

From the orthogonality of A and A1, it follows that

<aXXAl> = 0 (G.1.10)

In particular, if x EA then X, = and xaA= 0 ; on the other hand, if x EAi then IA 0=O and

zal=.-

.
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We caD xa the projection of x onto A under the norm <X, >, =xrV-y, and call

x,J the projection of x onto A1. This projection A is the unique vector which satisfies:

xAEA and < XA, X XA >V = 0 (G.1.11)

Further, it has the property that it is the vector in A which is the unique closest element

to X:

ilX -X Iv < Il-i lv for all ax a in A (G.1.12)

(These results form the Classical Projection Theorem; for a proof, see Luenberger [3]

p.51.) To calculate the value of x,, we therefore only need to solve the problem:

A - in I I-i ll2 subject to Gi-=Q (G.13)
EA

This problem can be solved by straightforward Lagrange multiplier techniques:

X = 

Al = -a =A -P)X (G.1.14)

where P= [I-VGT(GVGT)-G ]

The p xp matrix GVGT is non-singular benuse all the rows of G are linearly indepen-

dent and V>O. Hence its inverse (GVGT) - exists, and the matrix P is well defined.

The matrix P is called a projection matrix since it calculates the projection of E onto A

under the given inner product. The matrix I-P is also a projection matrix, since it cal-

calates the projection of x onto A1 under the given inner product. Note the following

properties:

A =P ('EA

^r = (I-P)x E Al (G.1.15)

< Pt ,r -Pi >v = 0

Also, if x (A then Pt=x, and if x EA then P=O. This implies that PP=P. Further-

more, the only eigenvalues of P are 0 and 1; all the eements of A are eigeners of P



- 427.

with igenvalue of 1, and a the elements of Al are eigenvectors of P with eigenvalue of

0. The range of P is the null space of G; the null space of P is the orthogonal comple-

ment of the uull space of G. Finally, note that:

i 112 = IIP +(I-P) i 2

= I II !l + 2< , (l-P) >v + ICI0-P) 112 (G.1.16) 

= llPX ll2 + II(I-P)z 1lv

and thus:

IIP iY S I IlV (G.1.17) 

with equality if and only if x ( A. This implies that:

IIPft-P2llv = ilP(-2)1v 11l-X21v (G.1.18)

and hus P is a non-expansive mapping (compare with Theorem D.2 in Appendix D.)

2. Eigenvalues and Eigenvectors of Linear Variety Iteration

When the constraint sets of our iterative signal reconstruction algorithms of

chapter 5 are linear varieties, then the convergence behavior of our algorithms can be

analyed in much greater detail than in Appendix F. We showed in chapter 5 that the 4

error between the estimates ,4, h and the solution to the problem x., . satisfies:

4 i ' l- = P.HPB3P ( - . ) (G.2.1)

h +l- = PYBPHP, (4 - )

Analyzing the eigenvahes and eigenvectors of these two matrices P HPBP and

P,BP, HP should thus be very informative about the convergence properties of our

algorithms.

Let R2 and V be square roots of R and V. Then:

R PBP HPR = (R-PBV') (G.2.2)

I Vm(;(GVG -'GV I (VTBTPR -1 )

4
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The matrix in brackets in the center of the right hand side is a symmetric projection

matrix with eigenvalues 0 and 1. Therefore R-PB2PyBPHP, R 2 must be a symmetric

positive semi-definite matrix. Its igenvalues will thus all be real and non-negative,

and its eigenvectors !f. must form a complete orthonormal basis for RM, JTij .-

But if we let = R1 , then:

PP, HP *= R (R Rp BP HP, RV2, ) = kir R - ii (G 2.3)

and:

<*,4 >R = -TrR-b = ij - b (G .4)

Thus the vectors t are cigenvectors of PBPHPy with the same real, non-negative

eigenvalues Xi , and they form a complete orthonormal basis for RM under the inner

product <-, -> R.

The arguments in Appendix F can be used to prove that:

|| PBP. HP S vv (G.5)

Expanding this gives:

TpHTpTBTpTR- P ,BP, HP, 

w T (0R-.PBP, HPRga) 2
max - (G-6)

where: = Rz

The norm |P,BPePy is thus equal to the maximum igea e of

R-'P,BPxHPyRMr squared, which in turn is equal to the maximum eigeaval of

PyBP,HP? squared. Combining (G.2.5) and (G.2.6) thus sho',s that the eigenvalues

of PBPHPy are not only real and non-negaiive, but are also bounded above by v, vy.
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The eigenvalues and eigenvectors of the matrix P HPyBP, can be analyzed in

exactly the same way; the eigenvectors can be shown to form a complete orthonormal

basis of R under the inner product <,'>v, and the eigenvalues are all real, non-

negative, and bounded above by v1 v.

As might be expected, the eigenstructures of these two matrices are dosely related. ·

Let us look at the non-zero eigenvahles i of PBPxHPy, and their corresponding

eigenvectors t4. Since:

P,BPxHPI = Xi # 0 (G.2.7)

all the eigenvectors , must be in the range of Py,, which implies that they are in the

M -q dimensional null space of G,. This implies that P = , Define the vectors 

by:

, -= PXHP *4 P,H* (G.2.8)

Now since P P = P,:

(PXHPBP. J (P.HPBP ) (P jHP

1 p.rP H (P,BP,HP, )

-. (T PXH } H

= )., (G.2.9)

Thus is an eigenvector of PHPyBP1 with the same non-zero eigenvalue X, as *. 4

Furthermore:

I p THTP7V -p Hp, *

4
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-= 'TR- (PyBPHP,* )

= + C1Jsj>R

= 8 (G.2.10)

and thus the form an orthonormal set with respect to the inner product <-,.>v.

Since:

(P.WP.B )HP =BA QP. (G.2.11)

the cigenvectors i must all be in the range of Pz, which implies that P,,sk- = , and

that al the * are in thc N -p dimensinai null space of G. Also, note that:

i* = .wPyBP x (G2.12)

To summarize, the non-zero eigenvales of PBP, HP, and P, HP,BP, are identical,

there is a one-to-one mapping between the eigenvectors ji and k, corresponding to

each non-zero eigenvalue, and these eigenvectors are elements of the null spaces of Gy

and G, respectively. This last fact also guarantees that there can be at most

min(N -p ,M -q) non-zro eigenvalues.

Finally, we can also show that the matrices P,BP.H and P, HPB have exactly the

same igenvalues of P BP. HP, and PHPyBP respectivey. The eigenvectors

corresponding to the non-zero eigenvalues must also be the same; however, the eigen-

vectors corresponding to the =ro igenvales may be quite different.
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Appendix H

Asymptotic Behavior of Signal Reconstruction Algorithms

With Flat A Priori Signal Density

In this Appendix we will prove that the four. Bayesian" MCEM and MAP algo-

rithms in chapter 5 asymptotically locate the solution to the corresponding 'Fisher"

problem with the minimum average signal energy. In each of our algorithms, for all

a>O assume that the crossentropy expression H (q,qy) achieves its global minimum

at some densities 4la , flA, (Recall that the MAP algorithms are guaranteed to have

such a solution, and the MCEM algorithm is guaranteed to have such a solution if X,

Y are convex.) Aso assume that the Fisher cross-entropy a (qx,qy) achieves its

global minimum at a pair of densities with finite average signal energy, and let

= {(4X,4y)} be the set of all such global minimirs of HL. All global minimirs

must be stationary points of our algorithm, and therefore must have the form given in

table H.2 below. The minimum Bayesian cross-entropy is bounded above by:

,(,qr,, ) ,(qX'4lr) (H.1)

= a ( ) $+ 2 IIAx Ia Qx(&)dx + 2 g Q.
X. 1O

where 4X, a4 is any element of t. H is aso bounded below by:

H ,(f I ,) =1a1( ,z4Ar) + r l dX + g 0

a Hv(,4) + o bg 0Qo

a HL(a 4X,4y) + 2NbgIQoo (E.2)

I

- -
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Thus:

HttL (X ,4y ) H a(4X,,,ty.) -

HL (qX,4y) +

N log lo t (H.3)

II Aa i, qx(z) d

- log o = } L(xl r) )

Thus the minimum Bayesian cross-entropy, adjusted by N log

approaches the minimum Fisher cross-entropy from above. Now:

H.(4x ,qA,) - H 5 (X,qy)

which using (6.2.1) means:

asymptotically

H L(4Xa,l ) + 2 log I 0o + IA1 II 4Qx,5,(E ) dx (H.6)

RL L(4x,q) + 2 log -Qo l'~+ -t fJIIAx
2

Ha (x y) HL (X,iY,a)

and thus combining (H.6) and (H.7):

I 1 112 4X (,) s I 11 12i q( X) 

IIo 4iX(x) dx

I

(H.7)

6

(H.8)
X

for a a>O and for any Fisher global minimiing density QX EI'. This implies that

(H.9)inf IX (,
rl 6

x2 

Taking the imit as (c-0 gives:

(HA.)

6

I
OH.5)

But:

X
4

4

4

�II

IIA4 112 Qs X,.(X) dX S

fim HAX.Aya),
a-0
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Thus the average sigtal energy of the Bayesian estimate is always smaller than that of

any of the Fisher estimates. Also, if we let gi be the mean of 4 l , then:

1A1 Q O f I A 2i 4 Q iX (x) 4 (H.10)

which, in combination with (H.9), implies that the Bayesian signal mean estimate 4=

must be bounded for all ca.

We now prove that the Bayesian estimates X, qyc, approach the Fisher esti-

mates qx, 4y with minimal signal energy as a-O. The Bayesian signal and output den-

sity stimates will have the form:

MCEM:

XMAP:

YMAP:

XYMAP:

N ( o, Va.) N(i., R)

8(.x - X Ny(aIfR)

NX (i.a V) 8( -. )

b( -ji) 8! -)

Table H.1 - Bayesian Density Estimates

Let mcj>ct2> - be any monotoaically decreasing sequence of values of a which satisfy

kina -O. Let Q , qr be the corresponding density estimates and let 4. be the

signal mean. Since 1. is finite dimensional and bounded, by the Bokano-Wciestrass

theorem there must be a convergent subsequence {f,3C j} with limit point i'. Let

x., qr4 be the corresponding sequence of densities, and let j, be the corresponding

output estimates. Since it remains bounded, so must Y,;, and thus we can further trim

the sequence , if necessary, so that 1. also converges to a Eimit j'. Let :X', q"' be

______I___ILIIIIICL_____



- 434_

the densities corresponding to a =O and centers 1', '; since H,-I and V.-R as a-O,

these densities will have the form:

e

MCEM:

KMAP:

YMAP:

XYMAP:

4(,K) e(Y)

N(Y',R) Ny(' R)

8(x -) Ny ,R)

( ',) 6(r-')
NX (Y', R ) 8( -i')

Table H2 - Limiting Density

It is straightforward to show that in all four cases, Hz (qX,,qy,) will be an analytic

function of the covariance Q = QO, and of the centers i and Y,. Thus:
a

hi HML( X , ) = H((4 rN H.11) (4

Also the average sigal energy will be an anrtic function of a, , and ,, and so ine-

quality (.9) must still be satisfied at the limit j', ,j':

im f IIAx, 2X x 4d=f IA 4 xrl(a,) "
I X

s iff S 1111 Iq (xd (H.12)

Also:

hmi Hj(4 ) N log k-Qu= iif HR,(%,qAr) - log .Q

-inf RHL (qrqr) (.13)

Combining (6.2. 1), (11), (H.12), and (H.13):

4
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Ha (4X'y') = inf HL (qx ,qy) (H.14)
qrqy

Thus every limit qX, y' of the Bayesian estimates must be a solution of the Fisher

cross-entropy minimization problem; because of (H.12), it must also be a solution with

the least possible average signal energy.

A converse to this result can also be proved. If the average signal energy

f A, 11 ,lX( ) dx of the Bayesian estimator remains bounded as ar-O, then the
x

corresponding Fisher problem must achieve its global minimum at the density

corresponding to any limit of the sequence. To prove this, suppose that there is smc

sequence of estimates 4,, i~, which is bounded as a-0O. Since the sequence must have

at least one imit point, we can find a convergent subsequence w, with limit ', '.

Let 4', Cy' be the densities with the form in table H.2 corresponding to j', j'. Sup-

pose that 4x', ay' is not a global minimizer of the Fisher problem. Then there is some

pair of densities qx", l" with the form given in table H.2 such that:

- aL(qx',)4 - H ( Ayqy" ) > o (1115)

(We could find such a pair of truncated Gaussians by applying one pass of our iterative

algorithm to any pair of densities with lower cross-entropy than qX', qy') Because al

the cross-entropy expressions and the average signal energy are analytic functions of a,

£ and , we can chioose an oo>O sch that:

HA (4x 4yr,,( - HB a(4q',r') for a4ll X<-o (H.16)

and:

2 Gof hl" xQz) jH -fj l Ia I1I 4 (z) s- (.17)
Jr 

I
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Then for afxo:

H (4Xw4qy Q (H.18) 4

;2~ BI4(QX~~·9p' ? _ 2

,- a.,(~",Clr'3+ 2

But this coniradicts the fact that ix ' : y 'is a global inimizer of H . Thus the limit

qX', qr' of the Bayesian estimates must be a global minimizing solution to the Fisher

probkm. Reversing the direction of the result guarantees that if the Fisher problem

has no global 'niminrig solution, then the Bayesian estimates can not have bounded

signal energy as a-0.

4

4



' 437-

Appendix I

Convergence of Fisher Signal Reconstruction Algorithms of Chapter 6

1. Convergence to Stationary Point

In this Appendix we prove theorem 6.2, showing that when the constraint ses ar

convex then the Fisher signal reconstruction algorithms of chapter 6 are guaranteed to

converge to a finite global minimizing solution to the Fisher estimation problem if and

only if a finite global minier exists. Assume that X and Y are convex and measur-

able sets. Define the operators KO and It0 corresponding to eah step of our alg-

rithmnns by:

Ex[I 1 i] for MCEM, YMAP (L1.la)

,nin I= -- i Ilt for XMAP, XYMAP (L.l1b)
Z6.X

lix -i I for Y,AP, XMAP (L.ad)

where E[j [9] is the conditional expectation of xEX for a truncated Gaussian

NX(,R) centered at x. milarly, Ey[T 1{ ] is the conditional expectation of z EY of

a truncated Gaussian N(i R) centered at . By theorem D.i of appendix D, the

minimization problems in (L1.lb) and (I.T.ld) have unique solutions because X and Y

are convex. Each iteration of our algorithms can now be written in the form:

+tk = +I (A) (L2)

Theorem D.2 of Appendix D guarantees that if X and Y are convex sets then the con-
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ditional expectation operators (I.l.la) and (I..llc) must be non-expansive mappings.

Similarly, theorem E.3 of Appendix E guarantees that the projection mappings (I.1.lb)

and (I.l.1d) must be non-expansive. Thus in all four of our algorithms, for any

l, X:

I K(Ix)-Ky(x) R 11 X&-x2 IR ..1.3) 4
and for any y 1,y 2EY:

I Kx(Y1) -Kx(2) IR s I I 1 -12 II ( 1.4)

Letting i= 4 +itl, 12=i4, xi=it, -2= -1, and using (1.1.2) gives:

1tih+1 -. IIR 11411+-4 IIR i 11!-X -1 !IR (.1.5)

Thus the step size in our algorithms decreases on each step. Z

Now suppose that the estimates 4 and - remain bounded. By the Bohano-

Weierstrass theorem, if x and y- are finite dimensional, then there must be a convergent

subsequence ii' Ci4,4} with lmit points ', '. Sinc al four Fisher cross-

entropy xpressions are analytic functions of i and , the convergeace theorems of

Appendix B guarantee that ', ' must be a stationary point of the algorithw and a

critical point or local minimum of the appropriate Fisher cross-entropy expression:

' = K(j ') (1.1.6)

i' = ,>(K ')

Letting l=', ,x2=iA', -, 12=, and using (L1.2) and (I.1.6) recursively gives:

II+f-i' }l }II+I -i R Si 1 ih'-i' IIR ((1.7)
Thus the distance from the estimates to the limit point ', i' must decrase on cvery

step. Sine ', i' -',', for any e>O we can find an L sufficiently large that:

14i'-'I ia se and {l{'-Y IIR e for al kL (1.1.8)

4
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But { ', ' is a subsequence of the set {4 $.}; thus the estimates iL ', ' correspond

to some element j, r of the original sequence:

4 -i' 11R s E and II - i' S (. 01.9)

But now applying our non-expansive argument recursively:

11t -V jiI <5 and ll -y' Ipl S e for all kt- (I.1.10)

Since e is arbitrarily smal, the sequence (,i) must converge to the limit (p',f^), and

this can be the only limit point of the sequcncc.

We have thus proven that if the estimates remain bounded, then they converge to

a stationary point of the algorithm. Let us now prove that if a stationary point of the

algorithm exists, then the estimates are bounded and thLs converge. Suppose i', i' is

a limit point of the algorithm satisfying (.1-6). Letting 1x=j', ;2=i, Xi= ' , r,-i

as in (L.7) we again get:

ia+1-i' {f 1 ~S {4+1- ' IR S 1A -F }R (L l)

Applying this recrsivdy gives:

11 -' IIR 114 -i' JIR 11 o0-j' ![~ for a k (.1.12)

Thus the estimates , J4 remain within a fixed ball about i', i' with radius

Iio-i' llR, and are therefore bounded. Convergence follows from our previous argu-

mIent.

2. All Stationary Points are Global Minimizers

To complete the argument, we need only show in all our algorithms that the only

possble stationary points are the global mininmng solutions. Let us first transform

variabk-s to:

j - Ra (Lii)
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= - R-n

The transformed probability density is then in its natural' exponential form:

P' I4=) (2)N exp( - ) } {exp(- i) ePi) (1.2.2)

s(i(i)ep(fii) ' 

where g () and () are defined in an obvious way. This density is ao log concave

and the second derivatives of logg () and log h() are both negative definite. The

derivation in section 3 of Appendix E then guarantees that the cross-entropy function

of all of our estimation methods can be transformed into concave functions. This

guarantees that any stationary point will have to be a global optimizing solution, and

also guarantees that the sets of global optimizrs ( ) must form a cksed, convex st.

As a result, our algorithm will be bounded and converge to a finite global miniming

solution in the closed convex set of such solutions, if and only if such a sohtion exists.

Otherwise the densities must be unbounded and diverge.

3. Alternativet Corollaries

By strengthening the assumptions, we can strengthen the conclnsion of theorem

6.1.

Theore 1 Let X, Y be convex, closed and non-empty sets. Assume that there

exdst subsets X'X and Y'QY such that either X' or Y' is bounded, and sch

that the operator K,0 maps Y' onto X', and the operator Ky0 maps X' onto

Y'. Then all four iterative algorithms are guaranteed to converge to a finite global

rminimum solution to the corresponding Fisher problem.

;IQQL Becaue K, 0 and K,0 are continuous and finite valued mappings, and X' and

.
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Y' are their respective ranges, if X' is bounded then Y' must be bounded as well (see,

for example, Ortega and Rheinboldt 1] p.404) The sequence of estimates

( ) X ' x Y' is thus bounded, and theorem 6.2 applies immediately.

CoroJ lary 62 If X and Y are convex, dosed and non-empty, and if either X or Y

are bounded, then all four iterative algorithms are guaranteed to converge to a fin-

ite global minimum solution.

rrf: Lct X'=X and Y'= Y, and apply theorem I..

4. XYMLAP

Becase XYMAP simply involves minimizing a quadratic function over some

domain, several additional results can be proven for this algorithm. In particular:

Theore I2 Let X and Y be convex, closed and non-empty. Then not only is

the set of global maximizers to the XYMAP problem cosed and convex (though

possbly empty), but also if (i 1 i) and (72 ,j 2 ) are two global maximum solutions,

then:

1-X I = 2--2 (L4.1)

Eroof The closure and convexity of the set of global maximum solutions is guaranteed

by theorem 2.10.2. To prove (1.4.1), first note that since jl, j 1 and j 2, 2 are both

gbbal XYMAP mimir, then ILix-ilaI-= li2-i21IR. Now define the interpola-

tion point (j j) by:

(,j) = X(Il.) + (1-X)(f 2 ,2) for 0<)X<1 (L4.2)

Because the norm is a strictly convex function of its argument:

Ii-i IR = II ( - 1t ) + (1-x)(i-12 ) 
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XS A Li-x + (1-X) 12-i 211 R (L4.3)

= Iii-il Ila

but since (l 1,jl) is a global minimiing XYMAP solution, ilj-i IR can't be smaller

than Il 1-i IIR, and thus equality must hold in the relation above. However, because

the norm is stricdy convex, equalty can hold if and dunly if: ·

fi-i1 = 2-i2 0.4.4)

Note that, as guaranteed by theorem 2.10.2, a points on the line connecting (jl)

and ( 2 j 2 ) will be global maximizers. a

We conjecture that this result is also true for our other algoriihms. We can also prove:

Theorem . Let X and Y be convex, closed and non-empty. Then the XYMAP

iterative estmate satisfy:

Ilt+-ia i < ti4+-4i- a for k=0,1, ... (L4.5)

provided that +l#Z- (this cid only happen if the iteration has already con-

verged to a limit.) miarly:

1I4+1-4 IR < Ii-ik-lR for k=0,1,... (.4.6)

provided that Y $' -1.

Proof: We will only prove the first of these relaionships; the second can be proved in l

an identical manner by swapping the rokles of x and r. By theorem D.2 in Appendix

D, ttig x=4+lI and [2=-:

II~1 ha = ||,(1+) - r(4) I (L4.7)

Ckse examination of the proof of the non-expansive mapping theorem in Appendix D

indicates that equality holds in the retion above only if:.

4



443

0 - (+ 1-) - (01,4) 1, 4.8)

This will only be true if:

h +1- + =1 - . (1.4,9)

But by construction of the iterative algorithm:

11I +- + ll R s III5-&+II I Il h-4i1it (L4.10)

Since (.4.9) is true, however, these norms must actually be equal to each other. In

-ar iar:

I- +,lIR = I~-- IIR (.4.u)
But Theorem D.1 in Appcdix D guarantees that because the set X is convex, the pro-

jection of j onto X, i.e. +1, is the muque element of X which mininis I- if.-

Therefore; (1.4.11) can only be posible if:

= 4k +1 (L4.12)

But then +=;, and in fact:

fa+. = k
for aL l>0 (4.13)

and thus the sequence has converged. Threfore li+ 1- IIR must be stictl l sk ta

i14 +l-4 lil ualess the sequence has already converged.

We would conjecture that this strict non-expansiveness is true for all four algo-

rthms; to prove thi however, would require strengthening PrTopa's result in Appen-

dix E to cover strctly concave functions.
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Appendix J

Linear Equality Constraints in the Fisher XYMAP Problem

1. Eigenstructure of P P, P and P, P, P,

The cigenstructre of the matrices P P P, and P P,Py can be analyzed in exactly

the same way we analyzed PHPyBP, and PBP HPy for the Bayesian problem in

Appendix G. In fact, if we let B=I and take a-. , most of the rests carry over

directly. In the folbwing, therefore, we wil only prove rsults which are uniquc to the

Fisher problem. Unlss otherwise indicated, we will assume that all spaces arc finite

dimensionaL

Property A

The range of P, is the nun space N of G,, P, v N,. The range of P is the -uif

space N, of G, P EN,. The nu space of P, is NI and the null ace of P, is N,

where these orthogonal complement sets are formed with respect to the inner product

Property B

The matrix R-PP,yPzR is symmetric and positive semi-definite; its eigenvals

Af are thus real and non-negative, and its cigevectors form a compkte orthonormal

set,

Property C

The matrix PP y P, has the same real and non-negative genvas X1 as

R-'PPPxR*s, its eigeanctors are *4 = Rj, and they form a complete orthonornal

I
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set with respect to the inner product < ,>R.

Property D ·

Since projection matrices are non-expansive mappings (see Appendix G, section 1)

then

IIPP,PI I ilHR II P IIR S I (J.1.1)

and thus all cigenvalues of PP, P, must be ess than or cqual to one.

Property E

If is an element of the nl. space of GC, - CY, then Pz Si- ; miary, if y is

an ement of the null space of G,, E(Ny, then P=. Thus if the intersection

Nr rY i£ non-trial, then every element EN, rvN, must be an eigenvecor of P Py P,

with eigenvalue 1:

P,P, P = P,P, = P = for all ENzfN, (J.1.2)

Any cigenvectors of P,Py PP not in N z / W, must have igenvalue stricty ess than 1.

Furthermore, by property C, any eagenvector not in Nx, Try wl be orthogonal to

N, fV,. The igenvectors of P P,P, thus split into two groups; those in N, nN, have

igenvalue 1, and those orthogonal to N, rW, have cigenvalue strictly less than 1.

Property F

All cigenvecors * of P, PP, corresponding to non-mzro cigenvalues Xk must

PXPPs h= ti g Q (J.1.3)

and thus *, muast be in the range of P, or in other words, *, EN,.

4

� �____________________
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Property G

Exactly the same type of statements can be made about the eigenvatues A, and

eigenvectors 4. of PP P,P. Moreover, P,PPy has exactly the same eigenvahues as

P, PYP, and its eigenvectors i corresponding to non-zero eigenvalucs i can be put

into one-to-one correspondence with those of P, P,P:

SS2RPJ34 *1 ~~~~~~~(J. 1.4)

Thee cigenvectors are all elements of N. Thus there can be at most

min(N-pN-q) non-zero igenvalues of PP,P and PP,P,. A elements in the

intersection N rn, are eigenvectors of P,P, P with cigenvahle 1. A c. her cigenvec-

tors of P, P, P are orthogonal to N. rW, and have eigenvalue strictly less than 1.

Property H

liP.Py, 1 = IIP,P. [t = the square root of the maximum igenvalte of P,P P,

and P,P 1 P,. To prove this, use the fact that R-P =PTR-', Ri,-PTR-', and

P, P, =P , :

IIP P, Il = max ' (J.15)

ZTR -PIPx

,TR--p P, P 
m TRa . PP R where =R 

aT

which is the largest eigenvalue of R-*P, P P, R, which in turn is the largest eigenvalue

of P, PP, and PP, P,. Exacfy the same rest can be proven for IUP,P, IIi.
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Property I

Eigenvectors *4 and !64 of P,Py P, and PyPP, corresponding to non-zero cigen-

values Xi are also cigenvectors of P P and Py P respectively with the same eigenvalues.

This is because 4 EN, and , (N., and thus P l = - and P 4 = d. This implies that:

PPy = PP,Px 4 = *(J.6)

PPggb = PP P,4t = Xji

Property J

Both P and P, map (N. nN,)l onto (N lN,)l and map N rW, onto N r, . To

prove this, suppose Y _Nx fN Then P, = (NE V, and P =x N, flN . Now sup-

pose ( E(N, rN,). Then It can be written uniquely in the form:

= 1 + Y,2 where ltEN 1 and x2zENx (J.1.7)

Because 2 1 N, it must ao be true that v 2 1 N,rN. Bt then I N.rW is only

possible if ! lNFrwN,. Since P = 1, then Px lN, tWN. We can prove

Pir INlN, similary.

Property K

The null space of the matrices (I-PP,P1 ) and (I-P,P.P,) is NVT rN, whie the

range of these matrices is (NfN,)1 . To prove this, let *, be any igenvector of I

Py PP, with igenvalue k; then it is also an eigevector of (I-PPP,) with eigenvalue

1-1. The null space of (I-P P,P,) is therefore spanned by the set of ecigenvctors 

with eigenvalue i = 1, which is simply N,1 rlN. Since the eigenvectors j form a com-

plete orthonormal basis, the range of (I-P, P, P) must be:

Range(I-PP,P. ) = span (I-PxP, Px) } = span{ (-) }

I
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The only vectors missing from the range will be those in the subspace spanned by cigen-

vectors *4 with eigenvalue i =1, which is all the vectors in N ClN,. The range must

therefore be (N, TW,y)1.

Property L

Al the igenvectors 4 in the set spanning (N NY, )l have eigenvalue X less than

1. If there are a finite nmber of these eigenvectors with non-zero igenvalne, then

there must be one with the largest such eigenvalue X<1. Then:

{IPPZ! 1 1 )a 15 A ii (||)
|IPYP.Y- 1 5 X, [11 IIR for all E(N N,) (J.1.9)

To prove this, write x as a linear combination of the eigenvectors in (N Ct 7 )1.

x= E voi (J.1.10)

Then:

PPP-~ = ViXi

and thus:

IIPPi 1H2 tTpTRT-lPP v

= TR -'lP,P,

(yIVA ) R-1 (Vt.X )

S l, I .i2

= A~ ~ lt1 I~~ ~(J.ll1)

We can prove

· IPP! i_ 1 2 )Lmx 1h Ii (J. 1.12)
sirlrily. This property thus impliecs that PP and, P are contraction mappings on

I
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the set (N lNN)- and identities on N, (N,.

Property M

The matrices Q_ =(I-Ps) and Qy =(I-P,) are projection matrices whidc ar

'orthogonal' to P and Py in the sense that they project vectors onto the orthogonal

complements N,1 and N)- of the null spacms N and N,. The matrices QJQ,Q and

Q,Q,Q, has a similar eigenstructure as PrP,P, and PP, P,; all their eigenvaes are

real, non-negative and bounded above by one, and their igenvectors form a complete 

orthonormal basi In addition, the non-zero eigcnvalues of these matrices which arc

strictly less than one are identical, and the corresponding cigenvectors can all be put

into a one-to-one correspondence.. To see this, let {*} be a set of orthonormal cigen-

vectors of P,P,1 with cigenvalues , where O<Xi<l. Note that 4UVN , so that

P* 4=*.- DeCe:

= , PyPx 4

r= - 13; ,P,4 (J.1.13)

Then the sets {}, {i}, } art orthonormal and are cigenvectors of PPyP,, Q,QZOQ

and Q,Q Q respectively with agenvaluec k:

PyPsP* = i 

Q,QQ nt - A(J1.14) I

We prove the result for the vectors M; the proof for the others is similar.

Q 1 -1
Q:,OxQ, = , I (I-P,)(-P.,)(I-P,)I
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(I-?y)(1-P, -)* +PP,*,

(L I- xi - +y py )*4

= Izi

AlI:

1

1

[(<*> R <ji4> |

[( -1 ) i

2. Primal Algorithm

Theorc J.1 Suppose the constraint se X and Y are defined by linear eqation:

X {xGtXI-} Ix and Y zIG, = } )

where G. and G, have ful row rank. Then the Fisher XYMAP probem:

f,as - I,= Ila _ - ll2

ka a sotion giv by:

( -IPr ) I = i +P.(i+P,D

(J.2.1)

(1-22)

(J-23)

I = P 1 +i

1
Vi
1

V1-

W
1

2 r l I

! 

--

'r(I'(-P TR-I(I-PPICCaU 31>R
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Otr:

(I - PYPXP, )i= +P,i+P,.) (J2.4)

f -x+ Px

The solution to (J.2.3) or (J.2.4) will be unique if the null spaces Nx and N, of G,

and G, respetively do not intersec, N CNW, =1. Otherwise, there will be many

solutions; one of these ,, ., will have minimal energy, and the rest (ai) can

be written as:

+ = P _ rfor some ENWN, (J.2.5)

and:

(J--6)

Ilill2 s Iii III (

frtfL The derivation of the formulas (J.2.3) and (J.2.4) was presented in chaptcr 6,

and we will not repeat it here. Let us prove that the closed-form formula (J2.3) for f

can always be solved. Note that

PI= II RGT (GXRGT)lG ] RG (GRG )>l O0 (J.2.7)

Thusej iin the null spac of P, so (N1 . Simiarly, jE 1 . Sincc lN, andilN,

we ms have j 1 N IN, and i N , also, and thus by property I above:

P,i I N rw,

PS Pyj I N, ur,

The right hand side of (J.2.3) is thus an elemnt of (N. CW,). But propar K above

4
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says that the range of (I-P.P,P,) is rctly (N rWv,) Thus we can always find a

solution i. Since the null space of (I-P P, P) is N, N,, every solution must have the

form:

= 0 + where EN ly (J-2.9)

The corresponding output estimate wil1 be:

i = Py + r (3.2.10)

= P0+ 1!

where: j 0 = Pj +j

The set of solutions forms a hnear variety; of thesc, there is a unique estirate

(4, ,j,~=) such that ,l N. rN,. But then .. = P,,+j 1 N, also. All the

other solutions (j,) can be written:

= L + -

+ for some z EN, N, (J.211)

Note that:

lJ II2 = Il1ll + I tl2 2 lll (J]12)
Ibl IIRi = IL..1 2 + l 112 2 11i.112

so that all these other solutions have more energy than (. ,). Proving the result

for the other version (J.2.4) of the dosed-forn formula is straightforward. 0

Theorm .2 Suppose that the constraint sets X, Y are defined by linear equaties

as in (2.1). Suppose abo that the matrices PPPx and PPP, have a fiite

number of non-zso cigenvalnes (This wil be true if min(N -p ,N -q) < =). Then

the iterative projection algorithm:

4+1 = Pi +i (32.13)

+1 = P ,++

I
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is guaranteed to converge at a geometric rate to a solution (ii) to the Fisher

XYMAP problem (J.2.2):

1l1 h +1 S I I_, !4+t-4 |I II2 A2 k 112 (j.2.14)

If we decompose the initial estimate o0 into a component Y0 in N, flN, and a com-

ponect 0o orthogonal to N rlNy

-o = io + O where o 1 N, rN, (J.2.15)

yo E N N,

then the iterative algorithm converges to the "nearest' solution:

i = + o

(J2.16)

0
Thus if we choose i0 1 N 'w,, the convergent solution will be ( i ).

IPof; Let j be the global minimum solution =jy.+o. Then since both io and j,,

are orthogonal to N, fN,:

io- = o-imw 1 N. r, (J.2.17)

Now recogniing that +1 = P4 + +f,

ik+1 PPIZ+, + (j+Pi) (J.2.18)

Also, the global minrmum () must be a stationary point of the algorithm, with

i = Pi + , and thus:

t = P,P. I+ f(-Pj)

Subtracting (J.2.19) from (J.2.18) yidds:

(J.2.19)

(J.2.20)Y*+1 y = PYP. (4+ 1 - )

Similarly, we can show that:

(.221)

t

.

41

e

I

_�__

4+ + -i = PP, (h - )
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Applying property J recursively, it is easy to show that:

i -P 1 Nf N,
for a k (J.2-2)

Thus by property L above:

Ili+1 -i 11 = II P,P, ( +1 ) 2 ' (J 2)
112

) x2 11+i-_ 112I -Li& II P z ( it -n Il

Thus as t-, !1i - II. 0, and 114 -i ll ' 0, and thus ( ,jk) converges geometri-

caly to the global minimm solution (i)- if we choose io to be orthogonal to

NYtWN, then x0=0 and the cnvergent solution will be (i,), which i the

minimum norm solntion to the Fishcr problem (J.2.2). Fmally, note that sinc ~ is

orthogonal to N, it is the vector in Y with the sma1est norm. Thus if we doose j 0 to

be the etkment in Y with the minimum norm, we arc guaranteed that it will be orthog-

onal to t., rW,, and thus the convergent sohrtion wil be (4m,. )-

Primal Algorithm Noise Sensitivity

We cn analyz the noise tt of this algorithm in exactly the same way as in

capter 5. Combining the derivation in Appendix G with the decompostion of the

errors into components At in N, Wrj and component 5 orthogoal to N rWy, we can

show that the error between the acrpuled estimate fi and the 'correct estimat i:

k-i

= -f Z (Pypr(&k +-.) (J-24)

But Si A N . (rv, then P A=P, = .- Thus:

k-1 k-1

m-, 6- 4 + I (P,Px)
m0' m*

___
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+ + [ I(PP.)(PXP) (PP) . 1 (J.2.25)

where we have liberally used PP, =P, and PPy =P, in the last ine. But by property

J, since M, E (N fN,)I, then P,P.L, (NX, Nl, and in fact every term in the last

summation in (J.2.25) is an element of (NT fN,) . Thus by property L:

I/11 - V. IlI < 11 lj2 + ,l- + X- -1 Ili-12l (J.2.26)
m 11 112 t ,n r,, Ilt about

If a the erors I lare about equal to and all the errors ane about

equal to A1, then:

Ilt _} 112< t< + + -am ).r)i -( -2 (2.27)

Primal Algoritbm - Interpretation of IIP,P, R las a Cosine

Finally, we present Youla's proof 11] that:

Theorrem .3

cos(X,Y) - IIPP, PI l= 1IPP, IR
where cos 8X ,Y) is the angle between the constraint sets X and Y defined in (J-.2.1).

roof* Assume that R (P, ){0} and R (P,)*{0}; otherwise, the result is trivial since P,

or Py would be the zero matrix. For any R (P.) we have

C') IIz IlRI& lII £a&) lI l!itIx lil

(J.2.28)

IIPzx I 
I11 IIR

where' the lat line is due to Schwartz inequality, m<,PX>RI I 5 IP 1 x it.

Equality wi be achieved only if wre choose inearly proportional to Pc Sin=

_._ __
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(ER (P,), we have y =P,- and thus:

cosO(X,Y) = s PP, 1 (.2.29)
,Es &.. (J.r I2.29)

To show that this is simply the norm ]IPP, IIR, note first that from the definition of

1IPzP, 11R that the supremum on the right hand side of (J.2.29) cannot exceed

IIPzP, y t. Next, note that we can always dcompose a vector into = +1 with

X ER (P,), X1ER (P,)=N(P,). Then:

IIP:P, IR [P,P !it
11! 1IR II +! IXIR

) IP: PaI(1: 11 + t 11: )2s iR

and the lemma is proven. 0"

3. Dual Problem

Because 0, and Q are projection matrices onto the spaces IJ1 azd NJ1 with

resect to the inner product <-,>, exactly the same conclusions can be drawn about

the cigman ucture of Q, Q,QZ and Q, Q, Qas about PPyP, and P, PP, in sctio 1

of this Appedix. We need only rp P, P, N,, N, and R evrywhcre in ction 1

with Q, , N,1 and (, and the same prrr continue to hold.

We now prove that the dual dosed-form solution exists and that the dual iterative

algorithm coveres at a geometric rat Ft we fhctor the ofbfset , and j, into the

_ ____________IC________I
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form:

ii = 2 1 where pOENTlNrWI and I N'W,1 (J.3.1)

~ -2 '+ where Nrlf . and I NrW

Now we prove:

Theorem J.4 Let A be any solution to:

(I ,qQ, ) - (J.3.2)

Let be the corresponding output multiplier estimate:

= - ,0 + (J.3.3)

then construct signal and output estimates by:

_ = ~ + a + o (J.3.4)

r.- = + + +Q

Then (.,,," not only solves:

^_ -miin t1x-ji I(J.3.5)

but is also the solution with minimal energy; thus if , are any other solution to

this Fisher problem:

I2 21 IIdaIIQ (J.3.6) 

frot We first need to show that a solution for in (J.3.2) exiss By property K of

section 1, the range of (I-QQ,Q,) is (NllNw, )1. Now +El(NV )W,1 . Abo

g-Q(N( yYt.I By property J of section 1, QO r4E(NW )' also. Thus the right hand

side of'(J.3.2) is an element of (N,/4%y , the range of (I-Q,Q,Q.), and thus at least

one solution a exisL Since the null space of (I-QzQyQ) is NVWi , any other

4
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solution A' wil have the form:

- = where ENh N , (J.3.7)

Note that , EN," which implies that both componeats R and T1 are elements of NI.

Furthermore, since the range of Q, is N 1, then Q.-,ENxI. Thus the right hand side of

equation (J.3.2) also is an element of NI. To show 'that the solution A ENI also, note

that if y.N,, thea:

(I-oQ, Q ,,) = E N, (J.3.8)

and if EN, then:

0(-Q,QO,,) = - Q(Q,Qz) E NI (J.3.9)

(I-Q,Q,0.) thus maps N, into N, and N) into Nr; sincc the right hand side of (J.3.2)

is an elment of NI, the solution !~ must be in N. The corresponding output multi-

plir estimate A. will be an element Of N I since 1EN I and the range of O. is N.

Now since ,,NI,, then Q,=. Also since ENJ1 then Q, =. Thus b

rearranging cquati. as (.3.2) we get:

. O QQ,Qo, + l Q (oJ.3.10)

= - ,4 ) +

The soltQon , A. ths The soluton /,, , thus satisfie:

-_Q L- (3.11)

A=, Qs +,+

Al other solutions '~) will have the form:

g'= +Y
Ug = 4, =X_ where zE VnNflN (.312)

Now let - , + th s o , -

Now let us analyze the so!utior, i,., ra:
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Giw: = G, ( - 4 + ) (J.3.13)

--GQ.A + G + Gx + G °

G(+, °)

_ Gx

Similarly, we can show that Gy..=. Thus j.X and ,j.E Y. Note that startng

from any of the other solutions (IL',A/) in (.3.12) would give exa41ty the same esti-

mate of j, ji. Moreover:

. - = - ( Nr -wi (.3.14)

Let x, be any other elemcnts of X and Y. These can ways be witten in the ftm:

: ,. + where LEN
,, =~+1~ were~ U~(3.3.15) 

= .a + Y- where x Ny

Note that since 1 N1 and , 1 N, them also l N W,N and , iN . Now:

But j-j E XXN while -, - I N.rW ; thus i,-, I , -y and:

I1X -w 14 = III 2I-Z r+ y II - 1 II -i jr3l7

Thus jj, ~,, are indeed global minimiling solutions to the Fisher XYMAP probkm.

Any other global minimizing solution ('j') must have the form y, =Yf or:

where EN. tW, r(.3.18)

However:

-ENI N, N ..1W,)

Thus: 4

I
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B&L = t P + 1 NTrW, (J.320)

Similarly, we can show:

i,, I N. Nw, Q.J-21)

These relatiorships (J.3.20) and (J.3.21), however, guarantee that i,,m, jh are the

minimal energy global minimum solution, since any other solution (,) in (J.3.18) will

satisfy:

WIX~l IIE 12t lia 1 

This csed-iorm solution is unfortunately not computationally practical because it

P rllquires splitti g ~ and j, into Componnts. A more convenient solution is given by

h following

_'am J' .5 Solve:

(I- QZ,Q ) - Q,, (J.323)

for a best leat squares solution , with rpet to the inner product <,'>,.

Then compute:

, = - , A + , (y.3)

6, 4x x Q3.4 + )

The mian energy gobal m m g solution is then given by:

i Ar .= L, + Ay, 0.325)

-g', + A.,

Moreover, equatiot (J.3.23) wil have an exact solution for 4 if and only if

i.._ = jirr_ (J.3.26)

I0
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;Proo A best east squares solution for 4 is found by:

a .- min (I-Q.QQx) - i-i-Q 1 iy) (J.3.27)

-min ii {(-Q.QQ.)A - c-, } .2

The first term inside the norm is an element of (NrNrWNl) while the seoond term is in

NlI.N½. Thus:

-min (I-Q QQ ) - (-QxL) 12 + 11 -Q g (J.3-28)

The second term is independent of i,,. Thus the least squares solution , will be

ecactly the solution , found by our previous theorem (J.3.2). Now:

y, = - + , (3.29)

where , is the solution in our previous theorem and:

Al= -Q 1 + x (J.3.30)

Thus:

x + Q , = + 91 + A + (J.3.31)

.. = + = A + , ,
and thus 4i, ,,j are the same sohlutions calclated in the last theorem (J3.3.4).

Finaly, we note that becauxse ENrW 1, then Q -,4O. Thus:

i_ _ L= p° ~Ax° ~ ( ~Q Y4) (J.3.32)

Thus if i then the second term in (J.3.28) is ro, and the solution A actually

solves the equation (J.3.23) exactly. Finaly, note that we could prove a similar result

starting with the formula for A, instead of A,; the corresponding procedure would look
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the same as above except with the roles of the signal and output reversed every-

where. LJ

Next we prove that the iterative algorithm converges. Let us split our initial esti-

mate jy, into:

,0 = Zqo + ~0 where o N 1 nNIW and ( (.3.33)

Also split the cigenvectors of Q,,QyQ into a group spanning NLnNW, each having

cigenvaue of 1, and a group spanning (N,-i1 V , each having eigenvalue strictly less

than 1. If there are a finite number of such non-zaro cigenvalues which are less than 1,

then one of them must have the largest value ),,<1. Then by pr-)perty L:

tIIQQ, IIQ <, i 1 IIQ
IIQQ Iily- 5 for al E (NV n,) 0.334)

Let , Ay. be the solution to the dosed-form problem (J.3.23) with minimum

energy. We then prove:

Therm .6 The multiplier estimates , n, converge' at a geometric rat to a

inearly ramping estimate in the sense that

* = [4-,+ +k(.. A, (.3-35)

v = I - Pi + -k(X- X) + &X

where &a and A, decay at a geometric rate:

114^+, 112 S A IIK~l| S A 11 4, l4 .3.36)

'he corresponding signal and output estimates , r converge at the rate ., to

the minimum energy global minimizing solution i4,, j,. in the sense that:

II (i+i-~4+i) - (.,X.,. ) II (.3.37)

I

____
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PrQof Start with the relationships:

= -+oQy + y

and:

.. = -Q, .. + 1

Also from (J.3.32):

!.aT.- : . -

Then:

(J.3.38)

(J.3.39)

(3.3. 40)

'(-,, + ) - ( -. + o + (k + 1)(,-= ) 

= -O,(A., - a.) + 4- ,o, - (k +1)(, -I )

o. -o - -o o
But , Q°, R.N 9 NflVN,, and thus QYOYO =,, Q, = , and

Q, il-X..) = (i,-i-). Thus:

= QYQ ( , -, )) (.3.2)

= - Oy Q (J.3.42)

where this second to last line follows becase evry term on the right side is an element

of N 1 , and thus is an cigenvector of O, with igenvalue of 1. Applying similr argu-

mcnts show that:

I

I

4

I

I

I

I

I

____________________II___
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,+1 = QxQJ , (J.3.43)
Now:

A4 o- E (N 1 N,) (J.3.44)

Since both Q Qy and Q, Q map the space (N.W,)' into (k,'Vr )l, we must have

A,,, A, E (Nft, ) l oal k (1.3.45)

But then:

0,Q,,t I3 t& -- ,Q,, l~ 4.3(J.3.46)

Now also:

i, +,= 4,. + , (O33.47)

=_+ Ay + QJ + A, + A + 

and mi:arly:

+ .WI + +, . (.3.48)

Notice that the leftover piece of the initial output mltiplier estimate , has disap

peared together with the iLnear ramp :erst k(i.-i). Thrs:

IA (+-i,+) - (i.i) I, I (3.3.4,9)

IIOa, IQ (a...- 4*i) i .

h Ie ed t fos beu ( f i

(J.3s0)

_I_______ _

1 ( _ J4 +1 ) ( , _ j..,. ) 11 r ~ I 4 -j Q,.- )1 
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20. ABSTRACT

We present a new approach to the problem of estimating multiple unknown

signals and/or parameters from noisy and incomplete data. We approximate

the various unknowns as being stochastically independent, then fit a

separable probability density approximation to the given model density by

minimizing the cross-entropy. Given the separable density, all the unknowns

can then be estimated independently of each other using conventional methods.

Surprisingly, all the well known Maximum A Posteriori and Maximum Likelihood

methods for this problem can be viewed as degenerate forms of this

cross-entropy approach, in which one or more components of the fitted

separable density are constrained to be impulse functions. We solve for the

Minimum Cross-Entropy and MAP separable density approximations by iteratively

minimizing with respect to each unknown component of the density. This

iterative approach takes a particularly simple form when the probability

densities belong to an exponential class of densities. Each iteration

decreases the cross-entropy, and convergence can be proven under mild

conditions. Applications discussed in the thesis include:

a) Grouped, truncated, quantized data

b) Optimal signal reconstruction from time/frequency constraints

bandlimited extrapolation
phase-only reconstruction

magnitude-only reconstruction

c) Multidimensional FIR filter design

d) Optimal signal reconstruction from time/Short Time Fourier
Transform constraints

e) Multidimensional Maximum Entropy spectral estimation

f) Penalty Functions for Constrained Minimization
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