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1. Introduction

Maximum Entropy has been suggested by numerous authors as a good objective

measure for "optimally" modeling the power spectrum of a wide-sense stationary ran-

dom process. In the original Maximum Entropy Spectral Analysis (MESA) formula-

tion of Burg[1,2], the power spectrum P(eJo) is chosen by maximizing the entropy

function subject to constraints on several of the correlations of the model. Jaynes[3, 4]

has argued that the resulting maximum entropy model accurately describes the avail-

able information, but is maximally non-committal with regard to the unavailable infor-

mation. In the case where the constraints are placed on a set of uniformly spaced

correlations of a one-dimensional stationary process, Maximum Entropy analysis leads

to an all-pole model whose coefficients may be found by a fast Levinson recursion algo-

lThis work has been supported in part by the Advanced Research Projects Agency monitored by
ONR under Contract N00014-81-K-0742 NR-049-506 and in part by the National Science Foundation
under Grant ECS80-07102.

2Now working at Sanders Associates, Nashua, New Hampshire
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rithm. Modifications of the procedure, such as the covariance method, the

forward/backward covariance method, and so forth, have been explored in depth by

numerous authors[5, 6, 7].

In this paper, we consider a generalization of the Maximum Entropy Method of

spectral estimation (MEM) in which we find the power spectrum with the largest

entropy which matches both a set of correlation and a set of cepstral values. Lagunas-

Hernandez et. al.[8] first showed that these constraints lead to an Autoregressive

Moving-Average (ARMA) model for the power spectrum. Unable to solve for the

pole and zero polynomial coefficients, however, they used an approximate solution

technique having suboptimal performance. In this paper, we solve this problem exactly

for the case of a one-dimensional process, with uniformly spaced correlation and cep-

stral lags centered about zero. We transform the problem into an equivalent general-

ized real symmetric almost-Toeplitz eigenvalue/eigenvector problem. The entropy of

the model is related to the largest eigenvalue of this problem, and the pole polynomial

is the corresponding eigenvector. The zero polynomial is then found by a simple recur-

sion. The formulas are similar to the mixed first and second-order modeling procedure

suggested by Mullis and Roberts[9]. Except for possible pole-zero cancellation, the

pole polynomial is guaranteed to be stable. If the model we calculate is strictly

minimum phase, then we show that it solves the constrained Maximum Entropy prob-

lem. Otherwise, we show that there does not exist any finite, strictly positive power

spectrum which exactly maximizes the entropy. We speculate in this case, however,

that our model is the weak limit of a sequence of minimum phase models which match

ll*i
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all given constraints, and which asymptotically achieve the maximum possible entropy.

Because the eigenvector problem has an almost-Toeplitz structure with displace-

ment rank 3, there exists a fast Levinson-like algorithm for finding the eigenvector

once the eigenvalue is known. This same algorithm can be used iteratively to help

search for the maximum eigenvalue. A side benefit of this approach is that, at least in

theory, we can detect when the model has canceling pole-zero pairs caused by choosing

an excessively high model order.

When the number of known cepstra is equal to or larger than the number of

known correlations, and all known cepstra have value zero, then we show that our

MEM model yields the same answer as Pisarenko's harmonic retrieval algorithm[10]

We conclude with several examples illustrating the performance of this pole-zero max-

imum entropy estimator on a variety of simulated data.

2. Derivation of an ARMA Model

Suppose we observe a segment of N data samples x [0], . . ., x [N - 1] drawn from

a zero-mean, stationary, ergodic, complex-valued Gaussian random process with unk-

nown power spectrum P (z). (Though we only consider complex-valued data, the

development for real-valued data would be virtually identical.) The correlations R [n ]

of this process are defined by:

R[n] = E[x[k]x[k+n]] foranyk (2.1)

_~~L _L· ~ ~ - 1L~II_--_IX-I-~ ~ -·-_-I1I~-- I1 -.. - I~~-· l~-_~· ll_-L~~------- - .--.-I 
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21T
The power spectrum P z ) of this process is the ztransform of the correlations:

The power spectrum P (z) of this process is the z-transform of the correlations:

P(z) = R[n]z - n (2.3)
n=-x

We define the cepstrum of the process x [n ] as:

c[n] = logP(e'w)e j 'w n dow (2.4)
-2r

Using the available time series data, we would like to estimate the power spectrum

P (z). The classical Blackman-Tukey[11] approach to power spectrum estimation first

estimates the correlations from the data by a formula such as:

1 N-n-1
R[n] N x [k]x[k+n] (2.5)

Unfortunately, given only the available segment of N data points, it will not be possi-

ble to directly estimate the correlations beyond lag N - 1. Furthermore, for n close to

N, only N - In I terms are available in the sum for estimating R [n ], and so these esti-

mates will have large variance. The classical power spectrum estimation approach mul-

tiplies the estimated correlations by a tapered window which attenuates the high order,

unreliable lags. Applying a Fourier Transform then gives a smoothed power spectral

estimate. Increasing the lag window length improves the spectral resolution, but also

increases the variance of the spectrum.

Burg[l, 2] suggested an alternative procedure for power spectrum estimation which

often achieves higher resolution with less variance than the classical estimates. Assume



that our estimates of the first p + 1 low order correlations R [0], . . .,R [p ] are exactly

correct, but assume that the remaining correlations are unknown. In general, there

will be an infinite number of power spectra which match the known correlations. Burg

suggested that a reasonable estimation approach would be to choose the power spec-

trum which matches the known correlations, but otherwise has maximum entropy H.

For a stationary Gaussian random process, the average entropy can be shown to be

proportional to:

H = logP(e j ) d2 (2.6)
Is

Maximizing this entropy formula subject to the correlation constraints yields an

Autoregressive (AR) model for the power spectrum. When the data consists of uni-

formly sampled correlations of a one-dimensional process, this model is easily calcu-

lated by a fast Levinson recursion algorithm which is guaranteed to yield a stable all-

pole polynomial estimate. Numerous studies have proven the high resolution capabili-

ties of this spectrum modeling approach, and have shown that the spectral estimate is a

good model of the envelope of the actual power spectrum[6].

In this paper we consider a straightforward extension to Burg's Maximum Entropy

procedure which leads to an Autoregressive Moving Average (ARMA) model. Sup-

pose that we know the exact values of the first p +1 correlations of the process,

R [0], . .., R [p 1. Also suppose that we know the exact values of the first q values of

the cepstrum of the process, c [1], . . , c[q]. (Note that the entropy is equal to the

zeroth cepstral coefficient c [0]; this is why we assume that we know only the values

1 Il··---L- ----- ·I(IIIII�------�---�-ll�·LI·-�--)^^ ---·--L�II--_.-pl------s��l_.l^l� 1_�1_·_.-·-)--·__ I---CI·ll^-__·_-·-llII _�_� _ .l__.----_ I
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c [1], .. ., c [q].) The additional cepstral information should be useful in generating a

much higher quality spectral estimate than we could achieve with just correlation data

alone. For example, in applications such as the analysis of voiced segments of speech,

we would like good estimates of the envelope of the signal power spectrum, without

the fine structure introduced by the voiced excitation. It is well known that the low

order cepstral coefficients accurately reflect this envelope information without much

degradation from the impulse train excitation. This cepstral property has been exten-

sively exploited in homomorphic systems such as those introduced by Kopec,

Oppenheim and Tribolet[12], and Yegnanarayana[13].

We now calculate the power spectrum with the largest entropy (2.6) but which

satisfies the constraints (2.2) and (2.4). Recognize that R[-n]=R [n] and

P q
c [- n ] = c [n ]. Introduce Lagrange multipliers {0k}k = -p and { k }k = -q and form

the Lagrangian L by adding multiples of the constraints (2.2) and (2.4) to the entropy

H:

L = j.o f logP(ejd) d + i P(ejw)e k d - R[k] (2.7)
-2r k=-p -

+ i k fI logP(eJo)ejwk d -c[k] }

Suppose that a solution to the Maximum Entropy problem exists, (eJ '), which

exactly matches the correlations and the cepstra, and which is finite and strictly posi-

tive. Then by the Euler-Lagrange Multiplier Theorem[14] this solution must be a
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critical point of the Lagrangian with respect to variations in P (ejw) and variations in

the multipliers Ok and aPk- Using variational calculus, therefore, a necessary condition

which the Maximum Entropy solution must satisfy is:

0= pLO + Ok e k + i k ejwk (2.8)
P (ejw) lk I=O Ik I=1 P (ejw)

(Loosely speaking, we differentiate L with respect to each point of the function

P (eJ), and set the derivative to zero.) Solving (2.8) shows that if a strictly positive

solution exists to the Maximum Entropy problem, p,q(ej ) > 0 for all o, then it

must have the form of a rational polynomial, or in other words, an Autoregressive

Moving Average (ARMA) model:

i (2.9)
;Pp ,q ( ) k=-q (2.9)

pq ki Okzk
k=-p

The Lagrange multiplier coefficients {k } and ik } must be chosen so that the con-

straints (2.2) and (2.4) are satisfied. It is well known that linear time invariant systems

satisfying finite order difference equations are naturally described by ARMA models

[15]; thus this approach to spectral estimation has the potential of yielding accurate

models for many physical systems.

3. Determining the ARMA Model's Coefficients

This MEM modeling technique was first published by Lagunas-Hernandez, et

a48]. In this original paper, however, only approximate solutions for the model

parameters {0k k } were suggested. We have found, however, that it is possible to

Il _ 1�1�^^_1 ____1111111_1_1__1_1_I - Il I
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transform this problem into the form of a generalized eigenvalue/eigenvector problem

which is comparatively easy to solve.

Assume that a solution P (e J) exists to our constrained Maximum Entropy prob-

lem which satisfies the Paley-Wiener condition for discrete signals:[16]

f logP(eJ' ) < oo(3.1)
-I2r

Then we can always factor the power spectrum into a product of a gain y 2 times a

minimum phase factor G (z) times a maximum phase factor G *(1/z ):

P(z) = y 2 G(z)G(1/z*) (3.2)

where G (z) is causal and stable, with leading coefficient of 1, and with a causal and

stable inverse.

G(z) = 1 + g[nz - (3.3)
n=1

We define g [0]- 1, and g [n ]- 0 for n <0. Because the MEM power spectrum (2.9)

must be a finite order rational polynomial, G (z) can be factored into a ratio of two

minimum phase polynomials:

G(z) = (Z) (3.4)
Ap (z)

where:

Ap(z) = 1 + ap n (3.5)
n=1

Bq(z) = 1 + bnq z- n (3.6)
n=1
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All the roots of Ap (z) and Bq (z) must be inside the unit circle. It is convenient to

define a 0 ,p 1 and bo,q 1.

Oppenheim and Schafer[17] derived a simple formula for minimum phase models

which relates the cepstral coefficients, c [n i, to the coefficients of the impulse response,

g [n ]. To derive this relationship, take the log of (3.2):

> c[n]z- n = logy 2 + logG(z) + logG*(l/z*) (3.7)
n=-x

Since G(z) is minimum phase, the polynomial logG(z) is right sided with non-zero

coefficients starting at lag 1. Similarly, logG (l/z*) is a left sided polynomial starting

at lag -1. Matching terms with equal powers of z on both sides of (3.7) then gives:

logG(z) = c[n]z (3.8)
n=1

and

c[O] = H = log-y2 (3.9)

Equation (3.8) specifies a mapping between the coefficients of the minimum phase

polynomial G(z) and the cepstral coefficients c[n]. Differentiating both sides with

respect to z-1 gives:

n c[n]z_+l= ng[n]z- n + l (3.10)
n=1 G(Z) =1

Multiplying (3.10) by G (z) and equating terms with equal powers of z on both sides

of the equation thus gives a recursive formula for the coefficients g [n ] in terms of the

cepstral coefficients c [n ]:

__� _ I C-_ I�-YL1C--III�-CI-XII 1II·_� IIIL1----_-LII· ·I.·_------·--�L-- -- ·--- _-
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g[0]= 1 (3.11)

1 n
g[n] - tc[k]g[i -k] for n = 1,2,...

k=l

Thus knowing the ceptrI coefficients c [1], ... , c [q ] is exactly equivalent to knowing

the first q +1 coefficients of the minimum phase factor, g[0],... , g [q] (where

g [0]= 1). Furthermore, the entropy HI, which is equal to the zeroth cepstral coefficient

c [0], is just the log of the model gain y2 . We may conclude that maximizing entropy

subject to knowledge of the correlations R [0], .. . ,R [p ] and cepstra c [1], ... , c [q ]

is thus equivalent to finding a minimum phase pole-zero model with p poles and q

zeroes, which has the largest possible gain ,y2 , and which also matches the correlations

R [0], ... , R [p ] and impulse response coefficients g [0], ... , g [q ].

Now to find the pole and zero coefficients. Multiplying both sides of (3.4) by

Ap (z) gives:

Ap(z)G(z) = Bq(Z) (3.12)

Equating like powers of z on both sides, and recognizing that g[O], . .. , g[q ] are

known, gives q + 1 linear equations relating the bn,q and an p coefficients.

bq ,q g [q -P ] g[q ] ap p

l,q g[O g[] ap (3.13)
1 0 g [0O] 1

or:

= Gp,qa (3.14)
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where i,e define the vectors b, a and the matrix Gp ,q in the obvious way. Note that

Gp ,q is a (q + 1) x (p + 1) rectangular upper triangular Toeplitz matrix. Now multiply

both sides of (3.2) by A,p (z) and substitute (3.4) to get:

Ap(z)P (z) = y 2 Bq (z)G (l/z) (3.15)

Since P(z) = ] R[n]z - , and we knowR[O ], . . . ,R [p] and g[O], . . ,g[q], by
n =-oc

equating terms with like powers of z on both sides of (3.15), we can construct p + 1

more linear equations relating the a n p and bn,q coefficients:

|[O] = ~R[/p] 12 (3.16)

R[-p] [O g*[q] g *[0]

or:

Rp a = y 2 GHq b (3.17)

where we define Rp as the (p + 1)x (p + 1) Toeplitz correlation matrix on the left of

(3.16), and where GHq = Gp q is the Hermitian (complex conjugate transpose) of

Gp ,q. We can eliminate the zero polynomial coefficients b by substituting (3.13), giv-

ing:

Ky(p ,q) a = (3.18)

where K(p ,q) = Rp - Y2 GHq Gp,q

Computing the solution to (3.18) requires finding a value of /2 such that K(p ,q) has

a non-trivial null space. Then d is an appropriately scaled member of this null space.

_ _1 __11_1·_1__4_____1__I_ 11111 I)-Y�ll· lll�r..l - ~ ~ - --
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This matrix K(p ,q) has a very interesting structure. Suppose that there exists

some minimum phase polynomial G (z) and gain /2 such that this polynomial matches

the given leading impulse response and correlation values:

g[n] = g[n] for n =O, ... ,q (3.19)

/2 OI g*[k]g[k+n] = R[n] for n=0 ... ,p
k=O

We do not assume that the polynomial G (z) has maximum entropy; in general, there

will be many such polynomials. Substituting into (3.18) shows that the K(p ,q) matrix

must equal:

K (pq) = 2 O : p ( -p] (3.20)

k=q+1 g*[k] J

The matrix K (p ,q) is thus equal to the covariance matrix formed from the tail of the

gi[n]. This matrix K(p ,q) must therefore be symmetric and positive semi-definite.

We conclude that the MEM gain j 2 must be chosen so that K(p ,q) is positive semi-

definite with a non-trivial null space, because otherwise the MEM model impulse

response o [n ] could not possibly meet the constraints.

To calculate the MEM gain, we multiply (3.18) through by 1/y2 , thus converting

the equation into the following generalized, conjugate symmetric eigenvalue problem:

Solve:

GpHq Gp ,q = i Rp (3.21)

I _
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for all generalized eigenvalues i and corresponding eigenvectors ai. (Note that the

conventional form of the generalized real symmetric eigenvalue problem requires the

matrix on the right hand side, Rp, to be conjugate symmetric and positive definite

[18, 19]). The MEM gain should then be set to the inverse of one of these generalized

eigenvalues, and the pole coefficient vector should be set to the corresponding eigen-

vector. But which eigenvalue do we choose for j 2? Appendix A proves:

Lemma 1 Assume that Rp > 0. Then the generalized eigenvalue problem
(3.21) has p + 1 non-negative eigenvalue solutions Xi . Let Xmax be the largest
eigenvalue; this will always be strictly positive, Xmax> 0. Then for y2 in the
range 0 < 2< 1/Xma, the matrix K.(p,q) will be strictly positive-definite.
For 2 = 1/Xmax the matrix K.$p ,q) is positive semixdefinite with a non-trivial
null space. For 2 > /Xma, the matrix Ky(p ,q) is not positive semi-definite.

Using this result, Appendix A proves:

Theorem 1 Assume that R > 0. Then:

A) j2 = /Xmax is the only choice for the gain which satisfies the requirements of
the Maximum Entropy problem.

B) Let P (z) = y 2 (z)G *(l/z ) be any power spectrum with minimum phase fac-
tor G(z), which matches the leading impulse response coefficients
g [0], . . , g [q ] and the correlations R [O], .. ., R [p]. Then the entropy of
this model, which has value H = log y2, is bounded above by H log y2.

We will call the model with gain 2 = 1/Xa, and pole/zero polynomials Ap (z),

Bq (z) which satisfy (3.18) and (3.13) the MEM (p ,q) solution. We can calculate this

MEM (p ,q) power spectrum by the following procedure:

1) Recursively compute the minimum phase coefficients g[0], ... ,g[q] from the

cepstral coefficients c [1], ... , c [q ] using (3.11).

- ·-�- CII---I�---·--·CI -�-·C-�^rr�--�·---x·^^----··-------·.--- --�-r-c- -·---·-- -·--·^---l-r�- --- s�l^ ---�-�--I-^-- -I-l---- ·*-m· - -- - - I --
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2) Construct the matrices Gp,q and Rp with (n ,m)th elements

[G,q]n,m = g[q-p +m -n] and [Rp]n,m = R [m-n].

3) Solve for the largest generalized eigenvalue kmax solution to (3.21) and its

corresponding eigenvector Xma x. Set /2 = 1/ma. Set d equal to a corresponding

eigenvector, scaled so that d OP = 1.

4) Recursively compute the / coefficients from (3.13).

5) The MEM (p ,q) power spectrum then has the form

p,q(z) = 2 Bq(Z) B/) (3.22)
Ap (z) AP (1/Z)

The special cases of pure Autoregressive (AR) or pure Moving Average (MA) models

are particularly easy to solve. For the MEM (p ,0) all-pole modeling problem:

0 ( o ... 0 )

(3.23)K.(p ,0) = Rp - 2 O (3.23)

1

and equation (3.18) reduces to solving:

ap, i 0

Rp al Jp I 2 (3.24)

This is exactly the problem Burg suggested, giving a p pole AR model matching the

first p + 1 correlations R [0], .. , R [p ]. Because Rp is Toeplitz, this may be solved

with a fast Levinson algorithm[5].

I _�
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Another special case that is easy to solve is the MEM (O,q) all-zero modeling prob-

lem, when only the zeroth correlation coefficient R [0] is known, together with q cep-

stral coefficients c [1], . . , c [q . Equation (3.18) gives:

2 _ R[0]

i lg[n]12 (3.25)
n=O

and the optimal B (z) polynomial is equal to the leading impulse response coefficients:

bn,q = g[n] for n=0,...,q (3.26)

The MEM(p,q) solution is very similar to the least squares, mixed first and

second order information problem suggested by Mullis and Roberts for filter design[9].

The chief difference is that in their problem, the gain y is effectively assumed to be

known, and the model is not forced to match the given correlations. As pointed out

by Mullis and Roberts, this method is also quite similar to Prony's ARMA modeling

method, in which we choose the pole polynomial which optimally linearly predicts the

semi-infinite tail of the impulse response data, and then find the zeroes from the lead-

ing impulse response coefficients. These similarities allow us to carry over many of the

stability results and fast algorithms that have been developed for these other methods.

4. Properties of the MEM(p,q) solution

The matrix K(p,q) has an interesting structure which allows us to prove a

variety of interesting properties for this MEM algorithm. From (3.18) we see that the

(n ,m)th element in this matrix has the formula:

_ IIIII�-----·----- �_·.__..�_^_II__L-·lLIY··Y·Llslll^·_(-^ �-__IXII -L__IL^-- - ~ ~ -__ I I
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[Ky(p q)] n = R[m-nl - y2 g*[k-p+n]g[k-p+m] (41)
k=O

where we define g [n ] = 0 for n <0. Careful examination of this formula shows that

we can recursively define Ky(p,q) in terms of the lower order matrix Ky(p - 1,q- 1)

in at least two different ways:

K (p,q) =

Ky(p -,q -1)
* I
* 

(4.2)

and

Kl(p ,q) =

R[o R[] ... R[p]
R[-l]

: K(p -1,q-l)

k[-P I g*[q-p ]
- Y2

g'[q] I ( g[q -P] .. g[q] )

(4.3)

R[n] if q -<p

where R[n = R[n] - y 2 [kg[k+n] if q >p and n -0
k=0

R[-n] if n <0

where * denotes elements whose values are not of immediate interest, and where we

define K./(n,m)- R if m < O0. These relationships indicate that K(p ,q) is an

almost-Toeplitz matrix with displacement rank of three[20,21]. It is this structure

which Mullis and Roberts exploited to derive a fast Levinson-like algorithm for finding

the vector d once i2 is known. This structure also allows us to analyze the existence,

uniqueness, and stability of the MEM (p,q) solution. Some of the theorems that fol-

low are improved versions of theorems in [91; others are new. For clarity, we first
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state the results for the special (and most common case) where the multiplicity, r, of

the largest eigenvalue Xmax is r = 1. Appendix B proves the following:

Theorem 2A Assume that Rp > 0, and that the maximum eigenvalue solution
hman to (3.21) has multiplicity r = 1. Let 2 = 1/Xmax Then:

A) K(p,q)-O0, and its null space has dimension 1. For l<s p,
Ki(p -s,q -s)-s> O.

B) The MEM (p ,q) problem has a unique solution j, Ap (z), Bq (z).

Appendix C proves:

Theorem 3 Under the same assumptions as in Theorem 2:

A) The MEM (p ,q) model pole polynomial Ap (z) is stable, with all poles inside
or on the unit circle.

B) If any poles are actually on the unit circle, then they will be canceled by
matching zeroes in the zero polynomial Bq (z).

C) Except for possible canceling pole-zero pairs on the unit circle, the MEM (p ,q)
model will have no other canceling pole-zero pairs.

Unfortunately, it is quite easy to construct cases in which the MEM (p ,q) solution

places canceling pole-zero pairs on the unit circle. Consider, for example, the follow-

ing MEM (1,1) problem: R [0] = 2, R [1] = 1, c [1] = 0. Using the recursive equation

(3.11), we derive g [0] = 1, and g [1] = 0. Constructing the R 1 and G 1, 1 matrices and

solving the generalized eigenvalue problem (3.21), we find that X0 = 1 and ,1 = 1/3.

Thus r = 1, and the unique MEM (1,1) solution is:

2 = 1/Xmax = 1

AB(z) = 1- z- 1

/61(Z) = 1 - -1

(4.4)

)1 �III_�1__· _·l*_rll __III____I�____I_�1IIIPV�·--- _--��-___�--·l-LI1�·^-·--�·sl1ll . . .- -II_ --- ·-- 1--_ -· - -· I I
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This model has a canceling pole-zero pair at 1. Its leading impulse response coeffi-

cients are [0] = 1 and g[1] = 0. Its power spectrum is i 1,1(z) = 1, and its correla-

tions are [01] = 1 and R [1] = 0. Note that although the impulse response values are

correct, the correlation values do not match the given values R [0] and R [1]. We will

return to this problem in theorem 5.

When the multiplicity r of the largest eigenvalue kma_ in (3.21) is greater than 1,

then the situation is more complicated. In this cas, it turns out that it is the

MEM (p - r + ,q - r + 1) problem which has a unique solution. The MEM (p ,q) solu-

tion differs from the MEM (p - r + l,q - r + 1) solution only in that it may contain up

to r - 1 extra canceling pole-zero pairs which may be placed anywhere. In more detail,

Appendix B proves:

Theorem 2B Assume that Rp > 0, and that the maximum eigenvalue solution
kmax to (3.21) has multiplicity r. Let 2 = 1/kmax. Then:

A) r min(p ,q ) + 1

B) For 0 < s < r, K(p -s ,q -s) > 0, and the null spaces of these matrices have
dimension r -s. For r < s < p, Ke(p -s,q -s) > 0.

C) The MEM(p-r+1,q-r+1) problem has a unique solution j, Ap _r+l(z),
Bq -r+(Z) ·

D) For s in the range O s < r, all solutions of the MEM (p -s ,q -s ) problem
have the same gain y as the MEM (p -r + 1,q -r + 1) solution.

E) For s in the range O0< s < r, the pole and zero polynomials Ap-s(z) and

Bq-s(z) are solutions to the MEM(p-s ,q-s) problem if and only if
Aps(z ) = Apr+1(Z)r_-s-1(Z) and Bqs(z) ) =Bqr+1(Z)r-_sl-(Z),
where r, _, -l() is a polynomial of order up to r -s -1 with leading coeffi-
cient 40 = 1. In other words, the MEM (p -s ,q -s ) solution is unique except
for having up to r - s - 1 canceling pole-zero pairs, 4 'r - - ( ) 

F) For s in the range Os < r, the MEM(p-s,q-s) power spectrum
/p -s,q -s (z) is uniquely defined, and is equal to the
MEM (p -r + 1,q -r + 1) power spectrum Pp r +1,q -r +(z).

_�
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Theorem 3 applies to the MEM (p -r + ,q -r + 1) model. Because the r - 1 canceling

pole-zero pairs in the MEM (p ,q) solution may be located arbitrarily, however, it is

impossible to guarantee that the MEM (p ,q) model has all its poles inside the unit cir-

cle.

Does the MEM (p ,q) solution match the given constraints and solve the original

Maximum Entropy problem? The answer is "yes" if the solution is strictly minimum

phase, but "no" otherwise. In more detail, Appendix D proves (for any multiplicity r):

Theorem 4 Assume that Rp > 0 and that Xmax has multiplicity r. Let
2 1/Xa, and let Ap (z ), Bq (z) be any pole-zero solution to the MEM (p ,q)

problem. Then:

A) The first q + 1 coefficients of the causal impulse response of Bq (z )/Ap (z) are
equal to g [0], ... ,g [q ].

B) If the poles of Ap (z) are strictly inside the unit circle, then the first p +1
correlations of the model are equal to R [0], . . ., R [p .

C) If the zeroes and the poles are all strictly inside the unit circle, so that the
model is strictly minimum phase, then the first q cepstral coefficients of the
model are equal to c[1], . .. , c[q]. Furthermore, the model is the solution
to our original constrained Maximum Entropy problem, with entropy equal to
H = log .

Appendix D qualifies these results with the following:

Theorem 5 Under the same assumptions as in theorem 4:

A) If the model has poles on the unit circle at Pi = ei ifor some set of wi, then
these will be canceled by matching zeroes at Pi. The model correlations R [n ]
will still be well defined, but they may no longer match the given correlations,
and the error may have the form:

si - 1

R [n] - R [n] = ijn 2 (4.5)
i j=O

where the xi j are some set of weights, and where s i is the multiplicity of
root Pi.

" _3 ------ I---·I- .^-. (^---�l�lllll--·---YI·-·---i·-·-1--��I__ __C· I sI 



20

B) If the poles are strictly inside the unit circle, but one or more zeroes are
strictly outside the unit circle, then the model will not match the cepstral
values c [1], . . , c [q], and the model entropy will be larger than log/2.

C) For either cases A) or B), there does not exist a finite and strictly positive
power spectrum meeting the Paley-Wiener condition which matches the given
correlation and cepstral values, and which also achieves the maximum possible
entropy.

Note that in our MEM (1,1) example above, with the canceling pole-zero pair at

P0 = 1, the correlation matching error has exactly the form predicted by this theorem,

R [n -R[n = .

To summarize, if the solution to the MEM (p ,q) problem is strictly minimum

phase, then it is the unique power spectrum solution to the constrained maximum

entropy problem. On the other hand, there are a variety of situations in which we

may encounter difficulties:

1) If the correlation matrix Rp is only positive semi-definite, then these theorems do

not apply. In this case, only one power spectrum exists which matches the known

correlations, and this is a line spectrum formed from p impulses[10]. The entropy

and the cepstral coefficients of this spectrum are not well defined.

2) If the maximum generalized eigenvalue solution Xma to (3.21) has multiplicity

r > 1, then canceling pole-zero pairs may occur outside the unit circle, and so

Ap (z) may be unstable.

3) The solution to the MEM (p -r + l,q -r + 1) problem, though unique, could have

one or more canceling pole-zero pairs located on the unit circle. In this case, the

model may not match the given correlations or cepstra.

P
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4) Even if all the poles of the MEM (p -r + l,q -r + 1) solution are strictly inside the

unit circle, one or more zeroes may be outside the unit circle. In this case, the

model will match the correlations R [0], ... ,R [p] and the causal impulse

response will match g [0], . .., g [q , but since the model is not minimum phase,

it will not match the cepstra c [1], .. ., c [q ].

In practice, when we estimate the correlations and cepstra from finite segments of

data, this fourth case occurs quite often. As a result, in practice the MEM (p ,q) solu-

tion often does not solve the original Maximum Entropy problem. We discuss this

further in section 7, where we present several as yet unproven speculations. In prac-

tice, when excessively high model orders are used, we should also note that it is com-

mon to see nearly canceling pole-zero pairs appear near the unit circle, causing

extremely sharp, randomly located spikes in the power spectrum.

5. Algorithms

The most straightforward algorithm for solving the MEM (p ,q) problem is to fol-

low the procedure outlined in section 3, building the matrices Rp and Gp q, and then

calling the RSG driver in the EISPACK library[22] to compute all the generalized

eigenvalues Xi and eigenvectors x/. If the multiplicity r of the largest eigenvalue is

greater than one, then the model order is too high and pole-zero cancellation is a pos-

sibility. (In practice we would have to test whether the largest eigenvalues are equal to

within a certain tolerance). Either decrease the model order to

MEM (p -r + 1,q -r + 1) and try again, or else find a linear combination of the eigen-

-- --C I·-·r^ P-----�-rur�·-·---r��--r-�· ---�---·-·- -------·lurr·l-··�lllr�.19---r-- -r^r�--------.-^-�_.I----- -- · - - 1
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vectors corresponding to X m which have the last r-1 coefficients all equal to 0. In

either case, we set /2= 1/kmaX derive the pole polynomial by scaling the eigenvector

corresponding to X ma, and derive the zero polynomial from equation (3.13).

A faster algorithm relies on the almost-Toeplitz displacement rank 3 structure of

K(p ,q ). We start by considering the following set of minimization problems:

an - min HK.(n,n+q-p)a (5.1)
a

for n = 0,...,p, where a = (an,n a1,n 1)T is a vector constrained to have

coefficient a O,n = 1, and dn is the value at which the function achieves its minimum.

Also define e n as the value of this quadratic function at the minimum:

e n = anH K(n ,n + q -p) an (5.2)

If we choose y 2 < 1/Xmax, then by Lemma 1, K(p,q)O0. Since by (4.2),

K,(n,n + q-p) is a principle minor of Ky(p,q), we must have KT(n,n + q-p ) 0

also. Thus (5.1) involves minimizing a quadratic positive semi-definite function. Dif-

ferentiating with respect to the real and imaginary parts of ak n and setting the results

to zero, we get a set of linear equations for the minimizing vector an . Substituting

into (5.2) we get a formula for e n . Combining these gives:

0

K,(n ,n + q-p ) an = 0 (5.3)

Because K/(n ,n + q -p) > 0, we have e n - 0. Note that our MEM (p ,q) problem is

therefore identical to solving the minimization problem (5.1) with gain 2 = 1/ max;
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with this gain we will have ep = 0.

Mullis and Roberts[9] recognized that the displacement rank 3 structure of

Ky(p ,q) allows us to remzrsi'vely and quickly compute the an, en solution in terms of

the an -1, n-1 solution. If the correct gain 2 = 1/max were known, therefore, we

could run this fast Levinson-style algorithm to compute an, en for n = 0, ... ,p.

With this correct gain 2 , we will get ep = 0, and the vector ap will be the pole poly-

nomial solution to the MEM (p ,q ) problem. We will show that the same algorithm can

also be used to test the positive definiteness of Ky(p ,q). With the guidance of Lemma

1, therefore, we can develop a search algorithm, based on this fast Levinson-style algo-

rithm, to find the value j 2 which makes K(p ,q) exactly positive semi-definite. The

MEM (p ,q) pole polynomial coefficients d = ap will be computed at the same time.

At least in theory, this algorithm can also be used to detect when the multiplicity r of

the largest eigenvalue is greater than 1; in this case, it automatically gives the unique

pole polynomial solution to the MEM (p -r + 1,q -r + 1) problem.

The Mullis and Roberts algorithm is motivated by the two recursive definitions of

KT(p ,q) in terms of K.(p - ,q- 1) given in equations (4.2) and (4.3). In order to

solve for an efficiently, we will need to calculate auxiliary vectors

n = (don,, . d,,n )T and fn = (fo,,n ... f,,n n )T which satisfy:

K !(n,n +q -p) = (5.4)

0

I - r -- -- I I -------- __ - - ~ ~ ~ ~ ~ ~ ~
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Ky(n ,n + q-p )f =
g [q -p1

g *[n +q-p] 

We will also need to recursively calculate the 2x 2 matrix M, defined by:

M n = fnH Ky(n ,n +q -p)
nH

( dn n ) (5.6)

In Appendix E we show that all these quantities can be recursively computed by the

following Levinson-style algorithm:

Mullis-Roberts Algorithm:

Initialization:

(5.5)

R[n] = 
R[n]

R[n] - y 2
q -

k =O
g *[k]g [k +n ]

for n=O, ... ,p

ao= ( 1 )

eo = R(O) - y 2 g [q-p] 12

do= (1E)

do = (g[qP/eo )
to = ( g *[q -p]lE)

1=O [q-P]
MO =eo ' gtqpI

For n= 1, ... , p

n-1 -

4n = R(n-k)ak,n-1
k=O

( l g[q-p] )
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n-I
dn = , g[q-p+n-k]ak,n-1

k=O

n. = 
'kA ,n

Pn

en =

IF n

dt , :

ak,n---I - ndn-k,n-1 + Y 'nfn-k,n-1

= Mn-l - 2n, - n n

en - nvn + 2*n n

=p OR en - 0 RETURN(n,en, a n )

vn
= d._ - -- a,_,t for k = 0,...,n

for k = 0

for k = 1, . . .,n

fk,n = fk,n-- e an -k,n for k = 0, . . . , n
en

1 Vn Vn In 
Mn = Mnl + 

The computation on each pass is approximately 6n + 11 operations (1 operation 1

multiply + 1 add). Total computation is thus about 3p2 + 14p operations.

Note that we terminate this iteration when en < 0. The purpose of this is as fol-

lows. If en < 0 for some n, then by equation (5.2), K (n ,n +q -p) cannot be posi-

tive semi-definite. Since by (4.2) this matrix is a principle minor of Ky(p ,q), this last

matrix cannot be positive semi-definite either. Thus -y2 is too large, and we might as

well terminate the iteration.

More interestingly, if y 2 = 2 = 1/Iax, then K(n ,n +q -p) > 0 for

0 -n <p-r+1 and K(p-r+1,q-r + 1) 0 with a null space of dimension one.

Equation (5.2) then guarantees that En > 0 for n = 0, ... p -r and Ep-r+1 = O.

I�I_ ___I_ I__ __I __ I_
- ---- �-l-----C--·- III ·I�--i� �^�rmr�-·^l--�-r�------�-11-1-·1------·"
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Also the minimizing solution ap - + 1 will be the MEM (p -r + 1,q -r + 1) pole polyno-

mial solution. Thus if y2 = 2, the test en < 0 will terminate the algorithm at step

n = p -r + 1, and will return the MEM (p -r + ,q -r + 1) solution ap -r +1

This algorithm has some interesting features when p > q. In this case, for

n = 0,...,p -q -1 we will have:

1 a 1,n (5.7)

an ,n

l1/en 0 

In = On = 

Vn = n n/n

For the first p -q -1 steps, therefore, this algorithm has the same form as Levinson

recursion, where a n plays the role of the forward predictor, end n plays the role of the

backward predictor, e n is the prediction error, and - ,n/en is the reflection coeffi-

cient. Furthermore, all these values on the first p -q -1 steps will be independent of

the value of y2 .

This algorithm will work correctly for any value of y2 , provided only that e n 0

for n =0, .. ,p-1. In particular, Ky(p,q) does not have to be positive semi-

definite. In fact, the values of e n can be used to test the positive definiteness of

Ky(p ,q). Appendix F proves the following:
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Theorem 6 Assume that we can find vectors an and scalars e n which satisfy
(5.3) for n = 0, ... ,p. Then:

A) If 0 -< y2 < 1/Xma, then e1 > · · · >p > 0. The Mullis-Roberts algo-
rithm will correctly generate all the an, en.

B) If y 2 = 1/max, then eg . - --pr >0 and ep-r+l= =e p = 0,
where r is the multiplicity of the largest eigenvalue Xma. The Mullis-Roberts
algorithm will correctly generate a,, en for n = 0, . .. ,p -r+l1. For

n =p-r +2,...,p we can set a = (OaT_ 1 )T and en = 0.

C) If y2 > 1/X a, then at least one en is strictly negative.

This theorem suggests a simple binary search algorithm for finding the proper gain

value 2= 1/kma, and for calculating the corresponding pole coefficients ap. The

idea is to guess a value for y2 , and then run the recursive Mullis-Roberts algorithm. If

the e n are all strictly positive, then K(p ,q) > 0 and the value of y 2 is too low. If one

of the en is negative or zero, then Kep ,q ) is not positive definite, and the value of y 2

is either exactly correct or too high. Adjust the value of y2 accordingly, and try again.

When the value of y2 is known to sufficient precision, we can stop the search, and use

the ap vector as the MEM (p ,q) pole polynomial solution. The zero polynomial coeffi-

cients may then be found using (3.13). Putting all this together, we get:

Complete MEM(p,q) Algorithm:

Initialization

2 = 0"YL

2 R [O]
IYH i g [k 12

k=O

tol = (small) preselected error tolerance

·L- _ - - -- I - ----- 1-.1-.1-.�----�----·---�-·--rr�-r-r 1�-�--·-111* 1_1 ___� .-�lpL---·------_ -_ __ I_
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Iterate until y 2 _ 2 < tol

2 = (y2 + y2)/2

A, E, a i - return values from Mullis-Roberts algorithm, using gain y 2

If i =p and ep>0

set L = y 2 and iterate

Else

set y 2 = y 2 and iterate

When y 2 _ 2 < totl, then DONE

Multiplicity r = p - + 1

Calculate the zero polynomial coefficients bk,q -r + 1 from (3.13)

Return y2, , akp-r+, bk,q-r+1

At each step in this binary search algorithm, y2 and y2 represent lower and

upper bounds on the feasible range of values of the gain, yL2 < y2 2. The initial

value y2 = 0 comes from Lemma 1. The initial value of y2 is found by noting that

for y2 larger than this, the (p ,p) element of Ke(p ,q) is negative, and thus K(p ,q)

cannot possibly be positive semi-definite. Each loop tests the value at the center of the

range, decides whether it is greater than, less than or equal to /2. Thus we can cut

the feasible range of values for /2 in half. Faster procedures than binary search could

probably be devised, but binary search has the advantage of achieving a given level of

precision for 2 after a fixed number of passes.

Due to numerical inaccuracies, it is likely that the preceding algorithm will

underestimate the multiplicity of the largest eigenvalue, and thus overestimate the
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model order. One potential method of improving this model order identification is to

run the binary search algorithm to estimate 2. Then call the Mullis-Roberts algorithm

again, this time using a gain 2 + tol2, where tol2 is a small positive number. With

the gain set slightly too high, the matrix will be slightly non-positive definite. In par-

ticular, if r is the true multiplicity of the largest eigenvalue, then p-r+l will be

slightly negative, and the iteration will stop at step p -r + 1 despite small numerical

errors. Thus the true multiplicity r will be correctly identified, and the Mullis-Roberts

algorithm can be run one last time, with the correct gain and model order

MEM (p -r + 1,q -r + 1), to identify the correct low-order ARMA model.

If p > q, then the first p - q + 1 steps of the recursive algorithm will give the same

results regardless of the value of y2 . To save time, therefore, we need only restart the

recursive algorithm at step n = p - q for each new value of y 2 that we test.

The following theorem, proved in Appendix G, is sometimes useful:

Theorem 7 Assume that Rp >0. Suppose that y 2 < 2 so that
e0 , . . . , ep > . Then:

A) The polynomial Ap (z) = akpz -k is strictly stable with all roots strictly
k=0

inside the unit circle.

B) Form the polynomial Bq (z) by substituting the coefficients of Ap (z) into the
recursion (3.13). Then the leading coefficients of the impulse response of
'YBq (z )lAp (z) match g [0], . . ., g [q ], but the correlations R [n ] of the model
are off by:

Irt

R[n]-l[n] If p d (5.8)
-In IAp (e 12 2w
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6. Pisarenko's Method

There is a special case of our MEM (p ,q) method which turns out to be identical

to Pisarenko's well known method for fitting a harmonic line spectrum to a set of

correlations[10]. Assume that there are at least as many zeroes as poles, q > p, and

that the known cepstral values are all zero, c [n ] = 0 for n = 1, ... , q. Also assume

that Rp > 0 (this is not necessary to prove the following results, but it allows us to

apply our theorems without modification). From the recursive equation (3.11), the

leading minimum phase coefficient values must be g[0] = 1 and g[n] = 0 for

n = 1, ... ,q. This implies that GH G q = I is an identity matrix, and that the

generalized eigenvector problem (3.21) will take the form:

X = XiRp (6.1)

The solutions for Xi will be the inverse of the eigenvalues of Rp, and the xi will be the

corresponding eigenvectors of Rp. Thus 2 = 1/Xmax will equal the minimum eigen-

value of Rp, and the MEM (p ,q) pole polynomial coefficients p will be the

corresponding eigenvector of Rp. From (3.13), the corresponding zero polynomial will

satisfy:

,pa for k= O,...,p (6.2)
bk,q = 0 else

and thus Bq (z) - Ap (z). Thus every pole must be canceled by a matching zero, and

any extra zeroes will be placed at the origin. Suppose that the multiplicity of the

minimum eigenvalue of Rp is r. Combining theorems 2 and 3, at least p -r + 1 pole-

zero pairs must be exactly on the unit circle.

I I
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Since there is complete pole-zero cancellation, the model power spectrum must be

flat, Pp, q (z) = /2, and the model correlations are just R [n ] = j2 8[n ], where [0] = 1

and [n ] = 0 for n * 0. Suppose the roots of Ap (z) that are on the unit circle are at

{ Pi }, and that they have multiplicities {si }. Then the correlation matching error for-

mula in Theorem 5 can be used to show that:

sit - 1

R[n] = 28[n] + ~ J 'ij n 2i p for n = 0,...,p (6.3)
i j=o

The first term represents the correlations of a white noise sequence with variance 2.

The second term represents the correlations of a sum of at least p -r +1 complex

exponentials. In effect, we have modeled the original correlation sequence R [n ] as the

sum of white noise plus at least p - r + 1 complex exponentials whose frequencies are

determined by the roots of Ap (z) which are on the unit circle. Note that the gains

p i j are not determined by our procedure, but would have to be calculated by other

means; for example, we could calculate these by factoring Ap (z) to find the roots Pi,

and then solve the set of linear equations (6.3) for the Ei j.

Finally, note that, except for the calculation of the zero polynomial,

Bq(z) =Ap (z), this procedure for fitting a sum of complex exponentials plus white

noise to a given correlation sequence is identical to that suggested by Pisarenko[10].

The interesting point is that we have shown that Pisarenko's method is a special case of

our pole-zero MEM method when q -p and when the known cepstral coefficients c [n]

are all set to zero.

_1 1 II�_ ___L�I II__IIIII__________·��__·�·�_·111�----· --- l1 --· - I I - I
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7. Speculation on Non-Minimum Phase MEM(p,q) Models

One troubling aspect of our MEM (p ,q) procedure is that the zero polynomial is

not guaranteed to be minimum phase, and thus the model is not guaranteed to match

the cepstra. Consider, for example, the situation where we are given R [0] and c [1].

Our MEM procedure says that the maximum entropy solution should be a single zero

model. To calculate it, we compute the leading coefficients of the minimum phase fac-

tor G (z) as follows: g [0]= 1, g [1]=c[1]. The MEM(0,1) model is then:

P 0, 1 (z) = /2 B 1( ); (l/z*) (7.1)

where:

Bl(z) = 1 + b,1z -1

b 1,1 = g[1] = c [1] (7.2)

2 R [01

1+ c[1112

The zero polynomial Bl(z) has a zero at -b 1 = -c[1]. For c [1] I < 1, this model

will be minimum phase. For Ic[l]J > 1, the model will not be minimum phase. In

fact, to illustrate Theorem 5, for c[l]l = b1 1 > 1, we can factor P0,1(z) into its

minimum times maximum phase factors as follows:

1 1 12P 0, 1(z) = 2 b1,112 (1+ z) (1+- ---.* ) (73)
b l, 1 b 1 ,1

The minimum phase factor is (1+ 1/ll 1z -1), and the first cepstral value of the model

is c[1] = l1/b;, which does not equal c[1]= 1,1- Furthermore, the entropy of this

model is log( 2 b1,1 12), which is larger than the value we expected, log 2
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This is quite puzzling, since it is easy to find high-order ARMA models which are

minimum phase and which match both R [0] and c [1], even when Ic [1] > 1. For

n Ic[n] < n +1, we will need a model with a total of at least n +1 poles and

zeroes. In fact, it is possible to devise numerical search techniques for finding high

order all-pole or all-zero models which match R [0] and c [1] and which have maximum

entropy for the given model order. For example, using a numerical search technique

sketched in Appendix H, we have found a minimum phase 500 pole model

y 2/A 500(z)A 00(l/z ) which has maximum entropy subject to the constraints that

R [0] = 5.7488221 and c [1] = - 1.1163325. The MEM (0,1) model for this problem has

model coefficients:

b 1 = -1.1163325

2 = 2.5593564

Our AR (500) model has gain y2 = 2.5586002, which is about .04% below the theoreti-

cal upper bound of j 2 above (see Theorem 1). This implies that the entropy of the

y2

g [0]
g [1]
g [2]
g [3]

R [0]
R [1]
R [2]
R[31

MEM(O,1) AR(500)

2.5593564 2.5586002

1 1
-1.11633 -1.11633
0 .00794
0 .00768

5.748822 5.748822
-2.857093 -2.877325
0 .0000698
0 .0000915

Table 7.1 - MEM (0,1) versus AR (500) models

v .
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Figure 7.1 - Error Between Impulse Response Coefficients of MEM(O,1) and
AR(500) Models
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Figure 7.2 - Error Between Correlations of MEM(O,1) and AR(500) Models
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Figure 7.3 - Power Spectra of MEM(O,1) (solid) and AR(500) (dotted) Models
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AR (500) model, H = logy 2, is very nearly equal to the maximum achievable entropy.

The first 4 leading impulse response coefficients and correlations for the MEM (0,1)

and AR (500) models are listed in table 7.1. The remaining impulse response coeffi-

cients of the AR (500) model taper to zero. Similarly, the peak AR (500) correlation

value for 2n--501 is .00016. Figures 7.1 and 7.2 show the errors between the

MEM (0,1) and AR (500) impulse responses and correlations. Note that the most signi-

ficant difference between these models is that the R[1] correlation of the AR (500)

model is significantly larger than that of the MEM(0,1) model. In fact, for the

AR (500) model, 2R [1]/R [0] > 1, which is not possible for a single zero model. -Figure

7.3 shows the power spectrum of the AR (500) model (dotted line) and the power spec-

trum of the MEM (0,1) model (solid line). Note that the AR (500) spectrum deviates

substantially from the MEM(0,1) spectrum in that there is a deep notch in the

AR (500) spectrum at frequency o = 0. On the basis of this and other similar experi-

ments, we speculate that the following statements may be true:

Speculation 1 Suppose the zero polynomial Bq (z) in the
MEM (p -r + 1,q -r + 1) problem has zeroes outside the unit circle. Then
there exists a sequence of minimum phase polynomials Gk(z) with gains /Yk,
such that the impulse response of 'ykGk(z) converges coefficient by coefficient
to the impulse response 2Bq_ r+l/Ap r+l(Z), and the entropy, logyk2, con-
verges from below to the upper bound log/2. Thus the MEM (p ,q) solution,
though not minimum phase, is a weak limit of a sequence of minimum phase
models which asymptotically attain the maximum entropy while meeting all
constraints.

Speculation 2 The power spectrum y2Gk (z)Gk (1/z ) does not converge point
by point to the MEM(p,q) power spectrum. Instead, for each zero
z i = pie which is outside the unit circle, Pi > 1, there is a notch in the

response yk IGk(eJ°)[| at frequency = Oi, and as k -. oo, the value of the

_I I _ _I_ ·II� I Il _II�^___ �I�----�1�-·___^- _Il---�L�II----lll ^-·I -- II_--- -.- I_ _ --- ·~ 
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power spectrum tends to zero at each of these points.

One way to characterize minimum phase polynomials Gk (z) is to compute the

unwrapped phase as z = ejo transverses the unit circle from = 0 to 2r. We define

the winding number as the difference between the unwrapped phase at z = ej 2"T and at

z = e j O divided by 2r. For a minimum phase polynomial, the winding number is

zero. For our MEM (p ,q) solution, the winding number will equal the negative of the

number of zeroes that are outside the unit circle. We speculate that at the notches in

the Gk (z), the phase rapidly shifts through a multiple of 27r so that the overall winding

number of the polynomial is zero; elsewhere the magnitude and wrapped phase of

Gk (z) approximate the MEM (p ,q) model.

8. Estimating the Correlations and Cepstra From Time Series Data

To apply our MEM method to estimate the power spectrum of a finite segment of

time-series data, it is necessary first to estimate the correlations and cepstra. Suppose

we are given complex-valued time series data x[0], . . . ,x[N-1], drawn from a sta-

tionary Gaussian random process with power spectrum Px(w). The ideal correlations

R [n ] and cepstra c [n ] of the process are defined by formulas (2.2) and (2.4). To esti-

mate these quantities from the given data, we can start by forming an initial estimate

of the power spectrum by applying a low pass window w [n ] to the data, such as a

Hamming window, and then compute the periodogram IN(o):

Px (e) = N(w) = 1 i(ej ) 2 (8.1)
Neff
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N-1
where X (eJ °) = w[nlx[n]e -J "

n=O

N-1

eff= E Iw[n]l 2

n=O

Inverse Fourier transforming the periodogram and the log periodogram then give esti-

mates of the correlation and cepstra respectively:

Ir

/I[n] = f Px(ejw)eJwn d (8.2)
2t

-11

c[n]= log (Ix(ejw) ) e j wn d (8.3)
-l2

When the periodogram is used as the power spectrum estimate, and rectangular data

windows are used, w [n ]- 1, then the correlation estimate is equal to:

1 N-i-n
[n = N , x [k x [k+n for n 0 (8.4)

k =0

In Appendix I we argue that for a rectangular data window, these periodogram-

based estimates are asymptotically consistent:

E[R [n ] R [n] (8.5)

Var[k[n]]~ tx2(ej ) --r

c[n] for n (8.6)
E c [n ] ] c [O] - for n = O (8.6)

1 n2
Var[ c[n]] N 6

where iL .577 is Euler's constant. Thus the correlation estimates and the cepstral

estimates for n 0 are asymptotically unbiased as the number of data samples N -oo,

_ --·-L -- ill 1---.1.1---�-·-� 11 I--·LI-^^--^-L--·I�--.�� �.�-- ----�I�-I * -·-�I II --.-
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and their variance tends toward 0.

One way to improve the estimates of the correlations and cepstra would be to first

compute a smooth, consistent power spectrum estimator Px (eJi ), and then use this

estimate in formulas (8.2) and (8.3) for R [n I and [n ]. Two basic approaches could

be used. A "classical" Blackman-Tukey approach would first estimate L correlations

from the data via equation (8.4). It would then multiply by a symmetric window

h [-L], . . . , h [L] which has a positive Fourier transform, H(ej ° ) > 0. The Fourier

Transform of the windowed correlations would then be a positive power spectrum esti-

mate ix (e i J). This could be plugged into the correlation and cepstral estimation for-

mulas (8.2) and (8.3), and then the MEM(p,q) algorithm could be run. (Note that

the correlation estimates will equal our original correlations multiplied by the window

h [n ]). By choosing the correlation window length L much smaller than the data

length, L << N, but much larger than the MEM model order, L >> p ,q, we can signi-

ficantly reduce the variation in the power spectrum estimate, and thus decrease the

variation in the cepstral estimates. The tradeoff is that a short window decreases the

resolution of the power spectrum estimate, and increases its bias. The resulting corre-

lation and cepstral estimates will thus also be biased. In particular, valleys in the

power spectrum tend to be "filled in" by the windowing, and sharp peaks tend to be

blurred.

An alternative "modern" approach would start by fitting a high order all-pole

MEM model to the first L correlations of the data. We choose L to be much smaller

than the number of data points, L <<N, but much larger than the desired ARMA

__ __I _ _ I__ __
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model order, L >> p ,q. A Yule-Walker method based on Levinson Recursion could

be used; this is identical to our technique for fitting an all-pole MEM (L ,0) model to

the correlations R [0], . .., R [L ]. This idea has been suggested in numerous contexts

for similar problems[23,24]. The resulting all-pole model A -y is guaranteed to be
AL(z)

minimum phase, and the first L model correlations are guaranteed to match the given

correlations. The model A'y_ is thus a good high order approximation to the
AL ()

minimum phase component of the power spectrum. We can use the impulse response

of 1/AL (z) as an estimate of £ [n], then use £ [n ] together with the original correlations

R [n ] to compute the MEM (p ,q) model. (It is not necessary to estimate the cepstral

values directly, though they could be derived recursively from g [n ].) By decreasing the

model order L of the initial all-pole approximation, we can achieve smoother initial

power spectrum estimates and thereby get cepstral estimates with lower variance.

However, decreasing the model order also increases the bias of the power spectrum

estimate, and the bias of the cepstral estimate.

9. Experimental Results

Figure 9.1 shows the result of using our MEM method with various order models

to approximate the impulse response of a minimum phase 8 pole, 4 zero model. The

correlations and cepstra were estimated directly from the periodogram via equations

(8.2) and (8.3), with a rectangular data window w [n ] 1. The dotted lines show the

periodogram of the data, while the solid lines show the MEM (4,0), MEM (6,2),

_ _ --
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MEM (8,2) and MEM (8,4) approximations. As expected, increasing the model order

produces a model spectrum which follows the actual spectrum more and more closely.

The MEM (8,4) spectrum exactly matches the data. For model orders higher than this,

the algorithm either detects that the largest eigenvalue has multiplicity greater than 1

and automatically decreases the model order to its correct value, or else it places extra

canceling pole-zero pairs exactly on the unit circle, as predicted by Theorem 3. In

either case, the model spectra exactly match the ideal spectrum.

Unfortunately, our MEM method does not perform as well when we must esti-

mate the correlations and cepstra from a finite segment of time-series data. Figure 9.2,

for example, shows the result of applying the method to data derived by passing an

impulse train with period 91 through the same 8 pole, 4 zero filter as used in figure

9.1. 12 different datasets were used, each 800 points long, each differing solely in the

initial phase of the impulse train excitation. Three different methods were used to gc n-

erate an initial power spectrum estimate from the 12 Hamming-windowed datasets. In

figure 9.2a, we used the periodogram. In figure 9.2b we applied a triangular lag win-

dow to the first L =50 correlations. In figure 9.2c we used an initial MEM (50,0)

approximation. Correlations and cepstra were computed via formulas (8.2) and (8.3)

from these initial power spectra. MEM (10,6) models were fit to the estimated correla-

tions and cepstra from each dataset, and the resulting spectra were drawn in solid

lines, superimposed on the periodogram. We deliberately used a model with an extra

pole and zero pair in order to demonstrate the behavior when the model order is set

too high.

I
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Note that the periodogram-based method in figure 9.2a shows 5 strong peaks

instead of 4, with resonances that are far too sharp. Note also the large variance in

the spectral models for the 12 datasets. 4 of the models are not minimum phase. In

figure 9.2b, using a 50 point triangular window on the correlations before estimating

the correlations and cepstra gives MEM models which follow the 4 peaks more

robustly. The valleys of the spectra, however, show the characteristic "filling in" due to

the initial windowing operation. All of the models are minimum phase. If we substi-

tute the original correlations for the windowed correlations, but use the cepstra from

the log windowed periodogram, then we would get MEM spectra with 5 strong, exces-

sively resonant peaks. (This is not shown). The spectra have a large amount of vari-

ance, and 11 of them are not minimum phase. This suggests that it is important to

start with correlation and cepstral estimates derived from the same initial power spec-

trum estimate.

Using an initial MEM(50,0) model to estimate the correlations and cepstra in fig-

ure 9.2c gives the best results. The models have low variance, and all conform closely

to the original filter shape. Note, however, the peculiar glitch in many of the models

near a frequency of 0.27. This is caused by a nearly canceling pole-zero pair located

virtually on the unit circle. None of the models are minimum phase. The culprit

appears to be related to Theorem 3. In all 12 datasets, the multiplicity of the largest

eigenvalue is estimated as r = 1. Given more poles and zeros than necessary, however,

the method tries to locate the extra poles and zeroes someplace where they will nearly

cancel. Unfortunately, by theorem 3, if the multiplicity r =1, then the only place

_ I � _ 1___1____111 1_ I� __^_�·· _�1_1�__11 ___ __ _ __----- __ __ -__ __
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canceling pole-zero pairs can be located is exactly on the unit circle. Since the extra

poles and zeroes do not exactly cancel, they are only placed near each other and near

the unit circle. The result is a sharp, highly variable "glitch" in the power spectrum.

Figure 9.2d shows the results when the correct model order, MEM (8,4) is used,

with an initial MEM (40,0) model to estimate the correlations and cepstra. Note that

the 12 model spectra are quite accurate, except for some variance in the depth of the

high frequency null in the spectrum. All are minimum phase.

Figure 9.3 shows the result of applying the method to a similar problem, where

white Gaussian noise is filtered through the same 8 pole, 4 zero model to produce a

colored Gaussian signal. 12 different datasets were generated, each 800 points long.

Exactly the same processing was used, except that the model order was increased to

MEM (12,8). Figure 9.3a was generated using an initial power spectrum estimate equal

to the periodogram. Figure 9.3b used a 60 point triangular lag window, while figure

9.3c used an initial MEM(60,0) model. The periodogram-based and MEM(60,0)

based models are very similar; all show some variance in the spectral envelope, together

with 2 sharp glitches caused by the 4 extra poles and zeroes being located in nearly

canceling pairs near the unit circle. The triangular-window based models have much

less variance, but show the characteristic "filling in" of the valleys. Figure 9.3d shows

the models generated with the correct MEM (8j4) model order, using the correlations

and cepstra derived from the periodogram. Note that the correct spectral envelope is

captured in all 12 datasets.
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Figure 9.2b - Impulse Train Excited Filter, Triangular Window Based
MEM(10,6) Model (solid), Periodogram (dotted)
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Figure 9.2c - Impulse Train Excited Filter, AR(50) Based MEM(10,6) Model
(solid), Periodogram (dotted)
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Figure 9.2d - Impulse Train Excited Filter, AR(40) Based MEM(8,4) Model
(solid), Periodogram (dotted)
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Model (solid), Periodogram (dotted)

1

.5



P(w)

0 .1 .2 .3 .4 .5

Figure 9.3b - Colored Gaussian Noise, Triangular Window Based
MEM(12,8) Model (solid), Periodogram (dotted)
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In general, resolution in the model power spectrum appears to be controlled by

the number of poles used in the model; adding more zeroes tends to improve the shape

of the spectral peaks. In practice it is rare for the method to detect multiple eigen-

values, even when the model order is set relatively high. Non-minimum phase models

do not appear to have significantly different shape than minimum phase models gen-

erated from datasets with the same stochastic behavior. When modeling data formed

from sinusoids in white Gaussian noise, the method tends to locate nearly canceling

pole-zero pairs near the correct frequencies; unfortunately, these result in peaks whose

position and shape appear to be highly variable. The worst problem, in general, is the

presence of sharp glitches in the power spectrum when the model order is high.

Further work is needed to devise an accurate model order estimation procedure, or to

eliminate this behavior.

10. Conclusions and Further Work

We have shown that the solution to the Maximum Entropy spectral estimation

problem, subject to constraints on the first p + 1 correlations and first q cepstral values,

is an ARMA model with p poles and q zeroes. To calculate the parameters of this

model, we converted the Maximum Entropy problem into an equivalent generalized

eigenvalue/eigenvector problem. The inverse of the maximum eigenvalue in this prob-

lem is the model gain; it is also the exponential of the entropy of the model. The

corresponding eigenvector contains the coefficients of the pole polynomial. The zero

polynomial coefficients are computed by a simple recursion. The solution is unique,
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except for possible pole-zero cancellation. The model is also stable, with all uncanceled

poles inside the unit circle. If all the zeroes are also inside the unit circle, then the

computed model matches all the given correlatiorn and cepstral values and it is the

Maximum Entropy solution. If the zero polynomial is not minimum phase, however,

then it does not match the cepstra, and there does not exist any minimum phase model

which matches the given constraints, has a finite and non-zero power spectrum, and

also achieves the maximum possible entropy. WVe speculate, however, that there exist

minimum phase models which match the correlations and cepstra, whose impulse

responses match that of the MEM (p ,q) model arbitrarily closely, and whose entropy is

arbitrarily close to the theoretical upper bound given by the MEM (p ,q) method.

Several issues regarding this algorithm require considerable work. The issue of

non-minimum phase models needs to be resolved more cleanly; in particular, a better

explanation would be helpful for why the non-minimum phase models seem to yield

spectra which are about as accurate as the minimum phase models. Better methods are

needed to estimate the correlations and cepstra more carefully from the given data, or

to modify the algorithm to give more accurate estimates from short segments of data.

Model order estimation procedures are needed. These would probably be based on

monitoring the value of the gain 2 or the error en as the model order is increased,

and picking a model order near the knee in this curve. Modifications to improve the

estimation of sinusoids in noise would be helpful. Most importantly, the problem of

nearly canceling pole-zero pairs appearing near the unit circle must be resolved.

Despite these difficulties, however, this new pole-zero MEM method is quite elegant,

and seems quite promising.
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Appendix A - Proofs of Lemma 1 and Theorem 1

Proof of Lemma 1

Assume that Rp > 0. Then we can always factor Rp in the form Rp = QHQ,

where Q is an invertible matrix. (For example, Q could be the upper triangular factor

computed by a Choleski decomposition [18]). Let Q-H be the inverse of QH. Then:

Q-HKY(p ,q)Q-1 = I - y2Q-H GH Gp ,q Q-1 (A.1)

Note that for all x:

HQ-HGH G Q-1' = HY> a0 (A.2)

where v = Gp,qQ-1x. Thus the matrix Q-HGH Gp,q Q-1 is positive semi-definite,

and it will have a complete set of orthonormal eigenvectors o, ... , p and

corresponding eigenvalues X0, . . , Xp, all of which are non-negative:

Q-HGH Gp,q Q-'i = i for i=O, ... ,p (A.3)

where Xi ->0

xixj =i j

where 8i i = 1 and i j = 0 for i j. Let us order the eigenvalues so that X0 is the

largest and p is the smallest, and let us define Xma = Xo.

We next show the connection between these eigenvalues and eigenvectors, and

the generalized eigenvalue problem (3.21). Suppose Xi, xi is an eigenvalue, eigenvec-

tor pair of the matrix Q-HGpH G Q-1. Let i = Q-1;x. Then:

GpHqpq G QH (Q-HGHq Gp q Q-l) , (A.4)
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=i QH&.

=i QHQ i

iRp 4

Thus Xi, y, is a generalized eigenvalue, eigenvector pair solving (3.21). Conversely, it

is easy to show that if i, i solves (3.21), then Xi and i = Q. is an eigenvalue,

eigenvector pair of the matrix Q-HGpHq Gp,q Q-1. Thus the generalized eigenvalue,

eigenvector problem (3.21) has the same (p + 1) non-negative eigenvalues as does the

matrix Q-HGHq Gpq Q-1. Also, the corresponding eigenvectors 0 , ... are

linearly related to the eigenvectors x 0, ... xp by ._ = Q-1Xz. Therefore they are

linearly independent and satisfy:

yHRp = = ij (A.5)

Now suppose that the maximum eigenvalue Xma has multiplicity r, so that

Xma = X0 = = Xr_ 1. For model orders q -0, the matrix Gp,q has at least one

non-zero element. Since Q is invertible, the number of non-zero eigenvalues of

Q-H GHpg Gp , Q- will equal the rank of Gp ,q; since this is at least one, Xma > 0.

Let v be an arbitrary non-zero vector. Because the v 0, . .., Yp form a basis, we

can always write as a linear combination of these eigenvectors:

= ii (A.6)
i=0

where at least one ai is non-zero. But then, using i = Q-lx. together with (A.1)

and (A.3):

-_lI-II _ _IL L_ ^-_.-I1--·---1I-I�I I�LILP-L_-I^I··----II �._ ------ --- II
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IHKyp,q)y = i a *Xai;HQ-HKy(pq)Q 1
i=o j=o

i= j =o

= i cti 12 (1-Y 2X,) (A.7)i=O

For 0- 2 < 1/Xma, every term on the right hand side of (A.7) will be non-negative,

and at least one will be strictly positive. Thus vHKy(p ,q)v > 0 for all v Q0, and

Ky(p ,q) will be strictly positive definite. For y 2 = 1/Xmax, terms 0 through r -1 will

be zero, so that:

vHK@ p q ) = I a 12(1-i/max) (A.8)
i =r

Thus Ky(p ,q) will be positive semi-definite, and its null space will be spanned by the

vectors vo, ... , -rl . Since these vectors are linearly independent, the null space of

KIp ,q) will have dimension r. For y2 > 1/Xmax, we will have vHI Kp ,q)vo < 0,

and so K,(p ,q) will not be positive semi-definite.

Proof of Theorem 1

If there exists some minimum phase model , G(z) which matches the given

correlations and impulse response coefficients, then section 3 shows that K,(p ,q) must

be positive semi-definite. By Lemma 1, this requires 0 -< y2 _< /Xmax. By section 3,

the entropy of the model is H = log y2 , and thus the entropy must be bounded above

by H < log j 2 = log 1/kma,.

�� ���_�_



47

For the MEM(p ,q) problem, we must choose y2 so that K(p ,q) is positive

semi-definite with a non-trivial null space. By Lemma 1, the only possible choice is

y2= 1/max1

_^X _·_^1·1 1__1_1_1 1__��___ ___ ·I �I�· I_
1_1·___1 _ -- i-l-~~
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Appendix B - Proof of Theorem 2

Assume that Rp > 0 and that Xma has multiplicity r. For notational conveni-

ence, we will call the nth order polynomial Vn (z)= X vkz- k a member of the null
k =

space of K,(n ,m) if the vector of coefficients v = (v n · · · v)T is a member of the

null space. (For convenience, we drop the model order index from the coefficients.)

Also, let us define K(n,m )- R if m < O but n > 0.

In Appendix A we proved that for 2 = 1/Xma, then K(p ,q)> 0, and its null

space has dimension r. This null space is spanned by the generalized eigenvectors

0o, ... · -1 Let us look for vectors v in the null space of K.(p ,q) whose last coef-

ficient is zero, v 0 = 0. This represents only one additional linear constraint on the

values of v , . ., v,; thus there will be at least an r -1 dimensional linear subspace of

vectors v' = (vp ... vl O)T which are elements of the null space of K(p ,q). But

equation (4.2) implies that if K (p ,q)v' = Q, then:
vy

K (p -,q-1) = (B.1)
V1

Thus K,(p- 1,q- 1) must have a null space with dimension at least equal to r- 1.

Applying this argument recursively for s = 1, ... ,r-l, we can show that

K.(p -s ,q -s) must have a null space with dimension of at least r -s.

Now let be the largest integer such that K (p -S,q -i) has a non-trivial null

space. By the reasoning above, s^ 2 r -1. Let A _5(Z) be any non-zero member of
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the null space of K,(p -s,q -s ):

K (p -,q -)

First we show that d C

A (z) = O, which

member of the null

would have:

O = P-S

= 0 (B.2)

do

* O0. Suppose this were not true. If 3 = p, then we would have

would contradict our definition that A_ (z) is a non-trivial

space of K,(p-i,q-i). For < p, using equation (4.2) we

p -s

K(p -/s,q -S) l

0

P-s Ks(p-S-1,q-S-1) (B.3)

d

But since K(p ,q) - 0, and since K(p - -1,q -S -1) is just the p - -1 order prin-

ciple minor of Ke(p ,q), we must have K.(p -- 1,q -- 1) > 0. By definition of ,

however, K (p-S-1,q-S-1) can have only a trivial null space and so this matrix

must be strictly positive definite. But then (B.3) implies that dn = 0 for

n = 1, ... , p - . This, however, contradicts our original assumption that A -(z) is

non-zero. Thus we have shown that ado + 0. We can therefore scale A -i (z) so that

d o = 1, and this scaled polynomial will still be a member of the null space of

I_ I·_ __I_ _ I _^_*_ II � I�_�I�___I�____I __1^_�1·___
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K (p - ,q -£ ). From now on, we assume that do0 = 1.

Clearly j, A (z) are gain and pole polynomial solutions for the

MEM (p - i ,q - i) problem. Let us define Bq _- () to be the corresponding zero poly-

nomial with coefficients:

n
bn = g[n-k]ak

k=O

where we define ak = 0 for k > p - .

(B.4)

Now we prove that both Ap _I(z) and z -1Ap _(z) are members of the null space

of K/(p -£ + 1,q -£ + 1). Using (4.2):

_ a-s

' ·
P -4

p-s

K/(p - + 1,q-5 + 1) 0

0

. o) P -s

d0

(B.5)

=0

Since K.(p - +1,q- + 1) 0, this shows that z -1 Ap_(z) is a member of the null

space of K(p -s + 1,q -s + 1).

Next, using (4.3) we can show that:

__
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P -s K,(p-S + 1,q - + 1)

0

p-s5 (B.6)

do

%_,q-i Io ) % -~ -+
= P S K4(p-s ,q -) - g[q-i+-n]d.

2 2

But since K(p -S-+1,q -S+1) 0, this equation must actually equal zero. This

shows that Ap (z) is a member of the null space of K (p - + 1,q -s + 1). In addi-

tion, since /2 l/km> 0, we must have b +1= 0. Since both A ._(z) and

z-l A (z) are members of the null space of K.(p -+1,q -S+1), and these two

polynomials correspond to linearly independent vectors of coefficients, the dimension

of the null space of K.(p - + 1,q - + 1) must be at least one greater than the dimen-

sion of the null space of K (p -s ,q -S).

Applying this argument recursively, we can show that for s = 0, . . ., , the poly-

nomials z-kA -(z) for k = 0, .. ,s are all members of the null space of

Kt(p - +s ,q- i +s). Since these members are all linearly independent, the dimen-

sion of the null space of K(p,q), which we assumed to be r, must be at least s+ 1.

_ __ __�e�l_ ��_ �__I� I�--·IIPl_-----LI I... --·- -I

I



52

Thus r - +1; however, we earlier showed that r s^++ 1. We conclude that

r = s+1. Furthermore, the same recursive argument shows that b; =0 for

n = q -r + 2, . .. , q . This in turn implies the following:

a) Matrix K.(p -r + 1,q -r + 1) -O with a null space with dimension one. There is

a unique member of its null space, Ap _r+l(z), with leading coefficient of d 0 = 1.

b) For s in the range 0 < s < r, the optimal gain for the MEM (p -s ,q -s ) problem

is exactly the same as the optimal gain 2 = 1/ma, for the MEM(p ,q) problem.

(This is because Lemma 1 guarantees that there is exactly one value of the gain

for which the matrix KY(p -s ,q -s ) is exactly positive semi-definite; is this gain

value.)

c) For s in the range O0- s < r, the null space of K.(p-s,q-s) has dimension

r-s, and is spanned by Apr+l(Z) . . . ,-r+s+lApr+l(Z). (The dimension

r -s is a consequence of our proof that £ = r -1. These vectors must be a basis

because we have shown that all r-s of them belong to the null space, and they

are all linearly independent; thus they must span the null space.)

d) For s in the range r s p, matrix Kt(p-s,q-s)> 0. (This is true because

K (p -s ,q -s) is a principle minor of K(p ,q), and thus must be at least positive

semi-definite. It is strictly positive definite because = r - 1 is the largest value of

s for which K/(p -s ,q -s) has a non-trivial null-space.)

e) For s in the range Os < r, Aps(z) is a solution to the MEM(p-s,q-s)

problem with d o = 1, if and only if:
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r-s-1 _n

Ap-s(z) - n z nAp-,r+1()(Z) = rs- (z)Ap-r+(Z) (B.7)
n=O

where 4rs-l(z) is some polynomial of order r -s -1 with leading coefficient

40= 1. (This is because Ap_s(z ) must be in the null space of K(p -s,q -s),

and therefore must be a linear combination of the basis vectors

Apr_(Z), ... ,z ++Ap_ -r_ 1(z). Conversely, every such linear combina-

tion must be an element of the null space, and therefore must be a solution to the

problem. We must have +0 = 1 in order to make d o = 1.)

Finally, for s in the range 0 - s < r, let Ap-s (z) be any pole polynomial solution to

the MEM (p -s,q -s) problem, so that Ap _(z) = )r s_l(Z)Ap -r +(Z) for some

r -s-1 order polynomial r-s-l(Z) with 4O = 1. Let Bq-_(z) be the corresponding

q -s order zero polynomial with coefficients:

n
bn = g[n-k]ak for n=0, ... (B.8)

k=O

where we define ak = 0 for k > p - s. Substituting for ak:

n r-s-1
bn = I g[n-k]adk-1 4l (B.9)

k=0 =0

r-s-1 n

+1 g[n-k]ldk l
1=0 k=l

r-s-1 A

= E z*l~bn-I
1=0

where dn and bn are the coefficients of the Ap-r +1(Z) and Bq -r +(z) polynomials.

But since b, = 0 for n = q -r + 2, . ., q, this implies that:

Bq _s( ) = _s _1(Z )Bq-r+1(Z)

__ I__ _L_~~~~~_ I_~ _ 1__1___1 _·_1�(_·_�___�
__ _ _ SIIg

(B.10)
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Thus Ap_ (z) and Bq_s(z) share up to r-s-1 common factors r_, -_(z). The

power spectrum, however, depends only on the ratio of Bq -s (z )/Ap -s (z), and there-

fore is uniquely determined, and is identical to the MEM(p -r + ,q -r + 1) power

spectrum Pp -r + 1,q -r + 1( z )

The multiplicity r must be less than or equal to the total number of eigenvalues,

r < p + 1. Also for p + 1l n > q + 1, K(p -n + l,q -n + 1) = Rp _ + 1 > O. Thus

r < q + 1. Combining gives r -< min(p ,q )+ 1.
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Appendix C - Proof of Theorem 3 and part A of Theorem 7

Assume that Rp > 0 and that Xmax has multiplicity r. Set y 2 in the range

0 < 2 < 1/Xmax, so that K(p ,q)- 0. For convenience, we will assume that if

2 = j 2 then r =1; the case r >1 can be treated by replacing p and q everywhere

below with p - r + 1 and q - r + 1 respectively. For notational convenience, let

K = Ky(p ,q). Let p be a solution to the minimization problem in (5.1) for n = p:

p - main HKap (C.1)

Then ep ap Kdp 0.

If p = 0, then Ap (z) = 1, and the pole polynomial is stable. For p > 1, let us fac-

tor the polynomial Ap(z)= (1-pz-1 )(z) where +(z) is a p-1 order polynomial

with %Io= 1, and p is one complex root of Ap(z). Minimizing (B.3) over all

a 1 · · ., ap is equivalent to minimizing over all 1,· ... 1p -1 and p. In particular,

if we factor the minimizing polynomial Ap (z) = (1- z - 1)4(z), and define vectors:

I+ A[ 11 O I (C.2)

then

and ( mus t be the solution to the following quadrati(C.3)

and must be the solution to the following quadratic minimization problem:

_ ___ _ ___ _I�_IC__�p_ _�_ 111_·� _ _
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p ( <'' /_H K (++ )

This minimum occurs at:

HKe m
= _ + K 

and the value at the minimum is:

(i"K- -) (k
,__+K__+

But p - 0 and by conjugate symmetry, _ H K _ = (HKt+) . Thus combining

(C.5) and (C.6):

!~l2
H

I_ K_L - ep

HK+41 + M~r

Using (C.2) and (4.2):

where strict inequality must hold since p > 1, r = 1, 0 = 1, and by Theorem 2,

KI - ,q - 1)> O. This guarantees that (C.5) is well-defined. Using (C.2) and

Ip -1

Iko

H
_ Ki-= - i2 1iq 12 (C.9)

56

L 1)J (C.4)

(C.5)

(C.6)

(C.7)

p -1

so

> 0

(4.3):

(C.8)

Y441+ )
-

%gap - i . . . Po
IC.Y(p - 1,q - )

( Ipp _1 ... 1' 
K (p - q - 1)
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= ,+HK,+ - 2 Iq 12

where we define:

n

iin = E g[n-k ]k (C.10)
k=O

and where we define O4 k = 0 for k > p -1. Combining (C.9) and (C.7):

I p 12 = 1 ef 12+ e (C.11)

The pole must therefore be inside or on the unit circle. Since we chose the root arbi-

trarily, all poles in Ap (z) must be inside or on the unit circle.

If the gain y2 is below /2 = 1/max, then K > 0 and , > O0. Thus IP < 1, and

every root of Ap (z) will be strictly inside the unit circle. (This proves part A of

Theorem 7). If y2= 2= 1/Xma, however, then p = 0, and Aip(z) will be the

MEM(p,q) pole polynomial. All the roots of Ap(z) will be either inside or on the

unit circle. From (C.11), a root of Ap,(z) can be on the unit circle if and only if

uiq = 0. But then if we examine the zero polynomial corresponding to Ap (z):

n
bn = I g[n-k]dk (C.12)

k=O

= I g[n-k]k - pg[n-k]Pk- 1
k=O

= An -P An_ 1

so that:

I _ _ I _ I_ ___� ____IIU· _^_ I__ _I _II�_ ·_ _ __ 
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Bq(z)= (1-pz-1)I(z) (C.13)

where (z) is a q -1 order polynomial with coefficients 10, ., q1 Thus if the

MEM (p ,q) pole polynomial Ap (z) has a pole p on the unit circle, then the

corresponding zero polynomial Bq (z) must have a canceling zero on the unit circle at

p.

Now we will prove that all canceling pole-zero pairs in the MEM (p ,q) model

must be on the unit circle. Suppose that A, (z) and Bq(z) share a common factor

(1-bz- 1 ). As above, Ap (z) = (1-z 1) (z), where +(z) is an order p-1 polyno-

mial with leading coefficient 0 = 1. The coefficients of the corresponding zero poly-

nomial must obey (C.12). This implies that:

Bq(z) - -n + !iq (C.14)q(Z) ( 1 -1) ql -1
k=O

But we assumed that (1-pz -1) was a factor of Bq(z); thus Aq = 0. But then from

(C.11), I I = 1, and so this canceling pole-zero pair must be on the unit circle.

_ I �_ __ I I
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Appendix D - Proof of Theorems 4 and 5

Proof of 4A)

Let [n] be the causal impulse response of Bq(z)/p(z). By definition, for

n <0, [n] = 0, and for O< n -<q:

Y =[n -k]dk bk (D.1)
k=O

But the MEM (p ,q) solution must also satisfy equation (3.13):

g[n-k]dk = bk for n =, .... q (D.2)
k=O

Define eg[n] = g [n]-[n], subtract (D.1) from (D.2), and write the result in matrix

form:

1 0
di1 1

... = (D.3)

dq · d 1 eg [q ]

Since the matrix is invertible, eg [n ] = 0 for n =0, O..., q and the first q + 1 coeffi-

cients of the model impulse response must match the given data, g [n ] = g [n ].

Proof of 4B)

Let ip ,q (z) be the model power spectrum:

pq(Z) = 2 q()Bq (l/z*) (D.4)
/Ap (z )p;(1/z *)

_ I_ ��II· II_� � _�I_ �I� _ _L�� I_·�_ I �_
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and let R [n I be the correlations of the model. R [n ] is just the inverse z-transform of

Pp,q(z). Multiplying through by Ap(z), identifying the leading coefficients of

Bq (1/z )/A (1/z*) as g [-n], and equating terms with equal powers of z, we get an

equation similar in form to (3.16):

Rp a = i 2 Gp,q (D.5)

where correlation matrix Rp has (n,m )th element R [m -n ], and Gp,q has (n ,m)th

element [q -p +m -n]. But the MEM(p,q) model j, d, k must also satisfy equa-

tion (3.16). Recognizing that [n] = g[n for n - q, and thus Gp,q = Gp,q sub-

tracting (D.5) from (3.16) gives:

eR [°] fR p

e .R[-P : eR[O]~R [[ aER[ I Q (D .6)

where R [n I = R [n ]-R [n I is the correlation matching error. To analyze these error

values, let us extrapolate the tails of eR [n by forward and backward prediction using

the pole polynomial coefficients dk:

RR[n] = - dlR [n -1]- * * -apeR[n -P] for n = p +1,p + 2,... (D.7)

eR[n] = - eR[n +1]- ... - aR[n +p for n = -p -1,-p -2,...

Using (D.6) and (D.7) we can show that:

i fER[n-k+l] l d dk = 0 for all n (D.8)
1=0 k=O

If the polynomial Ap (z) has all its roots strictly inside the unit circle, then the extrapo-

lated sequence ER[n] will decay exponentially to zero, and thus must be absolutely

_ __ � __1_1__�
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summable. Therefore the Fourier transform ER (eJ°) exists and is finite for all w.

Fourier Transforming (D.8) gives:

ER(e") IAp(ej() 12 = 0 (D.9)

Since all of the roots of Ap (z) are strictly inside the unit circle, Ap (eJ°) 12> 0 for

all o. Thus we must have ER (eJw) = 0 for all o, which implies that R [n] = 0 for all

n. Thus the model must match the given correlations.

Proof of 5A)

If A (z) has one or more roots Pi on the unit circle, pi = eJ i, then the argu-

ment above breaks down. First of all, Theorem 3 guarantees that any poles on the

unit circle must be canceled by matching zeroes. Thus the power spectrum of the

model has a Region Of Convergence which includes the unit circle, and the correla-

tions are still well-defined. The extrapolated tails of ER [n], however, may oscillate at

the frequencies of the roots on the unit circle. Suppose that the roots of Ap (z) are all

different. Then the tails of ER [n] will be bounded, but may not be absolutely summ-

able. The Fourier Transform eR(ej) may therefore contain impulses. In particular,

since i Ap (eJ) I 2 = 0 at the frequencies o = o i , a non-zero solution for R (eJw) in

(D.9) will be a weighted sum of impulses located at the unit circle roots e 3i:

ER(eJw) = A Ii 8(o-coi) (D.10)
i

for some set of weights Ai . Inverse Transforming:

_ _ ---_ll�-·lslll�-··L-1---·11111-_ - - - � - - I-- I I I-_ I I
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· R [n]= C ~ 0/ER[fl = 2 Pi Pi (D.11)

More generally, if Ap(z) has roots Pi with multiplicities si, then ER(eJ °) will be a

weighted sum of impulses and impulse derivatives of order up to 2si -1. Since R [n]

is even, however, only even order derivatives can be present. Thus eR (eJ ° ) will con-

tain terms such as pin, n 2p,..., n 2 i p .

Proof of 4C)

If G(z) =Bq(z)lAp(z) is strictly minimum phase, then by Theorem 4A, its

impulse response has the correct first q + 1 coefficients g [0], ... , g [q ]. Rewriting the

recursive equation (3.10) to define the cepstra in terms of the minimum phase coeffi-

cients:

1 n
c[n] =- k k g[klg[n-kl (D.12)

k=O

This equation provides a one-to-one mapping between the g [0], ... , g [q] and

c [1], . . , c [q ]. Thus the first q + 1 cepstral coefficients c [n ] must equal the specified

values c [1], . . ., c [q ]. Furthermore, the entropy of the model is log /2. By Theorem

1, however, this is the maximum possible entropy of any model matching the given

data. Therefore, the MEM (p ,q) solution is indeed the solution to the constrained

Maximum Entropy problem. By Theorem 2, it is unique except for possible pole-zero

cancellation if the multiplicity of Xma is greater than 1.

_--L
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Proof of 5B)

Suppose that Bq (z) is not minimum phase, so that it has zeroes strictly outside the

unit circle. Suppose there are qo zeroes outside the unit circle, po, ... Pqo-1, and

q -qO zeroes inside, PqO' ... Pq-1

q0 -1 q-1
Bq(Z) = (1-Piz- 1 ) I (-pjz 1 ) (D.13)

i=O j =qo

To calculate the model cepstral values c [1], . ... ,[q], we need to factor the model

power spectrum into a gain times a minimum phase factor times a maximum phase fac-

tor. In this case we get:

Dq(z) D (1/z )

Ap(z) Ap (1/z )

where:

qO -I 1 -1 q-1
Dq(Z) = n (1--z-) 1 (1-1

i=O Pi =q

.2 = 2 q° 1 2
i=O

The impulse response g'[n ] of this minimi

0 g'[O] do

dq a I 1 g'[q dq

where the dk are the coefficients of D (z).

jz - 1)

im phase factor D (z )/A (z) satisfies:

(D.14)

(D.15)

(D.16)

Subtracting this from (D.2):

Pp,q(Z)= 2

I_ �__ 1_1__ 11 _____1111_··_1_11__·_ ..�-IX--.*� II IIIlll^-·l---�·L·_l·i�-YII.- ii...... -1__�---- ·111 1 -- -_I- --- _1
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1 .|=1 | g[0]_gtIo] (D.17)

a * a 1 g[q]-g'[q] b-d

Since the matrix on the left is invertible, and since the right hand side is non-zero, at

least one of the coefficients of the minimum phase factor g'[n ] does not match g [n].

Since equation (D.12) defines a one-to-one mapping between the minimum phase coef-

ficients g'[0], ... , g '[q] and the model cepstral values c[1], .. ,c[q], the model

cepstrum cannot match all the original cepstra c [1], ... , c [q ].

Finally, the entropy will equal:

H = ogy2 (D.18)

q -1
=log 2 + 52 logpi 12

i=O

> logj 2

where the strict inequality holds because po, ... , PqO-1 are outside the unit circle,

and thus have magnitudes greater than one. The MEM (p ,q) model does not solve the

original Maximum Entropy problem. We conclude that there does not exist any

strictly positive, finite power spectrum P (ejw) meeting the Paley-Wiener condition

which matches the given correlations and cepstra, and which achieves the maximum

possible entropy.
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Appendix E - Derivation of Fast Levinson-Style Algorithm

Assume that we already have the values a n -1, dn -1, fn -1 and M n -1. Now

using (4.2):

Ky(n ,n +q -p)

0 n g[q -p] I
an -,n -1 0 

- '2*n '(E.1)
a ,n -1 0 

1 en -1 g [n +q-p]

n-i -
where 4 n = R(n-k)ak,n-1

k=o

n-I
%Pn = , g[q-p +n-k]ak,n- 1

k =0

Using (4.3):

|K. ||(nn | + -p (E.2)

where v n = kz [ K(n' q-p) ]n

where n = [ K(n,n +q -p) d fk,n -1KY~n~ + -p) f + (E.3)fn - ,n -1 =

n-1
where ir n = Z [ K(n,n +q -p) ]9 f, -[n q+q-p ]

We can now compute an by combining linear multiples of dn 1 and fn- then com-

pute dn by combining linear multiples of dn- 1 and an, and then compute f, by com-

bining linear multiples of fn-1 and an . The value of en can be found by direct substi-
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tution. These update formulas are given in the algorithm listing in section 5.

To compute M n recursively, we start by expanding dn and fn in terms of dn-1,

fn - and an:

M n H 1 I H Ky(n,n + q -p) (E.4)
{n -~n 1

(n- Jn- (, nn ) J

Writing this out as a sum of four terms, and using (4.2) and (5.3), gives the update

formula for M n in section 5. Finally, we can avoid having to calculate v n and n

directly by noting that:

fH O Ky(nn +q-p)- o (E.)

= [°) j (E.5)

But also:

fn'riHn1 O O (E.6)

nH 1 0 K( , n + q -p) a (E.6) = [dni 0) KY(nn+q-P) (en-i) + 0 J t I
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1 0 - 0 n 0) - n
g [q -p .] . g[n+q-pl+ n an -1 'Y2 n

= 2, + Mn_ I1
*n + Ln ! y *n

Equating these gives the formula relating vn, ixn to 4n, *n given in section 5. Thus

we can derive v n and i n from this formula, rather than calculating them directly.

This is particularly advantageous, since we no longer need to calculate the actual ele-

ments of the Ky(n ,n + q -p) matrix.

_ _ _ _IL__�� __III__�I___IW____·l��_II I-_1I �11 II 1.1_ I.I�-�·IPII�·····P�·�···P - - I
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Appendix F - Proof of Theorem 6

The proof of this theorem relies on two key formulas involving the e n. The first

formula is:

E0 0

AHKYp,q)A = 0

0 p

1 al,1
1

where A =

To prove this formula, note that

left is:

( HQ) Ky(p,q) )

I
ap

. al

1

for n <

(F.1)

I
m, the (n,m)th element of the matrix on the

( H) K(m,m + q -p) am

- (aH QH) 1
(F.2)

if n =m

if n<m

where we used (4.2) in the first line and (5.3) in the second. The case n > m can be

treated similarly. We now invoke Sylvester's law of inertia[18, 19] which states that

since A is invertible, the matrix AH K(p ,q) A must have the same number of positive

eigenvalues as K(p ,q), the same number of negative eigenvalues, and the same

Enf,
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number of zero eigenvalues. The eigenvalues of AH K(p ,q)A, however, are

e0, . . Thus, using Lemma 1, if 0 -< y 2 < 1/Ximax, then K(p ,q) > O and all the

values of e, must be strictly positive. If y2 > 1/Xma, then Ky(p ,q) has at least one

negative eigenvalue, so at least one value en is negative. If y2 = 1/X ma then

Ky(p ,q) - 0, it will have r eigenvalues equal to zero, and thus r of the values en will

be zero and the rest will be strictly positive.

To prove that the sequence of en is decreasing for Ky(p ,q) -0, we combine the

formulas for e n and v n , pn in the Mullis-Roberts algorithm in section 5:

= on( Pn ' |in ) (F.3)

[= _n ( _ 2, n 2

Now if K(p ,q) O, then by (4.2) K(n-1,n-1+q-p)-O, and by (5.6),

Mn -1I 0 also. Thus en - en -1 for all n. For y2 < 1/max, therefore, the values of

en decrease with n, and are non-negative. For y2 = 1/X m,, the last r values must be

zero.

For Ky(p ,q) > O, all the en will be strictly positive, and therefore we can run the

Mullis-Roberts algorithm for steps n = 0, .. ., p to calculate all the an, en. If

K( p ,q) -0 with an r dimensional null space, then en > 0 for n = 0, . . . ,p-r but

ep-r+1 = 0. Thus we must stop the Mullis-Roberts algorithm at step n =p -r + 1.

However, Theorem 2 guarantees that the vectors an = (0 aT 1 )T for

___ _ ·I� __� I_I �
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n =p-r+2,... ,p will be elements of the null space of K¥(n,n +q-p), and thus

satisfy the assumptions of this theorem with e, = 0 for n = p -r +2, ... ,p.

Q
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Appendix G - Proof of Theorem 7

Let 0 < /2 < 1/Xma. By Theorem 6, the Mullis-Roberts algorithm will be able to

calculate the unique p th order solution ap, p .

Appendix C proves that for y2 < i 2 , the pole polynomial solution to (5.1) is

strictly stable with all poles strictly inside the unit circle. To prove part B of Theorem

7, let us define the zero polynomial Bq (z) by substituting the coefficients of Ap (z) into

the recursion (3.13). Following the proof in Appendix D, we can show that the lead-

ing coefficients of the impulse response of our model exactly match the given values

g [0], . ., g [q ]. The correlation matching proof proceeds similarly to that in Appen-

dix D, except that we find that:

d] |(G.1)
tr R [ - P " eR[O] [0 ] .. 'R I P I I I a 1 I 

We can extrapolate R [n] forwards and backwards as in Appendix D. We can then

show that:

i i R[n -k+l]al ak = ep8[n] for all n (G.2)
1 =0 k =0

Since the pole polynomial is guaranteed by part A to be strictly stable, the extrapolated

tails decay exponentially and are thus absolutely summable. We can thus Fourier

Transform both sides of (G.2) to give:

eR (e j ') Ap (e ) = p (G.3)

I _I - I _ - -- II-·���-- ---------�-�L·-·- -rc-�--·- - -- --·ru·r�-----,·l---- ---- -r-~·r-~ - --
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Dividing through by IAp(eJ') 2 and inverse transforming:

R[n] - R[n] = f I j 12 ejo n d

-f Ap(e2¶) 2ir
(G.4)
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Appendix H - High Order Minimum Phase AR Approximations to Non-Minimum

Phase Models

To find a minimum phase all-pole (AR) model eN/AN(Z)AN (11z ) which matches

R [0] and c [1] and which achieves maximum entropy for a given model order, we will

try searching over the reflection coefficient domain. The reflection coefficients

k 1, . . ., kN are related to an Nth order polynomial AN(z) by a Levinson recursion,

which builds an n th order polynomial A n (z) from linear combinations of the n- 1 th

order polynomial A n - (Z):

An(z) = A_1(z) + knz -Anl(1/z*) for n = 1,. ,N (H.1)

where A 0(z) -- 1. Simply by keeping all k n less than 1 in magnitude, we can force the

all-pole model to be minimum phase. Furthermore, if we choose the model gain eN by

the following recursive calculation:

e 0 = R [0] (H.2)

en = e-l(l- Ikn 12)

then each nth order model / IA,(z)A (1/z ) will have the zeroth correlation coeffi-

cient equal to R [0]. The model entropy will be:

H = loge N = logR [0] + log(1- 1k n 12 ) (H.3)
n=1

Furthermore, the first cepstral coefficient will be

N
c[1] = -al = -(k 1 + knkn- 1 ) (H.4)

n=2

The Maximum Entropy Nth order all-pole model matching R [0] and c [1] can now be

found by maximizing (H.3) subject to the constraint (H.4) and subject to Ikn I < 1.

_ _ 1__ 1--·- 1 1 -1 111--· _11_ ~~~~·-I -II~~~9-IYU-1D - -- ---_ _ -~
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Introducing Lagrange multiplier X for constraint (H.4), building the Lagrangian, and

then differentiating the find the critical point, we can show that the reflection coeffi-

cients achieving maximum entropy while meeting the constraints must satisfy: (we

assume all quantities are real-valued)

2ki
(ki - 1 + k +1 ) (H.5)

1-1ki 12

where we define k 0 = 1 and kN+1 = O. An exact AR (oo) solution for c [1] = b = -1

is X = 1 and kn = 1/(n + 1). For finite order AR models with c [1] somewhat more

negative than -1, the solution will generally have X slightly greater than 1, and k n

slightly greater than 1/(n + 1). A relaxation algorithm based on equation (H.5) can be

used to find these values. Choose an appropriate AR model order N, try an initial

guess of kn = 1/(n + 1), and guess an initial value for X. Now repeatedly solve (H.5)

for k n for n = 1, . . . ,N. Iterate until the estimates converge. While iterating, com-

pute the value of c [1] in (H.4). If this is larger (smaller) than desired, then decrease

(increase) X.
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Appendix I - Asymptotic Behavior of Correlations, Cepstral Estimates

To estimate the asymptotic behavior of the correlations and cepstral estimates

derived from a periodogram, let us approximate the complex-valued, zero-mean Gaus-

sian sequence x [n ] as periodic with period N. As N - , we would expect this approx-

imation to give asymptotically valid formulas for the means and variances of estimators

based on the data. (See, for example[25] or [26]). The power spectrum will be a line

spectrum:

N-I 217k
Px(o) PX(wk) 8(o- k) for ok = (I.1)

k=

and the periodic correlations and cepstra are defined by:

1 N-1 (.2)

N k=O

[n] = N-l Ogpx(ok)ejok ndin] = N

Let X (wk) be the Discrete Fourier Transform (DFT) of x [n ]:

N-i

X(^k) = x[n]el-kfl (I.3)
n=O

It is easy to show that the real and imaginary parts of /-X (k) are independent

Gaussian random variables with zero mean and variance Px (ok):

E ReX(o,) = E I ImX(ok) =0 (1.4)

E[ ReX(Wk) ReX(w) = E I M]X(wk)IMX(,)

_ - _- I I II.
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1

= 0

E ReX(mk ) mX(i/)]· [ 1~~~~~

for k=0

else

=0

Given x [n 1, let us

1 12.
PX(Wk) = j IX(k)12

N

estimate the power as equal to the periodogram,

Inverse transform the periodogram and the log periodogram

to get the correlation and cepstral estimates R [n ] and c [n respectively.

the mean and variance of the estimates, we will use the formula:

Cov[u , v] = E[uv ] - E[u JE[v ]

and where x, y, z and w are Gaussian:

E[xyzw ] = E[xy E[zw ] + E[xz ]E[yw ] + E[xw ]E[yz]

Then:

E[R ]]
1 N-1

N k=" =O

N
N

Ix (k) 12 ] = R[n]

To compute

(1.6)

(I.7)

Cov N Ix(Wk) 12, IX (,) 12 '
1 N-1N-1

= 2 I 0N 2 k=0 =0

1
N 2

To compute the statistics of the cepstral estimates, we will use formulas from [271:

1
logN Ix(ok) 12

1ogPx (o ) +

I e
j w(kn

cc

fe tlogt dt
0

(1.5)

N-1
Px2(ok) eJ Wk (n-m)

k=O

ei(wkn -oim)

(I.8)

E[ [n] 

1 N-1

Nk=O

1 N-1

N =O

t I eJ neJU^

cov [n h IM 



= c[n] - y8[n]

[n] , [m] N1 N-1 N-1

N 2 k=O 1=0
Cov 1

log 
N

Ix(ok) 12,log I x(W) 12
N I i(wokn -colm)

N= -
N 2 k=0

LI
x0 et (logt) 2dt- y 2 J

1 2

(n-m)N 6

ewk (n -m )

(I.10)

where y = .577 is Euler's constant.
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Co[

(1.9)

ii - __ I - --- - -- · - --- -�----- -- -
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