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Abstract

An automated circuit extractor generates an equivalent circuit description of an integrated circuit (IC)
entirely from the geometric mask information. By analyzing the circuit description, IC performance
can be estimated without having the IC design implemented. This thesis presents a methodology for
accurate extraction of interconnection resistance, inter-nodal capacitance, ground capacitance, and
transistor dimensions-circuit parameters important in characterizing the speed, noise-immunity, and
static performance of designs for modern MOS technologies. Extracting each circuit parameter
follows a general, numerical extraction algorithm with high accuracy. However, where possible, the
general algorithms are replaced with simple techniques that do not sacrifice accuracy but execute
much faster. Vital to the extraction methodology is a geometric operation that decomposes regions
into domains appropriate for specialized algorithms and general algorithms.
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CHAPTER ONE

Introduction

An integrated circuit designer generally wishes to locate and fix circuit design problems before

dedicating his design to the expensive IC fabrication line. Inadequate speed, degraded logic levels,

and excessive noise are just some of the circuit problems that plague the IC designer. Not too many

years ago. extracting active device and connectivity information was sufficient to characterize the IC's

circuit behavior. However, as IC structures are scaled down in size, problems associated with IC

interconnections become particularly acute, for the effects' from parasitic resistances and

capacitances begin to dominate over device effects. Today, a necessary step in locating potential

circuit problems is extracting equivalent circuits for active devices and interconnections.

Previous computer programs have been written 1, 2, 3] for extracting transistor information and

interconnection capacitance formed by overlapping layers. These extractors are proficient in

verifying logical correctness, but not circuit performance correctness. None extract arbitrary inter-

nodal capacitance information, and only one program [11 attempts to extract interconnection

resistance information. To locate circuit problems, the IC designer must extract a complete spectrum

of circuit parameters including interconnection resistance, ground capacitance (capacitance to the

substrate), inter-nodal capacitance (or coupling capacitance), transistor sizes, and transistor areas.

This is particularly true for designers of "analog sensitive" circuits such as random access memories,

sense amplifiers, or bootstrap drivers.

General numerical techniques are known for solving each extraction problem in the spectrum

[4]. The term "general" in this case is attached to methods that work for arbitrary shapes. Some of

the general techniques-most notably for resistance and inter-nodal capacitance-are limited to very

small problems because of their need for vast computing resources. In order to extract larger

designs, automated circuit extractors have been developed [5] which use simpler techniques that do

not solve the general problem. While the techniques are usually good for long, rectangular field

regions, they sacrifice considerable accuracy around irregular regions.
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This thesis describes an automated circuit extractor, EXCL (EXtractor of Circuits from Layouts),

that extracts complete interconnection and transistor information. It uses a range of extraction

techniques for each problem-some are special-case and fast, others are general and slow. In the

resistance, inter-nodal capacitance and transistor sizing problems, a single and powerful algorithm

separates field regions into subregions of three kinds. Where the fields are one-dimensional (as the

fields describing conduction in a long straight wire) one kind of subregion is formed, and the problem

is solved using a simple equation. Of the remaining subregions, those with prespecified, commonly-

occurring shapes have their solution found in a library. Only those subregions that cannot be solved

with the previous two techniques use general techniques. Separating the problem in this way allows

EXCL to operate with reasonable speed without sacrificing accuracy. This gives EXCL the capacity to

detect potential circuit hazards in larger IC designs containing sensitive circuits.

1.1 Overview of EXCL

EXCL converts raw mask geometric data generated by the IC designer into an equivalent circuit

representation for subsequent simulation or analysis. An important feature of EXCL is its programming

modularity. The program is not bound to any specific IC fabrication process or mask set

specification, for all technology related instructions reside in two easily-modified program modules.

Figure 1-1 shows the general organization of EXCL. It is broken into a connectivity extractor

part and an extraction library part. The connectivity extractor processes geometric mask

information into isolated regions associated with individual circuit elements. This is controlled by one

of the technology dependent modules. Next, the other technology dependent module, EXTRACT,

instructs EXCL on how to convert geometric data into circuit data. It does so by calling on extraction

algorithms contained in the extraction library. For instance, the user can include a command in

EXTRACT that says: for each region of a certain layer, activate the extraction library's "resistance

extractor" to convert geometric data into resistor network data. By allowing the user to make such

decisions, he can tailor the extractor to meet his own needs, i.e., he can make his own extraction

model.

Each of the basic extraction problems is self-contained in the extraction library. The library

includes procedures for computing resistance, coupling capacitance, transistor sizes, and other

parameters based on a region's area or perimeter.

10
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Figure 1 -1: Organization of EXOL

1.2 Overview of Remaining Chapters

The thesis is presented in three main parts. The first part (chapter 2) introduces an NMOS

fabrication technology, and discusses each of the relevant circuit parameters that might be extracted.

This part presents some of the basic issues that a designer must consider when developing an

extraction model for EXTRACT.

The next part (chapter 3) discusses the connectivity extractor of EXCL. It discusses the

geometric and circuit portions of the connectivity extractor, including the two technology dependent

modules.

The last main part (chapters 4 through 6) presents in detail each of the extraction algorithms for

extracting resistance, interconnection capacitance, and transistor sizes. Some of the extraction

algorithms are well-known, while others-most notably for coupling capacitance-had to be
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developed for EXCL. The basic algorithm for dividing a region into its subregions with different

solution techniques is similar for each of these problems. The main discussion of the algorithm is

found in the resistance chapter (chapter 4).

12

I - I



CHAPTER TWO

Extraction Models for Integrated Circuits

An extraction model is the complete set of rules, algorithms, and constants that is applied to

an IC layout to convert the mask information into an equivalent circuit. For any layout, an extraction

model should generate a unique equivalent circuit, however, we have few restrictions on which rules

and algorithms we can actually place in the extraction model. An extraction model generally reflects

the intended use for its output. For instance, if we intend to simulate the output circuit with a logic

simulator, the extraction model should contain rules for finding logic gates and interconnections

between logic gates. With EXCL, our primary wish is to extract enough circuit information such that

we can accurately compute the anticipated performance of the integrated circuit on a continuous

voltage, current, and time scale. For digital IC's, this means that we do not intend to deal with simple,

discrete logic levels, but with the complete range of analog voltages.

One circuit performance behavior usually sought by the digital IC designer is the circuit's

switching speed, but, he may also wish to characterize coupling noise, logic levels, power

consumption, leakage current, ...; the list goes on. When characterizing each of these circuit

behaviors, different circuit elements become important. While one exhaustive extraction model

suffices for all of these circuit analyses, we can take a more efficient approach and change the
extraction model to fit the type of circuit analysis. EXCL has the capacity to incorporate broad

changes in the extraction model. In this chapter we will examine which circuit elements are relevant

for each type of analysis, and will examine the different extraction models for an example technology.

Integrated circuit modelling can be categorized into two main areas-the modelling of active devices,

and the modelling of interconnections, and each will be described in this chapter.

All of the discussion in this document assumes a planar IC technology, but beyond that

technology restriction, the principles can be applied to most any technology. This is particularly true

for interconnection principles, because interconnection models are similar for any type of conducting

13
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and insulating material. Active device modelling is less general. and depends more on the fabrication

technology. For the discussion of active device modelling and for all of the examples. we will assume

a fixed NM.~OS technology. The mask sequence for our simple NOS technology is the same as that

described in Mead and Conway [61. The next section briefly outlines the technology.

2.1 NMOS Technology

The simple NOS technology has three conductor types. diffusion. polysilicon, and metal;

each occupies a different vertical position or "layer" (see figure 2-1). Two of the layers, diffusion

and polysilicon, are positioned above the silicon substrate", and are surrounded by insulating

silicon dioxide. sometimes called "oxide". The third conductor, diffusion. exists as part of the

substrate itself. isolated electrically by an impurity-induced, back-biased diode. The IC designer

patterns the three conductors in the two dimensions parallel to the substrate. The complete set of

patterns for all layers is the layout. No electrical conduction exists between the three conductors,

and the designer is free to cross connectors on different layers as he pleases, with the exception of

diffusion and polysilicon. The designer can, however, provide an electrical connection between

metal and either of the other layers by placing a "contact cut" at any horizontal position occupied by

both layers.

- ' '7------~
Metal

i ,·· 1

Substrate

Figu re 2- 1: Conductors in the NMOS technology

Positions on the layout with both diffusion and polysilicon mark the active regions for this

technology. During IC fabrication, the polysilicon layer is deposited first. The polysilicon rests on a

14
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thick silicon dioxide layer over most of the IC surface, but over regions specified by the diffusion

mask the polysilicon rest on a much thinner silicon dioxide layer. Afterward, when diffusion

conductors are created, the polysilicon blocks the diffusion impurities from entering the substrate at

the active areas. This combination of thin oxide and no diffusion impurities yields MOSFET transistors.

The transistor's source and drain are located at either edge of the active area where diffusion

extends beyond the overlap; the gate is the polysilicon conductor.

The process engineers selects the proper semiconducting material types for the silicon

substrate and diffusion impurity such that the MOS transistors are N-channel (that is the majority

carrier in the channel is electrons). By selectively regulating certain minute amounts of impurity in the

active area, the technology provides two types of N-channel transistors. One type, the

enhancement transistor, has a positive threshold voltage and can therefore be turned off

completely. These transistors serve as switching elements. The other depletion transistor has a

negative threshold, and thus always conducts to some degree. These are used as "pullup" devices

for the NMOS logic gates. The layout designer discriminates between the two transistor types with an

additional ion implant mask that is placed over depletion transistor areas.

The IC layout designer must follow a set of design rules governing the minimum dimensions for

layout patterns. The rules specify such parameters as minimum conductor sizes, spacings,

extensions, etc. The design rules are based on the fabrication and lithography process and are set

such that one can be relatively certain of obtaining a circuit free of electrical defects. For the most

part, the extractor is unaffected by the occurrence of a design rule violation in a layout. Unlike the

photolithographic process, the extractor can separate lines to a much higher degree. Nonethless,

such designs should not be encouraged. Some very contorted layout patterns that violate one or

more design rules cause the extraction model to fail and generate wild circuits. For this reason, the

extractor expects an input layout that violates no design rules.

Figure 2-2(a) shows a sample NMOS layout. It is accompanied by the corresponding cross-

sectional view of the IC structure. For all layouts illustrated as examples in this document, layers are

identified by name when relevant.

15
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(a)

Figure 2-2: NMOS technology

(a) sample layout, (b) IC structure cross-section of sample.

2.2 Types of Circuit Analysis

A circuit design passes through many representation levels: from the architectural, register,

logic, and transistor levels to, finally, the mask layout level. After the designer progresses through all

these levels and has a mask layout, the circuit extractor enables him to check whether the hardware

described by the mask layout will perform as expected. Performance checks are usually made to

ensure adequate circuit speed, logic levels, noise immunity, and power distribution. For dynamic MOS

circuits, charge leakage might be checked. Each of these checks needs a different set of circuit

parameters. NMos circuit parameters are matched with analysis types in the following paragraphs.

Speed Delays in an MOS circuit is dominated by RC time delays associated with the
transistors and interconnections. All transistor conduction and capacitance
effects are important, as are interconnection resistance and ground capacitance
effects. Inter-nodal capacitance is important only to the extent that it adds to total
capacitance.

Logic Levels Guaranteeing adequate logic levels requires only DC or static checks. Therefore,
capacitances are not needed-only transistor conduction parameters, and power
supply line resistances.
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Noise Immunity The switching transfer characteristics found with the "logic level" parameters are
important in finding a logic element's noise immunity. To find sources of coupling
noise requires coupling capacitances and ground capacitances.

Power Consumption - . .
Supply current calculations require the same static circuit elements which are
needed for logic level calculations.

Charge Leakage Charge leakage usually occurs at a rate slow enough to make capacitances
unnecessary. A main source of leakage is through the back-biased diode of
diffused conductor regions.

A designer should make an even more basic check to verify correct logical operation. A switch-

level representation is the most convenient form of portraying the logic elements of an MOS circuit.

The switch-level representation views all transistors as a switch between the source and drain,

denoted here as "node 1" and "node 2".1 The switch is either "off" (non-conducting), "on"

(conducting), or in the "x" (unknown) state, depending on transistor type, and the logic level of the

transistor's gate. In most switch level representations [7, 81, the switch's "on" conductance between

"node 1" and "node 2" is also relevant. This is especially true for ratioed circuit designs in which two

or more "on" transistors pull a single node in opposite directions. Finally, the MOS switch-level model

must include information about node ground capacitances in the event of charge sharing. Charge

sharing occurs when two otherwise isolated nodes become connected though a transistor. If the

nodes start at opposing logic levels, then the resulting logic values on both nodes take on the initial

value of the "strongest" node, where "strongest" means greater capacitance to ground. Two charge

sharing nodes with roughly equivalent strengths acquire "x" states on both. An extraction model for

switch-level simulation locates transistors with conduction and capacitance information, and locates

interconnection ground capacitances. Since the switch-level simulation has only a few discrete

states, careful calculation of these parameters is not needed.

1Because the current flow direction changes for some transistors of an Mos circuit, and since the model views the device
reciprocally, the standard node designations, "source" and "drain", will not be used.
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2.3 Transistor Modelling

The information found by a circuit extractor is most often used by a circuit simulator. The

extractor's output must match the input expected by the simulator. Although transistors are the

hardest element for circuit simulators to model, the transistor information required by circuit

extractors such as SPICE [9] is not difficult to extract on a per transistor basis. The required circuit

information for a bipolar transistor, for instance, amounts to no more than a transistor area. For a

NCSFET transistor, the SPICE circuit simulator needs a length and width dimension. (All other

parameters on a SPICE MOSFET "card" model the interconnections leading to the actual transistor

terminals. EXCL does not use these, as it accounts for interconnection effects with lumped circuit

elements as will be described soon.) To improve the transistor characterization, EXCL may extract

additional circuit elements from the mask description of the transistor.

The SPICE circuit simulator also requires model information for each transistor type-model

information like threshold voltage, transconductance, surface potential, etc. It is not the responsibility

of a circuit extractor to find this information. Transistor model parameter extraction should be

performed on a per fabrication technology basis, not on a per layout basis. Programs have been

developed to assist in model parameter extraction from a set of MOS transistor curves [10].

We will now consider the NtOS transistor. Aside from the MOS transistor's length and width, a

circuit extractor must find which transistor model to assign to each transistor. The extractor must

distinguish between depletion and enhancement transistors. Since short channel effects are, on

occasion, poorly modelled by the circuit simulator, separate models may be needed for short-channel

transistors. Therefore, the selection of transistor model depends not only on the occurrence of the

ion implant mask, but also on transistor length. One should also note that the effects of length and

width are non-linear especially at small dimensions, and that the extractor must find exact

dimensions.

When a circuit simulator creates an internal equivalent model for a transistor, it assumes a

rectangular transistor. If the actual transistor layout is not rectangular, slight simulation model errors

will be present. In our extraction model, the transistor's length and width are selected to give correct

current conduction modelling. For the non-rectangular transistor of figure 2-3, for instance, we

choose a length, L, and an approximate width, 1.5L, for correct conduction modelling. However, the

transistor capacitances are not accurately modelled. This discussion of transistor capacitance uses

18



the MOS capacitance model shown in figure 24. Table 21 indicates how the capacitances are

incorrectly estimated by the rectangular transistor. The total gate capacitance-a function of

transistor area-is underestimated by 25%. The transistor capacitance problem is solved by adding

other capacitive circuit elements. One of the solutions presented in figure 2-5 has two linear

capacitors that correct for the total gate capacitance and the extrinsic gate-to-drain capacitance; the

other solution has an "os capacitor" that corrects for the same capacitances, and includes a more

accurate modelling of transistor channel charge. Either of these solutions can be included in

standard extraction models of EXCL. The overestimated, extrinsic gate-to-source capacitance could

be corrected with a negative capacitance. Since this element is unavailable in SPICE, it is best

ignored.

T
L

L/2
-1V

- L/2 Le 

Figu re 2-3: Top view example of non-rectangular transistor.
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Figure 2-4: MOS capacitance model.

Gate

1.5L Xd
=...

Source.e j~ [ OX
DrainLength = L

Width = 1.5L

Source-m
Length = L
Width = 1.5L

(a)

Length = 0.75L
Width = 0.67L

(b)

Figure 2-5: Modelling corrections for non-rectangular transistor.

(a) Linear capacitors for total gate capacitance and gate-to-
drain capacitance guarantee a correct loading on the gate
node. (b) To approximate channel capacitance effects, an MOS
capacitor is added.
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Cgate CGS. e

Actual

L X 1.5L rectangular

Solution (a)

Solution (b)

2 (L2 CX )
1.5 (L2 CoX)

2 (L2 CX )

2 (L2 Cox)

1 (L x d Cox)

1.5 (L xd COX)

1.5 (L xd COx)

1.5 (L xd CoX)

3 (L xd Cox)

1.5 (L d COX)

3 (L xd COX)

3 (L xd COX)

Table 2-1: Capacitance values for non.rectangular transistor

2The value of Cqate includes all capacitance associated with the channel. This includes the voltage dependent CGD i'
C CDi' and ateBS

GS. i Bi BS~j'
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2.4 Interconnection Capacitance Modelling

Two electrical parameters, resistance and capacitance, are extracted from layouts. To date,

capacitance has been the more important for calculating circuit speed. Capacitive loading from

interconnections frequently exceeds the capacitive loading from transistor gates.

2.4.1 Ground Capacitance

The total capacitance around a conductor is broken into the three components shown in figure

2-6. Inter-nodal capacitance forms between two conductors. The other two capacitances, edge

and bottom capacitance, connect between the conductor and substrate. Since the substrate voltage

remains fixed, these two capacitors are effectively "grounded"; the sum of edge and bottom

capacitance is, therefore, known as ground capacitance. The dividing line between edge and

bottom capacitor regions s only loosely defined by the plane extending straight down from the

conductor edge. For a tighter definition, bottom capacitance is the portion of ground capacitance

that is a function of conductor area (parallel to the substrate), and edge capacitance is the portion of

ground capacitance that is a function of conductor perimeter. One can obtain good measurements

for edge and ground capacitance with carefully selected test structures. One test structure has a very

large circular conductor region. From this structure one measure mostly bottom capacitance. The

other test structure has the same conductor surface area, but is arranged as a mesh of narrow

conductor strips. The perimeter capacitance. which is no longer negligible, is calculated by

subtracting the area related capacitance of the first test structure from the total measured

capacitance of the second test structure.

Cinter-nodal

Conductor 1 Conductor 

bottom edge

/ / / / / / substrate / / / / /);~

Figu re 2-6: Capacitance types for interconnections.

Each conductor layer has a different capacitance per unit dimension. In our typical NMOS
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process, diffusion has the largest capacitance because of its proximity to the substrate; metal has

the least. Table 2-2 gives some sample capacitance constants for the NMOS process. While metal

and polysilicon capacitances are linear, the ground capacitance for diffusion is not. Diffusion

capacitance effects arise from the voltage-dependent; space-char.e layer formed by the back-biased

p-n junction region under the diffused conductor. The junction capacitance as a function of junction

voltage, VD8, is

1- 08
(Ps

The process dependent parameters-zero-bias junction capacitance, C, bulk potential, (qB' and

junction grading coefficient, w-are extracted during model parameter extraction. Only the layout

dependent Area parameter comes from circuit extraction. The voltage-dependent capacitance value

must be calculated in the circuit simulator, since V is a function of the simulation. In the circuit

simulators, a back-biased diode properly models the voltage-dependent diffusion capacitance

described in the above equation. Generally, two parallel, back-biased diodes are needed: one for

diffusion bottom capacitance, the other for diffusion edge (or sidewall) capacitance. We can see

that capacitance modelling with back-biased diodes requires two circuit parameters, Area and

Perimeter, and five model parameters, C w, Cjosw, wsw (the sw subscript is for "sidewall"

parameters), and qp8.3 Standard EXCL extraction models provide a switch that allows the user to

enable either an extraction model with accurate diode capacitance modelling or an extraction model

with approximate linear capacitance modelling.

2.4.2 Inter-Nodal Capacitance

We have seen in figure 2-6 that the inter-nodal or coupling capacitance lies between two IC

conductors. The two conductors can be on any pair of conductors and can have many orientations

between them. Particularly strong capacitive coupling exists between overlapping conductors (such

as metal over polysilicon), or between long stretches of parallel conductors. However, the extractor

should be prepared for any conductor orientation. Since silicon dioxide separates all conductors,

inter-nodal capacitors are linear. The only exception to this is between diffused conductors, where

inter-nodal capacitance is minimal.

3These model parameters are exactly the values included in the spice MOSFET model parameters, since SPICE includes
diffusion capacitance if source or drain dimensions are specified.
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Capacitance

Cbottom

C edge

Cbottom

C edge

Cbottom

C edge

inter-nodalCinter-fl odal

diffusion, substrate

diffusion, substrate

polysilicon, substrate

polysilicon, substrate

metal, substrate

metal, substrate

diffusion. metal

polysilicon, metal

1.25 X 10-4 pF / m 2

3.5 X 10 4 pF / m

0.50 X 10-4 pF / m2

0.40 X 10-4 pF /m

0.25 X 10-4 pF/ m 2

0.40 X 10 - 4 pF/ m

0.25 X

0.30 X

10-4 pF /m 2

10-4 pF / im2

Table 2-2: Sample capacitance constants for NMOS process

Con<

g1

:tor 2

r 
_'g2

I

Figu re 2-7: Coupling capacitance between two nodes.

Inter-nodal capacitance values are used for circuit noise and speed analyses. When two nodes

are coupled with an inter-nodal capacitance, Cc, as shown in figure 2-7, a change on one node

induces a voltage on the coupled node. In IC's, the induced voltage is coupling "noise". If the

conductor 1 voltage changes by AV1, the induced voltage change on conductor two is

Cc
AV2 = AV1 C C 2' (2.1)

For digital IC designs, we can determine the maximum induced noise on conductor 2 by assuming a

maximum voltage change on conductor 1. The maximum A V equals the difference between the high
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and low logic voltages, Vign, - V w. If we are only interested in noise values greater than a minimum,
1AV2.min then using equation (2.1), we know that the following condition must hold:

A V
C > - C2.in = (Cc + Cg)* (2.2)

high low

We can effectively compute y by knowing the noise immunity characteristics of the logic circuits. A

large number of the coupling capacitances in an LSI circuit fail the condition of equation (2.2), for

potentially every node pair has some inter-nodal coupling. An extraction model that recognizes the

condition, will be vastly more efficient. Inter-nodal capacitance effects speed analysis only by

contributing its capacitance to a node's total capacitance. Activating the condition of equation

(2.2) interjects a maximum error of y into the speed calculations.

2.5 Interconnection Resistance

Due to the uniform thickness and resistivity of integrated circuit conductors, the resistance

problem is usually a two-dimensional, geometric one. In the well-known resistance equation,

R = (p Length) / (Width Thickness),

the known conductor thickness and material resistivity combine to give a new parameter, sheet
resistance or Pst, = p/Thickness. Resistance is now described by

R = (pa, Length) / (Width Thickness).

The dimension of psh is ohms, but it is typical to refer to the dimension as ohms per square (/[),

since the ratio Length/Width gives the number of end-to-end "squares" for a conductor. Table

2-3 lists some sample sheet resistances for the NMOS process.

Conducting Layer Sheet Resistance

diffusion 12 02/1

polysilicon 25 Q2/O

metal 0.03 /1

Table 2-3: Sample sheet resistances for NMOS process

The resistance of an interconnection is calculated between different connections (contact
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cuts, transistor terminals, etc.). Chapter 3 gives a complete list of connection types. Some

connections are single points, but the more interesting types extend over a large area; most notable in

this category is the transistor channel to diffusion conductor connection. Usually, the resistivity on

one side of the connection (channel) is much larger. than the. resistivity on the other (diffusion). In

such cases, the tangential resistance is unimportant on the high-impedance side and important on

the low-impedance side. Assuming a uniform voltage on the connection, the tangential resistance is

modelled adequately when the full connection region is present on the high-impedance side. On the

low-impedance side, however, separate connections are needed to account for tangential resistance

(see figure 2-8).

low-impedance
material

high-impedance
material

Figure 28: Connections for modelling tangential resistance.

2.6 Modelling Distributed RC's

Both the resistance and capacitance effects distribute over the length of an IC interconnection.

While some simulators can estimate delays directly for distributed RC lines [1 1], most simulators

cannot. For such simulators, an extractor must generate an equivalent resistor and capacitor

network with discrete nodes and elements. In EXCL, the resistance and capacitance extractors

combine to model distributed RC's with an n-stage n-ladder network, as shown in figure 2-9. The

total line resistance and capacitance are denoted by R and C, respectively. In addition to R and C, IC

interconnections usually have a discrete drive resistance, RT, and a discrete load capacitance, CT,

connected at opposite ends of the interconnection. R T and CT are shown for the one-stage nr-ladder.

As the number of 7-ladder stages increases, the modelling becomes more accurate. EXCL always

breaks a resistive line and inserts a node at an interconnection branch, but to guarantee a certain

modelling accuracy, long interconnections without branches may need added nodes to increase the

number of ladder stages. For each node pair of the ?r-ladder network, EXCL inserts the whole,

extracted resistance between the nodes and divides equally the extracted capacitance from the

physical region between the nodes.
26
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RT R/2 R/2

IC2 ]7C2 IT 1 '4 7c2 '4

1-stage with drive resistor 2-stage
and load capacitor

R/3 R/3 R/3

IC16 jC/3 7C/3 7C6

3-stage

Figure 2-9: Pi-ladder networks for approximating distributed RC lines

The ladder network does not model the interconnection exactly, and how close the network

approximates the actual behavior is discussed by Sakurai [12]. Appendix A calls upon these results

and develops a criterion for the number of r-ladder stages needed. The criterion guarantees that the

ladder network step response time does not vary by more than Ata.9 from the true distributed RC step
response time. The time considered here measures the delay for voltage at the end opposite the step

source to reach 90% of its final value.

2.7 Modelling Fabrication Degradations

The true physical regions on an IC differ in detail from the regions of a mask description. Errors

with photolithography may cause real objects to expand or shrink from the mask specifications, or
errors with mask alignment may cause an overall offset between two or more mask layers. These

errors may alter interconnection resistance, inter-nodal capacitance, and even transistor size by a

noticeable amount. To model the true behavior of the IC, the extraction model should simulate these
anomalies by translating or expanding (shrinking) all rectangles of a layer by equal amounts.
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CHAPTER THREE

Connectivity Extraction Algorithms

The connectivity extractor is divided into four subprograms. CIFPARSE and SORTREC execute first

during an extraction and preprocess the geometric IC mask data. CONNECT, the third and main

subprogram, converts geometric mask information into an internal circuit representation. Lastly, the

fourth subprogram, FORMAT, converts the internal circuit representation into the appropriate output

network format. The algorithms of each subprogram that pertain to extracting connectivity

information from a layout are described in detail in this chapter.

3.1 Decomposition of Mask Geometries

The first subprogram, CIFPARSE, parses the geometric mask description provided by the user.

The most common and universal source is a Caltech Intermediate Form (CIF) [6] file. A CIF file is a

collection of symbols describing IC geometric layouts. A symbol may contain mask objects such

as rectangles, wires, polygons, point names, etc., each tagged with its mask layer. A symbol may also

contain symbol calls to other, previously defined symbols.

CIFPARSE fully instantiates the geometric mask description into each of its component boxes

and named points. Interiors of Boxes define the areas of interest for a given mask layer. A box is

described by four integers representing the minimum and maximum x and y coordinates, and by one

character representing the mask layer. A named point given by the user tags a mask region with a

meaningful name; it is primarily used to tag a name to an electrical node. A named point is described

by a character string for the name, and by an x and y coordinate and mask layer which locate the box

region. After instantiation, these are the only geometric object types used by EXCL.

During the CIF instantiation process, all wires and polygons must be converted to an equivalent

set of orthogonal rectangles, and all symbol calls must be replaced by the actual mask objects

contained in the called symbol. Only named points from the top-level CIF symbol are retained to avoid
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name conflicts arising from multiple calls to lower-level CIF symbols. Thus, after expansion the

resulting data structure contains a "smashed" set of all boxes describing the layout and a set of

named points from the top-level CIF symbol.

By instantiating the entire layout, we note that the layout hierarchy is lost, resulting in wasteful,

repeated extractions of cell layouts which are replicated. A "hierarchical extractor"-that is an

extractor that recognizes cell replications, and extracts the layout only once--would not only save

extraction time, but could also pass the layout hierarchy through to the circuit network. The problem

with this approach is that typically no restrictions are placed on the cell's layout boundary, thus

allowing arbitrary overlaps of cells. (Allowing no overlaps, on the other hand, is too restrictive.) An

erroneous overlap of cells could alter the intended network into something quite different. This IC

design disaster must be detected by the extractor. Clearly, when a general hierarchical extractor

looks for repeated cells, it must also examine the overlaps of other cells for each replication. This

adds considerably to the extractor's execution time and complexity. A better approach is to support

the layout and circuit hierarchy in a system at a higher level. Regulating and checking cell overlaps

would be carried out in the higher-level system.

A second problem with converting the mask data to boxes is that of non-orthogonal line

definitions. Handling non-orthogonal geometries properly necessitates additional complexity in the

geometric data structures and procedures-complexity that has questionable value when considering

the great infrequency of non-orthogonal geometries in IC layouts. In an alternate approach, a non-

orthogonal geometry is converted into a set of smaller, orthogonal rectangles that approximate the

original geometry as figure 3-i demonstrates. Geometric computations are affected as follows:

1. Calculations of area are no different than the actual values.

2. Calculated perimeter values are larger than the real values due to the staircase effect of

the approximating rectangles.

3. Resistance calculations may be different. Non-orthogonal geometries always use general

calculation methods. We will see in the next chapter that such methods divide the

geometry into a square grid. If the staircase dimensions are small en-ough to match the

grid spacing, resistivity calculations are not effected.
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nriainal,- .. ..

edge

,ctangle
proximation

Figu re 3-1: Approximation for shapes with non-orthogonal edges

3.2 Sort by Maximum Y

In preparation for the scanning process of CONNECT, the second subprogram, SORTREC, sorts the

geometrical objects from maximum y coordinate to minimum y coordinate. A box's y coordinate is

considered as the top of the rectangle. If one covered a plot of the layout with a sheet of paper and

slowly pulled it down, the order of appearance of objects has the same ordering that results from

SORTREC.

3.3 Scan of Geometrical Objects

Once the entire layout has been decomposed into sorted mask objects, the next process is to

locate the regions of relevant circuit elements defined by rectangle overlaps and to group together

rectangles that are connected. This is the job of the third and major subprogram of the connectivity

extractor. Figure 3-2 charts the major modules of the third subprogram. Each box represents (1) a

collection of one or more procedures, and (2) in many cases, a data type upon which the procedures

operate. The lines show the directions of information flow.

Basically, this subprogram, examines the mask objects sequentially from the geometric input

file, . When an object is examined, relevant intersections with other mask objects in a "scan-view

set", , are located and remembered. Then, the newly examined object is added to set rand the cycle

is repeated with the next mask object from the input file. This can be a costly portion of connectivity
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geometric file, (j

rescan-queue
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scanner
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connection

extract-connection
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extract
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I-point

7- --
ract-library

circuit file, C

Figure 3-2: Major Program Modules of CONNECT
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extraction if the mask object examination is done in a random order. The set i'continues to grow with

each new object, and the complexity increases as the square of the number of rectangles.

3.3.1 Reducing the Vertical Search

The scanning process used by EXCL and other extractors 2] reduces execution time. A

horizontal scan-line begins at the top of the layout. As the sorted mask objects are examined, the

scan-line is always defined as the top edge of the mask object. Clearly, from the nature of the sort

described in the previous section. the scan-line always moves downward. With the sorted scan, mask

object intersection checks, need to be done only with rectangles still lying in the range of the scan-

line. Thus, when the scan-line moves below a mask object in the "scan-view set", i. it is removed

from further intersection checks. The execution time for this algorithm depends upon the number of

objects at any given scan-line. and thus, roughly upon the width of the layout. For a square layout,

the scanning process has a computation complexity approximately of order N'Log2N for N mask

objects.

3.3.2 Reducing the Horizontal Search

The scanning process narrows the search for intersecting rectangles to the approximate vertical

coordinate. Narrowing the search along the horizontal coordinate results in a further reduction of

computation complexity [13, 14]. One can do this by placing objects from the set f into horizontal

bins. A bin contains all mask objects of S'which lie between two fixed horizontal coordinates, xn and

xn + ' Thus, each new mask object needs to be checked against only those objects in bins which fall

in the same x-coordinate range as the new object.

The procedure is complicated slightly since the objects may span more than one bin as shown in

figure 3-3. The objects within a bin are further subdivided into two columns:

1. The objects whose left edges are in the range of that bin are placed in the left edge

column,

2. all other objects are placed in the non-left edge column.

When the "new object" is checked for intersections, we wish to check all mask objects from the bins

which lie in its xcoordinate range, but only once for each object. The objects in both columns are

checked from the bin at the left edge of the new object (bin N in figure 3-3), while only the objects in

the left-edge column are checked in the remaining bins (bins N + 1 and N + 2). For the example in
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I 1 !

2 I1~~ 3

i 4 1

Xn Xn+l1 Xn+2 Xn+3 > X

new object

Figure 3-3: Bin Placement of Mask Objects

Only the x-coordinates of the mask objects are shown; all
objects intersect with the scan-line defined by the y-coordinate
of the new object.

figure 3-3, mask objects 1 and 2 are checked only at bin N, not bin N + 1. Note also that the objects

checked from bin N + 1 (mask objects 3 and 4) need no further x-coordinate intersection check, but

that objects from the bins at the left or right edge of the new mask object (all mask objects except 3

and 4) must be checked further, for some of them may not actually intersect (as in the case of mask

objects 5 and 6).
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3.3.3 Rescan Queue

Although coordinate information below the scan-line is known during the examination of a

rectangle, care must be taken to assume nothing about the geometries or connectivity below the

scan-line. In some cases, new rectangles are defined which lie below the scan-line and thus should

be reinserted into the sorted input stream to be examined at a later time. Such rectangles are

inserted into the rescan-queue, Q. Rectangles in the rescan-queue are treated as though they are

merged back into the geometric input stream, . To demonstrate how the rescan-queue might be

used, consider the layout shown in figure 3-4.

I
nOcly5lIcon

L -____

Udtfusn

7"'

Diffusion path ends here.

-.......-, scan-line

\ A new 'channel' object
- and 'diffusion' object are

queued.

Figure 3-4: Scanning process of a Mos transistor layout

When the diffusion rectangle is first encountered, it is treated as a single rectangle. It is not until later,

when the polysilicon rectangle is examined, that the extractor knows differently. The original

diffusion rectangle becomes two diffusion rectangles (each a different node) and one "channel"

rectangle. The extractor removes the original rectangle and replaces it by three rectangles: (1) the

upper diffusion rectangle is added to the node of the original rectangle as though it has already been

examined, (2) the channel rectangle and (3) the lower diffusion rectangle are added to Q., since they

are on or below the scan-line. Details. of the operation on diffusion and polysilicon rectangles will be

discussed the next section.

Procedure SCANNER demonstrates the main points presented in this section. INTERSECT-CHECK

and NETWORK-CLEAN will be discussed later. (In the notation used here, a box, C3, precedes mask.

object variables, and underlined identifiers are constants.)
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procedure SCANNER ():

begin
X,- empty network;

-'emotv-aueue;
D'- emot.-set;
;' - empty-watch;
next-clean - layout-top - clean-interval;
for each Cr E ( do

rec-scan-line - Cr.scan-line;
while QUEUEPEEK(Q.).scan-liFe > rec-scan-line do

[Is- OQUEUE-NEXT(C);
INTERSECT-CHECK(CS, X C, 'a, ,);
end

INTERSECT-CHECK(Ilr, a, W, j);
if rec-scan-line < next-clean then

NETWORK-CLEAN(,, rec-scan-line, C);
next-clean - rec-scan-line - clean-interval;
end

end
for each Cls Ef Q do

INTERSECT-CHECK(CS, , Q, , ',
end

NETWORK-CLEAN(.J, layout-bottom, C):
retu rn(C)
end

3.4 Geometrical Object Intersection

Up to this point, the program has made no distinction between the different layers of the mask

objects. All operations have been independent of extraction-model or IC fabrication technology. This

section discusses the procedure INTERSECT-CHECK, a single procedure where all process-dependent,

geometric operations are defined. For instance, this procedure contains the rules governing which

overlapping layers define a transistor, which rectangle combinations define a contact, and which

rectangle groups define an interconnecting wire. It is one of the two extraction model dependent

procedures.

INTERSECT-CHECK is called for each mask object that is examined during the scanning process.

With each examined mask object, r, it updates the data structures by:

1. locating relevant intersections between r and other mask objects included in the "scan-

view set", rc
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2. adding new mask objects appearing on or below the scan-line to the rescain-queue. 

(sect. 3.3.3),

3. adding new network information to T. and

4. placing r in the "scan-view set", 't

Table 3-1: Intersection checks for example NMCS process

To introduce INTERSECT-CHECK, the example NMOS process is used. Table 3-1 lists all of the

relevant intersections for the NCS process. The second column lists the actions taken by

INTERSECT.CHECK when an intersection is located, while the third column states whether the
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intersecting layers consequential action unilateral/
bilateral

Diffusion, Polysilicon Channel - intersection Bilateral
requeue
remove diffusion under channel

Diffusion, Diffusion form interconnecting paths

Polysilicon. Polysilicon form interconnecting paths

Channel, Channel Combine channel regions

Channel, Diffusion add switch nodel /node2 connection Bilateral

Channel, Polysilicon add switch gate connection Unilateral

Channel, Implant set switch type to "Oepletion" Unilateral

Metal, Metal form interconnecting paths

Cut, Metal look for other side of contact Unilateral
Cut, Polysilicon form connection Unilateral

(requeue cut n poly, if any)
Cut, Diffusion form connection Unilateral

(requeue cut n diffusion, if any)

Named-Point, Diffusion name path region Unilateral
Named-Point, Polysilicon name path region Unilateral
Named-Point, Metal name path region Unilateral
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intersection needs to be checked in one direction or both. A bilateral intersection check is one

that must be made when either the first layer or the second layer is examined. Figure 3-5(a) shows

two configurations for the bilateral intersection between Diffusion and Polysilicon. The

intersection occurs in one case, while examining Diffusion, and in the other case, while examining

Polysilicon, The Diffusion- Polysilicon intersection demonstrates a typical bilateral intersection-

the two layers cross, each extending outward from the intersection. A unilateral intersection

check is one that needs to be made only when examining a rectangle of one of the layers-in the

example, the first layer listed in the table. It is typical of unilateral intersections for the region of one

layer to completely enclose the region of the other. Figure 3-5(b) shows a unilateral intersection

between Cut and Metal. For the most part, the type of intersection is determined by the process'

design rules.

.-

I I

I II I

Il
L-- 

r- - - - - - - -
I Metal 1 scan-line

I Ilu10

- ------- ---

. I I
I I
Iocilysificon
I I
I I

diffusion

I------------- Pa"Alcn . u

I I -

1
I I,,,,,

(a) (b)

Figu re 3- 5: Types of intersections

(a) Bilateral intersections, Diffusion n Polysilicon, and (b)
unilateral intersection, cut n Metal.

The distinction between bilateral and unilateral intersection checks has two consequences

when writing the connectivity extractor. First, NTESECT-CHECK must have the ability to detect bilateral

intersections from both directions, i.e., when examining either layer type. Secondly,.the unilateral

intersections of a process dictate the layer ordering or examining mask objects that sort to the same

scan-line. If two mask objects which form a unilateral intersection are scanned at the same scan-line,

then the object which does not activate the intersection check must be scanned first. Figure

3-6 shows how a contact cut might be missed if this rderig is not observed, and the Metal rectangle

is examined last.
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(a)

. . . . .L. C

(b) (c)

I I
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(d)

Figure 3-6: A missed Metal-Cut intersection

(a) Original layout. The upper metal rectangle is examined (b).
Then, when the scan-line moves down to the other boxes, the
cut rectangle is examined next (c), and no intersection with
metal is found. When the metal rectangle is examined, no
intersection check with cut is made.

The complete INTERSECT-CHECK algorithm for the NMOS process is shown below. Procedures

involving the network, ,X, will be discussed later. For clarity, variable names preceded by a box, C,

refer to mask-object variables. Constant identifiers are underlined.
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{INTERSECT-CHECK for NMOS process. Inter-nodal capacitance windows are not located.)
procedure INTERSECT-CHECK (Or, QU.V,1V, N):
begin

case Or.layer of
diffusion:

begin
(locate transistor regions)
for each Polysilicon intersection, OCp, in do

Ochannel - Cr n rp;
QUEUE.AOO(, lchannel);

Cdiffusion-fragmei7ts - d n channel;
QUEUE-AOD((R, Cdiffusion-fragments);

return;
end

diff-path - NEW-NETWCRK.PATH(.W", r);
(locate other path rectangles)
for each Diffusion intersection, Cd. and its path, p, in ( do

COMBItIE.NETWORK-PATHS(.'( p, diff-path);

end
(locate source or drain intersections)
for each Channel intersection, Cc, and its switch, s, in (l do

AOO-SOURCE/ORAIN(X,, , diff-path);

end
SCAN-VIEW-AOO(Ql, Or, diff-path);

end

polysilicon:
begin

poly-path - NEN-NETNORK-PATH(J, Cfr);
for each Diffusion intersection, Cd, and its path, p, in a do

REMOVE-FRCM-PATH(JX, , Cd);

{locate transistors}
Ochannel i- ar a Cd;

QUEUE-AOO(, Cchannel);

Cupper-d-fragment, Clower-d-fragments C- d n Ochannel ;
AOODD-TO-PATH@(, upper-d-fragment);
QUEUE-AODO(Q, Clower-d-fragments);

end
{locate other path rectangles}
for each Polysilicon intersection, CIp, and its path, p, in Q. do

CCMBINE.NETWORK-PATHS(.;, p, poly-path);
end

SCAN-VIEW-ADO(, Cr, poly-path);

end
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channel:
begin

(determine transistor type by implant mask)
if Or intersects any Implant in (a

then switch-type - depletion
else switch-type - enhancement
end

switch - NEW-NETWORKSWITCH(,, Cr, switch-type);
(locate source or drain intersections}
for each Diffusion intersection, ld, and its path, p, in do

AOO-SOURCE/ORAIN(J , p);
end

({locate other transistor rectangles)
for each Channel intersection, Cc, and its switch, s, in do

COMBINE-NETWORK-SWITCHES(.i, S, switch);
end

{locate transistor gate)
for each Polysilicon intersection, Op, and its path, p, in do

AOO-GATE(.Y, S, p);
end

SCAN-VIEW-AOO(., Cr, switch);
end

implant:
begin

(store in })
SCAN-VIEW-AOO(, Cr, --null--);
end

metal:
begin

metal-path - NEW-NETWORK-PATH(;, Or);
(locate other path rectangles)
for each Metal intersection, rlm, and its -path, p, in do

COM8INE-NETWORK-PATHS(J, p, metal-path);
end

SCAN.VIEW-ADO(C(, r, metal-path);
end
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begin
(find intersecting metal rectangle)

for each Metal intersection, Cm, and its path, p, in C( do
top-path - p;
end

poly-found .- false;
(search for polysilicon intersection first}
for each Polysilicon intersection, Cp, and its path, p, in C. do

bottom-path - p;
poly-found - true;
'cut-rest - Crr n Cp ;
if REGION-EXISTS(Ocut-rest) then

QUEUEAOO(Ccut-rest);
end

end
if -poly-found then

(otherwise locate intersecting diffusion rectangle)
for each Oiffusion intersection, Cld, and its path, p, in ( do

bottom-path - p;
CIcut-rest - r n CIp ;
if REGION-EXISTS(cut-rest) then

QUEUEADOO(Ccut-rest);
end

end
end

{(make connection)
CONTACT-NETWORK.PATHS(,, top-path, bottom-path);
end.
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named-Point:
begin

(make connection to appropriate layer)
case Or.point-layer of

diffusion: for each Diffusion intersection, Cld, and its path, p, in . do
NAME.NETWORK-PATH(., p, p, r.point-rname);

end
oolvsilicon : for each Polysilicon intersection. Cp, and its path, p, in C. do

NAME-NETWORK-PATH(, P, p, r.point-name);
end

metal: for each Metal intersection, Om, and its path, p, in C do
NAME-NETWORK-PATH(.Y, p. Or.point-name);
end

end
end

end
return
end
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The INTERSECT-CHECK procedure should be easily alterable to accommodate changes in process

and extraction modelling. It should be pointed out again that the extractor assumes the input is free

of design-rule errors. At this point we can see, however, that a large class of design-rule errors will

not disrupt the operation of the extractor; minimum separation rules and minimum overlap rules are in

this class. Errors noticed by the extractor are those requiring the existence of a certain layer, the

existence of a metal cover over a contact cut, for instance. Violations of these rules should be

reported.

3.4.1 Error Watches

Most detectable design-rule errors can be reported immediately, but some cannot. and must

take advantage of error watches. All detectable errors in the example NMOS process can be reported

immediately, but, consider the Cios rule stated below and shown in figure 3-7:

All P-wells must be connected to ground through a region of P ' diffusion which is
connected to GNO metal through a contact cut.

P-wetl

Figu re 3-7: CMas rule for error watches

The extractor must verify that within each P-weil region, there exists at least one location where both

the P and cut layers also exist. The extractor cannot perform the error check when either the cut

or P objects are scanned, for these are used differently at other locations. In general, watches are

useful when extraction checks are made in a region for the occurrence of another object within it.

The following sequence of events takes place in INTERSECT.-CHECK to locate violations of the cMos

rule.
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1. The P-well regions are scanned first. When the extractor isolates a new region, it adds a

watch to ', saving the location of the region. P-well objects are added to the scan-view

set, .

2. If other P-well objects intersect with an existing P-well abject. additional watches are

unnecessary. Regions which merge together as scanning continues (as with the P-well

region in figure 3-7) have their watches combined.

3. When contact cut objects are examined, the extractor looks for an intersection between

the cut object and a P-well object. If this intersection is found, it searches through r

this time for an intersecting P-well region. The watch is removed from a connected

P-well region.

4. After the completion of layout scanning, remaining watches are- reported, as these

watches point to P-well regions which have no ground connection.

3.5 Intersection Removal

Subsequent extraction operations require extensive use of geometric procedures. The extractor

is greatly enhanced by the support of an optimized sit of general geometric procedures. First, the

geometric data representation is converted to a special form of non-overlapping rectangles that

allows faster execution of geometric operations. INTERSECT-REMOVE transforms the user-

characterized form into a unique non-intersecting for with rectangle abutments only on horizontal

edges. Figure 3-8(b) shows the unique non-intersected form of the shape originally constructed as in

figure 3-8(a). Abutment information is also retained for each rectangle.

(a) (b)

Figure 3-8: Rectangle conversion from random form to non-intersected form

One can easily see that the non-intersected form aids greatly in calculating the region's area and

perimeter. The area is the sum of all individual rectangle area, while the perimeter is the sum of all

44



rectangle perimeters minus twice the abutment distance. The non-intersected form has other

advantages as shown later.

ITERSECT-REMOVE operates in a y-coordinate scanning method. As INTERSECT-REMOVE moves the

horizontal scan position downward, it tacks all xcoordinate positions (or rays) contained in the

original region. The downward motion of rays "sweeps" out new rectangles of the non-intersected

form. When the scan position passes an original rectangle's top or bottom, it rechecks the rays'

x-coordinates. Different x-coordinates force INTERSECT-CHECK to make a new horizontal edge in the

non-intersected form by finishing the "sweep" of a rectangle and/or by starting a new "sweep" of a

rectangle.

3.6 Path, Switch, And Contact Creation

Up to this point, the extraction has proceeded solely on geometric data with geometric

operations. After the INTERSECT-CHECK stage, data is grouped into its network components. The

network contains the complete collection of all components. Initially, there are four types of network

components: paths, switches, connections, and named-points.

A path is a continuous region of a conducting layer, uninterrupted by active transistor regions.

Metal, polysilicon, and diffusion are the conducting layers of the example NMOS integrated circuit

technology.

A switch is, naturally, the active region of a transistor. Its definition is, actually, little more than

that-the region outlined as the "active" region, a "type" identification, and a list of connection

terminals.

A named-point in the network viewpoint is unchanged from the layout viewpoint. It is a handle

which allows user access to an interesting location of the circuit.

Connections provide the only means of interfacing between theabove components. Besides

saving its geometric region, a connection provides an identifier for its "type", and two endpoints

which may be attached to any path, switch, or named-point. A connection does not always imply an

electrical short circuit. As demonstrated in Table 3-2, which lists connection "types" for an NMOS

connectivity extractor, a connection might contain a resistive or capacitive component.
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Table 3-2: N:O$S connection types

INTERSECT-CHECK creates each network component when the first rectangle is located.

Subsequently, it may add new rectangles to a component, subtract existing rectangles from a

component (as shown in Sect. 3.3.3), or combine two components of the sanie type. Component

combinations are necessary for regions with two branches which are connected at their lowest points

(figure 3-9).

Figure 3-9: Combination of Network Components

While the scan-line is above A, the network contains two
components, (1) and (2). When the scanning reaches A, the two
are combined.

4 A couplingwvindow contains paths that are potentially coupled capacitively. See chapter 5
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Connection Type Endpoint 1 Endpoint 2
component component

switch node swit.li diffusion path
switch gate switch polysilicon path

metal to diffusion contact metal path diffusion path
metal to polysilicon contact metal path polysilicon path

name named-point path
metal to diffusion coupling window 4 metal path diffusion path
metal to polysilicon coupling window metal path polysilicon path

metal to metal coupling window metal path metal path
polysilicon to polysilicon coupling window polysilicon path polysilicon path

diffusion to diffusion coupling window diffusion path diffusion path



3.7 Circuit Element Calculation

During the final stage, the CONNECT subprogram creates the circuit representation. EXCL

converts the network components into any number of circuit elements.

3.7.1 Circuit Extraction

Circuit extraction is the conversion from network components to a set of equivalent circuit

elements following the "extraction model" as described in chapter 2. That is, the circuit extractor

begins with geometric data consisting of a set of intersecting rectangles and translates this to a

lumped circuit representation containing nodes, capacitors, resistors, etc.

The methods of modelling network components into circuit elements are chosen by the

extractor's user, for the modelling methods depend on a number of variables like the IC fabrication

technology, the nature of analysis intended for the extracted circuit, and the computation time. A

user who wishes to create a new extraction model must write new EXTRACT procedures stating what

circuit elements shall be computed, and how. This is done for each network component type: path,

switch, and connection.5 The user is provided with a library of circuit extraction procedures, which

greatly simplify his task. Table 3-3 lists the procedures contained in EXTRACT-LIBRARY. In the next

chapters, these library procedures and their algorithms will be discussed. Note that, where possible,

the library procedures return numbers with geometric units like square microns rather than circuit

units like Farads. This requires the user to include the final multiplications on circuit values within the

EXTRACT procedures, but, it enables him to define which extraction parameters exist, and to supply

them with names meaningful for the process.

Below are two example EX-PATH procedures for the NMOS technology. The first procedure

extracts resistance and ground capacitance-parameters needed for determining a circuit's

maximum speed. When path resistance is computed, the original path is subdivided into any number

of paths with a connecting resistor between each. The path geometries are not completely

recomputed, only path edge are area values. Underlined and italicized identifiers are user defined

"parameters" that can be reset for each invocation of EXCL.

"Named-points will be skipped in this discussion, for there is generally nothing to do for them. Unless the user wishes to
include bonding pad parasitic models. the named-point is modelled, simply, as a node.
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Table 3-3: Extraction Library Procedures

6This procedure is similar to EX-RESISTANCE. but is intended for transistor sizing, for which exact dimensions are important.
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library procedure parameters return

EX-AREA region area

EX-PERIMETER region perimeter

EX-COUPLING region1, set of other regions, coupling/edge capacitance matrix
coupling parameters

EX-RESISTANCE region, connection list, set of new regions,
minimum resistance new connection list for each region,

resistance network

EX-CONOUCT-OIMENSICN 6 region, connection1, length, width
connection2



procedure EXTRACT-PATH (path, connection-list, c):
begin

case patl.iayer of
diffusion: c-bottom - c-diff-hottonm;

c-edge - c-diff-sidewall;
resistivity rho-diff;

colysilicon: c-bottom - c-oolv-bottom;
c-edge - c-oolv-edqe;
resistivity - rho-Dolv;

metal: c-bottom - c-metal-bottom;
c-edge - c-metal-sidewall;
resistivity - rho-metal;

end
new-region-list, new-connection-list. resis-graph -

EX-RESISTANCE(path. region, connection list);
for each new-region, node E new-region-list do

WRITE-NOOE(C, new-region);
area - EX-AREA(new-region);
perimeter - EX-PERIMETER(new-region);
capacitance - (c-bottom X area) + (c-edge X perimeter);
WRITE-GROUND-CAPACITANCE(C, node, capacitance);
end

for each resis-squares, node 1, node2 E resis-graph do
resistance - resis-squares X resistivity;
WRITE-RESISTANCE(C, node 1, node2, resistance);
end

for each contact, new-node E new-contact-list do
CONNECTION-VERIFY(connection, new-node);
end

end

The second example EX-PATH procedure extracts only the bottom and edge capacitances to ground,

and inserts current sources to the substrate for diffusion paths. The current source simulates

diffusion leakage current, a parameter which is useful for determining the minimum clock speed of a

dynamic charge-storage circuit.
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'procedure EXTRACT-PATH (path, connectioni-Iist, C):
begin

case path.layer of
diffusion: c-bottom- c-diff-bottom;

c-edge - c-diff-sidewall;
j-bottom -- i-diff-bottom;
j-edge - i-diff-edce;

oolvsilicon: c-bottom - c-olv-bottom;
c-edge - c-oolv-edqe;

metal: c-bottom - c-metal-bottom;
c-edge - c-metal-sidewall;

end
WRITE.NCOE(C. path. region);
area - EX-AREA(path.region);
perimeter - EX-PERIMETER(path. region);
capacitance - (c-bottom X area) + (c-edge X perimeter);
WRITE-GROUNO-CAPACITANCE(C. node, capacitance);
if path.layer = diffusion then

I - (j-diff-bottom X area) + (j-diff-edge X perimeter);
WRITE-CURRENT-SOURCE(C, , region);
end

end

3.7.2 Network Cleaning

The extractor need not wait until the scanning of all objects has finished before it commences

circuit extraction. Often, it is not only possible, but also desirable to convert to circuit elements when

possible, for the data storage requirements of a large IC layout are very great, frequently exceeding

the primary storage capabilities of a computer system. Once converted to circuit elements, the

extractor can store the data until after the completion of scanning; for the EXCL extractor system,

when the fourth subprogram starts.

Any path or switch network component can be converted when its complete geometry is known.

Due to the nature of the scanning process, a geometric region will not change after the scan line has

moved below the minimum y-coordinate of the existing region (figure 3-10). This is, quite simply,

because no new mask object could possibly intersect with the region. Checking for this condition is

trivial if switch and path minimum y-coordinates are readily available.

Network connections are 'extractable" only after the components at both of its endpoints are
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./ (3) Connection

(1)
l.-. . A

0

Figure 3-10: Cleaning Network Components

Components (1) and (2) are endpoints of the connection
component, (3). Component (1) can be cleaned when the scan
line passes below A, and (2), when the scan line passes below
B. The connection, (3), cannot be cleaned until after (1) and (2)
are cleaned, as both of these must "verify" the connection,
first.

extracted (figure 3-10). When a network path or switch is extracted, al of its network connections are

verified through the procedure CONTACT-VERIFY.

The EXCL extractor checks all network components, or cleans the network, as the scan-line

passes regular y-coordinate intervals. The SCANNER procedure presented in section 3.3.3 calls

NETWORK.CLEAN at a constant y-coordinate interval. clean-interval. When a network component is

cleaned, all "extractable" components are (1) removed from the network, J, (2) extracted, and (3)

their circuit element information is written to the circuit file, C.

3.8 Connection of Network

The last subprogram in the sequence of four, FORMAT, has two duties: (1) it connects the

transistor network, and (2) it translates the network into the desired output file format.
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3.8.1 Minimum Circuit- Values

We generally wish the output network to have only those circuit elements whose values are

above a certain minimum threshold. Circuit elements below the threshold are deemed as having

trivial effects onil circuit performance, aird thus, should be removed. They are likely to add to analysis

(or simulation) time with little benefit.

The minimum circuit values are set by user defined parameters supplied to the network

connection subprogram. These need not match the minimum values of CONNECT'S EXTRACT, and the

user may wish to alter these if the desired circuit analysis tolerances change. He can also override

the minimum circuit values for a specific node by declaring it critical. Circuit elements connected to

a critical node are never ignored.

The network connection subprogram may set. some of the minimum values on its own if the

output format type dictates this. An output format for switch level simulation cannot, in general, have

interconnect resistors. In this situation, the minimum interconnect resistance is infinite.

3.8.2 Connection

The network produced by EXCL contains "path nodes", "switches", and "named-points"

attached by "connections". Many connections are short-circuits. Figure 3-12 depicts the network

extraction of the layout shown in figure 3-11. The dark lines in the network figure represent

connections. During the connection stage of the fourth subprogram, nodes which are connected

through short-circuit connections or through resistors with values below the minimum threshold are

eliminated. Figure 3-13 shows the resulting network where:

Rdl, Rd3 Rd, R act < R minimum and

Rd2' Rpl' Rp2 - Rminimum'

Figure 3-14 shows the resulting network if all resistors are below the minimum, Rminimum.
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Figu re 3-1 1: Example Layout

3.9 Output Format

The final stage, after network connection, is output formatting. A different program module is

required for each output format. Available formats are the following:

1. a source file for the circuit simulator (SPICE [9]),

2. a source file for the switch-level simulator (MOSSIM [71 or NL/RNL [8])

3. a tabular format readable by humans who are interested in scanning the nodal

capacitances or resistances of their layout cr who are interested in locating internal node

names, and

4. a node list, readable by the layout editor for displaying node names, and other

information on the nodes.
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Output
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Figure 3-1 2: Complete Extracted FNetwork of Example Layout

"Connections" are shown as darker lines. All "connections"
are short-circuits except the contact cut, which has an
associated resistance.
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Figure 3-1 3: Connected network
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Figure 3-1 4: Connected network with all resistors ignored
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CHAPTER FOUR

Resistance Extraction

The last chapter covered algorithms for examining geometric regions in an IC mask layout, for

isolating and grouping geometries to model into lumped circuit elements, and lastly. for generating a

usable and informative network description from the extracted circuit elements. In this chapter, we

will begin to look at the algorithms that fit between the geometric stage and the circuit stage-

algorithms that extract lumped circuit equivalents from IC geometries. The algorithms of the last

chapter are sufficient to write a "connectivity extractor": this chapter and the next two contain

information on additional algorithms needed to write a "circuit extractor".

This chapter begins the discussion of circuit extraction by explaining the library procedure

EX-RESISTANCE listed in table 3-3. The resistance extractor is given a geometric region and a list of two

or more "connections". Its task is to calculate a lumped resistor network between the connections

that models the voltage-current relationship of a planar resistive conductor of the given geometry.

The resistance extractor initially divides the geometric region into subregions. Then it calculates

an equivalent resistive subnetwork for each subregion. Lastly, resistance subnetworks are combined

into a complete resistive network. Dividing geometric regions into subregions follows one restriction:

dividing lines must be along equipotential lines. The reasons for this will become clear in later

sections.

First, we will discuss the general field analysis for resistive regions. followed by the three

algorithms used by the extractor for resistance calculation of subregions.
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4.1 Field Analysis of Electric Conduction

The two fields of interest in solving the problem of electric conduction are the electric potential,

V, and current density. J. The electric field. defined by

E - V (4.1)

is sometimes more useful than V. The relationship between the two fields is governed by Ohm's Law,

J = aE, (4.2)

where a is the conductivity or the inverse of resistivity, /p.

The physical area of the problem is divided into three regions:

1. the conductor region, C, where V is constant, or a = cc (a connection from chapter

3),

2. the resistive region, G, where a has a constant, non-zero value (a path from

chapter 3), and

3. the insulator region, , where a - 0 (everywhere else).

The boundary between C and %, forms the principle boundary, P, and follows the Oirichlet boundary

condition,

V(P) = VC. (4.3)

The natural boundary between regions S and 3 follows the Neumann boundary condition,

VV * n = 0, (4.4)

where n is a normal to the boundary P.

The analysis of a resistive region begins by forcing a known voltage difference, Vd, between two

conductor regions. The potential, V(x, y, z), is found in the resistive region with the aid of Laplace's

equation,

72V = 0, (4.5)

which holds everywhere in %. Then the total current flowing into one conductor region, C, is found

through Gauss' Divergence Theorem by summing the current density flowing over P1, a surface at the

boundary between e, and S. That is:
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d= J J ndP.

where the vector n is a normal to the surface P, pointing into C,. Substituting equations (4.1) and

(4.2) into the last gives

Id = or E' ndP = -or V V ndP. (4.6)
1 1

The equivalent lumped resistance over the whole region is then calculated with

V
d (4.7)

d ='"d

Regions with more that two principle boundaries require more than one voltage setting and current

integration. More on this will be presented later.

4.2 Finite Elements Techniques

Finite element techniques are well suited to extracting resistance networks of any geometric

shape with any number of external connections or principle boundaries.

In general, finite element analysis involves subdividing a continuous region into a large number

of small regions or finite elements. One or more unknown field values are calculated for each finite

element, thereby approximating the fields over the whole region. Finite element methods often

succeed with computer analysis, because the computer can calculate the unknowns for many small

finite elements with simpler models that are independent of overall shape than it can calculate

unknowns for a general continuous region.

For the finite element analysis of planar resistance, we divide the resistive region, %, into equally

sized finite elements across which we calculate the fields for voltage and current density. We can

safely assume that the components of current density, J, are limited to the x and y directions-parallel

to the IC surface--thereby eliminating the need for separate finite elements in the z direction.

Although a few two-dimensional grid topologies are feasible, the natural choice for us is the

square grid, due to the orthogonal shapes of IC conductor geometries. Figure 4-1 shows a section of

i divided into finite elements. In the center of each we place a node. Node i shown in figure 4-2 has

four nearest neighboring nodes in-i, denoted j, k, , and m--each a distance a from i. The node

voltages are V, V., V, V,, and Vm, respectively.
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Figure 4- 1: Finite elements of a planar resistor
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Figure 4-2: Node designations or node i and its neighors

Figure 4-2: Node designations for node i and its neighbors

We now wish to develop difference equations from Laplace's equation (equation (4.5)) for the

discrete point at node i. We begin by expanding V(x) into a Taylor's Series about point i, and

evaluating it at pointj. This gives
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Adding the above two equations and ignoring terms of fourth order or more gives

V. + V = 2V + 2 a (2 ) '

or

a2 ( 2 ) V. + V - 2Vj. (4.10)

Similarly, for the y-direction:

a2 a2 )j V V - 2. (4.11)

Adding (4.1 0) and (4. 1),

a aV. +V + V - 4V.. (4.12)
ax2 ay2 I i 

For Laplace's equation to hold at node i, the left hand side of (4.12) is zero,7 or

V. + V + V + Vm - 4V = 0. (4.13)

Stated simply, the difference equation, (4.13), says. that V. is the average of the voltages on each of its

nearest neighboring nodes.

We can extend our view of the difference equation to analogous discrete resistor networks.

Consider the circuit of figure 4-4. Kirchhoff's current law at node i states

V.- V. Vk -V. V- . V -V.
+ 0,

R R R R

or

V. + V + V m - 4V = 0. (4.14)

This is identical to (4.13). Thus, we see that solving the finite element analysis for the V and J fields is

analogous to solving the network shown in figure 4-4. All resistors between nodes within A have the

value R equal to , the resistivity of one square in 3.

7 Note also that for Laplace's equation to hold, the higher order derivatives that we ignored in equation (4.10) are also zero.
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m

Figu re 4-3: Resistor network analogy of a single finite element

3

Figu re 4-4: Finite element resistor network

4.2.1 Boundary Conditions

We will complete the fields/network analogy by examining the behavior at the two boundary

types. At the principle boundary between C and , the Dirichlet condition of equation (4.3) simply

states that the conductor voltage is known and invariant. We can, therefore, model the conductor

boundary as a series of nodes connected to an independent voltage source, V. A resistor connects

the boundary nodes with the nodes in % as shown in figure 4-4. The resistor's value is R/2, however,
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since the distance between the conductor and the nearest node in 'R is a/2.8

The Neumann boundary condition (equation (4.4)) reduces to the obvious fact that no current

flows across the natural boundary between G and . The network has no resistors at the natural

boundary.

4.2.2 Direct Solution of V

Both a direct technique and an indirect or iterative technique are presented for solving the

voltage distribution across G. Since the solution of V requires a large portion of the computation

time, different approaches are used in an effort to optimize computer time.

CA v A = 1v.

Ca

Vs = OV

Figure 4-5: Network for direct solution example

In thissection we will use the network analogy for the region shown in figure 4-5 to visualize the

direct matrix solution of V. Initially, known voltages, VA and VB are placed on the conductor regions.

A node equation similar to equation (4.14) is written for each of the six nodes in %. In matrix form

these equations are

Although the choice of R/2 seems fairly obvious. the approximation may be derived by starting with equation (4.8),
a2 v

substituting a with a/2. and adding it twice to equation (4.9). We also must approximate that = 0 near the boundary,

where V. is the voltage tangential to the boundary.
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or

K-v = u. (4.15)

Note that the extractor can determine the K and u matrices directly by inspecting the network.

For each node, i, in the network. we fill in the ith row of K and u. In K a (-1) is placed in the jth

column if a resistor connects nodes i and . The diagonal term, K;, equals the total number of

resistors connecting to node i, with resistors to C regions counting double. The ith term of u is

2 X v for each resistor connecting i to C.

To solve for v in equation (4.15) we may use any of the standard matrix algebra techniques.

Band matrix techniques have been developed and studied for systems of linear equations like.

(4.15) that arise from finite element analysis. The techniques are introduced in Appendix and are

discussed more thoughly by Whiteman [151 and Wilkinson 16].

4.2.3 Iterative Solution of V

Unlike the direct solution, the indirect or iterative solution does not find the exact solution, but

rather, it successively approximates the solution to v. On each iteration the approximation, v,
A

becomes closer to the true solution. Iteration halts when the difference between v and v reaches the

desired accuracy.

A

Equation (4.13) is valid at each node only for the exact solution, but is not in general valid for v.

The difference due to approximation-called the residual-is

A A A

i. = V. - Vk + VI + Vm - 4 .

During each iteration, the new value of v. is calculated such that the residual is zero, or,
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"il, t ( + +vv. =_ ( .+ V + Vi + I ) (4.16)
4 w

where the superscript refers to the iteration number. The newer n + I iteration terms are used for

neighbors k and / (assuming nodes are scanned from left to right and from top to bottom); values at j

and m have not yet been calculated. The residual, ,' does'not remain zero, for vi and v change too,

but, overall, the residuals decrease on each iteration.

We cannot know exactly how much the estimates, v, differ from the true values, v, for v is not

known. However, Milne has shown [17] that an upper bound on accuracy is given by

error < Max (4.17)- 4

where ma is the maximum residual over all the nodes, and p is the maximum radius of a circle

enclosing C%, measured in inter-nodal spacings.

The rate at which v converges to v is increased if we "over-estimate" the new values for v. This

technique know as successive over-relaxation was discovered in the hand calculation days. The

new estimates are calculated by

v = + = + k . V (4.18)
4 i 4-v

The overrelaxation factor, w, effects the rate of convergence and is between 1 and 2. For X = 1,

equations (4.18) reduces to (4.16), and for w > 2, the iteration becomes unstable or diverges.

Although much investigation has been done into finding the optimum overrelaxation factor, Wopt,

based on a region's shape or size, Forsythe and Wasow [18] have derived a reasonable alternative.

Their value for the optimum overrelaxation factor is

2

l+= -

max

The value for X cannot be calculated exactly, but is estimated at even intervals of n as n increases.
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4.2.4 Comparison of the Direct and terative Solutions

The selection between the direct and iterative methods for finding v is based on computation

time and computer memory requirements. For the direct solution, no algorithm has been found

superior to the Gaussian elimination method. For n finite elements the general Gaussian
n3

elimination method requires operations (adds, multiplies and divides) during the primary

workload, matrix triangularization. n2 memory locations are needed. Refinements on Gaussian

elimination for band-limited matrices reduce the complexity significantly. (See Appendix B.) If the

matrix's maximum bandwidth is s (which equals the maximum number of elements on any row), then

the operation count reduces to approximately ns2 while the storage requirement reduces to ns.

In contrast, the iterative solution needs n memory locations and approximately 6Kn operations.

The number of iterations, K, is difficult to characterize, for it is a function of n. the shape of 6%, and the

accuracy. Figure 4-6 shows a graph of K vs. VT for a fixed shape and an estimated accuracy of 2%

based on the criterion of equation (4.17). The number of iterations is approximately proportional to

the number of elements along a line, or K cc V7.

Combining all of the above effects we see that operation count for the direct and indirect

methods are proportional to n2 and n3/2 respectively. Typically, the band-matrix Gaussian elimination

method is better for solutions with small n. For storage and computation considerations, we must rely

on successive overrelaxation methods when n exceeds a threshold (around 1500 for EXCL).

4.2.5 Calculation of Rd and Resistor Networks

Once the voltage distribution is known, we find the current between conductor regions as

prescribed by equation (4.6). The current calculation surface lies at the boundary formed between C

and S. To calculate the current flowing into the C region of figure 4-4, we sum all currents flowing

through resistors with value R/2. Translating equation (4.6) to fit the discrete case, we get

2
~) = I (vi - VC )

i all nodes
adiacent to C1

Finding the lumped equivalent resistance, Rd, is trivial (equation (4.7)).

We now consider the question of how to compute a resistor network via finite element

techniques for a region containing more than two principle boundaries. The resistive region is
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e6

__I__ __

Lmm mt R



modelled as a "completely connected" resistor network. as shown in figure 4-7 for a region with four

principle boundaries. A test voltage connects to each conductor. The superposition principle aids in

the network analysis. To find the values of all resistors connected to a certain conductor, say Ce, we

set VT! to 1 volt and set all other test voltages to zero. After computing the voltage field on A, we find

the current flowing from C to any of the other conductors. C. by defining the surface P of equation

(4.6) as the boundary between % and Ck. The computation of R lk follows directly from the current,

Ilk,

C4 R, 4 CI

VT,

(a) (b)

Figure 4-7: Completely connected resistor network

(a) resistive region with four connections, (b) equivalent
resistor network

To find all resistor values for a network with m conductors requires n- 1 calculations of v

and (n)(2 calculations of Id. For a region with large m, this means a lot of computation! Any

chance to reduce m is welcomed. Such is provided if the extractor is given a minimum resistance,

Rmin' Some of the connections will eventually be combined by shorted resistors. While recognizing

shorted regions before extraction is not always possible, often it is possible by examining the spacing

between two connections. If the following conditions are true, we know that Rd is less than Rmin:

1. The distance between conductors of Rd is less than the maximum distance for worst-case

conduction, d.

2. A straight line segment can be drawn between the two conductors that is always in %.

The worst-case conduction distance is derived from the situation shown in figure 4-8(a). For Rmin >

4C's,
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1, C2

Rmin -
, *min Wmin

kI- ~ dw -"

(a) (b)

Figure 4-8: Conditions for combining connection regions

(a) condition for worst case resistance between connections.
(b) illustration showing the need for condition 2.

dw = (Rmin - 3.4) Wmi n

where Rmin is in rC's and wmin is the minimum mask geometry defined from the technology's design

rules and from the maximum mask offset given to the extractor.

4.2.6 Accuracy of the Finite Element Method

As the spacing between finite elements approaches zero (and the element count approaches

infinity), the discretization error diminishes. Little theoretical analysis has been made to determine

the error for a given element spacing-we must rely on experimental data. Figure 49 plots the

discretization error versus the finite element spacing for a constant shape. Since the discretization

error is greatest at corners, the experimental shape is a comer of known resistance value [19].

Results show that the error is proportional to the finite element spacing. ExCL allows the user to set

the element spacing to achieve his own accuracy requirements.
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Figure 4-9: Oiscretization error vs. finite element separation

4.3 Resistance Calculation of Straight-Subregions

As mentioned at the start of this chapter, the extractor uses three calculation techniques to find

resistance. While one can apply the finite element technique to any shaped resistive region, its

computation requirements are enormous for large regions. Hence, whenever possible the extractor

uses the other two techniques that have substantially faster calculation methods.

Both of the alternate techniques solve the resistance problem for shapes that commonly appear

as interconnections in C's. The first of these is the most prevalent shape-the straight wire, also

denoted in this chapter as the "straight resistor" or "straight subsection". We define the straight
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resistor as a region with uniform width and with current flow everywhere parallel to the length. This

reduces the field problem to a one-dimensional, linear problem. One can easily show that the field

equations of section 4.1 reduce to

L
(4.19)Rd = Ps W (4.9)

for a straight resistor region with constant sheet resistance pa,, a length L, and a width W.

Error analysis for the resistance calculation of equation (4.19) is not needed, for the equation is

exact. However, we must consider the errors introduced by the bending fields at either end of the

resistor.

4.3.1 Current-Spreading Region

The uniform current flow in the straight resistor is disturbed by the jog, bend, or curve. at the end

of the region. A current-spreading region of length L = yc * W is subtracted from both ends

(figure 4-10(a)), and we assume that all current flow distortion is limited to this area.

-- 1 wH~-
W

Y C

g

/conducting strip

1
(b)

,,
C1

(a)

C2

C2

(c)

Figure 4-10: Current-spreading regions and maximum error estimates

(a) shows the current spreading regions at the junction of three
straight subregions. The shapes in (b) and (c) are used to
measure the maximum error. (b) estimates the calculated
resistance, while (c) estimates the real resistance.

The worst-case accuracy of this assumption is measured by the experiment shown in figure
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4. 10(b) and (c). The two long straight resistors have the maximum possible current spreading at one

end. A conducting strip is placed at the edge of the current spreading region on one resistor, while

nothing is placed on the other resistor. By measuring the difference in overall resistance one can

estimate the maximum error introduced at the straight resistor's end regions. For ycs = , the error is

less than 0.1 %; for Yc = 0.5. the error is approximately 2%. EXCL uses a y., of 0.5 throughout.

4.4 Stored Calculations of Commlonly Occurring Shapes

The final technique for finding resistance requires no calculations of fields, dimensions, etc.

during extraction, tor this is done in advance. Th equivalent resistor subnetworks of certain shapes

that occur frequently in IC's are stored in the resistance library of the extractor program. When the

the extractor recognizes a shape to any scale, it merely recalls the library resistor subnetwork, and

connects it to the main network. The library requires a slhape to be easily rIognized, and to have

connection points to other subregions only on equipotential lines. The second restriction is more

prohibitive, and essentially limits the internal connections to straight resistor subregions.

Table 4t 1 shows some resistor library shaptis for the NMOS process. The first three are formed by

intersections of straight regions and are obvious members of this list. The others are common

contact cut configurations; the list of these is certainly not exhaustive. The shape "recognizer' is

programmed to recognize these shapes at any scale, x or y reflection, or orthogonal reflection. The

network is the same. regardless. The next section examines the methods of storing and recognizing

library shapes.

Computing equivalent networks of library shapes certainly does not need efficiency-in fact, the

desire here is accuracy. Numerical, finite element methods (section 4.2) with extra high accuracy

were used to generate some network values found in the table. Others were calculated with great

precision by Hall 19] using conformal transformation methods.

4.5 Subdividing Geometric Regions

Thus far in this chapter. we have examined three different ways of calculating resistance from a

geometric region. Due to the great simplicity of the latter two techniques-caicuiation of straight

resistors and stored calculations from know shapes-the extractor uses these whenever possible.

Only when the region is so irregular that neither of the simple techniques work does the extractor rely

on the backup finite element techniques. In this section we consider how the extractor recognizes

subregions to be computed by one of the three techniques.
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1.55 a

3.22 O

2.15 2.15 C]

5.12 O 2.57 

rtiai~~~~ ~1.50 

E~~~~O ~~~0.89 

.i ̀l0.54 2

1360]

0.55 C] 0.55 C

0.50 

Table 4-1: Sample library shapes and equivalent networks for NMOS process

A rectangle marked by an asterisk (*) has a shape determined
by the current spreading ratio, yc.
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4.5.1 Locating Straight Subregions

First, the extractor locates straight subregions and removes their area from the whole area.

Internal connections are added between the straight subregion and the remaining area.

Recall from section 3.5 that the processed, path geometric database contains (1) a record for

each rectangle, and (2) a list of all abutments between rectangles. Also recall that the abutments

between rectangles are always horizontal. Each rectangle is checked individually for straight

subregions following one of two program subroutines, depending on whether the rectangle's height

or width is greater. The subroutines' internals are similar: only the use of x and y coordinates are

interchanged. We will only consider the procedure for rectangles with greater widths.

(a) i~ - ao

(b) * < -" -- >

(c) > -" 

(d)

Figu re 4-1 1: Segment operations for isolating straight subregions

The extractor computes the xcoordinates of all abutting rectangles and connections and stores

them as segments. The extractor expands each segment in both x directions by an amount

Ycs X height (see section 4.3.1 for a definition of Ys) and then combines segments that overlap. The
process is illustrated in figure 4-11 for the rectangle shown in (a). The unexpanded segments are

shown in (b), and the expanded segments for ycs = 0.5 in (c). The expanded segments cover

x-coordinate areas that may contain vertical current components, and therefore, rectangle regions
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not covered by any segments are made into straight resistor subregions, as illustrated in figure

4.11(d).

Figure 4-11 also illustrates two other points worth mentioning. First, we note that the leftmost

straight subregion of figure 4-11 has zero length and thus has no resistance to calculate. It does,

however, serve to break the regions to the left and right on an equipotential line-something that

should be done whenever possible, for it can only simplify computation. Secondly, while the leftmost

non-straight subregion could itself be treated as another straight region, the algorithm does not

naturally place it as such. It does however match the last resistor library entry listed in table 4-1. This

condition typically happens at MOS transistor source and drain connections.

parallel rectangles
treated as one

/ '\

straight subregion

Figure 4-1 2: Straight regions hidden across two parallel rectangles.

The extractor makes a final pass to isolate straight subregions that are hidden across parallel

rectangles like the ones in figure 4-12. Parallel rectangles of this sort are formed only in the

horizontal direction as a consequence of the INTERSECT-REMOVE process. When the extractor finds

parallel rectangles, it simply treats them as one.

4.5.2 Storing and Locating Library Subregions

After the straight subregions are removed from the whole of the interconnection area, the

remaining rectangles are regrouped into isolated islands of connecting rectangles. 9 The islands form

all of the other subregions, and we now face the task of recognizing the library subregions.

91f abutment information is retained, this amounts to a transitive closure search.
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1.55 
l lGs

0.89 
.zVVA

Figure 4-13: Library tree structure for four entries

Resistor shapes are shown below each corresponding entry.
For simplicity, an absolute scale has been used.

An incredibly powerful side effect of the INTERSECT-REMOVAL process (section 3.5) is that

regardless of how the designer forms a region, two equal shapes have identical sets of non-

intersected rectangles. It suffices to store only the size and relative placement of the subregion's

nonintersected rectangles and connections. The complete subregion description library is stored in a

tree structure as shown in figure 4-13. Each tree node represents one shape description or clue.

The node contains all valid answers to the node's clue; each valid answer then has a tree branch
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pointing to the next clue.. The search process traverses the tree structure, checking for valid answers

to each clue. If the shape has valid answers to all clues, the search is successful, and the leaf node

contains the equivalent resistor subnetwork. The tree hierarchy follows the clues listed below:

* the number of rectangles. This node immediately drops a number of complex shapes

from the search.

* the number of network connections.

* the upper left and lower right coordinates of the first rectangle. The origin is always

defined as the upper left of the first rectangle, and to retain scale independence, all

coordinates are normalized to a unit defined by 1/256 of the first rectangle's height. This

clue is repeated for each rectangle.

* the upper left and lower right coordinates of the first boundary. The same coordinate and

scale transformations apply as before. This clue is repeated for each connection.

To complete this section, it should be noted that any subregion failing to match a library shape is

rendered "irregular" and must submit to finite element analysis.

4.6 Connecting Resistor Subnetworks

After all subregions are converted to resistor subnetworks, the extractor connects the

subnetworks to form the complete resistor network. All "connections" are transformed into nodes.

External nodes are transformations of "connections" provided the resistance extractor.

Internal nodes may form at borders between adjacent subregions External nodes must remain,

however, one can simplify the network structure if simplification removes only internal nodes.

Generally, only series resistors are found in IC interconnection modelling. The extractor recognizes

series resistors and deletes the internal node.

Not all series resistors are combined, for this may destroy the distributed RC modelling. As

pointed out in section 2.5 a very long distributed RC line is better modelled with a finer resolution of

discrete nodes. Series resistors are combined only if the combined resistance is less than the

maximum resistance. In fact, if a straight resistor exceeds the maximum resistance value even before

network optimization, then extra internal nodes are added.
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4.7 Geometric Information for Capacitance Extraction

In the next chapter we will find that capacitance extraction, which follows resistance extraction,

needs two forms of geometric information from the resistance extractor to properly model distributed

RC interconnections.

* It needs quantified area and perimeter estimates for each node of the resistance network

(for ground capacitance extraction).

· The inter-nodal capacitance extractor needs the entire geometric description of the

conductor, along with the placement of internal and external "connection" regions.

The second requirement is easily fulfilled by returning the original geometric information with the

addition of subregion "connections".

It is fortunate that substrate capacitance extraction does not need actual geometries, but only

numerical values for area and perimeter of each new node. To return the first requirement, the area

and perimeter of each subregion is divided equally among all "connections" to that subregion. Since

each node of the final network represents one or more internal and/or external connections, the

values returned comprise the sum of all area and perimeter contributions from its connections.

Figure 4-14 shows for a sample IC conductor the resistor subregions, their subnetworks, and the

final network.
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Cut 2

transistor

(a)

Cut3
.*

Cut 3

Cut3

(C)

Figure 4-14: Resistance extraction of complete region

(a) original resistive region divided into subregions. Subregions
are marked with extraction method: f = finite element analysis,
s = straight resistor, and / = library lookup. (b) subnetworks of
each subregion. The distance between Cut 1 and the lower
transistor is less than dw. (c) final network.
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CHAPTER FIVE

Interconnection Capacitance Extraction

The two problems in extracting capacitance networks of interconnecting lines differ vastly. One

problem, that of extracting inter-nodal capacitance, presents the greatest extraction challenge to

solve completely and accurately. Shortcuts can reduce te problem but invariably lead to inaccurate

modelling in certain cases. The other problem-extracting ground capacitance between a conductor

and the substrate-could be called trivial. were it not for its slight dependence on inter-nodal

capacitance. Chapter 2 gave definitions for each of the capacitances of interest-inter-nodal,

edge, and bottom capacitance. They are re-illustrated here in figure 5-1. Ground capacitance

refers to the sum of edge and bottom capacitances, as both of these connect to the substrate.

Figu re 5-1: Capacitance types for a multi conductor system.

This chapter, first, covers algorithms for inter-nodal capacitance extraction, and then covers

algorithms for ground capacitance extraction.
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5.1 Inter-Nodal Capacitance

The inter-nodal capacitance extractor, EX-COUPLING, is called by the connectivity extractor and

calculates capacitance values between one target conductor and a set of other source

conductors. All source conductors lie in the same conducting layer, but not necessarily the same

layer as the target. For instance, we might be computing capacitances between a "polysilicon" target

conductor and all "metal" conductors. The "metal" conductors in this example comprise the source

conductors. The connectivity extractor passes process dependent capacitance information as a set

of constants and tabular functions.

The connectivity extractor composes a completely connected capacitance network from the

values returned by the capacitance. extractor. For a three conductor system, the complete

capacitance network has the form shown in figure 5-2. The Cii capacitors are ground capacitors, and

are included here for completeness. All conductors take turns being the target conductor. For any

given target, the extractor is capable of finding values for all capacitors connected to it, but some

values may already be known since C.. = C... To save the extractor from recalculating an inter-nodal

capacitance, a source conductor is tagged if the capacitance between it and the target is known.

1 Cl2 2

C3 C23I C 1i

Figu re 5-2: Complete capacitance network for a three conductor system

The inter-nodal capacitance "domain" for any conductor is limited to a small region around the

conductor. It is essential to use this observation to avoid a massive capacitance network that grows

with the square of conductor count. The connectivity extractor locates source conductors by looking

through a window that is made slightly larger than the geometric region of the target conductor.
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Windowing coupling capacitance regions keeps the capacitance network problem to a linear growth

rate. The exact sizing of the window will be examined later.

The basic philosophy of dividing a region into subregions with different classes of solution

techniques carries over from the resistance problem to the capacitance problem: Where the field

conditions are regular, the extractor applies simple calculation techniques; where the field conditions

are irregular, the extractor must rely on general techniques. First, this chapter covers methods of

subdividing the capacitive region, then it covers the field theory used in inter-nodal capacitance

extraction, and finally, it covers the general and special capacitance extraction techniques.

5.1.1 Subdivision of Capacitance Problem

As with resistance extraction, the inter-nodal capacitance extraction problem benefits greatly

from dividing the problem's region into smaller subregions. When possible, the extractor forms a

subregion in an area where either (1) the field conditions are uniform and capacitance is quickly

solved with a closed form equation, or (2) the capacitance is precomputed. Like the resistive

subregions, the capacitance subregions must have two properties. First, the subregion must be

easily located by inspection of the conductor geometries. Secondly, the borders between subregions

must fall on constant flux lines (perpendicular to E).

The capacitance extractor uses two classes of simple capacitance calculation. One is applied

between overlapping regions of different layered conductors, the other between parallel spans of any

two conductors. First, the extractor locates overlapping areas and removes them from the source

conductors' regions. The border between the removed and non-removed area forms an artificial

edge; all other borders at the conductors' mask edges form natural edges.

Next, the capacitance extractor locates the parallel regions and library regions with the same

procedure used by the resistance extractor. However, the capacitance extractor divides the oxide

areas between conductors, as shown in figure 5-3(b). To achieve the correct division, segments are

defined and expanded only at the oxide rectangle abuttments and at the corners of conductor

rectangles. In the figure, corners are marked with a dot. Refer to section 4.5 for a discussion

segment operations for subdivision. The irregular regions include flux-spreading areas near

parallel subregions. Flux-spreading regions are directly analogous to "current-spreading" regions of

the resistance extractor, since they define an area where flux-line bending occurs.
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Figure 5-3: Subdivision of capacitance region.

(a) removal of overlapping area, (b) division into parallel,
library, and irregular subregions.

5.1.2 Field Theory of Capacitance Calculation

The physical region of the inter-nodal capacitance problem is divided into three areas. The IC

interconnection areas or conductor areas form the capacitor "terminals" or "plates" and are

denoted by '. The dielectric (or insulating) areas denoted by 9 comprise the oxide between

conductors. Lastly, the silicon substrate forms the groundplane area, . The ' and G regions are
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the %L and C regions, respectively, in the resistance problem. To avoid confusion with the different

boundary conditions of the two problems, the names have been changed for this chapter.

To find the inter-nodal capacitance between two conductors, we force a known voltage

difference, Vd, between the conductors. By determining the charge, Q, induced on either conductor,

we can compute the coupling capacitance, C, by

Cc = QV . (5.1)V

The electrostatic field equations relating charge and voltage are directly analogous to the

equations for electric conduction presented in section 4.1. In making the analogy, the electric

potential field, V, remains the same, but current density, J, is replaced by electric flux density, D. The

relationship between the two fields now depends on the material's permittivity, , as

D = eE = -eVV.

The potential in an electrostatic field follows Poisson's Equation,

V 2 V = P -

e

In dielectric regions, however, the charge density, p, is zero, and Poisson's Equation reduces to

Laplace's Equation,

V2V = .

This might suggest solving the general capacitance problem with the same techniques developed for

resistance, only viewing the electric flux density flowing through the dielectric medium, J. With this

technique, a known potential is placed on all conductors, and the potential field is calculated in the

insulator. Then, the total charge on each conductor is found by integrating over its outer surface, P:

Qd = ) D* ndP,

where n is a unit vector pointing out of P.

While the technique of solving Laplace's Equation is useful for careful capacitance calculations

of some special cases, it is not practical for the general case. In the electric conduction case, the

field regions have well defined boundaries, but in the electrostatic case, the insulating medium

extends unbounded in all directions. An alternate, "integration" approach has been adopted by

several'existing coupling capacitance extractors [20, 21].
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The theoretical basis follows from Green's Theorem which shows that for any point in space, a,

its potential is given by

V(a) = G(a; b) p(b) db. (5.2)

The integration over f must include all charge-carrying points, b, as shown in figure 5-4. G(a; b) is the

appropriate Green's function for the insulating medium between points a and b. It describes the

voltage induced at point a by a unit charge at point b. In free space

G(a; b) = 4

where r is the distance between a and b. In an IC the Green's function is more complex due to the

different, finite-thickness oxide layers and the substrate. The substrate contributes charge in the

capacitance problem, but rather than extending the integration of equation (5.2) to cover as well as

, the Green's function is typically adjusted, instead.

a

Figu re 5-4: Green's Theorem for finding V at point p

5.1.3 Finite Element Techniques

In the existing extractors mentioned earlier, the conductor's too surface is divided into either a

regular square grid [22, 21] or a special rectangular grid [20]. Subdividing the conductors in this

manner yields good results when the conductor's thickness is significantly less than the spacing

between conductors. However, when the conductor's thickness approaches the inter-conductor

spacing, the capacitance is underestimated, because, much of the additional coupling between the

two conductor edges is not represented.

In section 2.4.2 it was demonstrated that coupling capacitance shows important effects only

when coupling capacitance exceeds a certain fraction of the total capacitance, or when
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C > (C + C). (5.3)

We now consider a typical case where the conductor width equals the conductor spacing (or W = S)

and the conductor thickness equals the conductor height (or T = H) as shown in the cross-sectional

view in figure 5-5. Results from Dang [23] show that the condition in equation (5.3) is met with

y = 0.1 only when the ratio of conductor thickness to conductor spacing exceeds a value of 0.25 (or

T/S > 0.25). As the T/S ratio increases above 1.0, the coupling capacitance exceeds the ground

capacitance. While the tendency is to increase T/S to reduce the conductor's resistivity, this makes

the coupling capacitance between conductors more unattractive.

~b1 -. !. , .. ;+
' '

- s H \-V -_,/ / / / 7 T / substrate / / / / / i/ /// sbsrte// //+ ,

Figure 5-5: Cross-sectional view of conductor geometries.

As T/S increases, the amount of coupling capacitance due to conductor edge surfaces

increases. The approach taken in EXCL for extracting inter-nodal capacitance assumes most of the

coupling is between conductor edges or between the top and bottom surfaces very near the edge. In

EXCL, the conductor edges are subdivided into N finite elements, e1, e2, ..., eN, and N nodes, a1, a2, ...,

aN, as shown in figure 5-6. Associated with each finite element is a region of the top and bottom

conductor surface directly behind the edge. At artificial edges formed at conductor breaks near

overlapping conductors only the top and bottom surface is considered in the finite element. Over

each finite element EXCL assumes a charge distribution, p(b) = qf(b), where b covers the bottom,

edge, and top of each element, q is the total elemental charge, and f is a shape function. Some

sample shape functions are illustrated in figure 5-7; each one describes how a unit charge spreads

over the finite element.

Equation (5.2) may now be rewritten into a summation over each of the N finite elements:

N N
V(a) = G(a; bp(b) db= ' qi' G(a; b) f(b) db. (5.4)

i = 1 element i 1 element i
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-b

Pi : VWilu/

Figure 5-6: Finite element for inter-nodal capacitance extraction.

We define the weighted-Green's function,

H(ai; e) -A G(a; b) f(b) db,
element i

(5.5)

which describes the voltage induced at a point a. by a unit charge distributed over finite element e;.

By combining equations (5.4) and (5.5) we get

N

V(aj) = qi H(a/; e). (5.6)
i=1

We now write a potential equation (like equation (5.6)) for each node point, a l, ..., aN.

Expressing the system of N linear equations in matrix form yields

v = Hoq,

where H is a matrix with entry hi equal to the weighted-Green's function value H(ai; e,).

In the capacitance problem, the electric potentials, v, are known and the charges, q, are

unknown. Hence, we actually solve for
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q = H- 1v

using any of the standard matrix techniques. Once q is computed. the elemental charges on any

conductor are summed to give total conductor charge. From this, the inter-nodal capacitance is

calculated.

To summarize the finite element analysis of arbitrary shapes, the following list itemizes the steps

made by EX-COUPLING.

1. The conductor regions, at through K' are divided into N finite elements. N is the total

number of all finite elements, or

N - A(1) + A(2) + ... + A(K)

if A(k) is the number of elements on any conductor k.

2. The N X N matrix, H, is filled with values of weighted-Green's function. Element h.. of H is

the appropriate value relating the charge on element j and voltage on element i. The

values of weighted-Green's function are precomputed as discussed in the next section.

3. The N X 1 voltage vector, v, is filled with the conductor voltages assigned to each finite

element. Generally, one conductor-say the target conductor, Y-is assigned a non-

zero voltage Vd, while all others are assigned zero, thereby enabling the computation of

capacitances between Y1 and all other conductors. As with the resistive analysis, the

complete inter-nodal capacitance matrix between K conductors can be computed with

K - 1 settings of conductor voltage (see section 4.2.5), but only one setting is needed for

each invocation of EX-COUPLING.

4. The charge vector, q, is computed by solving the system of equations v = G-q. EXCL

solves for q by Gaussian elimination with partial pivoting.

5. The total charge on a conductor, . k, is found by summing all values of q that correspond

to finite element charges on Sk'

6. Lastly, the capacitance between Y1 and Yk is calculated from equation (5.1).

5.1.3.1 Determination of Weighted-Green's Functions

As mentioned earlier, the Green's function between two points in an isotropic medium separated

by r is 1/47er, but in IC's, Green's function is complicated by the oxide layers and the substrate.

Efforts have been made by Silvester and Patel [24, 21, 22] to characterize the Green's functions for a

thin conductor on a dielectric sheet by methods of partial images and Fourier integrals. These

methods have been severely limited in modelling groundplanes, multi-leveled conductors, and
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conductors with non-zero thickness. Direct measurement of Green's function is not possible, for no

IC structure generates a charge at a single point or finite element.

A method presented here for determining a weighted-Green's function uses a series of two-step

computer field simulations of the known IC structure. For a given IC process, the functions are

computed once; thereafter, they are stored in lookup tables for easy reference. If necessary, the

functions can be tweaked to fit measured data. A different weighted-Green's function is used for

each pairing of conductor layer, i.e., poly-poly, poly-metal, .... One function is determined with each

two-step simulation. The first step finds an approximation to f(b), while the second finds an

approximation to H(a; e;).

The shape function derivation begins with a simulation of the voltage field around two parallel

conductors with a non-zero voltage difference applied to one conductor, as illustrated in figure 5-8(a).

The charge induced on the other conductor is measured. The charge distribution is then uniformly

scaled to fit a unit charge onto a finite element. The field simulator uses the Laplace Equation

methods discussed briefly in section 5.1.2 and presented more thoroughly by Dierking [25] and Dang

[23]. The simulator also includes enhancements for infinite boundaries as developed by Dierking and

for boundaries between different dielectric materials. The shape function depends on the conductor

spacing in addition to the layer pair, so the simulation steps are repeated at several spacing intervals.

The shape functions of figure 5-7 were computed by the field simulator for the conductor

configurations illustrated.

The second-step of the simulation computes the voltage field around a unit charge distributed in

the shape approximated by the first simulation. This simulation employs spherical coordinates in the

direction away from the conductor, since the effects from a single finite element away from the

conductor are approximately spherical. Appendix C presents techniques developed for spherical

simulation. Figure 5-8(b) shows the = 0 plane of a unit charge simulation for the shape function

derived in figure 5-8(a). With this simulation we can compute the weighted-Green's function for the

voltage point, a, with a height h above the substrate, and a unit charge distribution, f(b) on e. The

values of voltage, V(r), along line AB are exactly the values of weighted-Green's function, H(a; e), for a

horizontal separation r between a and e.

For any two-conductor system, the extractor uses not just one weighted-Green's function, but a

series of six functions. Each function represents a different vertical height combination between
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Figure 5-7: Shape functions for conductor shapes shown in inset
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Figu re 5-8: Field simulations for determining weighted-Green's functions.

(a) Shape function simulation for finding f(b) on conductor 1.
(b) Voltage field simulation of a unit charge distributed on
conductor 1.

charge element and voltage point. They also- distinguish between finite elements formed on natural

edges and artificial edges. The six functions are listed in table 5-1 along with the field simulation

configuration from which they are derived. Figure 5-9 shows a plot of sample weighted-Green's

functions for a constant shape function. For the case where the source and target conductor are on

the same conducting layer, the extractor needs only two functions, H = H22, and H12 = H21.

Artificial edges never form when the source and target conductors are on the same layer, and thus

H13 and H23 are unneeded.

Each weighted-Green's function value depends on three factors. One factor-the conductor

pair combination-is handled with the techniques presented in the last paragraph. The other two

factors are the shape function, f, and the horizontal distance, r, between the voltage point and finite

element. Both enter into the selection of the value, H(f, r). The extractor actually decides on a shape

function with the distance to the "dominant" or nearest point. Each function, H(f(dominant pt.), r), is

stored in a two-dimensional table with linear interpolation used for lookup of intermediate values.
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e simulation

target
edge

source
natural edge

source
artificial edge

target
edge

source
natural edge

source
artificial edge

e = 3.9
e = 7.8

= 3.9

= 3.9

e = 3.9

= 3.9

, .........6 =. .7.8

e = 3.9

e = 3.9

Table 5-1: Series of weighted-Green's functions for two conductors on different layers.

All examples in this chapter have, thus far, been for conducting layers above the IC substrate.

The methods also serve for diffusion conductors imbedded in the IC substrate. Figure 5-10 depicts

the simulation conditions for determining diffusion functions. The dielectric region below the

diffusion conductor represents an approximation to the space-charge layer of the back-biased diode.

Because of their close proximity to the groundplane, diffusion conductors tend to exhibit much less

coupling capacitance and more ground capacitance than other conductors.
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Figure 5-9: Weighted-Green's Functions vs. distance for a constant Shape Function
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Figure 5-10 O: Simulation boundaries for diffusion conductor

(a) Shape function simulation, and (b) unit charge simulation.

5.1.3.2 Sources of Error in the General Method

Each of the following four factors introduce error into the general, inter-nodal capacitance

method:

1. The shape function calculation assumes that the conductor width behind the primary

edge is infinite, which is of course false. One can estimate an upper bound on the error's
magnitude by determining what fraction of the shape function lies beyond the actual back

edge.

2. The unit charge effects on a finite element do not posses exact spherical symmetry, as
was assumed earlier. At large angular deviations from the edge normal, triangulation

effects from the top and bottom charge distribution may become noticeable.

3. The selection of shape function from the "dominant" point is accurate only for parallel

conductors, but deviates slightly under irregular conditions. A broader-scoping selection

of the shape function would improve this problem.

4. Field simulations that determine weighted-Green's functions are based on measured or
estimated geometries. Often the simulations assume orthogonal conductor edges, when
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in reality they are not. The simulations are accurate only to the degree that the

measurements and shapes given to the simulator are accurate.

The first three errors are due to the charge approximation on the top and bottom surfaces. If the

amount of charge on these surfaces is small then the errors are likewise small. When the coupling

capacitance is greatest, most of the coupling charge is on the conductor edges, which produces less

error.

5.1.4 Overlapping Conductors

The capacitance between two overlapping conductors follows the simple equation describing

parallel plate capacitance:

Eoxide Area
Separation

The values of oxide and Separation are fixed for a known layer pair, and therefore, we can combine

them into a single constant, Koverlap. An additional "fringe correction", altrnge, i applied to the

perimeter of the overlapping areas, giving

Coverlap = (Koverlap Area) + (ringePerimeter).

The fringe correction not only adjusts for field bending near the outer edges of the overlapping area,

but it also corrects a problem with the general inter-nodal capacitance method that has not previously

been mentioned. The problem occurs at boundaries between irregular subregions and special

subregions. The general capacitance method does not account for the parallel plate field, and thus

allows its flux lines to spread over into the overlapping field area. The resulting overestimate of

capacitance is proportional to the perimeter of the border, and a negative component of afringe

corrects the problem.

The value of alfringe is determined with a field simulation experiment. The Laplace Equation field

simulation of figure 5-11(a) finds the true value of capacitance (per unit border length), while the dual

simulation of figure 5-1 1(b) finds the capacitance as the extractor does. In (b), the dotted lines

represent the parallel plate flux lines, and the dashed lines represent the "irregular subregion" flux

lines. The difference in capacitance between the second and first simulation equals the value of

afringe'
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Figu re 5-1 1: Cross-section view of simulations for determining the fringe correction factor

The rectangular coordinate simulations find the capacitance
per unit border length. Simulation (a) finds the true
capacitance value around the border; (b) finds the capacitance
actually computed for the same area.

5.1.5 Parallel Conductors

The capacitance extractor calculates parallel conductor coupling capacitance with:

Cparalle = (Kparallel(Spacing) Length) + 2 end(Spacing) . (5.7)

Kparallel i the parallel capacitance constant given in capacitance per unit length. The value of
Kparallel depends on three factors: the conductor layers, the conductor spacing, and the conductor

widths. Like the general case, conductor width is ignored, for we assume that an insignificant amount

of charge resides near the far edge. For a given pair of layers, the extractor locates the parallel

capacitance constant in a tabular function Kparallel(Spacing), where Spacing is the conductor-to-

conductor distance. The functions are determined either with Laplace Equation computer

simulations of the IC geometries, or with direct measurements from test circuits. The example parallel

capacitance constants of figure 5-12 were determined with simulations. Typical Kparallel(spacing)

functions show an inverse linear dependency for very small conductor spacings where the two

conductors appear like parallel plates. For larger spacings, capacitance drops off more rapidly.

The "end correction factor", a end, serves the same purpose as the fringe correction factor-it
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Figure 5-12: Parallel capacitance functions for conductor shapes shown in inset.
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compensates for the overestimation of capacitance at subregion borders. This correction factor

gives the capacitance overestimation of the general subregion that borders each end of the parall!el

subregion. The value of a end' which also depends on conductor spacing, is stored in a tabular

function. aen(spacing). Figure 5-13 shows the two conditions for computing one value of the

function. (tend is the difference in capacitance between the two.

Conductor 2

Conductor 2 parallel , irregular

,'/ / , t t I I I -- -spacingI
, X I I I I I I I I

~_, * I I I I, ' ' ' ' ' \ / .spacing , , , ,

Conductor 1 Conductor 1

(a) (b)

Figu re 5-13: Top view of capacitance calculations for determining the end correction factor

We must assume that no field bending occurs at the break
between subregions. The true value found in (a) can be
computed directly from Kparae. The extractor value can be
computed by observing the effects of extracting a parallel
segment (b) with the general method.

5.1.6 Library Shapes in Inter-nodal Capacitance Extraction

Extracting inter-nodal capacitance with library lookup methods is more limited than extracting

resistance with library lookup. Capacitance does not exhibit the same scale independence or layer

independence that resistance exhibits. Additionally, useful library shapes are often largely dependent

on the window size. Nonetheless, some library shapes have proven useful. Each layer pair

combination has its own library with some of the shapes shown in figure 5-14. Some noted entries are

useful only for certain pairs.
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Figure 5-14: Subregions in inter-nodal capacitance library.

Solid lines are conductor edges, dashed lines are borders of
oxide subregions. The size of rectangles marked with an
asterisk (*) is determined by the flux spreading region size. (a)
used for minimum spacing approach of any two layers. (b) used
for different layers only, and usually abutts overlapping regions.
(c) found at 90° bend away from minimum spaced parallel
region. (d) example of metal-to-metal contact cut bulge.

5.1.7 Distribution of Capacitance Among Resistor Nodes

We have seen earlier that the resistance extractor may divide an interconnecting path into

multiple nodes connected by a resistor network. The capacitance extractor, however, computes the

inter-nodal capacitance between path as though they were undivided, and then sorts out which

fraction of the capacitance goes to each resistor network node.

Capacitance distribution begins by dividing path edges among the resistor network nodes.

Dividing the edges is much easier than dividing path areas. Each path is represented by one or more

node connections as shown by the heavy lines in figure 5-15(a); the connection placement

98

_ I _ _ __ �___



information is passed from the resistance extractor to the capacitance extractor. Recall that many

internal connections disappear during minimization of the resistor network (section 4.6). All

remaining internal connections extend to the edges on both sides of the path. The points of

intersection between the connections and edges are node-edge points. Since many of the external

path connections (contact cuts, for instance) do not have natural node-edge points, the extractor

expands an external connection region until two node-edge points appear. The crosses in figure

5-15(a) mark the node-edge points. After all node-edge points are located, the edges between the

points are separated at the half-way point. All parts of the edge are associated with its closest resistor

node.

X node-edge points

O0 edge divisions

(a)

---- capacitance
subregion
borders

(b)

Figure 5-15: Distribution of inter-nodal capacitance among resistor nodes.

(a) Distribution of path edges to each resistor network node.
(b) Distribution of capacitance to nodes.

If a path edge within a capacitance subregion is distributed to more than one node, the extractor

must give each node a fraction of the extracted capacitance value. The following guidelines for each
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type of capacitance subregion control the capacitance distribution. In some cases the guidelines are

crude, and give approximate distributions. Figure 5-15(b) shows an example of capacitance

distribution.

* In a parallel capacitance subregion the inter-nodal capacitance divides proportionally

along its length. The capacitance associated with any node is determined by the length

of that node's edge, or

node i edge length
i = Ctotal total edge length

If both paths of a parallel subregion have multiple node edges, capacitance distribution is

based on the fractional length of any opposing pair of node edges. Figure 5-15(b) shows

a sample parallel subregion of this kind.

* The capacitance between overlapping subregions is distributed according to the ratio of

each node's edge length to total edge length. This leads to poor division for some

irregular overlap shapes, but the important division between long overlapping lines is

good.

* Capacitance division of library subregions follows the same rule as overlapping

subregions and depends on the ration of the node's edge length to total edge length.

* In irregular capacitance subregions solved with the general method, capacitance division

achieves good accuracy. Rather than finding the total path charge before computing

capacitance with equation (5.1) the partial charge for each node edge is found and the

partial capacitance to each node is computed. When setting up the field problem,

however, one must keep in mind to assume that the voltages on different nodes of the

same path are identical. We are not interested in find the coupling capacitance between

two nodes on the same path.

5.1.8 Window Size Determination

Recall that the coupling capacitance from the target path and any other path is calculated only if

the other path lies within the "window" of the target path. To find a path's window, the extractor

expands the geometric region of a path by a constant amount, Wx . The value of Wx is calculated such

that no path completely outside the window exceeds the condition given in equation (5.3)-including

the worst case situation of a source path completely surrounding the target at a distance Wx . If we

ignore corner effects, W is calculated by examining the coupling capacitance and ground

capacitance vs. separation for parallel wires. The separation distance equals Wx at the point where

the coupling capacitance is the fraction y (defined in section 2.4.2) of the total capacitance.
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5.2 Ground Capacitance

The capacitance between a conductor and the substrate is very important for circuit extraction.

Node extractors for logic simulation typically extract ground capacitance [2]. for special logic

simulators can make rough circuit delay approximations with only ground capacitance and transistor

size information [8].

The ground capacitance is comprised of two parts, the edge and bottom capacitance. The

sum is most often calculated by

Cg = Cbottom + Cedge = (KbottomArea) + (K edgePerimeter). (5.8)

Kbottom and Kedge are constants of capacitance per unit area and capacitance per unit length,

respectively. The first product represents the bottom, parallel plate capacitance between the
£oxide

conductor's bottom and the groundplane. Thus, we see that Kbottom =Conductor deight

The second product represents the edge capacitance, and accounts for the capacitance

associated with the fringing flux lines between the conductor's edge vicinity and groundplane. The

edge capacitance is correct in equation (5.8) only if all flux lines terminate on the groundplane. If a

nearby conductor terminates the flux lines, instead, the ground capacitance decreases and coupling

capacitance increases. Since the edge-to-substrate capacitance depends on coupling capacitance,

it is computed in parallel with inter-nodal capacitance using most of the same algorithms.

Q Qtarget .<,Co '_. __ _ v i Qsource

target source
V= Vd V = O

1\ \ 1 oroundplane

groundplane V = 0

Figu re 5-1 6: Flux lines from edge of target conductor
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To observe how the edge capacitance computation operates for the general method, consider
the situation depicted by the cross-section in figure 5-16. The flux lines originate from the edge of the
target conductor, target' which is set at a positive voltage, Vd. The lines terminate on either the
source conductor, source' or the groundplane; both are set at zero volts. The general inter-nodal
extraction method indirectly simulates these flux lines. The coupling capacitance is found by
computing the charge on source Also available from the general extraction is the edge charge on
'target. The magnitude of this charge is

IQtarget' = ( 'sourcel ) + l'groundplanel'
all sources

where all quantities represent only the charges induced by flux lines around the edge. We can find
the groundplane charge by subtracting the source charge from the target charge, and therefore,

( E IQsourcel) - target
, all sources

edge. general Vd

The extractor calculates edge capacitance within parallel and library subregions with the same
algorithms that it calculates inter-nodal capacitance for these subregions. In parallel subregions, the
edge capacitance is

Cedge,l = (Kedge (Spacing) Length) + 2 end'

which we see is very similar to equation (5.7) for parallel coupling capacitance. Spacing specifies the
same conductor-to-conductor distance, and Length specifies the same parallel region length. The
correction factor Pend compensates for the overestimate of edge capacitance at the subregion
borders, and is determined in a like manner to aend . To handle edge capacitance in library
subregions, all entries in the capacitance library include an edge capacitance value along with the
inter-nodal capacitance value.

Any subregion that was not involved in inter-nodal capacitance computation must be included in
edge capacitance calculations. These single-edged subregions contain only the target conductor
edge (see figure 5-3(b)). Edge capacitance in these regions is Kedge(oo) * Edge Length, where
Kedge(co) is any value of Kedg e for very large spacing from other conductors. Finally, it should be
pointed out that edge capacitance distribution among path nodes follows the same guidelines for
inter-nodal capacitance.
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5.3 Summary of Capacitance Extraction

This section summarizes the steps involved in all phases of interconnection capacitance

extraction, and lists the parameters that are needed. First is a list of all capacitance extraction steps.

The capacitance extractor:

1. finds the edge lengths associated with each node in the target and source paths,

2. creates a capacitance matrix for storing capacitance values for each node. Initially, all

values are zero,

3. computes the oxide region between the target path and source paths,

4. locates all capacitive subregions from the oxide region. First the extractor finds

overlapping subregions, then parallel subregions, and finally, library, irregular, and

single-edged subregions. For each subregion, the extractor:

a. computes the inter-nodal capacitance with the overlap, parallel, library, or general

method. Inter-nodal capacitance is not computed for single-edged subregions.

b. computes the edge capacitance with the same extraction technique as for inter-

nodal capacitance,

c. distributes inter-nodal and edge capacitance among the nodes in each path,

d. adds the capacitance components to the capacitance matrix. Edge capacitance is

added to the diagonal, ground term for its node.

5. For each node, the extractor:

a. computes the ground capacitance, and

b. adds the value to the appropriate diagonal term of the capacitance matrix.

6. Lastly, the capacitance extractor returns the capacitance matrix.

This chapter has involved an extensive discussion of the parameters needed for extraction, and

how to derive each. Table 5-2 itemizes all of the parameters as supplied to the inter-nodal

capacitance extractor. All derivations of these parameters is done in advance. Some parameters are

single-valued, while others are one-dimensional or two-dimensional functions. The capacitance

extractor is always invoked for a single, known layer pair combination. The supplied parameters

should always match the layer pair, and will change with invocations for other layer pairs.
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Table 5-2: Capacitance extractor parameters
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CHAPTER SIX

Transisto r Size Extraction

Although transistors are the hardest element for simulators to model, extracting their circuit

information is easier. For MOS transistors, we typically only need to extract the transistor's length,

width, and gate area. Most basic transistor extraction algorithms resemble an algorithm from

resistance or capacitance extraction. The notable exception arises when calculating the length and

width of an MOS transistor. While the problem is similar to resistivity extraction, it differs in that actual

linear dimensions must be found, since transistor effects are non-linear with length.

This chapter describes the algorithms of EX-CONDUCT-DIMENSIONS, that computes the actual

dimensions of a channel region between a source node and a drain node-denoted either way as

node 1 and node 2. The transistor dimension extractor is supplied with three geometries: the

channel region, the edge region (or connection) of node 1, and the edge region of node 2. On rare

occasion an MOS transistor may have more than one source or drain. The extraction modeller must

resolve this situation with repeated calls of EX-CONDUCT.DIMENSIONS.

6.1 Rectangular Transistors

The vast majority of active regions are designed with rectangular shapes. For some sample IC's

examined by EXCL the percentage of rectangular transistors was above 85% in all cases. For these

transistors, the extractor wastes no time in determining the length and width from the single channel

region.
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6.2 Non-Rectangular Transistors

With the remaining non-rectangular transistors, the dimension extraction proceeds along much

the same track as resistance extraction. First, however, the extractor decides whether the transistor

is "short-and-wide" or "long-and-narrow". This decision is based on how many of the non-

intersecting channel rectangles touch both node 1 and node 2 connections. A rectangle count

greater than or equal to two signifies a short-and-wide transistor, while a number less than two

signifies a long-and-narrow transistor.

Node 1
lira y straight library
L 2 L = 2 L = 2
W = 1.5 Wz 3 W= 1.5

Node 2
straigh straigh
L - 2 L= 2
W 2 W 2

library lbrary

straight
L 2 L:2 L 2
W= 1.5 W 3 V= .5

Node 1

straight irreg.
L=2
W 2 L=4.5

Ws2

L =2
W= 16

(b)

straight library
L = 3 L 1.5
W 2 W = 2

L = 14
W= 2

(c)

Figu re 6-1 : Samples of transistors with calculable dimensions

A rectangular transistor (a) has only one rectangle. Length and
width are given directly by the rectangle's dimensions. A short-
and-wide transistor (b) or long-and-narrow transistor (c) is
subdivided, and the dimensions of each subdivision are found.
Afterwards, the separate dimensions are compared and
combined.

Next, the extractor divides the channel area into subregions as though it were a resistor region

with no connections. That is, the node 1 and node 2 connections are ignored during subdivision.

The subdivision technique is described in section 4.5. Figures 6-1(b) and 6-1(c) show samples of the

subregions for a short-and-wide and long-and-narrow transistor. The extractor computes the length

and width for each subregion by following the techniques outlined in the following sections.

Afterwards, all the separate subregions' dimensions are combined and checked for coherency.
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6.2.1 Straight Subregion Dimensions

The transistor length and width of a straight subregion are simply the two dimensions of the

subregion's only rectangle. The extractor matches transistor "length" and "width" with the rectangle

dimensions by examing the connections to the rectangle. For a short-and-wide transistor, the

transistor length is measured between node 1 and node 2 connections, while transistor width is

measured along either node connection. For a long-and-narrow transistor, length is measured

between the only two connections (internal or nodal), while transistor width is measured along a

connection.

6.2.2 Library Subregion Dimensions

Even though connections are ignored when dividing the region into subregions, they must be

considered when looking up entries in the library. All fetches from the transistor dimension library

return explicit values for both length and width. These values are stored in the library, but, scale

independence of shades is maintained by normalizing all library values to the dimension 7 defined by

the length of the topmost rectangle edge. The true dimensions are calculated by substituting 77 with

the true topmost rectangle dimension. Figure 6-2 shows some interesting library entries. The first two

form at right angle corners of both types of transistor; the other is frequently found at butting contact

connections of NMOS pullup transistors.

11 -i I

L = 1.55 L = L = 1.5-
W = -1 W = 1.55i1 W =q

Figure 6-2: Entries of transistor dimension library
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6.2.3 Irregular Subregion Dimensions

No true method exists for computing the conduction dimensions in an irregular subregion, for

the current lines have different lengths. For such regions the extractor assumes one of the

dimensions: the length for a short-and-wide transistor or width for a long-and-narrow transistor. This

dimension should be known based on values from the other subregions. EXCL computes the other

dimension from the expression:

Length
eq Width

where Req is the equivalent resistance of a similar shape with a constant, unit sheet resistance. The

equivalent sheet resistance is computed with the general methods discussed in the resistance

extraction chapter (chapter 4).

Transistors which are so contorted (figure 6-3(a)) that they contain only one irregular subregion

are not sized. An error message is given to the user, since these usually indicate a layout error or a

special-case layout that is better characterized by the designer.

6.2.4 Dimension Combination and Coherency Check

The length and width information of all subregions must be compiled into a single value for both

length and width. First, a coherency check is made for the length of each subregion in a short-and-

wide transistor or the width of each subregion in a long-and-narrow transistor. From the last section

we see that technically, only straight and library subregions are checked. All these values should be

equal; otherwise, an error message denotes the discrepancy. The other non-equal dimension (width

for short-and-wide transistors or length for long-and-narrow transistors) is computed by summing

each subregion's dimension. Refer to figure 6-1 for samples of computed transistor shapes. Figure

6-3(b) shows transistor shapes failing the coherency check.
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(b)

Figu re 6-3: Samples of transistors that cannot be sized
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CHAPTER SEVEN

Conclusions

The extraction methods and algorithms presented in this thesis were developed to fill a need for

automated and accurate circuit characterization of IC layouts. An outcome of the project is an

automatic circuit extractor that, when combined with a circuit simulator or other analysis tool, permits

an IC designer to detect and correct circuit flaws without ever having the design fabricated. The

following guidelines directed many of the decisions during development of the circuit extractor.

1. The extractor should generate an equivalent circuit that provides all possible accuracy in

predicting the true behavior of the integrated circuit. Two consequences follow from this.

First, extraction must find all relevant circuit parameters, including the difficult ones-

resistance and coupling capacitance. Second, the extractor should compute each circuit

parameter with as little error as reasonably possible.

2. Extraction time should stay at a minimum. The appeal of circuit extraction diminishes

with long waits and vast computations.

3. One should be able to modify the extractor with some ease for different types of

subsequent analysis.

4. The extractor should be amenable to new fabrication processes or mask specifications.

After inspecting a sampling of IC layouts, it was decided that extraction should not make only the

easy calculations, i.e., the calculations of resistance along straight conductors or capacitance

between parallel conductors. It must also calculate values around irregularly shaped conductors.

General numerical methods were adopted for calculating circuit parameters around the irregular

areas. While the resistance and to some extend the transistor sizing problems each have known

general methods, no adequate method was found for the problem of coupling capacitance extraction

between irregular conductors. One was developed as described in chapter 5. Its calibration to a

particular process is based on computer simulations of measured cross-sectional conductor shapes.

The method's performance surpasses that of other general capacitance extractors. This is especially
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true when it counts the most-when calculating the capacitance between two conductors with large

amounts of coupling between opposing edge faces.

The best way to keep the extraction problems from growing to unmanageable complexity is to

use simpler computation methods where possible. This is, fortunately, possible at many locations on

an IC where field conditions are known. An automatic subdivision algorithm isolates long, straight

regions and commonly-occurring library regions with precomputed answers. For these regions it is

possible to extract a parameter rapidly. The savings from using the rapid techniques where possible

over using the general technique everywhere clearly depends on the regions's shape, but for typical

layouts the extractor operates an order of magnitude faster. Most significant, is that the improvement

in extraction time is possible with only minute losses of accuracy. The same basic algorithm

(presented in chapter 4) functions for each of the three time consuming extractions: resistance,

inter-nodal capacitance, and transistor sizing.

The extractor remains flexible through its highly modular organization. A user needs to look at

just two program modules to make fabrication process or extraction model changes. The user can

pattern EXCL to accept a new fabrication process by changing only the module containing all mask

intersection rules. In one instance, an (experienced) user altered a CMOS extractor into an NMOS

extractor in about thirty minutes. Unlike most other extractors, the user of EXCL can also change the

circuit generation rules. He can, for instance, change a detailed circuit extractor for SPICE simulations

into a more rapid switch level extractor.

One final observation is evident through many of the chapters. Wherever possible, EXCL

eliminates insignificant circuit data or insignificant parameter extractions. Minimum circuit values

and extraction tolerances can be set by the user, thus providing him with an "accuracy knob". On a

first pass through the extractor with any layout, the user sets the knob low. The answers will be less

accurate, but extraction is fast and will hopefully provide enough information to make the first

analysis. Once the user has a more refined layout, he can turn the knob up and extract a more

accurate circuit characterization.
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7.1 Final Notes and Recommendations for Improvement

For each extraction problem, the solutions for straight and library subregions represent the best

possible, for they are fast and accurate. Any time that extraction reverts to a general numerical

solution the execution time soars. A carefully selected library enhances the extractor, and for the

best performance, the library should contain as many potential regions as possible.

A brief study of the irregular regions in some test layouts has shown that a large portion of the

shapes occur more than once. This should seem obvious, considering that IC design is largely

hierarchical, and that a few basic cells are instantiated many times. However, often within a single

cell one finds equal irregular regions. If the extractor includes a dynamic library-that is, a library

capable of accepting new entries at any time-then each "general" solution to an irregular region

can be added. Any repetitions of the region automatically find their solution in the library.

Dynamic libraries should be considered for a partial alternative to hierarchical extractors, since

repetitious layouts benefit most from dynamic libraries. If we approximate extraction time as the time

needed for just the general numerical solution, then essentially, a cell is extracted once regardless of

how often it is instantiated. With this technique, it is not left up to the integrity of the hierarchy to

guarantee the absence of careless overlaps, for the extractor will always pick out fluctuations in

individual cell instances.

In chapter 5 we saw that initializing the general and parallel inter-nodal capacitance methods for

a technology depends on a large sequence of computer field simulations. Presently, each simulation

requires manual set-up. A vast improvement is feasible with an automatic capacitance calibrator, a

program that generates all capacitance information from a simple geometric description of the

process. An automatic capacitance calibration system would enable one to make more thorough

checks of the inter-nodal capacitance calculations than is now possible.

Finally, manhattan geometries prevail in most IC designs, and in fact some of the most complex

IC's to date have been satisfactorily designed with only orthogonal rectangles. However, some layout

wizards insist that 450 rectangles give an essential extra flexibility. Currently, EXCL extracts all regions

containing 450 angles with general methods, but it may be possible to improve this. It may be

feasible, for instance, to isolate the long straight regions in 450 strips by "subdividing" the rectangles

twice-once on the up and down rectangles and once on the 450 rectangles. By including a new

mask object type, the 450 box, data representation could be greatly compressed, and library entries

could be added more easily.
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APPENDIX A

Distributed RC NModelling with 7T-Ladders

Integrated circuit conductors tend to behave as distributed RC lines. In EXCL, these are modelled

with discrete elements in an n-stage 7r-ladder topology, as shown in figure 7-1. In this section, we will

analyze the error that is present in the 7r-ladder equivalent of a distributed RC.

RT R V2

V0 V I CT

(a)

RT R/n R/n R/n V2

1c/2n IC/n IC/n 7C/2n ICT

(b)

Figu re 7-1: r -ladder network

(a) Distributed RC interconnection, (b) equivalent 7-ladder
network

Our figure of merit will be to.9 = Itdist,9 - to.l91 the difference in step-response delay time
between the distributed RC line and the o7-ladder network. The voltage vo is a step from zero to vc

and the subscript, 0.9, indicates that delay times measure when v2 reaches 0.9vcc.

First, we assume that both RT and C. are zero. Non-zero values for either only tend to improve
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the 7r-ladder accuracy since the load capacitance and drive resistance are exact components, and

the effects of these elements become more prominent as RT and CT increase. From Heaviside's

expansion theorem, we can express the step-response voltage at the load end, v2 (t), as

2(t) = 1 + C ek RC (7.1)
CC k =1

Peirson [26] has evaluated the poles, ak and coefficients, Ck, for the distributed case:

k = (k- )2 7 2, and (7.2)

2(-1)k

21(k- T )

For an n-stage 7r-ladder network,

ak(n) = 4[ n sin( 2kn (7.3)

and the Ck coefficients are computed numerically as described by Sakurai. In both of these cases,

the minimum pole, a, is much less than the next pole, a2. Thus, equation (7.1) can be approximated

by

v2(t) t
= 1 + Ce-l RC (7.4)

and al can be considered the time constant. The approximation effects the waveform only at the start

of the output voltage transition, but is very close to the true solution when the voltage nears 90% of its

transition. Propagation time is given by

RCt= a In(10C1)..a1

From this we see that delay is inversely proportional to RC, and the relative error of delay, Ato.9, is

proportional to the relative error of the minimum pole (REMP). The REMP for the n-stage '-ladder

network is

[a (n) of ladder circuit]
REMP(n) -1

[a1 of distributed RC]

and has been calculated from equations (7.2) and (7.3). Table 7-1 lists REMP values for nr-ladder

circuits with one through four stages. With a three stage ladder network, we see that the relative

delay error is always less than 2.3%, which is usually quite sufficient for IC extraction models.
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Number of Relative Error
stages (in percent)

1 18.9
2 5.0
3 2.3
4 1.3

Table 7-1: Relative error of minimum pole for n-stage n-oladder

The actual error of delay time is given by

At. 9 = RC REMP(n).

By specifying a maximum Ato.g the number of stages can be determined for any conductor with a

known R and C. In practice, only long straight conductors must be divided beyond that of internal

subregion divisions.

As stated earlier, including a non-zero drive resistance and/or a non-zero load capacitance, the

REMP of the 7r-ladder approximation can be improved substantially. For instance, in a three-stage

fn-ladder network with R = R and CT = 0, the REMP reduces from 2.3% to 0.3%. Unfortunately, the

values of RT and CT are unknown to the extractor when the f7-ladder network is developed. The error

values given here are worst case values. Under many cases, the real modelling errors are much less

due to non-zero RTIS, non-zero C T s, and the node breaks which are always present at connection

branches.
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APPENDIX B

Band-Matrix Operations

Algorithms for band-matrix operations have been well developed, because of their

commonplace usage for finite element problems. Band-matrices have a known structure that enables

the special algorithms to save on storage requirements and computation requirements [15].

To visualize how band-matrices arise, consider the two dimensional region shown in figure 7-2.

The region is divided into a two-dimensional node grid with L rows and K nodes per row. The nodes

are numbered sequentially from 1 to N in a horizontal raster method. The system of equations that

results from describing each point by its four nearest-neighbors has a band-matrix shape like that

shown in figure 7-3(a). All non-zero matrix entries are located inside a band centered on the matrix

diagonal. The overall matrix dimension is N X N, where N = KL. The bandwidth, M, is determined

by the grid size: M = 2K + 1 for a four-point nearest-neighbor system, or M = 2K + 3 for a nine-

point nearest-neighbor system. If the finite element region is irregularly shaped, then the system

matrix is an irregular band-matrix. However, the irregular system can use regular band-matrix

procedures where the bandwidth is determined by the longest horizontal row.

B.1 Band-Matrix Storage

The savings in band-matrix storage comes by not storing the zero values outside of the band.

These zero values are never needed. For each row, the starting index is stored, followed by the M

values for that row. This reduces the storage requirement from N X N to less than N X M. For a

square node region, M = (2 Log 2N) + 1, and the storage needs are approximately 2N Log2N.
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K

L

Figure 7-2: Rectangular region divided into two-dimensional node grid

\ 000...

\ band containing

... 000

\ all zero's
\ non-zero values

0
bandwidth

all zero's

(a)

Figure 7-3: Band matrices

(a) regular (b) irregular.
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B.2 Gauss Elimination with Band-Matrices

The matrix operation most useful for general circuit extraction algorithms is the Gauss

elimination solution to a system of linear equations with the form

Ax = b.

The general Gauss elimination algorithm has two steps. Triangularization transforms the A matrix

into an upper triangular matrix. For each successive "pivot" on the matrix diagonal, the gauss

elimination algorithm transforms all entries in the column below the pivot to zero through a series of

of row multiplications and additions. For a normal matrix, all rows below the pivot must be

transformed, but with a band-matrix, row transformation can stop when the band edge is reached.

During the second step, backward substitution, the x values are computed starting with the

bottom value. As each new x value is computed, it is substituted into its predeeding row equations.

In a band-matrix only, the number of preceding rows where a value must be substituted is limited to

half the bandwidth.

Table 7-2 summarizes the operation count1 s for general and band-matrix gauss elimination. The

table also shows that band-matrix techniques require approximately 0.4% of the general gauss

elimination operation count and 5% of the general storage requirements for a 400 X 400 matrix with a

bandwidth of 20.

B.3 Repeated Solution with Different Boundary Values

In some cases, we wish to find the solution to several systems of equations with the form

Ax = b,

where A is the same for each solution and only b is different. This situation arises, for instance, when

extracting a resistive region with more than two boundaries. We saw in section 4.2.5 that the voltage

field is computed with different settings of boundary voltages. In this case, A, which is determined

solely by conductor shape, does not change, and b, which is determined by boundary voltages does.

By saving the triangularization results from the first Gauss elimination, subsequent solutions for

10An addition, subtraction, multiplication, or division is classified as one operation. While these execute with somewhat
different speeds, the ratios of each operation type remain fairly constant within each operation step.
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triangularization

normal band-matrix
gauss elimination gauss elimination

2n3 2
ns3·

band-matrix
resolve

ns

backward substitution

storage

operations for n = 400
s = 20

storage for n = 400
s = 20

2ns

n2

4.3 X 107

1.6 X 105

2ns

ns

1.8 X 105 8.0 X 103

8.0 X 103

Table 7-2: Summary of approximate operation count and memory needs for gauss elimination

different b's will execute much faster. Furthermore, if the A matrix is unneeded after the first

"solving", then no extra memory storage is needed. The row multipliers can be stored in the lower

triangular positions for each pivot, occupying the space that would otherwise be zero. Although this

feature is not unique to band-matrices, it is included in the band-matrix routines.

119

_ I __��__� ��



APPENDIX C

Spherical Coordinate Simulations

Since the effects of a unit elemental charge posses spherical symmetry on an IC substrate, a

spherical simulator was developed to determine the weighted-Green's functions described in chapter

5. Here we examine the significant modifications to the basic Laplace (Poisson) Equation simulator

which were necessary for spherical coordinate simulation.

z

. Z V+ z + ·

......... ..............................

Vr+

· Z- V z.

Figu re 7-4: Setup of finite element analysis for determination of Greens's functions.

The area around the point charge is divided into finite element rings as shown in figure 74.

Each ring has constant voltage, since there is no variation of voltage with . Poisson's equation in

spherical coordinates with set to zero is [27]

a120
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- P = '2VV= a av a2v
e r a r ar az2

An approximate difference equation for the finite element, o, and its four nearest neighbors is

= . . r
q = -r+ r. + ) 1 (V- _ -Vo) - (VO-V ) .

C r 2 IVr- v) - 2 0 r+ Z- z

Since the distance between all points is a,

E ( = '-i (V r -v o) - (1+- )(V O - V+) + (Vz_-Vo) - ( - V z +),

or

V0 + 1_-. V + )V + 1+ )V + + 0 4 [ ( 2r. r + z - z + E

The spherical field simulator uses this equation for the basic operation at each point. Other than the

inclusion of the two correction factors for Vr and V, the simulator operates identically to the

rectangular simulator. It uses either the direct, Gauss elimination method or iterative method of

solution.
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