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Chapter 1

Introduction

1.1 Signal abstractions in signal processing

In this thesis, we explore the use of signal abstractions as an organizational principle
for real-world signal processing systems in the context of frequency, power and

direction tracking of helicopters based on acoustic microphone signals.

In the case of signal processing problems lacking satisfactory models for the sig-
nal and noise and involving low signal-to-noise ratios, such as helicopter tracking,
signal processing systems with adequate performance on real data are usually de-
veloped by heuristic modifications of the algorithms derived from idealized models.
The programming paradigm commonly used in expressing such heuristic modifica-,
tions has been that of procedural abstraction, whereby the program is decomposed
into several procedures, with each procedure accomplishing an identifiable task that
can be used as a module in other procedures [Abelson & Sussman 1985|. Procedural
abstraction alone is not always appropriate for expressing heuristic modifications,
leading to programs that are difficult to understand and maintain, especially when
such modifications are related not directly to the numeric signal, but to higher-level

structures in the signal, such as peaks or harmonically-related sets of peaks.

16



~ As a step toward increasing the clarity and flexibility of signal processing pro-
m that perform on real data, this thesis uses signal abstractions. A signal
abstraction is a view of a signal as consisting of multiple levels, with higher levels
of abstraction obtained by suppressing information (i.e. detail) in lower levels. As
an example, consider a helicopter spectrum. At the lowest level of abstractién, it
is a discrete function of power versus frequency. At a higher level, it consists of
several well distinguished peaks. At an even higher level, it consists of two sets
of harmonically related peaks, corresponding to the main and the tail rotor of the
helicopter. A high level of abstraction supports a smaller set of inferences than a
lower level of abstraction, but hopefully does so more elegantly, i.e. with simpler

programs, and economically, i.e. with less computation.

In the thesis, we arrive at the suitability of signal abstractions as a useful concept
in signal processing from two distinct routes. The first is an extension of data
abstraction for suppressing implementation details in the computer representation
of signals, as proposed by {Kopec1984, Dovel984]. The second is the observation
that when human experts perform signal processing interactively, they tend to view
signals not as sequences of ﬁumbers, but in terms of features, recognizing in them
higher level entities, such as collections of peaks, which have more direct relevance

to the phenomenon producing the signals.

Signal abstractions are not the same as data abstraction, because each serves to
combat a different kind of complexity present in signal processing systems. Data
abstraction applied to signals as in (Kopec1980, Kopec1984| is concerned with the
complexity of computer representations of signals and with ensuring that signals
can be specified in programs completely with a minimal amount of implementation
overhead, such as memory allocation for the numeric samples of the signal or inter-
face with the code for various signal processing operations. In contrast, the signal
abstractions of this thesis are concerned with the complexity of the signal as an

information carrier.

17



Furthermore, data abstraction is a design methodology. Design is centered
around objects specified by their desired use. At first, we ignore implementation
details and we concentrate on the use of an object. If use of the object is not di-
rectly implementable in terms of the underlying programming language, the object
is decomposed into other objects, specified by their use, which, when combined, will
implement the use of the original object. This cycle is repeated until objects can be
directly implemented in terms of the underlying programming language.

Signal abstractions are a conceptual framework for thinking about signal pro-
cessing systems. A major point of the thesis is that within this framework one may
obtain solutions to signal processing problems which are expressed in the informal
signal terms that people often use when interactively processing and interpreting
real-world signals. Moreover, the same framework is useful towards designing pro-
grams that “reason” about existing complex signal processing systems by coupling
mathematical models and heuristic rules [Apte & Weiss 1985|. These points are
demon.strated through two different systems, both in the context of acoustic heli-

copter tracking.

The first system illustrates the power of signal abstractions in providing new
solutions to existing problems that rely on signal correlation. We take a more
general view of signal correlation and we expand both its mechanism and its scope,
by treating it as a problem of matching signal abstractions. Signal matching is used
~ for ordering signals according to heuristic criteria and for associating elements in
different signals. The system we implemented performs tracking of fundamental
frequency and power of acoustic helicopter signals from a single microphone signal
using its short-time spectrum. Spectral matching is used as the basis for adjusting
the parameters of a spectral estimation technique to best suit the acoustic data
at hand. It is also used for identifying faulty channels in multichannel acoustic
data. The helicopter pitch tracking system relies on explicit associations between
higher levels of abstraction of acoustic spectra at different times. The problem

of computing power and frequency tracks of helicopter signals was motivated by
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the goal of localization of helicopters using signals from geographically separated
sensors. Although the full problem is beyond the scope of this thesis, a preliminary
study was carried out indicating the plausibility of the approach.

The second system is an example of the use of abstractions of two-dimensional
spatial Fourier spectra (wavenumber spectra) in a diagnosis system that identifies
maladjusted parameters of a complicated signal processing system performing di-
rection determination of acoustic waves from multichannel microphone data. The
diagnosis system takes as input abstract descriptions of the aircraft scenario and the
corresponding output of the signal processing system and produces an explanation
of their differences in terms of maladjusted signal processing parameters and/or
propagation phenomena. The diagnosis system uses means-ends analysis [Newell
& Simon 1963| to search the space of all possible explanations as directed by the
differences between the input scenario and the output of the signal processing sys-
tem, where both are expressed as wavenumber spectrum abstractions. The current
diagnosis system assumes that an approximate description of the input scenario
is available a priori, including information such as the azimuth of the helicopters,
the distance of the helicopters from the sensor array, their approximate speed and
whether they are approaching the array or are going away from it." In a real use
of the diagnosis system, such input scenario information, which does not need to
be very accurate, can be provided by a more robust but less accurate localization
system, such as one based on the power and frequency tracks computed by the first

system of this thesis.

The signal abstractions used in this thesis were defined to agree closely with
the high level features, in terms of which human subjects think about signals in
our acoustic signal processing application. Human subjects are people experienced
in processing and interpreting a specific type of real data, in our case acoustic he-
licopter signals, who are being observed while interactively performing that task.
This domain-specific approach suggests that the initial step in building a real-world

signal processing system is to record the “thinking aloud” of human subjects or
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at least informally focus on the thinking of human subjects, both for defining ap-
propriate signal abstractions and for extracting heuristic rules that humans use in

problem solving.

In our two case studies, it turned out that the signal abstractions our human
subject uses are heavily influenced by the theory underlying the phenomenon, the
theory that is related to the signal formation process as well as the theory related
to the signal processing involved. As a consequence, our signal abstractions are
abstractions in the Fourier domain (spectra of one-dimensional acoustic signals and
two-dimensional wavenumbeér spectra), since Fourier theory is the basis of both of

our case studies.

In our helicopter signal tracking system, signal abstractions are computed from
the low-level signal. Computation of abstractions of acoustic spectra from the
corresponding numeric spectra raises issues related to extraction and classification
of signal features at various levels of abstraction. Numeric thresholds involved in
classification are set through a training procedure, which is fa;ilitated by the rule

implementation of the classification criteria.

In the diagnosis system, signal abstractions are externally provided or generated
from other signal abstractions by mappings expressed in the Fourier domain. Pre-
viously proposed causal analysis techniques for diagnosis are based on the analysis
of intermediate data states that have been saved either during system operation
[Hudlicka & Lesser 1984| or have been regenerated through simulation [Davis1985|.
Either approach is not very suitable for the diagnosis of our direction determina-
tion system or other complex signal processing systems, because the amount of

intermediate data that has to be analyzed can become prohibitive.
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1.2 Related previous studies

One problem, in which progress has been made through the use of concepts similar
to signal abstraction, is stereopsis [Marr1982]. The two eyes form slightly different
images of the world. The relative difference in the positions of objects in the two
images is called disparity, and is caused by the differences in their distance from
the viewing eyes. Our brains can measure this disparity and use it to determine the
relative distances of objects from the viewer. The computational theory proposed
by [Marr1982| proposes three steps in measuring stereo disparity: first, a particular
location on a surface in the scene must be selected from one image, second, the same
location in the other image must be identified, and third, the disparity between the

two corresponding images must be measured.

The difficult problem here is to find matching locations in the two images. Marr
proposes the use of image elements that correspond to things such as surface mark-
ings, shadows, discontinuities in surface orientation, and so forth. Higher level
elements such as these allow physical constraints to be translated into matching
constraints, which restrict the allowable ways of matching image elements. Three

constraints are proposed: compatibility, uniqueness and continuity.

Marr goes on to suggest that several versions of an image, each smoothed by
a lowpass filter of a different bandwidth, can be computed and used for stereo
matching. Low-bandwidth versions have less matchable features, thereby easing the
task of search for corresponding features between the two images, at the expense
of reduced disparity resolution. High-bandwidth versions can then be used for finer
disparity resolution. Furthermore, by restricting the number of possible disparities
being looked for, he and his colleagues proposed algorithms for stereo matching
with successful results on random dot stereograms (pairs of images composed of
dots which are slightly displaced with respect to their counterpart in the other
image of the pair. If viewed through an appropriate optical device, they give the

impression of depth).
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A related piece of work is scale-spacé filtering [Witkin1984|. The idea here is
to describe an one-dimensional signal in terms of the zero-crossings of the second
derivative of multiple versions of it, each obtained by low-pass filtering with filters
of varying bandwidth. Scale-space is a two-dimensional space, one dimension being
the same as that of the signal and the other being the varying bandwidth of the
low-pags filter (scale). Zero crossings of the second derivative of low-pass filtered
versions of the signal form contours in scale-space. These contours are claimed
to “precisely localize large-scale events and effectively manage the ambiguity of
descriptioxis at multiple scales”. Multiple scales can be thought of as multiple
levels of abstraction, because different degrees of smoothing incur different degrees
of loss of detail. A problem with the scale-space philosophy is that important
events are not always large-scale events. On the contrary, they get smoothed out at
large smoothing scales. Furthermore', large smoothing scales introduce shifting and
merging of events, thereby complicating the task of association of events at different

scales that are due to the same underlying cause.

A third problem, which has been approached with a notion resembling signal
abstractions, is correlation of well logs by matching curve elements [Vincent et al
1979]. Correlation of well logs from two nearby wells or from different azimuths of
the same well is an important step towards the description of the subsurface of an
oil field. Well log correlation attempts to recognize and match similar details on
curves that are similar, but not identical. The output consists of dip as a function
of depth. Dip is the angle of the line connecting similar details with respect to the
horizontal (well logs are functions of depth and are drawn vertically). Although
numeric correlation measures have been applied to this problem, they are deficient
because they do not allow explicit expression of the causes of similarity of well logs
and because only similar features of the same thickness can produce a high value

for correlation.

In [Vincent et al 1979| correlation of well logs relies on matching of features of

elements of well logs. Elements are of five possible types: peaks, troughs, spikes,
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steps and levels. The first phase of the method is element extraction. Each curve is
decomposed into a sequence of elements. Each element is assigned a pattern vector,

which is a series of measurements further characterizing the shape of the element.

The second phase is correlation among similar elements. The basic critericn used
is comparison of pattern vectors. Pattern vectors are likely to be better measures of
similarity of elements in well logs than some uniform numeric correlation measure,
because they concentrate on the elements’ important features. Numeric correlation,
on the other side, cannot easily differentiate between important and less important

features.

A likeness coefficient is computed for each pair of elements from the two well
logs being correlated. The larger elements (higher peaks and deeper troughs) are
considered first and the pairs with the highest likeness are established as correct
correspondences. Established correspondences are then checked as to whether they
satisfy additional geologically derived criteria. Finally, trigonometric calculations
on the established correspondences between elements are used to compute dips as
a function of depth. Dip measurements thus obtained can be used to determine

geological formations.

An attempted solution to a fourth problem, that of speaker separation of voiced
speech [Parsons1976|, can be interpreted as involving signal abstractions. Speaker
separation involves suppression of a common type of interference in speech appli-
cations, which is caused by the speech of a competing speaker. The human brain
is adept at clarifying such speech, but it relies heavily on binaural data. Although
Parsons’ system had a very heuristic flavor to it and was not phrased in the context
of signal abstraction, it can be interpreted as an example of a system involving
interference suppression by applying constraints to an appropriate abstract speech
representation. The representation used was an abstraction of the short-time spec-

- trum.

The spectrum of voiced two-talker speech has two sets of harmonics, which can
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be identified and used to reconstruct the two speech signals from each of the two
talkers sepzrafely by inverse transforming each signal’s share of the spectrum. The
major steps of the process are shown in Figure 1.1.

peaks e o S peaks
A
#batraction refinement
spectrum spectrum
speech speech

Figure 1.1: Major steps‘ in voiced speech separation using the spectrum

The first step (abstraction) is to compute Fourier domain abstractions of the
time waveform up to a level of abstraction, at which assumptions about the nature of
the signal, such as continuity or consistency of certain characteristics, can be applied
to achieve the goal of the processing (separation of two signals in this case). This
level of abstraction is that of harmonically related sets of spectral peaks, one set per
speaker. Several problems are encountered in computing such an abstraction. First,
spectral peaks have finite width, both because pitch varies over time and because of
the finite length of the segments used. This results in peaks from different speakers
overlapping or merging into a single peak. Second, determining the pitch of each
talker cannot always be done reliably, especially when the pitch periods are very

close together.

The second step (mapping) is to use the assumption of continuity of pitch to
derive Fourier domain abstractions of the separated signals from the Fourier domain

abstraction of the input signal.
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The final step (refinement) is to lower the level of abstraction of the resulting
signals down to the time waveform level, i.e. compute the resulting low level signals
by following the reverse procedure of the abstraction step.

Peaks are represented in terms of peak model parameters. A peak model is used
which accounts for broadening of spectral peaks, which occurs due to windowing
of the time signal with a hanning window, and for the phenomenon of pitch glide,
namely the rate of change of pitch oéer time, which is assumed linear. The peak
model is used to separate peaks that seem to overlap. Several heuristic criteria are
used to test for overlap. Once overlap is suspected, peaks are separated by fitting
a two-peak model to the composite peak. In order to determine pitch, use is made
of the constraint that each talker’s harmonics form a set of harmonically related

peaks.

After having separated overlapping peaks and correctly grouped peaks into har-
monic sets, speaker separation has in principle been accomplished. However, the
objective is to produce two time series, each corresponding to a speaker. The final
task is to refine the harmonic set descriptions of the two signals into time series
representation. This problem was given a straightforward solution through the use
of the assumed peak model. The four peak parameters, amplitude, phase, pitch -
glide and frequency are used to synthesize the peaks of the spectra of the windowed
speech segments. After the spéctra have been formed as the sum of their peaks,
they are transformed back to the time domain to obtain (overlapping) segments of
the output speech. Finally, the overlapping segments are added together to produce

continuous speech output.

Unfortunately, the speaker separation system did not work very well in its lim-
ited domain of separation of two-speaker voiced speech. However, we feel that the
above interpretation of the work as a sequence of signal abstraction, mapping and
refinement may prove useful in other signal processing problems involving signal

enhancement.
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Finally, work in shape analysis of intensity profiles of images has led to a number
of approaches for one-dlmenstonal shape descriptions, which may be viewed as re-
lated to our notion of sxgna.l abstractions. (Ebrich & Foith 1976] and later [Sankar
& Rosenfeld 1979 proposed hierarchical tree descriptions of waveforms based on
dominance relations of peaks and Meﬁ. Although elegant, such descriptions do
not always yield a tree corresponding to the most natural description of a signal,
or they are much too complicated to be useful in the case of noisy signals. The .
work by [Cheng & Lu 1985] on well log correlation by tree matching is a practical
application of the relationil tree approach of [Ehrich & Foith 1976, and has been
claimed to work well even in cases with significant stretching or shrinking between

well logs.

A different approach is linguistic analysis of waveforms [Lozano-Perez1977, Pavlidis
& Ali 1979]. In this approach, the waveform is segmented into elements, which are
then viewed as a sequence of “words”. Local shapes of interest are then detected
by “parsing” this sequence of words using a different grammar for each shape. A
difficulty associated with the linguistic approach is the need for smoothing to elimi-
nate noise, which introduces the problem of how to select an appropriate smoothing
~ scale that preserves the essential characteristics of the signal. Shape grammars can
be embedded to form a hierarchy, as pointed out by [Andersonv1982], in which case

the result can be viewed as describing waveforms at multiple levels of abstraction.

1.3 Overview of the thesis

The thesis begins in chapter 2 with an overview of a specific acoustic processing
problem that was used as a catalyst for exploring signal abstractions. Multichannel
waveforms are obtained from an acoustic microphone array monitoring the sounds
emitted by various sources in the vicinity of the array. This array data can be

processed either as individual one-dimensional waveforms or as multichannel data
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for source detection and direction determination through array processing. Power
and frequency characteristics of the signals from the sound sources may be computed

by estimating the spectra of individual channels at different times.

In chapter 2, we review the characteristics of helicopter signals and the issues
associated with estimating their spectra. Then we address the problem of localiza-
tion of helicopters from power and fundamental frequency traces obtained from geo-
graphically separated microphones. This analysis motivates the material in chapters
3 and 4, which focus on the computation of power and fundamental frequency traces
from real helicopter data. An alternative existing localization technique based on ar-
ray processing is then briefly reviewed. According to this technique, the azimuth of
an acoustic souice with reﬁpect to two geographically separated microphone arrays
is computed and the two azimuth measurements are used to localize the source. The
sensitivity of the azimuth determination system to improper parameter adjustment
motivated the research presented in chapters 5 and 6. Finally, protocol collection
and analysis, as it was adapted for recording the problem solving activity involving
interactive signal processing, is reviewed. Analysis of the collected protocols was

used to help define appropriate signal abstractions for the problem.

In chapter 3, a set of signal abstractions, which we call an extended spectrum,
is defined for acoustic spectra characterized by collections of harmonically related
peaks. The extended spectrum is defined by three levels of abstraction, the numeric
spectrum, the list of peaks of the spectrum and the list of harmonically related peak
sets. Computation of the higher levels is based on the immediately lower levels
and is achieved by algorithmic procedures, the results of which are pruned and/or
modified by collections of heuristic criteria, implemented in rule form. Collections
of parameters needed for these transitions are introduced as part of the extended
spectrum. Such parameters may include thresholds, which can be adjusted by a
training procedure, whereby the human specifies which of the rules of the system
are applicable to particular training situations. A program then adjusts the related

thresholds to ensure that the preconditions of such rules are satisfied by the training
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situation at hand.

" In the second part of chapter‘3, examples of the use of the extended spectrum
are presented in three problems involving spectral matching. The first problem
is detection of faulty channels based on their spectra. The second problem is ad-
justment of the parameters of a specific spectral estimation technique by matching
spectra obtained from different parameter setups. The third problem is the rep-
resentation of the temporal evolution of acoustic spectra by forming explicit links

between harmonically related sets of peaks over time.

Chapter 4 presents a system for helicopter pitch tracking, which is built on
the ideas of chapter 3. Results of its performance on several real data scenarios
of total duration more than 20 minutes are presented. Feedback is involved in the
completion of gaps or extension of the linked sequences of harmonically related peak
sets by focusing the search aided by the links already established. By concentrating
on the explicit representation of the relationships between spectra at different times,

pitch and power tracking come as a natural consequence.

Moreover, the generated pitch and power tracks are based on harmonic sets
at consecutive times which are explicitly linked with each other to form chains.
These linked harmonic sets are accessible for inspection, thereby facilitating the
process of tracing down discrepancies between the results of the program and the
visual experience of the user. The behavior of the system can then be improved
by modifying existing heuristics or adding new ones for dealing with particular

discrepancies as they are identified during testing of the system on real data.

Chapter 5 presents the signal abstractions and components and Chapter 6 the
overall design of a diagnosis system for a complex signal processing system for de-
termining the azimuth of helicopters from multichannel microphone signals. The
faults that are being diagnosed are related to mismatch between parameters of the
signal processing system and the scenario generating the input multichannel signals

from which azimuth determination takes place possibly including propagation phe-
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nomena that distort the acoustic waves collected by the microphones. The input to
the diagnosis system consists of an approximate description of the scenario gener-
ating the multichannel signals, including asimuth, power and frequency content of
the helicopter sounds, distance of the helicopters from the microphones and speed,
and of a description of the actual output of the signal processing system. Both the
scenario and the output of the signal processing system are described as wavenum-
ber spectra, a convenient representation of direction and frequency information of
acoustic plane waves impinging on a sensor array. The output of the diagnosis
system is an explanation of the differences between the scenario and the output of
the signal processing system. The explanation is in the form of a sequence of map-
pings of wavenumberspectra which introduce distortions to their input wavenumber
spectra. The cumulative effect of those distortions causes the output of the signal
processing system to be different from the acoustic source scenario, for example
showing less sources than those that are actually present (a resolution problem) or

azimuths different from the true ones (a direction shiftiug problem).

In Chapter 5 .we introduce the notion of mappings of wavenumber spectrum
absf:ra.ctions as a mechanism for representing the operation of the direction deter-
mination system based on multichannel array processing and the associated wave
propagation effects. Mappings are not necessarily associated with a single co—-
ponent of the signal processing system, but are related to effects that might be
attributed to more than one component. For example, a resolution problem may be
attributed to improper array aperture, proximity of the azimuths of two helicopters
and overlap of their temporal spectra. In the same chapter we address matching ‘
of wavenumber spectrum abstractions to identify their differences, ordering mul-
tiple differences in order of importance, and associating a difference with a set of

mappings that may be able to explain it.

Chapter 6 presents the architecture of the diagnosis system, which can be viewed
as a search through the space of all possible sequences of mappings for a sequence

that explains the differences between the scenario and the output of the signal pro-

29




cessing system. The diagnosis system hypothesizes a mapping that explains some of
the overall differences, thereby recursively reducing the top-level problem into one
or more subproblems of explaining the remaining differences. Verification of the
hypothesized explanations takes place, which causes explanations to be modified
or rejected, if the verification fails. Diagnosis is initially attempted at the high-
est level of abstraction, while verification takes place at the lowest possible level.
If a verifiable explanation cannot be found at the highest abstraction level, the
search is repeated at a lower abstraction level. An example of the operation of the

implemented diagnosis system is shown to illustrate the main points of the work.
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Chapter 2

An acoustic signal processing and
interpretation problem and the

associated knowledge

To explore the issues associated with signal abstractions in signal processing sys-
tems we selected as a catalyst a particular problem involving acoustic signals, for
which there are people with experience in processing and interpretation of the sig-
nals. The problem is to build a system that takes as input a set of signals from
microphone sensors. The senﬁors are placed on the ground and monitor sounds in
their environment. The goal of the system is to produce interpretations for the
acoustic sources (such as aircraft) present in the area within the acoustic range
of the sensors. Source interpretations consist of detection (i.e. whether there are

sources present), identification and localization.

In this chapter we review knowledge about the relationships between source
characteristics and their manifestation in the acoustic signals. Such knowledge is
derived from the theory of signal formation and propagation, from experiments with

real data and from formal observation of experienced persons while they interac-
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tively process and interpret real signals. Later chapters of this thesis build upon
parts of this knowledge and focus on the various ways it has been represented in

the signal processing programs of the thesis.

Sections 1 and 2 of this chapter provide background material for helicopter
detection and localization using the spectra of one-dimensional microphone signals.
Source localization based on power and frequency.tra.ces from multiple microphones
is examined in section 2 and provides the motivation for the material in chapters
3 and 4, which focus on the extraction of such traces from real helicopter data.
Section 3 briefly reviews an existing alternative localization technique based on
azimuth measurements obtained by array processing of multichannel data. This
azimuth measurement system served as the starting point for the system presented
in Chapters 5 and 6, which identifies incorrect parameter settings in test runs of
the azimuth measurement system. Although currently the two localization systems
are indepen_ent, we envision an integrated system in which robust, but not very
accurate, localization from power and frequency traces will assist the system for
identifying incorrect parameter settings to ensure proper operation of the azimuth
measurement system. The latter system is capable of providing accurate azimuth
measurements, but the correctness of its results are sensitive to improper parameter

settings.

2.1 Characteristics of acoustic waveforms from a

single sensor

The main causes of helicopter sound are aerodynamic in nature and they are a result
of the fluctuations and motions of the distributed pressures on the blades. These
pressures are in turn due to the rotor blade/wake interactions. Since the wake is
assumed to be periodic, the resulting sound is periodic and hence its spectrum is

characterized by a fundamental frequency and its harmonics.
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There are two such harmonically related peak sets present in helicopter sound,
due to the main rotor and tail rotor. The tail rotor fundamental is usually several
times higher than the main rotor fundamental, and by design not a multiple of it.
Typically, the main rotor fundamental ranges between 8 and 20 H3, with harmonics
up to about 100 Hz. The tail rotor fundamental ranges between 70 and 140 Hz,
with harmonics up to about 800 Hz. The experimental acoustic data used in this

thesis was sampled every 0.5 ms, corresponding to a sampling frequency of 2048 Hz.

The pressure disturbances at the blades of a flying helicopter act as genera-
tors of acoustic waves, which can be considered spherical to within a reasonable

approximation.

In Figure 2.1 we show a typical scenario from a real experiment with two heli-
copters travelling with approximately the same speed along the same straight line
path and with a distance between the two helicopter equal to about 45 seconds
multiplied by the helicopter speed. Figure 2.2 shows parts of the acoustic waveform
collected by the sensor in Figure 2.1 and the corresponding spectra. Part (a) of
Figure 2.2 shows the time waveform over 100s (the sampling rate being 2048 Hz).
The amplitude of the acoustic waveform is highest at the closest point of approach
(CPA) of the first helicopter. The CPA of the second helicopter is outside our data
window. Under the assumption of a point source and preservation of energy of the
acoustic wave, the power (amplitude squared) of the acoustic waveform is inversely

proportional to the square of the distance between the sensor and the source.

Parts (b),(c) and (d) of Figure 2.2 show portions of the acoustic waveform at
a small scale (1s), the corresponding spectrum over the frequency range 0-1024 Hz
and the same spectrum expanded and rescaled over the low frequency range 3-80 Hz
(first, second and third row respectively. For display purposes, the low-frequency
spectrum is shown in linear scale, whereas the spectrum over 0-1024 Hz is shown
in logarithmic scale). Part (b) is a section when the first helicopter is significantly

before CPA, part (c) is a section very close to the CPA of the first helicopter, and
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part (d) is a section before the CPA of the second helicopter and after the CPA of
the first helicopter, at a time when the signal from the first helicopter has almost
died away.

In (b) the time waveform is very noisy, i.e. has a low signal-to-noise ratio, and
does not show a clear periodicity. The logarithmic spectrum shows a clear set of
harmonics of about 94 Hz, which corresponds to the tail rotor harmonics of the first
helicopter. The linear spectrum shows clearly the first two harmonics of 14 Hz, a

strong peak at 35 Hz and smaller peaks at 44, 54 and 70 Hs.

In (c) the time waveform shows a clear periodicity of about 13 periods in a
second, i.e. 13 Hz. The linear spectrum therefore, has a strong peak at 13 Hz
and two strong harmonics at 26 and 39 Hsz, corresponding to the main rotor. The
logarithmic spectrum does not show a clear harmonic structure anymore in the

frequency .ange above 80 Hz.

In (d) the time waveform is very noisy and does not show a clear periodicity.
The logarithmic spectrum shows distinct harmonically related peaks, corresponding
to a fundamental of about 95 Hz. Therefore, they belong to the tail rotor of the
second helicopter, since the tail rotor of the first helicopter is now well below 90 Hz,
due to Doppler shift. The linear spectrum shows harmonics of 12 Hz, due to the
main rotor of the first helicopter, as well as harmonics of 15 Hz, due to the main

rotor of the second helicopter.

Apart from the signal-to-noise ratio, we note that the frequencies of the spectral
peaks change over time in the example of Figure 2.2. Frequency shift is due to the
motion of the source relative to the propagation medium. According to the Doppler
phenomenon, the frequency of a sinusoidal component of the sensor signal is equal
to the frequency of the corresponding component of the acoustic source scaled by
the factor ;:‘;F, where c is the speed of sound and v is the speed of the source along

the direction of propagation, with v > J if and only if the direction of v coincides
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Figure 2.1: A straight source path and two helicopters one following the other.
Associated time waveforms and spectra are shown in the next figure.

with the direction of propagation. Figure 2.3 shows the frequency at the sensor as
a function of time for a straight source path and different source speeds and CPA

distances from thé sensor.

The above observations on the time waveforms and power spectra of helicopter
signals suggest that detection of helicopters within the acoustic range of a sensor
may be assisted by search for harmonically related peaks in the power spectrum.
Furthermore, the relation between power of the spectral peaks and distance between
the source and the sensor and the relation between the frequencies of the source and
those of the sensor signal may help in source localization. These relations, however,
are crude approximations, while the accurate modelling of helicopter signatures is~
an extremely difficult problem, because the total sound radiated by helicopters is a
composite of rotor noise, engine noise and drive-system/gear box noise. Moreover,
the rotor noise is classified into three major categories: rotational noise due to the
time varying pressure distributions on the blade, broad-band noise due to turbulence
phenomena at the rotor blades and blade slap. The relative importance of these

categories in the far field depends on the rotor tip speeds, blade slap being the most
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Figure 2.2: Time waveforms and power spectra of a two-helicopter signal and for a
straight path shown in the previous figure.
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Figure 2.3: Sensor signal frequency as a function of time for a straight source path
and several source speeds and CPA distances from the sensor.

prominent at low to moderate tip speeds (Hubbard & Harris 1981]. The complex-
ity of helicopter sound is further compounded by atmospheric propagation effects,
which depend on conditions such as atmospheric temperature, pressure, humidity,
and wind speed and direction, as well as environmental noise from tree leaves and
ground vehicles. In spite of these difficulties in accurately modelling helicopter data,
in many cases humans are capable of interpreting helicopter signals by combining
interactive signal processing and consistency checking of their hypotheses based on

the available crude models.

Estimation of spectra of harmonic acoustic signals The initial step to-
wards determining power and fundamental frequency traces of acoustic signals is
estimation of the spectra of these signals. There is a wide variety of techniques for
estimating the spectrum of a signal [Kay & Marple 1981|. Specific techniques also
depend on the choice of one or more parameters. Selection of a spectral estimation
technique together with values for the associated parameters involves various trade-
offs and therefore should be based on the characteristics of the signal. In the rest

of this section we briefly review some of the tradeoffs associated with the method
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used for estimating helicopter spectra, which consists of averaging periodograms of
consecutive frames of the time signals.

Essential requirements for any spectral estimation technique are ability to re-
solve closely spaced peaks and ability to reduce noise in the spectrum [Oppenheim
& Schafer 1975|. The variance of the spectral estimate is a measure of how much
noise there is in the spectral estimate. In the case of real signals noise is due to
additive noise sources (for example tree noise because of wind in acoustic helicopter
data) as well as changes to the signal itself (such as Doppler shift, nonuniformity
of the propagation path because of wind or variable atmospheric conditions along
the path). For periodogram-based spectral estimation, the variance of averaged
periodograms is inversely proportional to the number of periodograms for statisti-
cally independent periodograms. Ability to resolve closely spaced peaks increases
with the length of data used to compute a single periodogram. Long data im-
plies windowing with a lor; temporal window, and this in turn implies convolution
with a narrow spectral window, thus providing high spectral resolution. In spectral

estimation applied to real data various tradeoffs are present.

For fixed data length (and contiguous non-overlapping blocks), there is a tradeoff
between low variance of the estimate (requiring many, therefore short blocks of data)

and high resolution (requiring long, therefore few blocks of data).

For fixed window length and variable total data length a different tradeoff is
present, if peak frequencies shift over time. Frequency shifting causes peaks from -
different periodograms to only partially overlap, therefore giving rise to a broad
peak with insufficient accentuation when added together or averaged. This un-
desirable phenomenon limits the total data length that can be used for reducing
noise. Consequently, the tradeoff in this case is between noise suppression and peak
broadening accompanied by insufficient accentuation. This situation occurs due to

the Doppler effect when the acoustic source is moving.

As an example of tue above tradeoff, let us consider the case of a helicopter flying
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in a straight line. The Doppler effect is most pronounced near CPA, thus limiting
the length of time over which the signal can be considered stable. Near CPA is also
where the signal-to-noise ratio is highest, because that is where the acoustic wave
is strongest. Therefore, when the helicopter is far from the microphone and the
signal-to-noise ratio is low, the signal is relatively stable, thus permitting averaging

over longer pieces of data.

2.2 Source localization from power and funda-

mental frequency traces of sensor signals

In the previous section‘ we raised the notion of using power and fundamental fre-
quency traces from multiple geographically separated sensors to localize the cor-
responding acoustic sources. In this section we explore the idea in greater detail
by assuming that power and fundamental frequency traces have already been com-
puted from the data and we present geometrical arguments for source localization.
This geometric analysis motivates the next two chapters, which examine the issues
in extracting reliable power and fundamental frequency traces from real helicopter

data.

In source localization from power and fundamental frequency traces we make
several assumptions, which may not be exactly satisfied in practice, but may serve
as a source of heuristics for guiding the signal processing and interpreting its results.
A set of assumptions relates to acoustic wave propagation: (a) power of the sensor
signal is inversely proportional to the square of the distance between the source
and the sensor and (b) sensor frequencies are related to source frequencies by the

factor Another set of assumptions applies to the source motion: source

l=-v/e’
speed is assumed to be constant and the source path is assumed to be piecewise
linear. Finally, we are concerned with only a single source, to avoid the problem of

consistent association of harmonically related peak sets with sources over time.

39




A further issue is propagation delay of the acoustic waves. If the acoustic source
is not moving, a sensor experiences constant delay, which is proportional to the
sensor’s distance from the source. For a moving acoustic source, the delay experi-
enced by a sensor is proportional to its instantaneous distance from the source, thus
introducing a time-varying warping of the time axis at the sensor and complicating

the localization procesh.

In the following two subsections we address source localization in two special
cases, in order to give the flavor of the issues involved. In the first case, we neglect
propagation delay, but we allow the source to maneuver in a piecewise linear fashion
with constant speed. In the second case, we take into account propagation delay,

but we restrict the source to move in a straight lir+ with constant speed.

2.2.1 Source localization assuming negligible propagation

delay

Propagation delay can be neglected if the distances between sensors are small

enough to imply negligible propagation time of sound between pairs of sensors.

As an initial step, we concentrated on whether power and fundamental frequency
increase, decrease or remain constant over time and we developed a qualitative
vocabulary for describing portions of the source path in their position relative to

the sensor, as.shown in Figure 2.4.

Figure 2.4 shows various cases involving the local shape of the acoustic source
path in the neighborhood of a landmark point combined with the relative positions
of the path and the sensor. A landmark point is a point on the source path, at
which the tangent to the path is perpendicular to the line connecting the sensor
and the landmark point (Figure 2.5). Landmark points are important because at

those points the Doppler shift becomes momentarily zero, and the frequency of the
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Figure 2.4: Correspondence between the sign of temporal derivative of power and
fundamental frequency and the local character of the source path, assuming constant
speed for the source.
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sensor signal is the same as the frequency emitted by the acoustic source. Landmark
points are either closest points of approach (CPA) or “farthest® points of approach
(FPA). A landmark point is a closest point of approach if the center of curvature
of the path at the landmark point is farther away from the path than the sensor is.
An example is the case of a straight line path, where the center of curvature is at
infinity. A landmark point is a farthest point of approach if the center of curvature
of the path at the landmark point is closer to the path than the sensor is. This
implies a small radius of curvature, or equivalently a highly curved source path,

implying that the acoustic source is taking a turn or making a maneuver.

Y
N/
.Q

sensor

Figure 2.5: Landmark points of a source path. Points A and C are closest points
and B is a farthest point of approach.

As an example, consider the case “before-CPA”. In this case, the power of the
sensor signal increases with time, because the source comes closer to the sensor. Fre-
quency decreases because the speed of the source along the direction of propagation

is positiv> 2nd decreases, approaching the value zero at CPA.
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The vocabulary shown in Figure 2.4, combined with the assumption of negligible
propagation delays between sensors, helps in forming a qualitative characterization
of the source path independent of the sensors. In principle, it is possible to parse a
given pair of po'w'er and fundamental frequency traces and qualitatively characterize
portions of the source path, as they are seen from a single sensor. Such parsing
can be done at more than one sensor, leading to a qualitative characterization of
the source path independent of the sensors by combining the results. Then we
concentrate on the time intervals over which the source path is linear, and use
power and fundamental frequency values to locate the linear source path, assuming

that the problem is planar. This is the goal of the system that is described next.

Parsing power and ﬁmdunental frequency traces. The first step towards
using the vocabulary shown in Figure 2.4 is to segment the power and fundamen-
tal frequency traces from each sensor (obtained using techniques such as the one
presented in the next two chapters of the thesis) according to the sign of their
derivative, which we approximate by the first difference of the traces. In the case
of a piecewise linear source path, sharp changes in direction give rise to increasing
frequency and a power minimum over the duration of the maneuvers in the traces
from those sensors for which the maneuver portion of the path shows an FPA-type
landmark point (see Figure 2.4). Therefore, segmenting the power and fundamental
frequency traces and combining such information from multiple sensors allows us to
determine the time intervals over which the source is maneuvering, as the intervals

over which at least one sensor shows frequency increasing with time.

To further explore these ideas, we built a simulation system, which allows manual
input of the location of the sensors and samples of the source path, and computes
the power and frequency traces for each sensor based on the idealized models for
power and frequency. We also built a system that first performs segmentation of
the frequency traces from several sensors arranged uniformly along a straight line,

then identifies the maneuvering intervals as those over which the frequency in at
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least one trace has positive slope, and finally uses geometrical calculations on the
power traces over the straight-line intervals (computed as the complement of the
maneuvering intervals) to localize the straight line portions of the source path. The
maneuvering portions of the source path are filled in by using spline interpolation
as an initial approximation. Therefore, because of our simplifying assumption of
a piecewise linear source path, there is no need in our system to use combined
information from both power and frequency traces to characterize portions of the
source path, as shown in Figure 2.4. The overall structure of the localization system,

with its input obtained from the simulation system, is shown in Figure 2.6.

Power & Maneuver &
Fund. freq. | straight path
Maaually input ideal traces ; intervals Geometric Source
Source path & ™1 models Segmeatation " | Localisation [~ Path
Sensor positions

Figure 2.6: Simulation system for source localization based on power and frequency
traces from multiple sensors, with manual input of the source path and semsor
positions. '

Segmentation of power and frequency traces is not a straightforward task due to
the presence of noise. In our simulation system, noise is due to the sampling of the
source path (and linear interpolation between the samples) and the inaccuracy of
the manual input (e.g. a straight line path is as straight as the human eye and hand
can make it). In a system operating with real data, additional noise results from
more complicated signal generation and propagation effects and from measurement

errors in computing power and fr=quency from power spectral estimates of the sensor
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signals.

We perform segmentation in four steps (Figure 2.7). The first step finds all
time intervals over which the slope of the power and frequency traces is large or
small, marking thém as sloped or flat respectively. The second step splits all sloped
intervals into subintervals over which the corresponding traces are monotonic and
marks them with the label UP or DOWN. In the third step, we merge short intervals
with their neighbors, if appropriate. Figure 2.8 shows the rules used for merging and
sketches of examples of their preconditions. The merging rules apply on existing
intervals and replace them by merged intervals. The rules apply repeatedly until
no rule applies any more. In the fourth and last step, we combine time intervals
obtained from power and frequency traces of multiple sensors to compute the time
intervals over which the source is maneuvering, using the assumption of negligible
propagation delay between sensors. Their complement consists of the time intervals,

over which the source path is a single straight line segment.

Sloped & Up, Down Up, Down
Flag & Flat & Flat
Power & slope Intervals | monotonicity | [atervais lnm-v:.h Combine Maneuver &
Fuad. freq. =1 . iin checkin merging intervais from Straight Path
traces ecking ecking muitiple sensors Intervais
‘ ——

Figure 2.7: The overall segmentation process

Geometrical considerations for localization of straight source path seg-

ments from power and frequency traces With sufficient sensor coverage of
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If:

- the middle interval is flat, i.e. it has small slope,

and - the left and right intervals have the same slope sign

and

Then:

If:
and
and

(hen:

If:
and
and

Then:

If:
Then:

Figure 2.8: Rules for merging monotonic intervals of either power or fundamental
frequency traces. Each rule (except the last one) operates on a set of three consec-
utive intervals. Intervals are characterized by the sign of the average slope which is
a symbolic characterization UP, DOWN or FLAT. Some rules go to a lower level of
detail and have tests that rely on the maximum, minimum and average slope of a
trace over an interval. The merging process has two phases. In phase 1, the second
and third rule are applied. In phase 2, all rules are applied to the intervals resulting

(both increasing or both decreasing with time)
- the middle interval is very short
or - its small slope has the same sign as that of the
left and right intervals,
merge the three intervals into one with the same slope

sign.

- the left and right intervals are flat

- the middle interval is short

- it has a moderate maximum slope,

merge the three intervals into a single flat
interval.

- the left and right intervals are flat

- the middle interval is sloped

- the signs of the small slopes of both the left and
right intervals are the same with that of the middle
interval,

merge the three intervals into one with the same slope

sign.

- two adjacent intervals have the same slope sign
merge them into a single interval with the same slope

sign.

from phase 1.
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the area under monitoring, and with sufficiently long straight source path segments,
we can ensure that there will be at least two sensors exhibiting a closest point of
approach for each straight source path segment. To achieve localization of such a

segment, we concentrate on such a pair of sensors, as shown in Figure 2.9.

Using the assumption of negligible propagation delay between the two sensors,
we can measure various ratios of distances of the source from the two semsors at
various points in time by finding the corresponding power ratios at that time. Figure
2.9 shows the geometry for a generalized triangulation method for finding the exact
location of the straight source path segment to within a 180-degree ambiguity and
the ambiguity as to whether the path crosses or does not cross the segment defined
by the two sensors. If more than two sensors display a CPA for the source path
segment in question, we can use more than one pair to reduce the ambiguity and

increase the accuracy of the solution.

In Figure 2.9, we assume that the distance (A, A;) between the sensors A, and
A, is known and that the ratios u = &-}%ﬁ and v = {%:%ﬁ- can be measured from
ratios of powers of the power traces from the two sensors at the CPA times. Note
that the ratios are related to powers of only one trace, therefore there is no need
for the two sensors to be calibrated (i.e. to give the same signal power for the same

acoustic wave). From the Figure we see that y =sin¢ and v = sind. Furthermore,

tang _ (Ci4,)
tanf (Cz24:) (2.1)
implying that
/\=(CxA1)=g_v1—u2 (2.2)
T (Car)  vVI-A :
Therefore,
_(CH) _ (CH) _ A _
= (Cz4,) = (A H) 1= tan ¢ (2.3)
and
_(A.H) _1-)
taav=E - A tan ¢ (2.4)

and finally all distances necessary to specify the position of C, and C; can be
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computed as follows:

(4:H) = (A14;)siny (2.5)
(C1C2) = (A1Ag)cosy = (A, H) (2.6)
(Cidi) = (GiG)tand (2.7)
(C242) = (C.C;)tand | (2.8)

Figure 2.9: Geometry of generalized triangulation method for localizing a straight
source path segment. Points 4, and A, are the sensors, while points C, and C; are
the corresponding closest points of approach.

If the source path segment happens to be almost orthogonal to the sensor seg-
ment, the computation of Figure 2.9 becomes very sensitive numerically. In this
case, a different approach can be used (shown in Figure 2.10), which does not suffer
from numeric sensitivity, but requires calibration of the two sensors, because A can-
not be calculated from u and v, which are both very close to 1, and therefore must
be computed directly from its definition as %:‘-d))- A fundamentally ill-conditioned
case, for which no robust special method has been found, occurs when the source

path segment is very far from the two sensors (compared to the distance between

them), as shown in Figure 2.11. In this case A, 4 and v are all very close to 1.
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C,=C;

Figure 2.10: Geometry of specialized localization method in a case when the default
method of the previous figure is numerically sensitive.

Figure 2.11: Fundamentally ill-conditioned geometry.
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Examples of the simulation system We now present examples of the operation
of the simulation system previously described. The user provides the position of the
sensors and samples of the source path through interactive graphics and the mouse
device. The system computes power and frequency traces for each sensor using the
ideal models of propagation, namely that P ~ 4 and that f = f°1—-‘ﬂ?s where P is
the power of the sensor signal, d is the distance between the source and the sensor,
f is the frequency of the sensor signal, f, is the frequency of the signal emitted by
the acoustic source, v is the magnitude of the projection of the source velocity on
the line connecting the source and the sensor. For each sample of the source path,
power and frequency are computed from the above formulas. For computing v, it

is assumed that the direction of the source velocity is the same as that of the line

connecting the current path sample with the next one.

Figure 2.12 shows ten sensors numbered 1 to 10 arranged in a straight line and
several points of a si* gle source path (small dark circles and a triangle denoting the
first point) entered by the user. Figure 2.13 shows the corresponding power and
frequency traces for sensors 1, 5 and 8. Based on knowledge of th.e location of the
sensors and the traces of figure 2.13, two solutions are obtained by the simulation
system for the source path, shown by continuous lines in Figure 2.12. The circle on
one end of the line denotes the beginning of the path. Figure 2.14 shows a more
complicated example including a maneuver portion, while the corresponding power

and frequency traces for sensors 1, 5 and 10 are shown in Figure 2.15.

The previous examples of the simulation system indicate that in the case when
propagation delay can be neglected or is uniform across sensors, approximate source
localization is possible using power and frequency traces from multiple sensors,
provided we can extract reliable measurements of power and frequency from the

time waveforms.

The geometric solutions explored in this section are suboptimal in the ideal case
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Figure 2.12: A localization example, where the source path is a straight line. Num-
bered thick dots are the sensor locations. Thin dots are points of the source path.
Continuous line is the program’s estimate of the source path from power and fre-
quency traces of all sensors. The system finds two solutions, which are symmetric
with respect to the line of the sensors. The lower line segment is the second solution.
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Figure 2.13: Power and frequency traces from sensors 1,5 and 8 corresponding to
the example, where the source path is a straight line
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Figure 2.14: A localization example, for which the source path includes a maneuver.

when sufficiently good measurements for power and frequency traces can be ob-
tained from the raw acoustic sensor signals. An “optimal” solution for the source
path can be formulated, for example in the least-square sense, if the localization
problem is viewed as a problem of estimating the position of the source at a finite
number of time points, given measurements of power and frequency at several sen-
sors at the same time points. Although such an approach is plausible, it is likely
that it would have problems in practice, because it is not possible to make reliable
measurements of power and frequency at all times. In the next two chapters we
will see that power measurements from real data tend to be accurate only in the
vicinity of the CPA, where the signal is strong. Therefore, a localization technique
that has some potential on real helicopter data would need to be data-driven in the
times when the signal is strong, but goal-driven when the signal is weak, with the
goals set by the correspondences shown in Figure 2.4. A limited form of goal-driven

processing for extending and completing frequency tracks will be demonstrated in

53




f\/
P/\

?

rime 6

5

rim

?

g "

Figure 2.15: Power and frequency traces from sensors 1,5 and 10 corresponding to
the example of the previous figure, for which the source path includes a maneuver.
The lower line segment is the second solution for the first straight segment of the
source path.
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chapter 4.

2.2.2 Localization from power and frequency with signifi-
cant propagation delay.

In this section we relax our assumption of negligible propagation delay, but we
restrict the acoustic source path to a single straight line and we assume unknown but
constant speed for the acoustic source. The assumption of significant propagation
delay is more realistic in the case of helicopter signals and geographically separated

sensors.

In this case, the elapsed time between the emission of the sound by the source
and the reception by the microphone is neither negligible nor the same for all mi-
crophones. Instead, each sensor experiences a time-varying time warping, which is

different from time warping in other sensors.

As a first step towards localizing the straight source path from sensor measure-
ments, assume that T, and T, are the times of maximum power in the two sensors
A, and A, of Figure 2.16. With finite propagation delay, these times are differ-
ent from the times r, and 7, the source was at the corresponding closest points of

approach. The relation between r; and T}, 1 = 1,2 is given by:

T, =r.-+(—"ic-@ (2.9

where Ee@l is equal to the propagation delay of the acoustic wave from the source

to the sensor, ¢ being the speed of sound. Therefore,

Tz"Tl = 1'2‘-714'(—43‘:—5—)‘ (210)
v c )
= (A‘Az)(COZO‘ + s“’ce‘) (2.12)
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and similarly for the pair of sensors 4; and A; of Figure 2.17,

cosf, siné
T~ T = (hds)(— + —)

(2.13)

In the above equations, T; — T, and T — T} are measured from the power traces
of the two sensors and (4;4,) and (4, A;) are known distances between sensors,
therefore the unknowns are é,, 9; and v, the speed of the acoustic source. To solve
these trigonometric equations for 4 and v, we note that the difference 4, - ¢, is also

known and equal to some angle a. To proceed, we define
T-T
(A1 4,)
I
(4:4;)’

we eliminate v/c from equations 2.12 and 2.13, and ‘ve substitute 8; by §, — a. After

41 (2.14)

(2.15)

some algebra, we obtain a single equation with one unknown, 4,:

P2 PrCOSQ g, —sinf; = —— (2.16)
prsina D1

This is a standard equation, with solutions given by

~cos

§, =& —sin~!
1 =¢ ( o

) (2.17)

where £ is an angle satisfying

p2 — p1cosa

4 = -
ang p1sina

(2.18)

Equation 2.16 in general has two solutions for 4, in the interval [0,2x]|. Once a
value for §, is determined, (A42:C;) — (A,C;) = (A 4,)sind,. The ratio &3%3- can
be measured from the ratio of the corresponding powers in the two power traces
(assuming calibrated sensors). The result is two linear equations with two unknowns
(A2C3) and (A,C}), which can be solved to compute the exact location of the source

path.

Issues of numerical sensitivity of the above localization method still remain to
be explored. A simulation system similar to the one implemented for the case of

negligible propagation delay would be appropriate for that purpose.
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Figure 2.16: Geometry for source localization in the case of significant propagation
delay.

Figure 2.17: Three non-collinear sensors allow computation of v
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2.3 Source localization using array processing

~ A different class of methods for source localization relies on the assumption that the
acoustic wave is approximately a plane wave far from the acoustic source. An array
of sensors with spatial extent much smaller than the distance between the array
and the acoustic sources can then be used to determine the direction of arrival of
the acoustic waves. Figure 2.18 shows a typical microphone array, which was used
for collecting the data for the experiments of this thesis. The directions of arrival
of an acoustic wave at two geographically separated sensor arrays are then used to

find the position of the source.

Figure 2.18: Typical microphone array, used for collecting the data for the experi-
ments of this thesis

One particular system for direction determination, proposed and implemented
by [Nawab et al 1985|, is based on the two-dimensional spectrum of the spatial
covariance of the semsor signals, called the wavenumber spectrum. This system is
capable of providing accurate azimuth measurements, which are then used for source
localization by combining azimuth measurements from geographically separated

locations. Experience with the system has shown that its performance is sensitive
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to inappropriate parameter settings, and this fact motivated the work presented
in Chapters 5 and 6 of this thesis towards a system for identifying inappropriate
parameter settings in test runs of the asimuth measurement system. In test runs,
the source scenario, i.e. the locations, speeds and characteristics of the acoustic
sources are approximately known a priori. This section provides a brief overview of

the azimuth measurement system described in more detail in (Nawab et al 1985|.

In the wavenumber spectrum, acoustic sources manifest themselves as radial
ridges at angles equal to the angles of arrival of the corresponding acoustic waves.
Figure 2.19 shows a typical wavenumberspectrum and Figure 2.20 shows the stages

of the direction determination algorithm and their major parameters.

Figure 2.19: A typical wavenumber spectrum, in which an acoustic source is mani-
fested as a radial ridge. The shape of the ridge is a frequency-scaled version of the
temporal spectrum of the acoustic signal (from [Nawab et al 1985)).

In practical situations, not all microphones are operational at any given time,
due to hardware failures in the microphones or the cables from the microphones to
the signal processing unit or other kinds of interference (e.g. fluctuating power sup-
ply voltage). Inoperative microphones generate data that violates the assumptions

of the array processing algorithms and, therefore, causes serious deterioration in
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Figure 2.20: Stages of the direction determination algorithm and their major pa-

rameters
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their performance. An alternative is to exclude inoperative microphones from the
array processing, in effect reducing the number of sensors used. This leads to a more
graceful degradation of the performance compared to that incurred by inclusion of

faulty microphone data.

The signal processing for both spectral analysis of microphone signals and direc-
tion determination of acoustic sources involves several parameters. Proper setting of
those parameters depends on the particular data being analyzed, and no parameter
setting exists that is appropriate for all types of inpu: data. For this reason, human
signal processors typically analyze data interactively, and they arrive at an appro-
priate parameter setup by visually inspecting intermediate results and adapting the

parameters involved.

The following subsactions provide a more detailed overview of the concept of

wavenumber spectrum and its application to direction determination.

2.3.1 Definition and properties of wavenumber spectra

In the far field of the (approximately point) acoustic source, the wave p(r, t) (where
p is pressure, r is position and ¢ is time), can be assumed to be a plane wave.
Microphones located in the far field sample the plane wave at specific values of the
spatial variables. We can define the wavenumber spectrum as:

P(x) = [ " P(k, w)dw (2.19)

-0

where P(k, w) is the frequency-wavenumberspectrum, defined as the Fourier trans-
form of the space-time covariance function of p(r, t). The wavenumberspectrum can
be shown to be equal to the spatial Fourier transform of the space-time covariance

function for time = 0 (zero-delay covariance).

Under the assumption that the wave is plane:
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p(v,t) =p(t—a-r) (2.20)

It can be shown that in the latter case the wavenumberspectrum of the acoustic
wavep(t—ap - r), where ap is the projection of the vector a onto the sensor plane, is
a distribution in wavenumber space confined to an axis at asimuthal angle 4, where
§ is the bearing of a. Furthermore, the distribution on that axis is proportional to
the temporal spectrum of p(t), P(w), with the frequency axis compressed by the
magnitude of ap, i.e. it is proportional to P(w/|ap|).

In the presence of several acoustic sources, which generate acoustic waves im-
pinging upon the microphone array from different directions, the wavenumberspec-
trum consists of several radial distributions, one per acoustic wave, at azimuth
angles corresponding to the bearings of the wave vectors, each distribution com-

pressed by the cosine of the elevation angle of the corresponding wave vector.

2.3.2 A direction determination algorithm based on the

wavenumber spectrum

The basic concept behind the direction determination algorithm presented in [Nawab
et al 1985| is to compute the wavenumberspectrum as the spatial Fourier transform
of the zero-delay covariance of the microphone signals, which are viewed as spatial

samples of the acoustic wave at the microphone locations.

Several issues are associated with the direction determination algorithm in its
practical form. The zero-delay covariance function is both severely undersampled
and spatially windowed. Both of these are consequences of the fact that we can
afford only a few sensors in a limited spatial configuration. The consequence of
windowing in the space domain results in smearing of the ideal wavenumber spec-

trum, because windowing in the space domain is equivalent to convolution with the

62



Fourier transform of the window in the wavenumberdomain. Undersampling in the
space domain results in spatial aliasing in the wavenumber domain. Aliasing can
be reduced by designing the array so that the smallest distance between sensors is
shorter than half the smallest wavelength of the anticipated plane waves. Spectral
smearing due to spatial windowing can be reduced by spreading out the available
sensors to increase the aperture of the array. We see that with a fixed number of

sensors these two requirements are contradictory.

With a finite number of sensors we can estimate spatial samples of the zero-
delay covariance. Using such samples to estimate the wavenumber spectrum is a
problem in two-dimensional spectral estimation. High resolution methods can be
used instead of the two-dimensional extension of the periodogram method, thereby

improving the resolution of the wavenumber spectrum.

Another problem is the fact that a 180-degree ambiguity in direction is intro-
duced when the acoustic wave is real valued. In this case, its temporal spectrum is
even, therefore it extends to both sides of the origin in the wavenumber spectrum,
as shown in Figure 2.19. To eliminate this ambiguity, the sensor signals are pro-
cessed so as to suppress the negative sideband of their temporal spectrum, resulting
in complex-valued signals, termed the “complex analytic representation” (CAR) of
the original real-valued signals.

Thus the overall computation consists of the following sequential steps, shown

in Figure 2.20, together with the system parameters associated with each step:

1. An analog bandpass filter is applied to the input microphone signals. Pa-
rameters are the gain of each sensor and the minimum and maximum cutoff

frequency of the bandpass filter.

2. The filtered microphone signals are sampled. Parameters are the sampling
rate and the gain adjustment to compensate for the different power levels of

the resulting discrete signals.
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3. A digital filter is applied to the real-valued discrete signals. This filter sup-
presses the negatiire frequencies of its input, therefore producing a complex-
valued output, ‘the complex analytic representation (CAR) of the original
signals, and it may also act as a bandpass filter. Parameters are: the output
sampling rate (the output is decimated with respect to the input), the window
length and shape used for computing the DFT of the input and the low and
high frequency of the filter acting as a bandpass filter.

4. The zero-delay covariance samples are computed. Parameters needed are:
The sensor positions, block length and overlap, the total analysis interval,
the particular method used for covariance estimation (temporal or spatial
averaging) and the parameter epsilon added to the diagonal elements of the

covariance matrix to ensure its stability.

5. The wavenumber spectrum is estimated. Parameters are: the region of the
wavenumber space to be sampled, specified by a minimum and a maximum
radius and a minimum and maximum azimuth, the sampling rate for both

azimuth and radius, and the spectral estimation method (Bartlett or MLM).

Finally, ridges are extracted from the wavenumber spectrum obtained from the
above method, by integrating along each radial direction and finding local maxima

in the resulting function of radial power versus azimuth.

For typical parameter values, the dominant computations are the digital filter
computation and the operations for adequately sampling the wavenumber space,

the latter being about three times the former.




2.4 Protocol collection and analysis

As we mentioned earlier, developing accurate models for the generation and prop-
agation of helicopter sound is a very difficult task. Therefore, it is reasonable to
pursue design of a system that performs adequately on real helicopter data through
the combination of the approximate theory underlying generation and propagation
of helicopter signals, experimental resuits from a variety of real data and a study of
the human problem solving activity. The previous sections of this chapter reviewed
theories underlying acoustic signal formation and propagation. In this section we
discuss some of the issues associated with identifying human skills by observing

experienced practitioners as they process and interpret real helicopter data.

Protocol collection is a general methodology for knowledge acquisition in the
design of knowledge-based systems [Hayes-Roth et al 1983|. It is a systematic
record of the “thinking aloud” of a skilled practitioner during problem solving.
The protocol transcript is later analyzed and formalized in order to understand
the nature of the problem solving and to design the program architecture and the

appropriate representations.

Protocol collection is a difficult procedure, because it involves inte;‘actions among
a human subject (the “expert”), a domain problem, and the interviewer. A first
issue is the choice of appropriate domain problems, that are constrained enough to
be covered during a protocol session and at the same time rich enough to illuminate
the knowledge representations and inferences in the domain. In the case of medical
diagnosis, interviews with physicians are usually held on the basis of a detailed
printed description of a patient, resulting in a verbatim transcript of the thinking
process of the physician [Kuipers & Kassirer 1984|. In the case of signal processing,
the activity is more like probing a piece of data with a set of available tools and less
like diagnostic reasoning based on a detailed description of the problem. To limit
the scope of the problem solving in our protocol sessions, we limited the amount of

data and the set of tools made available to the subject.
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A second problem is whether to allow the subject to introspect. A recent study
[Kuipers & Kassirer 1984| indicates that considering the subject’s introspective
accounts may be misleading, because “a subject has no privileged knowledge of the
factors that influence his behavior®. So what kinds of information can be reliably
extracted from a protocol? The same study concludes that “a subject’s statement of
what is currently in his focus of attention is unlikely to be in error”. The implication
for protocol collection is that the subject should not be encouraged to introspect
and should only report the information and intentions that are within his current
focus of attention. In signal processing, this is facilitated by concentrating on the
information derived from the signals, and on the choice and use of tools to probe
the signals.

Previously proposed computer-aided knowledge acquisition methods support do-
main experts in providing new knowledge and debugging existing knowledge in a
large rule-based system [Davis & Lenat 1982|. Such methods are, however, limited
to operating within a predetermined knowledge representation. We are interested
in studying the experts for determining the-representations for signals and knowl-
ec;'lge related to signals, even.before attempting to capture large quaantities of signal
processing knowledge. After determining appropriate signal and knowledge repre-

sentations, we could use the previous aids to knowledge acquisition.

2.4.1 Analysis of the protocol transcript

Appendix A presents a complete protocol transcript carried out in the spring of
1984. The subject was a person experienced in interactive processing and interpre-
tation of helicopter acoustic waveforms. The subject was provided with a particular
piece of data and facilities for graphically displaying the waveform with different
time scales and for computing and displaying its spectrum using averaged peri-
odograms. The subject was asked to think aloud regarding both his current in-

terpretation of the data and the information he visually extracted from the signal
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graphs. The subject’s verbalizations were tape recorded and saved along with all
signal graphs displayed during the protocol session.

Analysis of the verbatim transcript takes place in the following stages:

1. Identify the signal entities referred to and their relationships in a single spec-
trum.

2. Identify relationships of interest between entities in spectra at different times
and from different channels.

3. Identify processing plans and their relation to the formation of tentative in-
terpretation hypotheses.

The protocol transcript shows that the subject’s reasoning about spectra is cen-
tered around spectral peaks and their harmonic relations (S20 - S57 in appendix
A). Missing harmonics (S32, S52) and extraneous peaks, i.e. visually prominent
peaks that do not seem to belong ta previously identified harmonically related peak
sets are also of interest. Furthermore, plateaus (flat areas next to peaks) are an

indication of possible hidden peaks.

Relationships of interest between spectra from different channels are similarity
of peak patterns and noise levels, determined primarily by the visual prominence

of the peaks in the spectra (S37, S44).

Relationships of interest between spectra from different times are evolution of
peak patterns and noise and peak levels (S44, S46, S54, S56, S57). In comparing
spectra from different times, we expect changes in the power levels of the peaks,
their frequencies and the noise level of the spectra, and we want to characterize such
changes. In comparing spectra from different channels (not appearing in appendix
A), we expect the spectra to be the same, and any serious dissimilarities of one

channel with the rest of the channels indicate a faulty channel.

Regarding processing plans, pro.ocols indicate that the expert alternated be-
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tween two modes: exploration and confirmation. In exploration mode, he was
looking for general characteristics of interest, such as harmonically related peaks.
In confirmation mode, he was looking for specific characteristics, such as existence

of a peak or peak features in particular narrow frequency ranges.

Strategic planning of signal processing is guided by the heuristic of finding a
consistent hypothesis about the acoustic sources present in the signals, which is
supported as fully as possible by the existing data. Consistency requires constant
testing for similarity of peak patterns in all available channels. Consistency also re-
quirgs establishing continuity of peak patterns over time and a plausible explanation

of their evolution.

* An analyzed protocol transcript is obtained from a verbatim transcript by sep-
arating signal descriptions provided by the subject, hypotheses about the source
motion made by the subject, and the plans formed by the subject for probing in-
cluding the purpose of the probing. Figure 2.21 shows part of an analyzed protocol.

2.4.2 Signal processing and its relation to source hypothe-

ses.

From the protocols, we identified two kinds of signal processing actually taking
place during a problem solving session: The first kind is signal processing that is
actually performed by the expert on the signals. For example, periodogram-based
spectral estimation may be used to change the signal description from the time
domain into the Fourier domain, thus making it easier to identify high frequency
harmonics that are often not apparent in the time waveform. The second kind is
human visual extraction of signal information from waveforms and spectra. For
example, a human locates the “loud” regions in a time waveform or identifies the
harmonics in a spectrum by visual inspection. The human identifies higher level

entities in the signals, e.4y. peaks and harmonic sets and reasons on the basis of
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Figure 2.21: Part of an analyzed protocol. Protocol should be read by row, left
to right. The plan indicates computation and/or display of a signal, shown as the
signal of the next row. The human operator extracts a relevant signal description,
from which he formulates a source hypothesis.
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such entities at multiple levels of detail.

Protocol analysis also gives indications concerning the interaction between the
above two kinds of signal processing. Determining the nature of such interaction is
important for designing a computer program that performs the task of the human
operator. Protocols indicate that the human operator interieaves the two kinds of
processing, using the second kind to plan the first kind. Human visual extraction
of signal information, such as harmonically related peaks in a spectrum or periodic
structure in a time signal, does not necessarily involve direct association with real

world entities.

Forming source hypotheses does involve associating signal descriptions with the
presence and motion of acoustic sources, such as helicopters. Planning the next
signal processing operation attempts to confirm the anticipated characteristics in
the signal, based on the source hypothesis. Therefore planning sets up a context
for the derivation of relev§nt signal descriptions, by limiting even more the signal

characteristics of interest in the result of the particular signal processing operation.
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Chapter 3

Abstraction and Signal Matching

In this chapter, we focus on the initial step towards helicopter localization from
one-dimensional spectral information, namely the extraction of reliable power and
frequency traces from real helicopter data. As we saw in chapter 2, accurately
modelling the generation and atmospheric propagation of helicopter sound is a very
difficult problem. In spite of the lack of accurate models, human experts are capable
of extracting a significant amount of information out of real helicopter data, by a
process involving interactive signal processing and reasoning about various signal
entities, such as harmonically related sets of spectral peaks, using highly ideali~ed
models as a guide. Human experts tend to view helicopter spectra not as mere
functions of power versus frequency, but as collections of such higher level signal

entities.

To represent this complex view explicitly, we introduce the notion of the ex-
tended spectrum. The Extended Spectrum is a representation of multiple levels
of detail associated with a spectrum as a single conceptual (and hence representa-
tional) entity, including all numerical parameters necessary to derive it completely

from the time waveform.

As we saw in the section of the previous chapter on protocols, an important
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component of the processing and interpretation of helicopter signals is spectral

matching.

One instance of spectral matching is the identification of faulty sensors: power
spectra from sensors close to each other ideally are the same, because an acoustic
plane wave results in signals differing only in phase. In real data, spectra from
different sensors differ because of noise. Whereas differences in the noise peaks are
expected, differences in prominent features, such as extra peaks or extra harmon-
ically related peak sets, present in only one of a number of sensors indicate that
the sensor may have a fault. A program for identifying a faulty channel has been
implemented that relies on extraneous or missing peaks in only one of a group of

spectra from different sensors.

Another instance of spectral_ matching is related to adjustment of spectral es-
timation parameters to a particular piece of r-al helicopter data. In chapter 2 we
saw some of the tradeoffs involved in estimating the spectra of helicopter signals.
Adjustment of the spectral estimation parameters in practice is guided by the ob-
servation that helicopter spectra have sharp peaks, which are harmonically related,
and correspond to the main and tail rotor of the helicopter. Therefore, the pa-
rameters that optimize the “peakiness” of the main and tail rotor harmonics in the
resulting spectrum are, in a sense, the most appropriate for the task of tracking the
power and fundamental frequency of the helicopter. An iterative program has been
implemented that performs matching of spectra obtained from the time waveform
with different parameter settings to find the direction of change of the parameters
that increase the “peakiness” of the resulting spectrum. Peakiness is defined at

multiple levels of abstraction using the notion of the extended spectrum.

A third instance of spectral matching is invoived in forming power and funda-
mental frequency traces as needed for the localization techniques presented in chap-
ter 2. In this case, matching takes place between spectra obtained at consecutive

times, and asscciates harmonically related peak sets with neighboring frequencies.
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Pairwise associations lead to the formation of sequences of such sets. Power and
frequency traces are then extracted from these sequences. We have implemented
a program for this task, described in chapter 4, together with the resuits of its
application to a variety of real helicopter data. Our experience indicates that a
sequential approach for source localization, whereby we first extract power and fre-
quency traces and then use the geometric localization techniques and qualitative
associations between power and frequency and local path shapes, is not always
successful because harmonically related peak sets are often hidden in noise. Our
iterative approach uses a combination of data-driven processing, which consists of
forming portions of harmonic set sequences, at time intervals when such harmonic
sets are prominent, and goal-driven processing, which consists of searching for har-
monic sets with specific fundamental frequencies in order to complete or extend
already formed sequences. This is similar to the notion of “islands of certainty” in
artificial intelligence [Barr & Feigenbaum 1981, Erman et al 1980].

This chapter is divided into two parts. The first part defines the extended
spectrum, a multilevel representation appropriate for spectra characterized by har-
monically related peak sets, and addresses the issues involved in its computation
from the numeric spectrum. The second part presents the first two systems out-
lined previously, i.e. the system for faulty channel identification and the system for
adjusting the parameters of spectral estimation to maximize the peakiness of the
resulting spectrum. Both systems rely on the notion of the extended spectrum. The
second part ends with an overview of the issue?, associated with matching of spectra
at different times, leading to the discussion of the system for extracting power and

frequency traces from real helicopter data, fully described in chapter 4.

In all these problems, we view signal matching as a framework, because the
designer of the matching program has choices along several dimensions which de-
termine exactly how matching is performed. A single set of matching operations
may not be general enough for most signal correlation applications. Instead of

providing a universal set of matching operations, we structure matching around
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multiple levels of abstraction, and we allow the program designer to attach special-
ised matching procedures for the various levels of abstraction [Bobrow & Winograd
1977].
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3.1 The Extended Spectrum: a multilevel repre-

sentation for harmonic spectra

The extended spectrum is defined at three levels of increasing abstraction:

e the spectrum level (power as a function of frequency),

o the peak level (a collection of peaks, with each peak characterized by its
center frequency, its maximum power, several other features and a symbolic

characterization of its prominence derived from those features),

o the harmonic peak set level (a collection of sets of harmonically related peaks,
with each set characterized by a few basic features, plus a list of extraneous

peaks, which are prominent peaks not belonging to any harmonic set).

In addition, the extended spectrum includes three sets of parameters, corresponding
to the following three stages of the computation of the extended spectrum from the

time waveform (Figure 3.1).

The first stage is the computation of an estimate of the spectrum from a given
time waveform. The main issue here is the interaction of the requirements for good
resolution, good noise reduction and lack of infinite data to work with, with tradeoffs

involved as discussed in previous chapters.

The second stage consists of detection and symbolic characterization of spectral
peaks. Peaks are detected as local maxima of the spectrum, i.e. as (discrete) fre-
quencies at which the spectrum is stronger than both of the neighboring frequencies.
We treat peak characterization as a classification problem, and several approaches
are possible within this framework. Characterization of peaks is based on empirical
criteria, hence our implementation needs to be flexible and to allow easy experi-

mentation. We used rules as the programming technique to capture such empirical
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Figure 3.1: Stages of computation of the extended spectrum from the time waveform
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criteria and we found it to be a convenient representation, because it was possible
to use the same rules for two distinct purposes, classification and training based on

examples, as v?ill be explained later in this section.

The final stage is grouping of peaks into harmonic sets. The main problem here
is that barmonic relations are not exact, but approximate. Grouping is achieved
through the use of an approximate multiple criterion, selection of candidate fun-
damental frequencies and testing of peaks against the hypothesized fundamentals.
Finally, harmonic sets thus formed are classified as potentially relevant or irrele-
vant to an acoustic source. Heuristic criteria are applied here, with the relevance
thresholds for acceptance set low, because ultimately relevance of a harmonic set

depends on its continuous presence over time as dictated by the scenario.

In this section we provide the components of the extended spectrum and then
details of the above computations, with each component description preceding the
details of its computation. Then we provide the representation of the extended
spectrum as an abstract data type and point out how this extends the signal view
introduced by the closure model of (Kopec1980|. Finally, we discuss some of the

issues associated with our rule implementation of embedded classification.

3.1.1 DPeak detection and symbolic characterization

Peaks correspond to local maxima of the spectrum, therefore they are located at zero
crossings of the first difference of the spectrum. In general, we consider as a peak
the whole section of the spectrum extending between two valleys and containing

the local maximum.

Various pieces of information about a peak (features) can provide an incomplete
characterization of a peak, but nevertheless sufficient for certain purposes. In Figure
3.2 we show the features we used in the extended spectrum. The last item in

this figure refers to a set of characterizations associated with the peak according
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to multiple classification criteria, which capture various cases of the peak being
visually prominent, i.e. “standing out” in the spectrum. Prominent peaks are of
interest because they are more likely to be due to acoustic sources. The classification
criteria we used are shown in Figure 3.3. They were developed by experimenting
with real helicopter data to produce results consistent with the experimenter’s visual

experience.
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e Frequency and power of the peak at the location of maximum power (point A).
o Frequency and power of ‘he enclosing valleys (points B and C).

e The closest frequency to the peak frequency, at which power exceeds the peak power
(point D). It determines the size of the neighborhood, over which the peak is a local
maximum.

e Frequency, power and frequency difference F-DIFF of the two enclosing valleys. the
powers of which are below a certain percentage of the peak power (points E and
F). Helps characterize peaks with rippled sides, therefore displaying many shallow
maxima and minima.

e Frequency and power of all inflection points between the two enclosing valleys (points
G. I and J). Helps identify plateaus.

e Symbolic characterization of the peak concerning its visual prominence in the spec-
trum.

Figure 3.2: Peak features used in the extended spectrum
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Large average Prominent Prominent but
prominence Unbalanced maybe rippled

o Large average prominence: the ratio of the power of the peak to the average of the
power of two enclosing valleys is high.

¢ Prominent unbalanced: the ratio of the power of the peak to the minimum power of
the two enclosing valleys is high while the ratio of the power to the average of the
power of the two enclosing valleys is low.

e Strong: Power of the peak is within a certain fraction of the power of the strongest
peak in the spectral region under consideration. This criterion is especially useful
when we are examining short regions of the spectrum. Over long regions it tends
not to be satisfied for most peaks because of the rapid decay of the spectrum with
increasing {requency.

e Locally strong: Peak is a local maximum over a fairly large neighborhood.

e Prominent but maybe rippled: The enclosing valleys with power below a certain
fraction of the power of the peak exist and are fairly close to each other. Such peaks
appear to be prominent, but they may have rippled sides.

Figure 3.3: Classification criteria corresponding to symbolic characterizations of
peaks
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Rule implementation of the classification criteria To allow for easy exper-
imentation, the classification criteria were implemented in the rule language YAPS
[Allen1983]. The format of the rules is as follows:

Rule:
parameter passing patterns
data passing patterns
test criteria
-=>
assign characterization to peaks.

A typical rule is shown in Figure 3.4. The lines after LET and before IF bind
local variables (in lowercase) to patterns in the fact base. “peak” is the peak object
being characterized, whereas the rest of the local variables correspond to thresholds
used by the rule. The lines after IF and before THEN are tests defined on the
local variables. The tests consist of Lisp functions that access various pieces of
information in the peak object and test whether they belong or not to appropriate

regions bounded by thresholds. The format of the tests is:

<a peak characteristic> BELONGS-IN <region bounded by thresholds>

or

<a pesk characteristic> DOESNT-BELONG-IN <region bounded by thresholds>)

In our classification we accept overlapping classes (i.e. it is possible for a peak to
have multiple symbolic characterizations). Overlapping classes result from multiple
classification criteria applied independently. Thus the problem of classification with
overlapping classes can be viewed as comsisting of multiple binary classification
problems solved independently (i.e. a given peak is classified in many ways and the

complete characterization consists of a list of the positive characterizations).

Use of multiple classification criteria applied independently makes the system

modular and allows experimentation with various collections of classification criteria
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RULE PROMINENT-BUT-MAYBE-RIPPLED:

LET PEAK BE peak
PROMINENCE-REGION BE pr
PROMINENT-BUT-MAYBE-RIPPLED-REGION BE prrippled
NARROW-WIDTH-REGION BE wr

IF
PEAK-HORIZONTAL-DISTANCE BELONGS-IN wr, AND
PEAK-PRONINENCE DOESNT-BELONG-IN pr. AND
PEAK-GEN-PRONINENCE BELONGS-IN prrippled
THEN

INSERT ‘' ‘PRONINENT-BUT-MAYBE-RIPPLED’® INTO PEAK-CHARACTERIZATION

Figure 3.4: An example of a classification rule

just by “piugging" them in and out. In addition, it allows a training system to be
built in addition to the classification system which is independent of the specific
criteria used. The view of the rule base as useful in both classification and training
‘is shown in Figure 3.5. The rules capture generic perceptions of what the various
characterizations are, without reference to specific numerical values. For example,
one kind of prominent peak is the one whose peak height is much larger than the
average height of the enclosing valleys. At the rule level, what larger means is
not specified. This is the role of the threshold level: the meaning of “larger” is

application dependent and it is encoded in the form of one or more thresholds.

The classification and training programs are independent of both the rules and
the thresholds. The classification program uses the rules and thresholds to produce
peak characterizations. The training program uses the rules, peak characterizations
provided by the user and the numeric spectrum to adjust the thresholds. This dual

use of rules is achieved by constraining their form.
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Figure 3.5: The two uses of the rule base: classification and training
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The training system uses the left side of the applicable rules (as specified by
the human trainer) and forces satisfaction of the test criteria by modifying the
parameters that are used in the tests (thresholds). This is achieved by first matching
the patterns in the left-hand side of the applicable rules and then considering the
test clauses one by one. The peak characteristic is computed and the clause is
forced into satisfaction by enlarging (or shrinking) the thresholding region. The
above -tra.ixiing procedure was actually used in setting the thresholds of the criteria

shown in Figure 3.3.

The classification of each peak is later used in other classification problems at
higher levels of abstraction. For example, the list of classes determines whether
a peak is considered when hypothesizing fundamental frequencies or whether to
classify a I:eak not belonging to any harmonic set as extraneous, and therefore worth
considering further, or to ignore it. Thus a binary classification problem at higher
levels of abstraction (for example whether a peak not in a harmonic set is considered
important or not) is decomposed into several binary classification problems at the
peak feature level (i.e. whether the peak is visually prominent according to any
of the criteria for prominence). Such decomposition adds to the modularity of the
binary classification problem at the higher abstraction level and makes explicit its

solution in terms of binary classification problems at the peak level.

3.1.2 Grouping of peaks into harmonic sets

Harmonically related peak sets potentially have a direct correspondence to harmonic
signal sources in the physical world. In the acoustic source localization problem
discussed in chapter 2, features of the harmonic sets, such as the total power of
their peaks and their fundamental frequency, depend on the type of the acoustic
source, its. distance from the sensor and its relative velocity with respect to the
sensor. Hence harmonic sets are of immediate interest and relevance to the problem

of localization and tracking of acoustic sources.
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Several problems are present in grouping spectral peaks into harmonic sets.
Peaks belonging to harmonic sets are not always exact multiples of the fundamental
frequency. This is due to frequency modulation (because of the Doppler effect) and
also because the exact frequencies of the harmonics may lie between two successive
samples of the uniformly spaced discrete frequencies of the spectral estimate. Thus

a notion of approximate multiple must be used.

Another problem is octave errors. For example, peaks at frequencies 24 Hz and
60 H3 can belong to a harmonic set with fundamental 3, 6, or 12 Hz. This problem
is more acute with small fundamental frequencies because the spectral resolution
over a frequency range of size equal to the fundamental frequency is small. The
problem of octave errors is further compounded if approximate multiples are used.
Finally, near overlap of harmonic sets (for example two harmonic sets with peaks
at 8, 16, 24 Hz and 9, 18, 27 Hz respectively) may cause the almost overlapping
peaks to get merged to a single peak witu a frequency shifted with respect to the

true frequencies of both harmonics (Figure 3.6).
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Figure 3.6: Harmonic set overlap can cause peak shifting.

. The approach we followed for forming sets of harmonically related peaks consists

of the following basic steps:
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1. Find the candidate fundamental frequencies.

2. For each candidate fundamental frequency, collect peaks whose frequencies
are approximate multiples of that fundamental. The dividend is considered
an approximate multiple of the divisor if the remainder is a small fraction of
the divisor.

3. Prune out or merge thus formed harmonic sets, if appropriate.

4. Find all prominent peaks that do not belong to any harmonic set after the
pruning process and see whether they fit in one. If they do, insert them into
the harmonic set.

Within this basic framework, we added several heuristic criteria for making the
system more robust in processing real helicopter data. New heuristic criteria are
derived while debugging discrepancies between the implemented criteria and the
visual experience of the user/programmer of the system. We will next describe in
more detail both the heuristic criteria we derived as they are embedded in sequential

processing.

Pinding candidate fundamental frequencies In finding candidate fundamen-
tal frequenciés, we are only interested in fundamentals in a prespecified fundamental
frequency range. Furthermore, we only consider peaks that belong to a prespecified
frequency range of interest as candidates for higher harmonics. Both of these ranges
are determined by the kinds of acoustic sources we are looking for. The criteria are

as follows:

For each peak in the prespecified frequency range of interest (which is the cover
of the fundamental frequency range and its second and third harmonics), we extract

a candidate fundamental frequency:

e equal to the peak frequency (if the peak belongs to the fundamental frequency
range)
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e equal to the peak frequency divided by 2 (if the peak is prominent and its
frequency divided by 2 lies in the fundamental frequency range). This means
that the peak is a candidate second harmonic.

e Same as above, but considering the peak as a candidate third harmonic.

The above rules reflect the empirical fact that fundamental frequency peaks may
be weak or missing altogether, and that if the fundamental is missing and neither
the second not third harmonic is prominent, then most probably the harmonic set

is a spurious one and not worth considering.

Grouping of peaks into harmonic sets After collecting the candidate funda-
mental frequencies, we proceed as follows: for each candidate fundamental frequency
and for each peak in the frequency range of interest, we test whether the peak is
an approximate multiple of the fundamental. If it is, we add it to the set of peaks

that are possible harmonics of the fundamental.

Candidate fundamental frequencies are not necessarily integers. Hence in our
approximate multiple test, we require that the quotient of the peak frequency and
the fundamental be within a certain range of an integer (reasonable values for the
slack are 5 to 10 %). For example, 61.3 can be considered a multiple of 12.1 of order

5, and the slack is equal to |61.3/12.1 — 5| = 0.066 or 6.6%.

It is possible for the same peak to appear in more than one collection of harmon-
ics (since it is possible for the same peak to lie at the intersection of two harmonic
sets, for example peak at 30 Hz is at the intersection of two harmonic sets with

fundamentals equal to 6 and 15 Hz).

For each such collection of peaks formed around each candidate fundamental fre-
quency, we form an instance of the harmonic set abstract data type. The harmonic
set data type is composed of the following features of the harmonic set: fundamental
frequency, the order of the harmonics that are present, whether the fundamental

peak is missing, whether the fundamental peak is prominent, the number of promi-
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nent harmonics, the average and total prominence of the peaks of the harmonic
‘set, the average and total deviation of the peaks from being exact harmonics of
the fundamental and a pointer to the harmonic peak objects, which contain more

detailed information about the corresponding peaks.

Upon formation of a harmonic set instance, all lists of peaks of the same har-
monic order are sorted by increasing slack, the fundamental frequency is being rees-
timated based on the peaks that are “best® harmonics of the original fundamental
for each harmonic order and the harmonic set is sorted once more. We currently
reestimate the fundamental frequency based on the frequencies of all harmonics.
Alternately, we could reestimate the fundamental frequency based only on selected
peaks of the harmonic set, for example the first four harmonics or the prominent
harmonics only. It is still to be examined whether such selectivity improves per-
formance and how heuristics of such type can be conveniently programmed. Fur-
thermore, the process of reestimating fundamental frequency and sorting can go
on until no change occurs to the harmonic set. We arbitrarily limited this to one

iteration.

Harmonic set pruning Finally, all thus formed harmonic sets are pruned using a
set of heuristics. These heuristics specify which of the harmonic sets are acceptc*le
as possibly related to an acoustic source. The heuristics are specific to the kind of
signals we are processing. However, the framework in which they are embedded is
quite general and allows the user to experiment with different heuristics appropriate
for other kinds of data.

Figure 3.7 shows all the harmonic pruning heuristics currently used. Each heuris-
tic is designed to prune out a different kind of “false” harmonic sets that may arise
as artifacts of the peak grouping technique described previously. Heuristic 1 is con-
cerned with harmonic sets that may consist purely of noise peaks. Heuristics 2 and
3 are concerned with harmonic sets with sparse or too few peaks. Heuristic 4 is
concerned with harmonic sets with similar fundamentals which should be merged
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into a single set. Heuristics 5 and 6 prune out sets that differ from other sets only by
a number of noise peaks. Finally, heuristics 7 and 8 deal with two types of “octave”
errors. Octave errors arise when a fundamental frequency which is double or half
the correct one is found, either in addition to or instead of the correct one. Octave

errors are a known problem in pitch detection of voiced speech [Parsons1976|.

1. If no peak in a harmonic set has large average prominence, the set is pruned out.
2. If a harmonic set consists of a single peak, it is pruned out.

3. If both the second and third harmonic of a harmonic set are missing, and its funda-
mental is not a prominent peak, the set is pruned out.

4. If two harmonic sets have very similar fundamen::ls, they are tentatively combined
into a single harmonic set with fundamental frequency equal to the average of the two
fundamentals. If the resulting set has at least as many peaks as each of the original
sets or it has at least 3 peaks, it replaces both of the original sets. If not, the original
set with the fewest peaks is pruned out, if it has at least 2 fewc: peaks than the other
set and at most 2 peaks in total.

5. If a harmonic set is a subset of another harmonic set and if its average prominence
is much smaller than that of the latter set, the former harmonic set is pruned out.

6. If a harmonic set shares all its prominent peaks with another harmonic set, the former
harmonic set is pruned out.

7. If the fundamental frequency of a harmonic set is equal to half the fundamental
frequency of another set, and the former set shares all its prominent peaks except at
most one with the latter, and the fundamental of the latter set is a prominent peak,
whereas the fundamental of the former set is not, the former set, i.e. the set with the
lowest fundamental frequency, is pruned out.

8. If the fundamental frequency of a harmonic set is equal to half the fundamental
frequency of another set, and the latter set shares all its prominent peaks except at
most one with the former set, and the fundamental of the former set is a prominent
peak, whereas the fundamental of the latter set is not, the latter set, i.e. the set with
the highest fundamental frequency, is pruned out.

Figure 3.7: Harmonic set pruning heuristics

The above heuristics apply equally well to both low- and high-frequency spectra.
Low frequency spectra extend over a fairly narrow range of frequencies, 5-100 Hz,

over which the decay of the spectrum with increasing frequencies is usually not very
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rapid. The total number of peaks is in the tens and the spectrum is rather noisy
with intense peak merging and splitting due to noise. High frequency spectra extend
over a broad range of frequencies, 70-800 H3z, over which the decay of the spectrum
is significant. The total number of peaks is in the hundreds and the interesting

peaks are significantly more prominent compared to the low frequency spectra.

Examples of the extended spectrum representation We now present some
examples of the extended spectrum representation of spectra of real helicopter data.
We only show signal-related information of the extended spectrum. In addition
to that, the extended spectrum includes parameter objects, which contain all the
necessary numerical parameters and rules necessary to compute peak and harmonic

set abstractions from the numeric spectrum.

In the first example we have a single helicopter far before its closest point of
approach, and the extended spectrum is focused on the tail rotor frequencies, i.e.
a frequency range of 80-1000 Hz. Part (a) of Figure 3.8 shows the spectrum 6f the
signal in logarithmic scale. Part (b) shows the extended spectrum representation

for part (a) in tabular form.

At the peak level, we show the frequency, power, prominence, generalized-
prominence, horizontal-distance and characterizations of each peak, which is po-
tentially relevant to an acoustic source. Prominence is equal to the ratio of the
peak power to the average power of the two enclosing valleys. Generalized promi: -
nence is equal to the ratio of the peak power to the average power of the two
enclosing valleys, whose powers are below a certain percentage of the peak power.
Horizontal-distance is the frequency difference of these two valleys. If these valleys

do not both exist for a peak, the corresponding entries are marked NIL.

For each harmonic set, which is potentially relevant to an acoustic source, we
show its features as described previously. The harmonic set with fundamental fre-
 quency equal to 94.8 Hz is due to the tail rotor of the helicopter. It shows a full
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set of harmonics up to 9th order and it has 4 prominent harmonics (i.e. harmonics
with the characterization LARGE-AVG-PROMINENCE). The harmonic set with
fundamental frequency 80.7 Hz is missing several harmonics and its only promi-
nent harmonic is shared with the harmonic set at 94.8 Hz. It is doubtful that the
latter harmonic set is due to a helicopter source. No extraneous peaks, namely
relevant peaks not belonging to a harmonic set and not only LOCALLY-STRONG,

are present.

The second example (Figure 3.9) corresponds to the main rotor frequency range
of the first example. At the peak level all peaks are considered relevant, even those
with no characterization at all. This is not as costly as in the tail rotor frequency
range, because there are significantly fewer peaks. Only one harmonic set is found
with fundamental frequency equal to 14.7 Hz, corresponding to the main rotor of
the helicopter. A prominent peak at 53 Hz is unaccounted for, so it is an extraneods

peak, together with the strong peak at 6 Hs.

The third example (Figure 3.10) is a signal from two helicopters following the
same path. The first helicopter is near CPA and the second before CPA. The
extended spectrum shows two harmonic sets with fundamental frequencies at 91.9
and 94.8 Hz. The harmonic set at 91.9 Hz is from the tail rotor of the helicopter
near CPA, and the one at 94.8 Hz from the tail rotor of the other helicopter.

The final example (Figure 3.11) is the extended spectrum of the main rotor
frequency range of the previous example. It shows a harmonic set at 14.4 Hz,
due to the main rotor of the helicopter before CPA. The main rotor sound of the
helicopter near CPA is not there any longer. The harmonic set at 9.6 Hz is not easily
attributable to an acoustic source because it shares all its prominent harmonics
with the previous harmonic set. It is plausible that the main rotor harmonics of
the helicopter near CPA are so weak and so close to the harmonics of the helicopter

before CPA that they are drowned by them, and therefore are not visible.
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Figure 3.9: Extended spectrum for single helicopter far before CPA, main rotor

frequency range.
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3.1.3 The Extended Spectrum as a Data Abstraction

The extended spectrum is implemented as an abstract data type [Liskov & Zilles
1974, Kopecl1980|. An abstract data type separates the use from the implemen-
tation of a data object, implemented in terms of more primitive objects: The set
of allowed operations on instances of the abstract ’da.ta. type together with their
usage specifications is the external view of the data type, whereas the actual details
of how the object is represented in terms of more primitive objects is the interzal
view of the data type. Kopec was the first to advocate representation of signals
as abstract data types, and used the term “closure model” for signals to indicate
the representation of a specific signal as a function of several arguments, one of
which is the independent variable plus several values for the function arguments
(excluding the independent variable). Applying the function to a specific value of
the independent variable and the values for the rest of its argume:its generates the

corresponding value of the signal.

In the case of the extended spectrum, in addition to separating use from im-
plementation of a signal, we need to accommodate various degrees of suppression
of detail (spectrum, spectral peaks, harmonically related peak sets), or levels of
abstraction. This requires extension of the function arguments of the closure model
into several parameter sets that are necessary for computing the transitions between
successive levels of detail. We thus have three different viewpoints towards a signal,

the first two inherited from the view presented in {Kopec1980|:

1. Internal representation, which is to be separated from the use of the signal as

seen from the outside.

2. Use of the signal. Specifies operations that an outside user may perform on
the signal. This includes fetching certain values associated with the signal
at different levels of detail and fetching the parameter object for generating

the most detailed description (i.e. estimating the numeric spectrum from the
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time waveform).

3. Transstion between successsve levels of detasl In contrast with the view of
[Kopec1980|, our signal representation is redundant, in the sense that if we
have the most detailed level of description (i.e. the time signal), we can
compute the spectrum and all its higher levels of description (i.e. peaks and
harmonically related peak sets) from it. The algorithms associated with the

transition between successive levels of detail have their own parameter objects.

The abstract data type we have defined for representing the extended spectrum
holds the pieces of information shown in Figure 3.12. Two basic kinds of informa-
tion are present, signal information at multiple levels of abstraction and parameter
objects for the spectrum estimation and the transitions from the lower to the higher
levels of abstraction (parameter objects are shown indented in the figure). Strictly
speaking, the time signal and the parameter objects are a complete specification of

the extended spectrum.

The spectral estimation parameter object includes the parameters used to esti-

mate the spectrum from the time sequence. These parameters are:

e Starting time of the first block to be averaged.

e Individual block length.

o -

Degree of overlap between successive blocks.

Total number of blocks.

The peak classification parameter object includes the classification thresholds
for the various categories of peaks, as well as a selection of applicable empirical
classification criteria. The latter need to be specified because not all criteria are
applicable to all situations. For example, a different selection of criteria is applicable

when we are classifying main-rotor harmonics and tail-rotor harmonics.
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The harmonic set sorting parameter object, includes all parameters for deter-
mining the list of harmonic peak sets and the list of extraneous peaks from the
list of characterized peak objects. These parameters are: the maximum slack used
by the approximate multiple test, maximum distanced between two fundamental
frequencies to be considered the same for purposes of merging two harmonic sets
with similar fundamental frequencies, the fundamental frequency range of interest

and the selection of rules for pruning harmonic sets.

Whether the signal information part of the extended spectrum is remembered
(“memoized”, according to the terminology of [Abelson & Sussman 1985]) after the
first time it is computed for immediate access when it is needed later, is a matter
of efficiency considerations, or of the desired tradeoff between memory space and
computation time. Our implementation on the Lisp machine was not constrained
by memory space, therefore we chose to memoize all signal information. In an
operational system with both memory and time constraints, a more careful study
is necessary of exactly what computation should be delayed. As we mentioned
above, the issue we raise here is similar to the notion of “memoization” [Abelson &
Sussman 1985|, according to which the results of function calls in a programming
language are saved to avoid recomputing the function, if it is called again with the

same functional arguments.

The computations discussed in detail in the previous sections are defined as
operations on the extended spectrum. They are summarized in Figure 3.13. These
operations cannot be strictly classified under the internal or external view of the
extended spectrum object. If the object is viewed as immutable, then they can be
considered part of the internal view of the object. However, if we want to provide
the user of the object with the ability to modify some of the parameter objects and
compute the modified extended spectrum, we must provide him with access to the

operations of Figure 3.13.
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Figure 3.12: The extended spectrum data type
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Create an extended spectrum. This invoives setting up an instance of the extended
spectrum data type with the parameter objects filled in.

Find peaks. This involves finding the peaks, creating a peak object for each, and
finally filling in the appropriate slot with the ordered peak list.

Classify peaks. This involves classifying the peaks in the peak list and filling in the
classification slot of each peak object.

Find fundamental frequencies. This involves going through all the peaks and apply-
ing to each the criteria for possibly extracting one or more fundamental frequency
estimates out of each.

Create tentative harmonic sets. This involves going through the fundamental fre-
quency list and associate with each fundamental frequency all peaks that are its
approximate multiples.

Prune tentative harmonic sets. This involves going through all harmonic sets and
extract those that seem to have strong evidence for being visually prominent.

Find extraneous peaks. This involves going through all peaks and based on their
classification and (non)membership of at least one pruned harmonic set classifying
them as extraneous.

Figure 3.13: Operations defined on the extended spectrum data type
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3.1.4 Perspective on the approach
Rule implementation of classification

In our rule implementation (built in the rule language YAPS [Allen1983|), a rule
corresponds to a single independently applied binary classification problem. The
left-hand side of the rule is used to bind the various rule parameters, while the
test part is used to test for the conditions of the classification problem. If the test
succeeds, then the action side of the rule adds the corresponding class to the current

peak object (by side effect). If the test fails, nothing happens.

Rules that apply different criteria to the same task, ¢.g. peak classification, are
grouped together into a rule base. Activation of a rule base is done via a function
call: the function first inserts into the database the appropriate facts concerning
the peak object being classified and the various threshold parameters, and then it
activates the rule base. Rules are triggered by the existence of facts that match
their left-hand side. After all the rules have fired, the rule base operation returns.
Its goal has been accomplished by altering the peak objects by side effect.

A rule captures the intuitive notion of the corresponding binary classification
problem, without specifying values for the thresholds involved. Such separation is
useful, because the threshold values may vary with the kind of data at hand (for
example low or high frequency spectra), but the same intuition may apply in many

situations, therefore allowing the use of the same rules in more than one situation.

Embedded classification

In our system for computing extended spectrum representations, we perform classifi-
cation at the low abstraction levels (e.g. peaks), and use its results when generating
descriptions at higher abstraction levels. For example, whether a peak is being used

as a source of candidate fundamental frequencies deperds or its classification. We
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thus embed (and solve) classification subproblems into an otherwise straightforward
grouping procedure, for the purpose of reducing the number of items to be grouped
(i.e. reducing the search space). The whole process of describing a harmonic spec-
trum at several levels of abstraction can be viewed as a process of search in the
power set of all peaks for harmonic peak sets. By using symbolic peak character-
‘ization, candidate fundamental frequency selection, and harmonic set pruning we
are able to cut down the size of the search space (which is enormous, considering
that in typical spectra we have of the order of a few hundred peaks, giving rise to
power sets of peaks (i.e. the sets of all possible subsets of éeaks) of size of the order

of 2109),

Other uses of the rule approach

The rule approach was found convenient in splitting and merging hypothesized har-
monic sets in harmonic set pruning. Rules operate differently in this case, because
they act on a database of harmonic sets by constantly modifying it (by triggering on
one, two or more sets in the database and replacing them by one or more modified
sets, as appropriate) until no rule fires. This is how the rules shown in Figure 3.7
operate. The full implications of this approach are not well understood yet (issues
of infinite looping, being able to have an indeterminate number of sets in the rules
without explosion in the number of links in the discrimination net). Better under-
standing of these issues may lead to. the design of appropriate control structures for

rule based systems specifically for signal processing (see [Dovel986)).
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3.2 Applications of matching of harmonic spectra

In the previous sections of this chapter we introduced the extended spectrum as
a representation at multiple levels of abstraction for harmonic spectra. We are
now going to illustrate the usefulness of the extended spectrum in three problems

involving matching of helicopter data.

3.2.1 Correlation of harmonic spectra for faulty channel de-

tection

In this section, we apply the notion of extended spectrum, by treating identification
and characterization of faulty channels as a problem of matching their spectra in

the appropriate representation.

In theory, when a plane wave is sensed by an array of closely spaced microphones
(i.e. afew meters from each other), the only difference between signals from different
microphones is a time lag, which affects only the phase of the spectrum of the signals.
In pﬁctice, however, power spectra from different microphones are not the same.
As an example, Figure 3.14 shows the time waveforms and power spectra of three
channels from a typical helicopter data recording. Frequencies of signal peaks are
only approximately equal in different channels, with frequency differences up to 1
or 2 Hz between corresponding peaks. Peaks due to noise are not coherent across
sensors. Signal peaks do not always have similar amplitude patterns in different

channels, i.e. different harmonics may be the strongest in different channels.

Furthermore, interference may be present in one or more channels due to me-
chanical or electrical problems, as in channel 6 of Figure 3.14, which has a strong 60-
Hz interference in the form of strong harmonics of 60 Hz. Figure 3.15 shows the list
of prominent peaks of the spectra shown in Figure 3.14. For the purposes of faulty

channel detection, prominent peaks are those with one or more characterizations in
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the set { LARGE-AVG-PROMINENCE, PROMINENT-BUT-MAYBE-RIPPLED,
LOCALLY-STRONG }, as they were defined earlier in this chapter.
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Figure 3.14: Time waveforms and spectra of channels 6,1 and 4, with channel
6 having several strong peaks not present in any other channel due to a 60-Hz
interference

Inspection of the time waveforms can detect and characterize certain faults,
such as microphone saturation, consisting of a signal with a high constant value,
as shown in Figure 3.16. Other faults cannot always be visually detected from
the time waveform, as in the case of a channel without signal, i.e. consisting of
electrical noise only (Figure 3.17), when the signal is weak and does not give rise
to a clearly visible periodic pattern in the waveform. Finally, there are faults that

need more elaborate reasoning for their detection and characterization, such as the
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ATS 3.9 4.1 | 6.2 | 12 | (LOCALLY-STRONG PROMINENT-SUT-MAYSE-RUPPLED)
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[ ] 316.3 | 1.0 1 NIL NIL | (IN=FUND=-FREQ-RANGE )
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190 8.7 | 9.0 | .0 | 14 | (LOCALLY-STRONG PROMIMENT-8UT: ~RIPPLED)
26 178.2 | 4.3 8.9 | 14 | (LOCALLY-STRONMS PROMIMENT-SUT-MAYBE-RIPPLED)
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e .7 | 0.8 0.8 | 9 | (LARGE-AVG-PROMINENCE LOCALLY-STRONG)
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120 748.4 | 8.7 1 8.7 | 10 | (PROMINENT-8UT-MAYEE-RIPPLED)
190 4417 | 14.8 | 14,6 | 12 | (LAMGE-AVG-PROMINENCE LOCALLY-STRONG)
284 27.2 | 13.3 ] 13.9 | ] | (LARGE-AVE-PROMINENCE LOCALLY-STRONG)
Channel & 353 2.0 | S.0 | .8 | 19 | (PROMINENT-8UT -MAYSE-RIPPLED)
379 133.8 | 29.7 1 29.7 | 9 | (LAGE-AVG-PROMINENCE LOCALLY-STRONG)
«03 22.9 | 2.4 12,4 | 7 | (LARGE-AVG-PROMINENCE )
474 7.3 | 8.4} 8.4 | 13 | (LARGE-AVG-PROMINENCE LOCALLY-STRONG )
<69 40 | 9.8 | 9.8 | 10 | (LOCALLY-STROMG PROMINENT-8UT-MAYBE -RIPPLED)
[ ] 1.4 | 2.3 2.5 | 18 | (LARGE-AVG-PROMINENCE LOCALLY-STRONG)
780 0.4 | 3.4 | 8.0 | 19 | (LOCALLY-STRONG PROMINENT -8UT-MAYEE-RIPPLED)
8s3 g.t | 4.2 | 7.9 | 38 ] (LOCALLY-STRONG )
912 0.1 | 2.8 | NIL | NIL | (LOCALLY-STRONG)

Figure 3.15: Lists of prominent peaks of spectra of channels 6 (the faulty one), 1
and 4 shown in the previous figure.
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60 Hz interference of Figure 3.14, which is best done by inspection of the power
spectra. In our protocols, the human subject identified the fault by matching high
level spectral characteristics of different channels and by isolating the channel that
significantly departed from the majority of the channels.

Pressure . Leg seestrun
18 ®n

88 Tine 5999

-2.3? -2.98
L) Ting 5999 [ ] Fresvency (Me) 1032

Figure 3.16: Saturated channel 0 and channel 1 at the same time. Note the vertical
scale of the two plots. Vertical scale is (0 15| for channel 0 and [-2.2 2.4| for channel
1.

To illustrate the fact that the conditions describing “difficult” channel faults,
such as a 60 Hz interference, can be expressed in terms of higher levels of abstraction,
and therefore detected at those levels, we implemented a program for detecting

faulty channels based on their different peak structure. Figure 3.18 shows a block
diagram of the program.

The program operates on the basis of prominent peaks, i.e. peaks that visually
“stand out”. The peak characterizations obtained through the methods described

earlier in this chapter are used to determine whether a peak is prominent.

Operation of the program proceeds as follows.
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Figure 3.17: Channel with a very weak signal, compared to another channel at the
same time with a strong signal. Eoth time-waveforms (on the left) and log spectra
(on the right) are shown.

groups of sise 1 »

channel with extraneous peaks
T
Muitiple Extended extract | Collect peaks
Data Spectrum prominent s with same (req. |
Chaznneis Computation peaks | into groups |
Lissof  \ Sroups with size 1 less
spectra peaks, thaa aumber of channels =
one list channel with missing peaks
per channe!

Figure 3.18: Block diagram of the program for faulty channel detection based on
peak structure
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A list of prominent peaks for each channel is formed based on the channel’s ex-
tended spectrum. Then prominent peaks from all channels are collected into groups,
where peaks in the same group have the “same” frequency (i.e. frequencies that
differ very little. The largest permissible difference depends on the type of spectrum
being analyzed. We defined it to be 3 Hz in the case of tail rotor frequency ranges).
These groups collect together peaks from several channels that are apparently due

to the same physical cause.

Missing and extraneous peaks identified from groups of size one or one less than
the total number of channels are the starting point for detecting faulty channels,
under the assumption of a single faulty channel. Moreover, the peak information
used to detect a faulty channel can also be used to characterize the fault in terms

of its spectral characteristics, although this was not implemented in this thesis.

As an example, consider the case of a single helicopter source and eight channels
of data. The list of prominent peaks for each channel in this case consists of the list
of prominent helicopter harmonics in the corresponding channel. The groups defined
above consist of harmonics of the same order from different channels. Ideally, all
groups will have eight members, one from each channel. If in a single channel the
helicopter signal is very weak or missing altogether or the channel has some kind
of broadband interference, one or more of the groups will have seven members. If a
single channel has a strong harmonic interference, several groups will show up with

only one member, corresponding to one harmonic of the interference.

The result of the program is now shown on the eight channels of real helicopter
data, one of which (channel 6) has a strong 60 Hz interference. Part of the data
was shown in Figure 3.14, including channel 6 and two other channels (1 and 4) for

comparison.

Figure 3.19 shows the groups of peaks of different channels with the same fre-
quency formed from the lists of prominent peaks of channels 1-8. Each peak is

represented by an X at the intersection of its frequency and the channel it belongs
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to. Only groups of size 1 or 7 are shown in the figure, corresponding to peaks
present or missing in only one channel respectively. Note that channel 6 has ejght
peaks not present in any other channel and a peak at 189 Hs missing. No other

channel has more than one peak not present in any other channel.

FREQ 1 2 3 4 L] [ 7 8
s 1 1 1 1 ax1
120 | | { I x | | !
w1 1 11 Ix1
11 11 X
189 10X I X 1X 1% 1% 1 1% 1%
231 1 1 1 111 Tx
71 1 1 10 ax
Y
1 X
21 1 1 1 1 ax
sl 1 1 1 1 ax
1 1 1 1 1 x0T

Figure 3.19: Groups of peaks of different channels with the same frequency in table
form. Each peak is denoted by an X at the intersection of its frequency and the
channel it belongs to.

Figure 3.20 shows the channels with missing peaks (a) or peaks present only
in those channels (b). Part (b) of this figure in addition shows the characteriza-
tions of each peak present in only one channel. It is worth noting that six out
of the eight peaks present only in channel 6 have the characterization LARGE-
AVG-PROMINENCE. Furthermore, seven of those peaks are ha.rrponics of 60 Hz,

indicating the presence of a strong 60 Hz interference.
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z3332 Single missing peaks sszssz

Channel 6 is missing a peak at 189 H2z

sss33 Singlie present peaks sssssz

Channe! 4 has an extraneous peak at 120 Hz
with characterization (PROMINENT-BUT-MAYBE-RIPPLEV)

Channe! S has an extraneous peak at 162 Hz
with characterization (PROMINENT-BUT-MAYBE-RIPPLED)

Channe!l 6 has an extranecus peak at 88 Hz
with characterization (IN-FUND-FREQ-RANGE PROMINENT-BUT-MAYBE-RIPPLED)
Channel 8 has an extraneous peak at 180 H2z
with characterization (LARGE-AVG-PROMINENCE LOCALLY-STRONG)
Channel 6 has an extraneous peak at 247 Hz
with characterization (LARGE-AVG-PROMINENCE SPLIT-PROMINENT PROMINENT-BUT-MAYBE-RIPPLED)
Channel 6 has an extraneous peak at 300 Hz
with characterization (LARGE-AVG-PROMINENCE)
Channel 6§ has an extraneous peak at 360 Hz
with characterization (PROMINENT-8UT-MAYBE-RIPPLED)
Channel 8 has an extraneous peak at 420 Hz
with characterization (LARGE-AVG-PROMINENCE)
Channel 6 has an extraneous peak at 540 M2
with characterization (LARGE-AVG-PROMINENCE LOCALLY-STRONG)
Channe!l 6 has an extraneous peak at 660 M2
with characterization (LARGE-AVG-PROMINENCE LOCALLY-STRONG)

Channel 8 has an extraneous peak at 213 Mz
with characterization (PROMINENT-BUT-MAYBE-RIPPLED)

Figure 3.20: Missing peaks and peaks present in only one channel with their char-
acterizations, as produced by the implemented program.

109




The above experiment illustrates that some channel faults can be conveniently
expressed, and therefore detected and characterized, at higher levels of abstraction,
in this case peaks. Both the appropriate levels of abstraction and the conditions for
the existence of various channel faults can be derived by observing human subjects

perform the task of faulty channel detection using interactive signal processing.

3.2.2 Adjustment of spectral estimation parameters via match-

ing of spectra

In the previous section we examined matching of spectral abstractions corresponding
to spectra, which are ideally identical, for the purpose of identifying faults and
interferences in particular channels. In this section, we perform matching of spectra
obtained from the same time waveform but through different spe;:tral estimation
parameter setups. Spectra obtained through different parameter setups can be
thought of as multiple levels of abstraction in the scale-space sense [Witkin1984,

by viewing different amounts of periodogram averaging as different scales.

The purpose of matching here is to order specfra according to a specified crite-
rion, thereby finding the “optimal® parameter setup according to that criterion. The
criteria of interest are those that human subjects use based on a priori knowledge

of general characteristics of the desired spectra.

One such criterion is “peakiness” of a harmonically related set of peaks. Rel-
ative peakiness of two versions of a harmonic set that is present in two spectra is
determined by matching the two versions at multiple levels of abstraction, as shown

in the diagram of Figure 3.21.

Initially, a decision is sought at the harmonic set level. If there is a clear answer
at that level indicating that one harmonic set is “peakier” than the other, this is the

final answer. If at the harmonic set level no clear decision can be made, matching
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Figure 3.21: Block diagram of the determination of relative peakiness of two har-
monic sets by matching at multiple levels of abstraction.

of the corresponding peaks is performed and voting takes piace. If most peaks of
one harmonic set are consistently more peaky than the corresponding peaks of the
other, then again a final answer is possible in favor of the former harmonic set. If
no clear decision can be made at this level, then the final answer is that the two

harmonic sets have similar peakiness.

The program outlined in Figure 3.21 includes three sets of heuristics, imple-

mented as separate YAPS rule bases.

The first rule base implements comparison of harmonic sets directly based on
their features. Each rule implements a condition on features of the two harmonic
sets that indicates that one harmonic set is more peaky than the other. The overall
strategy is that in order to make a clear decision, two such conditions need to be
satisfied, showing that set A is more peaky than set B, and no condition indicating
that set B is more peaky than set A is satisfied. Figure 3.2.2 shows the list of
heuristic conditions in the present status of the program. This list is not intended
as the “best” collection of heuristics for the purpose, but as indicative of the nature

of heuristics that are possible within the extended spectrum framework.
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Set A is more peaky than set B if:

A has a fundamental peak and B has none.

A has a prominent fundamental peak and B has not.

A has a lot more prominent harmonics than B.

A has much higher average prominence than B.

e A has much higher total prominence than B.

Figure 3.22: Heuristic rules indicating that harmonic set A is more peaky than set
B. At least two of them must be satisfied, and none must be satisfied in the opposite
direction, in order to make a clear decision concerning whether set A is more peaky
than set B.

The second rule base implements comparison of the features of two peaks for
deciding which one is more peaky. Currently, the only basis for that decision is
the prominence of the peaks, as the ratio of the peak power to the average power
of the two enclosing valleys. The associated single rule declares that one peak is
clearly peakier than the other if the ratio of the prominence of the two peaks is
sufficiently high. The possible results of this rule base are that one peak is MORE,
LESS, EQUALLY peaky as the other peak, or that a peak has NO-MATCH in the

other harmonic set.

The third rule base implements the voting mechanism for deciding about the
relative peakiness of two harmonic sets based on a peak-by-peak comparison. Figure
3.23 shows the rules currently in the program. Again, this list is intended to be
indicative of the nature of the heuristics that can be conveniently expressed within

the extended spectrum framework.

As an illustration of this approach, we present two examples of adjustment
of the parameters of the spectral estimation by periodogram averaging. A data
segment of length N is split into K sections of length M each, with 50 percent
overlap, i.e. N = (K+1) * (M/2). Each section of length M is multiplied by a
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Set A is peakier than set B if:

o The number of peaks that are peakier in A is higher by at least 2 than the number of
peaks that are peakier in B, and there is no more than one peak in B with no match
in A.

o At least two peaks in A have no match in B, and no more than one peak in B has no
match in A.

Figure 3.23: Heuristic rules implementing the voting mechanism for deciding about
the relative peakiness of two harmonic sets based on a peak-by-peak comparison.

Hamming window and its periodogram is computed. Finally, the periodograms of
all K sections are averaged to compute the power spectral estimate of the given data
segment of length N. M is fixed to 0.5 s, thus fixing the resolution of the resulting
power spectral estimate to 2 Hz. Hence, the parameter to be adjusted is the length
of the data segment N.

In the first example, the signal characteristics are changing slowly, and at the
same time the signal-to-noise ratio is low, corresponding to a helicopter flying in
a straight path far before its closest point of approach. In this case, a large N, or
equivalently a large K, is desirable for good noise suppression. On the other hand,
signal frequencies change slowly, therefore a very large' N is needed to introduce
significant peak broadening due to frequency shifting with time. In this case, the
“optimal” N is the largest N for which peak broadening is not significant. Figure 3.24
shows the resulting spectrum for several values of K. In comparing these spectra,
we observe that the peaks due to the helicopter source become more distinct as K
increases. The spectrum with K=44 is much stronger evidence of the presence of
a helicopter source than the spectrum with K=2, because more harmonics of the

helicopter source show up and they are much more visually prominent.

In the second example, the signal characteristics are changing rapidly, and the

signal-to-noise ratio is high, corresponding to a helicopter flying in a straight path
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Figure 3.24: Acoustic spectra for a helicopter far before CPA and eight values for
the number of periodograms averaged, 2,8,14,20,26,32,38,44.
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near its closest point of approach, followed by another helicopter, which is still before
its CPA. In this case a small N, or equivalently a small number of periodograms-
averaged, is needed to avoid smearing due to rapid change of signal frequencies.
Since, however, the signal-to-noise ratio is high, sufficient noise suppression is ob-
tained even with a small K. Figure 3.25 shows the resulting spectrum for several
values of K. We notice substantial deterioration and merging in the peak patterns,

especially the second and fourth harmonics of the two helicopters, as K increases.

Log spestrun . Loe epestrun
3.68 4.57
-3.43 -2.13 ‘
9 Frequency (Hs) 1822 ] Frequency (Ns) 1822
Log soectrun Log spectrun
“9 S.26
K=4 K=38
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[} Freauency (He) 1822 [ ] Freguency (Me) 1822
Log spectrun Lo spectrun
5.3? $.39
K=12 K=14
-3.92¢ M -9.429
[} Freguency (Hg) 1922 L] Frequency (Hz) 1922

Figure 3.25: Acoustic spectra for two helicopters, one at CPA and the other before
CPA, and six values for the number of periodograms averaged, 1,2,4,8,12,14

The results of the program for adjusting the parameters of the spectral estima-
tion method based on the peakiness of the computed spectra on the above examples

are shown next. The program inputs are:

1. a time waveform,

115




2. a “default” value for the single parameter to be adjusted, which is the number

of periodograms averaged (block length and overlap are fixed), and

3. avalue indicating the step change in the number of periodograms during the

search process.

The program first computes the extended spectra for three values of the number
of periodograms: the default minus the step, the default, and the default plus the
step. Then it prompts the user to select a harmonic set from the spectrum obtained
with the default value on which to focus the search. Then it applies the method
outlined above for comparing harmonic sets based on their peakiness to two pairs of
harmonic sets, consisting of the versions of the selected harmonic set in the default

spectrum combined with each of the other two specira.

If the middle harmonic set (obtained with the default number of periodograms)
turns out to be the most peaky of the three, the search is finished, and the resulting
number of periodograms is the default. Otherwise, one of two other values for
the number of periodograms is selected as the default and the search proceeds

recursively.

Figure 3.26 shows the table indicating the direction in which the search proc::ds
in all possible outcomes of the two comparisons of the default harmonic set with
each of the other two. Entries whose outcome is MIDDLE indicate that the search
is finished, those whose outcome is FIRST cause the new default value to be the
current default minus the step, and those whose outcome is LAST cause the new
default value to be the current plus the step. ERROR indicates a condition that is
not expected, namely the default harmonic set to be the worst of the three. The
search can be viewed as a search for a local maximum (of the peakiness of the
harmonic set as a function of the number of periodograms averaged) by searching
for a point where the derivative is negative in either direction, where the value of

the derivative is determined qualitatively.
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Number of periodograms:
A: default minus step
B: default

C: default plns step

A is _ peaky than B | B is _ peaky than C | Peakiest of A,B,C

LESS I NCRE | B
EQUALLY | NMORE | B
NORE l NMORE l A
LESS | EQUALLY I B
EQUALLY l EQUALLY l B
MORE ! EQUALLY l A
LESS | LESS | c
EQUALLY | LESS | c
NORE | LESS l ERROR

Figure 3.26: Table of outcome of the comparisons between harmonic set at the
default number of periodograms and the same harmonic sets obtained with the
default number plus or minus the search step.
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Figures 3.27 and 3.28 show the trace of the program in two cases and different

parameters.

In (a), the method is applied to the data where the helicopter is far before CPA.
The default value is 8 periodograms averaged and the step is 6 periodograms. The
focus is on the harmonic set with fundamental closest to 95 Hz, according to the
value the user provided to the prompt of the program. The program successively
adjusts the number of periodograms to 14, 20, 26, 32 and 38, which is the final
answer. [n all iterations except the last, the largest of the three values tried gave
the “best® harmonic set in terms of peakiness. The last iteration showed the middle
value to be the “best”. In (b), the method is applied to the same data, with the
only difference being the step, now equal to 4. In this case, the middle and right
values give rise to SAME peakiness and the program stops. This happens because
the program was set to require a substantial difference in peakiness to declare that
one set is more peaky than another. This problem can be fixed by performing more

elaborate reasoning to decide whether the program stops in such a case.

In Figure 3.28, the method is applied to two-helicopter data, the first helicopter
being at CPA and the second before CPA and following the first. In all cases, the
default is 8 periodograms. In (a), the focus is on a harmonic set of fundamental
around 95 Hz, and the step is 4 periodograms. In this case, the number of peri-
odograms goes down to 1 and then stops, providing the value 1 as the final result.
In (b) the focus is on a harmonic set of fundamental around 92 Hz, and the step is
4 periodograms. [n this case, the default of 8 periodograms is a local maximum of
the peakiness of the selected harmonic set, and this is the final result. (¢) and (d)
are the same as (b) and (a), except that the step is 6 periodograms. In this case
the final result is 1 periodogram.

The last example raises the issue of the robustness and consistency of the

method. Different steps give different answers. The matter here is that this par-
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(adjust-spec-est-params far-before-cpa-data 85 8 €)
Select a harmonic set to focus on By number

Harmonic set 1 has fund-freq 94.82412
Harmonic set 2 has fund-freq 80.72143

Number to focus on?
1

Number of periodograms is 8 and direction is
Number of periodograms is 14 and direction is
Number of periodograms is 20 and direction {s
Number of periodograms is 26 and direction is
Number of periodograms is 32 and directior is
Number of periodograms is 38 and direction is

e R R S

12t EREERES
(adjust-spec-est-params far-before-cpa-data 65 8 4)

Harmonic set 1 has fund-freq 94,.82412
Harmonic set 2 has fund-freq 80.72143

Number to focus on?
1

Number of periocdograms is 8 and direction is

Figure 3.27: Trace of the program in data where helicopter is far before CPA.
Default value is 8 periodograms and step is 6 in (a) and 4 in (b). In both cases, focus
is on a harmonic set with fundamental around 95 Hz. Down-arrows indicate the
direction of increase of peakiness in terms of the number of periodograms averaged..
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(adjust-spec-est-params hear—cpa-data 65 8 4)
Select a harmonic set to focus on by number

Harmonic set 1 has fund-freq 94.844444
Harmonic set 2 has fund-freq 91.89067

Number to focus on?

‘ (a)

Number of periodograms is 8 and direction 1s ¢
Number of periodograms is 4 and direction is ¢
Number of periodograms is 1 and direction is
szsssasseEsEsEsS

(adjust-spec-est-params near-cpa-data 65 8 4)
Select a harmonic set to focus on by number

Harmonic set 1 has fund-freq 94.844444 (b)
Harmonic set 2 has fund-freq 91.89067

Number to focus on?
2

Number of periodograms is 8 and direction is -

2332223822833 22
(adjust-spec-est-params near-cpa-data 65 8 6)
Select a harmonic set to focus on by number

Harmo’ ic set 1 has fund-freq 94.844444 '
Harmonic set 2 has fund-freq 91.89067 (c)

Number to focus on?
2

Number of periodograms is 8 and direction is
Number of periodograms is 2 and direction is ¢
Number of pericdograms 1s 1 and direction is -
ZZ22XXZTTTRTLERS

(adjust-spec-est-params near-cpa-data 65 8 6)
Select a harmonic set to focus on by numper

Harmonic set 1 has fund-freq 94.844444
Harmonic set 2 has fung-fregq 91.89067 (d)

Number to focus on?
1

Number of periodograms is 8 and direction 18

Number of periodograms s 2 and direction is
Number of periodograms is 1 and direction 18

Figure 3.28: Trace of the program applied to two-helicopter data, the first helicopter
being at CPA and the second before CPA and following the first.
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ticular piece of data is problematic for a human also. There is heavy interaction
and overlap between the two harmonic sets, resulting in the fact that peakiness of
harmonic sets does not display a clear maximum, but seems to have erratic behavior

even for a human.

As a final remark, we emphasize the voting principle used in the above program.
In comparing harmonic sets based on their features, we used several criteria, with
each criterion casting a vote, and a decision was made if there were enough votes
supporting it. In comparing harmonic sets based on peak comparisons, each peak
comparison casts a vote, and a small number of heuristic rules were used to interpret
the result. Although voting was found to be adequate for our application, it should
be noted that more elaborate schemes can be used instead, which employ confidence
factors and means for combining them [Dovel986|. A careful consideration of the
tradeoffs between simple and elaborate schemes must precede system design in other

signal processing and interpretation applications.

3.2.3 Explicit representation of the temporal evolution of

spectra by matching of spectra at different times

A third important application regards the matching of spectra at different times.
This section is a high-level exposition of the ideas in a system for helicopter pitch

and power tracking described more fully in the next chapter.

A}

As we saw in chapter 2, the nature of the differences between spectra depends
on the paths followed by the various acoustic sources that are present. In order
to be able to apply the geometric arguments presented there, we must come up
with power and frequency traces for each individual acoustic source present in the
data. Obtaining appropriate spectral estimation parameters is only the first step.
Harmonic sets in spectra at different times must further be associated with each

other, before power and frequency traces can be extracted.
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Two issues surface here.

The first is an issue of forming associations of harmonic sets over time. To
do so, one has to make a hypothesis about possible acoustic source movements,
which will then guide the search for associations. For example,' if sources move
always in straight lines, frequency always decreases due to Doppler shift. This is a
strong constraint in associating harmonic sets over time: associations in which the
frequency of the later harmonic set is higher than that of the earlier by more than a
noise margin are not acceptable. The straight line hypothesis has other implications,
too: a maximum of the power of the harmonic set occurs simultaneously with a steep
decrease in frequency. The question here is in what form can such constraints be

incorporated into a system for extracting power and frequency traces?

The second issue is that of representing associations between harmonic sets at
different times. Harmonic sets are represented explicitly in the extended spectrum,
therefore one way of representing the associations is by explicit links between har-
monic sets of extended spectra at different times. Figure 3.29 shows extended
spectra at three different times and the explicit two-way links between instances of
a harmonic set. Such links allow tracing of the features of the harmonic set over
time by following the chain forward or backward in time, thereby facilitating the

computation of power and frequency traces.

Links between harmonic sets can also facilitate the application of constraints
deriving from hypotheses about the nature of source movements: As the links are
developed incrementally, one can examine the links built so far for conditions such as
those mentioned previously. For example, if we develop links in a scenario, in which
the acousfic sources move in straight iines, in a left to right manner (i.e. starting
at the earlier times), by following the links backward in time we can find out if we
are at a steep Doppler shift in frequency. We can then take this information into

account in forming the next link.
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Figure 3.29: Two-way links between instances of a harmonic set in extended spectra
at different times allow tracing of the features of the harmonic set over time.

A benefit from explicit representation of the association between harmonic sets
at different times is that support for power and frequency traces built from such
associations is readily accessible, in the form of the multiple levels of abstraction of

- the underlying extended spectra.

The above representation of the temporal evolution of harmonic sets is not
constrained to correspond to extended spectra sampled uniformly in time. Although
only uniform (but sparse) sampling was used in the system presented in the next
chapter, both sparse and non-uniform sampling are important in our acoustic signal
processing application because they are means for reducing the problem of high
data rate combined with low information rate. Moreover, they are practiced by the
human subject during protocol sessions. Protocols indicate that the human subject
first samples spectra sparsely, then forms a qualitative hypothesis about the source
path and finally samples spectra finer, in order to confirm the qualitative hypothesis.
The system of the next chapter has the straight-line hypothesis about the source

movement “hardwired” into the heuristic conditions for linking harmonic sets.
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3.3 Summary

In this chapter we introduced the notion of extended spectrum, a multiple-level
view of an acoustic spectrum, whose characteristics of interest are sets of harmon-
ically related peaks. The computer representation of extended spectrum and its
computation from the numeric spectrum were presented. For computation of the
| extended spectrum we embedded classification criteria into a sequential procedure
and we argued that this approach enhances the robustness of the sequential pro-
cedure and provides an easily modifiable implementation, which can accommodate

explicitly represented heuristic criteria.

Then we proceeded to demonstrate the usefulness of the extended spectrum by

presenting systems based on it for solving three problems involving acoustic spectra.

The first system performs matching of spectra from different channels and iden-
tifies and characterizes faulty channels. As we saw in chapter 2, this system is useful
in improving the performance of direction determination through array processing

by excluding faulty channels.

The second system performs adjustment of the parameters of specfral estimation
based on averaged periodograms, by maximizing the overall peakiness of the spectral
estimate. The extended spectrum allowed us to express this visual criterion as
multiple levels of matching of spectra obtained from the same time waveform but
with different parameter settings. The need for such a system was seen in chapter -
2 because no single p?rameter setting is appropriate for all scenarios encountered

in helicopter signals.

The third system involves use of the extended spectrum to represent signals
as a sequence of linked extended spectra obtained from non-overlapping sections
of the time waveform. Links between extended spectra explicitly associate higher-
level spectral entities, such as peaks and harmonic sets, over time. A system for
helicopter pitch tracking based on these ideas will be presented in the next chapter.
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Chapter 4

Helicopter Pitch and Power
Tracking using Signal Matching

Pitch and power tracking of acoustic sources is the process by 'which we obtain
traces of the fundamental frequency and power of helicopters from microphone
signals, which in turn can be used for source localization as described in chapter
2. In the previous chapter we suggested that the notion of extended spectrum can
be used for pitch and power tracking by forming explicit links between harmonic
sets at different times. Ir this chapter we explore this idea further in the form
of an implemented system for helicopter pitch and power tracking and we show
experimental results of the operation of the system on several instances of real

helicopter data.

4.1 Overview of the helicopter pitch tracking sys-
tem
Figure 4.1 shows the overall architecture of the helicopter pitch tracking system. Ex-

cluding the feedback loops, the design philosophy is straightforward. First, spectral
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estimation of short-time sections of the time waveform leads to a sequence of nu-
meric spectra. Their peak and harmonic set structure is then explicitly represented
by computing the corresponding extended spectra. Then links between harmonic
sets at different times are built according to linking heuristics, which depend on the

nature of anticipated source paths. Inspection of such links leads directly to pitch

tracks.
adaptation -
b h
o spectral | CORPuMic linking of chain | fnal
estimation harm. sets pruning
ext. spectrum
aumeric extended chains of
spectrum spectrum harm. sets

Figure 4.1: Architecture of the helicopter pitch and power tracking system.

The straightforward approach of linking harmonic sets at different times is aug-
mented by heuristics in several places intended to improve robustness of the overall

system.

In addition to the heuristics used to augment the straightforward approach, the
performance of the system can be improved by incorporating feedback. Partially
completed pitch tracks (as in Figure 4.2) arise when the associated harmonic sets
are “weak” or non-existent in some spectra. Partially completed pitch tracks serve

as starting points for a more focused search for harmonic sets that could close the
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gaps. This is similar to the notion of “islands of certainty” in speech recognition,
whereby recognition starts with the words that can be unambiguously recognized,

which are then viewed as islands that grow to eventually cover the whole sentence.

FREQUENCY (Hz)
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d Lane o S ———
3
0.0 TIRE (s) 46.S

Figure 4.2: Partially completed pitch tracks. Harmonic sets are represented by cir-
cles. Lines connecting harmonic sets indicate that the sets are explicitly associated
with each other and are part of a sequence of linked sets, called a chain.

Feedback can take two forms, as shown in Figure 4.1. In the simpler form, no
new spectra are computed. Instead, harmonic set grouping is repeated in the ex-
isting extended spectra with a hypothesized fundamental frequency equal to that
dictated by the partially completed pitch tracks and with the thresholds for ac-
cepting peaks set lower. In the more complicated form, the rate of change of the
partially completed pitch tracks is taken into account and dictates an initial default
value for the spectral estimation parameter (number of blocks), initiating an adap-
tation process for that parameter, as we described in the previous chapter. The
same feedback philosophy is used to extend pitch tracks into times with very low

signal-to-noise ratio.

127



4.1.1 Linking harmonic sets into chains

In forming chains of harmonic sets, i.e. sequences formed by harmonic sets linked
together, as shown in Figure 4.2, we focus on pairs of extended spectra that are
consecutive in time. For each pair of spectra, we exhaustively check all pairs of
harmonic sets of the two spectra as to whether it is appropriate to link them.

' Currently, there is one linking rule, which links two spectra if the difference between
the fundamental frequency of the first and the second sets lies within fixed bounds
(Figure 4.3). The uﬁper bound is the maximum allowable drop in frequency based

on the acceptable Doppler shift assuming a straight line track. The lower bound is

a negative number and corresponds to the maximum allowed increase in frequency.
Under the straight line path assumption, such an increase can only be due to noise.
Currently these two bounds are fixed, but in general they may be a function of the

time distance between the two sets.

|
f = _____&,:::f} range of

Figure 4.3: Upper and lower bound of the difference between frequencies of harmonic
sets in successive times for linking.

Two possible kinds of extensions to the linking rule base are possible. One
consists of more sophisticated criteria for linking two harmonic sets, based not

only on their fundamental frequency, but other characteristics of the harmonic sets,
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including their time difference. The second kind of extension consists of extending
the locality of our criteria: currently whether two harmonic sets are linked depends
only on their own characteristics. Extending the locality involves criteria that look
at the links formed so far and take this information into account in deciding whether

to link the harmonic sets under consideration.

To accommodate linking, the harmonic set data type is extended to include two
more pieces of information, which are pointers to the previous and next harmonic
sets in the chain. Furthermore, a pointer back to the parent extended spectrum is
useful for access to information such as the time of the extended spectrum and its

parameters (Figure 4.4).

to parent
ext. spectrum

o

before-link P

(pointer t; - . after-link

ser:\ir;o:;ai:rm. (pointer to
next harm.

or NIL) set in chain
or NIL)

Figure 4.4: Additional slots in the harmonic set data type.

4.1.2 Harmonic chains as distinct objects and their linking

To be able to explicitly manipulate harmonic chains, we introduce the chain object
(Figure 4.5). The chain object consists of pointers to the first and last harmonic
set of the chain and pointers to the previous and next chain (chains can be linked

together just as harmonic sets can). The chain object is basically a doubly linked list,
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because harmonic sets are linked in two directions, forward and backward in time.
Calling a chain an object emphasizes the view of the chain as a single independent
conceptual entity, with its own features, which include the initial and final time,
the initial and final fundamental frequency and the length of the chain.

pointer to

first harm. set ~¢T—*

in chain pointer to
&> last harm. set

pointer to in chain

previous chain egmt————e

(or NIL) pointer to
¢————ra= pext chain

(or NIL)

Figure 4.5: Chain object

Linking of chains is similar to linking of harmonic sets in terms of the procedures
and issues involved. As in the case of harmonic sets, currently a single criterion is
used based on the difference of the fundamental frequencies of the end set of the
first chain and the start set of the second chain. The criterion specifies that two
chains are to be linked if the start frequency of the second chain is within a range
below or within a smaller range above the end frequency of the first chain. This
criterion may be generalized into a rule base, including several criteria that link
chains based on additional characteristics, such as rate of change of frequency or

power along the chains to be linked.
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4.1.3 Feedback mechanism for completion of pitch tracks

| i
An interesting aspect of harmcenic chains is their utility in implementing the fe§d~
back mechanisms mentioned in the beginning of thia chapter. Feedback is initiated
when pitch tracks are partially completed. Partially completed pitch tracks consist
of multiple chains that could potentially link into a single one. Such chains are, as
an initial step, linked together as described above. Then each chain link initiates a

focused search for harmonic sets in the extended spectra over the duration of the
link.

There are two reasons that harmonic sets may be missing from particular ex-
tended spectra, causing a gap in an initial pitch track. One is that the harmonic sets
do exist, but are weak and get pruned by the harmonic set pruning criteria of the
extended spectrum computation. A second reason is that the harmonic sets exist,
but there is 2 “bug” in the extended spectrum computation, i.e. a case not covered
by the heuristics used in this computation. A third reason is that the harmonic sets
do not exist in the spectra along the gap for propagation reasons, such as wind or

other atmospheric conditions.

To differentiate between the first two and the last case, a focused search for a
harmonic set is conducted in the extended spectra along the chain link (Figure 4.6)
with a hypothesis of a fundamental frequency as dictated by the frequencies of the
linked chains (currently linear interpolation is used). All peaks that are approximate
harmonics of the hypothesized fundamental frequency with a slack larger than the
original slack used in the computation of the extended spectrum are collected. The
harmonic set thus formed is tested against heuristic criteria for acceptance, similar
to but weaker than the criteria used in pruning the harmonic sets in the original
extended spectrum computation. If the harmonic set passes at least one of those
criteria successfully, it becomes part of the corresponding extended spectrum and

it is added to the chain.
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Figure 4.6: Completion of gaps in pitch tracks by focused search for harmonic sets
in times along the gap. Newly found harmonic sets are shown as ‘x’s. Chain ends
that are linked are denoted by larger circles than the normal harmonic sets. The
chain links themselves are denoted by dotted lines.

The criteria for acceptance of the harmonic set formed after focused search based
on a fundamental frequency hypothesis from the chain are shown in Figure 4.7.
These tests are more lenient compared with the tests of the original computation
of the extended spectrum and they do not attempt any merging or comparison of

the harmonic set at hand with existing sets of the extended spectrum.

4.1.4 Feedback mechanism for extension of pitch tracks

A mechanism similar to that presented in the previous section is used for extending
pitch tracks, or equivalently harmonic chains, beyond their ends. This is done by
looking out of ends of existing chains that are not linked to another chain (Figure
4.8) and searching for harmonic sets with a fundamental frequency approximately
equal to that of the harmonic set at the end of the chain. If thus formed harmonic
sets pass one of the criteria of Figure 4.7, they ars accepted as extension of the

harmonic chain and inserted into the extended spectrum at the associated time.
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A harmonic set is accepted if at least one of the following conditions is satisfied:

e It has at least two harmonics of order less than or equal to 3.

o At least its first or second harmonic have the characterization LARGE-AVG-
PROMINENCE.

e It has at least three harmonics in total.

Figure 4.7: Criteria for acceptance of harmonic set formed after focused search
based on a fundamental hypothesized by a chain.
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Figure 4.8: Extension of pitch tracks by focused search for harmonic sets beyond
the ends of a chain. Newly found harmonic sets are shown by ‘x’s.

4.1.5 Interface for inspection of information supporting pitch

tracks

Pitch and power tracks represented by links between harmonic sets are only a small
part of a hierarchy of signal information explicitly represented in the underlying

extended spectra. Ease of inspection of this information is desirable for several
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reasons. If our system is used as an assistant, the human user needs to have easy
access to this information to form a complete picture of the behavior of the signa!
tracking system. In developing the heuristics needed for robust operation of the
system, there is a fair amount of experimentation involved, in which the deficiencies
of the current heuristics of the system in specific scenarios are identified and rectified

by the modification of existing or the insertion of new heuristics.

The main issue in inspecting the signal information contained in the extended
spectra underlying pitch tracks is that there are more dimensions to this information
than can be represented in a two-dimensional display, such as the pitch tracks shown
for example in Figure 4.8. Therefore, inspection of extended spectra is more natural
if performed interactively, with a concise output of the form shown in Figure 4.8
being only the initial output of the system and a starting point for a more detailed
inspection. The human user then manually requests more detailed information on

specific harmonic sets, displayed as circ.es in the concise pitch track output.

A variety of devices exist that permit input of the coordinates of a point of a
two-dimensional display, such as a pitch track of the above form, into a program.
Such devices include various types of joysticks, trackballs, touch-sensitive screens,

and mouse devices [Norman & Draper 1986, Ch. 7).

To facilitate inspection of extended spectra underlying pitch tracks, an interac-
tive facility was implemented based on a mouse device. Pointing to the harmonic
sets shown as dots in the graphical representation of pitch tracks and actuating .
the mouse displays various pieces of information associated with the harmonic sets,
depending on the type of actuation. The Symbolics Lisp machine has a mouse with
three buttons, left (L), middle (M) and right (R), each of which can be pressed and
quickly released (“clicked”) once (1) or twice (2). Figure 4.9 shows the functionality

we attached to the various mouse clicks.
A graphical representation like the one shown in Figure 4.8 essentially displays
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e L-1: Display the harmonic set pointed at.

e M-1: Display extraneous peaks of extended spectrum containing the harmonic set
pointed at.

e R-1: Display relevant peaks of the extended spectrum containing the harmonic set
pointed at. For each peak show frequency, power, prominence, generahzed promi-
nence, honzontal distance and characterization.

e L-2: Display the log spectrum corresponding to the extended spectrum that contains
the harmonic set pointed at. After displaying the log spectrum, the user has the
ability to point to various points on the spectrum and read off their frequency and
power by clicking the mouse.

e M-2: Display the linear spectrum over the low frequency range (3-80 Hz) correspond-
ing to the extended spectrum that contains the harmonic set pointed at. Again the
user can read points off the graph.

e R-2: Display all harmonic sets before pruning that are within a short distance (in
frequency) from the harmonic set pointed at.

Figure 4.9: Mouse capabilities for displaying various kinds of information off the
harmonic chain plots.
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one characteristic (fundamental frequency or power) of a complex structure (the
sequence of extended spectra linked through their harmonic sets) over time. There-
fore it can be viewed either as a signal in the ordinary sense, i.e. a function of time,
or as an indexing mechanism for accessing the underlying complex structure. An
interface of the type presented here that uses a mouse-like device is a convenient

way of using the graphical representation as an index to the underlying information.

4.2 Experimental results

In this section we present experimental results of the implemented {requency and
power tracking program applied to real helicopter data. We are going to present a
complete example including the results of all iterations of the feedback loop of the
system ‘shown in Figure 4.1 (without including adjustment of spectral estimation
parameters) until it converges to a solution. The initial chains formed are conserva-
tive, in the sense that only prominent harmonic sets and strong set associations are
taken into account. At each iteration, it is attempted to extend the chains formed
so far and connect them with each other through focused search for less prominent
harmonic sets that would serve that purpose. Harmonic sets identified after fo-
cused search are incorporated into the extended spectra and linked with other sets
as appropriate. The system converges to a solution when focused search for less
prominent harmonic sets does not yield any more sets. At that point, short chains
are pruned out, and the final fundamental frequency and power traces are formed
for each of the remaining chains. The power of a harmonic set is defined as the sum

of the values of the power spectrum at the locations of the first 8 harmonics.

On each graph, the horizontal axis is time and the vertical axis is frequency or
power. Each small filled circle corresponds to a harmonic set, whose x-coordinate is
time and whose y-coordinate is its fundamental frequency or power. Solid straight

line segments between small filled circles correspond to explicit links between har-
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monic sets. Therefore chains are represented by sequences of small filled circles,
which are connected with solid lines. Thick filled circles connected with dashed
lines are links between chains. ‘x’ marks are harmonic sets identified after focused
search, either to close gaps between chains or to extend pitch tracks.

The data shown in Figure 4.10 was obtained from a two-helicopter scenario, with
both helicopters following the same straight line path and the second helicopter
following the first by about 40 seconds. The closest point of approach of the first
helicopter is around the 65th second of the data, whereas the CPA of the second
helicopter is beyond the data window available. The sampling rate for extended
spectra is one spectrum every 2.5 seconds, while the sampling rate of the data is
2048 Hz. Extended spectra correspond to numeric spectra computed by averaging
8 periodograms, each from a data window 0.5 seconds long and with 50 % overlap.

Therefore the total data used for each spectrum is 2 seconds long.

In Figure 4.10, part (a) shows the envelope of the time waveform, which is a
measure of the pressure of the acoustic wave at the microphone versus time. Part (b)
shows the pitch tracks fomed without any pruning of harmonic sets in individual
extended spectra. In part (b) there are extraneous pitch tracks due to a variety of
causes, such as octave errors and weak harmonic sets. Part (c) shows the initial
pitch tracks formed by the pruned harmonic sets, but without any feedback yet.
Part (d) shows the links between harmonic chains (with the corresponding ends
shown as thick circles) and the harmoﬁic sets identified through attempts to extend
or close the gaps between chains. Part (e) shows the chains after the newly found
harmonic sets have been incorporated into the extended spectra. Part (f) shows
the result of another attempt to extend and link chains, starting with the chains
of Part (e) this time. After that, no more harmonic sets can be found, leading to
convergence of the program. Part (g) shows the final fundamental frequency traces

and part (h) the corresponding power traces for the chains of part (g).

The results of parts (g) and (h) correlate very well with the helicopter scenario.
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Figure 4.10: Fundamental frequency and power traces in the 3-25 Hz region from
95.7 seconds of real data from a two-helicopter scenario.

138




The longer chain in part (g) corresponds to the first helicopter, and the fundamen-
tal frequency shows a significant decrease Aaround CPA, due to the Doppler shift,
which is more intense around CPA, as we saw in Chapter 2. Moreover, the power
trace in part (h) shows a clear maximum around CPA. The shorter chain in part
(g) corresponds to the second helicopter, which has not yet reached CPA. The cor-
responding power trace shows a steady increase, but stops .short of 3 maximum,

because the CPA of the second helicopter is outside our data window.

Fundamental frequency and power traces computed from other scenarios
of real helicopter data. We now present fundamental frequency and power
traces from a variety of helicopter scenarios. We provide a brief description of the
scenario and we show: (a) the envelope of the time waveform, (b) the chains obtained
without any pruning of harmonic sets, (c) the chains obtained as the final output
of the previous system shown in a frequency/time display and (d) the power traces
of the final chains, or equivalently, the chains of part (c) shown in a power/time

display.

The data shown in Figure 4.11 is from a single helicopter scenario. The helicopter
is audible starting at 30s, and is at CPA at 235s. Weather was cloudy and calm,
but there was heavy traffic on the neighboring roads, as well as heavy air traffic,
including a single-engine plane takeoff and a jet flyby. The resulting chain, whose
frequency is shown in part (c) and power in part (d) of Figure 4.11, correlates
well with the scenario. Fundamental frequency shows the decrease at CPA due
to Doppler shift, accompanied by a distinct maximum in power. Spectra in this

example were sampled every 5 seconds and the whole scenario lasts 312 seconds.

Figure 4.12 shows a different two-helicopter experiment, with two helicopters fol-
lowing the same straight path at a difference of 11s, as concluded from the recorded
CPA times. From the experiment records, the first helicopter is audible starting

at t=30s, has a CPA at t=54s, and is no longer audible at t=60s. The second
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Figure 4.11: A single helicopter scenario. (a) the time waveform (b) chains without

harmonic set pruning (c) final chains in frequency versus time (d) final chains in
power versus time.
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" helicopter is audible starting at t=50s, has a CPA at t=63s and is no longer audible
at t=70s. Loud truck traffic was recorded throughout the experiment, while wind
speed was low (Smph) with cloudy weather. In spite of the weak signal and the loud

noise sources, the resulting frequency and power traces show very good correlation

with the recorded scenario.
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Figure 4.12: A two-helicopter scenario, with weak signals and the two helicopters
11s apart. (a) the time waveform (b) chains without harmonic set pruning (c) final
chains in frequency versus time (d) final chains in power versus time.

Figure 4.13 shows data from a single-helicopter experiment but with a different
type of helicopter. The data is 77s long and stops just after the CPA of the heli-
copter. Wind was at 6mph and no significant noise sources were recorded. Power

and frequency traces are both in very good agreement with the scenario.
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Figure 4.13: A single helicopter scenario with a different type of helicopter. (a) the
time waveform (b) chains without harmonic set pruning (c) final chains in frequency
versus time (d) final chains in power versus time.
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Figure 4.14 shows data from another single-helicopter experiment with the same
type of helicopter as Figure 4.13. Similarly, very good agreement of the resuits is

observed with the recorded scenario.
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Figure 4.14: Another single helicopter scenario, with the same type of helicopter
as in the previous figure and with the data window ending at CPA. (a) the time
waveform (b) chains without harmonic set pruning (c) final chains in frequency
versus time (d) final chains in power versus time.

Figure 4.15 comes from the same two-helicopter experiment as in Figure 4.10
but from a sensor several hundred meters away from the sensor of that figure along
the path of the helicopter. There is a difference in real time between the two pieces
of data, but they are similar in that both capture the data starting before the CPA
of the first helicopter and ending just before the CPA of the second helicopter,
where of course the CPAs are with respect to two different sensors. Again, except
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for the double extension of the chain corresponding to the first helicopter before

the 30th second of data, the result is in very good agreement with the scenario of

the experiment.
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Figure 4.15: A two-helicopter scenario. (a) the time waveform (b) chains without

harmonic set pruning (c) final chains in frequency versus time (d) final chains in -

power versus time.

Figures 4.16, 4.17 and 4.18 show portions of a single-helicopter scenario. Figure
4.16 shows the portion between 0Os and 150s, in which the helicopter is audible at
45s for the first time, while it reaches CPA at 210s, which is outside this portion of
the data. Again there is very good correlation of the output chain shown in parts
(c) and (d) of Figure 4.16, in frequency versus time and power versus time display

respectively. Fundamental frequency is fairly stable and power increases with time.
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Figure 4.16: Another single helicopter scenario, portion before CPA. (a) the time

waveform (b) chains without harmonic set pruning (c) final chains in frequency
versus time (d) final chains in power versus time.
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Figure 4.17 shows the portion of the data which includes the CPA of the heli-
copter. This portion overlaps with the last 55s of the data shown in Figure 4.16,
starting at t=87s in the same time scale. Again the harmonic chain found shows
good correlation with the scenario, having a strong Doppler shift in fundamental
frequency around t=207s, at the same time when the CPA was recorded by the
human observer. However, the power trace does not show a clear maximum, and

the high-power portion is clearly well before the CPA time recorded by the human

observer.
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Figure 4.17: A single helicopter scenario, portion including CPA. (a) the time
waveform (b) chains without harmonic set pruning (c) final chains in frequency
versus time (d) final chains in power versus time.

To explore the above discrepancy between the computed power trace and the
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recorded CPA time, we processed data from a different sensor very close to the one
from which the data in Figure 4.17 originated, starting at ¢ = 180s. Figure 4.18
shows the results of processing the latter portion of data. Power and fundamental
frequency traces are in agreement with those of Figure 4.17, confirming that in
this example the microphone signals show a power maximum before the recorded
CPA time (t = 207s), while the fundamental frequency traces appear to agree with
the recorded CPA time. This incompatibility cannot be readily explained from
the available experiment records. Possible causes could be multipath propagation
phenomena (reflections of acoustic waves off buildings or other structures), effects
of strong winds or some change at the sound source itself (not steady speed or
straight path). The experiment strongly suggests the complexity present in real
helicopter data and the need to check the consistency of our data by comparing
signals received at multiple geographically separated sensors.

Appendix B shows the complete results from the above experiments including

the intermediate chains obtained during the program’s iterations.

4.3 Discussion

In this chapter we presented a system for helicopter pitch and power tracking which
is based on the concept of signal abstraction. Pitch and power tracking can be
viewed as a natural consequence of the explicit representation of higher level signal
entities consisting of peaks and harmonic sets, and of links between associated
signal entities at different times in the form of chains of harmonic sets. Such explicit
representation and retention of signal abstractions provides easily accessible support
of the final pitch and power tracks, thus simplifying the task of explaining the
behavior of the program and of correcting its behavior if it does not agree with the
conceptions of the designer/user. An interface was implemented to facilitate access

of the information underlying the pitch and power tracks.
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Figure 4.18: A single helicopter scenario, portion starting slightly before CPA.
(a) the time waveform (b) chains without harmonic set pruning (c) final chains in
frequency versus time (d) final chains in power versus time.




An important characteristic of the implemented program is locality of decision
making. For example, the test whether to link two harmonic sets depends only on
the two harmonic sets involved. When it is necessary to make non-local decisions at
some level, we try to reduce them to local decisions at a higher level. For example,
the decision whether to link two harmonic chains is handled at the harmonic chain
level, where it i;s a local decision involving two chains, and not at the harmonic set

level, where the decision is non-local.

Spectral abstractions explicitly represent higher level signal entities in the sig-
nals, therefore permitting incorporation of heuristics, that are more conveniently
expressed in terms of the higher level signal entities than in terms of the numeric
signal. Classification performed at lower abstraction levels helps to construct the
higher levels of abstraction of a given numeric signal. Embedded classification is

thus seen as an important aspect of the construction and use of signal abstractions.

Finally, both the system of this chapter and the parameter adjustment system
for spectral estimation described in the previous chapter indicate that signal ab-
stractions are not incompatible with traditional notions of signal processing, such
as feedback. In fact, feedback is shown to enhance the performance of systems built

on signal abstractioas.
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Chapter 5

Abstraction and Signal Mappings

In the previous chapters of this thesis we introduced the extended spectrum as a
multilevel abstraction appropriate for harmonic spectra and we demonstrated its
utility in a variety of signal processing tasks centered around matching of harmonic
spectra. In this and the next chapter! we will present a multilevel abstraction
for wavenumber spectra, which were defined in Chapter 2, and its use in a form of
diagnostic reasoning about a complex signal processing system for direction finding,

which is based on the wavenumber spectrum.

The task of the diagnosis system (Figure 5.1) is to identify the causes of mis-
match between the known input scenario to the direction determination system,
namely the position, speed and temporé.l signal characteristics of the acoustic
sources present, and the output of the direction determination system, which con-
sists of a wavenumber spectrum containing radial ridges at angles corresponding to
the azimuth and with ridge shapes corresponding to the temporal spectra of the

acoustic sources (defined in Chapter 2).

A key idea underlying the diagnosis system is the conceptualization of the direc-

IChapters 5 and 6 are based on collaborative work with Hamid Nawab and Victor Lesser con-

ducted at the MIT Lincoln Laboratory during the academic year 1984-1985.
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tion determination system as a collection of mappings between wavenumberspectra,
which act as identity mappings under ideal operation of the direction determination
system. By taking this view and expressing the input scenario as a wavenumber
spectrum (plus additional facts that cannot be represented in the wavenumberspec-
trum, such as speed of the acoustic sources and their distance from the microphone
array), we can model both propagation phenomena and possible distortions intro-
duced by the signal processing entirely in the Fourier (i.e. wavenumber spectrum)

domain (Figure 5.2).

Mappings between
wvavenumber spectra

SCENARIO FREQUENCY-DOMAIN
CUTPUT
Acoustic Propagation Signal Processing

TIME-DOMAIN
SIGNALS

Figure 5.2: The effects of acoustic propagation and signal processing on the
time-domain microphone signals can alternatively be conceptualized as mappings
between wavenumber spectra

Diagnosis is viewed as a search through the space of all possible sequences of
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mappings. Having several levels of abstraction for wavenumber spectra makes the
search hierarchical, in the sense that it is performed starting at the higher abstrac-
tion levels and dropping the level of abstraction in case of failure. Search is followed
by verification of its outcome. The principle used here is that verification takes place
at thé lowest possible abstraction level, because that is when all the detailed in-
formation about the diagnosis problem is being taken into account, whereas search
takes place at the highest possible abstraction level in order to reduce the dimen-
sionality of the search space. Verification is not as expensive as search, because it
amounts to “execution” of a sequence of mappings and matching of the outcome of

the execution against the output of the signal processing system.

It is not necessary for the mappings used to model the possible faults in the
operation of the direction determination system to bear a direct relationship with
specific components of the actual signal processing system (shown in Chapter 2).
As an example, consider the mapping for modelling lack of resolution. Several
factors can lead to lack of resolution, such as acoustic source directions (two acoustic
sources very close in azimuth), temporal spectrum characteristics (two acoustic
sources whose energy is concentrated in highly overlapping frequency bands) or

inappropriate signal processing parameter settings (e.g. digital filler parameters).

By describing the input scenario in terms of the wavenumber spectrum, we
can model both the atmospheric propagation phenomena and the signal process-
ing transformations from the time-domain signals into the frequency-domain (i.e.
wavenumberspectrum) output as mappings on wavenumberspectrum abstractions.
Faults in either propagation phenomena or the signal processing transformations (in
the form of inappropriate parameter settings) are associated with mappings that
distort or modify their input wavenumber spectrum abstractions. The diagnosis
task can be cast in terms of finding the one or more “offending” mappings that
cause the discrepancy between the input scenario and the frequency domain output

of the signal processing system.
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Mappings are associated with system or scenario parameters. By explaining the
system fault in terms of mappings, the fault is automatically associated with either
system or scenario parameters. System parameters may be adjusted to modify the
behavior of the system and reduce or possibly eliminate the fault. Associating a
fault with scenario parameters helps recognize the limits of the system and avoid
unnecessary processing. For example, if the distance between the aircraft and the

sensor array is too large, it may not be possible to detect the aircraft.

One might ask the question why existing diagnosis techniques are not appropri-
ate for complex signal processing systems that generate large amounts of complex
intermediate data. The problem with existing techniques is that they are based on
the analysis of intermediate data states that have either been saved during system
operation (as in [Hudlicka & Lesser 1984|) or have been regenerated by simulation
(as in [Davis1985]). In either case, the amount of intermediate data that has to
be analyzed becomes prohibitive. Furthermore, signal processing data cannot be

suitably abstracted for those techniques.

In our diagnosis system, analysis of intermediate data is avoided by effectively re-
generating “intermediate” states from the system’s input and output, all expressed
as wavenumber spectrum abstractions. These “intermediate” states are not pec-
essarily abstractions of actual states of the signal processing system, but they are
states related to the alternative interpretation of the system operation in terms of

the underlying Fourier theory (Figure 5.2).

In the following sections of this chapter we introduce the problem-specific con-
cepts used in the design of the diagnosis system. The material is to a large extent
specific to the direction determination system and was obtained through informal
discussions with people experienced in the use of that system on real data. Although
problem-specific, it is useful as an example of the ingredients needed to augment
the diagnosis approach/architecture presented in Chapter 6 in order to produce a

complete diagnosis system.
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5.1 Wavenumber spectrum abstractions

In this section, we define the wavenumber spectrum abstractions that were used in
the diagnosis system. The different levels of abstraction were designed to capture
features of the wavenumber spectrum in varying degrees of importance for the
diagnosis problem. At the same time, we introduce a specific diagnosis scenario,
which we use as the context for illustrating the concepts of qualitative explanation
and qualitative simulation, which rely on wavenumber spectrum abstractions and

form the basis for the diagnosis system described in the next chapter.

5.1.1 Levels of abstraction of wavenumber spectra

The wavenumberspectrum is an explicit representation of important characteristics
of the acoustic source scena.x.'io, such as the direction of arrival of acoustic waves at
the sensor array and their frequency content. Therefore, it may be used to define
useful abstractions for a conceptual description of the operation of the direction

determination algorithm in terms of the underlying Fourier theory.

In diagnosing discrepancies between the input scenario and the output of the
direction determination system, it is useful to represent the input scenario as a
wavenumber spectrum, thereby having a uniform representation for reasoning in
the Fourier domain, as shown in Figure 5.2. The wavenumber spectrum is de-
scribed at multiple levels of abstraction, which helps reduce the search space in the
diagnosis problem, by first seeking a solution at a high abstraction level, and by
refining that solution at lower abstraction levels. Furthermore, wavenumber spec-
trum abstractions are described qualitatively, i.e. through ranges of values for the
various features instead of values. Qualitative descriptions are adjusted to the ac-
curacy with which the input scenario is known, by having broad ranges for low and

narrow ranges for high accuracy.
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The basic features of the wavenumber spectrum are shown in Figure 5.3. These
features are organized in five different levels of abstraction, as shown in 5.4. Justi-
fication for the particular features selected and their organization in the particular
levels of abstractions lies in informal study of the diagnostic reasoning of human
subjects experienced in the behavior of the direction determination system. At the
power and frequency levels, the shape of a radial ridge of the wavenumberspectrum
is modelled by a rectangle, whose area is the power and whose radial limits are the
minimum and maximum frequency fmin and fmaz. At the band level, we include
the amplitude of the signal, in addition to its power and frequency. At the gaussian
level, the signal is viewed as a gaussian truncated at both ends, specified by the

freqﬁencies at the two ends, bmin and bdmaz.

o Direction (angle of radial line with a reference axis)
e Power (the total power of the temporal spectrum along the radial line)

¢ Minimum and maximum frequency (the limits of the frequency band over which the
temporal spectrum has significant power)

e Amplitude (the maximum value of the temporal spectrum)

¢ Minimum and maximum band frequency (the limits of the frequency band over which
the temporal spectrum has power at all. These frequencies are used to precisely
account for overlap phenomena between signals).

Figure 5.3: Basic features of the wavenumber spectrum

We previously mentioned that an important aspect of the wavenumberspectrum
abstractions used in the diagnosis system is that they are specified not by numeric
values, but by ranges of values. This choice was made to account for the inaccuracy
‘present in the specification of the input wavenumberspectra and measurement noise
of the output wavenumber spectra. Single values are accommodated in the range
system as ranges with identical ends. An arithmetic for ranges similar to that
in [Abelson & Sussman 1985| was developed as a generalization of arithmetic for

numbers.
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DIRECTION

POWER PREQUENCY
/ Refinement
BAND
GAUSSIAN Y

e Direction level (direction)

Power level (direction and power)

e Frequency level (direction, minimum and maximum frequency)
e Band level (direction, minimum and maximum frequency, power and amplitude)

Gaussian level (direction, minimum and maximum .frequency, power, amplitude and
minimum and maximum band frequency)

Figure 5.4: Levels of wavenumber spectrum abstractions.
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Types of description relate to the nature of the wavenumber spectrum at differ-
ent stages of its life from its generation by the physical sources to the output of the
direction determination system. The types of description in the diagnosis system
are shown in Figure 5.5. Types are useful in simplifying the search for an explana-
tion of the system operation, because they place constraints on the construction of
acceptable sequences of mappings in diagnosis. Particular mappings are applicable
only to signals of specific types and have signals of specific types as outputs.

¢ Propagation (from the generation of the signal by the physical sources to it being
sensed by the acoustic sensor)

¢ Continuous temporal (from the signal being sensed by the acoustic sensor to it being
passed through analog to digital converter)

e Discrete temporal (from the signal being passed through the A/D converter until it
being processed by the 2-D spectral estimator)

¢ Continuous spatial (Output of the 2-D spectral estimator - ideal)

) Discr'ete spatial (output of the 2-D spectral estimator - sampled)
Figure 5.5: Types of description of wavenumber spectrum abstractions.

For graphical computer display purposes, a wavenumber spectrurﬂ is represented
as a circle (Figure 5.6). A radial ridge of the wavenumber spectrum is represented
as a shaded sector centered at the mean of the direction range. The angular width
of the sector corresponds to the width of the direction range. The radial extent of
the sector (radial distance from the center corresponds to frequency) reflects the -
mean values of the fmin and fmaz ranges. Finally, the amplitude range is shown

as an interval label next to the corresponding sector.
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A= [3, 5]

Figure 5.6: Computer-generated output from the diagnosis system.

5.1.2 A diagnosis scenario

In this subsection, we define an example of a diagnosis scenario that wiul be used
to illustrate the concepts of this chapter. The same example will be solved by our

diagnosis system in the next chapter.

The situation of the exalmple is that of two aircraft flying in the area of a
microphone array in such a manner that their directions with respect to the array
are close to each other (Figure 5.7). A lack of resolution occurs in such a situation, in
which the signal processing system detects just one acoustic source whose direction

is between the two actual directions.

Let the two aircraft in our example be AIRCRAFT-1 and AIRCRAFT-2. The
input wavenumber spectrum describes these aircraft qualitatively and is obtained
by a priori knowledge of the scenario (see Figure 5.8). The output wavenumber
spectrum is obtained as the output of the direction determination system. The
scenario facts are also derived from knowledge of the scenario and they represent
scenario knowledge that does not fit in the wavenumberspectrum description. Sys-

tem facts correspond to known parameter settings of the direction determination
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Figure 5.7: A diagnosis scenario.

system.

The diagnosis task consists of finding a sequence of mappings that explains the
difference between the input and the output wavenumberspectra. The explanation
should be “constructive”, in the sense that the proposed sequence of mappings
actually does map the input to something compatible with the output wavenumber
spectrum at the lowest level of abstraction, i.e. the gaussian level. Compatibility
means that there is overlap between the ranges of the corresponding features of the

actual system output and of the output from the sequence mappings.

5.2 Mappings of wavenumber spectrum abstrac-

tions

The overall mapping from the frequency-domain description of the input scenario
to the frequency-domain output is modelled in the Fourier domain as a sequence of
“primitive” mappings. Each mapping is described in terms of how it transforms its

input description. Such a transformation depends upon the values of parameters as-
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90 deg

Input: A= (1,2]
. AIRCRAFT-1: direction in degrees D1 = [0 10] a s (7,8
pover in arbitrary units = {100 200] 9 deg
amplitude in arbitrary units = (7 8]
fmin in Hz = [60 60]
fmax in Hz = [90 120]
PORPEEATING

AIRCRAFT-2: direction in degrees D2 = [35 50]
pover in arbitrary units = (100 200]
amplitude in arbitrary units = [1 2]
fain in Hz = [0 30]
fmax in Hz = [45 60]

98 deg
Qutput:

SIGNAL-3: direction in degrees D3 = [20 20] A = (18,20
pover in arbitrary units = [100 200] - '
amplitude in arbitrary units = [16 20] - @ des
fain in Hz = [0 20]
fmax in Hz = [30 60]

KT -PerIa.

Scenario facts:
velocity of aircraft-i = [150 160]
direction of aircraft-l increasing with time
distance of aircraft-1 = [3 3]
cos of the elevation ¢* aircraft-i1 = [0.5 0.5]

velocity of aircraft-2 = (50 50]
direction of aircraft-2 decreasing with time
distance of aircraft-2 = [9 9]

System facts:
cutoff frequency of the antialias filter = 200 Hz
minimum frequency of the CAR filter = 0 Hz
maximum frequency of the CAR filter = 100 Hz

Figure 5.8: Wavenumber spectrum abstractions for the input and output of the
direction determination system in the diagnosis scenario of the example.
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sociated with the mapping. The mapping parameters have a direct correspondence
with parameters of the direction determination system because they are derived
from the same underlying theory. When the system is operating correctly, i.e.
there are no discrepancies between the input scenario and the system output, each
" of the mappings is an identity mapping from its input to its output. In case of
discrepancies, one or more of the mappings are non-identity mappings. The goal of
diagnosis then becomes to identify a set of non-identity mappings that explain the

discrepancies between input and output of the system.

The input wavenumberspectrum passes through several mappings before it be-
comes the wavenumber spectrum that is the output of the system. Such mappings
may introduce distortions, giving rise to an output wavenumberspectrum that dif-
fers from the input one in several respects. Figure 5.9 shows examples of mappings
and the associated distortions that arise because of wave propagation or signal

manipulations in the direction determination system.

e Propagation: Power of temporal spectrum is attenuated according to the distance of
the source from the sensor array. Frequencies are being scaled because of the Doppler
phenomenon. Frequencies are also being scaled by the cosine of the elevation angle.
Addition of atmospheric noise.

o Spatial sampling: Broadening by convolution with the transform of the spatial win-
dow. Spatial aliasing if smallest distance between sensors is too large.

¢ Temporal sampling: Temporal aliasing if analog antialiasing filters have failed.

e Complex analytic representation: It is computed on a block basis and this intro-
duces broadening of the temporal spectrum by convolution with the transform of the
temporal window.

e Temporal averaging of CAR samples for a good estimate of the zero-delay covariance:
may introduce broadening of temporal peaks due to frequency modulation, if the
peaks drift over the averaging interval.

Figure 5.9: Examples of mappings and the corresponding distortions.

Each mapping is specified at a particular level of abstraction by providing the

description of the output signal as a function of the input signal at that abstraction
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level and the scenario and system parameters. Figure 5.10 shows the information

associated with a mapping.

o Input signal types: these are the allowable types that the input signal may have.
e Output signal type: the type of the output signal.

o Differences affected: the kinds of differences between the input and the output signal
that are explained by the mapping. (Note that we need to explicitly represent this
piece of information for use when we are trying to explain the differences between an
input and an output signal in the direction determination system. We only want to
consider mappings that are relevant to the differences we are experiencing).

e Mapping parameters: Parameters of the direction determination system which can
be changed to affect the outcome of the mapping.

¢ Input signal preconditions: Conditions that the input signal must satisfy in order for
the mapping to be a non-identity mapping.

e Scenario preconditions: Conditions that the scenario must satisfy in order for the
mapping to be applicable.

¢ Output signal postconditions: Conditions that provide a description as a function of
the input signal description, the scenario facts and the system facts.

Figure 5.10: Ingredients of a mapping.

As an example, consider the equal-resolution mapping. (Figure 5.11). The input
wavenumberspectrum has two signals, each represented by a radial ridge, while the
output has only one signal. The two ridges are close to each other in direction and
therefore get merged into a single ridge because of lack of sufficient resolution. The
mapping is capable of explainiug a resolution difference, occurring when the input
wavenumber spectrum has two signals and the output wavenumber spectrum only
one in some intermediate direction. Associated mapping parameter is the array
aperture at the direction and power level. At the frequency, band and gaussian
level, ﬁnother parameter is relevant, epstlon, a small number added to the diagonal
of the covariance matrix to make the estimation of the spatial Fourier transform of
the sensor signals a stable procedure. The mapping parameters are not used by the

diagnosis system, but they will be useful when the system is extended to include
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adjustment of the parameters of the signal processing system to fix the diagnosed
faults (not implemented yet).

Input signal precondition at the direction level is that the difference of the di-
rection ranges (according to the range arithmetic defined in Appendix B) intersects
with the range (0, 100/array-aperture|. This means that the directions of the two
signals must be close to each other, so that it makes sense to consider lack of res-
olution as a possible cause for the merging of the two signals into one. At the
power level, we require in addition that the power of the two signals is non-zero.
At the frequency level, we require in addition to the directions being close that the
frequency ranges overlap (signals that occupy different frequency bands cannot be
merged into one). Scenario preconditions are associated with required characteris-
tics of the source movements (e.g. source velocity). There is none in the case of the

equal-resolution mapping.

The output signal postconditions are the following. The direction of the output
signal is equal to the cover of the .ranges indicating the directions of the input
signals. The power of the output signal is the range between 0 and the sum of the
maximum powers of the two signals. The minimum and the maximum frequencies of

‘the output signal equal the covers of the corresponding ranges of the input signals.

Similar postconditions are valid for the amplitude and gaussian levels.

Figure 5.12 shows an example of the effect of the equal-resolution mapping in
a situation with two aircraft that are close in direction and have identical fre-
quencies. On the left is the wavenumber spectrum before the application of the

equal-resolution mapping. On the right is the result after the application.
Figure 5.13 summarizes a number of mappings currently available in the diag-

nosis system. Each mapping in this figure has a complete representation similar to

that shown in Figure 5.11 for the equal resolution mapping.
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EQUAL RESOLUTION MAPPING

INPUT SIGNAL TYPE: propagatioa, coantinuous-tsemporal,

discrete-temporal, coatinmous-spatial

OQUTPUT SIGNAL IYPE: comtinuocus-spatial
' DIFFERENCES AFFECTED: resolution
MAPPING PARAMETERS:

DIRECTION
POWER
FREQUENCY
BARD
GAUSSIAN

array-sperture
array-aperture
array-aperture, epsilon
array-aperture, epsilon
array-sperture, epsilon

INPUT SIGNAL PRECONDITIONS: Per pair of input signals

DIRECTION
POWER
FREQUENCY

BAND

GAUSSIAN

Dir-ction differeace intersects [0, 100/ariay-aperture].

Direction level preconditions and aon-zero Power.

Miniaum and 2acimum frequeacies intersect.

Direction difference iantersects range
(0,1000+epsilon)/(array-aperture+.0001*maxinun-£req)].

Power level preconditions.

Frequency level pre-coaditioas.

Amp ia (0, inf]

Frequeacy level pre-conditions with but oa the ganssian model.

SCENARIO PRECONDITIONS: none

OUTPUT SIGNAL POSTCONDITIONS: Per pair of input signals

DIRECTION

POVER

FREQUENCY

BAND

GAUSSIAN

Delete input signals.

Create signal vhose direction is the
cover of the two input directions.

Direction level postconditionms.

Power of output signal is range
[macimum of lowest values of powers of input signals,
maximum of highest valnes of powers of input signals]

Direction level postconditions.

Mizimum-freq of output equal to the cover of ainimum
freqs of inputs

Maxciaum-freq of output equal to the cover of zaximua
freqs of inputs

Frequeacy level postcoanditions.

Power level postconditions.

Amp of output signal: relation similar to that of power.

Band level postconditions with gaussian model.

Figure 5.11: The equal resolution mapping
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Figure 5.12: Example of the equal resolution mapping at the frequency level.

5.3 Differences between wavenumber spectra and

their ordering

An important step toward diagnosis is finding and ordering differences between
wavenumber spectra at multiple levels of abstraction. Differences can potentially
be explained by the presence of non-identity mappings. Therefore, at a simplistic
level, diagnosis may- take place by finding the differences between the input and
output wavenumber spectrum abstractions of the direction determination system,
trying out all possible sequences of mappings that might explain these differences
and finally choosing the simplest mapping sequence (by some criterion) that suc-
cessfully explains the differences. In the next chapter we will see how this approach
is complemented by a control strategy that helps reduce the search space for all

possible combinations of mappings that explain a certain difference.

Multiple levels of abstraction play an important role, because differences at

higher abstraction levels are considered first. If mappings for explaining those dif-
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EQUAL RESOLUTION MAPPING: merges two signals that are close in direction
and whose frequeacy distributions are the same. The effects of this 3apping
are dependeat upoa array aperture and the epsiloa factor for the covariance
aatrix.

FAST VELOCIIY MAPPING: shifts the directiom of a signal because of fast
aircraft velocity. The degree of directioa shift depends upon the
analysis-interval parameter of the signal processing systes.

PRE-CPA DOPPLER MAPPING: shifts upward the frequencies of a signal dus to
an sircraft that is approaching a node with a significant velocity (coapared
to velocity of sound).

POST-CPA DOPPLER MAPPING: shifts downward the frequencies of a signal due
to an aircraft that is receding froa s node with a significant velocity
(compared to velocity of souad).

ELEVATION COMPRESSION MAPPING: shifts the frequencies downward and the
signal amplitude correspondingly upward. This occurs ia accordance with the
elevation of the aircraft with respect to the sensor array.

CAR FILTER MAPPING: causes frequency changes in the signal because of the
filter perforaing the computation for complex analytic representatioas of

the signals. .

ANTIALIASING FILTER MAPPING: causes frequency changes in the signal because
of the analog filter meant for avoiding temporal aliasing in the
digitization procsess. :

CAR-GHOSTING MAPPING: causes s ghost signal to appear at the direction
which is 180 degrees away from the original signal. The phenomenon occurs
if the original signal has considerable power in the lower frequencies. The
effect of the napping depends upoa the block-length parameter of the
signal-processing system.

SPATIAL ALIASING MAPPING: cxuses signals to wrap arouad at different
directions due to the sparseness of the array. The effects of this mapping
depend upon the minimum sensor separation in the acoustic array.

RADIAL-INTEGRATION MAPPING: causes frequency changes due to the frequeacy
interval over which signal power is determined by the signal processing
systea.

RANGE SCALING MAPPING: causes amplitude changes dune to the distance of the
aircraft from the sensor array. The power scaling also depends upon the
analysis interval and the block-length used by the signal processing system.

Figure 5.13: Summary of several mappings of the diagnosis system
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ferences are found to successfully map the input wavenumber spectrum onto the
output one at the lowest abstraction level, these are the final explanation. If such
mappings fail to map the input onto the output at the lowest abstraction level, then
differences at a lower abstraction level than the original level are considered and the
process is repeated. This is an instance of the principle of searching at the highest
possible abstraction level but verifying the result at the lowest possible abstraction

level.

Figure 5.14 shows the differences currently used by the diagnosis system. Dif-
ferences at lower abstraction levels have more detailed (and therefore stricter) pre-
conditions than the same differences at higher abstraction levels, as for example the
resolution difference. Other differences are not present at all at higher abstraction

levels, as for example the frequency shifting difference.

In terms of implementation, the difference finding program is built as a rule base
in YAPS [Allen1983|. Each rule implements one kind of difference of Figure 5.14
and it acts independently of other rules: if its preconditions are satisfied, it adds
the name of the corresponding difference to the list of differences between the input
and the output wavenumberspectra, which are both input to the difference finding
program. The output of the difference finding program is the list of differences.
Figure 5.15 shows the inputs and the outputs of the difference finding program.
System facts are parameters of the direction determination system and scenario
facts are scenario information, such as speed and distance of the acoustic sources_

from the sensor array.

As an example, consider the input and output for the example diagnosis scenario
of Figure 5.7. The difference finding program in this case gives the following list of
differences: AMPLITUDE-SCALING, GHOSTING, DIRECTION-SHIFTING and
RESOLUTION.

In general, two wavenumber spectra have more than one difference. Since a
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Amplitude scaling: The output wavenumber spectrum has no signal with a direc-
tion range that overlaps with the direction range of a signal present in the input
wavenumber spectrum. Applicable at all levels of abstraction.

Amplitude scaling: The signal in the output wavenumber spectrum has a power
range that is strictly less than the range of the corresponding signal in the input
wavenumber spectrum. Applicable at the power level.

Amplitude scaling: The signal in the output wavenumber spectrum has an amplitude
range that is strictly less than the range of the corresponding signal in the input
wavenumber spectrum. Applicable at the amplitude level.

Direction shifting: There is a signal in the output wavenumber spectrum whose di-
rection range does not overlap with the direction range of an input signal, and there
is no other signal in the output wavenumber spectrum, whose direction range does
overlap with that of the input signal. Applicable at all levels of abstraction.

Resolution difference: There are two signals in the input wavenumber spectrum,
whereas there is only one signal in the output wavenumber spectrum, whose direc-
tion range overlaps with the cover of the direction ranges of the two input signals.
Applicable at the direction level.

Resolution difference: There are two signals in the input wavenumber spectrum,
whereas there is only one signal in the output wavenumber spectrum, whose direction
range overlaps with the cover of the direction ranges of the two input signals, and
whose power range either overlaps or is strictly less than the sum of the power ranges
of the input signals. Applicable to all levels except direction.

Ghosting: There is no signal in the input wavenumber spectrum with direction range
overlap with a signal in the output wavenumber spectrum. Applicable at all levels.

Frequency shifting: There is a signal in the output wavenumber spectrum with di-
rection overlap with a signal in the input wavenumber spectrum, but the minimum
frequency and maximum frequency ranges of the two signals do not both overlap.
Applicable at the frequency, band and gaussian level.

Figure 5.14: Differences currently used by the diagnosis system
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Figure 5.15: Inputs and outputs of the difference finding program.

mapping is associated with a single difference, we need to select one difference out
of the list of differences, as the candidate mapping that will be verified whether
it :haps the input to the output wavenumber spectrum at the lowest abstraction
level. The list of differences thus serves as a cueing mechanism in the search for the

appropriate mapping.

In order to select one difference out of a list of differences, difference finding is
followed by difference ordering. In our diagnosis system, ordering of the list of dif-
ferences proceeds in two stages. In the first stage, the number of cases of PRESENT
(signals in the input wavenumber spectrum with an associated signal in the out-
put wavenumber spectrum), MISSING (signals in the input wavenumber spectrum
without an associated signal in the output wavenumber spectrum) and UNASSO-
CIATED (signals in the output wavenumber spectrum with no associated signal
in the input wavenumber spectrum) are counted. The three counts, together with
the scenario and system facts, are the only factors determining how the ordering of

differences will be done.

Difference ordering is implemented as a rule base, with each rule making some

change to the order of differences. The change consists of bringing to the top
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or the bottom of the list particular differences, depending on the three counts of
the previous paragraph or the scenario and system facts. Figure 5.16 shows two
examples of rules in the difference ordering rule base, with their preconditions and
actions. The first rule makes difference order changes based on the PRESENT,
MISSING and UNASSOCIATED counts. The second rule makes an order change

based on a scenario fact.

Rule: Unassociated-signals

IF: The number of missing plus the number of present signals is at least
two
and there is at least one unassociated signal

THEN: bring GHOSTING to the top
bring FREQUENCY-SHIFTING to the top
bring AMPLITUDE-SCALING to the top
bring DIRECTION-SHIFTING to the top
bring RESOLUTION to the top

Rule: Cutoff-less-than-100-Hz

L P PR P P R LY L R R Y E R R R L L

IF: The cutoff frequency of the antialiasing filter is less than 100 Hz

THEN: Swap the position of the differences FREQUENCY-SHIFTING and
AMPLITUDE-SCALING.

Figure 5.16: Examples of rules for ordering differences

For example, in the case of the input and output wavenumber spectra in the
diagnosis scenario of Figure 5.7, the count is missing-direction = 2 and unassociated-
direction = 1. Using the first rule of Figure 5.16, the ordered list of differences is
RESOLUTION, DIRECTION-SHIFTING, AMPLITUDE-SCALING and GHOST-
ING.
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5.4 Mapping selection to explain differences

The prograx'n for mapping selection returns an ordered list of mappings given a
difference to be explained and the scenario and system facts. Figure 5.17 shows
two examples of rules for mapping selection. In both examples, the difference to
be explained is a FREQUENCY-SHIFTING difference. In the first example, the
cutoff frequency of the antialiasing filter is less than 200 Hz, and in this case the
antialiasing-filter mapping is the first one to be considered. In the second example,
the cutoff frequency is greater than 200 Hz, in which case the elevation-compression

mapping is a more likely explanation.

Rule: Frequency-shifting-antialiasing

R L L L L P Y P Y R L L R T Y

IF: The difference is frequency-shifting and
the cutoff frequency of the antialiasing filter is less than 200 Hz

THEN: the list of mappings in decreasing importance is:

antialiasing-filter-mapping, car-filter-mapping,
elevation-compression-mapping

Rule: Frequency-shifting-elevation-compression

IF: The difference is frequency-shifting and
the cutoff frequency of the antialiasing filter is greater than 200 Hz

THEN: the list of mappings in decreasing importance is:
elevation-compression-mapping, car-filter-mapping

Figure 5.17: Examples of rules for mapping selection.
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5.5 Qualitative Explanation and Qualitative Ver-

ification

In a specific scenario, a mapping may act as an identity or non-identity mapping.
An identity mapping does not distort its input signal. As an examf;le, consider
(ideal) low-pass filtering. If the highest frequency of the input signal is below the
cutoff frequency of the filter, then filtering acts as an identity mapping, because the
output signal is the same as the input signal. Otherwise, it acts as a non-identity
mapping. We see that whether a mapping acts as an identity depends both on the

characteristics of the mapping and on the input signal (i.e. the specific scenario).

The behavior of mappings, which arise because of signal processing operations
in the direction determination system, can be modified by adjusting related system
parameters. Mappings that arise because of wave propagation typically cannot be
similarly affected, because the signal processing has no control over them. They
operate on the wavenumber spectrum before it is being picked up by the sensors
(propagation phenomena). Non-identity mappings, whose behavior can be con-
trolled by parameter adjustment can be made to behave as identity mappings in a

speciﬁc scenario by adjusting the corresponding system parameters.

Based on the above notion of mappings, we define Qualstative Ezplanation at a
given abstraction level as the process of finding a minimal sequence of non-identity
mappings that maps the given input wavenumberspectrum (derived from knowledge
of the acoustic source scenario) onto a wavenumber spectrum that is compatible
with the output wavenumber spectrum (computed by the direction determination
system) at that abstraction level. Compatibility is defined as non-empty overlap of
the ranges of the corresponding features. Qualitative Explanation is the “generate”
step towards diagnosing the discrepancies between the input and the output of the

signal processing system through a generate-and-test approach.

Ideally, the only difference between the input and output spectra is in their type
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(Figure 5.5): the input spectrum is propagation type while the output spectrum
_is discrete spatial type. In this case, no non-identity mappings are present, and
the explanation of the operation of the direction determination system is simple.
In practice, the input signal is different from the output signal in some respects,
.because of the presence of non-identity mappings. The differences between the input
and the output signal can serve as clues in identifying the non-identity mappings

involved.

Determining a valid explanation is thus seen as a.search through the space of
all possible sequences of existing mappings. The search is guided by the differences
between the input and output signal and proceeds by introducing mappings that
partly explain these differences, thereby reducing the original problem into several
subproblems that attempt to reduce the remaining differences (as in the General
Problem Solver [Newell & Simon 1963]). The search first takes place at the highest
level of abstraction (direction levei) and drops abstraction level if no explanation
can be found at the current level or if the explanation found does not yield an

output compatible with the system output at the lowest abstraction level.

Checking for compatibility is the task of Qualstative Versfication. In this task
we have the input wavenumber spectrum and a sequence of mappings and we want
to determine the wavenumber spectrum that would be computed by the direction
determination system based on the underlying Fourier domain theory (i.e. without
collecting the data or running it through the direction determination system) and
confirm its compatibility (in the sense defined previously) with the wavenumber
spectrum which is the actual output of the direction determination system. The
task is carried out at the lowest abstraction level at which the input and output
wavenumber spectra are specified. Qualitative verification is the “test” step in the

“generate-and-test” diagnosis.

Figure 5.18 shows how the equal resolution mapping can help explain the differ-

ence between the input and output of the diagnosis scenario shown in Figure 5.7 in
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page 160 at the direction level (i.e. ignoring all frequency and power information).
The direction difference of the two signals in the input of the diagnosis scenario is
too large for the equal-resolution mapping alone to explain the difference in number
of signals between input and output. Another mapping, the fast velocity mapping,
is capable of changing the direction of a signal, thus enabling the application of the
equal-resolution mapping. By referring to the scenario facts, it turns out that the
velocity of aircraft-1 is large, therefore the fast-velocity mapping is applicable to the

input state, which changes the direction of the signal corresponding to aircraft-1.

Figure 5.18: Fast-velocity and Equal-resolution mappings explain the difference at
the direction level between input and output of the diagnosis scenario defined earlier

The fast velocity mapping followed by the equal resolution mapping gives an out-
put that is compatible with the system output at the direction level. However, once
we try to verify this explanation at the frequency level, we find that the frequencies
of the two input signals do not overlap, theref;)re they violate a precondition of
the equal resolution mapping at the frequency level. The equal-resolution mapping
must be augmented by other mappings that will be found by search at levels below

the direction level.
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Chapter 6

Diagnosis of a Signal-Processing

System using Signal Mappings

In the previous chapter we introduced the problem of fault diagnosis of a direc-
tion determination system and we defined wavenumber spectrum abstractions for
expressing the intermediate states of the system in a Fourier domain model of its
operation. In this chapter we present an implemented diagnosis system that uses
the concepts and representations introduced so far in addition to a “means-ends”
control strategy to search the space of all possible diagnosis outcomes. This control
strategy extends the General Problem Solver framework [Newell & Simon 1963| to

include qualitative descriptions of the states at multiple levels of abstraction.

6.1 Overview of the control strategy of the diag-

nosis system

In the diagnosis system, we assume that the user provides a qualitative description
of the input scenario in the form of multiple levels of abstraction of a wavenumber
spectrum for the situation. The diagnosis system uses the differences between the
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input scenario and the output of the direction determination system to idexrtify a

sequence of mappings that explain these differences.

In the planning language, the diagnosis system can be viewed as performing a
state-space search where the states are wavenumber spectrum abstractions and the
operators are the various mappings as defined in the previous chapter. The initial
state is derived through a straightforward computation from the user-specified de-
scription of the input scenario. The goal state is a description of the wavenumber

spectrum at the output of the signal processing system.

The task of diagnosis can now be phrased as the following search problem:
[dentify a sequence of mappings such that:

1. the sequence maps the initial state into the goal state, and

2. no proper subsequence of the sequence maps the initial state into the goal

state.

We talk about a sequence of mappings, because, as we will see later in this
chapter, the order in which the mappings are applied to the input state is important.
The requirement that there be no proper subsequence that can map the initial
state into the goal state ensures that any mappings not necessary for explaining the

discrepancy between the initial state and the goal state are excluded.

Another aspect of diagnosis is that there may exist more than one sequence
of mappings that satisfies our search criterion. Unless intermediate signal states
of the actual signal processing system are available for inspection, such multiple
explanations cannot be disambiguated. Because in our signal processing system
such intermediate states are not easily accessible (due to the large volume of data
they constitute), we have designed our search strategy so that it finds the sequence
with the smallest number of mappings. Equivalently, we apply the heuristic that

“he simplest explanation is the most likely explanation for the cause of a system
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fault”.

The basic strategy (Figure 6.1) is to first construct a qualitative explanation
at the highest abstraction level and then attempt to verify it. If the verification
succeeds, the correct explanation has been found. If it fails, the current explana-
tion is modified and fed back into the GPS explainer. If the explanation can be
successfully readjusted, a new simulation is tried using the adjusted explanation.
Otherwise, the level of abstraction of the analysis is dropped and a new explanation
is sought at the new level of abstraction by the GPS explainer. If the GPS explainer
fails to come up with an explanation at the current level of abstraction, the level is

immediately dropped and a new explanation is sought.

The abstraction level of verification is chosen to be the lowest one at which a
description of the input signal state is known. Verification makes use of the same
mapping and state representation mechanisms and the same specific mappings as
those in the GPS explainer. In particular, verification can be viewed as a degenerate
case of the the GPS explainer at the detailed abstraction level. The difference is
that in this case the verifier does not have to perform any search. Instead, it uses

the mappings specified by the explanation to be verified.

There are two types of failure. In the first type, the pre-conditions of a mapping
in the explanation are not satisfied by the state preceding the mapping. In the
second type, the output of a mapping does not match the qualitative description
anticipated for it in the original explanation. For both situations, the plan is rea.d-.
justed by eliminating the failed mapping from the explanation and searching for a

sequence of mappings to replace it.

In both types of failure, the sequence of mappings found by trying to adjust the
original explanation can be at lower levels of abstraction. Adjustment of a failed
explanation leads to the same kind of search as the original, where input and output

are either intermediate states or pre-conditions of mappings, which, according to
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Figure 6.1: Diagnosis strategy by search for an explanation and verification.
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our formulation, are also viewed as states.

6.2 GPS search for an explanation at a specific

abstraction level.

In the previous section, we saw that a search for an explanation is a basic operation
of the diagnosis system both in formulating an original explanation and adjusting
an explanation that failed in its verification at a lower abstraction level. In this
section we examine in greater detail the process of finding a sequence of mappings
to explain the difference between an initial state SO and a final state SF at a specific

abstraction level I, where both SO and SF are wavenumber spectrum abstractions.

Figure 6.2 is a diagram showing the GPS search. The first step is to find and
order the differences between the qualitative descriptions of SO and SF at abstraction
level I. The most important difference is then selected, which leads to an ordered
list of mappings that possibly explain it. The mapping Q closest to the top of the
list and not already in the partially formed explanation is selected for inclusion in

the explanation.

After the mapping Q has been selected, an attempt is made to apply it to the
input state SO. Three possibilities exist at this point regarding the applicability

of Q to S0, or equivalently, the difference between SO and the preconditions of Q,

pre(Q).

1. The difference between SO and pre(Q) can potentially be explained. In this
case, a new search problem is spawned, with input state SO and output state
pre(Q). If this subproblem succeeds in producing a subexplanation, Q is ap-
plied to the output obtained by applying the sequence of mappings composing

that subexplanation to SO. The subexplanation becomes part of the final ex-
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planation.

2. The difference between SO and pre(Q) is irreducible. In this case, Q is dis-
carded and a new mapping is tried from the list of mappings.

3. Q is successfully applied to SO and the outcome is a state S1. Here we test
whether S1 is compatible with SF at abstraction level L. If it is, the search is
finished. If it is not, a new search problem is spawned, with input state S1

and output state SF at abstraction level L.

Control of the GPS search is accomplished through two important mechanisms.

First, no mapping is allowed to appear more than once in a particular expla-
nation. This is in contrast to GPS search in other domains, suca as algebraic
simplification, where the same operator can be used many times. In such situa-
tions, the GPS search requires “depth heuristics” to avoid infinite looyps. In our
problem, the constraint that each mapping may appear only once in an explanation

eliminates the need for depth heuristics.

Second, each mapping specifies the allowable types of the input and output
states. Therefore, neighboring mappings in an explanation must satisfy their type
constraints. This helps reduce the search space considerably. It should be noted,
however, that mappings whose input and output states belong to the same single

domain can appear in any order with respect to each other.

6.3 A diagnosis example

In the previous chapter we introduced a diagnosis scenario to illustrate the concepts
of mapping, qualitative explanation and qualitative verification. In this section we
present the results of the operation of the implemented diagnosis program on this

scenario.
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The scenario basically corresponds to a situation where lack of resolution on
the part of the direction determination system results in an output wavenumber
spec'trum showing only one acoustic source, whereas it is known a priori that there
are two aircraft in the area of the microphone array. However, the equal-resolution
mapping alone is not sufficient to explain the lack of resolution in the above sce-
nario, because of additional distortions present in both atmospheric propagation
and processing in the direction determination system. It is due to these additional

distortions that diagnosis in the particular scenario becomes nontrivial.

At the highest level of abstraction, the direction level, two differences between
the initial search state SO and the final search state SF (corresponding to the input
and the output of the direction determination system respectively) are detected:
RESOLUTION and DIRECTION-SHIFT. A direction-shift is a difference charac-
terized by a direction in the initial state shifting to a different direction in the final

state.

In the diagnosis system, the resolution difference is considered more important
than direction-shift and the selected mapping is EQUAL-RESOLUTION. This map-
ping, as explained in the previous chapter, acts upon two signals whose directions
are close to each other (direction level) and in addition have the same minimvm

and maximum frequencies (frequency level).

The equal-resolution mapping alone cannot explain the difference between SO
and SF at the direction level because one of its preconditions is that two sources
be closer than 20 degrees in the initial state. The two sources in SO are at least
25 degrees apart. This is the case of a reducible difference in Figure 6.2. In the
search subproblem spawned, it is found that a mapping called FAST-VELOCITY
may be able to explain the direction-shift difference now encountered. The fast-
velocity mapping represents the effects of fast aircraft velocities on the output of
the direction determination system. The scenario precondition of the fast-velocity

mapping is that the speed of the aircraft be greater than 200 / analysis-interval m/s,
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where analysis — interval is one of the parameters of the signal processing system.
Indeed, aircraft-1 has a speed of 150 m/s, while the analysis interval is 4s. In the
resulting state S1, aircraft-1 has a shifted direction in the range (10, 20|, which does
lie within 25 degrees of the direction of aircraft-2. Therefore the equal-resolution
mapping applies and gives an output state with one signal in direction (10, 50]. This
is compatible with the final state SF with direction 20 degrees. Thus the qualitative
explanation at the direction level consists of the fast-velocity mapping followed by

the equal-resolution mapping, as shown in Figure 6.3.
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Figure 6.3: Qualitative explanation at the direction level.

The above plan is passed to the verification program at the gaussian level of
abstraction. At this level it is found that the output state S1 produced by the fast-
velocity mapping does not match the preconditions of the equal-resolution mapping
because the two aircraft do not have overlapping minimum and maximum frequen-
cies. This is a failure of the first type. According to Figure 6.1, the task now is
to adjust the current explanation by producing a subexplanation that explains the
difference between S1 and the preconditions of the equal-resolution mapping. Since
the frequency-shift difference cannot be dealt with at the direction level, explanation

must be searched for at the frequency level.
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The ELEVATION-COMPRESSION mapping is selected as potentially capa-
ble of explaining a frequency-shift difference. The elevation-compression mapping
represents the phenomenon of frequency scale compression for aircraft that are at
high elevations with respect to the microphone array. The precondition of this
mapping requires that an aircraft have a non-zero elevation with respect to the mi-
crophone array. In our example, the elevation of aircraft-1 is 45 degrees, therefore
the elevation-compression mapping is applicable to state S1 and produces another
state S2. The signal in state S2 corresponding to aircraft-1 has minimum and max-
imum frequency that satisfies the preconditions of the equal-resolution mapping.
Therefore, a complete explanation at the frequency level consists of fast-velocity,

elevation-compression and equal-resolution (Figure 6.4).

Figure 6.4: Qualitative explanation at the frequency level.

The adjusted explanation is again passed to the verification stage at the gaussian
level of abstraction. It is found that the output state S2 of the elevation-compression
mapping does not match the preconditions of the equal-resolution mapping. There
is still a frequency-shifting problem. This is a failure of the second type, because
the elevation-compression mapping did not achieve its intended goal. In accordance
to Figure 6.1, we drop the elevation-compression mapping and seek an explanation

to replace it. No mapping that can change the frequencies appropriately is found.
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The abstraction level is then dropped to the band level, leading to the selec-
tion of the CAR-FILTER mapping. The CAR-filler mapping changes the ampli-
tudes of the frequency components of a signal, making some of the components
zero and reducing the amplitude of others. The CAR-filter mapping followed by
the elevation-compression mapping succeeds in explaining the frequency difference.
The final explanation consists of the following sequence of mappings: fast-velocity,
CAR-filter, elevation-compression, and equal-resolution. This explanation is veri-

fied successfully at the gaussian level and is shown in Figure 6.5.
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Figure 6.5: Qualitative explanation at the band level.

6.4 Discussion

In this chapter we presented a strategy for diagnosis of faults in systems that carry
out signal transformations based on the underlying theory of an application do-

main. The strategy was described in the context of an automated diagnosis system
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for a signal processing application. The approach was motivated by the following

observations about the signal processing application:

o If we have some a priori knowledge regarding the correct answer to the prob-
lem being solved, diagnosis can be carried out using only Fourier domain
representations for describing the signal processing. This is in contrast to
the actual signal processing algorithms, many of which are designed to carry
out operations on time-domain signals. Change of representation into the fre-
quency domain is desirable because it facilitates use of conceptual abstractions
available in the underlying Fourier theory of the signal processing system.

e We can use abstract models of the underlying Fourier theory for the signal
processing to form a conceptual view of the system as a collection of interacting
mappings that explain changes in the Fouric- representation of the correct
answer leading to the fault to be diagnosed. '

e The incorrectly functioning signal processing system can be viewed as hav-
ing one or more of its mappings acting as non-identity transformations. The
diagnosis tas)- then becomes a search for a sequence of such non-identity map-

pings.

e The number of possible mappings and the associated input and output states
required to represent a particular diagnosis scenario in terms of the underlying
Fourier theory is much smaller than the number of intermediate data states
in the actual signal processing system.

Based on these observations, the diagnosis system has two major components,
the qualitative representation of states and mappings between them and a search

strategy.

The qualitative representation of states consists of multiple levels of abstraction,
with descriptions in each level represented as numerical ranges of values. Matching
two states is performed by comparing the numerical ranges of the corresponding
values. Two states are considered “equal” if such ranges overlap. Range overlap
implies that it is possible for the associated values to be the same. This is considered
sufficient for the purposes of diagnosis, where a possible explanation is also an

acceptable one.
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A mapping between states is characterized by state preconditions, which must
be satisfied by its input state, in the sense that there is overlap between the input
state and the preconditions viewed as defining another state. The postconditions of
the mapping specify an output state as a function of the input state and the system

and scenario preconditions.

The overall search consists of two interleaved activities, explanation and veri-
fication. Explanation is formed via a GPS-type search at a specified abstraction
level. Verification “executes” a formed explanation at the lowest possible abstrac-
tion level, with the purpose of checking whether the explanation is successful in

transforming the initial into the final state.

Several mechanisms are used by the diagnosis system as an interface between

the explanation and verification stages:

o An Abstraction heunstic, which considers explanations at a higher level of ab-
straction before explanations at lower abstraction levels, because plans gener-
ated at higher abstraction levels are generally simpler, in the sense that they
include fewer mappings and fewer parameter settings.

e A Recovery-from-Failure heursstic, which first attempts to modify an expla-
nation that failed in its verification through a search for a subexplanation
to replace the unsuccessful mapping. The subexplanation may be at a lower
abstraction level than the original explanation.

e A Simplest Ezplanation heuristic, which gives preference to explanations with
the smallest number of mappings. :

Although the implemented diagnosis system performs in the case of a signal pro-
cessing system, the design of which is based on Fourier theory, the approach is more
generally applicable to systems that have a formal theory underlying their design.
This includes other types of signal processing systems, as well as systems outside
the signal processing area. In all cases, sufficient information about the correct

answer should be available to allow its representation in terms of the conceptual
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models as dictated by the underlying theory. Such models are not just less detailed
descriptions of the actual algorithms, but instead they are descriptions based on a

representation mechanism quite different from the actual system under diagnosis.
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Chapter 7

Summary and Future Directions

7.1 Summary

In this thesis, we advanced the concept-of signal abstractions as an organizational

principle in real-world signal processing systems.

We defined a set of signal abstractions for harmonic spectra, the extended spec-
trum, and we examined the issues involved in computing the extended spectrum
corresponding to a given numeric spectrum. Such computation was shown to be
made more robust by a combination of straightforward algorithmic procedures with
heuristic criteria for classification and pruning. Parameters associated with this
computation are packaged together into parameter objects that form a complete

characterization of the extended spectrum.

The extended spectrum was shown to be useful in a variety of problems asso-
ciated with harmonic spectra. Adjustment of spectral estimation parameters to
maximize the peakiness of a particular harmonic set of the resulting spectrum was
performed by matching of extended spectra at multiple levels of abstraction. The

outcome of matching was a symbolic indication of the direction, in which a param-
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eter change improves peakiness of the resulting spectrum.

Extended spectra allowed explicit representation of the evolution of spectra over
time, leading to a helicopter pitch and power tracking system, which uses *islands
of certainty”, i.e. portions of tracks formed by visually prominent harmonic sets, as
a guide in searching for less distinguished harmonic sets to complete and extend the
tracks. The pitch and power tracking system employs feedback, whereby harmonic
sets found by focused search become part of the current tracks, which are then

further extended and completed at the next iteration of the feedback loop.

A second major application of signal abstractions in describing complex signal
processing systems by sequences of mappings between signal abstractions derived
from the underlying theory was presented in the context of a direction determination
system. Mappings between wavenumber spectrum abstractions were used as the
basis for a diagnosis system using a GPS-type search for producing and verifying
explanations of discrepancies between the anticipated and actual output of the
direction determination system. The explanations produced by the diagnosis system
readily associate the discrepancies with parameter settings of the signal processing

system, which can then be adjusted to reduce or eliminate the fault.

7.2 Future Directions

A direction that needs further exploration is that of génerating highly adaptive °
signal processing systems through diagnosis and qualitative simulation. After diag-
nosis has indicated which parameter settings of a standard signal processing system
are responsible for its fault, qualitative simulation of the underlying theory can
possibly be used to automatically adjust the associated parameters. Qualitative
models of the underlying theory may be used to represent the effects of parameter

changes on the behavior of the corresponding system components [Bobrow 1985|.
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The approach followed in this thesis for formulating signal abstractions was
tha.f of observing human subjects perform signal processing in a narrow domain.
In a standard signal processing course, however, prototypical signal abstractions
are being taught, together with their properties, to enable students to develop an
intuitive feeling for signal processing concepts. A possible research direction is the
development of a formal theory of generic signal abstractions and the associated
system models, along the lines of similar projects in the area of Artificial Intelligence
[Bobrow1985|.

There is a need for the application of the approach of this thesis to other real-
world signal processing problems with an aim towards systems that perform well and
are robust in real tasks. Such systems will probably rely on a large body of domain-
specific empirical knowledge combined with formal signal processing algorithms.
They will also be “open-ended”, in the sense that their performance will not be
limited by the formal algorithms they use, but by the amount of empirical knowledge
tixey incorporate. We feel that such signal processing systems can approximate the

performance of experienced humans in interactive processing of real signal data.

Knowledge acquisition was performed by taking protocols of the problem-solving
activity of human subjects and analyzing it. A combination of training techniques
similar to those used in this thesis, of automatic knowledge acquisition tools as in
[Davis & Lenat 1982] and of sophisticated signal processing workstations [Dove1984|
may lead to a more appropriate environment for knowledge acquisition. Further-
more, signal abstractions necessitate the existence of powerful user interfaces of the
style used in this thesis for inspecting the wealth of information stored in the form of
signal abstractions, for interpreting the results and for “debugging” the knowledge

in the corresponding signal processing systems.

A more specific project could be undertaken along the lines of using diagnosis to
adjust the parameters of the direction determination system without knowledge of

the input scenario. Instead, as “reference input” one could use a scenario interpreta-
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tion obtained using a different kind of processing, such as source localization from
geographically separated microphones, or even a wavenumber spectrum obtained

with a different parameter setup.

A tradeoff is present in signal processing between computation time and memory
usage. With computer memory having been expensive, the trend has been towards
signal processing algorithms that treat signals as streams of numbers that flow
through the signal processing system, which has limited “information capacity”. On
the contrary, systems such as those presented in this thesis make intensive use of
memory, because of memoization of multi.ple levels of signal abstractions. Recovery
of unusable memory (“garbage collection”) is a slow process, and may introduce
unacceptable delays in real-time signal processing systems. However, it may be
possible to facilitate recovery of unusable memory by introducing more structure
in the allocation of memory for signal abstractions. This is an interesting future

research direction.

A problem with highly nonlinear threshold-based systems of the sort presented
in this thesis is thejr discontinuous behavior. By this we mean that a small change
in the value of a parameter (threshold) may introduce a qualitative change in the
behavior of the system. A bc.iter understanding of the issues involved in the quan-

tization of information introduced by the existence of thresholds is needed.

Finally, assessing the performance of such systems is a difficult task. This is
partly due to the lack of simplified models, such as white gaussian noise, that make
performance evaluation mathematically tractable in traditional signal processing.
Our frame of reference in this thesis has been the performance of humans in the same
tasks. Although our systems have been designed to perform on real data, which
makes it ‘inappropriate to try to measure their performance on idealized signals, it
may be po'ssible to design somewhat more objective criteria than the performance of
humans. As we develop experience with such systems, we may develop systematic

procedures for analyzing the validity and usefulness of specific rules of the systems
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and possibly automate them.
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Appendix A

A raw protocol transcript

( E: Experimenter, S: Subject. The experimenter issues signal processing commands
to a signal processing workstation with graphics capabilities. The subject orders
the experimenter to issue signal processing commands c. his liking and views the
resulting signals. The following is a transcript of the tape recording all the verbal-
izations of the subject and the experimenter. References are made to signal graphs
.inspected and commented by the subject. All such signal graphs are provided after

the protocol transcript.)

E: You are provided with 15 seconds of acoustic data from 8 channels
and your task is to inspect the data for presence of helicopters and infer
as much as you can about their motion. I can compute and display the
acoustic waveforms at any desired scale and spectra computed as aver-
aged periodograms with variables being the starting time, the window
size of a single periodogram, overlap between successive windows and
the total number of periodograms to be averaged.

S1: Can I see the whole data from all the channels?
Plot }N-l.

S2: OK. It looks like the general power level is fairly constant over
time and similar for all channels except channel 1, which is significantly
stronger.

$3: How many seconds is this? 20?7
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E: No, 15 s.
S4: I can see a consistent low of energy around the 5th second in all

channels. Other than that, there are minor energy fluctuations here and
there in every channel.

S5: Let me now look at the first 2 seconds of each of the channels.
Plot W-2.

S6: It looks like helicopter data. I will try to measure helicopter peri-
odicity.

S7: Hm. Periodicity is hard to find. It is sort of there, but not very
clearly visible in the waveform.

S8: It seems that the helicopter is either far before CPA or it is going
away from the node. Signal-to-noise ratio is definitely no good in the
first 2 seconds.

S9: Let me now see the last 2 seconds of each of the channels.
Plot W-3.

S10: Once again periodicity is not clear. What is the maximum ampli-
tude (of the last 2 seconds of all channels)?

E: 2.6
S11: And what is the amplitude in the first 2 seconds?
E: 2.1

S12: This is an indication that signal energy is lower in the first 2
seconds, though a significant difference does not exist.

S13: Can I now see the 2 seconds of time waveform starting at the 4th
second, where I previously observed a slight low in energy?

Plot W-4.
S14: The amplitude there is at the 2.2 level.

S15: Just for completeness, let us check the 2 seconds starting at the
8th second of data.

Plot W-S§.

S16: As in all previous cases the signal-to-noise ratio is low and [ cannot
detect a nice periodicity.

S17: Amplitude is 2.3.

S18:. Overall signal energy is increasing with time from 2.1 to 2.6. A
plausible explanation is that we have a helicopter coming toward the
node.

S19: Now I would like to take a look at spectral characteristics of the
-data. Let me see the spectrum of the first 2 seconds of channel 1 with
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window size 0.5 s (1024 points), 50% overlap and a total of 8 blocks, in
logarithmic scale.

Plot S-1-0.

S20: I see quite a number of distinct peaks in both the low and high
frequency ranges.

S21: Let me find out the location of the tail rotor frequencies first.
S22: A strong fundamental is around 93 Hz. Another peak around 180

Hz and 270 Hz. Hm, there are rather two peaks at 180 and 270. That’s
interesting!

S$23: Let me be more careful about these double peaks. There are peaks
at 183 and 193 Hz, at 275 and 286 Hz, at 368 and 384 Hz, at 460 and
475 Hs.

S24: If we adopt the hypothesis that these peaks belong to two different
helicopters, we have here two consistent sets of tail iotor harmonics with
fundamentals around 92 and 96 Hz.

S25: So I think my current hypothesis is that there are two helicopters
with tail rotor frequencies 92 and 96 Hz. '

S26: Assuming that both helicopters are of the same type, the one with
96 Hz comes toward the sensors, while the one with 90 Hz is going away.

S27: Let me also add that the fact that energy increases with time is
consistent with the fact that the incoming helicopter is dominant, while
the outgoing helicopter is so far that it makes no significant contribution
to the total energy.

S28: Let me now see the first 100 Hz of the previous spectrum in linear
scale.

S29: What I hope to see here is further evidence of the two helicopters.
Plot S-1-1.

S30: Oh! I don’t know why but I didn’t really expect such a spectrum. A
really dominant peak at 14 Hz. A number of smaller peaks at frequencies
around 29, 44, 58 and 71 Hz. A large peak around 92 Hz.

S31: Let’s see. The smaller peaks seem to be the second, third, fourth
and fifth harmonic of 14 Hz.

S32: The large peak at 92 Hz must be the tail rotor fundamental of
the outgoing helicopter. There is no peak at 96 Hz, so the tail rotor
fundamental of the outgoing helicopter is dominant at the moment.

S33: Therefore, the peak at 14 Hz proba.bly corresponds to the outgoing
helicopter.

S34: By the way, what is the frequency resolution of this spectrum?
E: 1 Hz per bin.
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- §35: OK, it has pretty good resolution.

$36: Let me now see the same kind of log spectrum for the last 2 seconds
of channel 1.

Plot S-1-2. |
S37: 1 see a very noisy spectrum here.

S38: What’s the energy level? (compares with spectrum of the first 2
seconds). It looks about the same as that of the first 2 seconds.

S39: Let’s now look at the first 100 Hz of the spectrum in linear scale.
Plot S-1-3.

S40: We have a strong peak at around 94-95 Hz. Seems to be consistent
with the tail rotor of the incoming helicopter.

S41: Still peaks at 14, 26, 29, 38-39 Ha. So a periodicity is present of
the order of 13 Hz.

S42: I haven’t been able to tell much from the linear spectrum. It has
been rather confusing. I rely more on the tail rotor.

S43: Let me now look at a spectrum somewhere in between, say starting
at the 4th second.

Plot S-2-0 (log), plot S-2-1 (linear).

S44: This log spectrum is not as clean as the first 2 seconds and not as
dirty as the last 2 seconds. Peaks at 180 and 190 Hz are consistent with
two helicopters.

S45: The linear spectrum is very interesting. The two peaks at 90 and
95 Hz are still consistent with the two helicopter hypothesis. |

S46: How does the strength of the outgoing helicopter change with time?
E: It has become smaller.

S47: Basically I cannot read too much from the lower end of the linear
spectrum because of peak overlap. The peak at 14 Hz appears to be a
combination of peaks from both helicopters, which add up to one peak
because of resolution problems.

S48: At this time I think that the outgoing helicopter is still the domi-
nant one. .

S49: Let me now look at the linear spectrum starting at the 8th second.
Plot S-2-2.

S50: I see peaks at 86 and 95 Hz. Other peaks at 8 and 14 Hz.

S51: The strength of the 14 Hz peak is about the same as before.

§52: I would associate the 14 Hz peak with the incoming helicopter and
the 8 Hz peak with the outgoing helicopter. The rest of the peaks are
harmonics of 14 Hz. I don’t see any harmonics of the 8 Hz peak.
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S53: This spectrum seems to make things a little bit clearer. The peaks
at 40 and 53 Hz seem to be harmonics of 13 Hz rather than 14 Hz.

S54: The 8 Hz peak was not visible at previousl times because low fre-
quencies are very noisy.

§55: Just to confirm all this, let’s look at the spectrum starting at the
10th second.

Plot S-2-3.

S56: We see a peak at around 13-14 Hz, with the same magnitude as
before and several of its harmonics.

S57: The tail rotor fundamental of the incoming helicopter at 95 Hz is
there, while the fundamental of the outgoing helicopter is dying away.

S$58: My conclusion from this data is that there is an outgoing helicopter,
which was initially close. Its energy goes down very quickly. A second
helicopter is coming toward the sensors but it has come nowhere near
CPA bacause its fundamental is constant around 13 Hz. Most of my
conclusion has been guided by the tail rotor frequencies and I was trying
to confirm that with the main rotor frequencies. I feel I have found
sufficient evidence for my conclusion.
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Appendix B

In this appendix we show the intermediate results from the iterations of the system
for power and fundamental frequency tracking presented iu Chapter 4 of the thesis.
In Chapter 4 we only showed the power and fundamental frequency traces obtained

after the final iteration of the system. The format of the figures is as follows:

e Part (a) shows the microphone signal (pressure as a function of time).

e Part (b) shows the harmonic chains obtained without pruning of the harmonic

sets in a frequency versus time representation.

e Parts (c) and (e) show the harmonic chains resulting after 0 and 1 iteration

of the system of Figure 4.1 in a frequency versus time representation.

e Parts (d) and (f) show the identified chain links (as thick filled circles con-
nected with a dotted line segment) and the identified harmonic sets for con-
firming chain links or extending existing chains (shown as “x”’s) in a frequency

versus time representation.

e Parts (g) and (h) show the final harmonic chains (including chain pruning) in

a frequency versus time and power versus time representation respectively.

e The figure mentioned in the figure caption is the corresponding figure in Chap-
ter 4.
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Figure B.1: A single helicopter scenario (Figure 4.11).

208




9.3166

-4.an
9.9 I (o) %.7
FREDUENCY (Me)
3
\ - -
~ hand
-s
3
9.0 I (s) %.7
FREQUEICY (M=)
23

9.0 It (e)

FREQUENCY (Mz)
23

S

———

9.Q I (9)

Figure B.2: A two-helicopter scenario, with weak signals and the two helicopters

11s apart (Figure 4.12).

%.?7

FREQUENCY (Hz)
-]

.9 TINE (3)

FREDUENCY (Wg)
3

<« x xxs-m_\‘\:\\‘

"\".. e

-~

e.9 TinE () %.7

FREQUENCY (Hx)
-]

* — ‘\\\

o™ .
~ hand
-
3
9.9 TINE (o) %.7
rOMER
15.1
[
e.0 TINE (a) 99.1

209




e.0 1IN (s) na .9 e (s) 7.4

FREQUENCY (Nz) FREQUENCY (Mx)
= 2s
- -
\ \
- -
hed -
3 3
9.9 T () ”.: 9.9 1IN (3) ”a
FREDUENCY (Ma) FREQUENCY (Mx)
-] . 2
- -
- -
- L]
3 3
9.8 I (s) ”.a e.0 TINE (s) ”.a
FRECUENCY (Mx) PONER
E~] 331900.3
3 []
9.0 IRk (8) ”.a .9 TINE (s) 9.6

Figure B.3: A single helicopter scenario with a different type of helicopter. (Figure
4.13).
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Figure B.4: A single helicopter scenario with the same type of helicopter as in the
previous Figure and with the data window ending at CPA (Figure 4.14).
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Figure B.5: A two-helicopter scenario (Figure 4.15).
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Figure B.6: Another single helicopter scenario, portion before CPA (Figure 4.16).
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Figure B.7: A single helicopter scenario, portion including CPA (Figure 4.17).
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