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Chapter 1
Introduction

Visual information is the prime communication medium for humans. Analysis of
this visual information and of its processing is important and serves multiple pur-
poses. Visual information generally consists of images of scenes in the three-
dimensional world projected on two-dimensional surfaces such as paper, film, video
screens or the human retina. Information intrinsically contained in these images is
best characterized by regions with intensities, colors and texture, and discontinuities
between these regions. On the other hand, scenes are better described by the sets of
objects present in the scene, shapes, surface properties and spatial arrangement of these
objects and the illumination of the scene. Substantial work has been accomplished in
studying the relations between scene properties and image properties. Theories
developed so far have permitted for example, the development of systems for syn-

thesizing realistic images, for enhancing images, and for recognizing objects in images.

In most theoretical analyses of the relations between scenes and images, only one
or a few image properties are related to their correspondent properties in the scene. In
addition, assumptions are made which decouple these relations from other effects. The
decoupled problems are amenable to analysis, and their solutions are often found
valuable outside the simplified context. The present thesis follows this approach by
considering only relations between silhouette shapes in images and object shapes in the

scene.

1.1. Silhouettes

The word "silhouette” is generally used in two similar senses. The first
corresponds 1o portrays or scenes depicted as outlines filled in with black, whereas the
second corresponds to just the outlines themselves; see Fig.1.1. Clearly, these two con-
cepts are closely related, and it is easy to transform one form into the other. For the
sake of clarity, we have decided to use the word "silhouette” for the outline only, and
the expression "filled-in silhouette” for the outline filled-in with black. More pre-
cisely, the silhouette of an object in an image will refer to the curve which outlines

the image region covered by the projection of the object.

- 10 -
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Fig.1.1. Silhouette as a) a filled-in outline, ») an outline. (from [1].)

Among a variety of features which can be identified in an image, silhouettes are
known to convey a strong perceptual content for humans [2, 3]. For example, most of
us recognize without difficulty the various animals represented by filled-in silhouettes
in Fig.1.2. In this thesis, a new theory is developed to relate shapes of silhouettes to
shapes of the corresponding 3-D objects.

1.2. Three Basic Problems

Although the initial motivation for our work came from the domain of machine
vision, relations between objects and silhouettes can be exploited in a variety of con-
texts. A majority of the applications are closely tied to one of three basic problems,
namely silhouette construction, reconstruction from silhouettes and recognition from
silhouettes. These three basic tasks are now outlined as a motivation for the analysis

of object-silhouette relations.

The first problem is that of silhouette construction from a description of the 3-D
shape of the object and the imaging geometry. This construction is required for exam-
ple for the synthesis of blueprints from 3-D object models. Presently, most synthetic
renditions are in the form of shaded images. For these, silhouette construction is not
explicitly required but can be used for anti-aliasing processing or for outlining areas to

be covered by surface painting processes.




Fig.1.2. Filled-in silhouettes of animals (from [1]).

The second problem is that of reconstructing the shape of a 3-D object from
silhouette data. It is easy to see that the reconstruction of the shape of a 3-D object
from one silhouette is largely underconstrained. Reconstruction of general shapes is
possible only when multiple silhouettes are available for processing; this occurs in
some examples of medical imaging and non-destructive testing, and for vision systems

where several views of the object are available [4].

The third problem is that of 3-D object recognition from silhouette data. A

silhouette recognition system would exploit silhouette data obtained from an image,
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and compare this with a description of the 3-D shape of a known object. The system
must determine if there is evidence in the silhouettes suggesting the presence of the
given object in the imaged scene, and estimate its position and orientation in the scene.
A large number of solutions to this problem have been proposed for the case where the
viewing direction relative to the object is known a-priori. In that case, the silhouette
can be precomputed up to a rotation and a translation in the image plane, so that the
matching process is greatly simplified. When there is no a-priori estimate of object
orientation relative to the camera, the same object can produce very different

silhouette shapes, and the problem is much more complex.

1.3. Previous Work on Silhouettes

Previous approaches to silhouettes are briefly sketched here: they will be dis-
cussed in greater detail in Chapter 2. Most algorithms presented in the past for solv-
ing the problems mentioned in the previous section have been based on the well-
known relation between coordinates of points in the scene and coordinates of their
projection in the image [5]. In order to relate object shape and silhouette shape. this
relation must be combined with the knowledge of which points of the object in the
scene are projected onto the points of the silhouette in the image. Silhouette analysis
based on projections of points is satisfactory for the development of many computer
graphics algorithms, has helped to develop methods for reconstructing objects from
silhouettes and methods for recognizing biock objects from their silhouettes. How-
ever, there are several drawbacks in the classical formalism. First, the classical
method does not explicitly analyze the relation between curved 3-D shapes and their
silhouettes. Shapes of generalized cones have been related to the shapes of their
silhouettes [6], but these relations are approximate and apply to simple generalized
cones only. Second, the classical method does not easily support intuitive reasoning
when several object points are related simultanesouly to the corresponding silhouette
points. Third. no intermediate representation has been proposed where information
from different silhouettes is readily combined. Finally, the relations between
silhouette points and object points must be supplemented by various ad hoc arguments

to solve different problems.
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Deficiencies of the classical silhouette theory are most severe for the problem of
recognition, but the other two application areas can also benefit from new results on

silhouette analysis.

1.4. Thesis Overview

Solving any of the three basic problems described in section 1.2. requires a good
understanding of the relation between the shape of a 3-D object and the shape of its
silhouette obtained for any given viewing direction. In this thesis, we present new
representations for objects and silhouettes, and the relations between these representa-
tions for corresponding object-silhouette pairs. Specifically, silhouette curves will be
represented by functions on the Gaussian circle, and object surfaces by functions on
the Gaussian sphere. The functions describing these shapes are chosen in such a way
that the relation between object functions and silhouette f ungtions is particularly sim-
ple. The representation of a given silhouette is simply related to a slice of the
representation of the object on the sphere. The new theory hence relates silhouettes of
objects 1o slices of their representations, and the theorems formalizing these relations

have been named "Silhouette-Slice” theorems.

The theories presented in this thesis apply to the case of orthographic projection
only, and are initially developed for smooth strictly convex objects, such as the super-
quadric in Fig.1.3. Although the class of smooth convex shapes is somewhat res-
tricted, the theorems will be extended to cover objects with corners, edges and flat
components, which include convex polyhedral objects such as in Fig.1.4. As a conse-

quence, the same theories are capable of analyzing silhouettes of curved objects and of

\ff

a) b)
Fig.1.3. Superquadric and its Silhouette for the Viewing Direction V.




..15_

a) b)
Fig.1.4. Cube and its Silhouette for the Viewing Direction V.

polyhedral objects. Furthermore, some of the results are applicable to non-convex
obgects such as the torus depicted in Fig.1.5. However, silhouettes of nonzronvex
objects may contain singularities such as inflections and cusps which are not well
analyzed with the Silhouette-Slice theorems, but which have been studied in detail in
other work [7, 8, 9]. Finally, the scope of the results can be extended considerably
when Boolean combinations of objects are considered. Indeed, combinations of simple
primitives such as the superquadric in Fig.1.3 have been shown to adequately model

complex objects [10].

The new theorems allow the derivation of closed form expressions for the
silhouettes of complex 3-D shapes, when these are defined analytically. In addition to

these mathematical relations between silhouette and surface shapes for the class of

N

a) b)
Fig.1.5. Torus and its Silhouette for the Viewing Direction V.
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objects of interest, the new theory also provides an elegant qualitative interpretation
of these relations. The framework of the Silhouette-Slice theorems is well suited to
develop an intuitive understanding of the relations between silhouette shape and
object shape. The representations proposed for 3-D shapes can be thought of as inter-
mediate representations in which information from silhouettes corresponding to
different viewing angles is readily combined. Finally, the representations of an object
by functions on the sphere can be interpreted as a compact representation for the set of
all the silhouettes of the object.

1.5. Thesis Organization

The second chapter of the thesis reviews some earlier work on silhouettes in the
context of the three basic problems outlined in section 1.2. As object modeling plays
an important role in the analysis of relations between object shape and silhouette
shape in general, and in the analysis presented in this thesis in particular, previous

work on that subject is also reviewed.

Chapter 3 reviews some basic concepts of analytic and differential geometry. In
addition to the review of classical concepts, a number of original geometrical concepts
are presented. The first is the definition of an invariant measure of surface curvature.
The second concept is the definition of local referencé directions at each point of the
Gaussian sphere, in order 1o support the discussion of object functions with vector and
tensor values. Finally, a relation is proposed between representations of normals with
gradients in a Monge parameterization on one side and with coordinates on the Gaus-

sian sphere on the other side.

In Chapter 4, the classical approach to silhouette construction is reviewed. This
approach consists of a two-step process, where the first step is the selection of object
points which contribute to the silhouette, and the second step is the projection of these
points. This approach is illustrated in the case of a simple object, a cone. The
equivalent formalism is also presented in the dual space of tangents. For both
methods, surface normal orientation is shown to be the key parameter to silhouette
construction with orthographic projection. This conclusion motivates representations

of objects and silhouettes where normal orientation is explicit.
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Chapters 5 and 6 present the major developments in this thesis. A set of
representations is developed for 2-D curves and for 3-D surfaces, with the relation

between these representations for an object-silhouette pair.

Chapter 5 introduces three different representations for the shapes of 3-D object
surfaces and for the shapes of 2-D silhouette curves, as functions on the Gaussian
sphere and on the Gaussian circle respectively. All three representations are unique
and uniquely invertible for objects in the class of interest, and are explicitly phrased
in terms of normal orientations. A close parallel is followed in the discussion of the

representations in 2-D and 3-D.

Chapter 6 presents three theorems expressing the relations between corresponding
silhouette circular functions and object spherical functions. A unified proof method is
presented for the three theorems corresponding to each of the three representations.
The spherical transforms of 3-D objects are also interpreted as compact representations

of the set of all their silhouettes.

Chapter 7 extends the theories presented in Chapter 5 and 6 to the case of object

surfaces with edges, corners and planar faces.

In Chapter 8, examples of silhouette construction with the Silhouette-Slice
theorems are provided. Other applications of the method are suggested, such as a stra-
tegy for reconstructing objects from silhouette data, and the principles of a recognition

scheme for silhouettes.

Finally, Chapter 9 conciudes by summarizing the key contributions of this thesis

and suggesting directions for future work.




Chapter 2
Literature Review

In this chapter, previous work on silhouette analysis is reviewed. As no general
framework previously existed for this analysis, much of the work on silhouettes pub-
lished in the literature is found in application areas and considers relations between
object shape and silhouette shape only in the context of particular tasks. Literature is
most abundant for the problem of recognition, but it is also instructive to consider
how silhouettes have been handled in other application areas. The first part of this

chapter examines existing approaches to the three basic problems outlined in Chapter 1.

In order to relate silhouette shapes and object shapes, it is necessary to base the
relations on some description of the shape of the object surfaces. Theref ore, :{lrf ace
modeling procedures play a central role in any analysis of the silhouette problem. In
addition, one of the key contributions of this thesis is a set of surface representations
for which the relations between objects and silhouettes are greatly simplified. The
second part of this chapter reviews previous work on surface modeling, with special
emphasis on the relations between the proposed representations and the shapes of

silhouettes.

2.1. Literature on Silhouettes
2.1.1. Construction of Silhouettes

Most examples of numerical evaluation of silhouettes are found in the synthesis
of images in the field of computer graphics. Several references, such as [11, 12], pro-
vide a good introduction to the field. The synthesized image can take different forms,
such as wireframe diagrams, blueprints, or shaded renditions. In the case of blue-
prints, the output image consists of lines and curves representing creases in the object
surface and silhouettes of the object and of its parts. For this type of output, explicit
silhouette construction is necessary. In the case of shaded images however, explicit
construction of silhouettes can be avoided, as they are implicitly generated on boun-
daries of rendered surfaces. Although explicit construction of the silhouettes is not

indispensable for the synthesis of shaded images, it can be useful for example in the
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elimination of jagged outlines, known as anti-aliasing processing. In the synthesis of
both shaded renditions and wireframe drawings, silhouettes can also be used to deter-
mine a-priori which regions of the image will be covered by which objects. With this
information, the rendition can be divided into several processes without risk of
interferences if the processes are run in parallel. Silhouettes can also be useful for the
rendition of shadows. The determination of the shadow of an object on a planar sur-
face is equivalent to the determination of a silhouette of the object for an appropriate
imaging geometry [13]. Results obtained for silhouettes are hence immediately appli-
cable to shadows. In summary, the construction of silhouettes is used or has a poten-

tial for use in several facets of image synthesis.

Computer graphics is a relatively mature field, and some silhouette construction
methods are well known. Most of these are based principally on the relation between.
coordinates of points in the scene and coordinates of their projection in the image
plane; these relations are nicely illustrated in the context of graphics in [5]. In addi-
tion to the relation between point coordinates. the exact shape of the silhouette
depends on which points of the object are projected onto the points of the silhouette;
this set of object points is referred to as the silhouette generator in this thesis.
Methods for determining the silhouette generator depend on the type of representation
for the objects. In the case of polyhedral objects, the silhouette generator is the set of
all edges touching a face oriented towards the eye position and a face oriented away
from the eye position. The selection of this set of edges usually requires a search
through all the edges of the polyhedron. Objects with curved surfaces are often
described as collections of curved surface patches, such as segments of spheres,
cylinders, general quadrics, superquadrics, Bezier patches, B-spline surfaces ... In this
case, the silhouette is a 3-D curve containing all the points where the viewing rays are
grazing the object surface; this curve is twisted in general. For quadrics and some
higher order surfaces, closed-form expressions have been determined for the silhouette
generator and for the silhouette itself. For other surfaces, accurate approximations

have been proposed.
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2.1.2. Reconstruction from Silhouettes

In a significant number of cases, images contain little more information than the
silhouettes of the imaged objects. This arises for example in some nondestructive test-
ing x-ray images, in images of backlit objects, and in some range images [14, 15]. It is
often desirable to estimate the 3-D shape of the imaged objects in those circumstances.
It is intuitively obvious that a large number of different 3-D objects could have gen-
erated any given silhouette, so that reconstruction of a 3-D object shape from the
shape of one silhouette is ambiguous. Several ways have been proposed to reduce or
resolve this ambiguity, e.g. by considering restricted object classes, by using more than
a single silhouette, or by applying regularization methods. Previous work on these

three facets of reconstruction from silhouettes is now reviewed.

Exact reconstruction of a 3-D shape from one silhouette can be guaranteed only
by considering a restricted class of 3-D objects. An interesting class which has been
considered is the class of axisymmetric objects. For these objects, the silhouette con-
struction is invertible in the absence of seif-occlusions, for known object orientation.
However, the orientation of the object axis is usually unknown a-priori and must be
estimated from the image data. Methods have been proposed for estimating this orien-
tation from the shape of the silhouette of the object base, or from a self-shadow on the
object image {13]. In a recent paper, the author has proposed an alternative method

based on the Silhouette-Slice theory, for determining the orientation of the axis [16].

A second approach to the reconstruction of object shape from silhouette data is to
consider the problem as improperly posed and to apply regularization techniques [17].
A unique shape estimate is obtained by maximizing some smoothness constraint while
matching the observed silhouette. Strong constraints are imposed by the silhouette
observations when object surfaces are assumed to be continuous along the silhouette
generator, so that the surface must be tangent to the viewing rays corresponding to the
silhouette. The object surface orientation is uniquely determined at these points by
the silhouette orientation in the image and by these viewing rays. Reconstruction
results obtained with this method seem to be in acceptable agreement with the human

perception of shape from silhouette images.

Complete and accurate reconstruction of 3-D shapes from silhouette data is possi-

ble for a large class of objects, when multiple silhouettes are available. A well-known
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solution to this problem consists of first considering, for each projected silhouette, the
object outlined by the corresponding viewing rays. This object, referred to as the
extruded silhouette by some authors, is a prism for parallel projection, a generalized
cone for perspective projection. The orientation of each extruded silhouette in a world
reference frame can be determined from the imaging geometry for the corresponding
silhouette so that all extruded silhouettes can be combined in the world reference
frame. Among all objects with shapes consistent with the measured silhouettes, the
intersection of all these extruded silhouettes is the object with the largest volume.
This maximal volume object can be considered as an estimate of the object shape.

Implementations of this reconstruction procedure are discussed in [4, 18].

2.1.3. Recognition from Silhouettes
i iR

Object recdg})ition from image data is a major concﬂern in the field of machine
vision. Several books, such as [19, 20, 21], provide a good introduction to the field.
Silhouettes are important features in images of objects, so that substantial research has
been accomplished in the area of recognition from silhouette data. A summary of

some important published research on this topic is sketched below.

Whereas objects in a scene are generally three-dimensional, their silhouettes in
images are necessarily two-dimensional. As a result, object shapes can not be directly
related to the shape of their silhouettes. Several strategies have been proposed to cir-
cumvent this apparent mismatch. The first approach consists of precomputing
silhouettes for the known objects and performing the match at the 2-D level. In the
second approach, only planar objects or planar object parts are considered, but their
plane is not required to be parallel to the image plane. The third approach consists of
first processing the observed silhouette 10 estimate the shape of the corresponding 3-D
object, then performing the match at the 3-D level. The fourth approach consists of
devising judicious models for both objects and silhouettes so that the match can be
performed between features of these models. Most algorithms proposed for recogni-

tion from silhouettes can be related to one of the above classes.

Systems which compare the observed silhouette with synthesized silhouettes
must perform matches between 2-D outlines differing by only translations and rota-

tions in their plane. Numerous methods have been proposed for performing this
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operation on complete silhouettes [22- 30]. However, these methods require the
knowledge of the correct 3-D object orientation and work well only when this orienta-
tion can be estimated a-priori. Otherwise, a large number of orientations must be tried,
requiring matching and either computation or storage of large numbers of silhouettes
for each object in the data base. These requirements may easily become excessive for

medium to large object data bases.

When only planar objects are considered in the scene, the object outline is related
to the observed silhouette by an affine transformation. A method has been proposed to
characterize planar objects by features invariant in affine transformations [31]. With
this method, general polyhedral objects can be recognized by building a separate model

for each planar face and matching each of these 1o image features.

A different strategy consists of first performing an approximate reconstruction of’
the 3-D shape of the object using procedures similar to those described in the previous
section. The reconstructed shape is then matched with known object models. When a
restricted object class can be hypothesized or when a large number of silhouettes is
available, accurate reconstruction of the 3-D object shape is possible, and the problem
becomes one of 3-D shape matching. When the approach is applied to a single
silhouette with no constraints on the 3-D shape, the information is insufficient to accu-
rately reconstruct the 3-D shape so that this strategy is difficult to implement. Work
has been done on qualitative estimation of object shape from silhouette data, and on

the use of this information for recognition (see for example {32, 33]).

A number of systems have been reported where nontrivial 3-D object features are
compared to 2-D silhouette features. Two characteristic examples are described here.
The first example is given by the ACRONYM system [34], where object features are a
collection of generalized cones which describe the object shape. These features have
"ribbons" for silhouettes and the relations between corresponding cone/ribbon parts are
readily evaluated. A parsing mechanism converts each measured ribbon into sets of
inequality constraints on the parameters of corresponding object cones. These con-
straints are collected and the matching is converted into a decision procedure for the
large resulting set of inequalities. Success of this approach is partially linked to the
astute choice of cones and ribbons, a set of corresponding features which judiciously

relate silhouette information to object information. The second approach considered
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here consists of extracting edge features from both the silhouette and the object and of
performing the match based on these edges. Goad proposes a fast implementation of
this procedure [35]. In this case too, the choice of features is appropriate since relation-

ships between image edges and object edges are straightforward.

In many of the approaches discussed above, the measured silhouette must be com-
plete. If part of the silhouette is missing, recognition can be much more complex.
Missing silhouette parts may be due for example to occlusions in the scene or segmen-
tation errors in early processing of the image data. Although recognition of 2-D
objects has been demonstrated in cases of partial occlusion, for example in [36], the
problem of 3-D object recognition from partially occluded silhouette data still requires

substantial work.

In addition to the work presented above which is intrinsically related to applica-
tions, some more general analyses of silhouettes have been presented. Shafer reviews
some basic silhouette construction methods, referred to as "classical” in this thesis, and
draws a number of conclusions for the analysis of silhouettes of generalized cones [13].
In other work, Koenderink has considered the relation between characteristic events on
the silhouette curve and corresponding surface features [7]. His work is the only
reference known to the author where relations between shapes of surfaces and shapes
of their silhouettes are analyzed in detail. He independently discovered the dual of
Euler’s theorem [33] presented in Appendix 3.
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2.2. Literature on Object models

This section gives a brief overview of modeling methods for 3-D shapes and their
consequences for silhouette analysis. Quite different approaches to modeling must be
followed, depending on whether the models are used for synthesizing or for recogniz-
ing shapes. Modeling methods intended for synthesis are used in CAD/CAM systems,
and the theories are covered in texts such as [37, 38]. Modeling for recognition is
addressed in texts on computer vision and in a number of articles such as [39, 40]. As
models for synthesis pertain to silhouette construction and models for recognition per-
tain to recognition, both aspects of modeling are addressed here. Since silhouettes
depend only on the exterior surfaces of objects, modeling methods specifying the inte-
rior of objects such as constructive solid geometry or solid patches are not addressed

. h eTe. = o . $3

The synthesis of a complex shape usually starts by breaking up the surface into
simpler parts (surface patches), then independently describing each part by some
atomic surface element using a limited number of parameters. Basic elements include,
in order of increasing complexity, planar facets, segments of spheres, cylinders, cones,
quadrics, superquadrics and parametric surfaces such as Bezier patches or B-spline
patches. In order to determine silhouettes of the synthetic shapes, closed-form expres-

sions are desirable for the silhouettes of the set of basic element types.

When defining a model for the shape of a given object by the above method, it is
generally attractive to position the element boundaries at some meaningful surface
boundaries, although this is not necessary. It is usually possible to define or closely
approximate the same shape by several different descriptions. In the field of machine
vision however, careful attention is paid 10 the uniqueness of the representation of the
objects. Difficult issues arise in recognition when the same shape can be described by
different representations. Therefore, representations used for shape synthesis are usu-

ally not appropriate as such for recognition applications.

In some early machine vision systems, 3-D objects were represented by 2-D views
corresponding to different aspects. The major problem of this method is the large
number of different views required for describing each object. Although 3-D represen-
tations are now generally preferred, interesting approaches based on 2-D representa-

tions are still proposed [41]. Analysis of complex silhouettes such as the ones in
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Fig.1.2 is difficult because natural objects such as these animals have extremely com-
plex and variable shapes. Analysis of their silhouettes requires the combination of an
understanding of image processing and geometry on one side, and of representation
mechanisms for the structure of complex shapes on the other side. Some authors in
the computer vision community have adopted a representation of 3-D objects in terms
of generalized cones [6, 13, 19, 34, 42]. These models are viewpoint independent and
are well adapted to the representation of complex shapes. When applied to silhouette
analysis, the proposed method is attractive because silhouettes can be approximately
predicted by a simple method for a large class of generalized cylinders. There are
however a number of drawbacks to modeling with generalized cones. Generalized cone
models are not always unique and., for complex surfaces, the usual approximations

involved may lead to incorrect conclusions [43].

A very different modeling approach is taken by Horn with the Extended Gaussian
Image [44]. The Extended Gaussian Image represents a complex shape in one step,
specifying the shape by a scalar function on the Gaussian sphere. The value of the
function on the sphere defines the inverse Gaussian curvature of the surface at the
corresponding point of the object. This representation is known to be complete and
unique for convex objects. An algorithmic inversion has been proposed and its imple-
mentation reported in [45]. The Extended Gaussian lmage combines information
related to different viewpoints in an elegant way. It has been successfully used in
recognizing and positioning 3-D objects [46]. It will be shown in this thesis that the
Gaussian mapping greatly simplifies the selection of silhouette generator points. How-
ever, the Gaussian curvature of the object is not related to silhouette properties in a
straightforward way, a fact that makes the Extended Gaussian Image inappropriate

for work on silhouettes.

2.3. Conclusion

To summarize our analysis of the literature on silhouettes, we notice that work
published on silhouettes suffers from the lack of a basic theory which would summar-
ize most of the individual results. In addition, a detailed analysis of the relation
between complex curved shapes and their silhouettes has not been presented. Finally,

our survey of classical modeling techniques reveals that silhouette shapes cannot
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usually be related to the 3-D representations. This thesis tries to overcome these
deficiencies by contributing a basic theory of silhouettes for objects with curved sur-
faces. It will be shown that the theory based on curved surfaces can be easily
extended to surfaces with edges, corners and planar faces, so that the same theory can

be used in many situations.

The new theory is based on a set of three new representations for the shape of 3-
D surfaces, and the corresponding representations for planar curves. The new object
representations presented in this thesis retain a basic concept of the Extended Gaussian
Image. namely the description of object shapes by functions on their Gaussian sphere.
The functions used in the representations proposed in this thesis specify points,
tangent planes and complete curvature of the object surfaces. These functions are
easily related to the corresponding functions for silhouettes corresponding to any
viewing direction. Some of the functions on the Gaussian sphere are substantially
more complex than the the function represented in Extended Gaussian Image function

and require the definition of vectors and tensors at each point of the Gaussian sphere.






Chapter 3
Background

In this chapter, the framework in which the silhouette analysis will be developed,
is reviewed. As silhouettes refer to outlines of image projections, the study of
silhouette shapes is equivalent to the study of the shape of closed curves. A key issue
addressed by this thesis is the relation between silhouette shapes and shapes of the
corresponding objects. Opaque objects are completely determined by their bounding
surface so that object shapes are equivalent to shapes of closed surfaces. It will hence
be possible to phrase the relations between object shapes and silhouette shapes in terms
of curves and surfaces. Both curves and surfaces are sets of points which can be
specified by expressions for their coordinates in appropriate frames. These sets will be
analyzed in this thesis with tools from analytic geometry and differential geometry.
Basic concepts from these fields are reviewed here, and notations used throughout the

thesis are defined.

In the first section, geometry of points, lines and planes is reviewed. Coordinates
are defined for these elements and effects of transformations of axes on these coordi-
nates are studied. Specification of the imaging projection is addressed. Relations
between coordinates of points and planes in the scene and the coordinates of their pro-

jections in the image are developed.

In the second section, the geometry of curves and surfaces is reviewed. Represen-
tations in terms of global parametric equations and in terms of local Monge parameter-
izations are discussed. Curvature is defined in terms of a Taylor expansion of the
Monge parameterization. For curves, the resulting definition is identical to the classi-
cal curvature k , which is also the inverse of the radius of curvature p =k ~!. In the
case of surfaces however, our method defines curvature by two new invariant tensors
which are inverses of each other, and will be denoted here as the tensor of curvature

and the tensor of radius of curvature.

In the third section, the Gaussian mapping is reviewed, and definitions of
silhouette and object properties in terms of f unctions on the Gaussian sphere and on

the Gaussian circle are proposed. Geographical coordinates on the sphere are
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introduced, and representations of vector and tensor valued functions on the sphere
are formally addressed. Finally, the global definition of normal orientations on the

Gaussian sphere is related to local definitions in terms of Monge parameterizations.

In our review of concepts of geometry, it will often be useful to develop the
arguments in the simpler case of two dimensions first, and to use this formulation to
introduce the more complicated case of three dimensions. However, for some problems
which are essentially meaningful in three dimensions only, the case of three dimen-

sions is analyzed firs:.

A pragmatic approach is followed through this chapter. More rigorous accounts

of differential geometry are provided in textbooks such as [47, 48].

3.1. Geometry of Points

3.1.1. Coordinates of Points and Vectors

Cartesian Coordinates (x,z) and (x,y,z) are used for the representation of
points in 2-D and 3-D respectively; see Fig.3.1. Axis orientation corresponds to a
counterclockwise rotation from Ox to Oz in 2-D, and to a right-handed trihedron in
3-D. Vectors are denoted as €= (x z )Y and ¥=(x y z )¥. The notations f and
7 are reserved for vectors normal 1o a curve and to a surface respectively. Unit vec-
tors are denoted as, for example, 1, for a unit vector along € in 2-D, and Tn for a

unit vector along 1 in 3-D.

We have chosen the letters x and z to denote the axes in the plane instead of the

usual x and y to emphasize the relation between the vertical axis z in 2-D and 3-D.

"l

x x
PANE

Fig.3.1. Cartesian Coordinates in 2-D and 3-D.
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3.1.2. Tangential Coordinates

Tangential coordinates, also referred to as dual coordinates, will be considered for
the characterization of lines tangent to a silhouette and planes tangent to an object.
These coordinates are discussed in some detail here since no reference consistent with

our notation could be found. Additional material and insight can be found in [49].

Curves and surfaces are usually described in terms of their points and the coordi-
nates of these points. However, it is also possible 10 describe curves and surfaces by
the sets of their tangents; these descriptions will be referred to here as tangential
representations. Tangential representations require the definition of coordinates for
lines and planes. As in the case of points, coordinates for a tangent ( a line or a plane )
represent the position of this element relative 1o a system of axes. One set of coordi-
fiates used in this text to specify tangents is the set of inverse intercepts with the axes.
In 2-D, a line intersecting the axes at (1/A,,0) and (0,1/A, ) will be given coordinates
(A, ,Ay) and a plane intersecting the axes at (1/A, 0,0), (0,1/A,,0) and (0,0,1/X,)
will be given coordinates ()\x /\) A ); see Fig.3.2. These coordinates for lines and
planes will be referred to as Cartesian tangential coordinates in this text. They can be
viewed as coordinates of elements (lines and planes) represented by points in an other
space, which will be referred to here as the tangential space; this space is isomorphic to
the dual space. Elements in the tangential space can be referred to by sets of coordi-
nates or also by vectors in the tangential space, A = (A, A, Y in 2—D and
X=(, A\ A in3-D.

It is sometimes useful to consider a different set of coordinates for elements in
tangential space, which will be referred to as polar tangential coordinates. For both
lines in 2-space and planes in 3-space, the polar coordinates specify the distance p to
the origin and the normal orientation. Orientations are specified in 2-D by the polar
angle Y and in 3-D by the longitude £ and latitude 7; see Fig.3.2. The conversion from
polar coordinates (p ,ip) to Cartesian coordinates (X, ,A, ) of a line in 2-D is given by

A, = cosy/p

A, = sing/p (3.1)



[N

/
sl

Fig.3.2. Tangential Coordinates.

The corresponding relations between 3-D Cartesian coordinates (A, ,)\y A, ) and polar
coordinates (p £.m)fora plane are given by
A, = cosécosn/p
A, = sinfcosn/p (3.2)
A, = sinn/p

Points of a line with tangential coordinate vector A have coordinates which

satisfy

x A, +y Ay =1, also written XM g=1 (3.3)

The vector X in tangential space defines a line in point space which is perpendicular to

X considered as a vector in point space. Similarly, the equation for points of the plane
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with coordinate vector A = (A, Ay A, )T is given by

x A +y A +2z A, =1 ,alsowritten XY X =1 (3.4)

The equation for points on a line with polar tangential coordinates (p @) is given
by
x cosyp + y simp=p (3.5)

which is sometimes referred to as the normal equation of the line. Points of a plane

with polar tangential coordinates (p ,£,m) satisfy the equation
x cosécosn + y sinécosn + z sinm = p (3.6)

which is referred to as the normal equation of the plane.

3.1.3. Transformations of Axes

Coordinates of points, lines and planes depend on the choice of a system of axes.
The same physical point, line or plane is described by different sets of coordinates in

two sets of axes. Relations between these coordinates are investigated in this section.

Three systems of axes will be considered in this thesis for the description of
curves and surfaces: these systems will be referred to as global, rotated, and local
axes. The local axes are rotated and translated with respect to the global axes: they
are centered at P, The rotated axes are parallel to the local axes but centered at the
origin of the global axes. The three systems are sketched in Fig.3.3, for both 2-D and
3-D space.

3.1.3.1. Transformations for Point Coordinates

Denoting coordinates in rotated axes by the subscript R, coordinates in local axes
by the subscript [, and coordinates in the global axes by symbols without subscripts,

the various coordinates in 2-D are related by
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Fig.3.3. Global, Rotated and Local Systems of Axes

cosyy, -—sirid;o

simyiy  cosy

xR

ZR
X = RQ_R-G(QDO) Xz (3.7)

cosyy —sinys,

sinyi,  cosyy

X7
+

2y

2 =%, + RFC(yY) 8, (3.8)

where the symbol ij ~% denotes the matrix of the 2-D rotation from rotated 1o global
axes and X is the coordinate vector of P in global axes. The corresponding relations

for coordinates in 3-D are given by
cos§ycosn, —siné, —coséysinmg X

singcosng  coséy —sinégsinmg| | ye

sinmng o) cosTMg Zp

o< xR
I

X =REC(¢0m0) X (3.9
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x X0 coséycosn, —siné, —coségsinng| | x;
y| = | yo! + | sinégcosn, coséy —sinépsinmg v,
z Zg sinmg 0 Cos™g z;
R =%, +REC(¢0,m0) X, (3.10)

where the symbol R3R ~C denotes the matrix of the 3-D rotation between the rotated
frame and the global frame, and X, is the coordinate vector of P in global axes. In
the above expressions, i, is the counterclockwise angle from the global axes to the
rotated axes in 2-D and &, Mg are the longitude and latitude of the orientation of the
rotated Oxp axis with respect to the global frame in 3-D, a notation consistent with
angular coordinates introduced for the Gaussian circle and Gaussian sphere in a later

section.

As is done repeatedly in this thesis, both expanded and compressed notations are
provided for the same equation. The abridged notation stresses the similarity between

relations in 2-D and 3-D. whereas the expanded notation is more explicit.

3.1.3.2. Transformations for Tangential Coordinates

After having considered the transformation of point coordinates between
different reference frames, transformations of tangential coordinates are now derived
for the case of pure rotations of axes. Coordinates for a plane in rotated axes are
obtained by first writing the equation in global axes for the coordinates of the points
of the plane. These coordinates are related to the coordinates in the rotated axes using
the transformation discussed in the previous section. An equation is obtained for the
coordinates of the points of the plane in the rotated axes, from which the tangential
coordinates of the plane can be extracted. It will be concluded that the transforma-
tions of Cartesian coordinates of planes are identical 1o the transformations of Carte-
sian coordinates of points. The same argument and the same conclusions also apply to

the coordinates of a line in 2-D.

Consider a plane with global coordinates \. This plane contains the points X for

which; see equ. (3.4)

M X=1 (3.11)




w
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The equation of the plane of interest in the new axes has the form
A ®e =1 (3.12)

where X‘,{ has to be determined. Equation (3.11) is transformed into a form more
similar to (3.12) by applying the transformation in equation (3.9) to the point coordi-

nates X.
M REOR, =1 (3.13)
Identifying this form with equation (3.12) produces
X =X R£C Lalso written X = Rf O X, (3.14)

The tangential coordinate vectors for planes hence transform in the same fashion as
point coordinate vectors. This is not surprising, si-ce the vector A in point space is a
normal to the plane at hand. Transformations of tangential coordinates between

translated axes is less straightforward and is not discussed here.

3.1.4. Imaging Projections

This section describes how the imaging geometry is specified, and how coordinates
of points and lines in the image can be obtained from the coordinates of points and
planes in the imaged scene.. For a general perspective projection, the imaging geometry
is completely defined by the position and orientation of the "camera frame” and by the
focal length of the "camera”. In this thesis, only orthographic projections are con-

sidered; these projections are completely defined by the viewing direction.

It is customary in machine vision to relate the camera frame to the reference
frame of a particular object in two steps by considering an intermediate world frame
attached to the scene being analyzed. The "camera" is defined by a system of axes
Xc Yc Zc 5 its position and orientation are specified with respect to the world frame
Xw Yw Zw and account for the position and orientation of the imaging device relative
to the scene. On the other hand, each object is described in an individual reference
frame, say xp Yo Zp; the relation between this frame and the world frame accounts
for the position and orientation of the object in the scene; see Fig.3.4. The geometry of
the imaging projection relative to the object is hence determined by the composition of

the transformation from xp yg 2o t0 Xw Yw Zw , then 10 X¢ ye Z¢ - In this thesis, only
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Zw “0
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/
X
Zc Xc
/ yo
Xw yw

Fig.3.4. Traditional Definition of Positions and Orientations.

the combination of these two steps is considered, by describing the imaging geometry

directly in the object frame.

For orthographic projections, the imaging geometry is entirely specified by the
viewing direction, which is parallel to the vector ¥ pointing away from the scene
towards the viewer. The vector ¥ itself is referenced by its longitude ¢ and latitude 0

in the object frame: see Fig.3.5.

[§]

<l

—

Fig.3.5. Relative Orientation of the Object and the Viewing Direction.
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Cartesian coordinates for the unit vector 1,, are given by ‘
1. = ( cos¢pcosh singcos sinf )T (3.15)

In the discussions of this thesis, the global frame Oxyz defined in section 3.1.3.
denotes a frame in which the object is described, hence a frame similar to xp Yo 20 -
"The local frame Pox;y;z; defined in section 3.1.3. is not related to the frames intro-
duced here. It is used to locally define the geometry of of the object in the neighbor-
hood of Py,

Relations between coordinates of points and planes and coordinates of their pro-
jections in the image plane are now investigated. Points and planes of 3-D space are
referenced to the global object-centered frame Oxyz. A cartesian frame O ;X 2z, is
chosen in the image plane II, where O, is the projection of the origin O and O ,Z , is
the projection of the Oz axis. Coordinates in these axes of the projection plane will be
denoted by a subscript 7. In order to simplify the projection operation, it is useful to
first consider a rotated system of axes, in which the viewing direction is parallel to one
of the axes. This particular rotated frame is referred to as the camera frame here, and
coordinates in these axes are denoted by a subscript C. The system Oxcyc ¢ is
chosen so that Ox is parallel to the viewing direction, Oy parallel to O ,x ,, and

Oz parallel 10 O .z ; see Fig.3.6. The coordinates of points in this system of axes are

v

Fig.3.6. Coordinate Frames in 3-D and in the Projection Plane.
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related to global coordinates by

Xc cos¢pcosh  singcosf sinf x
Y| = —sing cosp 0 y (3.16)
Zc —cosegsin® —singsing cosf z

Szc - R_‘? -Ci.

Similarly, coordinates of planes in the camera frame are related to global coordinates

by

A cospcosd  singcosd sinf| | Ax
ANc | = | -—sing cosp 0 A, (3.17)
Ac —cosgsind —singsing cosf X,

Xc =R§°X

Projections are meaningful for planes only when they are parallel to the viewing
direction, in which case A, = O. For such planes, the projection in the image plane
consists of a line, whereas the projéction of all other planes in the scene covers the
entire image plane. This property will be useful when considering the projection of
surfaces defined in tangential coordinates. Note that a plane is parallel to the viewing

direction if
Ayc = A, cosgcost + A, singcosf + A, sinf = 0 (3.18)
In the rotated axes, the viewing direction is parallel to the Ox- axis. As a conse-

quence, the coordinates in the image plane are related to coordinates in the camera

frame by the straightforward expressions

X 010] |
z.| oo 1] |c
Zc

X.,T = 123 XC (3.19)




A
Mn 010 xC
no| T oo 1] [N
)‘zC

X1r=123xc

(3.20)

where I,; denotes the 2x3 matrix including the 2x2 matrix in the above expressions.

Note that the last equation relates coordinates of lines in the image to coordinates of

planes parallel to the viewing direction in the scene.

Coordinates of the projected points and lines can be obtained directly from coor-

dinates in the global object frame by combining the above projection operations with

the rotation from global axes to camera axes in (3.16) and (3.17).
R

X, 010 Cosq%cosé) singcosf  sinf Tx
z, =100 1 —sing coso 0 y
—cos¢sind —singsing cosd z
—sing cosd 0 x
— | —sinfcos¢p —sinfsing cosO y
X,,,, = 123 R3G—C -i.
Ay 010 cospcosd  singcosd sinf| | Ax
Ao =100 1 —sing cos® 0 Ay

—cosgsinf —singsing cosd A,

A,
—sing cosg 0 x
—sinfcos¢ —sinfsing cosH

3.2. Curves and Surfaces

(3.21)

(3.22)

In this section, a number of classical results on representations of curves and sur-

faces are reviewed, and an original definition of curvature is proposed. In the first

subsection, definitions of curves and surfaces in point space are presented, followed by




-39 -

definitions in tangential space and conversions between the two representations. In the
second subsection, the Monge parameterization, a particular specification method for
curves and surfaces, is presented. In the third subsection, curvature is defined in
terms of the coefficients of the second order Tay!lor expansion of a local Monge parame-
terization. This definition of curvature is equivalent to commonly used definitions in
the case of curves, and provides a new intrinsic definition of curvature in the case of

surfaces.

3.2.1. Definitions

Precise definitions of curves and surfaces require careful attention to avoid the
possibility of pathological cases. However, refinements will be omitted here for the

sake of conciseness. A curve in 2-space is defined as the set of points
{P(x,y) 1l x=x(),y=y(t);teT} (3.23)

where T is some domain for the parameter ¢ . A surface in 3-space is defined as the set

of points
{Px,y,z) l x=x(uy),y=yuyv), z=zw,v); (u,v)eW} (3.24)

where W is some 2-D domain for the parameters «, v . Note that in both cases, curves
and surfaces are defined as sets of points. Although parametric equations are used to
define the sets, the sets themselves exist independently of the parametric equations.
Two curves or surfaces are identical if they contain the same points. For example, the

curve

{Px,y) I x=x((s)), y=y((s)); se (T} (3.25)

where s (.) is a monotonic function, is identical to the curve defined in (3.23). The
same curves or surfaces may also be specified in different ways, for example the points
can be defined by an implicit equation for their coordinates, F (x ,y ) = O for a curve
and F (x,y,z)=0 for a surface. The distinction between curve/surface points and
curve/surface equations is stressed here. In a later section, a new representation of
surface curvature is presented, which depends only on the surface defined as a set of
points. In contrast, definitions of surface curvature in most differential geometry text-
books also carry information about the equations used for defining the surface. This

difference is investigated in Appendix 4.
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Unless otherwise specified. only smooth curves and surfaces are considered in this
thesis. Smoothness refers here to tie existence and continuity of second order deriva-
tives of parametric equations defining the surface. Other important concepts such as
regularity are not discussed here. Partial derivatives will be denoted by subscripts as
in X, = 9X/du , except when confusion is possible. It can be shown that first deriva-
tives of the parametric equations are related to tangent directions. Specifically, &, (¢ o)
is a vector parallel to the tangent to the curve X(z ) at X(z ). Similarly, X, (u,vo)
and X.(ug,v,) are tangent to the surface X(u,v) at X(ugvg). The vector
n =X, XX,. defines a surface normal. First derivatives of parametric equations are
hence related to tangent and normal orientations. In a later section, second derivatives

will be related to curvatures.
3.2.2. Convexity

As mentioned in the introduction, the silhouette problem is first analyzed in this
thesis for convex objects only. For a convex object, the straight segment joining two
points of the object is complevtely included in the object. In order to avoid the presence
of straight components in the object surface, a stronger definition of convexity will be
required. For a strictly convex object, the open straight segment joining two points of
the object must be completely included in the interior of the object, even when the
two points are on the boundary of the object. Examples of a non-convex object, a con-

vex object and a strictly convex object are given in Fig.3.7.

Later in the text, curves and surfaces will be described by equations in terms of

normal orientations, instead of parametric equations in terms of the generic parameters

a) b) c)
Fig.3.7. Smooth 2-D Objects: a) Non-Convex, b) Convex, ¢) Strictly Convex.
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t,u,v. The parameters chosen for this purpose are the polar angle ys of the normal
for curves and the longitude £ and latitude 7 of the normal for surfaces. Representa-
tions in terms of angular parameters are unique and regular for the class of strictly
convex smooth surfaces considered in this thesis. Relations between this type of

parameterization and generic parameterizations are addressed in Appendix 2.

3.2.3. Tangential Space Representations

As indicated in section 3.1.2., it is sometimes useful to define curves and surfaces
by their sets of tangents instead of their sets of points. As in the case of point
specification, both parametric and implicit equations are possible. For example, a curve

can be specified by the set of tangent lines L as
= {LOLAD TF(A A)=01}=~ *(3.26)
A surface can be specifed by the set of tangent planes P
(PO A A) T EFON AN, )=0] (3.27)

where implicit equations were used in both cases to prescribe coordinates of the
tangents. Conversion from a tangent representation 1o a point representation is now
considered. This conversion corresponds to determining curves and surfaces as the
envelopes of their sets of tangents. In the general case, the set of lines tangent to a
planar curve is a one-parameter family. Points of these lines satisfy equations such as
F (x,y,o) =0 where « is a parameter for the lines. An equation for the envelope of

these is obtained by eliminating the parameter & between

F(x,y,a)=0

(8/80)F (x,y,2) =0 (3.28)

Similarly, when all the planes tangent to a surface are given by a two-parameter fam-
ily with equation F (x,y,z,o,B) =0, an equation for the envelope is obtained by

eliminating the parameters & and 3 between

F(x,y,z,a,8)=0
(8/80)F (x,y,z,a,8) =0 (3.29)
(8/0B)F (x,y ,z,a,8) =0

The above formalism will be exploited in Chapter 5, for the discussion of a
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representation which explicitly specifies curves and surfaces by the sets of their

tangents.

3.2.4. Monge Parameterizations

This section reviews a description of curves and surfaces by explicit equations of
the form x = f (z)and x = f (y,z), which are referred to as Monge parameteriza-
tions. Several features of these descriptions have prompted their use for describing
surfaces in the machine vision literature. These features include a direct relation to
image-plane coordinates and straightforward expressions for surface normals. In our
work, Monge parameterizations will not be used as general object models because of
their strong dependence on the reference frame, but will be used to define surface cur-
vature in local axes. Monge parameterizations in local axes will be related to global
descriptions in a later section. Monge parameterizations have been studied mainly for
surfaces, which are therefore analyzed first. Subsequently, a simpie equivalent is

sketched for the case of 2-D curves.

The Monge parameterization for a surface can be considered as a special form of
parametric equations, in which the parameters are two of the three Cartesian coordi-

nates, say y and Z ; see Fig.3.8.

Fig.3.8. Monge parameterization for a Surface.




(3.30)

Viewing these equations as a parametric form X = X(y,z ), a surface normal is easily

obtained as

1 1
=%, XX, =|—f,| = |-m, (3.31)
_fz -m,

where m, = 9x /9y and m, = dx /Jz are referred to as gradients of the surface. In
other work, these gradients are of ten denoted by the symbols p, ¢ ; this notation is not
followed here because of possible confusions. The simple expression for surface nor-
mals in (3.31) makes Monge parameterizations convenient in surface-reconstruction

problems from a single image, such as the shape-from-shading problem [21].

In the equivalent formalism for 2-D curves, the parametric equations in the plane

X, Z have the form

x = z
c=/ (=) (3.32)
A normal vector for points on the curve is given by
l : (3.33)
n= = .
=/ -m,

3.2.5. Curvature

In this section, definitions for curvature will be proposed and justified. The

simpler case of 2-D curves is addressed first, followed by the case of 3-D surfaces.

3.2.5.1. Curvature of 2-D Curves

In the case of a planar curve, curvature corresponds to the intuitive notion of
how fast the curve diverges from its tangent. The definition chosen here for curvature
is based on this notion. as it is the first non-zero coefficient of a Taylor expansion of the

Monge parametric form of the curve in a local coordinate frame. Consider the curve C




around the point P, and the local system of axes Pgx;z; where Pyx; is along the
normal at P'O; see Fig.3.9. The Monge parameterization of the curve in these local axes
has the form x; = f (z; ). Since Py is on the curve and since Pz; is tangent to C at
P, the Taylor series of f (z; ) contains no terms of order zero and one in z; . The first

nontrivial expansion is hence given by
X = —1/2 Z; kZZ + O (Zl 3) (3.34)

where the term kzl2 has been decomposed for similarity with the corresponding
expression for surfaces. The error term O (z; 3) indicates that the error of the expan-
sion is upper bounded by a third order polynomial in z;. The curvature of C at Py is
defined in this thesis as the coefficient ¥ in the above expansion, a choice consistent
with.the intuitive notion of curvature since large values.of k¥ imply a fast divergence
of the curve away from its tangent at P, Note that the coefficient £ in the above
Taylor expansion is identical to the second derivative azxz / é)zl2 at the origin, so that
curvature is formally related to second derivatives of the equations of the curve. This
definition of curvature is equivalent to the classical definition £k =d {y/ds, as is
shown in Chapter 5. The inverse of the curvature k£ is defined as the radius of curva-
ture p=k ~}. A justification of the definition is now presented by showing that the
radius of curvature of a circle is equal to the radius of the circle. The equation for a

circle of radius R tangent to =; at the origin is given by

2; 2y
C ey
T ylw
Po v Y|
——————2 X;
P x;

Fig.3.9. Local Axes for the definition of Curvatures in 2-D and 3-D.
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(xz + R )2 + le = R2 (3-35)

Considering only the branch through the origin, then expanding to second order in Z;,
the following explicit equation is obtained.
x, = =R + JRT=32

2 | 2
_ _A 3y = 1y, 2L 3 (3.36)
R + (R 2R)+O(zl) /2 5 +0(z°)

Comparing this expression with the expression used to define curvature in equation
(3.34), it is clear that the curvature for the above circle is given by ¥ = 1/R, which is

the desired result.

3.2.5.2. Curvature of 3-D Surfaces

In the case of a surface, curvature is also related to the intuitive notion of diver-
gence rate away from the tangent plane. Curvature of a surface will be defined here
in the same way as it was defined for a curve, namely as the coefficients of the first
non-zero term in the Taylor expansion of a local Monge parameterization of the sur-
face. Specifically, consider the surface £ in a neighborhood of the point P ; see Fig.3.9.
Consider also the local frame Pgx;y; z; where x; is along the normal at Py. The
second order expansion of the surface equation in these axes can be written as
ki1 k2
k12 ka2

Y

<l

X; = -1/2 [ yl ZZ ] + O((yl 4] )3) (3.37)

where the error term O ((y, z; )*) indicates that the error of the expansion is bounded
by a third order polynomial in y;, z; . The above equation will also be written in vec-

tor form as
xl = "'l/Z ZZ ﬁzl + O (213) (3.38)

which stresses the similarity with the 2-D equation (3.34). Characterizing the curva-
ture of a surface is more involved than in the case of a curve, as divergence from the
tangent plane may depend on the direction chosen along the tangent plane. In equation
(3.37), there are three independent coefficients in the second order term, thus
emphasizing the added complexity of surface curvatures over curvatures of curves.

Curvature of the surface £ at P will be taken as the set of second order coefficients of
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(3.37), namely as the symmetric 2x2 matrix K. It is now shown that this matrix is

really a tensor by showing that it transforms as a tensor in transformations of axes
[47].

Consider a second system of local axes, Pox;,Y;y2;y related to the original local
frame Pgx; y, z; by a rotation with angle yy around the Pyx; axis; see Fig.3.9. Coordi-

nates in the two frames are related by x; = x;, and

Y

4

Yiy
thj/

cosy —sinys

sing  cosys (3.39)

—

A Taylor expansion of the Monge parameterization of the surface in the rotated frame

is obtained by combining equations (3.37) and (3.39)

y cosyy siny| | K11 K12 | cosy —sinys| | Yy (3.40)
iy = Z[yw ‘Nfl —siny cosys| |kyy ko | sing cosy | |z ‘
y ki1y K2yl | Yiw
= -2 z
Ty N’] K12y Koyl |21y
where the 2x2 curvature matrix in the rotated axes is given by
K11y Ki12¢ cosy siny| | K11 K12| [ cosy —sinys (3.41)
ki2y Kooy —sinys cosy| [k, k| | Sy cosys )

The matrix I’\F transforms as a covariant tensor in coordinate transformations suc.. as
the one studied above, and is therefore a covariant tensor. Therefore, it will be
referred to as the tensor of curvature of the surface at P. In differential geometry,
the name of tensor of curvature is usually reserved for a tensor with 4 indices due to

Riemann which is not directly related to K.

The components of our tensor of curvature are related to second derivatives of
the surface equation; for example, k1, = ale /ayl2 at y; = z; = 0. Preserving the
parallelism with the case of curves, the inverse of the tensor of curvature will be
defined as the tensor of radius of curvature

ki kqp) 7!

k12 ko2

11 712

R=FK'= (3.42)

712 T22
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The above definition of curvature by a tensor in local axes is original. Its relation
with other definitions is discussed in Appendix 4. For a general surface, there exists at
each point an orientation Y of the axes Pgy; Z;y in the tangent plane for which the
2x2 tensors R and K are diagonal. In these axes, values on the diagonal of K are
referred to as the principal curvatures £, and k,. The diagonal values of i are
referred 10 as the principal radii of curvature p; =k ;* and p, =k ; ! . The Gaussian
curvature of a surface is defined as the product of the two principal curvatures,
kg =k k; in general axes, k, = detK. The mean curvature of a surface is defined
as the mean of the two principal curvatures, k,, = Y2(k | +k,); in general axes,
k,, =/2trK. Note that in the case of a strictly convex surface and an outward nor-
mal pointing towards positive x;, the curvatures k , k5, k,, and Icg are all strictly

£

positive.

To illustrate the above definitions, the tensor of curvature is evaluated for a
sphere of radius R through P, tangent to the Pyy; z; plane at P, The equation of
this sphere is given by

(x; +RP +y2+z2=R? (3.43)

Solving for x;, considering the branch through the origin, then expanding to second

order produces

2 2
— z
x; = —R + -\fz“)h“ -—;ZZ = —R +(R - -ZZ-R; - Ez_R—) + O((}’z vl )3) (3.44)
1/R O Y
== \n z 0O 1/R z +0((y,2)%) (3.45)

The curvature tensor and the radius of curvature tensor for the sphere are thus

respectively given by

RO
O R

1I/R O

0 1/R (3.46)

K= , R=

The form of the tensor of radius of curvature, i.e. a unit tensor scaled by the constant
R , expresses the fact that the curvature of the sphere is isotropic and that normal sec-

tions all have a radius of curvature equal to R. For the sphere, both principal
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curvatures and the mean curvature are equal to 1/R. Both principal radii of curva-

ture are equal to R. The Gaussian curvature is equal to R —2,

3.3. The Gaussian Mapping

In this section, the theory of the Gaussian mapping is reviewed, together with its
application to curve and surface representations. The Gaussian Mapping is preéented
as a mapping between points on a 3-D surface and points on a unit sphere, and also as a
mapping between points on a 2-D curve and points on a unit circle. The images of the
mapping are usually referred to as Gaussian circles and Gaussian spheres, and also col-
lectively as Gaussian images. It turns out that the Gaussian images can also represent
the normal orientations of curves and surfaces. This construction is then exploited to
define representations of curve and surface properties as functions on the Gaussian
images, referred to as Property Circles and Property Spheres. Coordinates used in this
thesis to parameterize the Gaussian circle and Gaussian sphere are also defined in this

section.

Two new concepts are proposed in addition to the classical theory of the Gaussian
mapping. First, local reference frames are defined on the Gaussian images and the
problem of representing vector and tensor fields on the Gaussian sphere is formally
addressed. Second, gradients in local Monge parameterizations of curves and surfaces
are related to normal orientations and their specifications by angles on the Gaussian
sphere. The advantage of the Gaussian sphere over the Monge gradients for represent-
ing normal orientations is two-fold. First, gradients are able to represent only half of
the complete set of normal orientations. In contrast, the Gaussian sphere is capable of
describing all surface normals [44]. Second, the representation of surface normals
with the Gaussian sphere does not favor specific viewing directions as is the case for

the Monge gradients.

The Gaussian mapping was initially developed in the context of 3-D surfaces, see
for example [50]. We will therefore also start with the case of 3-D surfaces, then

show that the equivalent formalism for 2-D curves is trivially obtained.
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3.3.1. Definitions

The 3-D Gaussian mapping is a relation between points on a surface and points on
a unit sphere, referred to as the Gaussian sphere. To each point Py of the surface
corresponds a point P; on the sphere so that the normals at Py and P; are parallel

and have the same direction; see Fig.3.10.

c) d)

Fig.3.10. Examples of 3-D and 2-D objects, their Gaussian images,
and the normal orientations at corresponding points.
a) 3-D object. b) Gaussian sphere of a).
c) 2-D object. d) Gaussian circle of c).
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Points on the Gaussian sphere will be referenced by coordinates, namely by the
longitude ¢ from the x-axis and latitude 7 from the Oxy equator; see Fig.3.11. Points
on the sphere are related to normal orientations in 3-D through the Gaussian mapping.

Hence, the coordinates (£,m) can also be used to specify directions in 3-D.
The corresponding unit vector is given by

cosécosn
1, = | singcosn (3.47)
sinm

The 2-D Gaussian mapping is a relation between points on a curve and points on a
unit circle. Corresponding points on the curve and on the circle have parallel normal
orientations; see Fig.3.10. Points on the Gaussian circle and the corresponding orienta-
tions in the plane are referenced in this text by the polar aggle Y measured counter-
clockwise from the x-axis; see Fig.3.11. The polar angle i can be used as a coordinate

for directions in the plane, namely to refer to directions parallel to the unit vector

cosys

siny (3.48)

n

For strictly smooth convex 2-D curves and 3-D surfaces, the Gaussian mapping is
one-to-one. Examples of the Gaussian mapping are presented in Appendix 1, when

deriving the transforms of various geometrical shapes.

[N]

z T
1, N .
1, 1,
T&
U . -
y
pa

Fig.3.11. Coordinates and local orientations on Gaussian Images.
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3.3.2. Property Circles, Property Spheres

In his work on object recognition., Horn defined the extended Gaussian image, a
representation of surfaces by scalar functions on the Gaussian sphere [44]. The basic
concept of the extended Gaussian image is to represent a function of surface points in
terms of normal orientation, then as a function on the sphere, since each point on the
sphere is uniquely related to a specific normal orientation; the name of "property
spheres" was given to this type of representations in [51]. In this thesis, three new
representations of 3-D objects in terms of property spheres will be defined.” A major
conceptual difference between previously proposed property spheres and two of the
new representations stems from the vector and tensor ranges of the new object func-
tions as opposed to a scalar range for the extended Gaussian image. In order to
represent vectors and tensors, it is necessary to describe their values in terms of com-
ponents in a system of axes. We propose to use axes aligned with local orientations on
the Gaussian sphere, which are hence different for each point of the sphere and each
corresponding object point. The axes chosen in this thesis are oriented in the directions
of the unit normal T,, . the unit tangent Tg to the parallel and the unit tangent T,) to
the meridian; see Fig.3.11. The components of those unit vectors in global object axes

Oxyz are given by

cosécosn —siné —cosésinn
1, = | sinécosn| , _»g = | cos&| , Tn = | —sinésinm (3.49)
sinm 0 cosn

Note that these vectors are functions of the angles £ and M. At a later stage, it will be

helpful to consider the derivatives

a1, = ol _
—— = cos =

8¢ T om "
—= = —cosnl, +sinnl, — =0 (3.50)
¢ T 8

1, - o, =
—— = —sinnl — =1,

0¢ T am

The above system of reference frames is singular at the poles of the sphere.
Unfortunately, the topology of the sphere does not permit the definition of a continu-

ous field of axes at each point, without singularities. For our choice of frames, the
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singularities correspond to multiply defined frames at the poles. These singularities
create some problems, but these can be overcome by requiring special equivalences
between the multiple definitions. For n= x#/2, all the values of ¢ refer to the same
point, namely the pole. Compatibility between the potentially different values of a
property sphere function for all ¢ must hence be ensured. In the case of a scalar func-

tion f (£,7m), the consistency conditionbetween the multiple definitions is simply
f&,xm/2) = f(0,£m/2) forall £ (3.51)

In the case of vector and tensor fields, the consistency is more complex since the com-
ponents are referred to different axes for each value of § at the poles. The necessary

consistencies for a vector function U and a tensor function T are given by

7(6m/2) = _c:isfg :;i, 5(0,7/2) (3.52)
cosé siné cosé —siné
T(¢,m/2) = —siné cost T(0,7/2) siné cosé (3.53)

for the north pole. Consistency relations at the south pole are similar, except that the

transformation matrices must be transposed.

Representations equivalent to the property spheres are now considered for planar
curves. Properties of planar curves expressed in terms of normal orientation can be
represented as functions on the Gaussian circle of the curve, these functions being
referred to as property circles. Three representations of curves in terms of property
circles will be defined in this thesis; they are exactly equivalent to the three new pro-
perty spheres proposed for surfaces. A key contribution of this thesis will be a set of
relations between the 2-D and 3-D representations when these are applied to an
object-silhouette pair. As in the case of property spheres, non-scalar property circles
rely on the definition of rotated axes for each point on the Gaussian circle. The axes
chosen here are oriented along the unit normal 1, and the unit tangent I,; see
Fig.3.11. The components of these vectors in the global axes Oxz of the image plane

are given by
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0S —sin
= C, v = \ (3.54)
n sings | ¢ cosys |’
Derivatives of these vectors with respect to the orientation parameter s are given by
1 - 1 -
a n_oo_ lt , é—t_. = - ln (3.55)
oY oy

3.3.3. Relations between Monge Gradients and Coordinates of the Gaussian

Image

In this section, a relation is obtained between two different specifications of sur-
face normals. Specifically, normal orientations can be defined in terms of gradients in
Monge parameterizations, but also by points on the sphere and by angular coordinates
for these points in the Gaussian sphere representa.on. Relations between these two
representations are described here, first in the case of 3-D surfaces, where both Monge
parameterizations and Gaussian spheres are especially meaningful. A similar formal-

ism is then briefly developed for the case of 2-D curves.

Consider a small surface element AZ in the neighborhood of the point P, and a
Monge representation of AZ in the local axes Pox; y; z;, where x; is normal to AZ. Let
the normal orientation Ny at P, be defined by the angles £, 7, on the Gaussian
sphere. The normal I at a points on AZ can be defined by its coordinates &, 1 on the
Gaussian sphere. but also by its local gradients my;, m,; in the local Pox;y; z; axes.
Relations will be obtained between the gradients and the differences é—¢,, N—m, in
angles on the Gaussian sphere, for small values of the gradients; see Fig.3.12. The
result is obtained by considering the general form of a normal vector in global axes,
transforming this expression to local axes and comparing with the expression in terms

of the Monge gradients.

A normal vector is defined in local axes by an expression similar to (3.31).

1

I_l.l = '—myl ( 3-56)

—my

On the other hand, the same normal vector is expressed as a function of angular coor-

dinates on the Gaussian sphere as



Fig.3.12. Angular Coordinates for Normals on the Gaussian Sphere.

n cosécosmn
n = | nsinécosn (3.57)
n sinm
where n is the length of the normal vector. This last expression for normal orienta-

tion is now expressed in local axes as

cos§pCosT,  Singpcosmg sinmg n cosécosn
n, =RY Ru= —sing, cosé 0 n sinécosm (3.58)

—cosépsinmg —sinégsinmg cosny n sinm

cosncosngcos(§ — €,) + sinmsinm,
=n cosnsin(§€ — &;)
—cosmsinngcos(§ — €,) + sinncosng

For small values of (§—¢,) and (n—mj), the above form of the normal in local axes is

given to first order by

1
1, = | cosmsin(é—¢,) (3.59)
sin(n—m,)

Comparing components in the above expression with the corresponding components in
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(3.56) produces the following first order relations between Monge gradients and global

normal angles

my = —(€&—§p) cosng

(3.60)
my ==(n—=mo)

These expressions underline the close relation existing between local gradients and glo-
bal angular orientation coordinates. Note the cosm coefficient which takes into account

the shortening of longitude units at higher latitudes.

An argument similar to the one developed above can be developed for the Monge
parameterization of curves in 2-D. The relation between the local gradient m, and

the polar angle s is obtained as

my = —(P—yp) (3.61)

3.4. Summary

A number of tools from geometry have been reviewed or presented in this
chapter. The combination of these will allow us to develop an elegant theory for the
relations between object shapes and silhouette shapes. Chapter 4 reviews the classical
analysis of silhouette shapes and motivates some of the directions chosen in our

analysis of silhouettes. The main results of this thesis are then presented in Chapters
5 and 6.






Chapter 4
Classical Silhouette Theory

In this chapter, a number of silhouette construction methods are discussed and
illustrated by the simple example of the silhouette of a cone. This chapter aims at the
double goal of familiarizing the reader with classical silhouette analysis methods, and
of discussing some basic concepts which introduce our original formulation of the rela-

tion between objects and silhouettes.

First, the well-known silhouette construction based on the silhouette generator is
presented; this is the approach primarily used in the literature, and is very similar to
thé’methods presented in [2, 13]. In the second step, silhouétte construction is fhvesti-
gated with tangential space representations. Finally, silhouette construction is
developed with the Gaussian mapping. These last two approaches are not intrinsically
new, but their application to silhouette analysis has not received much attention in the
computer graphics and computer vision communities. Through the discussion of these
silhouette construction methods, it becomes apparent that normal orientations on the
object surface play a prominent role in silhouette construction, and that the represen-
tation of surface normals with the Gaussian mapping is particularly convenient for
silhouette analysis. This conclusion motivates the development of representations
based on the Gaussian mapping and the development of relations between the

representations of an object and the representations of its silhouettes.

4.1. Silhouette Construction Based on the Silhouette Generator

In this section, we discuss a classical method for obtaining the shape of a
silhouette given the shape of the corresponding object and the viewing direction rela-
tive to the object. It is straightforward to see that the silhouette is the projection of a
set of points on the surface of the object. This set is a smooth curve for a smooth con-
vex object, and is referred to as the silhouette generator in this thesis; other authors
use different terms such as contour generator or boundary rim. The geometry of the
projection and the silhouette generator are illustrated in Fig.4.1 for the example of a
superquadric. For this example, the silhouette generator is a complex twisted curve.

Marr has shown that the silhouette generator is planar for all viewing directions only

- 56 -
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Viewing

Tangent Plane
Direction 8

Oette
dgent

Silhouette
Generator

Projection
Plane

Fig.4.1. Imaging Geometry for Orthographic Projection

when the object surface is quadratic {2]. The silhouette generator is the set of points
of the object surface where the projection rays are grazing the surface; for a smooth
object, this corresponds to the set of points where the tangent plane is parallel to the
viewing direction. An equivalent property of the points on the silhouette generator is
that the normal orientation is perpendicular to the viewing direction. The tangent

plane and the normal at one point of the silhouette generator are displayed in Fig.4.1.

The silhouette of a smooth convex object in orthographic projection can be deter-
mined in two steps. The first step consists of selecting which points of the object sur-
face have a tangent plane parallel to the viewing direction, thereby defining the
silhouette generator. The second step consists of projecting the points of the silhouette
generator onto the image plane, thereby producing the silhouette itself. This procedure
is outlined in the diagram of Fig.4.2.

In order to gain better insight into the relation among object, silhouette and
silhouette generator, it may be useful to consider an analogy with shadows. If the

projection is replaced by a beam of light parallel to the viewing direction, the object,



[
Selection . Projection
. Silhouette .
Object Generator Silhouette

Fig.4.2. Silhouette Construction with Point Representations.

presumed opaque, will cast a shadow on the projection screen. The outline of that sha-
dow is identical to the silhouette in the previous setup. In the shadow setup, only part
of the object surface is illuminated by the light beam, as the other part is self-
shadowed. The boundary between the illuminated and self-shadowed parts of the
object is identical to the silhouette generator. Light rays emanating from the light
-source graze the object at the points of the self-shadow boundary. Similarly, in the
case of silhouettes, rays parallel to the viewing direction graze the object at each point

of the silhouette generator.
4.1.1. Example: Silhouette of a Cone

The silhouette construction method described above is now illustrated with the
simple example of a circular cone; the geometry of the projection is sketched in Fig.4.3.
The geometry of the cone itself and of its silhouette are depicted in Fig.4.4. The stra-
tegy for determining the shape of the silhouette consists of first computing the normal
orientation at each point of the surface. Then, the surface points with a normal per-
pendicular to the viewing direction T‘. are determined; these constitute the silhouette
generator. Finally, the silhouette generator points are projected onto the image plane,
producing the desired silhouette. In all the developments, the sets of points are
defined by parametric equations. Therefore, the final result is a set of parametric

equations for the silhouette from which the silhouette shape can be interpreted.
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Fig.4.3. Geometry for the Projection of the Cone.
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Fig.4.4. a) Circular Cone. b) Silhouette.




In a system of axes centered at a distance z 5 below the vertex of the cone, with

the z-axis along the axis of symmetry, the points of the cone can be described by

u sinmgcosv
X=R(u,v)= | usinngsinv (4.1)

Zo—Uu COS'I)O

where u € R, v €(0,27] are parameters and 7 is a constant, equal to the half-angle
of opening of the cone. The choice of positive values for u corresponds to the choice of

the lower sheet of the cone illustrated in Fig.4.4a).

A vector normal to the surface is obtained by a formula decsribed in section 3.2.,
by

e

n=X_ XX, (4.2)
which is proportional to
COSV COST)g
n = | sinv cosn, (4.3)
sinmg

~—

Comparing this vector with the canonic form of a unit normal vector 1, in terms of
the angles (£,m) on the Gaussian Sphere,
cosécosn
1, = | sinécosn
sinm
it appears that the canonic orientation angles of the normal are related to the parame-
ters of the surface by {=v, n=n Consider now the orthographic projection with a

viewing direction specified by the angles (¢,8) in object-centered axes. The viewing

direction unit vector is given by

1. = ( cosfcos¢p cosBsing sinb )7 (4.4)
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Points of the silhouette generator are the points for which Tn 'T‘. =0, i.e.
cosficosgcosngcosv + cosfsingcosngsinv + sinfsinn, = 0
also writtten
cos(¢p — v ) = —tanmngytand (4.5)
This equation has two solutions for v, which will be denoted by

vsg1 = @ + acos(—tanmgtanf)

vsg 2 = ¢ — acos(—tanmgytand) (4.6)
The silhouette generator is hence defined by
X = u sinmyCosvsg;
= u SinTMECosVsg; (4.7)

Z = zy—uCcosn

for u €RY, i = 1,2. These are the equations of two straight lines parameterized in u .
The projected silhouette is obtained by applying the projection operation to the coordi-
nates of points of the silhouette generator. The projection transformation for point

coordinates was determined to be

X g

—sing cos¢ 0

—sinfcos¢ —sinfsing cosf (4.8)

< ¥

-~

~“ T

N

The result of applying this transformation to the parametric equations of the

silhouette generator in (4.7) is

X » = usinng sin(vgg; — @) (4.9)

z » = —u sinngsinfcos(vgg; — ) — u cosnpeosh + z jcosh

for i = 1,2. The following equations are obtained after replacing vgs; by its value in
(4.6),

x , = tusinng4/1 — tan“ngtan6

cos?nycos20 — sin?ngsin?0 (4.10)

z, = zoc080 —u
™o cosmocosh
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These equations for the silhouette define two lines parameterized in u. These lines
intersect at the point (x .,z ) = (0,z ;cosf) in the projection plane and are symmetric
about the Oz . axis. The half-angle opening s, of the two silhouette lines is defined in
Fig.4.4b), and can be evaluated as

x i 1 — tan“ngtan0
tanyy = ——————— ='5in7yC0s7,cosH 2\/ —
zocosf—z Cos“1Nocos~8 — sin“nysin“d
Sinno
= — (4.11)
j/cos“8 — sin“ny
A simpler expression can be obtained for the sine of {55, namely
tanys, sinng
sinyp = —_— = » - (4.12)
Yo /1 +tany,  cosb

The above relation between the opening angle of the cone 1Mg and the opening angle s,
of the silhouette is a relation between 3-D object orientation and silhouette slope. It
will become clear later on that this type of relation, obtained here in the context of a
particular example, is independent of object shape. Furthermore, similar relations will
be obtained with much less effort in Chapter 6 using arguments on the Gaussian

sphere.

It is worthwhile to note that the simple example of the cone has interesting appli-
cations. Indeed, different circular cones can be obtained by choosing different values
for the ordinate Z ( and for the opening 7. A large class of axisymmetric objects can
be defined as stacks of sections of such cones, so that a silhouette theory for axisym-

metric objects can be developed based solely on this simple analysis for the cone.
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4.2. Silhouette Construction in Tangential Space

In this section, silhouette construction is discussed with a method based on
tangential representations; these representations were reviewed in section 3.1.2. A
tangential representation describes a 3-D object by the set of all its tangent planes. It
is easy to see that only the planes tahgent at the points of the silhouette generator
effectively contribute to the shape of the silhouette. Since the surface normal is per-
pendicular to the viewing direction for points on the silhouette generator, the planes
tangent to the object on silhouette genrator are all parallel to the viewing direction.
This set of planes will be referred to as the silhouette generating planes. The
silhouette generating planes are also perpendicular to the image plane, so that their
projections are equivalent to their traces in the image plane. These projections are a set
of lines tangent to the silhouette, so that this proéedure provides a tangential represen-
tation of the silhouette. One silhouette generating plane and its projection are illus-
trated in Fig.4.1. The construction procedure in tangential space is outlined in the

block diagram of Fig.4.5.

Silhouette construction in tangential space can be more convenient than in point
space. Indeed, the crucial operation of selecting the silhouette generating planes can be
much simpler than the corresponding selection of the silhouette generator points. As a
consequence, even when the object is initially described in point space, it may be
advantageous to evaluate a tangential description of the object from the given point
representation first, perform the silhouette construction in tangential space and finally
convert the silhouette representation back to a point space representation. The block

diagram of Fig.4.6 outlines this scheme.

Object Selection Silhouette |Projection| Silhouette
(tangent Generating >  (tangent
representation) Planes representation)

Fig.4.5. Silhouette Construction with Tangential Representations.




Object Silhouette
(point (point
representation) representation)

Object Selection Silhouette |Projection| Silhouette
(tangent Generating (tangent
representation) Planes representation)

Fig.4.6. Silhouette Construction with Conversion to Tangential Representation.

4.2.1. Example: Silhouette of a Cone

Silhouette construction in tangential space is now illustrated with the same exam-
ple developed previously in point space. In order to determine the silhouette of the
cone, the first step is to determine parametric equations for the tangential coordinates
of the cone. The silhouette generating planes are then determined as the tangent
planes parallel to the viewing direction. The coordinates of the traces of these planes
in the image plane are determined by applying the imaging transformation. This
derivation produces parametric equations for the tangential coordinates of the
silhouette in the image plane. Finally, the shape of the silhouette is interpreted from

these equations.

Equations for the planes tangent to the cone may be obtained by noting that in
general, for a point X, with surface normal T, the tangent plane is the set of points

with coordinate vector X satisfying

ﬁo'(i’-—io) =0 (413)
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The plane tangent to the cone at the point with parameter values (u,v ) is obtained

by applying the above formula to (4.1) and (4.3), which produces
X COSTCOSV o + ¥ COSNesinv o + z sinmg — z sinny = 0 (4.14)

This equation is compared with the canonic equation of a plane,
x A, +y A, +z A, =1, 10 determine the tangential coordinates (A, Ay, A, ) of

the tangent planes

A, = cotngcosv / z

A, = cotnesinv / z (4.15)
I\.z = I/ZO

Note that these coordinates are undefined for z,= O since in that case, all tangent
planes pass through the origin. The case of z ;= 0 can be addressed rigorously using
homogeneous tangential coordinates, although this is not done here. The equations
obtained above are a set of parametric equations for the tangential coordinates of the
circular cone. Note that the parameter ¥ does not appear in the parametric equations.
The tangent planes are only a one-parameter family in the case of the cone, as opposed
to a two-parameter family in general. This degeneracy stems from the fact that the
cone is a special ruled surface, for which each tangent plapne is tangent to the surface

along a whole line of points.

The silhouette generating planes are now determined by selecting the planes
parallel to the viewing direction. The vector x determining a plane in tangential space
can be considered as a point-space vector normal to the plane defined. The silhouette
generating planes have a normal vector perpendicular to the viewing direction and are

therefore determined by

AT, =0 (4.16)
cotmgcosv cosfcosgp + cotngsiny cosfsing + sinf = 0 (4.17)
cos( v —¢ ) = —tanftann, (4.18)

which produces exactly the same two solutions for v as obtained in section 4.1.1.
These solutions are referred to as Vgs 1, Vsg2- The silhouette generating planes are

characterized by the parametric equations




N\, = cotngcosvsg; / Z g
Ay = cotnesinvgg; / zg (4.19)
)\.z - 1/20

for i=1,2, and with vg;; given by equation (4.6). The projection transformation
defined in section 3.1.4. is now applied to the tangential coordinates of the planes in
(4.19) to obtain the coordinates A, , A,  of the tangents to the silhouette. The pro-

jection transformation for tangents was determined to be

Avm —sing cos¢ 0 Ax
\.n| = | —sinfcosp —sindsing cosd| | (4.20)
A

The result of applying this transformation to the parametric equations fpr the

silhouette generating planes in (4.19) is given by

Ay 7 = COUMOCOSVg Sing — cotngsinvgs cosgp = cotngsin(vgg — @)

4.21
A, » = —sinfcotngcos(¢ — vs ) + cosd = 1/cos@ ( )

The tangential coordinates of the silhouette take on just two values, determined by
the above equations for vg; =Vg; 1, Vsg2- 1herefore, the silhouette is composed of
two straight lines. The silhouette is degenerate since, in the general case, a parametric
equation for the silhouette tangents would be obtained instead of the fixed values in
(4.21).

The two silhouette lines defined in (4.21) are symmetric about the Ox ,, axis. The
half-angle Y5, between the lines is obtained by noting that a line with coordinates A, ,
A, - crosses the axes at the points (1/A, ,0) and (0,1/\, ,,); see Fig.4.4b). Note that
Y is also the polar angle of the normal orientation of one of the silhouette lines in the

image plane.




-67-

It is given by

rand /X, » tanm, tann,
an = = - = — —
°7 1/N,y  cosBsin(vsg; —¢)  cosh~/T — tan’notan-o
sinmg

= , 4.22
4/cos“0 — sin“ng (4.22)

which matches the result obtained previously.

In the above example, it appears that, given an object description in tangential
coordinates, the determination of the silhouette equation can be much simpler than
with point coordinates. When the object is initially defined by a point coordinate
representation, the relative merits of the direct construction method depicted in Fig.4.2
and the indirect method depicted in Fig.4.6 depend on the effort required for convert-
ing the representation. For example, if many silhouettes must be computed numeri-
cally for the same object, the tangential description must be computed only once,

thereby providing a larger potential advantage for the indirect method.




4.3. Silhouette Construction with the Gaussian Mapping

In this section, we will see that the Gaussian mapping suggests a very simple
method for selecting the silhouette generator or the silhouette generating planes.
Although silhouette construction with the Gaussian mapping can be related directly to
silhouette construction in point space, it is instructive to introduce it through the dis-
cussion of silhouette construction with polar tangential coordinates, which is
presented in the first subsection. Phrasing the construction method developed in the
previous section for tangential space representations in terms of polar coordinates pro-
vides a relation between normal orientations on the object surface and normal orienta-
tions on the silhouette; this relation is independent of object shape. In a second subsec-
tion, this relation is re-interpreted by mapping normal orientations on the Gaussian
sphere and discovering that the silhouette generator corresponds to a slice of the Gaus-

sian sphere.

4.3.1. Silhouette Construction with Polar Tangential Coordinates

A particular case of silhouette construction in tangential space is considered in
this section, where polar coordinates (p ,£,m) are chosen to represent planes to the 3-D
object, and polar coordinates (p ) to describe lines tangent to the 2-D silhouette;
these coordinates are defined in section 3.1.2. First, in order to avoid confusion
between the perpendicular distance p in 3-D and 3-D, this distance will be represented

by the symbol p ., for the silhouette in 2-D.

Consider a description of the surface of a 3-D object by parametric equations for

the polar coordinates (p ,£,m) as a function of two independent parameters, say ¥ and

V.
P puyv)
El = | Ew,v) (4.23)
7 nu,v)

For smooth strictly convex objects and for a regular parameterization in (u,v ), the
functions defining the angles (£,m) in terms of the parameters (u,v ) are invertible.
The parameters (u,v ) in the above expressions can then be replaced by inverse func-
tions in terms of (£,m). Examples of this parameter change are presented in Appendix

1. When this change of parameters is performed in equation (4.23), identities are
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obtained for ¢ and 7, and an explicit equation is obtained for p,

p=pmn) (4.24)

The above representation form is now discussed in some detail, as it will be the basis
for new representations of 3-D surfaces. Equation (4.24) represents, for each point P
of the object with a normal orientation (§,77), the perpendicular distance p between
the origin and the tangent plane at Py. This explicit equation describes the shape of
the object surface by expressing the dependence of one polar tangential coordinate on
the other two, and can be compared in this respect with the Monge parameterization
zZ=x (y ,Z ) which expresses one Cartesian coordinate as a function of the other two.
In both cases, the explicit equations are invariant in transformations involving only
thz independent variables. The Monge parameterization isstherefore invarian®in 2-D
translations of the Oyz plane, whereas the form in (4.24) is invariant with 3-D rota-
tions around the origin. Hence, this last representation elegantly casts a surface
representation in a form invariant with viewing direction. The function p (£,7m) is
sometimes referred to as the support function, as it describes the distance from the ori-
gin 1o a potential support plane when the object is oriented with the direction (£,1)

towards nadir.

Silhouette construction is now investigated for an object shape described by an
equation such as (4.24), by first considering the selection of silhouette generating

planes, then their projection onto the image plane.
For a plane with polar tangential coordinates (p ,£,1), the normal orientation is
1, = (cosécosn sinécosm sinn )T (4.25)
The silhouette generator equation is T,{T . = 0, more explicitly

( cosécosm sinécosn sinm ) ( cospeosd singcosh sin ) = 0 (4.26)

cos(¢ — ¢) = —tanntanf (4.27)

This equation defines a set of values for (£,m) which correspond to silhouette generat-
ing planes. The following expression for the one-parameter family of solutions will be

derived in Chapter 6.
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£ (t) = ¢+ 7/2 + atan (tant sinf )

(4.28)
nsg (t ) = asin ( sinz cosf )

where ¢ €(0,27] is a parameter. The subscript in {55 ,Nsc emphasizes that these
expressions apply 1o the silhouette generating planes. The result in (4.28) can be
justified by inserting the proposed solution in equation (4.27), then performing simple

trigonometric manipulations to obtain an identity; this justification is omitted here.

Once the silhouette generating planes are determined, the next operation consists
of obtaining the coordinates of their traces in the projection plane. The transformation
of polar tangential coordinates in the projection can be obtained by exploiting the pro-
jection transformation for Cartesian tangential coordinates in (3.22) and by replacing
the Cartesian coordinates in terms of the polar tangential coordinates, as given in (3.1)
and (3.2). The resulting projection equation for polar tangential coordinates is
—sing  cosp 0 | |cosesinn/p
sinécosn/p (4.29)

sinn/p

cosy/p
siny/p

—sinfcos¢ —sinfsing cosH

The above relation applies only to planes perpendicular to the projection plane, i.e. to
planes determined by (4.27) or (4.28). The following expressions for polar tangential
coordinates of the silhouette can be obtained after trigonometric manipulations, by
replacing & and 7 in the right-hand side of the above projection equation by their

values in equation (4.28).

= 1
v _ (4.30)
Pr= D

The first equation above provides an interpretation for the generic parameter ¢ in
(4.28). The second equation can be combined with (4.28) to obtain an explicit equation

for the silhouette in polar tangential coordinates.
22() = p (€ (W), nse (Y))
= p ( ¢+m/2+atan(tany sinh), asin(siny cosB) ) (4.31)

The expressions obtained above for silhouette construction in polar tangential

coordinates are remarkable in several respects. First, equation (4.28), determines the
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silhouette generating planes based on the independent variables (£,m) only. This
result is hence independent of object shape. Selection of the orientations of silhouette
generating planes depends only on viewing orientation and can be precomputed for a
set of viewing angles; the resulting selection procedure applies to any object. Second,
correspondences between the silhouette orientation coordinate s and the object orien-
tation coordinates £, 7 are also independent of object shape, and are given by equations

(4.28) after replacing the parameter ¢ by the angle .

s = ¢+ w/2 + atan ( tanysing )

4.32
Msg = asin ( sinycosh ) (4.32)

Finally, the normal distance p, for points of the silhouette is related to the normal

. distance p at the corresponding point of the object by the trivial relation p, = p.

4.3.1.1. Example: Silhouette of a Cone

In order to apply the method developed in the previous section to the derivation
of the silhouette of the cone, it is necessary first to determine parametric equations for
the polar tangential coordinates of the cone, second to convert these into the form of

equation (4.24). and third to determine an equation for the silhouette with (4.31).

Polar tangential coordinates for the cone are easily determined by comparing
" equations (4.15) and (3.2).

A, = cotngcosv /zy = cosé cosn/p

Ay
A

cotngsinv /z, = siné cosn/p (4.33)
1/z 0 = Sinn /p

It is clear from the above equations, that
E=v ., N=mMo, p=zsinng (4.34)

This result shows again that the cone is a degenerate case since N=cst, p =cst and only
¢ is variable, whereas in general, both ¢ and 1 would be variable and p would be a
non-trivial function of (£,m). The tangential coordinates of the silhouette are easily
determined with (4.31) and (4.32).
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sinmg

(4.35)
cosf

I = Zosinmg, sinfy=

After conversion of these polar coordinates to Cartesian tangential coordinates using
(3.1), the above results are found to be identical to those obtained previously in (4.21)
and (4.22).

4.3.2. Silhouette Construction with the Gaussian Mapping

In the previous section, relations between normal orientations on the object sur-
face, on the silhouette generator and on the silhouette were obtained by analyzing
silhouette construction in polar tangential coordinates. These relations are interpreted
in this section.by considering normal orientations in the Gaussian sphere and Gaussian
cirete representations. The resulting interpretation is muck. more attractive visually
than the one obtained in the previous section, although no new equations are derived.
Indeed, it is much easier to visualize points on the sphere than orientations in 3-D
space. Finally, the relation between silhouette analysis and the Gaussian mapping is

extended by introducing property spheres and property circles.

The relation in (4.32) between normal orientations in 3-D and normal orienta-
tions in the projection plane has a double interpretation. First, considering s as a gen-
eric independent parameter, these equations characterize the set of normal orientations
of points on the silhouette generator, for a given viewing direction (¢,0). These nor-
mal orientations are defined by the polar angles (¢,1). Second, it relates points on the
silhouette parameterized with the normal angle s to the corresponding points of the

silhouette generator.

It is interesting to interpret these relations in representations particularly suited
for normal orientations, namely the Gaussian sphere for the object and the Gaussian
circle for the silhouette. The silhouette generator on the object surface is the set of
points for which the normal orientation is perpendicular to the viewing direction. As
the Gaussian mapping preserves normal orientation, the image of these points on the
Gaussian sphere is the set of points for which the normal orientation is perpendicular
to the viewing direction or, in other words, the silhouette generator of the sphere for
the same viewing direction. It is straightforward to see that this set of points is the

great circle perpendicular to the viewing direction. In addition, surface normals at the
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points of the silhouette generator are parallel to the projection plane and remain
unchanged in the projection operation, so that normal orientations on the silhouette are
identical to normal orientations at the corresponding points on the silhouette genera-
tor. The consequence is that the great circle of the Gaussian sphere is also a Gaussian

circle for the silhouette. The relations discussed above are illustrated in Fig.4.7.

In the above discussion, equation (4.32) has been interpreted in terms of the
Gaussian mapping. Although this interpretation indicates a relation between object
points and silhouette points, it does not suggest a complete method for inferring the
shape of the silhouette from the shape of the object. A complete relation is obtained,
however, by combining equation (4.31) with the Gaussian mapping and considering
object descriptions by property spheres and silhouette descriptions by property circles.
Indeed, the support functions p (£,m) and p (i) represent perpendicular distances to
tangent planes in terms of normal orientations. Mapping normal orientations on Gaus-
sian images produces functions defining p and p, on the Gaussian sphere and on the

Gaussian circle. These can be considered as property spheres and property circles as

Viewing
Direction
Gaussian Sphere
Object
L\‘ Great
Circle
Silhouette Slice
Generator
Silhouette ian Circle

Fig.4.7. Silhouettes and the Gaussian Mapping
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defined in section 3.3.2. For these representations, equation (4.31) suggests that the
silhouette property circle function values p, are identical to the property sphere
function p on the slice corresponding to the silhouette. Hence, the silhouette property

circle can be considered as a slice of the property sphere of the object.

In this section, we have interpreted silhouette analysis with polar tangential coor-
dinates by representing the 3-D object by a property sphere for the distance between
origin and tangent planes, and the 2-D silhouette by a property circle for the distance
between origin and tangent lines. The silhouette property circle is identical to a slice
of the property sphere of the object by a plane perpendicular to the viewing direction,
through the center of the sphere.

4.3.2.1. Example: Silhouette of a Cone

Construction of the silhouette with the Gaussian Mapping is now illustrated by
the example of the cone. First, the distance p to the tangent is the constant z gsinm,
for all points of the cone. As a consequence, the distance p , to silhouette tangents is

simply equal to the same constant everywhere on the silhouette.

The investigation of silhouette normal orientations leads to a more interesting
discussion. As derived in previous sections, the normal orientations of points on the

surface of the cone are determined by
§€(027], m=mq (4.36)

This set of orientations is represented by the parallel at latitude Mo on the Gaussian
sphere; see Fig.4.8. Considering a projection along the direction (¢,0), the silhouette
corresponds to the great circle slice perpendicular to the viewing direction, which is a
Gaussian circle for the silhouette. In the case of the cone, this slice intersects the small
circle M=m at two points with polar angles Y55, m—; in the slice plane. The
silhouette is hence characterized by only two distinct normal orientations, so that it is
composed of two lines with those normal orientations. The exact position of these lines
is determined by the distance p ,, to the origin, which was determined previously. The
exact value of the orientation i in the silhouette plane can be obtained in terms of No

and 6 by resolving the right-angled spherical triangle in bold lines in Fig.4.8.
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Viewing
Direction

O

Gaussian Sphere

> - - £

Fig.4.8. Silhouette of the Cone and Gaussian Sphere.

The relation obtained with standard expressions of spherical trigonometry is
sinng = cosf sinys, (4.37)

which is consistent with the results obtained previously with other methods (e.g.

equation (4.12)).

Although the Gaussian mapping does not provide new numerical expressions for
the relation between silhouette shape and object shape, it is well adapted to conduct
qualitative prediction of the results. Indeed, the following conclusions can be drawn
by considering the Gaussian sphere of the cone and the silhouette slice in Fig.4.8.
First, the intersection points between the parallel of the cone and the great circle slice
are on the opposite side from the viewing direction. As a consequence, the silhouette
generator on the object is on the same side of the object as the projection plane; this is
clearly seen in Fig.4.4. Second, by an appropriate choice of the elevation 0 of the
viewing direction, it is possible to give the half angle Y, of the silhouette any value
between 7 and 7/2; this is valid for any value of the opening angle 7 of the cone
itself. Hence, if a pair of lines observed in the image plane are presumed to be the
silhouette of a cone, nothing can be determined about the shape of the cone without

estimating its orientation with respect to the projection plane by some other method.
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Finally, for very large elevations 6 of the viewing direction, namely for 6> 7/2—n,,
the great circle does not intersect the parallel =7, and there is no silhouette. It is
not hard to see that this corresponds to a case where the viewer is "above” the cone so
that its image fills the whole projection plane. Similarly, when 0 <—m/2+mq, there is
no intersection on the Gaussian sphere, and this corresponds to the case where the
viewer is "inside" the cone, so that, once again, no silhouette is obtained in the image

plane.

We have shown in this section that interesting qualitative arguments on
silhouettes can be developed based on the Gaussian mapping. This advantage of
representations with the Gaussian mapping is extremely useful in developing a

thorough understanding of the relation between silhouette shape and object shape.

4.4. Conclusion

In this chapter, we have developed a number of silhouette construction methods
and their illustration on a simple example. Starting from the method used most fre-
quently in the literature, we have gradually progressed to methods based on tangents,
then to methods based on tangent orientations. In the last method, the Gaussian map-
ping was introduced to interpret first a relation between object points and silhouette
points, and second a relation between object properties and silhouette properties. Both
relations are independent of object shape, and the first is independent of the choice of
object property. The second relation depends on which object property is represented
on the Gaussian sphere, and is independent of object shape only for adequate choices of

object properties and silhouette properties.

The keys contribution of this thesis are first the formal analysis of the property
sphere for the distance to tangents introduced in section 4.3.2., and the demonstration
of its relation with corresponding silhouette property circles, and second the develop-
ment of two additional object properties for which the relation between sphere and

circle are independent of object shape.

In Chapter 5, three representations of 3-D objects in terms of property spheres are
proposed and analyzed, together with the corresponding representations of silhouettes
with property circles. In Chapter 6, the relation between these silhouette property cir-
cles and object property spheres is formally developed.






Chapter 5
Representations for Curves and Surfaces
Based on the Gaussian Mapping

In this chapter, three property circle -+aresentauons of 2-D curves and the
corresponding property spheres of 3-D surfa: .~ are proposed. The advantages of this
type of representation for silhouette analys:s were suggested in Chapter 4 and will
become more clear in Chapter 6, when simplc rslations are developed between each of
the representations for an object surface and *he corresponding representations for its

silhouettes.

The three pairs of representations descripe three aif c;;'ent properties of the objects
being described as functions on Gaussian circ.es ar.d spheres. The first representation
describes the normal distance between tangen's ar.d a reference point; this scalar pro-
perty sphere/circle is named the Support Transfcrm (ST). The second representation
describes coordinates of object points in rotaie< zxes and is named the Vector Support
Transform (VST). The VST has three components for 3-D surfaces, two components
for 2-D curves, and it turns out that in eac" case. one component is identical to the
scalar ST. Finally, the third representation aescr:bes local curvatures and is named
the Curvature Transform (CT). The three reoresentations are collectively referred to
by the name of transforms, in part to emphasize that these representations are com-
plete and therefore uniquely invertible, and it part 1c preserve the similarity between

our silhouette theory and the Projection-Slice theorem in computerized tomography.

The particular choice of object properties for these three representations is
justified a-posteriori by the existence of simpie reiations between each transform of an
object and the corresponding transforms of :'s silanuettes; these relations are demon-
strated in Chapter 6. The existence of such simple relations was suggested for the ST
in Chapter 4. In the case of the VST, it car be expected that simple relations exist
between point coordinates in 2-D and 3-D. Finally, in the case of the CT, the dual of
Euler’s theorem indicates a relation between silhouette curvature and object surface
curvature. The dual of Euler’s theorem is demonstrated independently of the Gaus-

sian mapping in Appendix 3, and it turns ou: to be also a corollary of the relations
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between the 3-D CT of an object and the 2-D CT of its silhouettes.

The definitions of the transforms presented in this chapter are accompanied by
the derivation of conversions to and from Cartesian representations. These relations
are useful when evaluating or inverting the transforms for specific object shapes. In
addition, the conversion relations are used in Chapter 6 to develop the relations

between 3-D transforms of an object and 2-D transforms of its silhouettes.

In this chapter, all arguments are developed for curves and surfaces which are
outlines of smooth strictly convex objects. It is possible to describe these curves and
surfaces by equations parameterized with the normal orientation ang'cs Y in 2-D,
(¢,m) in 3-D. Only these parameterizations are considered here for Cartesian coordi-
nates. Relations between these and other parameterizations are briefly discussed in
Appendix 2. Extensions of the representations to include object surfaces with edges

and their silhouette curves are discussed in Chapter 7.

The concepts of the three transforms are very similar in 2-D and 3-D, a similarity
emphasized by the vector notation used in this chapter. As the algebra is more
straightforward in the 2-D case, we have chosen to discuss the 2-D transforms in the
first section of this chapter and the 3-D transforms in the second section. The algebra
supporting the discussion of 3-D surface models is more involved than in the 2-D case,
but the parallelism of concepts substantially improves readability. In order to
preserve the similarity of notations, some aspects are presented with considerable

detail in the case of 2-D curves.

S.1. Representations for Planar Curves

In this section, three property circle representations of 2-D curves are defined,
and their transformations to and from Cartesian coordinates are developed. The
representations, collectively referred to as transforms, define curve shapes by property
functions on the Gaussian circle. The object properties are represented in a different
set of rotated axes for each object point, so that the rotations of coordinates defined in
equation (3.7) appear in both the direct and inverse transform expressions. Relations
among the three transforms of the same curve are developed at the end of this section;
these relations are exploited to develop consistency constraints for the ST and the
VST.
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S.1.1. Support Transform of a Planar Curve

Definition: The Support Transform of a planar curve is the property circle defining
the normal distance between the origin and the tangent at each object point. This dis-

tance is denoted by the symbol p .

The ST is equivalent by definition to a representation of the distance p to the
tangent as a function of the normal orientation angle {5, and is hence a representation
of tangents to the curve equivalent to the explicit equation p () for the polar tangen-
tial coordinates. The function p (i) is sometimes referred to as the support function,

a name which has determined our choice for the name of the Support Transform.

Figure 5.1 illustrates the definition of p for the point P on the curve C. Let
Yo be the polar angle of the normal at P,. The distance p  is measured along the nor-
mal at Py, which is parallel to the Oxp axis of the rotated frame Oxp zp for Yr=yy,.
The ST function is hence related to Cartesian coordinates by po= xp(Py). This rela-

tion is given, for a generic point of the curve, by

xp (Y) cosyy siny| | x(y)
p(P) =xp(Y) = [] O] | = [l O' —sinys cosy| | z ()
= lcosxp sinyb] z&z;]
z
xR
Yo
Po
o I ¥

Fig.5.1. Tangent to the curve C at P and normal distance p .
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() =&l Rp (W) =l RE F=(y) = T72(y) (5.1)

where &; denotes the canonical unit vector (1 0)?. The transformation from ST to
Cartesian coordinates is now derived by first considering the equation for the Carte-

sian coordinates of the points on a tangent line with polar tangential coordinates p (),
. .

x cosy + z sing = p(¢) (5.2)
The above equation describes a.one-parameter set of tangents to the curve, where s is
the parameter. The curve itself is the envelope of these lines and its equation can be

evaluated by eliminating the parameter { between the equation for the tangent and

the derivative of this equation with respect to ys. These two equations are given by

x cosy +z sing= p(¥) (5.3)
—x siny + z cosys = Pw(\b) .
cosy simp| | x p
—siny cosy| |z| ~ |py >

where p,, =dp/d . Comparison of these equations with the transf ormation from

global to rotated coordinates, namely

XR cosys  sinys x
Zp —sinys cosys z
e =R Fx (5.5)

reveals that the coordinates of points of the curve in the rotated frame are given by

xp () 7 ()
2o () = Pw(\b) (5.6)
and that global Cartesian coordinates are related to the ST by
x(P)| | cosy —siny ()
z(Y)| T | sing cosy 2,)
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(5.7

W)
() = RE-5(p) | 20 l

P¥)

The following alternate vector notation emphasizes the contribution of the ST along

each local unit vector on the Gaussian circle.

W =pW 1, +p, T, (5.8)

5.1.2. Vector Support Transform of a Planar Curve

Definition: The Vecror Support Transform of a planar curve is the property circle
defining the Cartesian coordinates of each point in a rotated frame orier.:ed along the
normal and the tangent at that poinz. These coordinates are denoted by n and t for the
coordinates along the normal and along the tangent respectively. The vector combining

these coordinates is denoted by § = [ nt ]T .

The above definition emphasizes that the VST describes object point coordinates.
However, it is easy to see that the first component of the VST is identical by definition
to the scalar ST. Therefore, the VST is a superset of the ST and it explicitly describes
tangents to the curve in addition to points of the curve. The presence of two com-
ponents in the VST and its relation to the ST justify the name of Vector Support

Transform.

Figure 5.2 illustrates the definition of the VST for the point Py on a curve C

described in global axes Oxz . If i is the normal orientation angle at P, the VST

[\

xR

Yo
n(\} )

Fig.5.2. VST of P as Coordinates in the Rotated Frame.
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defines the coordinates of P, in rotated axes Oxp zp for Y=ys;. The transformation
between VST and coordinates in the global axes is given by the transformation of coor-
dinates between rotated and global axes in equation (3.7). The transformation is a
rotation with an angle Y5, for the point P, and, for a general point, the normal angle
Y. This angle has a different value for each point on the curve. The transformation

from the VST to equations for Cartesian coordinates in the global frame is given by

x () _|cosy —siny| |n (¥)
z(g) ! T | sing cosys t (y)
() = RF O () s(yp) (5.9)

The following alternate vector notation emphasizes the contributions of the VST along

each local unit vector of the Gaussian circle.
RY)=nW 1, +1 ()1, (5.10)

The transformation from Cartesian coordinates to the VST is the inverse of the above

transformation, namely

n () _ | cosy sing| | x (¥)
t(Y) | — | —siny cosy| | z(y)
s(y) = RY ~R(y) g(¢) (5.11)

5.1.3. Curvature Transform of a Planar Curve

Definition: The Curvature Transform of a planar curve is the property circle
defining the radius of curvature at each corresponding object point. This radius of cur-

varure is denoted by the symbol p.

The CT defines the radius of curvature p for each given normal orientation Y and
is hence equivalent to the intrinsic equation p(ys), a representation which is well
known in differential geometry [52). Our motivation for defining curvature by the
radius p as opposed to the curvature & is the simplicity of object/silhouette relations
for this choice of representation for curves and for the corresponding representation

for surfaces.
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The definition of radius of curvature at the point P of a curve C introduced in
section 3.2.5. is based on the Taylor expansion of the Monge parameterization in local

axes Pox; y, z; oriented along the tangent and normal at P
X, = _“1/221 po_lzl +O (Zl 3) (5.12)

where pg is, by definition, the radius of curvature at P,. Local axes for the above
Monge parameterization are sketched in Fig.5.3. Note that for a convex curve without
straight segments, p(y) > O for all .

The transformation from the CT function p(ys) to Cartesian coordinates is now
determined. In contrast with the ST and the VST, the CT defines the shape of the
curve only locally. As a result, it is not possible to determine direct relations between
parametric equations X(i) and the CT represent-tion, although a relation will be
obtained between the first differential d X(ys) and the CT. The curve is first con-
sidered in a small neighborhood of the point P and analyzed in the fixed local refer-
ence frame Pyx;z;. An expression for the differential d &, ({s) in the local axes is

obtained by the chain rule

d XZ (Zz ) d:l dm:Z
<l dmzl d \lf

dg;, (Y) = d (5.13)

where m_; was defined in section 3.2.4. as the gradient of the local Monge equation.
The first two derivatives in the right-hand-side of (5.13) depend on the particular

curve shape at P expressed in (5.12). The last derivative in (5.13) depends on the

ta

AC
Po

a2

> X

@)
Fig.5.3. Local axes for Defining the Curvature of AC at P,




relation between the local gradient and the global orientation angle, a relation dis-
cussed in section 3.3.3. Each of the factors in (5.13) is evaluated in Appendix 6; the

resulting expression for d &; is given by

dxl
dz, = Po |4 dy+0W—yo)dy
d%, =po 1, dy+ Oy dy (5.14)

The above expansion is exact for { = Y55, which corresponds to the point P
d R (o) = po I, d

The differential of global coordinates is obtained by applying the coordinate transfor-

mition from K; 1o X, defined in equation (3.8) - -
dx () cosy, —singy| [0 —sinys,
dz(Yo) | = |sinyg cosyy 1| Pod¥= cosyp | PO ay
d X(\,bo) = RzR —G((,bo) 62 Po d \[J = Tz 0 Po d IIJ (5.15)

As the point P is generic, the above relation is valid for all the points of the curve, so

that
dx —sinys
dz cosys P d Y
dg(y) =T, p(Y)d y = RES(y) &, p(y) d s (5.16)

The above equation is a first-order differential which can be integrated to produce an

expression for Cartesian coordinates of points on the curve

x () Xo| v —siny
| T | zo +‘{;p(¢') cosys dy
v
R(Y) = %o + [ p(WIT, (Y) d (5.17)
Yo

For a simple closed curve, the vector function () must be periodic in ¥ with a

period of 27r. Therefore, the CT function p(iys) must satisfy the following constraint




2 si \p

jo‘ (ll’) cosgb dy=0
27
[T, (Y dy=0 (5.18)
0

One interpretation of the above relation is that p(y), considered on a 27 interval,
must have no Fourier series term of order one. The relation in (5.18) has also been
interpreted by considering p(y) as a distribution of mass on the unit circle [53]. The
consistency relation is then equivalent 10 requiring the center of mass of the distribu-

tion to be at the center of the unit circle.

Two expressions for the CT in terms of Cartesian parametric equations are now
obtained, the first by multiplying both members of equation (5.16) by 1, , the second
by taking the modulus of (5.16).

d () i = ld ()|
dy dy

Note that the right side of the above expression is identical to a classical definition for

p(y) = (5.19)

the radius of curvature of a convex curve [52].

5.1.4. Relations between the ST, the VST and the CT of a Curve

Relations between the three transforms of a 2-D curve are developed in this sec-

tion. Based on these relations. a number of consistency criteria are developed for the
ST and the VST.

By definition, the first component of the VST is identical to the scalar ST. As a
consequence, the VST is a superset of the ST and is therefore redundant, since the ST is
complete. Comparing equations (5.8) and (5.10). it is straightforward to determine
that

l

n=p
t = n‘/,

where the first two equations express the relation between the ST and the VST, and

the third equatjon is a consistency relation for the VST.
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In addition to the above relations, a consistency criterion for the ST and for the
VST can be obtained by relating these to the CT, then expressing the convexity con-
straint p>0 on the CT. The relation between the ST and the CT is obtained by con-

sidering the inverse ST equation

W =pW I, +p,(Y) 1, (5.21)
and by comparing the differential of this expression with (5.16). The differential of
(5.21) is easily obtained. using the derivatives of unit vectors in (3.55).

g,0) = | p(P) +pyP| T, (5.22)

Comparing this expression with (5.16), the relation between the ST and the CT is

determined to be

p(Y) = p(Y) + p () (5.23)

The corresponding relation between the VST and the CT can be obtained by a similar

argument.

p(y) = n () + 2 4(P) (5.24)

For a convex curve, p(y) > O for all . As a consequence, the following inequalities

must apply to the ST and to the VST components:

() + pyyP) >0 (5.25)
n(y) +2,(4) >0 (5.26)

It is instructive to consider the relations between each of the three transforms

and derivatives of the support function p ().

p()=p
s =[p p, T (5.27)
p(Y)=p +pyy

The above relations emphasize the dependence of the ST, the VST and the CT on
derivatives of p up to orders 0, 1 and 2 respectively; similar conclusions will be
observed for 3-D surfaces. These relations will be useful in Chapter 7 when analyzing

discontinuities of these functions for curves and surfaces with straight edges.
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5.1.5. Examples of 2-D Transforms

In Appendix 1, the three 2-D transforms are derived analytically for superconics.
Graphs of the transform functions are presented in Fig.5.4 for a superconic with major
axis half-lengths ¢ =2.0. ¢ =1.0 and an exponent of n =1.2. The property functions
are drawn on polar plots in Fig.5.4, with the origin of the plots offset from the center

1o allow the representation of negative values in ¢ ().

5.2. Representations for 3-D Surfaces

In this section, three property sphere representations for 3-D surfaces are defined.
These representations are extensions to 3-D of the three representations defined for 2-
D curves in the previous section. The representations of surfaces will be referred to
by”the same names as their 2-D counterparts, namely the*ST for a property™sphere

specifying normal distances to tangent planes, the VST for a property sphere of object

x .
b)
d)

a)

®

c)

Fig.5.4. 2-D Curve and Polar plots of 2-D Transforms.
a) Superconic with exponent 1.2, b) Support Transform,
¢) Tangential Component of Vector Support Transform, d) Curvature Transform.
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point coordinates, and the CT for a property sphere of curvatures. Transformations to
and from Cartesian coordinates are derived for the three transforms. Relations among
the three transforms are developed and exploited to develop consistency constraints
for the ST and for the VST. In addition to the above relations, relations between the
extended Gaussian image and the threg surface transforms are determined. A close
parallel has been preserved with the notation used in the case of 2-D silhouettes, as

this association improves the readability.

5.2.1. Support Transform of a 3-D Surface

Definition: The Support Transform of a 3-D surface is the property sphere defining
the normal distance from the origin to the tangent plane at each point of the object. This

distance is denoted by the symbol p .

The ST function on the Gaussian sphere specifies the normal distance p to the
tangent plane with the given orientation and is hence equivalent to the representation
of planes tangent to the surface by the explicit equation p=p (£,m) for the polar
tangential coordinates. In other work, the function p (§,m) is referred to as the sup-
port function for the surface. As illustrated in Fig.5.5, the normal distance p g for the
point P on the surface element T is the distance between the origin and the tangent
plane at P,. This distance is measured along the normal, and is equivalent to the xp -
coordinate of P in rotated axes for §=¢§,, N=7¢. The ST function is hence related 1o

Cartesian coordinates for the curve by

xp (€M)
p&m) =x5 = ll 0 O] ye (€,m)
zp(&m)
cosécosn  sinécosn sinn| [ x(&,m)
=[10 O] —siné cosé o |y
—cosésinn —sinésinn cosn| | z (£,m)
x (¢,1)
= | cosécosn sinécosn sinn| |y (&m)
z(¢m)

p(Em) =€l (¢) =T RERR(E M) = T/R(EM) (5.28)
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8]

y

Fig.5.5. Tangent Plane II to the surface £ at Py and normal distance p .

where € denotes the canonical unit vector ( 100 ). The transformation from ST to
Cartesian coordinates is now derived by first considering the equation for the Carte-

sian coordinates of points on a tangent plane with polar tangential coordinates

{p(m), &

x cosécosn + y sinécosn + z sinn = p(&,m) (5.29)

The above equation describes a two-parameter set of planes tangent to the surface.
The surface is the envelope of these planes and its equation can be evaluated by elim-
inating the parameters ¢,7 among the equation of the tangent plane and its derivatives

with respect to £ and 7. The three equations are given by

cos§cosm x + sincosm y + sinm z = p
—sincosn x + cos§cosn ¥y Pt (5.30)
—cosésinn x — sinésinm y + cosn z = p,

I

where the subscripts in p¢ and p, denote partial derivatives. After scaling of the

second equation by cosm,




the above equations can be rewritten in the following matrix form.

cosécosn sinécosn sinm 4

X
—siné cosé 0 y| = | p¢/cosn (5.31)
—cosésinn —sinésinm cosm z P

Comparison of this equation with the transformation from global coordinates to coor-

dinates in rotated axes, namely

xR cosécosn sinécosm sinm x
ve | = —siné cosé 0 y
Zp —cosésinn —sinésinn cosn z
o . —-OR — R3G —R,f - ©(5.32)

reveals that the coordinates of the surface points in the rotated frame are related to
the ST by

xR p
Ye | = | p¢/cosm (5.33)
<R P n

and that Cartesian equations for the surface are expressed in terms of the ST by

x (&€,n) cos§cosn —sin§ —cosésinm p(€m)
v(€m) | = |sinécosn cosé —sinésinm| | pg(£,n)/cosn
z(&m) sinn 0 cosn po(EM)
p(&m)
X(Em) = RETC(Em) | pe&m)/cosn (5.34)
P&

The following alternate vector notation emphasizes the contribution of the ST along

each local unit vector on the Gaussian sphere.

REM=pEM T, +pén)cosn T+ p (€M T, (5.35)
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S.2.2. Vector Support Transform of a 3-D Surface

Definition: The Vector Support Transform of a 3-D surface is the property sphere
defining the three Cartesian coordinates of each surface point in a rotated frame
oriented along the local normal, parallel and meridian of the Gaussian Sphere. The com-
ponents are denoted individually as n, h and v respectively. The vector combining

these components is denoted byS={(n h v ).

The above definition emphasizes that the VST specifies point coordinates, but it is
easy to see that the first component of the VST is identical to the scalar ST, so that the

VST is a superset of the ST and defines tangent planes in addition to points.

Consider on the surface I, the point P with normal orientation To(£gMg). as
illustrated in Fig.5.6. The VST components n o, A g, Vo for the point P are the Carte-
sian coordinates of P, in the rotated axes Oxpypzp for Py The transformation
between this frame and the global object frame is defined in equation (3.9), for § = ¢,

and M=, This relation is valid for each point of the surface, when ¢ and 7

ty

Fig.5.6. Tangent Plane II to the surface £ at Py,
VST s5 = (ng,h oV O)T and principal orientation vectors.
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represent the corresponding normal orientation. The Conversion from Cartesiap

parametric equations X = X(£,7) to the VST is hence given by

n(¢m) cosécosm  sinécosm sinm| [ x(£,m)
h(En)| = —siné cosé o |y(&m)
v(ém) —cosésinn —sinésinn cosn| | z (&,m)
s(¢m) = RY R R(Em) (5.36)

The inverse transformation the VST to equations for the Cartesian coordinates is

the inverse of the above 3-D rotation, namely

x (£,m) cosécosn —siné —cosésinn| [ n(£,m)
y(€m)| = | sinécosm cosé —sinésinn| | A (E,m)
z(¢m) sinm 0 cosm| |v(&m)
X(¢,m) = RO n)sEm) (5.37)

The following alternate vector notation emphasizes the contribution of the VST along

each local unit vector on the Gaussian sphere.

REM=nEMT, +hEMD T +v(EMNT, (5.38)

5.2.3. Curvature Transform of a 3-D Surface

Definition: The Curvature Transform of a 3-D Surface is the property sphere
defining the tensor of radius of curvature of the surface expressed in axes oriented aiong
the parallels and meridians of the Gaussian Sphere. The components of the tensor are
referred to as r 1,715 and r 55, with the index I corresponding to the direction of the

parallel. The tensor itself is represented by the symbol R.

This definition of the CT is a natural extension of the CT defined for 2-D curves
in section 5.1.3. Other extensions to three dimensions of the 2-D CT are also possible.
For example the 2-D extended Gaussian image is identical to the CT [53], but the 3-D
extended Gaussian image represents a scalar property, namely the inverse of the Gaus-
sian curvature of the 3-D surface [44]. Relations between the extended Gaussian image

and our 3-D transforms are developed in a later section.

The curvature of a surface Z at the point P, was defined in section 3.2.5., based

on the Taylor expansion of the Monge parametric form in local axes at P,
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-1

r101 "102 Y1 3 _
xl = ——1/’) { yl ZZ ] rlo’) r:)f),) = + O ((yl ’ZZ) ) (5-39)
X; = -lh Zl ﬁ(;lzl + O (213) (5.40)

where x; is along the normal and y;,z; in the tangent plane at P, In the above
expression, ﬁo is, by definition, the tensor of radius of curvature at P, and Z; denotes
the 2-vector ( y; z; Y in the local tangent plane. The surface and the local axes at P

are sketched in Fig.5.7.

The transformation from the CT representation to Cartesian coordinates is now
determined. As the CT representation describes only local properties of the object sur-
fae, it can not be directly related to Cartesian coordinatesyalthough it will be~related
to the first differential d X(&,7m) of these coordinates. For this purpose. a small surface
element AZ in the neighborhood of P is analyzed in the fixed local axes Pqyx; y; z; .

An expression for the differential is first obtained in the local axes by the chain rule

yA
A
xl )
27
AV’
Z >
0
x /
y

Fig.5.7. Local Axes for the Definition of the Curvature of Z at Py,



-94_

" DX,(z;) Dz, Dm,
2 = d§ (5.41)
Dz, Dm, D¢

where expressions such as DX, /DZ;, denote Jacobian matrices, fli,; = (myl m; ) s
the 2-vector of local gradients, and d & is the vector of normalized global angle
differentials d £ = (cosnd £ d 1 )¥ . The first two Jacobian matrices in the right hand
side of (5.41) depend on the shape of the particular surface around P, defined by
(5.39). The last Jacobian matrix in (5.41) depends on the relation between local gra-
dients and global orientation angles, a relation which was discussed in section 3.3.3.
Each of the factors in (5.41) are evaluated in Appendix 6. When inserted in equation
(5.41), they produce an expression for the differential d K; in local coordinates, valid
to first order around P,. The expression is exact at Py, and since Py is generic, the

differential in local axes at a given point is represented by a similar expression.

dx, 0
11 712 cosnd §
dy.| =110 ris 7 d
12 722 n
le 01
d%, =135, Rd ¢ (5.42)

where 13, is a 3x2 matrix consisting of only zeros and ones. A differential for the sur-

face in global coordinates is obtained by applying the coordinate transformation in
(3.10).

dx cosécosn —siné -—cosésinm 00 ri1 T cosnd &
dy| = | sinécosn cosé —sinésinm 10
. 12 T22 dmn
dz sinm 0 COST) 01 :
dX¥=Rf I, Rd¢ (5.43)

In principle, the above differential can be integrated to produce Cartesian equations for
the surface. As the integration domain is two-dimensional, an integration path must be

prescribed; this question is addressed in the next section.

Transformations from Cartesian equations to the CT are easily developed based
on equation (5.43). Indeed, explicit expressions for the partial derivatives of X can be
obtained from (5.43) as
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X;/cosn i1 T12 __'5
R = s (5.44)
X 12 T22] | 1

An expression for determining the CT of a surface given by parametric equations

X(£,7m) is hence

SISt T§°">i’§/cosn 1, X¢/cosn (5.45)
ri Taf _’5'35,, 1,%,

5.2.3.1. Consistency Constraints for the 3-D CT

In this section, consistency constraints are determined for the CT function defined
on the Gaussian sphere. Equation (5.44) relates first derivatives of Cartesian coordi-
nates to the CT. This expression has a conceptual similarity to the expression for sur-
face reconstruction from needle maps [21]. In both cases, first derivatives of a func-
tion are given on a two-dimensional domain. In the case of the needle map, surface
reconstruction is possible only if the gradient field corresponding to the needle map is
curl-free. The curl-free condition. also referred to as an integrability constraint,
corresponds to a zero elevation gain on all closed loops in the image plane, and is
equivalent for smooth surfaces to equality of the mixed derivatives. This condition
guarantees that integration of the Cartesian coordinates is independent of integration
path and is a necessary and -ufficient consistency constraint for a needle map. A simi-
lar condition is derived here for the CT by requiring equality of the mixed derivatives
X¢n and X,p. These mixed derivatives are first evaluated from (5.44), taking into

account the derivatives of local unit vectors given in equation (3.50).

X = —a%—(r 1 cosn)Tf + %(r 12 COST)) Tn —riacosn 1,
(5.46)
XKoo= | Lrpp—r T, + + T, - T
né = 56 (12722 sinm| 1¢ + a§ raptrpsinm| 1, —rj;cosnl,

The consistency constraints are obtained by comparing individual components of the

above expressions for the mixed derivatives.
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*‘a—(f‘ncos‘n)——- —a—rlz—rzzsinn

an o¢ (5.47)
—gg— Fay = (—3‘%7—( 12 COSM ) — 1 1, sinm

When the above consistency relations are verified, the integral of the differential d X is

independent of integration path.

A second type of constraint must be satisfied by the components of the CT of a
convex object. Specifically, positivity of mean and Gaussian curvatures implies posi-

tivity of the trace (7 ; +7 5, ) and of the determinant (7 {172 —7 & )

5.2.4. Relations Between the ST, the VST and the CT of a Surface

In this section, relations between the three transforms of a given 3-D surface are
developed. From these relations, consistency constraints are determined for the ST
and for the VST.

By definition, the first component of the VST is identical to the scalar ST. Since
the ST representation is complete, the above relation indicates that the VST is redun-

dant. Comparing equations (5.38) and (5.35), it is straightforward to determine that

n=p
h = pg¢/cosn (5.48)
‘) = pn

h = n/cosn

v=n, (5.49)

ve = 9/8n(h cosn)

where the first group of equations expresses the relations between the ST and the com-
ponents of the VST. The equations in the second set are relations among the three VST

components.

In addition to the above relations, a set of inequality constraints can be developed
for the ST and VST by relating these representations to the CT, then expressing the
convexity of the surface in terms of the CT representation. The relation between the

ST and CT is derived by considering the inverse ST equation, ,
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REMN =pEMT, +plém)cosn T+ pEMT, (5.50)

and by comparing the derivatives of this expression with (5.44). The derivatives of

(5.50) are easily obtained with the derivatives of unit vectors in (3.50).

X¢/cosn p +pg cos*n—p ptann  pep/cosm+ pgsinn/ cos>n —fg
X, e gn/COS M+ p ¢ sinn/ cos’n p +p " Tn
(5.51)

Comparing this expression with (5.44) produces the following expression for the CT

tensor in terms of the ST function p (§¢,7).

p +pg/cos’n—potann  p gn/COS M + p ¢ sinm/cos?n
Pen/cosm+py sinn/cos®n p + P

(5.52)

For a convex object surface, both the determinant and the trace of R must be positive.

The following inequalities must therefore be satisfied by p (£,m).
2p + pgg/cos’n + po — potanm > 0 (5.53)
(p + pgg/coszn —pptann)(p +p ) — (pgy/cosn +p gsim’}/coszn)2 >0
Relations similar to (5.52) can be formulated between the VST and CT; these also

allow the development of convexity constraints for the VST. The relation between
VST and CT is given by

11 712 n +hg/cosm—vtanm v /cosn+h tannm
= i ) (5.54)
12 T 2o Ao, n+v,
The resulting convexity constraints are
2n + h¢/cosn + v, —viann > 0 (5.55)

(n +he/cosn—vianm X n +v,)—h,(ve/cosn+htann) > 0O

Considering equations (5.48) and (5.52), it can be observed that the ST, VST and

CT depend on derivatives of p up to orders 0, 1 and 2 respectively. This conclusion is
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identical to the corresponding observation made for the transforms of planar curves.

5.2.5. Relations between the Extended Gaussian Image and the CT, VST, ST

In this section, relations between the extended Gaussian image (EGI) and the three
property sphere representations are developed. The EGI is a property sphere for the
inverse of the Gaussian curvature. The Gaussian curvature is the determinant of our
curvature tensor K and is also the inverse of the determinant of the radius of curva-

ture tensor R; see section 3.2.5. Hence, the EGl is equal to the determinant of the CT.
G(¢,m) = detR(¢,m) (5.56)

where G denotes the EGI function. The CT function is hence a redundant superset of
the EGI. In the case of 2-D curves, the CT is identical to the EGI defined in [53]. The
3-D EGI and the 3-D CT can be considered as two different generalizations to 3-D sur-
faces of the same representation for 2-D curves. The ST can be related to the EGI by
combining (5.56) and (5.52).

G(¢m) = (p +pg/cos’n—ptann)(p + p o)

. 2 N2 (5.57)
— (p g/ cOST + p gsinn/cos®n)?

The above relation should prove useful in combining EGI and ST representations, such
as for the work presented in [45]. Finally, a relation between VST and EGI is obtained
by combining (5.56) and (5.54).

GEnm= (n +h§/cosn——vtann)(n +v,,) (5.58)
— hy, (vg/cosn +htann ) >

5.2.6. Examples of 3-D Transforms

In this section, the three transforms of a simple object are derived. These deriva-
tions illustrate the computation of transforms from parametric equations. The object
considered here is a sphere of radius R offset from origin, centered at P (x o,y 0.2 0)-

Transforms of more complicated object shapes are derived in Appendix 1.

Parametric equations for the sphere are given by
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= x + R cos cosn

= yo + R sin cosn (5.59)
=z, + R sinm

<R
|

L]

The ST of this sphere is obtained by applying (5.29) to the above parametric equations
p(€,m) = xcosécosn + ygsinfcosn + z 5 sinn + R (5.60)
In the particular case where the center P of the sphere is at the origin, the above
expression simplifies to p (£,m) = R.
The VST of the sphere can be derived by applying equation (5.36) to (5.59).
X g cosécosn + yosinécosn + zosinn + R
» §(§n) = —x o siné + yocosé.. (5.61)
—x o cos§sinm — yo sinésinn + z g cosn

In the particular case that Xy = 0. the VST is given by SUE,m) = (R 0 0)F.

It is possible 1o derive the CT from the parametric equations in (5.59) by different
methods. Indeed, the CT can be determined directly from (5.59) with equation (5.45),
indirectly from the ST with equation (5.52), or indirectly from the VST with equation
(5.54) The indirect derivation via the ST is developed here. Partial derivatives of the

ST can be evaluated as

p¢ = —xgsinfcosn + ygcos§cosn

pge = —xgcosécosn — yosinécosn

P¢n = Xosingsinm — yqcosésinm (5.62)
pn = —xgcosésinm — yosinésinn + z, cosn

Pmm = —Xxgcosécosn + yqsinécosn — z,sinn

Using the above derivatives, the 3-D CT function is determined as

T T2 p +pg/cosn—ptann  pg./cosn+ psinn/cosn

Pen/cOsM+pg sinn/cos’n p + P

12 T2

RO

0 R (5.63)




- 100 -

Note that this result is independent of the position of the center of the sphere. The CT

function is identical to the curvature tensor of the sphere determined in section 3.2.5..

Each 3-D transform contains large amounts of information, so that it is not easily
displayed on one graph. In Chapter 8, some 3-D transforms will be represented by

polar plots of their components on meridians of the Gaussian sphere.

5.3. Summary

Three representations for closed curves and the corresponding representations for
3-D surfaces have been defined in this chapter. The motivation behind the study of
these representations is the simplification they introduce in the analysis of relations
between object shapes and silhouette shapes. In the following chapter, three theorems
wil be demonstrated, relating the transforms of a 3-D object to the transforms of its
silhouettes. Specifically, it will be shown that the property circle of the silhouette in
an orthographic projection can be obtained by slicing the property sphere of the object
by a plane perpendicular to the viewing direction and going through the origin, then
appropriately projecting the vector or tensor information onto the slice plane. The
specific object properties represented by the three transforms were carefully chosen to

lead to such simple relations.

Aside from their interest in silhouette analysis, the transforms presented in this
chapter can also be analyzed simply as representations of 2-D curves and 3-D surfaces.

Each of the transforms is now discussed individually in this respect.

In both 2-D and 3-D, the ST is quite similar to the support function, an explicit
equation for polar tangential coordinates. Although this form is known, it has not

received much attention in the graphics and vision fields.

The 2-D and 3-D VST are simply related to descriptions in terms of Cartesian
point coordinates, but their relation with the ST and CT is interesting for at least two
reasons. First, the relations between the ST and CT on one side, and the VST on the
other side are quite simple, so that the VST may be used as an intermediate step when
converting the ST or the CT to a description in terms of Cartesian coordinates. In
some applications, when a Cartesian representation is required, the VST itself may be
appropriate, thereby eliminating the need for a different Cartesian representation. For

example, it should be easy 1o synthesize a shaded rendition of an object for a general
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view-point, based on the VST only. A second interesting feature of the VST is that i
forms with the ST and CT, a range of representations depending on derivatives of p
up to orders O, 1, 2. Instead of the VST which combines normal and tangential com-~
ponents of rotated Cartesian coordinates, it is possible to describe property circles and
spheres describing only the tangential components. These representations would avoid
the trivial redundancy with the ST, but would not be uniquely invertible. For exam-
ple. the VST of a sphere centered at the origin is zero everywhere and does not depend
on the radius of the sphere. We have therefore preferred the definition of the VST
proposed in this chapter, and its interpretation as a complete description of point coor-

dinates of the object.

The CT representation of 2-D curves and 3-D surfaces will now be discussed.
Forms closely related to the 2-D CT have been proposed by various authors
[23, 53, 54]. The 2:D CT is closely related to the intrinsic form relating radius of cur-
vature and normal orientation. Intrinsic descriptions of the shape of curves have been
extensively studied in differential geometry and are well known [52]. However, to the
best of the author’s knowledge. equivalent representations have not been proposed for
surfaces. The 3-D CT can be considered as such an intrinsic form for surfaces and
should therefore be of interest when analyzing the shapes of 3-D surfaces. Represen-
tations of surface shapes presented in textbooks of differential geometry usually rely
on two tensors, referred 1o as the tensor of the first fundamental form and the tensor
of the second fundamental form. The two tensors convey information about both the
shape of the surface and the parameterization used to define the surface. With this
formalism, it is not possible to retain a compiete description of surface shape without
interfering with the description of the parameterization. The literature on surface
representation in machine vision seems strongly influenced by this description of sur-
faces in terms of fundamental form tensors. Characterizations of surface curvature
by local invariants have also been proposed. These invariants combine information
from the two fundamental tensors and are independent of parameterization. For
example, the extended Gaussian image defines surface shapes by one invariant, the
Gaussian curvature; a description of surfaces by two invariants, the Gaussian and
mean curvatures, has also been proposed [40]. These representations, although inverti-

ble with appropriate boundary conditions, do not carry a complete local
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characterization of surface shape. The 3-D CT representation proposed here is an
elegant alternative to the classical shape description methods. It combines a new
invariant curvature tensor function with the parameterization used to represent nor-
mal orientations in the extended Gaussian image. Relations between the CT and classi-

cal descriptions of surface curvature are further addressed in Appendix 4.

The framework developed in this chapter for representating shapes stresses the
similarities between 2-D and 3-D, and suggests straightforward generalizations to
representations of n-dimensional hypersurfaces in (n+1)-dimensional space. These

generalizations are not addressed here.




Chapter 6
Silhouette-Slice Theorems

In this chapter, relations between the transforms of 3-D convex object surfaces
and the corresponding transforms of their 2-D silhouettes in orthographic projections
are determined. It turns out that these relations prescribe pointwise correspondences
between property-function values on the Gaussian sphere of the object and property-
function values on the Gaussian circle of the silhoueite. Hence, there are two aspects
1o the relation between 2-D and 3-D transforms. The first part of the -:lation deter-
mines which values of the 3-D object property sphere directly contribute to the
silhouette, whereas the second part specifies how the values of the 2-D transforms are
related to the values of the 3-D transforms at the corresponding points. These two
aspects of the relation are closely tied to the selection and projection steps of the clas-

sical silhouette construction method reviewed in Chapter 4.

The exact form of the relation between the transforms of the object and the
transforms of its silhouettes will be determined by applying the classical silhouette
construction method sketched in Fig.4.2 to the surface shape expressed as the inverse
transform of each of the three representations. The first step of the classical method
will indicate an equivalence of points on the Gaussian circle of the silhouette and
points on a slice of the Gaussian sphere of the object. The slice is the intersection of
the Gaussian sphere with a plane through the center and perpendicular to the viewing
direction. The second step of the classical silhouette construction will indicate how
transform values on the slice of the Gaussian sphere of the object are related to
transform values on the Gaussian circle of the silhouette. Specifically, it will be
shown that the silhouette ST values are identical to the object ST values on the slice,
and that the values of the VST and CT of the silhouette can be obtained by pro jecting
onto the slice plane the vector or tensor values of the corresponding 3-D transforms on
the slice of the object Gaussian sphere. The relations among 3-D objects, 2-D
silhouettes and their transforms have a strong conceptual similarity with the
Projection-Slice theorem of computerized tomography. The theorems describing the
relations in the case of silhouettes have been named Silhouette-Slice theorems to

underline this similarity.
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In the first section of this chapter, the relation between Gaussian circles of
silhouettes and slices of the Gaussian sphere of the object is demonstrated. Relations
among angular coordinates on the sphere, the angular coordinate on the silhouette slice
circle and the viewing direction are determined. In the second section, the transforma-
tion between local systems of 3-D axes corresponding to the slice of the Gaussian
sphere and local systems of axes on the silhouette is derived. It will be shown that
this transformation is the composition of two 3-D rotations and a projection, and that
its expression can be substantially simplified. In the third section, relations between
silhouette property circle functions and object property sphere functions are deter-
mined by applying the transformation derived in the second section to coordinates of
points of the silhouette generator of the object, expressed in terms of the ST, VST and
CT representations. Finally, the results are discussed and compared with the

Projection-Slice theorem of computerized tomography.

6.1. Silhouettes, Gaussian Spheres and Gaussian Circles

The first step in determining relations between silhouette properties and object
properties is to determine which object points contribute to the silhouette, and which
points of the silhouette are affected by which points of the object. It is shown in this
section that only the points on the great circle slice of the Gaussian sphere perpendicu-
lar to the viewing direction contribute to the silhouette, and that the points of the slice

are related to corresponding points of the silhouette by the Gaussian mapping.

The following discussion refers to Fig.6.1 which illustrates a 3-D object and its
orthographic silhouette in the image plane. Consider a point Pg; on the silhouette
generator of the object, its projection Pg in the image plane and its image P; on the
Gaussian sphere. First, by definition of the Gaussian mapping, the normal to the object
surface at Ps; is parallel to the normal to the sphere at Pg . Second, since Pg; is on
the silhouette generator, the normal at Pg; is parallel to the projection plane, so that
its direction is unaffected by the projection operation. Hence, the normals to the
silhouette at Pg, to the object at Pg; and to the sphere at P; are all parallel. The
image of the silhouette generator on the Gaussian sphere is thus the set of points of the
sphere for which the normal orientation is perpendicular to the viewing direction.

This set of points is the great circle of the Gaussian sphere perpendicular to the
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Silhelettle

Fig.6.1. Relation between the Silhouette Generator and a Slice of the Gaussian Sphere.

viewing direction. Individual points of the silhouette and of the slice corresponding to
the same object point, such as P and P, are related by the parallelism of their nor-
mals. Therefore, the slice of the Gaussian sphere of the object is a Gaussian circle for

the silhouette. This conclusion is formalized as follows:

Silhouette-Slice Theorem 0: Each greatr circle slice of the Gaussian Sphere of a
smooth convex object is the Gaussian Circle of the silhouette of the object in an ortho-

graphic projection on a plane parallel to the slice.

The above theorem is now complemented by trigonometric relations between the
angular coordinates (£,7) of points on the slice, the angular coordinate s on the Gaus-
sian circle of the silhouette, and the angles ($,0) specifying the orientation of the
viewing direction. Consider the point P; on the slice of the Gaussian sphere
corresponding to the viewing direction V, as illustrated in Fig.6.2. For this point, the
five angles of interest appear in the spherical triangle AP; C, drawn in bold in the

figure. This triangle is also displayed "flattened out" with the values of all its
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Fig.6.2. Great Circle Slice and Angles on the Gaussian Sphere

elements on the same figure. The sixth element of the triangle ABC is related to the
angle & characterizing the orientation of the slice plane in local axes Pg x;y; z; at Pg .

Applying the standard relations between elements of a right-angled spherical triangle
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in[55] to the above triangle produces the following identities

sinn = tan(é—¢—n/2) tano (a)
—cos(é—¢p) = tanm tanf b)

sinf = tan({—¢p—m/2) cotys (c)

sina = 1anm cotys (d)

cosyp = tand tana (e) 6.1)

sinn = cosf sinys (f) )
—cos({—¢p) = cosa sinys (g)

sinf = cosm cosa (h)

sine = sin(é—¢) cush (i)

cosys = Cosm sin(é—¢) ()

Note that the angles £, ¢. y are defined over the range [—7,+7] and the angles 7, 6
over the range [—7/2,7/2]. The full range of these parameters is covered by relating

the quadrants of the arguments in the tangent trigonometric functions in expression

(6.1)(c).

For a fixed viewing direction (¢,8), the silhouette point with normal orientation
Y in the image plane corresponds to the object point with normal orientation €3 ,'n) for
the values of these angles satisfying (6.1). Specifically. (6.1)(c) implicitly relates the
angles ¢ and &, whereas (6.1)(f) relates the angles ¥y and 1. Explicit forms for these

relations are given by

£ =¢56(P) = ¢+ m/2+ atan ( sinf tanys)

_ . (6.2)
N = ngs (Y) = asin ( cosh siny )

where the subscripts SG indicate that the angles correspond to points of the slice
which are the images of points on the silhouette generator. In the above expression,
the range of the arcsine is (—7/2,7/2) and the quadrant of the arctangent must be the
quadrant of Y when 6>0 and the quadrant symmetric with respect to the x-axis oth-
erwise. The above expressions can be considered as parametric solutions for equation
(6.1)(b); this equation is equivalent to the equation of the silhouette generating planes
in (4.27). The solutions in (6.2) of this last equation were anticipated in Chapter 4.
The angle o is the tilt of the slice at each point relative to the local axes Pg x;y; 2; .
This angle is useful when projecting vectors and tensors defined by their components

in local axes, onto the slice plane.
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Equations (6.1) and (6.2) can be further exploited to derive expressions for the
differentials d ¢ and d 1 in teims of d s on the slice for a fixed viewing direction.
These relations are sketched in Fig.6.3; they will be useful when projecting
differentials of Cartesian coordinates expressed in terms of the CT. The differentials
of ¢ and 7 along the silhouette generator could be evaluated from derivatives of (6.2),
but are evaluated here instead from the corresponding implicit forms (6.1)(c) and
(6.1)(f). For a fixed viewing direction, the differential d {; along the silhouette gen-

erator is obtained by differentiating a form equivalent to (6.1)(c), namely
—cotys = sinf tan(é—¢)
fdzk = sinf ——,d—g———-
sin“ys cos(é—a)
which can be simplified, using (6.1)(g) and (6.1)(h).

CoSa
dsc = cosn day (6.3)
Zz
v
dy
X
cosnd

Fig.6.3. Relation between Angle Differentials on the Slice.
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The expression for d Mg is obtained by differentiating (6.1)(f).

sinm = cosf simys

—cosn d n = —cosf cosy d P
This can be further simplified using (6.1)(d).
d Nsg = sinad « (6.4)
As a result, the normalized differential d €55 has the following form

cosnsg d €56
d Msg

COSQSG

d€sc = dy (6.5)

SinQSG

where ags refers to the value of & on the silhouette generator. This relation confirms

the geometrical intuition suggested by Fig.6.3.
6.2. Projection of the Silhouette Generator

In the previous section, the set of points of the object property sphere which are
directly related to the silhouette was determined. In this section, a procedure for
relating values of the property functions of the silhouette to the values of the pro-
perty functions of the object is developed. This procedure consists of formally
expressing coordinates of silhouette generator points in terms of the transforms of the
object and applying the classical projection operation to these forms. Expressions for
the inverse transforms of the property spheres are simplest when object coordinates

are expressed in rotated axes at each point; they are given by

p(&m)

Xp(&m) = | pel§,n)/cosm
Po(€.m)
n(&m)

Rem) = [{rEM)]| =3¢ (6.6)
v(émn)

- 00 rulém r(ém) d &/cosn

dXglgm) =10 r12(€m) 7 a(Em) dm =I; R¢md¢
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The rotated coordinates of points on the silhouette generator are easily obtained from
the above expressions by replacing (£,m) by their values on the silhouette generator as

given in equation (6.2).

p (56 (W) nsg (W)
Xp ()= | pelése (¥)ns (Y))/cosngg ()
2 n(ésc (W)nsg () (6.7)

_iR (\b) = §(§SG (\!J),"’?SG (\b))
d¥p () = I3y R(éss (Y)imse (¥)) d €56

Note that the variables (£,m) must be considered as independent when evaluating
derivatives p¢, p , for the expression of the ST. However, the differentials d ¢, dnin
ihe expression for the CT must be taken along the great circle slice; their relations to
d s are given in (6.5).

The projection of points of the silhouette generator is now addressed. Coordinates
of silhouette points can be obtained by first converting the coordinates in rotated
frames in (6.7) to coordinates in global object axes by the transformation in (3.9), then
applying the projection transformation (3.21). Coordinates of silhouette points in glo-
bal axes of the projection plane are hence obtained from the rotated coordinates of the

object by
R, (Y) = Lis R§ TC RE9(&56 (¥),mse (W) X () (6.8)

The operations described in the above equation correspond to the 3-D rotation R3R —G
from rotated to global coordinates, followed by the 3-D rotation Rf ~C from global to
camera axes, and finally the projection I,3 along the first coordinate axis of the camera
frame. The composition of the two rotations in the above equation is a third rotation
which will be denoted by R5° ~C and which relates coordinates in the camera axes 10

coordinates in rotated axes.
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This rotation is explicitly written as
RE~C = RG—CREO (6.9)
cosgpcosf  singcosf  sinf cosécosn —siné —cosésinm

~—sin¢g cosg 0] sinfcosn  cos§ —sinsinm
—cosgsing —sinésing cosd sinm 0 COST)

f

cosBeosncos(§—¢) + sinbsinn  ~cosbsin({—¢) —cosbsinmcos(§—p) + sinfcosn
= cosmsin(é—¢) cos(é—¢) —sinmsin(é—¢)
—cosTsinfcos(é—¢p) + sinncos®  sinfsin(é—@)  sinmsinBcos(é—p) + cosbeosn
When only rotated axes corresponding to points on the silhouette generator are con-
sidered, the angles in the above rotation matrix are related by the expressions in (6.1).
The expression of R;;Q —C can then be simplified substantially. After tedious but

straightforward trigonometric manipulations, it can be shown that

0 —sinogg COSQgi
Rj3 'C(§sc Msg ) = COSYs —COSagg SINY —sinogg sinys

sinyy  COSagg COSY  Sinags; COSYs
(6.10)
0 o 1 1 0] 0

= |cosy —siny O 0 cosa sina
SG SG

simp cosyp O 0 —sinogg cosogg

This result can also be derived derived through geometrical reasoning on the composi-
tion of the two rotations in equation (6.9). Referring to Fig.6.4, the rotation from
rotated to camera axes links coordinates in axes parallel to the local orientations Tn ,
Tg, T.,,, with coordinates in the global silhouette axes x ,, z ,, which are parallel to
1,0 1,0 It is clear that these two axes can be aligned with 1,,, Tg by a rotation
around Tn with an angle a, followed by a rotation with an angle {s around the rotated

1, axis.
The transformation from rotated object coordinates X, to global silhouette coor-
dinates X, in the image plane is obtained by combining the above rotations with the

projection operator 1,53, producing
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0 _SinQSG COSQSG Xp
00 1 COSYy —COSog SINY —sinogg siny YR

Sinys  COSarg; COSY  sinagg COSYs

b
x

cosyy —cosagg siny —sinagg sing) | ¥R
~ | sinyr cosag; cosy  sinogg cosys YR
2R
. xR

cosyy —sinys 1 0] 0]
sings  cosys 0 cosag; sinogg YR
ZR

(6.11)

where the last form was obtained using the factorization of RY ~C in (6.10). Com-

parison of this form with (3.7) suggests that a simpler expression for the imaging

transformation is obtained by expressing silhouette coordinates in rotated 2-D frames.
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0 0 R
—_— G—R —_
X-r =R, (\b) Ry = 0 cosags Sinogg YR (6.12)
ZR

This expression is now rewritten for the individual components of the silhouette coor-

dinate vector in the rotated frame.

R (6.13)

Yp COSO g + Zp SinO(SG

This simple expression is a key element in the derivation of the three Silhouette-
Slice theorems described in the next section. It formally expresses that for points on
the silhouette generator represented by coordinates in rotated axes, normal components
are unaffected by the projection operation. Components along the tangent plane are
projected as a 2-vector in the tangent plane to produce the corresponding silhouette
coordinate along the tangent in the projection plane. This relation between rotated
coordinates on the silhouette generator of the object and on the silhouette is illustrated
in Fig.6.5. The orientation involved in the above projection is the angle ags character-
izing the orientation of the slice in local axes of the Gaussian sphere. Note the
equivalence of the first equation with the relation derived for the normal distance to

tangents in Chapter 4, specifically in equation (4.31).
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6.3. Property Circles of Silhouettes

In this section, formal expressions for silhouettes in terms of the 3-D transforms
of the object are obtained by applying the projection transformation in (6.13) to the
coordinates of points on the silhouette generator in terms of the 3-D object transforms
in equation (6.2). The resulting expressions are then related to the corresponding 2-D
transforms of the silhouettes 10 obtain a direct relation between 3-D transforms of the
object and 2-D transforms of its silhouettes. These relations will be formalized as

three Silhouette-Slice theorems.

6.3.1. Silhouette-Slice Theorem for the Support Transform

When the imaging transformation for rotated coordinates in (6.13) is applied to
the rotated coordinates of silhouette generator points expressed in terms of the ST in
(6.6), the following equation is obtained for the silhouette coordinates in rotated local

axes.

p

, (6.14)
P ¢ COSags / cosNgg + p o Sinogg

where p and its derivatives in the right hand side must be evaluated at {=¢g;,
N="Nsc » S0 that the right hand side is implicitly parameterized in Y through €55 ., Nsg
and og; . This expression can be compared with the expression for rotated coordinates

in terms of the 2-D ST, namely

Pr
0P /Y

where the index in p .. indicates that this normal distance is relative to the silhouette

X
Tk (6.15)

—
-

<R

in the image plane. The equality between the first components in (6.15) reveals that
the ST function of the silhouette, p (), is identical to the 3-D ST on the slice of the

Gaussian sphere of the object.

() = p(€se (YW nse (Y)) (6.16)
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The identity between the second components of (6.15), and (6.14) is consistent with
the following evaluation of the partial derivative §p /9y

0P _ op _ 8p 4sc 4 o d nsc _  cosasg

W o of dy  om dy  fcosng

where (6.5) was used to determine d £/d s and d n/d 5. The relation between the ST

of the silhouette and the ST of the object is formalized as follows:

+ pn Sinas(; (6-17)

Silhouette-Slice Theorem 1: The 2-D Support ITransform of an orthographic
silhouette of a smooth convex object is the restriction of the 3-D Support Transform of

the object surface to the grear-circle slice parallel to the projection plane.

This theorem indicates a silhouette construction method identical to the last

method presented in Chapter 4.

6.3.2. Silhouette-Slice Theorem for the Vector Support Transform

When the imaging transformation for rotated coordinates in (6.13) is applied to
the rotated coordinates of silhouette generator points expressed in terms of the VST in
(6.6), the following expression is obtained for the silhouette coordinates in rotated

axes.

X 7R n

i

. (6.18)
Z-R h cosag; + Vv sinagg

where the components (7,2 ,v) must be evaluated for §={s5. N=7Nsg . so that the
right hand side implicitly depends on y through {55, Nsg and ags . This expression
can be compared with the expression of coordinates in rotated axes in terms of the

- VST, namely

where the indices in the components n ., ., indicate that these correspond to the

silhouette in the image plane.
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This comparison implies that the relation between the 3-D VST of the object and the
2-D VST of the silhouette is given by

na(Y) = n(scW)mse ()
t ()= h (&g (W)nse (Y))eosagg (W) + v (€56 (W), nse (Y))sinasg ()

(6.19)

The above equation for the projection of the VST components has the same geometrical
interpretation as the projection of rotlated coordinates illustrated in Fig.6.5. The rela-

tion between the 3-D VST and the 2-D VST is formalized in the following theorem:

Silhouette-Slice Theorem 2: The 2-D Vector Support Transform of an ortho-
graphic silhouette of a smooth convex object is obtained by considering the restriction of
the 3-D Vector Support Transform of the object surface to the great-circle slice parallel
to the projection plane. The normal component of the 2-D VST is identical to its 3-D
counterpart on the slice, and the tangential component of the 2-D VST is obtained by

projecting the tangential part of the 3-D V'ST as a 2-vector onto the projection plane.

6.3.3. Silhouette-Slice Theorem for the Curvature Transform

When the imaging transformation (6.13) is applied to the differentials of coordi-
nates of silhouette generator points in rotated coordinates in terms of the CT represen-
tation (6.6), then combined with the expression for the differentials of the anguiar
variables on the slice in (6.5), the following differentials are obtained for the

silhouette coordinates in rotated axes

ax rg 1 0 0 00 11 T12 COSQsg
dz,p | ~ | O cosogs sinogg O(l) Fi2 T2 sinagg dy (6.20)

Combining the first two matrices on the right-hand side reveals that dx ,p = O and

that

Y11 T 12 COSQSG

dy

dz = OS¢ sina .
“ TR oSG 5G 12 T 22 SN
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Comparison of this equation with the expression of the 2-D differential of silhouette
coordinates in terms of the 2-D CT, namely dz ,p = p(ys)d 5, reveals that the CT
function p(ys) of the silhouette is related to the 3-D CT function by

1156 7T 125G COS 5

(6.21)

p(Y) = | cosogg sinaSG]

71256 7T 225G sinagg

where the dependence of the right-hand side on t is implicit through og; and
riisc =7:;(€sG Msg )- The right-hand side of (6.21) is the projection of R along the
direction given by coSags; ., Sinags . As the tensor of curvature is defined in the
tangent plane, (6.21) exactly corresponds to a projection of this tensor onto the trace
of the image plane in the tangent plane. This relation between silhouette curve CT and

object surface CT is formalized as follows:

Silhouette-Slice Theorem 3: The 2-D Curvarure Transform of an orthographic
silhouette of a smooth convex object is obtained by considering only the restriction of the
3-D Curvature Transform of the object surface to the great-circle slice parallel 1o the
projection plane, and projecting the tensor-valued object function on the slice onto the

projection plane.

In addition to relating the property functions for the CT, equation (6.21) indi-
cates a remarkable result relating the radius of curvature of the silhouette to the
radius of curvature tensor at the corresponding point of the object surface.
Remembering thal og; is the angle between the local y,-axis and the plane of the
slice, the above equation indicates that the radius of curvature of the silhouette is the
projection of the tensor of radius of curvature on the plane of the slice. This result is
the dual of a well known theorem due to Euler in the geometry of surfaces. Both

Euler’s theorem and its dual are discussed in more detail in Appendix 3.

6.4. Example: Silhouette of a Sphere

The Silhouette-Slice theorems are illustrated in this section by the simple example
of a sphere of radius R centered at Py(x(,Y 0,2 ), as illustrated in Fig.6.6. The three
transforms of this sphere were evaluated in section 5.2.6. Although this particular
example could be solved by a number of alternative methods, the approach used here

provides insight into the mechanism of analytic silhouette evaluation with the
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Fig.6.6. Projection of a Sphere

Silhouette-Slice theorems. More complex illustrations of the Silhouette-Slice theorems

are provided in Chapter 8.

The 3-D ST of the sphere is given by
p(&m) = xcosfcosn + v sincosn + z,sinn + R (6.22)

For a viewing direction (¢,0), the 2-D ST of the silhouette is obtained from the above

expression with equation (6.16), as
P2 -(P) = xycosé g cosngg + yosinégg cosngg + zosinmg; + R (6.23)

where €55 ,Msg implicitly depend on (¢,0,) by equation (6.2). Replacing &5 Mg
by these expressions, performing trigonometric manipulations and rearranging terms

produces

Pr = (=x,sing + y,cosp) cosys

.24
+ (—x o sinficose — y , sinfsing + z , cosd Isiny + R (6.24)

The coefficients of cosys and sinys in the above expression can be recognized as the coor-

dinates x g4, Z o, Of the projection in the image plane of P, the center of the sphere.
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Indeed, these coordinates are related to the 3-D coordinates (x 4,y 9,2 o) by

cos¢cosf  singcosf  sinf X0

—sing cosg 0 Yo (6.25)
—cos¢sing —singsing cosb| |

010
001

X omr

2o

The 2-D ST of the silhouette is hence given by
2 () = x, zcosy + z gpSing + R (6.26)
This expression is identical to the 2-D ST of a circle of radius R centered at
(X omrZ om)-
The 3-D VST of the sphere is given by
X g cosécosn + yq sinécosn + zosinn + R
s¢m) = —x o sin€ + y cosé (6.27)

—x o cosésinn — y sinésinn + z o cosn

The 2-D VST of the silhouette is obtained from the above expression by applying
equation (6.19). The resulting normal component of the VST is, by definition, identi-

cal to the 2-D ST derived above. The tangential component is given by

t () = cosags h (€56 Msg ) + sinasg v (Esg Mg ) (6.28)

The angles £,m,0c in the above expression are replaced in terms of ¢,8, using (6.1) and

(6.2). After trigonometric manipulations, the result is found to be
t A(P) = —x o sing + z o, COSYs (6.29)

where X g, 2o are as defined above. The above result is identical to the tangential

component of the VST of a circle centered at (X o,2 orr)-

The 3-D CT of the sphere was obtained in section 5.2.6. as

R O

ﬁ=OR

(6.30)

The 2-D CT of the silhouette is obtained from the 3-D CT of the object with equation
(6.21) as
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R O COSQSG

p(y) = | cosag; sinagg 0 R sinasg =R (6.31)

which is obviously the 2-D CT of a circle of radius R. Note that the ST is indepen-
dent of translations so that the position of the silhouette cannot be predicted by the
construction with the CT. The independence of the CT on translations is an advantage
in some applications, a disadvantage in others. Relative merits of the various
transforms and Silhouette-Slice theorems are discussed in Chapter 8 in the context of

applications presented there.

6.5. Discussion

In this chapter, theorems have been proposed to relate representations of
silhouette curves in terms of functions on their Ga.ssian cir¢les to the corresponding
representations of object surfaces in terms of functions on the Gaussian sphere. Two
additional aspects of the Silhouette-Slice theory will be discussed in this section,
namely its relation with the Projection-Slice theorem in computerized tomography,
and an interpretation of the 3-D transforms as compact representations of the collec-

tion of all silhouettes of an object.

6.5.1. Comparison: Silhouette-Slice Theorems and Projection-Slice Theorem

The formal relations among an opaque convex object, its silhouettes, and their
representations on Gaussian images are sketched in Fig.6.7. The concept of this
diagram bears a strong similarity with that relating an absorbing object, its line-
integral projections and their Fourier Transforms, sketched in Fig.6.8. This last set of
relations is important in the field of computerized tomography, and is referred to as
the Projection-Slice Theorem to stress the duality between projection in object space
and slicing in transform space. The similarity between this result and the new rela-
tions presented in this thesis has suggested the name of Silhouette-Slice Theorems for
the new relations, to stress the duality between silhouette construction in the object

domain and slicing in the model domain.

In spite of the formal similarity between the Projection-Slice theory and the
Silhouette-Slice theory, there are substantial differences between the two formalisms.

First, the Projection-Slice theorem applies to absorbing objects which can be defined by
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3-D —_— Property
Object Sphere
Surface -— of Object

Projection Slice

2-D —_— Property

Silhouette Circle
Curve «<«——— | of Silhouette
- Fig.6.7. Block Diagram for the Silhouette-Slige Concept -
3-D ——— | 3-D Fourier
Attenuating Transform
Object - of Object
Projection - {Slice
2-D ——— | 2-D Fourier
Line-integral Transform
Projection <—— | of Projection

Fig.6.8. Block Diagram for the Projection-Slice Theorem

a real-valued function defined in 3-space, whereas the Silhouette-Slice theorems apply
1o opaque objects which can be described by functions of two variables, or by func-
tions with binary values defined in 3-space. Second, the Fourier transform used in the
Projection-Slice theorem is an integral transform, where each value of the transform
depends on all the values of the function specifying the object. On the other hand, the
transforms of opaque objects defined in Chapter 5 of this thesis are point transforma-
tions where each value of the transform depends only on the value of a function

defining the object at one point.
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It is possible that a theory of silhouettes comparable to the one presented in this
thesis could be obtained by modeling an opaque object as an object with a finite uni-
form absorption coeflicient, to which the Projection-Slice theory applies, then consider-
ing the limit of the line-integral projection when the absorption coefficient becomes
infinite. This approach to silhouette analysis would provide a nice bridge between
theories for absorbing objects and for opaque objects, but we have not been able to find

an appropriate formulation for the limiting argument.

6.5.2. 3-D Transforms as Compact Representations of Silhouettes

The relation between slices of 3-D transforms of objects on the Gaussian sphere
and 2-D transforms of silhouettes leads 1o the interpretation of the 3-D transforms as
indirect representations of the set of all silhouettes of a convex object. Indeed, for any
given orientation of the viewing direction, simple representations of the silhouette,
namely the ST. the VST and the CT. are obtained by slicing the corresponding 3-D
representation of the object. It is worthwhile to emphasize that this type of construc-
tion is possible only for selected representations of the silhouettes. It is tempting to
investigate the existence of other 3-D representations of objects, for which a slice
would be related to the silhouette by expressions simpler than the inverses of the ST,
VST and CT. For example, one could try to construct a "dual” object, such that a
silhouette of the original object is identical to a slice of the dual object. A simple

counter-example suggests that this construction fails in most cases.

Consider a cube and the silhouettes of this cube obtained for a set of viewing
directions covering a 180° arc around the cube; this set of directions and one particu-
lar silhouette are represented in Fig.6.9 a). If a "dual" object of the cube exists, it can
be constructed by superimposing the set of silhouettes corresponding to the viewing
directions in Fig.6.9 around a center, while keeping their respective orientations. The
resulting object is shown in Fig.6.9b), where the contribution of the particular
silhouette illustrated in Fig.6.9a) is drawn in bold. It is easy to see that this object
does not have the desired property by considering a viewing direction outside the set
used to synthesize this candidate dual object. One such viewing direction is shown in
Fig.6.92) and the corresponding slice in Fig.6.9b). This slice is quite different from the

actual silhouette, which is a perfect square. As each silhouette of a 3-D object is two-
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a) b)

Fig.6.9. Counter-Example of a Direct Representation of all Silhouettes.
a) Object, a particular silhouette and the set of viewing directions.
b) Dual object constructed from a set of silhouettes, and a test slice.

dimensional and as the set of viewing directions is two-dimensional also, a "dual"
object whose slices are the silhouettes of the original object is necessarily four-

dimensional, unless special relations among individual silhouettes are exploited.

The three transforms presented in Chapter 5 are compact representations of the
set of all silhouettes of the object, as they are only three-dimensional as is the object
itself. In order to obtain this compactness of representations, redundancies among
individual silhouettes must be detected and exploited. The existence of redundancies
between the set of all silhouettes of a single object are now discussed, together with

their impact on the representations of silhouettes and 3-D objects.

Redundancies among silhouettes of an object can be expected in the general case
only when relating the contribution of the same surface element in different
silhouettes. Consider the set S; of all silhouettes for which the point P on the object

surface is on the silhouette generator. This set of silhouettes corresponds to all the
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viewing directions perpendicular to the normal T at P ; see Fig.6.10. Let Py,; be the
projection of P, on each silhouette S;. We have identified three properties of the
silhouette curves around the points Py,; which have a high degree of redundancy
among the different silhouettes S;. The first two properties are the projections onto
the normal and tangent at Py,; of the vector from the origin O ,,; to Pyy; . The third
property is the radius of curvature, p;, of the silhouette curve at P, . It is straight-
forward to show that the normal components of the vector O ,Tﬁ omri are identical for
all silhouettes and that the tangential components of these vectors are the result of the
vector projection of a single 2-vector in the tangent plane. Finally, the relation
between the curvatures of the S;’s at Py,; is given by the dual of Euler’s theorem
discussed in Appendix 3. This theorem shows that the radii p; depend on the orienta-
tion of the viewing direction as a function specified by only“three independent parame-

ters, namely the components of the 2x2 tensor of curvature of the surface at Py,

The above argument clarifies the redundancy between silhouettes corresponding
to different viewing directions. This redundancy is now related to property circles
and spheres by considering the image Po; of P on the Gaussian sphere, the property
sphere value at P; , and the values of the various silhouette property circles at P .

It is easy to see that the slices corresponding to the set S; are all the great circles

Fig.6.10. Set of Viewing Directions for which P is on the Silhouette Generator.
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passing through Pg; drawn on Fig.6.11. The relations between property circles
defined on these slices at the point Py; correspond to the relations between silhouette
properties at Pg,;. For the transforms defined in Chapter 5, the ST property func-
tions have the same value on each slice at Py; , the VST tangential functions are pro-

jections of a single 2-vector, and the CT functions are projections of a 2x2 tensor.

We have shown in this section that the Silhouette-Slice theorems provide an
interpretation of the 3-D transforms as compact representations of the set of all
silhouettes of a convex object. In addition, we have shown which type of constraints
must be satisfied by property circles for constructing compact 3-D representations of
silhouettes. It is conjectured that, aside from higher order properties corresponding to
terms of order 3 and higher of Taylor expansions of curves and surfaces, there are no
property spheres and circles representing metric information, other than the ST, VST

and CT, for which the Silhouette-Slice theory applies.

Fig.6.11. Slices of the Gausian Sphere corresponding to Silhouettes including P,.
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6.6. Summary

In this chapter, theorems bave been proposed to relate representations of
silhouette curves in terms of functions on their Gaussian circles to the corresponding
representations of object surfaces in terms of functions on the Gaussian sphere. It was
first shown that the silhouette representations are directly related to a great-circle
slice of the object representations. In the second step, the silhouette property func-
tions on the Gaussian circle were related to the object property functions on the slice
of the Gaussian sphere. The relations are an identity for the ST function and for the
normal component of the VST function, a vector projection for the tangential part of
the VST function and a tensor projection for the CT function. It is interesting to note
the correspondence between the projection operations applied to great circle slices,
which are projections of scalars, vectors and tensors, and the observation that the ST,

VST and CT depend on derivatives of p ({) up to orders 0, 1 and 2 respectively.

The silhouettle theory developed in this chapter is applicable to smooth strictly
convex objects only. In the following chapter, these results will be extended to objects
with corners, edges and planar faces, and to their silhouettes. In Chapter 8, a number
of examples of silhouette construction with the three theorems are presented; one of
these examples shows that the results are sometimes valid even for non-convex
objects. Other potential applications of the Silhouette-Slice theorems are also dis-

cussed in Chapter 8.



v




| Chapter 7
Extensions to Surfaces with Edges and Corners
and their Silhouettes

In Chapters 5 and b, a theory relating the shapes of smooth strictly convex object
surfaces and the shapes of their silhouettes was developed. In this chapter, extensions
of this theory to more general types of objects will be investigated; specifically, object
surfaces with abrupt changes of curvature, edges, corners and embedded straight seg-
ments will be considered. Using limiting arguments, it will be shown that most of the
results developed so far for smooth surfaces can be extended to these types of sur-
faces. In the first section of this chapter, the basic method for obtaining the extensions
is developed. In the subsequent sections, the extensions themselves are analyzed suc-
cessively for the circular transforms of 2-D curves, for the spherical transforms of 3-
D surfaces. and finally for the Silhouette-Slice theorems relating the transforms of the

object to the transforms of its silhouettes

7.1. Extensions of Theories developed for Smooth Surfaces

Extensions of the theories developed so far, to include abrupt changes of curva-
ture are trivial. Indeed, continuity of curvatures, which is identical to continuity of
second derivatives, was exploited only in the derivation of consistency constraints for
the 3-D CT in section 5.2.3.1. Except for these conclusions on consistency, all the
theories developed in Chapters 5 and 6 are valid for surfaces with curvature discon-
tinuities and their silhouettes. The other extensions of silhouette analysis will be
developed with the following argument. Each convex surface L, ,whether or not
smooth and strictly convex, can be considered as the limit of a sequence {Zg;} of
smooth strictly convex surfaces. In the presence of edges and corners in Zyg, the
sequence {Lg; } could be constructed as dilations [56] of the object with balls with
radii 1/i. For each surface Lg;, the 3-D spherical transform is well defined and can
be evaluated by the methods developed in Chapter 5. For a given viewing direction,
the Silhouette-Slice theorems apply to these spherical transforms and determine the
circular transforms of the silhouettes corresponding to each Zg;. Finally, these

transforms can be inverted to determine the silhouettes Sg; of all surfaces Zg; . If the
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initial object surface I is smooth and strictly convex, the sequence of 3-D
transforms of the Lg; converge to the 3-D transform of I,g, the 2-D transforms
obtained with the Silhouette-Slice theorem converge to the 2-D transform of the

silhouette Sys of Zyg ., and the silhouettes S; themselves converge to Sy -

Convergence of the above sequences is now investigated in the case where Z g
does not satisfy the smoothness and/or strict convexity constraints required for the
theories developed in Chapters 5 and 6. Although the surface g is not smooth, its
silhouette Sys is well defined, and it is obvious that the sequence of silhouettes {Ss, }
of the surfaces Lg; converges to the silhouette Sps. However, convergence of the
spherical transforms of the Ls; and of the circular transforms of the Sg; is not
guaranteed. Since the transforms are defined as functiors on the Gaussian images of
curves and surfaces, convergence must be analyzed for both the Gaussian mapping
itself and for the property functions defined on the Gaussian circle/sphere. Conver-
gence of the mapping is analyzed first. During our analysis of particular discontinui-
ties, it will become apparent that the Gaussian mapping converges to singular map-
pings in the neighborhood of each discontinuity. Two basic types of singularities will
be observed. In the first type, one point of the object is mapped onto many points of
the Gaussian image. In the second type of singularity, many points of the object are
mapped to the same point of the Gaussian image. For the first type of singularity, each
point of the Gaussian image of I, corresponds 1o a single point of the surface. We
will show that in this case, the spherical transforms of Z ¢ are well defined and equal
to the limits of the transforms of the g;. For the second type of singularity how-
ever, only the CT converges in the space of continuous functions. The limits are func-

tions of class C for the VST and generalized functions for the CT.

The extension of the class of surfaces of interest has implications also on the
inverse transforms of the circular and spherical functions. The case of the 2-D inverse
transforms is considered first. The result of the inverse circular transform is a set of
equations parameterized with the normal orientation angle Y. For a curve with
straight segments, a set of equations parameterized with { cannot explicitly define all
the points of the curve, as is now illustrated by the example of a square with rounded

corners.
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This curve is sketched in Fig.7.1a) and defined by the parametric equations

x cosy + sign (cosys)

= <
z sinys + sign (simyy) OS¢ <2nm
where
' 1 forx >0
sign (x ) = —1 otherwise

(7.1)

By definition, a curve is the set of points obtained as the image of the domain in

parameter space in the transformations specified by the parametric equations. Hence,

only the four arcs of circle displayed in Fig.7.1b) are defined by (7.1). In order to

define the curve in Fig.7.1a) by parametric equations such as (7.1), it is necessary to

consider this representation in a wider sense. namely that the image of the mapping

(7.1) from the parameter space to R? is a set of arcs such as those in Fig.7.1b), and that

these arcs must be implicitly joined by stiraight segments. Equivalent arguments show

that inverse transforms of surfaces for which the Gaussian mapping has singulartities

of the second type also represent surface patches with gaps corresponding to the

straight components. These inverse transforms must also be considered in a wide

sense, with straight segments implicitly bridging the gaps.

N O

- N

a) b)

Fig.7.1. Curve with Straight Edges. a) Complete Curve.
b) Points explicitly defined by the parametric equations.
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In order to make precise conclusions about the limits of the sequences of surfaces,
silhouettes and transforms defined above, several issues must be addressed. For exam-
ple, the type of convergence of the sequences of 2-D curves and 3-D surfaces must be
defined and it must be shown that the limits of the sequences depend only on the sur-
face being approximated, not on the particular sequence {Zg; }. These and other issues
are important to develop a mathematical theory, but we have decided instead to rely

on inuitive reasoning and to focus on qualitative interpretations of the results.

7.2. Extensions of the Circular Transforms of 2-D Curves

In this section, the circular transforms are extended to curves wi.h corners and
edges. In the neighborhood of a corner, a curve is considered as the limit of a sequence
of curves with a rounded corner, as the radius of the corner tends to zero. In the
neighborhood of a straight edge. the curve is considered as the limit of a sequence of
arcs, as the curvature of the arc tends to zero. Finally, the extensions are illustrated
by defining a rectangle as the limit of a sequence of superconics of degree n for n —co.
The rectangle has both corners and straight edges; its circular transforms obtained
with the sequence of superconics are consistent with the results obtained for indivi-

dual corners and straight edges.

7.2.1. Circular Transforms for a Curve with Corners

The circular transforms are considered here for a corner joining two edges with

normals 77 |, 77, and corresponding normal orientations Yy, Y,: see Fig.7.2. The corner

n,

n, Y

/ VA Y

Fig.7.2. Curve with a Corner.
a)Sequence of curves approximating the corner. b) Gaussian circles.
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is modeled as the limit of a sequence of arcs joining the two straight edges, as tie
radius of the arc tends to zero. Each one of these arcs is mapped to the arc [ys;, Y5,] of
the Gaussian circle. The image of the corner on the Gaussian circle is hence the arc
[y, Y, ] joining the images of the sides of the corner. The singularity of the Gaussian
mapping is of the first type. Each point of the Gaussian circle represents one point of
the object and the sequence of transforms converges to continuous functions. In addi-
tion, the values of the three transforms are well defined everywhere in the limit. The
inverse transforms correctly reconstruct all the points of the original curve. Among
all the transforms, the presence of the corner is conspicuous only in the CT, where the
radius of curvature is zero over the image of the corner on the Gaussian circle. The
length of the null arc representing the corner in the CT is equal to the exterior angle

Yr—Ys; of the silhouette corner.

7.2.2. Circular Transforms for a Curve with Edges

In this section. the circular transforms are considered for a straight edge of length
{ and normal orientation Y5, from A to B ; this edge is considered as the limit of a
sequence of arcs joining A and B, when the radius of curvature of the arcs increases
without bound; see Fig.7.3. The image of each arc AB on the Gaussian circle is a
small segment of the circle around Y as for example, the bold arc in Fig.7.3b). In the
limit, all points of the edge AB map to the single point Y=y of the Gaussian circle.
As the normal orientation is identical for all points on a straight edge, it is natural

that the limiting process defines the Gaussian image of the segment as the single point

o
B o

Yo
Yo

Fig.7.3. Curve with a Straight Edge.
a) Sequence of curves approximating the straight edge. b) Gaussian images.
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Y=y, corresponding to this orientation. For an edge then, the Gaussian mapping has a
singularity of the second type. One consequence is that parametric equations defining
a curve with edges in terms of normal orientation must be considered in the wide

sense defined in section 7.1.

The effect of the singularity of the mapping is now investigated for each of the
three circular transforms. In the simple case of a straight edge, it is possible to obtain
the resulting transforms without applying the limiting argument. In the case of the
ST, the normal distance to the tangent is, by definition, identical for all points on a
straight edge. As a consequence, this unique value unambiguously determines the
value of the ST for Yy=15,. Examining the tangential component ¢ of the VST next, it
can be observed that ¢, by definition the distance between the contact point and the
projection of the origin on the tangent, varies continuously along the edge, with a total
variation equal to the length [ of the edge. The ¢ -component of the VST has hence a
step discontinuity of height [ at y5y. Finally, the effect of the edge on the CT can be
predicted with equation (5.20), p(y) = p (y) +1 4 (). As p(¢) is continuous and
¢ () has a step discontinuity of height /, it can be predicted that ¢ w and therefore p
have an impulse of height /. This conjecture can be verified by noting that, if s

represents the arc length along the curve,

¥
s() —s () = [ p(y)d ¢ (7.2)
2
so that
Yote
[ = hm s (Pot+e) —s (tbo—é)] = hm f p(yY)d s (7.3)

Therefore, s () must have an impulse with height [ at ys.

p(P) = 1 S(yYy—ys) (7.4)

7.2.3. Example: Transforms of a Rectangle

The extensions of the circular transforms obtained in the previous sections are
illustrated here by the example of a rectangle, considered as the limit of a sequence of

superconics.




A superconic can be defined by the implicit equation

n n

I
E =1 (7.5)

ot

="y
al |

This curve is smooth and strictly convex for 1 <n <oo, and tends for n —co to a rec-

tangle with sides 2a , 2b centered at the origin: see Fig.7.4.
n —oo
E |

Curves Support Transforms

n —co
::i j n —co

t-component of VST’s Curvature Transforms

N
N

Fig.7.4. Circular Transforms of a Rectangle and of a Sequence of Superconics.
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The circular transforms of the superconic are derived in Appendix 1; the property

functions are given by

k+1 k| MR
p = | lacosyl + b sinys| (7.6)
k+1
§= " =p*|. k ? k=14 3 k+ k-1 (7.1
t sinys cosy(—a* T lcosy 171 + 55 ¥ I sing 1¥ 1)
k (ab ) *1 | cosy sinys 1% ™!
p(yP) = Y sing
2k 41 (7.8)
k+1

la cosyr 1“1 + lbsimpn"”l

where ¥ = 1/(n—1). The limits of the above transforms are now considered for

n —oo, so that £ —0.

I}inz)p(\,b) = lacosy! + |bsimpl (7.9)

girrg)z (¢) = —a siny sign (cosys) + b cosys sign (sinys) (7.10)
oo for Yy=0,7/2, m,37/2

gx_r{}) p(y) 0 otherwise (7.1

It is clear from the above expressions that the ST is continuous, although it has slope
discontinuities at Y = 0O, w/2, m, 3w/2. The expression for ¢ reveals discontinuities
with alternating heights 2b and 2a for the same values of . Finally, the CT func-
tion contains impulses at these four values of Y. The strengths of the impulses in the
limit for £ —0 can be determined by integration. For example, the height A of the

impulse at Y = O is determined as
+e
h = lim li d
eLO kl—r{é) ‘_/; p("b) d

| cosy sinys 1 X 71 d s

+€
= lim lim & (ab }**! [
€—0 k —0 Ze 2k +1

k+1

la cosy %1 + tbsimpl"“]
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€e—0 k—0

€
= lim lim 2bk [y* "1 d = 2b
0

The height of the remaining impulses can be determined by symmetry, so that

S(Y—m/2) + 8(y—37/2) | +2b | 8(P) + S(y—m) (7.12)

gl_rfz)p(\b) = 2a

The above result confirms that the value of the CT is zero for the segments of the
Gaussian circle corresponding to the corners of the rectangle. The impulses are located
at the images of the sides on the Gaussian circle and have strengths equal to the
lengths of the edges. Parametric equations for the rectangle can be obtained by invert-

ing any of the circular transforms determined above; the result is given by

x = a sign (cosy)

7.
v = b sign (siny) (7.13)

Note that these equations explicitly represent only the four corners of the rectangle.
The limits of the transforms for the rectangle are displayed together with transforms
of the superconics in the limiting sequence, in Fig.7.4. The various discontinuities of
the circular transforms of the rectangle are consistent with the relations ¢ = p,
P=P * Py

Summarizing the exlensions of the 2-D transforms, curves with corners are
readily accomodated by the formalism developed for the ST, VST and CT in terms of
smooth curves. The direct and inverse transforms also apply to curves with straight
edges, when generalized functions are considered for the CT, and when the parametric

functions in terms of normal orientation are considered in an extended sense.

7.3. Extensions of the Spherical Transforms of 3-D Surfaces

Extensions of the spherical transforms are considered in this section successively
for surfaces with curved edges, developable surfaces, surfaces with straight edges,

corners, and planar faces.

Each non-smooth surface is considered as the limit of a sequence of smooth sur-
faces, and its transforms are defined as the limit of the transforms of the surfaces in

the sequence. It can be shown by arguments similar to the ones exploited for curves,
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that the extension of the forward and inverse transforms is straightforward when the
Gaussian mapping has only singularities of the first type, which is the case for surfaces
with curved edges and corners. Furthermore, it turns out that the extensions are also
straightforward for the ST of surfaces with any of the discontinuities listed above.
Extension of the VST to all these surfaces requires only to allow step discontinuities
in the tangential components of the spherical function. The discussion of this section
will therefore emphasize the two remaining aspects, namely the definition of the Gaus-
sian mapping for non-smooth surfaces, and the singularities introduced in the CT ten-

sor when representing straight surface components.

7.3.1. Curved Edges

* The first singularity considered here is a curved edge, sach as the edge joing two
segments of sphere in the object illustrated in Fig.7.5a). This type of edge can be con-
sidered as the limiting case of a torus patch which smoothly joins the two faces of the
edge, when the section radius of the torus tends to zero. A sample of the limiting
sequence is illustrated in Fig.7.5¢). In this example, the torus patch smoothly "fills"
the gap between the surfaces on each side of the edge, which have normals with lati-
tudes 7, M2. As the section radius goes to zero, the image of the smooth edge on the
Gaussian sphere is unchanged. In the limit then, each point on the curved edge is
mapped to an arc of points on the Gaussian sphere, namely the great circle arc joining
the limits of the normals on both sides of the edge. For example, the point P, at long-
itude £, on the curved edge in Fig.7.5a) is mapped to the arc between 1;(&,,m;) and
1,(£,m,) on the Gaussian sphere, see Fig.7.5b). The Gaussian mapping has a singular-
ity of type 1, so that the three transforms and their inverses are well defined. The
presence of the curved edge is not clearly apparent in the ST and the VST of the sur-
face, but the limiting argument can be used to determine that the CT has special
values on the Gaussian image of the corner. In Appendix 1, the CT of a torus patch

with cross-section radius 7 and principal radius R is determined to be

R +r cosn 0
= cosm (7.14)
Rtorus = 0 r ™ <n<mn

The CT value corresponding to the curved edge is obtained as the limit of the above
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b)

c) d)

Fig.7.5. Surface with a Curved Edge
a) Surface with sharp edge. b) Gaussian image of a point on the edge.
¢) Surface with smooth edge. d) Gaussian image of smooth edge.

expression as 7 —0, namely

R /cosn O

R= 0 0

m <M, (7.15)

In our example, the edge is oriented along the local axis 1;. More generally, the CT
tensor on a curved edge is singular, i.e. its determinant is zero. The principal values in

our example are zero and R /cosm, the second of which is related to but not equal to
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the radius of curvature of the edge. In addition to being curved, a general ecge may
also be twisted. However, torsion of a curve is related to third order derivatives of
the equations of the curve [47, 52]. Therefore, the expression of the CT for a twisted

edge is similar to that for a planar curved edge.

7.3.2. Developable Surfaces

The case of a developable surface is considered in this section, and illustrated by
the example of a section of cylinder with radius » and length [ ; see Fig.7.6a). This
section of cylinder will be considered as the limit of sections of tori with constant sec-
tion radius 7, increasing principal radius R and constant length { = R (£,—§,) along
the principal axis. One of these torus sections is illustrated in Fig.7.6c). The image of
the section of torus on the Gaussian sphere is the area between the two meridians with
longitudes ¢, £,, shown on Fig.7.6d). As the radius R increases to oo, the longitude
interval {,—§; = (/R decreases to zero. In the limit, all points on each generatrix of
the cylinder are mapped onto a single point of the Gaussian sphere, and the cylinder
surface is mapped 1o a single meridian {=¢,, sketched in Fig.7.6b). The Gaussian

mapping has a singularity of the second type .

The CT values corresponding to the torus patch are obtained by the limiting pro-

cess
ﬁc .= lim ﬁ:or‘us
Y R —oo, R({-&1)=1
R +r cosn 0
i o [u ( )—u( )]
—R—'oo.lelél;,-f,):Z 0 r u g El u g 52
where
1 x20
ulx)= 0 x <0
L 8(&—¢o) 0
R €08 (7.16)
R n

ol = 0 r
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[

o y

a) b)

c) d)

Fig.7.6. Developable Surfaces.
a) Section of a Cylinder. b) Gaussian Image of Cylinder.
c) Section of a Torus. d) Gaussian Image of Torus.

7.3.3. Straight Edges

A straight edge £ with length ! joining two faces with normals 1, I, is now
considered, and defined as the limit of a cylinder patch joining the two faces when the
radius of the cylinder goes to zero. The edge is depicted in Fig.7.7a), and a rounded
surface in the limiting sequence in Fig.7.7c). The image on the Gaussian sphere of the

cylinders in the limiting sequence is the great circle arc T, N, sketched in Fig.7.7d),
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n, -
: n,
\\
g —
n; n,
a) b)
n,
o,
, n
o, 2
c) d)

Fig.7.7. Surface with a Straight Edge.
a) Sharp straight edge. b) Gaussian image of edge.
c) Smooth straight edge. d) Gaussian image of smooth edge.

and is defined in the limit as the image of the edge £: see Fig.7.7b). The singularity of
the Gaussian mapping for this edge is complex, as each point and all points on the edge

are mapped to the arc Tij Ii,.

The behavior of the CT corresponding to this edge is now investigated. The CT of
the edge is determined as the limit of the CT’s of cylinders in (7.16), as r =0. Asa

consequence, impulses with strength [ /cosm are introduced in the tensor component
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parallel to the edge, at all points of the Gaussian image of the edge. For example, for a
horizontal edge with longitude &, joining faces with normal latitudes 7y, 7;, the con-

tribution of the edge to the CT tensor is the impulse ridge

_ L 8(£—¢,)

5 10
edge — cos?

00

(u(n—ny) —u(n—m,)) (7.17)

Note that the CT value at the points of the Gaussian sphere corresponding to the

straight edge has one zero eigenvalue while the other eigenvalue has an impulse.

7.3.4. Corners

The Gaussian mapping and the transform values are now considered for surface
corners. A corner is defined as the limit of a rounded corner when the size of the
rounding becomes arbitrarily small. A polyhedral corner P is considered first, at the
intersection of three faces with normal orientations W, N,, N3, as illustrated in
Fig.7.8a). The image on the Gaussian sphere of a rounded corner approximating the
corner at P, covers the area between the three great circle arcs I, I,N3, N3N,
illustrated in Fig.7.8b). The limiting process defines the Gaussian image of the sharp
corner 10 be the same area. The Gaussian mapping has a singularity of the first type, so

that the spherical functions and their transforms are well defined.

— o

nj3

a) b)

Fig.7.8. Surface Corner.
a) Polyhedral Corner. b) Gaussian Image of the Corner.
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Among the three transform functions, only the CT has a special value at a corner,

namely the null tensor

00

R ~loo

corner

(7.18)

Polyhedral corners with three or more faces are mapped to spherical polygons on the
Gaussian sphere. In general, the image of convex corners is a convex area on the Gaus-
sian sphere. An example of a corner surrounded by a smooth curved surface is given
by the tip of an object similar in shape to a football; the image of the corner on the
Gaussian sphere is an area limited by a small circle. The surface and the Gaussian

image of the corner are displayed in Fig.7.9.

7.3.5. Planar Faces

The discontinuity corresponding to a planar face with normal orientation T is
now addressed. The image of this face in the Gaussian mapping is first considered. All
points of the face have the same normal orientation N, and are therefore mapped to
the corresponding point of the Gaussian sphere: see Fig.7.10. The Gaussian mapping
has a singularity of the second type on a neighborhood containing the face. The
representation in terms of normal orientations is hence defined only in the extended

sense, as are the inverse spherical transforms.

a) b)

Fig.7.9. Surface Corner.
a) Corner on a single curved surface. b) Gaussian image of the corner.
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a) b)

Fig.7.10. Planar Face. a) Surface element. b) Gaussian Image.

The values of the spherical transforms are now considered. First, the normal dis-
tance between the origin and the tangents is identical for all points on a planar face.
The ST value is hence well defined for the point corresponding to Iy on the Gaussian
sphere. However, the tangential components of the VST are measured in the plane of
the face and have therefore a different value at each point of the face. The tangential
VST components are hence undefined at iy and the VST function has step discontinui-
ties at this point of the Gaussian sphere. Considering the behavior of the CT around
Ty, the correspondence with the case of an edge for a planar curve suggests describing
the planar face by a tensor impulse in the CT. This conjecture happens to be false
howvever. as it is not possible to explicitly define the shape of any face boundary by
only three numbers, the three CT components. It is not possible in general to ade-

quately describe a planar face locally by the CT function on the Gaussian sphere.

The results obtained in this section for the description of non-smooth convex 3-D
surfaces by the three spherical transforms are now summarized. At corners and edges
of a surface, one point of the surface is mapped to many points on the Gaussian sphere.
The values of the spherical transform functions are well defined, and special values
are obtained only for the CT, where the tensor is null on a corner, and has a zero
eigenvalue on an edge. When a straight component is present in the surface, all points
of the segment are mapped to the same point on the Gaussian sphere. This is the case

for developable surfaces, straight edges and planar faces. The ST is well defined at the
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corresponding points of the sphere, but tangential components of the VST have step
discontinuities. In the case of the CT, impulses must be introduced in one eigenvalue
of the CT tensor at points corresponding to a straight edge or a developable surface.
The other eigenvalue is finite in the case of a developable surface and null for a
straight edge. Finally, the shape of a planar face cannot be modeled adequately by the
CT.

7.4. Silhouette-Slice Theorems

In this section, extensions of the three Silhouette-Slice theorems presented in
Chapter 5 for smooth surfaces are discussed. The appropriate extensions are obtained
in most cases by the limiting process described in section 7.1. Specifically, the
extended theorems describe the relations between the limit of the spherical transforms
of the Ls; and the limit of the circular transforms of the Sg;. When the spherical
transform of Z s is a function in the strict sense, the limiting process defines the cir-
cular transform of the silhouette as the appropriate projection of the great circle slice
of the corresponding spherical transform, exactly as in the case of smooth objects.
This argument shows that the Silhouette-Slice theorems for the ST and VST can be
extended without modifications to cover surfaces with corners, edges and faces, and
also developable surfaces. By the same argument, the Silhouette-Slice theorem for the

CT can be extended to surfaces with corners and curved edges.

The extension of the Silhouette-Slice theorem for the CT to surfaces with straight
edges and to developable surfaces cannot be obtained only by the formal argument
used for the other cases, since the corresponding sequences of spherical and circular
transforms do not converge in the space of strict-sense functions. This remaining issue
concerning the extensions is investigated in a first subsection. The second subsection

considers some corollaries of the extended Silhouette-Slice theorems.

7.4.1. Silhouette-Slice Theorem for CT’s with Impulses

In the two cases to be analyzed here, namely straight edges and developable sur-
faces, the 3-D CT was determined in section 7.3. to contain ridges of impulses. The
main issue is then to determine how a ridge of impulses intersecting the silhouette slice

contributes to the CT on the slice. To simplify the analysis, the issue of slicing a ridge
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of impulses is first considered for a scalar function in the Euclidean plane Oxz. Con-
sider a function /,.(x,z) on R?, and a slice of this function along a line through the
origin, with an angle o with the Oz axis; see Fig.7.11. The slice points can be

represented by the parametric equations

X =1 sinc
Sina (7.19)

-
-

=1 Cosx

where ¢ is a metric parameter along the slice axis. When f,, is a strict-sense func-
tion, the values of the function along the slice, f, (¢ ), are obtained by introducing

(7.19) into [, (x ,z ), giving

f.(t)=f,. (¢t sina,t cosx) (7.20)

A generalized function is now considered for f ., . namely a‘ridge of impulses of unit

height along the x axis,

n 0Lz<1/n

z)= )= 1 7.21
[ (x2) = 8(z) nh.r,r;o 0 otherwise ( )

The correct value of the slice is obtained by applying the slicing operation to the

sequence of functions in the above definition.

ty

o slice

Fig.7.11. Geometry of the Slice in the Oxz plane.
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n 0<tcosa<l/n

/ — .
[0 = nh_r& O otherwise
- lim n 0t <1/ncosa (7.22)
n—e | O otherwise
1
t) = (¢
fe(@) cosa @)

The same result is also obtained by formally introducing (7.19) directly into (7.21)

and carefully considering the scaling of the impulse.

f.@) = f.,(t sina,t cosa) = 8( ¢ cosa )

=_.__1.__..8(z)

| cosax |

£ P E
Hence. the correct result of the slice of an impulse ridge can be f ormally obtained by

simply replacing the two variables of the function being sliced by their expressions in
terms of the parameter on the slice, then applying the scaling expression for the &(.)

distribution.

The analysis of the slicing of impulse ridges in the Euclidean plane suggests that
the result of slicing a ridge of impulses in the 3-D CT function on the Gaussian sphere
can be evaluated by applying the equation used for predicting the silhouette CT for a

smooth surface, equation (6.21)

71156 T 125G COSQ s

(7.23)

p(l[l) = COSQg; SinaSG ]

125G T 225G Sinagg

and considering the change of variables in the impulses present in the components of
R. This procedure leads to the correct silhouette CT function, as is illustrated below
for the case of a straight edge with length /. The object axes are chosen so that Qy is

parallel to the edge. The contribution of the edge to the 3-D CT is given by (7.17) as

10

7.24
00 (7.24)

i

edge = - 8(§)
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For a viewing direction specified by the angles ¢, 0, the contribution of the edge to the
silhouette 2-D CT is given by introducing (7.24) in (7.23).

__ 2
p(y) = cosT (€ ss (W) cos*agg

SG

The appropriate scaling of the delta function is accounted for by writing

_ 1! 1 _ 2
P(\l’) = oy } 7 §SG ]l 8(\1' \bo) COS“ g
| dy |u

where g is determined by €g; (Y5) = 0. The derivative in the above equation was

determined in (6.3) as d {55 /d Y = cosoacg; /cosng; . Therefore,

p(l,b) =/ COSx g 8(\11—d)0) (7.25)

Comparing this result with (7.4) shows that the predicted contribution of the 3-D edge
to the silhouette is a 2-D edge with length [ cosags . This result is consistent with the
well-known result of the projection of an edge making an angle ag; with the projec-

tion plane.

The Sithouette-Slice theorem for the CT is now considered for surfaces with
planar faces. As the contribution of planar faces to an object shape cannot be modeled
by the 3-D CT. the corresponding contributions to the silhouette shapes cannot be
predicted with the CT either. However, planar faces are mapped only to individual
points of the Gaussian sphere. Considering a surface with planar faces as the limit of a
sequence of smooth convex surfaces, the planar faces will prevent convergence of the
sequence of silhouette circular transforms only when the great circle slice passes
through some of the points corresponding to the faces. In all other cases, the CT’s are
well defined on the slice and the Silhouette-Slice theorem applies without
modifications. The set of viewing directions for which the slice intersects the image of
a face has a measure zero for surfaces with a finite number of faces. As a consequence,
the Silhouette-Slice theorem for the CT applies to surfaces with planar faces, for

almost all viewing directions.
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7.4.2. Corollaries of the Extensions

Two particular consequences of the extended Silhouette-Slice theorems are
covered in this section. The first is the relation between the angle of a silhouette
corner and the shape of the corresponding corner of the object. The second is an
expression for the curvature of the silhouette generated by a flat surface with a curved

boundary.

7.4.2.1. Silhouette of a Corner

In section 7.1. and 7.2, it was shown that the presence of a corner on a surface
and on its silhouette is apparent mainly in their CT’s. Specifically, the 3-D CT of the
object surface is the null tensor in the region of the Gaussian sphere corresponding to
the object corner, so that the 2-D CT of the silhouette has a zero value for the arc of
the slice circle inside the image of the corner. It is clear that whenever the slice
corresponding to the viewing direction traverses the image of the 3-D corner on the
Gaussian sphere, a corner will appear on the silhouette. The size of the null gap on the
2-D CT of the silhouette is given by the arc length of the slice inside the image of the
corner on the Gaussian sphere: see Fig.7.12. As the arc length of the image of the
corner on the Gaussian circle is equal to the exterior angle of the silhouette corner, the

above discussion provides a qualitative procedure for relating corner angles on the.

-

- n
ns 3
—_— o, — o,
n, n,
a) b)

Fig.7.12. Silhouette of a cube corner. a) Corner.
b) Gaussian image, with a slice corresponding to
the silhouette with the largest exterior corner angle.
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silhouette with the geometry of the 3-D corner of the object. This procedure can be
used for example to determine the largest exterior angle of the silhouette corner that
can be generated by a given 3-D corner. This angle is given by the largest arc of great
circle in the image of the 3-D corner on the Gaussian sphere. This argument shows
that a cube corner can generate only right-angled or obtuse silhouette corners: see
Fig.7.12.

7.4.2.2. Curvature of the Silhouette of a Planar Object

In this section, the curvature of the silhouette of a planar object with a curved
boundary is related to the curvature of the object boundary itself. This result pro-
vides an expression for the radius of curvature of the orthographic projection of a 3-D
curye, as a function of the radius of the curve and the qrientation of the vjewing

direction.

The problem is first analyzed in a system of axes where Oxy is in the plane of the
object and in which =0. In the Oxy plane. the object has a 2-D CT pg, (£) where € is
chosen to characterize the normal angle in the Oxy plane. In the Gaussian mapping of
the object considered as three-dimensional, the two faces of the object are mapped to
the poles of the Gaussian sphere, and each point of the boundary to a half meridian
with a longitude ¢ corresponding to the normal orientation of the curve in the Oxy

plane. The 3-D CT of the object can be obtained with equation (7.15)

po (&)/cosn O

(7.26)
0 0]

R=

The radius of curvature pg of the silhouette is obtained with the Silhouette-Slice

theorem for the CT, as

n po (s )
= COS“&x _— 7.27
Ps 6 2 p— ( )

It is useful in this case to specify the viewing direction in terms of angles with respect
to the Frenet trihedron of the curve at each point. The angles &, 6 are chosen for this
purpose: see Fig.7.13. The angle 8 is the angle between the viewing direction and the
osculating plane of the curve, whereas § is the angle between the projection of the

viewing direction in the osculating plane and the principal normal to the curve.
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ta

Fig.7.13. Planar Curve and
Angles Specifying the Viewing Direction in the Frenet Trihedron.

Equation (7.27) can be expressed in terms of these angles with (6.1)(h) and (6.1)(i).

_ (1 —sin®¢cos’® )3/2
sinf

Ps Po (&) (7.28)

The above equation expresses the radius of curvature of the orthographic projection of
a 3-D curve, in terms of the radius of curvature of the 3-D curve and the orientation
of the viewing direction in the Frenet trihedron of the curve. This result can also be
obtained by a classical method, as is done in Appendix 5; it is also valid for non-planar
curves, since torsion only affects third order derivatives. When =0, the viewing
direction is in the normal plane of the curve and the relation simplifies to

Ps = Po /sin@.
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7.5. Summary

In this chapter, the silhouette theories developed in Chapters 5 and 6 for smooth
surfaces have been extended to cover surfaces with discontinuities, edges and planar
faces. It is remarkable that theories supported by differential geometry of smooth sur-
faces provide correct results when extended 1o surfaces with sharp edges and corners.
In addition to the analytic expressions for the silhouette shapes, a number of powerful
qualitative relations between silhouettes and 3-D shapes have been derived. These
qualitative relations prove 1o be useful when developing algorithms for object recogni-

tion from silhouettes. This is briefly explained in Chapter &.




wy




Chapter 8
Examples and Applications

This chapter presents a number of examples of silhouette construction with the
Silhouette-Slice theorems. In addition, applications of the new theories to the recon-
struction of the shapes of 3-D objects from silhouette data are suggested, followed by
the principles of a system for recognizing polyhedral objects from their silhouettes. It
must be pointed outl that the main results of this thesis are theoretical. Applications
presented in this chapter prove that these theories are useful for solving practical

problems, but they have not been developed in great detail.

It is tempting to develop algorithms for solving each of the three basic silhouette
problems by sampling the spherical and circular object functions introduced in
Chapter 5, and relating these discrete transforms to Silhouette-Slice theorems for
discrete transforms. However, sampling questions introduce difficult obstacles in the
development of a discrete theory. First, sampling continuous functions defined on the
sphere is a complex problem which has not been adequately solved. In addition, great
circle slices corresponding to given viewing directions do not typically intersect the
sampling grid on the sphere at sample points. As a result, interpolations between the
sample values of the spherical transforms are necessary to generate samples of the
silhouette transform in almost all cases. The choice of sample points on the sphere
was addressed in [44, 57] for the case of the Extended Gaussian Image. It was shown
that the largest number of regularly spaced sample points on the sphere is equal to the
largest number of faces on a regular polyhedron, namely 20. For any larger number
of samples, an irregular sampling must be considered. In addition to the choice of
sample points, both the choice of sample values in terms of the continuous function
being represented and the interpolation of sample values to recover the corresponding
continuous function must be considered, but these have not been studied in detail. At
this point, the unsolved sampling issues make it difficult to apply the new theories
directly to the development of numerical algorithms. However, the theories developed
in this thesis provide valuable tools for qualitative reasoning which the examples of
applications presented in this chapter attempt to illustrate. In addition to the relations

between objects and silhouettes, the CT representation for 3-D surfaces presented in
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Chapter 5 is a valuable contribution to the understanding of surface shapes, both for
geometry and for computer applications. Since this aspect of the theory is not directly

related to silhouette analysis, its discussion is relegated to Appendix 4.

8.1. Silhouette Construction

In this section, a number of examples are presented to illustrate silhouette con-
struction with the Silhouette-Slice theorems. These examples demonstrate that
numerically correct answers are obtained with the proposed formalism. They further
provide insight into the form of the three transforms and the result of the slicing
operations. In a number of cases, qualitative reasoning with the Silhouette-Slice

theorems is proposed to predict the gross aspect of the silhouette.

=

As mentioned in the introduction of this chapter, sathpling of the spherical and
circular functions raises non-trivial issues. To generate the examples presented in this
chapter, sampling of the transforms on the Gaussian sphere has been circumvented by
using closed-form analytic expressions for the spherical functions. On the other hand,
the circular functions and the corresponding silhouettes must be sampled, at least for
display purposes. The sampling issues have been largely eliminated by using a large
number of samples for the circular transforms of the silhouettes. Our approach to the
sampling question is tractable when closed-form expressions are available for the
transforms of the surface shapes considered. It will be shown that accurate
silhouettes can be determined by this method for many surface shapes. The
Silhouette-Slice theorem can provide the shape of silhouettes for surfaces for which no
closed-form silhouette expressions are available, for example, for superquadrics. The
three spherical transforms for superquadrics are derived analytically in Appendix 1.
Although it relies on analytical formulas, our treatment of the sampling problem is
compatible with the computation of silhouettes for surface models designed with a
CAD system. These surfaces are defined as combinations of a number of surface
patches, where each patch is described by a relatively simple analytic equation. The
silhouette problem can be solved with the proposed method when spherical transforms

can be evaluated analytically for the primitive surface elements.

Although continuous spherical transform functions are used in the examples

presented in this section, silhouette shapes have also been obtained by considering
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samples of the transform functions on the Gaussian sphere and by relating these to
samples of the silhouette transforms on the appropriate slice. This discrete formula-
tion of the Silhouette-Slice theorems requires a large number of interpolations between
sample points on the sphere to determine samples of the silhouette circular transforms
on the great circle slice. In addition, sampling effects introduce degradations in the
shapes 6f the computed silhouettes. These degradations become negligible for dense
samplings, but the number of samples required to ensure a given accuracy cannot be
quantified because of the lack of a sampling theory for this problem. The sampling
questions are beyond the scope of the thesis, which .oncentrates on the theories for-

mulated in terms of continuous functions.

Silhouette construction will be illustrated for three different types of objects,
namely a cylinder, superquadrics, and a torus. In the context of these examples, a
number of qualitative aspects of the theory are discussed. Qualitative aspects of the
circular transform graphs such as signs, extrema and zero crossings are related to the
silhouette shape. The effect of the choice of a reference frame on the transforms is dis-
cussed. A qualitative prediction of the shape of silhouettes of polyhedra with the
Silhouette-Slice theorem is presented. This result is then extrapolated to predict the
shape of silhouettes of smooth surfaces which are closely approximated by polyhedra,
such as some superquadrics. Finally, silhouettes of a torus illustrate the application of
the results to a non-convex object and raises issues related to the extension of the

resulls to these objects.

8.1.1. Silhouettes of a Cylinder

The first example is that of a simple axisymmetric object, namely a cylinder of
height 2H and radius r, sketched in Fig.8.1. The various transforms of the object are
also axisymmetric, when the reference point is positioned on the object axis. For a

reference point at the center of the cylinder, the 3-D VST of the cylinder is given by

T

0 <7 <90°

(r cosm+ Hsinn) O ( Hcosn—r sinmn)
5=

<7
T
(r cosn — Hsinm) 0 (—H cosn —r sinn) ] —90° £ n L0°
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2H =5

<

Fig.8.1. Cylinder with radius r =2, height 2H =3§.

The CT of the Cylinder is given by

g r /cosn 0] (8.2)
0 2H&n) +rdén—n/2)+r&(n+m/2) _

Except for A and r;, which are identically zero. profiles of the components of the
transforms are displayed in Fig.8.2. The profile of an axisymmetric function on the
Gaussian sphere is. by definition, a 1-D function representing the values of the
axisymmetric function for a fixed value of §. The profile is defined for
—90° < 1 £ 90°, but the profiles were extended to the range of —180° < n £ 180°
for display purposes. In this form, the profiles correspond 1o a vertical section of the
Gaussian sphere. These extended profiles are represented by polar diagrams in Fig.8.2.
In these diagrams, the zero value is offset from the center to allow the representation

of negative values.

The cylinder does not salisfy smoothness and strict convexity constraints
required in the theories of Chapters 5 and 6, because of the presence of edges and
embedded straight components. As a result, the ST displays discontinuities in the first
derivative, the v-component of the VST displays step discontinuities, and the CT con-
tains impulses. These discontinuities are all related to the length of the corresponding
straight surface components, as discussed in Chapter 7. Specifically, the discontinui-

ties in the slopes of the ST, the step discontinuities in v and the lateral impulses in 7 5,




-157 -

&

Profile of 3-D ST Profile of v-component of 3-D VST

Profile of r ;-component of 3-D VST Profile of 7 5,-component of 3-D VST
Fig.8.2. Profiles of the Spherical Transforms of the Cylinder in Fig.8.1.

are equal to the height 24 of the cylinder.

Circular transform functions for silhouettes of this object are obtained by pro-
jecting the spherical function values on the appropriate great circle slice onto the plane
of the slice, according to the Silhouette-Slice theorems developed in Chapter 6.
Silhouettes and the corresponding circular functions are displayed in Fig.8.3a)-b) for
two different orientations of the viewing direction. The circular silhouette functions
were computed at 200 equally spaced samples of the appropriate great circle slice;

points of the silhouette were generated by inverting the silhouette VST with equation
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—

Silhouette for 6 = 10° Support Transform

t-component of VST Curvature Transform

Fig.8.3a). Silhouette of the Cylinder for § = 10°, and Corresponding Transforms.
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J ©

Silhouette for § = 50° Support Transform

@

t-component of VST Curvature Transform

Fig.8.3b). Sithouette of the Cylinder for 6 = 50°, and Corresponding Transforms.

(5.9) applied to the sample values. The following characteristics can be observed on
these silhouettes and their circular transforms. The ST is strictly positive every-
where, because of our choice of the origin inside the 3-D object. The angular points in
the graph of the ST correspond to the flat sections of the silhouette. The t-component
of the VST has values with alternating signs, since it must integrate to O over the 27
interval. The zero crossings of ¢ correspond to points for which the normal goes
through the reference point. The 2-D CT’s of both silhouettes contain two impulses
corresponding to the straight sections on the sides of the silhouette, which correspond

themselves to the lateral surface of the cylinder. In addition, the 2-D CT of the
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silhouette contains two maxima corresponding to the top and bottom parts of the
cylinder. Note that the silhouette CT's contain impulses related to the lateral
impulses of r,, in Fig.8.2, but none related to the top and bottom impulses in 7 ;.
This observation can be justified by considering the 3-D graph of r,, on the Gaussian
Sphere in Fig.8.4. In the 3-D CT of the cylinder, the lateral surface generates an equa-
torial ridge of impulses. The impulses on the 2-D CT of the silhouette correspond to
the intersection of the great circle slice with the equator, as is shown in the figure for a
slice corresponding 1o 8=30°. As all slices cut the equator, the equatorial impulses
related to the lateral surface appear on all silhouettes. However, the impulses of the
3-D CT corresponding to the top and bottom parts of the cylinder are located only at
the poles of the Gaussian Sphere. Therefore, they affect only great circle slices through

the poles, whici correspond 10 silhouettes with § = 0°.

The effect of translations of the reference point on the various surface spherical
transforms and the corresponding silhouette circular functions is now investigated.

The effect of origin position on the VST is characterized by the expression

n cosécosn sinécosm sinm x(&m) X0
h| = —siné cosé 0 y&EmM| = | yo (8.3)
v —cosésinm —sinésinm cosm z(&m) Zg

where (x o,y 0,= o) are the coordinates of the reference point in fixed object-centered

coordinates. The ST is identical to the first component of the VST, and the CT is

=

Fig.8.4. Graph of the r ,» component of the 3-D CT of the cylinder
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unaffected by the choice of origin. The effect of the choice of origin on the ST and on
the VST components of the silhouette is illustrated in Fig.8.5a)-d) for the silhouette of
the cylinder with 6= 20°, ¢=0°, and for four excentric positions of the reference
point. It can be observed in these figures that significant changes of the ST and VST
result from the displacement of the origin. Specifically, negative values appear in n ,
when the reference point is outside the object, the number and locations of zero-
crossings of ¢ . and extrema of n , ¢ , are modified; of course, the numerical values of

the transforms are considerably affected.
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1
)

’ —_

Cylinder and Reference Point )
Silhouette

Support Transform t-component of VST

Fig.8.5a). Normal and Tangential Components of the VST of a Cylinder Silhouette
with the Reference Point (0,0,—1).
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ind .
Syhn er ar?d Reference Point ' Silhouette

Support Transform t-component of VST

Fig.8.5b). Normal and Tangential Components of the VST of a Cylinder Silhouette
with the Reference Point at (0,0—4).
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Y ~
lind d Ref Point
Cylinder and Reference Poin Silhouette
Support Transform t-component of VST

Fig.8.5¢). Normal and Tangential Components of the VST of a Cylinder Silhouette
with the Reference Point at (0,1,0).
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)

i dR '
Cylinder and Ref eregce Point Silhouette

Support Transform t-component of VST

Fig.8.5d). Normal and Tangential Components of the VST of a Cylinder Silhouette
with the Reference Point at (0,3,0).
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8.1.2. Silhouettes of Superquadrics

In this section, silhouette construction is demonstrated for a subclass of super-
quadrics [58]. The subset of superquadrics considered here is defined by the implicit
equation
n

n n

= 2 2 oy 8
EE R AN

The parameters a, b, ¢ correspond to the intersections with the coordinate axes. They
hence control the size and elongation of the surface shape. The parameter n , however,
controls the smoothness of the surface. For 1<n <eo, surfaces defined by (8.4) are
smooth and strictly convex. Examples of superquadrics with a =4, b=3, c =2 are
displayed in Fig.8.6 for n =1, 1.2, 4.5, co. Ellipsc.ds are a special case of superqua-
drics for n=2. In the limit for n —co, the superquadric becomes a parallelepiped,

whereas the limit for n —1 corresponds to an octahedron.

It is possible to evaluate the three spherical transforms in closed form for the
surfaces specified by (8.4), and therefore to compute the shape of their silhouettes in
orthographic projections. The analytic computations of the spherical transforms
require relatively tedious algebra and are therefore relegated to Appendix 1. Examples
of silhouettes of the two smooth superquadrics in Fig.8.6 are shown in Fig.8.7a)-d).
As mentioned in Appendix 1, the CT of superquadrics contain discontinuities when
n > 2. These discontinuities are apparent in Fig.8.7d) for n =4.5. They correspond to
the six slowly curving parts in the corresponding silhouette. Such discontinuities in
the CT of superquadrics with n > 2 present an additional obstacle to discrete represen-
tations of the CT.

An example of qualitative predication of the shape of silhouettes with the
Silhouette-Slice theorems is now presented, first for the polyhedra (n = 1, c0), then
for the smooth superquadrics (n = 1.2, 4.5). The qualitative shape of silhouettes of
the octahedron and the parallelepiped can be readily estimated with the Silhouette-
Slice theorem for the CT. The CT of the two polyhedra have ridges of impulses on the
great circle arcs which are the images of the polyhedron edges on the Gaussian sphere.
In Fig.8.8, these arcs have been plotted on the Gaussian sphere for the two polyhedra,

for the same values for the diameters as in Fig.8.6. Slices of the 3-D CT of the
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[
(]

n=4.5 n=oo

Fig.8.6. Superquadrics with a =4, b =3, c =2.
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S O

Silhouette Support Transform
t-component of VST Curvature Transform

Fig.8.7a). Silhouette and corresponding Circular Transforms for the superquadric
with n = 1.2, for the viewing direction (¢,8) = (10°,10°)
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Silhouette Support Transform

t-component of VST Curvature Transform

Fig.8.7b). Silhouette and corresponding Circular Transforms for the superquadric
with n = 1.2, for the viewing direction (¢,8) = (40°,20°)
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- @

Silhouette Support Transform

O

t-component of VST Curvature Transform

Fig.8.7¢). Silhouette and corresponding Circular Transforms for the superquadric
with n = 4.5, for the viewing direction (¢,0) = (10°,10°)
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//

Silhouette Support Transform

t-component of VST Curvature Transform

Fig.8.7d). Silhouette and corresponding Circular Transforms for the superquadric
with n = 4.5, for the viewing direction (¢,0) = (40° ,20° )
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D &

Parallelepiped, (¢,8) = (10°, 10°) Parallelepiped. (¢,8) = (40°, 20° )
Octahedron, (¢,8) = (10°, 10°) Octahedron, (¢,0) = (40°, 20°)

Fig.8.8. 3-D CT of the superquadrics with n =1 (octahedron) and n =co (parallelepiped)
The CT'’s have ridges of impulses along the lines drawn on the Gaussian sphere.
Also shown are the great circle slices corresponding to two viewing directions.

polyhedra are corhposed of impulses so that the silhouettes are polygons with a
number of edges equal to the number of great circle arcs sliced by the silhouette great
circle. Except for special coincidences, the number of silhouetie edges is 6 for the
parallelepiped and can be 4 or 6 for the octahedron. The similarity betwen superqua-
drics with small values of n and the octahedron (n =1), and between superquadrics

with large values of n and the parallelepiped (n =co) is preserved in the silhouettes.
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As a result, the silhouettes of the smooth superquadrics in Fig.8.6 can be predicted to
be polygons with bent edges and rounded corners, with a number of edges equal to the
numbers for the corresponding polyhedra. It can be observed in Fig.8.7a)-d) that the
silhouettes of both superquadrics contain the numbers of bent edges qualitatively
predicted by the above argument. The presence of these bent edges in the silhouette is

also apparent as maxima in the CT, which are maxima of the radius of curvature.
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8.1.3. Silhouettes of Tori

The example of silhouette construction for the torus presented in this section
introduces issues arising from the application of the Silhouette-Slice theorems to non-
convex objects. It is clear that each point of the Gaussian sphere corresponds to two
points of the torus surface (see Fig.8.9) except for the poles of the sphere; each pole
corresponds to an infinite number of object surface points. To determine its
silhouettes, the torus surface is cut into two parts, which will be called the interior
and exterior parts, see Fig.8.10. The set of points along the separation line between the

two parts has a zero measure and is not considered here. The Gaussian Mapping is

Torus Gaussian sphere

Fig.8.9. Gaussian Mapping of the Torus.
Both points marked on the torus surface map on the same point of the unit sphere.

Exterior Surface Interior Surface

Fig.8.10. Interior and Exterior parts of the torus surface.
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one-to-one for each of the two parts. The exterior part consists of elliptic surface
points only, so that the Silhouette-Slice theory applies without restriction. The inte-
rior surface points are all hyperbolic however. As the ST and VST do not specifically
depend on surface curvatures, these representations and the related silhouette theory
apply without modifications for the interior part. In the case of the CT, the main
difference is that the tensor R is no longer positive definite. The Spherical transforms

of the torus are given by

n *Rcosn+r
5= |hl = 0 (8.5)
v —( £Rsinm)

( £R +rcosn)/cosn O

0 - (8.6)

where 7 is the radius of the section, R is the radius of the principal axis, and the posi-
~ tive and negative signs in the above equations have to be considered for the exterior
and interior parts respectively. These spherical transforms are axisymmetric. Polar
plots of the profiles of the non-zero components of these transforms are displayed in
Fig.8.11 for both the interior and exterior surfaces. Transforms for the silhouette can
be obtained by slicing the above 3-D object transforms. The silhouettes are then
obtained by inverse transformation of the silhouette functions. Two examples of
silhouettes are developed ‘or a torus with R=3, r=1, for viewing directions
corresponding to §=40° and 68=25°. The two silhouette parts corresponding to the
interior and exterior parts of the object surface are generated separately, then superim-
posed in the final figure. For the case of 8=40°, the silhouettes of both parts and their
transforms are displayed superimposed in Fig.8.12a). The corresponding diagrams are

presented for the case where 8=20° in Fig.8.12b).
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@ _

Profile of 3-D ST (exterior) Profile of t-component of 3-D VST (exterior)

Profile of 3-D ST (interior) Profile of t-component of 3-D VST (interior)
@
Profile of 7 {;-component of 3-D VST Profile of 7 ,,-component of 3-D VST

Fig.8.11. Spherical Transforms of the two parts of the torus
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O

Silhouette Support Transform
t-component of VST Curvature Transform

Fig.8.12a). Silhouette of the Torus and Circular Transforms.
Viewing Direction: 6=40°.
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Silhouette Support Transform

t-component of VST Curvature Transform

Fig.8.12b). Silhouette of the Torus and Circular Transforms.
Viewing Direction: 6=25°.

After the silhouettes are evaluated separately for the interior and exterior parts
of the torus, issues of registration may arise when combining the individual silhouette
parts. When the silhouettes are obtained with the ST or VST, both parts are referred
to the same point in the projection plane and registration is trivial. However,
silhouette parts generated with the CT are not related to an origin. In the case of the
torus, accurate superposition of the two parts was possible thanks to the symmerty of
the surface shape. In the case of a surface in the shape of a distorted torus, the interior

and exterior silhouettes could not be accurately registered.
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The silhouettes evaluated with the Silhouette-Slice theorems correspond to the
projection of all object surface points with a normal perpendicular to the viewing
direction. For a non-convex object, some of these points may be occluded by other
object parts, so that they do not effectively contribute to the silhouette. The set of
silhouette points of a non-convex object determined with the Silhouette-Slice theorems
must therefore be considered only as a set of candidate silhouette points. The
silhouette itself may be equal to this set, as in the example of Fig.8.12a, or may be a
subset of the candidate silhouette, as in the example of Fig.8.12b. Indeed, spurious
silhouette parts appear on this figure. They correspond to the projection of points of
the object surface for which the normal is perpendicular to the viewing direction, but
which are occluded by other parts of the object. When occluded silhouette parts are
removed from the interior silhouette, the result displayec:in Fig.8.13 is obtained. Note
that in this figure, there are two segments of silhouettes in the interior of the object.
These must also be eliminated if the silhouette is considered as the set of outline points
in the image plane, but are included in the silhouette if it is considered as the set of
discontinuity points of a range map in the image plane. Note that, in the example of
Fig.8.12a generated for 8=40°, the correct silhouette is obtained directly. It can be
observed that, for §=40°, the CT of the silhouette part corresponding to the interior
surface has a negative radius of curvature while the Gaussian curvature of the surface
is negative. In this circumstance, all silhouette points generated with the Silhouette-
Slice theorem are true silhouette points. In the case of 6=25°, the CT of the
silhouette contains alternating signs and zero crossings. The curve of candidate

silhouette points has cusps corresponding to the zero crossings. It has been shown by

Fig.8.13. Silhouette of the torus for §=25°.
The occluded parts have been removed.
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Koenderink[33] that when candidate silhouette points corresponding to a surface with
negative Gaussian curvature have a positive curvature, these points are necessarily
self-occluded. This property allows us to eliminate the two lateral parts of the inte-
rior silhouette in Fig.8.12b. Points on the two remaining longitudinal silhouette parts
cannot be tested for visibility by arguments on local surface shapes. On the other
hand, the presence of self-occluded silhouette parts suggests the presence of additional

silhouette segments for which occlusion occurs due to remote surface elements.

Summarizing our discussion on non-convex objects, each point of the Gaussian
sphere may correspond to several points of a non-convex object. The surface can be
decomposed into parts so that for each point, the Gaussian mapping is 1:1. When
applied to these parts, the Silhouette-Slice theorems provide the correct silhouettes in
some cases. More generally, the theorems provide a set of candidate silhouette points
in which the silhouette points are included. The actual silhouette points are deter-
mined by testing the candidate points for visibility. One necessary visibility condition
requires corresponding signs for the curvature of the silhouette and the Gaussian cur-

vature of the surface on the silhouette generator.

8.1.4. Discussion

In this section, silhouette construction has been demonstrated with all three
Silhouette-Slice theorems. Through simple experiments, we have observed that con-
struction with the VST is less sensitive to sampling problems than the other two
methods, although accurate results are obtained with the three transforms when
sufficiently fine samplings are used. We have generated the examples presented in this
section with a mixed analytical/numerical method; this strategy can be exploited only
when analytical expressions can be determined for the 3-D transforms of the surface
shapes of interest. The ST and the VST of a surface can be determined in closed form
only for surfaces which can be explicitly parameterized with the normal orientation
angles (£,m). Although such parameterizations can be derived for several surface
shapes, this indicates a limitation of the method. However, it is shown in Appendix 2
that the CT values can be determined analytically for any surface represented by
parametric equations. Silhouette construction with the CT is hence applicable to a

larger set of surfaces than with the ST and the VST.
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In addition to numerical silhouette construction, the Silhouette-Slice theorems
can also be exploited 1o predict qualitatively the shapes of silhouettes. Qualitative
shape features of silhouettes include mainly corners, edges and curvatures. These
features are best represented by the 2-D CT of the silhouette, and can be easily related
10 the corresponding features of the object by the Silhouette-Slice theorem for the CT.

We conclude that the CT should be preferred for prediction of qualitative
silhouette shape, that the VST is numerically less sensitive than the ST and CT for
silhouette construction, but that the CT can be evaluated analytically for a larger set

of surfaces than the VST.



- 182 -

8.2. Reconstruction from Silhouettes

The formal problem of reconstructing the shape of a convex object from a set of
silhouettes is addressed in this section, and a strategy for solving this problem with
the Silhouette-Slice theory is suggested. Due to the lack of a good understanding of
sampling issues on the sphere, a practical algorithm for applying the proposed strategy
has not been implemented. However, interesting conclﬁsions can be drawn from a for-

mal analysis of the reconstruction problem.

The reconstruction problem addressed in this section can be described as follows.
A convex object of unknown shape is projected orthographically onto a number of pro-
jection planes II;, and the corresponding silhouettes S; are recorded in each plane.
The viewing directions are referred to by their longitude/latitude ¢, , 6;. Given this
collection of silhouettes, a method {or constructing a descri'i)tion of the 3-D shape of
‘the object is desired. In addition to devising a reconstruction method, it is useful to
determine what range of viewing angles ¢, 6 must be covered in order to obtain com-

plete reconstruction.

In the first stage, it is assumed that all silhouette measurements are referred to a
global frame Oxyz. In each projection plane II;, the silhouettes are measured in
orthogonal axes O ,x .z, where O .z . is the projection of the global Oz axis. see

Fig.8.14.

Fig.8.14 Reference frame for the projection plane




_183..

The scheme of the reconstruction procedure is to evaluate a circular transform
for each measured silhouette, to relate these 2-D transforms to great circle slices of the
corresponding 3-D transform of the object, to use this relation to reconstruct the

spherical transform, and finally to invert this transform for the object shape.

As reference axes are available in each projection plane, the evaluation of the cir-
cular transform of each silhouette is straightforward, and is formally obtained with
equations (5.1). (5.11), (5.19). Each circular transform function p,; ({s), 5; (ys).
p; () is related 1o the great circle slice of the corresponding spherical transform of the
object, which is perpendicular to the viewing direction ¢;, 6;, namely p (§SG NsG ),
ése Nsg ). R(Es Msg )- The exact relation between the transform value at one
point of the silhouette Gaussian circle and the corresponding value of the transform of
the object on the slice of the Gaussian sphere depends on the particular transform in
question and is given by the appropriate Silhouette-Slice theorem. These relations and
their consequences for the reconstruction of 3-D transforms are now investigated in

sequence for the ST, the VST, and the CT.

In the case of the ST, the silhouette transform values on the Gaussian circle are
exactly equal to the object ST values on the great circle slice of the Gaussian sphere.
Therefore, the value of the 3-D ST of the object at one point of the Gaussian sphere is
obtained directly as the value of the silhouette ST on a slice passing through that
point. In order to recover the complete ST function on the sphere. it is hence necessary
to process silhouettes obtained from a range of viewing angles such that the
corresponding great circles entirely cover the sphere. One set of such viewing angles is

obtained by turning the observer around the object by a 180° arc, see Fig.8.15.

e

Fig.8.15. A sufficient set of viewing directions for reconstruction with the ST
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Reconstruction using the VST is now considered. First, the normal component of
the VST is equal to the ST for which reconstruction has been already discussed. The
discussion is hence focused on the reconstruction of the horizontal and vertical com-
ponents A, v of the 3-D VST from the tangential component ¢ of the 2-D VST's of the
silhouettes. The Silhouette-Slice theorem for the VST identifies the value of Z ,, on the
Gaussian circle of the silhouette to the projection onto the slice plane of the vector
(h v ) at the corresponding point of the great circle slice. Estimating A and v is hence
equivalent to estimating a 2-D vector from projections of this vector, and is possible
when at least two different projections are known. The vector (A v )T can hence be
reconstructed at a point of the Gaussian sphere if and only if its projection ¢ is given
on two distinct slices through the point. As a consequence, the set of viewing direc-
tions must provide a coverage of the Gaussian sphere by two distinct great circle slices
at each point, in order to reconstruct the 3-D VST of the inspected object. A set of
viewing directions satisfying this criterion almost everywhere is given by the combi-
nation of two different sets of measurements similar to those proposed for the ST. An

example of a sufficient set of viewing directions is given in Fig.8.16.

It can be observed that the 2-D VST of each silhouette specifies two values for
each point of the Gaussian circle, as opposed to one in the case of the 2-D ST.

Although these components are redundant. it is tempting to consider that the VST

Fig.8.16. A sufficient set of viewing directions for reconstruction with the VST
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captures "more information" about the silhouette at each point of the Gaussian circle.
Therefore, it seems counterintuitive that the reconstruction using the VST requires a
larger set of silhouettes than reconstruction with the ST. This stronger requirement in
the case of the VST arises because the redundancy of the 3-D VST was not exploited in

the reconstruction method.

Consider now the reconstruction of the object shape through the reconstruction of
its 3-D CT. The relation between the 2-D CT of the silhouette at a point of its Gaus-
sian circle and the 3-D CT of the object at the corresponding point on the slice of the
Gaussian sphere is that the silhouette 2-D CT, a scalar, is the projection on the slice
plane of the object 3-D CT, a 2x2 symmetric tensor. In order to reconstruct a 2x2
symmetric tensor from projections, three projections on different axes are required. In
order to reconstruct the value of the 3-D CT of the surface at one point on the Gaus-
sian sphere then, silhouette 2-D CT’s on three different great circle slices through the
point must be used. The requirement on the minimum set of viewing directions is that
the Gaussian sphere must be covered everywhere by three layers of great circle slices.
This requirement is satisfied almost everywhere by three orthogonal 180° arcs of

viewing directions. such as depicted in Fig.8.17. In this case again. consistency

Fig.8.17. A sufficient set of viewing directions for reconstruction with the CT.
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constraints on the 3-D CT are not exploited in the above reconstruction strategy. These
constraints could be used to relax the requirements on the minimal set of viewing

directions.

A substantial difference between 3-D shape reconstruction with the CT on one
side and reconstruction with the ST and VST on the other side is that the CT is
independent of translations whereas the other two transforms strongly depend on
translations of the origin. It was assumed up to now that measurements in each pro-
jection plane are referred to axes O ,x 2 ... and that each of these sets of axes is accu-
rately related to the global system of axes Oxvz. As silhouette CT’s are independent
of translations of the origin in their plane, the requirement on registration of the
observed silhouettes can be relaxed when reconstruction is performed with the CT.
Specifically, only a reference orientation such as the projection of the global Of direc-
tion must be known relative 1o the global axes in each projection plane, in addition to
the orientation of the plane itself. Uncontrolled translations of the reference axes in
each projection plane do not affect the reconstruction mechanism. This conclusion can
be exploited 1o determine an interesting difference between the reconstruction of a 3-D
object from 2-D silhouettes and the reconstruction of a 2-D object from 1-D
silhouettes. Indeed, in the latter case. reconstruction is ambiguous in the absence of an
origin for each silhouette. Typical examples of this ambiguity are given by ovals of
constant breadth [59]. These 2-D objects have silhouettes of constant length for all
orientations, just as circle. These two objects could not be differentiated by unre-

gistered silhouettes.

In the previous paragraphs. reconstruction of 3-D transforms of an object surface
from silhouettes has been investigated. Although reconstruction of the object itself
merely consists of inverting the reconstructed transform, additional issues may arise
in the case of the VST and CT, because of their intrinsic redundancy. It is clear that
for a set of silhouettes which actually correspond to the same convex object, con-
sistency of the silhouette circular transforms guarantees consistency of the recon-
structed object spherical transform, in the absence of noise and biases. In practical cir-
cumstances, however, degradations are inevitable so that the reconstructed 3-D spheri-
cal transform is inconsistent in general. When and how 10 exploit the consistency con-

straints in the reconstruction is an open question. These constraints could be forced on




-187-

the reconstructed spherical transform before reconstruction of the object shape; or
they could be exploited earlier. during the construction of the spherical transform,

thereby potentially relaxing the requirements on the number of viewing directions.

8.2.1. Discussion

Strategies for reconstructing the shape of a 3-D object from silhouette measure-
ments have been discussed, using the transforms defined in Chapter 5 and the
Silhouette-Slice theorems developed in Chapter 6. In order to develop numerical algo-
rithms for implementing these strategies, sampled circular transforms must be con-
sidered for representation of the measured silhouettes, and interpolation schemes must
be developed for reconstruction of the spherical transforms. As the discrete versions
of the Silhouette-Slice theorems have not been formulated yet, the interest of the stra-

tegies presented in this section is conceptual at this point.

Reconstruction methods based on the three silhouette-slice theorems are now
compared, assuming that satisfactory solutions can be provided for the sampling
issues. When consistency constraints of the 3-D transforms are not exploited, the ST
seems preferable since it is least redundant and requires the smallest set of viewing
directions. For reconstruction using the constraints, the 3-D VST should be preferred,
since it incorporates more measurements from the silhouette. In addition, the inversion
of the 3-D VST is only a set of 3-D rotations, while derivatives must be estimated for
inversion of the 3-D ST. Finally. reconstruction with the CT should be considered

when registration of the origins in the various silhouette planes is absent or imprecise.

Incorporating consistency constraints in the reconstruction of a 3-D transform
could be implemented as an optimization problem where the solution would have to
satisfy the constraints while minimizing the total deviation from the slices
corresponding to the measured silhouettes. The solution could be obtained by iterative
methods similar to the ones used to solve other surface resontruction problems such as

the shape-from-shading problem [21].
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8.3. Recognition from Silhouettes

This section suggests an application of the Silhouette-Slice theory to the deriva-
tion of constraints for a system performing object recognition from silhouettes. The
arguments are based on the extension of the Silhouette-Slice theorem for the CT to

polyhedral objects developed in Chapter 7.

It was demonstrated in the previous section that a large number of silhouettes
corresponding to different viewing directions are required for accurately reconstruct-
ing the shape of a 3-D object. It would seem then that one silhouette contains too lit-
tle information to discriminate between different objects. Although some different
objects may produce exactly the same silhouettes when viewed from selected direc-
tions, shapes of objects of interest are sufficiently different in general so that these
singularities of the problem are rare. As a result, one silhouette is often sufficient to

specify one object in a set of known objects.

The principles of a system for recognizing polyhedral objects from one of their
silhouettes are now presented. The system is based on a well-known approach in
model-based vision. Primitive features such as points, edges or facets are first
extracted from the input data. These features are then matched to corresponding
mode! features, implicitly creating a large matching tree. The tree is explored and
pruned by constraints resulting from the pairing of small sets of measured features to
sets of model features. Finally, the remaining hypotheses are tested more thoroughly
for correspondence with the models. Implementation of this approach has been
reported for recognizing 2-D objects from 2-D measurements, and for recognizing 3-D
objects from 3-D measurements [60]. In the case of 2-D models and data, powerful
constraints arise from the pairing of two object features to two model features, so that
the pruning is very effective. When matching 2-D data such as silhouettes to 3-D
models, the constraints resulting from the pairing of two primitives are much weaker
since there are six degrees of freedom. In the proposed approach, constraints are con-

sidered for the pairing of three silhouette features to three model features.

The proposed recognition method is based on primitive features consisting of
polyhedral edges. Its scope is restricted to polyhedra or shapes with a sufficient
number of straight edges. For a number of objects expected in the input images, it is

assumed that geometric models explicitly describing the edges are available. An
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unknown silhouette is analyzed by first detecting straight edges and measuring their
length and orientation. Pairings are hypothesized between measured edges and edges
of the 3-D models. As the number of potential global matches may be astronomical,
pairings between sets of only three silhouette edges and three model edges are con-
sidered first. Each such set of pairings is tested against a set of constraints, an example
of which is derived later in this section. After discarding the pairings that fail these
tests, additional edges are added to the remaining hypotheses. and further testing is
applied. In a favorable case, a large fraction of the search tree is eliminated by the
constraints, leaving only a few potential interpretations of the data. Each of these

interpretations is then tested in more detail by an appropriate method.

A number of constraints are now derived for the matching of three silhouette
edgés to three particular mode! edges. The derivation of *he pruning constreints is
substantially simplified by reasoning with the-Silhouette-Slice theorems. First, it is
worthwhile 1o note that position and orientation of a detected object are unknown a-
priori in recognition problems. The ST and VST strongly depend on the choice of an
origin, as was illustrated in section 8.1. Therefore. these transforms are not appropri-
ate for recognition applications. The derivations in this section are based solely on the

Silhouette-Slice theorem for the CT.

The contribution of three edges e , e ;. e 3 to the 2-D CT of the silhouette is given
by three impulses at orientations s;, y5,. Y3 corresponding to the normals of the edges.
The strengths of these impulses are given by the lengths (,, [,, [ of the silhouette
edges, see Fig.8.18. Note that the orientation of the object is unknown a-priori, so that
the reference orientation in the silhouette plane cannot be related to the object model.
The angles 10 be considered in the constraints are hence the differences 5, = Y1,—{5,
and Y3 = Y3—,. These angles can be directly estimated from the image, and can be

related to angles in the object model.

Consider now a hypothetical match between the three measured edges e, € ,, e 3
and three model edges £}, £',, E'5. The three model edges each correspond to an arc of
great circle on the Gaussian sphere, as illustrated on Fig.8.19. When the silhouette
great circle slice intersects one of these arcs, the image of the corresponding edge is
present in the silhouette, and has a normal orientation determined by the orientation

of the intersection in the slice plane. The strategy for accepting or rejecting the match
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€,

—_

n,

Measured Silhouette 2-DCT
Fig.8.18. Three Silhouette Edges and the corresponding CT

Model Polyhedron 3-DCT
Fig.8.19. Three Model Edges and the corresponding CT arcs

consists of first deciding if there is an orientation ¢, 8 of the viewing direction for
which the slice cuts the model arcs at points separated by the measured angles Y5,
Y,3. When the hypothesis is accepted on the basis of these orientations, the viewing
direction is fixed. For this viewing direction then, the lengths lps1. {pr2. {pr3 Of the

silhouette edges corresponding to the model edges £, £, £'3 can be evaluated. For a
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convex object not obscured by other objects, the measured edge lengths {; must match
the estimated lengths [y, within some tolerance bounds. For non-convex objects, par-
tial self-occlusions may occur, and, more generally, object edges may be partially
obscured by other objects. A better test in those cases is to require the measured edges

[; to be smaller than the estimated [y, , Within a tolerance bound.

Expressions for the orientations ¢, € and acceptance constraints are now derived
for three silhouette edges such as those depicted in Fig.8.18. The derivation is
simplified by considering three model edges perpendicular to one another, such as the
ones displayed in Fig.8.19. The case of three right angles arises frequently in man-
made parts; extensions to include one or two acute or obtuse angles are tractable. Con-
sider hence matching the three silhouette edges e; depicted in Fig.8.18 with the three
model edges depicted in Fig.8.19. The great circle slice corresponding to the match is
drawn on Fig.8.19; the angles of interest appear in the two spherical triangles 14 2,
2B 3, which are displayed "Hattened out" in Fig.8.20. We consider the angles 5, Yp3
as positive. In order to match the great circle slice, the silhouette edges must be such
that Y, + Y3 S 7. The orientation of the corresponding viewing direction is deter-
mined by 6 and ¢ = £,—m/2.

Y3

T/2—0y

w/2—6 77’/2—52 B

Y12

7/2—0y

1

Fig.8.20. Two spherical triangles of interest for deriving the matching constraints.
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Standard relations of trigonometry for right-angled spherical triangles[55] are applied

1o the triangles of figure Fig.8.20 to produce

1ané, cotys; = cos(r/2—0)
tan(7/2—¢,) cotp,3 = cos(w/2—6) 87)
. : 8.7
sinyy 5 COSQ; = sin¢,
sinys, 3 COSGy = cos{,
The angles 0 and &, can be extracted from the first two equations above.
T.an§2 = tanlbl 2COU.b23
v (8.8)

sinf = [ /Cot;,C0TY,53

The .above relations imply the necessary constrajnts that Yy, Y3<7/2;
Y12 + Pa3>7/2. The predicted lengths of the silhouette edges corresponding to £,
E,. E;are given by

l Z Z sin,
= COsSx, = _—
15 1M 1 1M Sln‘blz
1
l 2s = Z LAY COSG = Z 277 ( 1 — Cot‘,blz C01¢23 )/2 (8.9)
Ly =1 [, 5%
= COSxy; = -
38 3M 3 3M Sln\.b23

These predicted silhouette edge lengths [;¢ must be tested against the measured

silhouette edges [; .

Although the above system has not been implemented, there are indications that

this type of system has a potential for success.

8.3.1. Discussion

A formal application of the Silhouette-Slice theorems to a problem of object
recognition was presented in this section, thereby illustrating the use of the
transforms and of the theorems in reasoning about silhouettes, and in applying the
intuition to practical recognition problems. As object position and orientation are usu-
ally unknown a-priori in recognition tasks. the Silhouette-Slice theorem for the CT

seems the most useful one for recognition, since the CT is independent of origin
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location. In addition, many applications to recognition are based on qualitative rela-
tions between silhouette shapes and object shapes. These relations are also obtained
most easily with the CT. The theories developed for the CT are hence the most impor-

tant for applications in object recognition.

8.4. Summary

In this chapter, several applications of the theoretical results of this thesis have
been suggested. Examples shown in the section on silhouette construction are close to
actual implementations of the Silhouette-Slice theorems to problems in computer
graphics. Other examples presented in this chapter are of a more conceptual value.
This chapter has suggested the wide applicability of the Silhouette-Slice theorems as
reasoning tools in problems of computer graphics and computer vision, and their

potential for developing new algorithms in these domains.







Chapter 9
Summary

9.1. Contributions

In this thesis, a new formalism for relating the shapes of objects to the shapes of
their silhouettes has been proposed. Three representations of 3-D object surfaces and
the equivalent representations of 2-D curves have been defined. It has been shown
that the representations of a 2-D silhouette curve are simply related to the representa-
tions of the corresponding 3-D object surface. More specifically, object surfaces have
been represenled by scalar, vector and tensor functions on the Gaussian sphere, and
curves b) scalar and vector functions on the Gaussian c1rcle It has been demonstrated
that a slice of the Gaussian sphere perpendicular to the viewing direction is a Gaussian
circle for the silhouette. Furthermore, the property functions on the Gaussian circle
of a silhouette are related by a projection to the property function of the object on the

slice corresponding to the silhouette.

The relations between an opaque object, its silhouette and their transforms is con-
ceptually similar to the relations between an absorbing object, its line-integral projec-
tion and their Fourier transforms. which are formalized in the Projection-Slice
theorem of computerized tomography. These similarities have prompted the use of the

name of Silhouette-Slice theorems for the new relations presented in this thesis.

The theory relating property circles of silhouettes to slices of property spheres of
objects provides substantial insight into qualitative and quantitative relations between
silhouette shapes and object shapes. This insight is useful when reasoning about par-
ticular problems involving silhouettes, and provides straightforward explanations of
known results. Applications of the theories to three basic problems have been con-
sidered, namely silhouette synthesis, reconstruction from silhouettes and recognition
from silhouettes. The theories have been demonstrated in this thesis for convex
objects and orthographic projections only; in addition, difficult issues remain to be
solved before discrete versions of the continuous transforms and Silhouette-Slice
theorems can be developed. As a consequence, it has not been possible to develop

direct implementations of the theory into general numerical algorithms for solving the
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three basic problems. However, methods based on continuous functions have been
proposed for applying the results to each of the three problems. Mixed continuous-
space / discrete-space algorithms have been proposed and demonstrated for the syn-
thesis of silhouettes of complex curved surfaces such as a torus and superquadrics. A
general strategy has been proposed for reconstructing the shape of a convex 3-D object
from silhouette observation. The method consists of first constructing the circular
transform of each silhouette, then combining these into the spherical transform of the
object. Finally, the object shape is obtained by evaluating the inverse 3-D transform.
In the context of recognition from silhouettes, several quantitative and qualitative
relations between object features and silhouette features have been pruposed. These
relations are typically exploited in recognition algorithms as constraints on pairings of
silhouette features with object features. An example of the use of constraints on edges
has been proposed in a strategy for recognizing polyhedral objects from their

silhouettes.

The spherical transforms of 3-D surfaces presented in this thesis can be inter-
preted as compact representations of the set of all silhouettes of the object. In addi-
tion, these transforms have potential applications for representing surfaces indepen-
dently of viewpoint. In particular, the 3-D Curvature Transform is an intrinsic form
for surfaces, which specifies surface curvature as a function of normal orientation.
Compared to most characterizations of surfaces in computer vision [39] and in
differential geometry [47], the originality of the Curvature Transform is two-fold.
First, curvature is completely described by an invariant tensor of curvature, as
opposed to two tensors in classical differential geometry, and a partial description by
one or two scalar invariants in machine vision. Second, the curvature is described
with a canonic parameterization, as opposed to generic parameterizations in differential

geometry, and 1o image plane descriptions generally used in machine vision.

The key contribution of this thesis is a new basic theory for analyzing
silhouettes. The theory provides useful insight in many questions of relations between
silhouette shapes and object shapes, and also in analyzing complex curved surfaces. A
number of straightforward applications have been proposed or suggested. It is shown
in the next section that there is substantial room for additional work on the theory

and on its applications, and that this work is promising.
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9.2. Future Research

There are several directions in which the present work can be pursued. Most
promising areas are a careful analysis of the sampling questions, and an investigation
of extensions to non-convex objects. These two areas are now discussed with more

detail.

At this time, 10 the best knowledge of the author, there is no theory comparable
to the Shannon sampling theory for the discrete representation of functions defined on
non-Euclidean manifolds such as the sphere. This problem has several facets. First,
sets of sample points must be defined on the domain of the function. It has been
shown that regular samplings of the sphere are impossible for practical numbers of
samples. Irregular samplings have been proposed, but they have a number of disad-
vantages. The second issue is the definition of sample values; a sample value could be
the value of the continuous function at the sample point, or a weighted average of the
function values in a neighborhood of the sample point. The third issue is the choice of
interpolation algorithms, i.e. algorithms for estimating the value of the continuous
function from the sample values, at points other than the sample points. The fourth
issue is the characterization of a class of functions for which sampling followed by
interpolation leaves the function unchanged. These four issues are tightly coupled,
and their solution is likely to involve complex arguments. A precise formulation of
the sampling questions would permit the development of algorithms for synthesizing
silhouettes. applicable to shapes specified both analytically or numerically. (he
development of numerical algorithms for shape reconstruction from silhouettes using
the circular and spherical transform would also be greatly simplified by solutions of

the sampling question.

Extensions of the theory to cover non-convex objects are essential for direct
applications of the theories to real-world objects. These extensions include principally
the definition of the transforms for non-convex objects in 2-D and in 3-D, and the
analysis of the occlusion problem. One method for defining the Gaussian mapping and
therefore the spherical transforms for non-convex objects consists of separating the
object surface into several patches such that each part has a well-defined Gaussian
image. A different method is to consider several Riemann "sheets" on the Gaussian

sphere. The same methods are applicable to Gaussian circles of silhouette curves.
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When relating Gaussian circles of silhouettes to slices of the Gaussian sphere of the
object, different silhouette parts or sheets on the Gaussian circle must be related 1o
their counterparts on the Gaussian sphere of the object. This correspondence is readily
preserved in silhouette synthesis, but may raise difficult issues in reconstruction from
silhouettes. Indeed, when several sheets are defined on the Gaussian circles of
different silhouettes, care must be exercised in preserving a consistent pairing of the

sheets when combining the circles as slices on the Gaussian sphere of the object.

In addition to issues involving multiplicity of the Gaussian image, silhouette
analysis is more complex for non-convex objects due to the possibility of occlusions.
When applying the silhouette construction method with the silhouette generator to
non-convex objects, a superset of the silhouette is obtaineddinstead of the silhouette
itself. Indeed. some of the points generated by this me{hod may correspond to
occluded object surface patches so that they do not appear in the silhouette. The set of
points generated by the silhouette construction method for convex objects is hence a
set of candidate silhouette points when applied to a non-convex object. This set must
then be pruned for occluded points. In the context of reconstruction from silhouettes,
the occlusions imply that less information may be obtained from each silhouette. As a
conseguence, a larger set of viewing directions may be required to reconstruct the com-
plete shape of a non-convex object. The question of which non-convex objects can be
reconstructed from the set of all their silhouettes has not been answered yet. These
objects have been called "tangible objects”; for each point on the surface of a tangible
object, there must be at least one tangent line which does not intersect the surface [61].
Convex objects are a subset of tangible objects, and some non-convex objects are also
tangible objects. It is easy to construct non-tangible objects by considering a long flexi-
ble cylinder and tying "knots” in this object. A simpler and more striking example is

that a torus is not a tangible object, whereas a toroidal object with a square section is.

In addition to the extensions 1o discrete transforms and to non-convex objects,
there is clear potential for extending the theories presented in this thesis in two other
directions. One extension would be to consider property spheres of third and higher
order terms of Taylor expansions of surface equations, and to relate these to
corresponding property circles of silhouettes. A different extension is to define

transforms on hyperspheres S, for n-dimensional hypersurfaces in (n+1)-dimensional
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space. These two extensions seem conceptually straightforward, would involve tedi-

ous algebra, and may not be very useful.

Aside from extensions of the theories developed in this thesis, there is a large
potential for applications. Once sampling issues are resolved, algorithms for numerical
synthesis of silhouettes and numerical reconstruction of 3-D shapes from silhouettes
can be developed. The mixed analytical/numerical silhouette synthesis method used
in this thesis to generate examples could be extended to more surface types by deriving
a table of transforms for many known surface patch equations. This project could be

implemented on a system for symbolic algebra such as MACSYMA.

The theory presented in this thesis is rich in potential applications in the areas of
computer graphics and computer vision. The work presented here provides new
insights in the geometry of surfaces which could be useful in understanding
differential geometry. This thesis has provided a new basic theory and provides ample

room for future research.
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Appendix 1
Examples of Transforms

In this appendix, the three transforms are analytically determined for a number
of curves and surfaces. Specificallyv. the Support Transform, Vector Support
Transform and Curvature Transform are evaluated for conics, superconics, torus

patches, quadrics, and superquadrics.

In each case, the curve or surface is first described by parametric equations for its
Cartesian coordinates. With this form, a normal vector is determined at each point,
then compared to the unit vector expressed in terms of the canonical normal angles.
This comparison provides relations between the generic parameters and the canonical
angles, from which canonical parametric equations can be determined, parameterized
with the polar angle s of the normal orientation for a curve, and with the geographi-
cal coordinates (£,m) of the normal for a surface. The transformations in (5.1),
(5.11), (5.19) are then applied to the equations of a curve to determine its three circu-
lar transforms. Similarly, the three transforms of a surface are obtained using equa-
tions (5.29), (5.36), (5.45).

Al.1. Transforms of Planar Curves

Al.1.1. Conics

Conics are curves described by quadratic implicit equations for the Cartesian

coordinates of their points. The general form of this equation in the Oxz plane is
Ax*+2Bxz+Cz*+2Dx +2Ez+F =0 (Al.1)

When the quadratic form in the left-hand side is not degenerate, the linear terms can
be eliminated by a translation of axes, and the mixed second-order term by a rotation
of axes. As a result, each non-degenerate quadratic curve can be described by an equa-
tion of the type

2
+

2

+ =1 (A1.2)

x
a

0N

in an appropriate system of axes. When both signs are positive, the above equation
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describes an ellipse with half-diameters @ and ¢ along the Ox and Oz axes respec-

tively; see Fig.A1.1. A set of parametric equations for the ellipse in (A1.2) is given by

a cost
¢ sint

x

g = (A1.3)

P
e

Al.l.1.1. Normal Vector

A vector U langent to the ellipse is obtained as the first derivative of the coordi-

nate vector,

—a sint
Cc cost

f: xt = (Al4)

A’ normal vector is then obtained by noting that, in 2-D, (z% —z, ) is a vector™perpen-

dicular to (¢, ;)7 .

Cc cost

_ (A1.5)
a Sinz

n =

To preserve the similarity with the case of quadratic surfaces in 3-D, the above nor-

mal vector will be scaled by ac .

(1/a ) cost

(1/¢) sint (A1.6)

-

P T
N

Fig.A1.1. Ellipse with semi-axes a =4, c =2.
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Al.1.1.2. Canonical Parameterization

The normal vector in (Al1.6) is compared with the unit vector in terms of the

polar normal angle s

(1/a ) cost cosys (ALT)
B= 1 (1/c)sin sinys '
Using the identity cos’t +sin®t = 1,1t it easy to determine that
11| = (a2cos®y + c2sin?y) /2 (A1.8)
and therefore that the relation between ¢ and  is given by
cost a cos
: = |f| . v (A1.9)
sinz C sinys

The equations of the ellipse in terms of the normal orientation s are hence given by

a 2cos;l:

= Inal (A1.10)

¢ 2sinys

Al.1.1.3. Circular Transforms

The three transforms of the ellipse are determined by applying the transforma-
tions in (5.1). (5.11). (5.19) 10 the canonic equation (A1.10). The ST and VST are
given by

p =%1, = (a’cos’y + c3sin?P)/2 = 117! (Al1.11)
s=R{*x
a *cos?y + ¢ 2sin?y p?
= In| s o =p! 2 o (Al1.12)
(c*—a*) sinyscosys (c*—a*) sinyicosys
In order to determine the CT, the derivative X,, must be evaluated
—sinys
= 202 (A1.13)
Ry, = Ifila‘c cosy
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The CT function is then obtaired as

(ac )?

(Y) =g, 1, = (ac)? 03 = ~
P v (a2cos®y + ¢ Zsin?y)3/2

(Al.14)

Al.1.2. Superconics

Superconics are a class of curves which includes conics, and which are described
in centered axes by implicit equations such as
L.
z|=] £]+] =1 (A1.15)
| 4| |

When both signs are positive and n is a real number in (1,00), the curve specified by
(A1.15) is smooth and strictly convex. It can also be described by the parametric equa-

tions

a lcost 1°sign (cost )

=1 _ 0L <27 (Al.16)

b Isinz 1° sign (sint )

with s = 2/n. Special cases include an ellipse for s =1, a rectangle in the limit for

s =0 and a rhombus for s —2; see Fig.A1.2.

The circular transforms of the superconic are first derived for the first quadrant

of the variable ¢ , so that

acos’t

<r < (A1.17)
bsinz ot sm/2

Al.1.2.1. Normal Vector

A tangent vector is determined by

_1 .
—as cos® 't sint
f:xz = X -1 (Allg)
bs sin® "'t cost
The normal vector is then obtained as
bs sin® !t cost
n = 1. . (A1.19)
as cos® "'t sint
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Z V4
— X X
n—1 n=2
. &
x X
n=4.5 n —oo

Fig.A1.2. Examples of superconics with half diameters a =4, b =2.

A simpler form is obtained by scaling the above vector by ab cos® "'t sin® !t

(1/a )cos*™ ¢

(A1.20)
(1/6)sin®*=5t
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Al.1.2.2. Canonical Parameterization

The normal vector in (A1.20) is compared to the unit normal in terms of the

polar angle Y to determine the relation between ¢ and .

(1/a )cos* ™5t
(1/b)sin*™¢

cosys
siny (A1.21)

n= = Inl

Using the trigonometric identity cos*t +sin’ =1, it is easy to determine |fi| then

X in terms of Y.

gl = N~V&+D (A1.22)
__L'__ ak+lcoskw

g=N 1 (A1.23)
b sin” Y

withk =s/(2—s)=1/(n—1) and

N = (acosy)* *1 + (bsing)* *! (Al1.24)

A1.1.2.3. Circular Transforms

It is straightforward to determine the VST of the superconic by applying the

transformation in (5.11) to (A1.23).

)v—‘_kl (a cos)* *1 + (b siny)* *! (AL2S)
S=/ kT X L . . _ [V
singrcosys (—a* Tlecosyt 7! + b % Flsinyt 71 )
The first component of the above equation is also equal to the ST function
K 1
p =N E*1[(q cosp)*! + (b sing)t 1] = N ¥ 71 (A1.26)

An expression for the ST valid in the four quadrants of the normal angle ¥s is given by

1 1
p = [la Cosw|k+l + 15 Sin¢|k+l]k+l = N k+1 (A1.27)

where

N = lacosy!* 1 + |bsiny |4t} (A1.28)
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The corresponding expression for the VST is
k
N

— A kAT (A1.29)
S=N simjcos ( —a* *1icosy 14 71 + 55 1 sinygs 14 71)

The CT of the superconic is determined by first evaluating the derivative X v
then evaluating the CT function with (5.19). The derivative is given in the first qua-
drant by

2k +1

ok =1 qink
x‘,,=k(ab)"“N_"“ cos® " Ysin” Y

(A1.30)
sin® "1y cos®

The CT function, i.e. the radius of curvature, is given by the following expression
valid in the four quadrants.
o() = k (ab Y *1 | cosys sinys | ¥ 1
e (A1.31)
lacosy !Xt + Ibsiny | * *?

Polar diagrams of the transform functions are illustrated in Fig.A1.3. for a superconic
with n =4.5.
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O (O

Superconic Support Transform
t-component of VST Curvature Transform

Fig.A1.3. Transforms of a superconic with n =4.5
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Al.2. Transforms of 3-D Surfaces

Al.2.1. Torus

The torus is an axisymetric surface obtained by rotating a circle of radius r
around an axis in its plane. The surface generated by the circle is simple when the dis-
tance R from the center of the circle to the axis is larger than . Consider a system of
axes where Oz is along the axis of the cone and Ox is in the plane of the generating
cirle and passes through the center of the circle, as illustrated in Fig.A1.4. Parametric

equations for the circle are given, in the Oxz plane, by

x R +r cosn

r sinm

X= (A1.32)

-
L

where 7 is the polar angle of the normal in the Oxz plane. Equations for the torus

itself are easily determined as

(R +r cosm) cosé
X = | (R +r cosn)siné (A1.33)
r sinm
where (£,m) are the geographical coordinate angles for the normal vector. The identity

of the parameters (£ ,m) as canonical angles in the above equations is easily verified by

Fig.A1.4. Torus generated by Revolution of a Circle
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evaluating a surface normal

cosé cosm
nN=%,XX. =7 (R +r cosn) | siné cosn (A1.34)
sinm

Al.2.1.1. Spherical Transforms

The VST of the torus is easily determined by applying the transformation in
(5.36) to the parametric equations of the torus in (A1.33).

Rcosn+r
§=Ry{*x= 0 (A1.35)
—R sinn

The scalar ST is identical to the first component of the above equation, namely
p =R cosn+r (A1.36)

In order to determine the CT of the torus with (5.45), it is useful to first evaluate the

derivatives X; and X,

—siné
X¢= (R +r cosn) | cos§
0
: (A1.37)
—cosé sinm
X, = r | —sin{ sinn
cosM
The components of the CT are then determined to be
Xely R +7r cos
o cosm cosn (A1.38)

Some particular features of the transforms of the torus can be observed in the above
equations, and it can be shown that these observations are also valid for all axisym-
metric objects. Specifically, the A component of the VST and the r ;, component of the

CT vanish for axisymmetric objects, the n and v components of the VST are identical
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to the n .t components of the VST of the generating curve. here the circle of radius r .
Finally, the r 5, component of the 3-D CT is identical to the 2-D CT of the generating
curve and the 7 ;; component is equal to the distance of the points of the curve to the

rotation axis, divided by the cosine of 7.

Al.2.2. Quadratic Surfaces

Quadratic surfaces are sets of points in 3-D defined by an quadratic implicit equa-
tion in Cartesian coordinates. When the quadratic form is not degenerated, the linear
terms in the quadratic equation can be eliminated by a translation of axes and the
mixed second degree terms can be eliminated by a rotation of axes. As a result, each
generic quadratic surface can be expressed, in an appropriate system of axes, by an

equation of the form

2 2 2

+

+ +

X R = =1 (A1.39)
a b c

When the signs in (A1.39) are all positive, the surface is an ellipsoid with semi-axes a,
b, c, as illustrated in Fig.Al1.5. A set of parametric equations for this ellipsoid is
given by

a Ccosu Cosv

X = | bsinu cosv (A1.40)
¢ sinv

Al.2.2.1. Canonical Parameterization

In order to deterimnine the spherical functions of the ellipsoid, the parametric
equations in (A1.40) will be converted into equations in terms of the normal angles
(¢,m). For this purpose, a normal vector to the surface is first evaluated. A scaled

normal to the surface determined by (A1.40) is easily obtained as

, (1/a )cosu cosv
miu X)_('\. = | (1/b )Sinlf cosv (Al1.41)
(1/c¢ )sinv

n=

where the particular scale factor was chosen to simplify the final expression. This
expression is compared with the expression of the normal unit vector as a function of

the parameters £, 7, specifically
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Y

Fig.A1.5. Ellipsoid with semi-axes a =4, b =3, c =2.

(1/a )cosu cosv cosé cosm
(1/b)sinu cosv| = IW| | siné cosn (A1.42)
(1/c )sinv sinm

Using the identity cos®u cos*v + sin’u cos®v +sin®v = 1 and the above equation, it
is easy to show that
15

—y ) . .
1T = | a?cos*écos®n + b 2sin®écos®n + ¢ Zsin’n

and 1o determine a relation between the parameter sets (u ,v ) and (£,m), namely

COSU COSV a cosécosn
sinucosv|{ = IW| | bsinécosn (A1.43)
sinv c sinm

The parametric equations can then be expressed in terms of (£,7), as

a %cosécosn

X = IR | b2sinécosn (A1.44)

c 2sinm
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A1.2.2.2. Spherical Transforms

The VST of the ellipsoid is easily derived by applying the transformation in
(5.36) to equation (A1.44), producing

a 2cos?¢cos?n + b Zsin?écos®n + ¢ 2sin’n
S=R{*x =7 (b% —a?) cosnsinécosé (A1.45)

(c? — a?cos?¢ — b3sin?¢) sinmcosn

The first component in the above equation is also equal to the scalar ST function

p (£,m). Its expression can be simplified as
3 &) . ) .y —
2 =n = | a’cos?écos?n + b3sin*Ecos ) + ¢ 2sin’n = |@l7! (Al.46)

Using the above relationship, the expression of the VST can be rewritten as

p?
F= 4 (b% —a?) cosnsinécosé (A1.47)
(¢?—a3cos*¢ —b>sin*¢) sinncosn

The CT of the ellipsoid will be determined with equation (5.45). For this pur-

pose, the partial derivatives of X(£,7) are first evaluated

(57— a®) cosins: a*cosécosn —a *sinécosn
= —— 4 cos3 nsingcos¢ b-sinécosn | + 1 b “cosécosn
) 4 2. 4 0
c 2sinn

—a %siné ( b%cos*n + ¢ %sin’n )
_ cosy

= — b2cosé (a*cos*n + ¢ *sin’n) (A1.48)

P (a?—=52)c?sinfcosEsinncosn



20082 — b2sin¢ + ¢ a*cosécosn ] —a %cosésiny
- . —a-cos"é —b-sin“§ +c* . e
X, = —sinncosn 3 - b3sinécosm| + — | —b2sinésiny
c*sinm c2cosn
, —a %cos¢sinm
c” e
= =3 —b *sinésinn (A1.49)
p

(a*cos*¢ + b3sin%¢ ) cosm

The components 7 ;1.7 15, 7 22 of the symmetric 2x2 CT tensor R are then obtained as

%1, 1 2 . . .2
ry = ¢ ¢ _ —5 ( b2c2cos’ésin®n + a >c 2sin®ésin®n + a b %cos®n) (A1.50)
CosT P
—_ 3 C2 2 2 . . ’
ri2 =Xyl = — (a®—5b7) sinfcosésinm (A1.51)
ra=%,1,= =5 (a 2cos?¢ + b3sin®¢) (A1.52)

p

A1.2.3. Superquadrics

Superquadrics are generalizations of quadrics to a class of higher order surfaces
[58]. A subclass of superquadrics has implicit equations similar to (A1.39). except that
the exponents, equal to 2 in the case of a quadric, are replaced by a parameter n in the
case of a superquadric. In particular, the superellipsoid generalizes the ellipsoid and is
defined by the following explicit equation
n

n n

|
% =1 (A1.53)

]

o |t

|

ESRNFI
| @ | |6 |
For n fixed to a real value in (1,00), the surface described by the above equation is
smooth and strictly convex. The limiting cases correspond to an octahedron forn — 1
and a parallelepiped for n — co, as illustrated in Fig.A1.6. The ellipsoid displayed in
Fig.A1.5 is a particular case of a superellipsoid corresponding to n =2. The part of the

superellipsoid surface in the first octant can be parameterized as




=
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t
[

n=4.5 n=oo

Fig.A1.6. Super-ellipsoids with semi-axes a =4,b =3, c =2,
forn =1, 1.2, 4.5, co.

acos®ucos®v
= | bsin*ucos®* v (A1.54)
csin®v

(SRS

where s = 2/n. The derivation of the transforms of the superellipsoid is relatively

tedious. It is helpful to first read the simpler case of the ellipsoid, or the derivation of
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the 2-D transforms of superconics.

Al1l.2.3.1. Canonical Parameterization

The spherical transforms of the superellipsoid are now evaluated. As a first step,
the parametric equations in (A1.54) are transformed into a form parameterized with

the normal orientation angles. For this purpose, the normal orientation is evaluated.
be sin® "u cosu sin® v cos* tlv

; ac sinu cos® “lu sin® v cos® tlv (A1.55)

. Ve -
1y sinv cos®s v

X
o
Il

ab sin® "y cos®~

A simpler expression of the normal orientation is obtained by scaling the above vector

by abc (sinu cosu sinv )* “1cos?* “lv. The scaled normal vector is then compared to

the unit normal vector expressed in terms of (£,1).

(1/a )cos> S u cos* ™S v cosé cosm
o= | (1/b)sin*Sucos?™Sv| = IW! | sin cosn (A1.56)
(1/¢)sin* ™S v sinm

Using the identity cos’u cos?v + sin®u cos*v + sin®v = 1 and the above equation, it

is easy 1o show that

2—-s
2 2 2 | ==
- = : - . -~ = (A1.57)
1T = | (acosécosn) ¥~ + (bsinécosn) ¥~ + (csinn) *~° (
and
2 s s
a ¥ Scos? ¢ cos?5
s 2 s s
X = In! 2—s b 2-s sin 2—s§ cos 2—s m (Al.58)
2 s
c 2—s sin 2—s m

As several manipulations of the above equation will be necessary to obtain the spheri-
cal functions of the superquadric, it is helpful to simplify it by introducing the
parameter k =5 /2—s = 1/(n—1) and
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N = IE1~%*D = (g cosécosn Y T + (bsingcosn * 1 + (¢ sinm )¢ !

(A1.59)

The parametric equations can then be rewritten as

a* *lcos* & cos* 1

N KE+1 | pk*lgink ¢ cosk (A1.60)
k+1
c

X =
sin® 1

Al.2.3.2. Spherical Transforms

The expression of the VST of the superellipsoid is easily derived by applying the

transformation in (5.36) to the above parametric equation, giving

cosécosn  sinécosn sinm)] [ x(£,m)

n
s = |h| = —siné cosé of |y(¢&m (A1.61)
v —cosésinn —sinésinn cosn| | z(&,m)
o (a cosécosn)* *1 + (b sinécosn)* *! + (c sinm) +!
=N k1 ( b* *lsink ~1¢ — @* *1cost ~1¢ ) sinfcosécost M

(c* *lsinf ~ln — a* *lcos* *1¢cos* ~In — b* *isin* *1¢cost ~In ) sinmeosn

The first component in the above equation also specifies the scalar ST function p (£,7m).

Its expression can be simplified as

1

p =n = | (acosécosn Y *1 + (bsinécosn )* *1 + (csinnp )* *? kil

(A1.62)

Comparing the above expression of p with the expression of N in (A1.59), it is clear
that N = p**! and therefore that

k+1

P
§=p~* sinécosécost m (b* *1sinf 1§ —a* *lcost 71 )
sinncosm (¢* *lsinf ~1m — a* *lcost *1cost ~In — b* *1sinf *1€cost ~In)

(A1.63)
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The third spherical function, the CT, is now evaluated for points in the first
octant of the superellipsoid. In order to derive the components of the CT tensor with
(5.45), it is necessary 1o evaluate the partial derivatives of X(&,m). Considering the
expression of this vector in (A1.60), it is useful to first evaluate

k

-éag—p" = éag—N ‘” = % (acosEcosn)"‘”+(lz~si1{1§o:osv))“'*'l+(csim'))“’l ET

2 +1

= kN **1 cos* *im (a* *lsinfcost € — b* *lsin* écosé) (A1.64)

k
O I Y 5 - (@ cosécosn * *1 + (b sinécosn F *! inp }+1f 4
= = n ) *! + (csinm )
m? T am scosT K

_2+1

="kN T ok *ln (a* *lcost *1¢sinncost 1+ b4 *lsinf *1¢sinmeos™ M — ¢ *sin Meosm )

(A1.65)

The derivatives X; = 9X/3¢ and X,, = 9X/gn are then evaluated as

a* *1cos* ¢ cos* 7 —a* *lsinécos® “1€cost 7
Xy = - [ pk bL *lsin* € cos* | + kp™* | b* *lsin* “1écosécost n
ag k+1q:0k 0
c**lsin* 7
. —a* *lsingcost ¢ (b* *lsint ~1gcost 1 + o Hlsin® *in)
k cos”® 41 k—
— "'%%ITQ bk +lgink 1§COS§(QL *leosk ~1¢cost +1n+ck +1g k+17?)
P c* *lsinécosésin® ncosn (a* *lcosk 71¢ — bk “sm —1¢)
(A1.66)
a* *lcos* £ cosk —a* *lcost ésinmcos* T1n
X, = 9 1 pk b* *lsin* £ cos* n| + kp™* | =b* *1sin® ¢sinncost ~ln
n . k=
c* *lsin* c* *1sin* “Incosn
okl kg
kc* *1sin* "Incost "n ¢ X +1C?Sk §s-1n'r)
= T —b* Tsin“ €sinm (Al1.67)

4 (a* *lcosk 1 + b* *lsink *1¢ ) cosm
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From the partial derivatives above, it is easy to determine the components 7 1y, 7 13,

r 55 of the CT tensor R.

(A1.68)

: £ =1
- k (Smfcoifffs")) (@b cosm) *! + (¢ sin)* *i{a* *15in3~* ¢ + bk *leos3* 'g)]
p

ria =%, (A1.69)
kc* *1singcosésin® neost "in
%+

P

ak +1COSk—lf _bk +lsink—-1§l

ray = ;fn.'l"n (A1.70)
kc* *lsin* “Incos* "1n
TES!

p

ak +1COSk +1§ +bk +lsink +1§

Outside the first octant, some of the trigonometric functions take negative values.
As fractional powers are undefined for negative numbers, it is necessary to separate
the magnitude and sign of the trigonometric functions. The following parametric

equations specif y the surface points of the superellipsoid in the eight octants.

a* *1|cosécosn | ¥ sign (cosécosn)

=N **1 1 p**lsingcosn|* sign (sincosn) (A1.71)
c**1sinn | * sign (sinn)
where
N = | acosécosn 1**1 + | bsinécosn 1¥ 1 + | esinn 1% (A1.72)

The ST is given by the following expression valid in the eight octants

1

p = | | acosécosn 1¥*1 + | bsingcosn 141 + | csinpy 15+ © (A1.73)
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The VST is given by the following vector equation valid in the eight octants.

k +1
P
§=p~* sinécosé | cosn | * sign (cosn) (b4 *!sing 141 —a% +1icosé 14 71)
sinncosn | ¢ *isinn ¥ 71 —(a Icosé | ¥ *1icosn ¥ 1 — (& Isiné | )f *icosn %~}
(A1.74)

It can be observed by comparing the previous relations with the corresponding rela-
tions in the first octant. that integer powers and & th powers of the trigonometric
functions retain their signs, and that trigonometric functions raised to the powers
k —1 and k +1 are taken in absolute value. This conjecture also produces valid
answers when applied to the expressions for the CT components in (A1.68), (A1.69),
(A1.70).

The spherical functions in (A1.73), (A1.74), (A1.68), (A1.69), (A1.70) can be
used to determine the circular functions of silhouettes of superellipsoids in ortho-
graphic projections. For example, Fig.Al1.7 displays a silhouette of the superquadric

with a =4, b=3, c =2, n =4.5, and the three corresponding circular functions.

In addition to the three spherical functions presented in the text, it is also possible

to determine the EGI function for the superellipsoid with (5.56).

5

Gm=ryran—ri
k- (abc )**! | sinécosésinncos®n X1

3k +1
k+1

| @acosécosn 1X+1 + | bsingcosn 1¥ 1 + | ¢sinm I"“]
(A1.75)

For s <2 and therefore k 21, the EGI is continuous over the whole sphere. For s > 2,
k —1 <0 and the EGI has discontinuities along the equator N=0 and along the meridi-
ans {=—7/2,0,m/2,7m on the Gaussian Sphere. These discontinuities account for the
fact that the surface expansions around the corresponding points contain only terms of
order larger than 2. For s —co, k —0, the EGI vanishes almost everywhere because of
the factor k% in the numerator of (A1.75); impulses remain at the six discontinuity
points (¢£,m) = (.,—m/2), (0,—7/2), (0,0), (0,77/2), (0,7), (.,m/2). The strengths
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Sithouette Support Transform

t-component of VST Curvature Transform

Fig.A1.7. Silhouette of Super-ellipsoid and corresponding circular functions
for 6= 30°,¢p=40°.

of these impulses can be evaluated as 4ab for the poles (.,—7/2), (.,m/2), 4bc for the
points (0,0), (O,7) and 4ac for the points (0,—m/2), (0,m/2). These values
correspond exactly to the areas of the faces of the parallelepiped which is the limiting

case of the superellipsoid for s —co, see Fig.A1.6.







Appendix 2
Parameterizing Curves and Surfaces
with Normal Orientation

This appendix addresses the issue of converting parametric equations in terms of
generic parameters into equations parameterized in terms of normal orientation. The

problem is first addressed in the case of planar curves, then in the case of surfaces in
3-D.

A2.1. Planar Curves

Consider a curve specified by parametric equations

x(t)

(A2.1)
z(t)

g =5(t)=

where ¢ is a generic parameter. The problem addressed here is the conversion of this
form into an equation () for the same curve, in terms of the polar angle Y of the
normal orientation. A relation between i and ¢ can be obtained by considering the

orientation of the tangent vector %, (¢ ). The relation is given by

= y(z ) (A2.2)

Y = atan-—
x(z)
where dots indicate derivatives with respect toz . The inverse function of yx(z ) is for-

mally written as z (), and is inserted into (A2.1) to obtain the desired result, namely
g = g () = () (A2.3)

For a strictly convex planar object, the inverse ¢ () is well defined and unique every-
where. However. it is possible to explicitly determine the inverse function z ({)) only
in particular cases. In other cases, there is no closed-form inverse of (A2.2) but
derivatives of x (/) can be determined using the formal inverse ¢ (is) and the relation

between derivatives of direct and inverse functions.
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dt (¢) _ 1
dt d Y(t )/dt

(A2.4)

To illustrate the use of derivatives of the formal inverse of ys(z ), an expression for the
radius of curvature of a curve is determined in terms of a generic parametric equation

such as (A2.1). The radius of curvature can be determined by

_|dx|_|dx| @ _|dx| 1
T dy | T (a | dy | d | dwia
Y(z ) = atan _z_

X
dy _ Ix —xZ
dt 32422

Fre
R
| at |

(i2+{,2)3/2
p= P

. (A2.5)
X —XxZ
A2.2. 3-D Surfaces
Consider a surface specified by the parametric equations
x(u,v)
X=Xu,v)=|yu,v) (A2.6)
z(u )

The problem addressed in this section is the conversion of parametric equations similar
to the above form, to a set of equations X(£,n) for the same surface, where the angles

(é,ﬂ) characterize normal orientation.

First, a relation between the generic parameters (u,v ) and the angles (£,7m) is
obtained by comparing the normal vector I =X, XX, with the normal vector

expressed in terms of (£,m).
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ny Yule T Y2y COS§ cosm
n=|n,| =|z,x. —z.x, | = Il | siné cosn (A2.7)
nZ xu y\‘ - x\' yu Slnn

Explicit expressions for the angles £ and 7 can be derived from the above equations as

&= atan = ¢(u,v)
i (A2.8)
T (uv)
= atan — =1nu,v
n ( nx2 + ny2 )% K
The formal inverses of the above equations will be denoted by
=ulem) (A2.9)
=V (g;n)

For a strictly convex object, the above inverse functions are well defined everywhere,

and can be inserted in (A2.6) to obtain the desired parametric equations

X=XuEvEn) =X¢En) . (A2.10)

In many instances, it is not possible to find explicit forms for the inverse equations
u(&m), v(£m), but the expression in terms of the formal inverses can be used to

determine derivatives of X(§,m), using the relation between derivatives of direct and

inverse functions,

S dv 9 dn
a§ 6§ = gu  u (A2.11)
ou Qv 8§ odn

ov

on an ov
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The derivatives of X with respect to the angular coordinates are given by

-1

\
I S R -
X X u X,
Sl I - O el O o B (A2.12)
Xn Su Qv | |X. o8 omn X,
on an | ov ov
The derivatives in the second matrix can be readily evaluated from (A2.8),
9¢ _ ny.,nx —ny nx,
ou nx?+ny?
8 _ ny.nx —ny nx,
o nx?+ny?
, Y ) (A2.13)
on _ nzu(nx*+ny*)—nz(nx nx, +nyny,)
u (nx?+ny?+nz?)(nx>+ny?)*
gn _ nz(nx 1+ ny?) —nz(nx nx. +nyny,)
v (nx?+ny*+nz?)(nx?+ny?)*

where subscripts in the components of the normal vector have been replaced by
postfixes to avoid confusion with partial derivatives; for example, n, has been

replaced by nx .

An example of the use of the above formulas is the derivation of the radius of
curvature tensor R from generic parametric equations. The relation between partial

derivatives and components of this tensor is given by

X r11c08M 1¢ + 7 | scosnl.
Sl = N S (A2.14)
Xy 7'121£+r221.,7

The unit vectors 1g, 1, can easily be determined in terms of components of the normal
in (A2.7),

—ny /Ny —ny,n,/nn
— —
e= | ne/ny | 1= | —nyn,/nyen (A2.15)
0] Ny /n
where n 2 = nx2 + n).2 + nzz and nx%. =nt+ n\.z.
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The components of the tensor can then be determined from the derivatives in (A2.12),

as

—_

cosm
= (A2.16)
Xylg

—

\‘
—
D

)

1= Xyl

~

~
el
1

It is also possible to evaluate the tensor R from generic parametric equations by
first evaluating the tensors of the first and second fundamental forms, then applying
an appropriate transformation to these tensors. This method was presented in[62] and

is briefly reviewed in Appendix 4.






Appendix 3
Duality between Slices and Silhouettes,
Euler’s Theorem and its Dual.

In this appendix, the duality between slices and silhouettes of quadratic forms is
reviewed, and an application of this analysis to curvatures of slices and silhouettes is
developed. Silhouettes and slices are first derived for ellipses in 2-D and for quadratic
surfaces in 3-D. In both cases, it is shown that silhouettes can be obtained in tangen-
tial space (dual space) by exactly the same operation that produces slices in point
space. The expressions for slices and silhouettes in the two examples are exploited to
formulate two different derivations of Euler’s theorem of differential geometry and of

its dual.

Throughout this appendix. the vector and matrix notation used in the equations
of geometric objects emphasize the duality between equations for curves and surfaces
in point space and their correspondents in tangential space. The formulation also

clarifies the proposed duality between silhouettes and slices of quadratic forms.

A3.1. Slices and Silhouettes of an Ellipse in 2-D

In this section, the slice of an ellipse by an axis through the center is determi.ed
in terms of the polar orientation angle o of the axis; then, the orthographic silhouette
of the ellipse on the same axis is also evaluated. The problem is first solved for ac=0,
so that the axis is horizontal, then extended to different values of a by combining the

previous result with rotations of the coordinate frame.

An ellipse centered at the origin of the Oyz plane can be defined by the following

implicit equation in point space.

> 7]

The equation for the tangents of the ellipse in dual space is derived by first considering

a1 212 y

5 =1 (A3l)

d13 Q33

the equation of the tangent at the point P(y o,z 0) of the ellipse.
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Q11 432 Yo

-

<0

(A3.2)

—

o

The tangential coordinates of a line, also named dual coordinates, are the coeflicients
Ay, Ay of the equation of the line written as A, x + A,y = 1. The coordinates of the

line in (A3.2) are hence given by

A

A;

Q13 A3y

Yo
20

ajy 4

(A3.3)

Q12 @z
Conversely, a line with tangential coordinates ()\3. A\, ) is tangent to the ellipse iff the
point P with coordinates

-1

Ay
X

Yo

<o

a;; ai

(A3.4)

ay2 Qo3 z

is on the ellipse. The equation of the ellipse in tangential space, which is the equation
specifying all the tangents to the ellipse, is obtained by requiring the coordinates of P

in (A3.4) 1o satisfy the equation of the ellipse in (A3.1).

- -1
a1 412 @11 @12 a1 452 Ay ’
‘M )\,] Y1 =1 (A3.5)
-7 Q12 A3 Q12 Q3> aiz 4 A,
a;; Qy2 ! Ay
)"\’ Ao ) =1 (A3.6)
¥oE @iy @y A,

The explicit tangential equation of an ellipse is hence a quadratic form with a kernel
equal to the inverse of the kernel of the quadratic form describing the ellipse in point

space.

The slice of the ellipse by the horizontal Oy axis and the silhouette on the same
axis are now determined. As seen in Fig.A3.1, both slice and silhouette consist of two
points symmetric with the origin, which will be specified by the absolute value of
their y-coordinates, vy, and y,; . First, the slice of the ellipse is determined as the
points for which z =0, namely

e 0] 222 (a3

ai; @y 0

Ystice ]
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ta

& Ysit Ystice

Fig.A3.1. Slice and Silhouette of an Ellipse on the Oy Axis.

An alternative expression for the half-width yg ;.. is given by

- [1 ol
Ystice

1
0]

G (A3.8)

a1y a3

The silhouette on the Oy axis is now determined as the intersection of the Oy
axis with the vertical tangents to the ellipse, see Fig.A3.1. For these tangents, A, =0

and A, =A;; is determined by

ay ayn| /\3-siz
. = (A3.9)
l)\‘wll Ol a2 a2 0 :
1 ay; a| 7 )
'7'51-1 = [1 Ol a1, dqs 0 (A3.10

The coordinates y,; of the silhouette points are given by y.;; = 1/ Aysit » SO that

aj;; @i

1

0 (A3.11)

2
Jsil [] Ol aya Ay
The projections and slices on an axis with a polar angle o are now determined by

first evaluating the equation of the ellipse in a set of axes Oy .,z , obtained by rotating

the axes Oyz by an angle «; see Fig.A3.2.

.
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(]

)
Ystice

Ysi

\—/

Fig.A3.2. Slice and Silhouette of an Ellipse on a Rotated Axis.

The coordinate transformation between the two systems of axes is given by

V COSx —SIno y
7| = . (A3.12)

“ o

Sinx COS&

An equation for the ellipse in the rotated axes is obtained by inserting (A3.12) into
(A3.1), which produces

aiy; agn Ya

%

COoSx Sina COosSx  Sino

=1 (A3.13)

Ya Za

d

—sino Cosa —sina Cosa | | Z,

a1y ap3

The equation of the ellipse in the rotated axes has the same form as (A3.1), but the
2x2 matrix is now the product of the three matrices in the above equation. Slices and
silhouettes on the Oy, axis can be obtained by applying equations (A3.8) and (A3.11)

in the rotated axes. resulting in

1 ) a; 4212 Ccosa
> = {cosa smoz] 4. a sino (A3.14)
Yslice 12 422
a a -
11 212 cosa
2 _ }
Vit = [cosa Sino iy @y sina (A3.15)

It is useful to consider a particular case where the principal axes of the ellispe are

oriented along the coordinate axes. Let d; and d , be the half diameters along the Oy
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and Oz axes respectively. The 2x2 matrix of the ellipse is in this case

ay @qn 1/d+ O
S ' , (A3.16)
ajyy ap 0O 1/dj

The expressions for the abscissas of the slice and the silhouette are given in this case

by
1 = —}'TCOS?'C( + 12 sinza (A3.17)
Ystice d l- d2
y.5 = d }cos’a + d # sin*o (A3.18)

A3.2. Slices and Silhouettes of 3-D Quadrics

In this section, the slice of a quadric by a plane and its orthographic silhouette are
evaluated. The expressions of these curves are derived with the same strategy that
was used to determine slices and silhouettes of ellipses. First, the slice and silhouette
on a particular plane, here the Oxy plane, are evaluated, then the result for a general
plane is obtained by combining the previous result with transformations of axes. Only

the first step is discussed here.

In order to show a different facet of quadratic equations in point space and in
tangential space. general systems of axes will be considered, as opposed to axes with an
origin at the center of the figure used in the discussion of ellipses. In order to describe
quadrics in general axes, it is advantageous to use homogeneous coordinates (x Y .2t )
for points in 3-D space. Any quadratic surface can be expressed in point space by an

implicit equation of the form

1] @13 @13 A1a| | x|
@12 @3y a33 A4 y
@13 @33 d33 A34 z
Q14 Q34 Q34 Qa4 t

The equation of the above quadric in tangential space is obtained by first considering

the equation of the plane tangent to the quadric at the point P O(x oYoZof O), namely
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v a1y Q33 A33 44 Yo
l xyzt ]

Q14 A4 A34 Agg )

The tangential coordinates of the tangent plane at P are given by

Ay @y Q12 @13 434 X0
Ay a3 @y @3 @ (Yo
A | T |ai3 a3 a3z az| | 2o
A, 14 A2gq Q34 A4y Lo

I

0 (A3.20)

(A3.21)

Conversel) a plane with tangential coordinates (\, Ay A A ) is tangent to the quadric

if the coordinates (x Y02 of o) Obtained by inverting (A3. 3.21) satisfy the equanon of

the quadric in (A3.19). Therefore, the set of planes tangent to the quadric is charac-

terized by the equation

It will be useful in the sequel to explicitly consider the inverse

equation, namely

An A A3 A ay) @32 413 414
Ay Ay Agz Ay ajp @j; @33 A
A1z Ay Az Azl |ay3 a3 a33 azg
Alg Ars Azg A Q14 Qo4 A34 Q4g

The slice of the quadric by the Oxy plane is first considered.
are characterized by z =0, so that the intersection of the quadric

set of points satisfying

-1
ay; @2 413 414 Ay
ayy a2 23 dag Ay ( )
A AL A M] =0 A3.22
Ty aj3 a3 a3z Az A
Ayg AQaq Q34 A4y A,

matrix in the above

(A3.23)

Points in this plane

and the plane is the
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Q1 ayp a3 Q14

=0 (A3.24)

A1y Qpp A33 A4
x v Ot ]

A13 Q3 33 A3y4

~ O« ¥

Q14 QApg Q34 dyg

This equation can be rewritten as an equation for homogeneous coordinates (x,v,t)of

points in the Oxy plane,

ay11 Q312 Q4 x
lx}’tl A1y @y A4 y| =0 (A3.25)

Q14 A24 Qyq l t
The above equation shows that the slice is a quadratic curve in 2-D, also called a conic.

The silhouette of the quadric in the Oxy plane is now evaluated. For that
matter, it is useful to first consider the silhouette generating planes which are in this
case. the planes with A. =0. For the quadric in (A3.19), the tangential coordinates of

these planes satisfy

A A Az A | M

A Ax Anz Apg| | N
[}\“')\50)\”‘} Az Ay A3z A 0
Ay Ay Az Agg| | M

It is easy to verify that the trace of a vertical plane (X, Ay A, =0,\, ) in the Oxy
plane is a line with coordinates (A, ,A,,\, ). The silhouette of the quadric is hence a

curve with tangential equation

A A Aul | A
‘)\x)‘y)\'zl Ajp Ay A As| =0 (A3.27)

[

which is the tangential equation of a conic.
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The point equation of the conic is then obtained as

-1
[All A12 A14

x
xyt Ay Ay A y| =0 (A3.28)
Ajs Ay Aus t

In summary, the slice of a quadratic surface by the Oxy plane is a conic: The
matrix of its equation in point space is obtained by removing the third column and
third row in the matrix of the quadric. The orthographic silhouette of a quadratic
surface on the Oxy plane is also a conic; the matrix of its equation in tangential space
is obtained by removing the third column and row of the matrix of the tangential
equation of the quadric. The matrix of the silhouette in point space is obtained from
the matrix of the quadric in point space by first inverting this matrix, then removing

the third row and column and finally inverting the resulting matrix.
A particular case is now considered, namely the case of a paraboloid with equa-

tion

a b
b c

Y

x = —Va(ay? 4+ 2byz +cz?) = [ y zl (A3.29)

The above equation can be written as a quadratic form similar to (A3.19) for the

homogeneous coordinates (x ,v,z ¢ ).

0001 x
OabdbO y

[xyztl 0bcoO Z=O (A3-30)
1000 t

The tangential equation of the paraboloid is

000 1| [M
0ABO| | N

)\xx}.xzqu 08 cCol |x|=0 (A3.31)
1000 A,
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where
-1
A B = ab (A3.32)
B C b c
The slice of this paraboloid by the Oxy plane is given by
001 x
Ixyt] O0a O] |y| =0 (A3.33)
100 t
which is equivalent 1o
a b |1
= =1/ 2 (A3.34)
x /2 [1 0 bellol Y

# The silhouette of the paraboloid is now determined# From the discussion on
silhouettes of general quadrics. it is Known that its equation is quadratic; the matrix of
this equation is obtained by suppressing the third row and third column in the matrix

of equation (A3.31), then inverting the resulting 3x3 matrix.

0O 0 1

x
l x yt 0A7' Ol |y| =0 (A3.35)
1 0 O t
which is equivalent to
x = - Y -
ab 1 (A3.36)
[1 O 1o ¢ o

When the paraboloid in (A3.29) is sliced by or projected on a plane Oxt making
an angle a with the Oxy plane, both the slice and the silhouette are parabolas; see
Fig.A3.3. The equations of these parabolas can be obtained by first applying a rotation

around Ox , similar to that in (A3.12). The equation of the slice is then

a b
b ¢

COS
G (A3.37)

x = =1/ | cosa sina .
sina
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x x
J y
Slice Silhouette

Fig.A3.3. Slice and Silhouette of the Paraboloid

The equation of the silhouette is given by

x = - ] — r?
ab Cosx (A3.38)
{cosoz Sina )
b c Sina

A3.3. Euler’s Theorem and its Dual

Euler's theorem in differential geometry relates the curvature of normal slices of
a surface to the principal curvatures of the surface itself. At a point of the surface
with principal curvatures k|, k ,, the curvature kg, of a normal slice making an

angle a with the first principal direction is given by

Kgice = k jcos?a + k ,sin’a (A3.39)

The dual of Euler’s theorem relates the curvature of orthographic silhouettes of a
surface to the principal curvatures at corresponding points of the surface. When a
point of the surface with curvatures & ;, k£ , is on the silhouette generator, the curva-
ture kg; at the corresponding point of the silhouette on a plane making an angle «
with the first principal direction is given by

1

sil

p = 7}1-0082& + —l-sinza (A3.40)

ko
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An equivalent formulation of the dual of Euler’s theorem in terms of radii of curva-

ture is given by

P = Ppicosio + p,sina (A3.41)

Our proofs of these two theorems will be based on the relation between curva-
tures and coefficients of quadratic terms in the Taylor expansion of Monge parameteri-
zations. Our analysis is done for one point on the surface, which is chosen as the ori-
gin of the system of axes; the Ox axis is chosen along the normal of the surface.
Planar curves are also considered in a system of axes centered at the point of interest

and with Ox along the normal. The expansion for a curve is given by
x ==k y*+0(y3) (A3.42)
where k is the curvature at (0,0). The equation for a surface is given by

+0((y,z)? (A3.43)

x=——1/z‘y z}

where K = k;; is defined as the tensor of curvature of the surface at (0,0). Finally, it
is easy to see that second order expansions of both slices and silhouettes depend only

on the second order expansion of the surface at the corresponding point.

The proposed theorems will be obtained in two different ways. First, the results
of section A3.2 are applied to the second order term in (A3.43), then, thc curvature of
the slice and of the silhouette are obtained with (A3.42). The second proof is obtained
by considering the two operations of slicing and projecting in a plane parallel to and
close to the tangent plane, say the plane x =—¢€. The slice of (A3.43) in this plane is
an ellipse so that the results derived in section A3.1 can be applied. This last analysis
of curvatures in terms of a section by a plane parallel to the tangent plane is well

known. The ellipse in question is usually referred to as the Dupin indicatrix.

A3.3.1. Proof by Operations on Quadrics

The second order expansion of the surface at (0,0) in (A3.43) corresponds to a
paraboloid to which equations (A3.37), (A3.38) can be applied.
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The slice by a plane Oxz at an angle a with Oxy is the curve specified by

ki1 ka2
k2 ko

COoS«x

x = =1/ t? (A3.44)

COSx Sina ;
sina

Comparing this expression with (A3.42) reveals that the curvature £ of the slice is

slice
k 11 k 12
k12 ka2

COS
. <~ (A3.45)
S1N&

Kiice = [cosa sma]

This expression reduces to (A3.39) when & ;,=0. The expansion of the orthographic

silhouette of the surface on the Oxt plane is obtained with (A3.38),

x == L =5 t2
. ki1 ko cosa (A3.46)
'cosa sma] Ao _
ki ks “\ Sino
The curvature of the silhouette is obtained by comparison with (A3.42),
-1
1 ' ki ko oS« (A3.47)
P = [ cosax sma] ks Koy sine .

This expression can be rewritted for py; =1/kg; in terms of the radius of curvature

= -1
tensor R = K

11 T12 COS

(A3.48)

4 = | cosa sino .
pS!l [ rlz r22 S1no

The above form reduces to (A3.40) when r ,=0.

A3.3.2. Proof by Operations on Dupin’s Indicatrix

The slice of a surface by a plane parallel to the tangent plane at the origin is a
quadratic form when the slice plane is close to the tangent plane. A curve with the
same shape is also obtained by slicing only the second order of the expansion in
(A3.43) at any distance from the tangent plane. Considering the section plane

x = —1/2, the slice is the Dupin indicatrix
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The expressions obtained in section A3.1 for slices and silhouettes of an ellipse are now
applied to Dupin’s indicatrix. The slice by x = —!/2 of the second order expansion of a
curve such as in (A3.42) is given by ky2 = 1, which indicates that half diameters d in
the plane x = —!/2 are related to curvatures k by d ? =k ~>. This relation between
half diameters and curvatures, combined with (A3.14) and (A3.15) produces the same

expressions for the curvatures as in (A3.45) and (A3.47).

A number of additional properties of Dupin’s indicatrix can be easily shown.

First, the surface of the ellipse is given by
S=rndd,=7mk{?k;* =nK "’ (A3.50)

where K g Is the Gaussian curvature of the surface. It is interesting to note that diam-
eters of the ellipse are related to curvatures of slices, and that the area of the ellipse is
related to the Gaussian curvature. A further property of the silhouette curvature can
be easily demonstrated by reasoning on Dupin’s indicatrix. This property, due to
Koenderink [43]. relates the silhouette curvature k. the curvature k,,; of a slice
parallel to the viewing direction and the Gaussian curvature kg. The relation can be
obtained by considering the slice y,,; of Dupin’s indicatrix in the direction with orien-
tation (a+7/2) perpendicular 1o the silhouette axis with orientation . The expres-

sion for y,,,; is obtained with (A3.17),

L sin2a+—1—cosza ( )
PR, 22 A3.51

The product y,,; Y. can readily be evaluated, and the result transposed to curva-

tures.
Yrad Ysit = d ld2 (A352)
Therefore,

krad ksil = Kg (A353)
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A3.4. Summary

In this appendix, we have first shown that silhouettes of quadratic curves and
surfaces can be evaluated in tangential space in the same way that slices are evaluated
in point space. Second, we have exploited the relations between curvatures and qua-
dratic forms to derive expressions for curvatures of slices and silhouettes of surfaces.
These two expressions can be considered as duals of one another. Finally, we have
shown that the concept of the Dupin indicatrix, proposed initially for the representa-
tion of curvatures of slices of a surface, can also be exploited as a representation of

silhouette curvature, radial curvature. Gaussian curvature and of their relations.




Appendix 4
Representations of Surface Curvature

In this appendix. several descriptions of surface curvature are reviewed and com-
pared, including the classical method of differential geometry [47], representations
proposed in computer vision [44, 40, 63}, and the representation proposed in this thesis.
The various representations will be compared by relating them to the classical

representation of differential geometry in terms of the two fundamental tensors.

Features of representations of surface curvature investigated in this appendix
include expressions for curvatures of slices and silhouettes of the surface, parameteri-
zation of the representation, consistency of the representation, and recovery of the glo-

bal shape of the surface from the description of its local curvature.

Ad4.1. Representation of Surface Curvature by Two Fundamental Tensors

This section reviews the classical definition of surface curvature; further material

is found in any textbook of differential geometry.

Consider a surface L and a specification of the points of this surface by

paramelric equations
X=X(u,) (A4.1)

The lines u =cst, v= cst define a coordinate chart on this surface, as pictured on
Fig.A4.1. In general, this chart is not orthogonal, its spacing is different in ¥ and v,
and its local shape varies along the surface. At each point, the metric implied by this

chart defines the expression for the length ds of a small arc specified by its increments
(du ,dv).

) o X, X, X, X. du
ds*=dXdX=\|du adv| | _. _ _ d (A4.2)
X, X X X v

The above expression is referred to as the first fundamental form, and the 2x2 matrix

on the right hand side, as the tensor of the first fundamental form. This matrix is

.
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TR XR|C|FG '

Denoting the 2-vector of the arc differentials (du dv )Y by ds, the first fundamental

form can be written in compact notation as

ds?=3dsT Gds (A4.4)

The curvature of the surface is related to the rate of deviation of the surface

from its tangent plane, and can be described by the form

.. T, TR (w
—dX'dl, = |du d"] -5, .1, n X .Tnu) —X, Tn v
(A4.5)

where Tn is the unit normal vector. The above form is referred to as the second fun-
damental form, and the 2x2 matrix on the right hand side as the tensor of the second
fundamental form. This matrix is denoted by D and its components by e, f , g, so

that the second fundamental form can be written as
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e f du
A ; Ad.H)
¢ 7d1, = |du d\) f g dv (
or, in compact form, as
—d%d1, =& Dds (A4.7)

n

It can be shown that the tensor D is also related to projections of the second deriva-

tives of equations of the surface onto the unit normal

S - |
f g xuv 1 n v 1 n

Transformations of the matrices D. G in changes of parameterization are now
investigated. The resulting expressions justify referring to these matrices as tensors,

and characterize the types of these tensors.

Consider a different parameterization (u,v,) of the surface T discussed above,

where the old parameters (u ,v ) are related to the new parameters (u,v ) by

u =ulu,,v,)

v = v uwy) (A4.9)
The fundamental tensor ﬁl is given, in the new parameterization, by
G,=JGJ (A4.10)
where J is the Jacobian matrix of the transformation (A4.9),
o u
J= 94 _ 1 9 (A4.11)
gul | Qv
ou: o0V
Similarly, the tensor D is modified as
D,=) D1y (A4.12)

Matrices which transform as in (A4.10) and (A4.12) in coordinate transformations are

twice covariant tensors. This justifies referring to G and D as tensors.



-242 -

Ad.1.1. Curvatures of Slices and Silhouettes

When the surface is sliced by a plane perpendicular to the surface at some point, a
curve for which the principal normal is identical to the normal to the surface is
obtained. It is interesting to relate the curvature of these curves to the two tensors of
the surface. Curvatures of normal slices and their dependence on orientation of the
slice completely characterize the local shape of the surface at a given point. For a
curve oriented locally along ds and with a principal normal along the normal Tn to

the surface, the curvature is given by

du d e f du
Kstice = - »] /&)l (4] & Dds (A4.13)
EF| |du ds” Gds

Both tensors D and G contribute to determine the curvature of slices of the surface,
and hence of the surface itself. This is due 1o the fact that D determines the deviation
of the surface from its tangent plane, relative to the parameterization in (uw,v). At
the same time, the metric implied on the surface by this parameterization is described
by G. In order to determine the shape of the surface independently of the parameteri-
zation and the curvature K., Of its slices, it is hence necessary to combine the infor-

mation contained in both tensors.

The dependence of the curvatures of slices of a surface on characteristics of the
surface is formalized in Euler's theorem. which is analyzed in detail in Appendix 3.
The theorem states that the expression of the curvature in (A4.13) has a maximum
value k; and a minimum value x,, and that these extrema correspond to orientations
ds which are 90° apart. The extrema of (A4.13) are investigated in the next section,

during the discussion of curvature invariants.

It will be shown in a later section that the curvature of a silhouette of the surface
L in a plane parallel 1o the section plane corresponding 1o ds can be related to the two

tensors at the corresponding point of the silhouette generator, by the expression
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E F du
du d\') FG

dv
Ksit = -1
EF| [e f| 'EF| [au
du dv F G f g F G dv

I cil ek
&'GD C&

(A4.14)

In summary, given the two fundamental tensors and an orientation defined in the
local parameterization of the surface, it is easy to determine the curvature of the slice
or the silhouette of the surface along the given direction. Note however~ that, when
the orientation is specified with respect to a global system of axes, it may be difficult to

describe this orientation with the local parameterization.

A4.1.2. Consistency and Inversion of the Representations

It is well known in differential geometry that the six components of the tensors
G. D are not independent; they are related by a series of relations known as the
Mainardi-Codazzi relations. Furthermore, it has been shown (Bonnet's theorem) that
given any set of six functions (E,F,G ,e,f ,g) which satisfy the Mainardi-Codazzi |
relations, il is possible to synthesize a surface for which the two fundamental tensors
have the given forms. The reconstructed surface is unique up to a solid translation
and rotation. The Mainardi-Codazzi relations are hence necessary and sufficient con-
sistency relations between the components of G amd D. These relations can be found
in any textbook of differential geometry; their form is relatively obscure for the non-

expert.

A4.1.3. Parameterization

When the surface shape is defined by the tensors G and ﬁ, these tensors are refer-
enced to the values of the parameters (u,v ) at the corresponding surface points. If
this representation is used as a model for a known surface in a recognition system,
matching with a measured surface may be extremely complicated if the measured sur-
face cannot be defined in the same parameterization. In order to relate parameteriza-
tions of the model and of measured surfaces, it is necessary to define "canonical”

parameterizations. Examples of proposed parameterizations are Monge
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parameterizations [40], parameterizations along lines of curvature [63], and coordinates
on the Gaussian sphere [44]. The advantages of each of these description modes is that
the Monge descriptions are easily obtained from image measurements, the lines of cur-
vature are intrinsic to the surface itself, and representations with the Gaussian sphere

are invariant with viewing direction.

It is possible to use any of the above three parameterizations to define surfaces
with the two fundamental tensors. When lines of curvature are used, it turns out
that the tensor D is diagonal. In that case, the shape of the surface is determined by
the five functions £,F ,G ,e ,g [63]. The redundancy of the representation is reduced,

but not eliminated.

A4.2. Definition of Curvature by the Shape Matrix and its Invariants

Since the intrinsic curvature of a surface is expressed in the combination if the
tensors D and G. it is tempting to develop combinations of these tensors, in order to

describe curvature by a single form. An example of this type of combination is given

by the “Shape Matrix" E [64]
B=G'D (A4.15)

It is easy to derive the rule for the transformation of B in changes of parameteriza-

tion, from the rules for G and D:
B,=G,'D, =T8T DBy =& 'Ds
B,=J"'BJ (A4.16)

The above transformation rule determines that B is a once covariant, once contravari-
ant tensor. It is easy to show that for this type of tensor, the determinant and the

trace are invariant in coordinate transformations

ir By =tr (FBI) = tr JI1B) = tr (B)

det(By) = det(J"'BI) = detJ ! detB det] = detB (A4.17)
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As a result. the eigenvalues of B are also invariant in changes of parameterizations.

The relation between the eigenvalues of B and the principal curvatures is now deter-
mined. The principal curvatures ki, K, are defined as the extrema of normal curva-

tures

min STD 3s
max 357G 35

It is clear that the right hand side of the above expression does not depend on scale fac-

Ky,2 (A4.18)

tors in ds. Therefore, the extrema are also obtained for vectors ds with a fixed scale.

min
K12 = pax d&7'Dds; constraint &SIGds =1 (A4.19)

The above constrained optimization can be solved by introducing a Lagrange multiplier

for the constraint,

K=o D& A | FCE -1 (Ad.20)

ma

The stationary points of the above expression can be evaluated by equating its deriva-
tive with respect to ds’ 1o 0.

2D&E-20Gds =0 (A4.21)

=—1
The above expression is left-multiplied by the matrix G , which is nonsingular, to

yield
{ G 'D-AI } E=0 (A4.22)

The stationary points of the curvature in (A4.18) are hence obtained when ds is an

eigenvector of B. 1t can be verified that these points are true extrema. Let the nor-

malized eigenvectors of B be d;. d,, and the corresponding eigenvalues be A;, X,. The

extrema of the curvature are given by

o = d/,b4,, d/,G B d,  d5,G N4,
12 = = =
al{-zﬁal,z 317:2(‘:&1,2 alj"zéalyz

=\, (A4.23)

The tensor B has hence the remarkable characteristic that its eigenvalues are the prin-

cipal curvatures. As a consequence, the trace of B is equal to twice the mean
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curvature and the determinant of B is equal to the Gaussian curvature of the surface.

These properties show that B is closely related to intrinsic curvature properties of the
surface. However, it will be shown in the next section that curvatures of slices and

silhouettes of the surface with generic orientations cannot easily be determined with

only the tensor B

Ad4.2.1. Curvatures of Slices and Silhouettes
The curvature of a slice of the surface oriented along the vector ds on the surface
is given by
o = ds’ Dds _ &' GBds
tice = =
T HFCE O H &

It is clear from the above expression, that when a slice is defined by its contravariant

(A4.24)

*.

vector ds. both B and é must be known to determine its curvature.

The curvature of a silhouetle of the surface can be obtained by applying to the
above expression. the duality between the curvature of a slice and the curvature of a
silhouette on a plane parallel to the slice. This duality is demonstrated in Appendix 3,
and it is shown that the radius of curvature of the silhouette depends on the principal
radii of curvature of the surface by the same expression that determines the curvature

of the slice in terms of the principal curvatures. The dependence of the curvature of

the slice on the principal curvatures is explicitly obtained by decomposing B in

(A4.24) into its diagonal factorization

Ky
L7 ds

&' GL |,
slice — &T E ag

(A4.25)

K

where L is the matrix formed by the two normalized eigenvectors d;, d, of B. The
duality argument determines that the curvature of the silhouette is given by
& CE
I/K] 0
0 1/K2

K =
st (A4.26)

&7 GL L7 ds
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The three factors in the dsnominator of the right hand side are easily recognized as the
=-1
diagonal factorization of B so that

FEHE __FES
&'C8 & &'GD G&

Ksii = (A4.27)

A4.2.2. Consistency, Completeness and Reconstruction

A number of representations of surfaces based on the shape matrix B or on its

invariants have been proposed in the computer vision literature.

First, the extended Gaussian imagel44] represents a surface shape by only one
invariant, the Gaussian curvature, parameterized with the normal orientation of the
surface. It can be shown that this representation is complete for a closed convex sur-
face, and that its consistency can be expressed globally by three scalar constraints.
These constraints are easily formulated when the extended Gaussian image is specified
as a distribution on the Gaussian image of the surface, specifying the inverse of the
Gaussian curvature of the object. The constraint is then equivalent to requiring the
center of mass of the distribution to be at the center of the sphere. The inversion of
the extended Gaussian image is laborious [45). Because of the consistency constraints,
it is not possible to modify the value of the extended Gaussian image at one point only
and therefore 10 assess the effect of point values on the global surface shape, but there
are strong indications that the global shape of the surface is affected by any local
change of the Gaussian curvature function. Whether or not the above conjecture is
true, there are no simple relations for determining the local shape of the surface from
only the Gaussian curvature function, and as a consequence, no simple relations for
evaluating the curvatures of slices and silhouettes of the surface. Aside from the
disadvantages discussed above, the extended Gaussian image has a number of desirable
characteristics, such as its invariance with rotations and the ease of computation of

this representation from experimental range maps or needle maps.
In other work, Besl and Jain have proposed a representation of surface shapes by

the two invariants of the tensor B namely the mean curvature k,, = Y%(x; + K2) and

the Gaussian curvature K, = K;K; [40). The parameterization proposed for indexing

the values of the invariants are image plane coordinates, a choice equivalent to a
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Monge parameterization of the surface with a base plane perpendicular to the viewing
direction. Since this representation specifies more information than the extended Gaus-
sian image does, it is likely that it is complete and redundant, so that consistency con-
straints must be satished by the two invariants. However, the parameterization is
different than in the extended Gaussian image, and the uniqueness and consistency
issues have not been carefully addressed in this case. Although the mean and Gaus-
sian curvatures determine the local aspect of the surface shape, they do not determine
the orientation of this shape with respect to a global reference, so that this representa-
tion does not provide simple expressions for the curvatures of slices and silhouettes of
the surface. To the best knowledge of the author, there is no algorithm for recon-
structing the surface shape, given the two invariants as functions of coordinates in the

image plane.

A4.3. Representations Proposed in this Thesis

The Curvature Transform (CT) introduced in this thesis specifies a single tensor
representing the local curvature of the surface, as a function of normal orientations.
The parameterization of this representation is identical to the one used in the extended
Gaussian image, but the function represented is more complex. As defined in Chapters
3 and 5, the characteristic represented by the CT is the inverse of the "tensor of curva-

ture" of the surface. expressed by its com'ponents in axes parallel to the local axes on
the Gaussian sphere. The curvature tensor K can be defined in terms of second deriva-
tives of local Monge parameterizations of the surface
azxz /a.Vz2 32351 /81 8%

- . (A4.28)
%% /9y,1821  8°x,/8z,°

|

where x; is along the normal, y; parallel to the corresponding parallel on the Gaussian
sphere, and z; parallel to the meridian of the Gaussian sphere. Comparing this expres-
sion with (A4.8), it can be shown that the tensor K is equal at each point of the sur-
face to the tensor D for a Monge parameterization in local axes at the point. In order
to define K at a given point Py, a change of parameters (u,v)— (u”,v") must be

found such that. at P,
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= J*T ﬁ‘]* (A4.29)

Zi

é = J*T éJ* = 122 (A4.30)
Indeed, the metric of the local Monge parameterization at P is Euclidean, so that the
metric tensor must be the unit matrix I,,. It is important to note that the parameteri-
zation by (u ! ,v* ) applies only to the point P o and that. although the tangent vectors

X+, X+ are along the local directions 1¢, 1,. the parameters (u” ,v" ) are not directly

related to the orientation angles £, 1 themselves. Assuming that J s regular, equa-
tion (A4.30). can be modified to

JI7T=8" (A4.31)

Any matrix J satisf ying the above equation is the Jacobian of a parameter change
which leads to a Euclidean metric around P, A solution of this equation will be

written formally as
* =—1/2
J =G

The solution of (A4.31) is ambiguous since a product of J' by any orthonormal 2x2
matrix is also solution of the equation. The ambiguity is resolved by requiring the
vector X, to be horizontal. The expression for the tensor of radius of curvature is

written formally as

-1/2= =—1/2

= "Dpg " (A4.32)

R=g ' V*p'g"? (A4.33)

Explicit expressions for obtaining the components of K in terms of the components of

G and D were determined in[62]

‘= lez,2=2fz, z +gz.2]
1= 7
k= lez, (Gz, —Fz )+ f(Ez*~Gz,})—gz, (—Fz, +Ez.)] (A4.30)
2 Z VEG — F2
- le (Gz,—Fz,)*+2f (Gz,—Fz.X—Fz,+Ez. )+g (—Fz, +Ez,.)?]
2 Z(EG —F?)
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where =, Z,. denote partial derivatives of z. It turns out that the tensor K is invari-

ant in changes of the parameterization (u ,v ), and that its eigenvalues are identical to
the eigenvalues of B It is interesting to note the similarities and differences between
the tensors K defined in (A4.32) and B defined in (A4.15). Major differences between

K and B are that K is symmetric while B is not, in general; as a consequence, ﬁ has

three independent components while B has four components. Furthermore, R is

related 1o local axes on the Gaussian sphere while B is related to local axes determined

by the parameterization.

A4.3.1. Curvatures of Slices and Silhouettes

It has been shown during the demonstration of the Silhouette-Slice theorems that
the radius of curvature of the silhouette is simlpy related to the radius of curvature

tensor R, which is the inverse of K, by

_ | cosax

Psit COSQ smcx] R Sina

where o directly characterizes the orientation of the projection plane in the local axes.

Similarly, the curvature of a slice of the surface is given by

COS&x

K ice = {coso: sina] K sino (A4.36)

The above expressions emphasize that the shape of slices and silhouettes of the surface

are easily determined from only the tensor R specified by the CT.

A4.3.2. Consistency, Completeness and Reconstruction

In Chapter 5, simple first order differential equations were determined for
parametric equations of a surface, given its CT. The existence of these equations
implies the completeness of the CT. In addition, consistency relations for the CT were
derived simply by requiring equality of the mixed derivatives of the parametric equa-
tions in terms of the CT. These relations are equivalent to the Mainardi-Codazzi equa-
tions for the representation with the two fundamental tensors, but they are much

simpler.
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A4.4. Discussion

When comparing the various representations of surfaces reviewed in this appen-
dix, it appears that the Curvature Transform has a number of advantages for describ-
ing surface curvature. The CT has only three independent components, while preserv-
ing completeness both locally and globally. 1t is easy 1o determine the shape of slices
and silhouettes of a surface defined by its CT. Finally, the consistency relations and
the reconstruction of the surface shape are straightforward for the CT representation.
An additional advantage of the CT is the existence of closed-form relations with the
other two representations proposed in this thesis. namely the Support Transform and
the Vector Support Transform. The major disadvantage of the CT is its limitation to

convex objects.

When choosing a representation for a particular application involving descriptions
of surface shapes. several factors must be considered. An aspect which was not dis-
cussed in this appendix is the estimation of the representation from experimental
measurements and the robustness of these estimates. Experiments with the new

representation must be performed before it can be compared with other representations

based on this criterion.







Appendix 3
Curvature of the Projection of a 3-D Curve

In this appendix, the radius of curvature of the projection of a 3-D curve is com-
puted in terms of the radius of curvature at the corresponding points of the 3-D curve

and the orientation of the viewing direction relative to the local Frenet trihedron.

Consider a point O on the curve C, and the system of axes Oxyz oriented along
the principal normal n =x, the tangent ¢ =y and the binormal b=z at O; see
Fig.AS5.1. Including terms up to the second order, the curve can be described around

O by the equations

(AS.1)
y=s

-

where p, is the radius of curvature at O. The viewing direction V is defined in the
axes Oxyz by its latitude 0 and longitude —§. A rotated system of axes Oxp yp Zp is
also considered, such that Oxp is along the viewing direction v and Oyp is on the
Oxy plane, see Fig.A5.1. The projection operation is trivial in the rotated axes, as it

corresponds 10 retaining the yp and Zp coordinates and discarding xp .

Fig.A5.1. Curve C, local axes Oxyz and rotated axes Oxp yp 2p -
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The transformation between the two systems of axes Oxyz . Oxp yp zp is given by

XR cosécosf —sinécosO sind x
ye | = siné cosé 0 y (A5.2)

Zp —cosésinf  sinésinf cosfB) |z

For points in the Oxy plane, the projection is obtained by merely applying (A5.2) to
the x, ¥y coordinates of each point. then discarding the xp coordinate in the rotated

{rame.

Yr siné cosé

—cosésing sinésinf

x
y

(AS.3)

<R
Applying the above transformation to the parametric equations of the curve in (AS5.1),

produces parametric equations for the projected curve

2
Ve = —siné ZSp + cos¢ s
° (A5.4)
Zp = cosésinf 2 + sinésind s
o

The radius of curvature is now evaluated at the origin, using the standard expression

(yk?. +L;R2)3/2
= = o (A5.5)
YRR T YRR
where the dots stand for derivatives with respect to the parameter of the curve, here
5. The derivatives in the above expression are evaluated at the origin as

siné __cosésinf

ye (0) = cosé, 25 (0) = sinésinb, yp(0) = — , Zp(0) =

o o

(A5.6)

As a consequence, the radius of curvature of the projection of the curve around O is

given by

_ (cos*¢ + sin’¢ sin20)%/2 o = (1 — sin®¢ cos?§)%? o (A5.7)
sinf ° sinf ’ .

s

This result is consistent with that obtained in section 7.4.2.




Appendix 6
Evaluation of two Differentials in Chapter §

In this appendix, the differentials of local coordinates of a curve and of a surface
are evaluated in terms of global angle differentials, providing the expansions of equa-
tions (5.13) and (5.41) in the text.

The case of a curve is addressed first; it is illustrated in Fig.5.3 in the text. In
fixed local axes, an expression for the differential d (i) in the neighborhood of Py is

obtained by the chain rule

d Xl (ZZ ) le dmzl
dzl dmzl d lj} e

dg, ()= d s (A6.1)

where m., is the gradient of the local Monge equation defined in section 3.2.4. The
first two derivatives in the right-hand-side of (5.13) are obtained for the particular
curve shape at P from (5.12). The last derivative in (5.13) depends on the relation
between the local gradient and the global orientation angle, a relation discussed in sec-

tion 3.2.4.
Each of the factors in (5.13) is now evaluated.

Parametric equations for the curve C around P, are easily obtained from (5.12),

namely
Xy 0] 1 - 3
2 = 1 o] -+ O (—I/ZZZ po Zl ) + O (Zl )
0 2
= 1 Z; + O (Zl )
g, =1, +0(:? (A6.2)
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The first derivative of the above equation with respect 1o the parameter z; is given by

dxl
dz; 0
dzl - 1 +0 (ZZ )
dzl
d XZ /dzl = -l.zz + O (ZZ ) (A6.3)

The derivative dz; /dm,; is now evaluated. In the neighborhood of P, the local

gradient m,; on the curve C is given by

m, =98x; /982, = —pg tz; +0(z,%) (A6.4)
It follows that
z, = —pogm,; + 0 (m.?) (A6.5)
so that
dz; -
Fr = —py + O (m,;) (A6.6)

Finally, the local gradient is related to the global orientation angle y by (3.61)
my = —(P—n) + 0 ((Y—yi)?) (A6.7)
so that

dmzl
d

The derivatives obtained above are inserted in equation (5.13) to obtain the differential

=—=1+0(yY—yyp) (A6.8)

d X, in local axes

dxl
dz,

0
= [ll (—po) (—1) d Y + O (Y—ysp) = po d s+ O (Y—)

1

d%, = po 1, d+ O P—yy) (A6.9)

which is the result exploited in the text, in equation (5.14).
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Differentials of coordinates of a surface are now investigated in a local reference
frame around the point P ; This frame is illustrated in Fig.5.7 in the text. An expres-

sion for the differential in the local axes Pyx; y; z; is obtained by the chain rule

- Di.l (ZI ) DZZ szl
dx, =
Dz, Dm. D¢

d¢ (A6.10)

where expressions such as DX, /DZ; denote Jacobian matrices, fli,; = (myz m,; )Y s
the 2-vector of local gradients, and d & is the vector of normalized global angle
differentials d & = (cosnd é d n)T. The first two Jacobian matrices on the right
hand side of (A6.10) are obtained for the particular surface shape around P from
(5.39). The last Jacobian matrix in (A6.10) is a relation between local slopes and glo-
bal orientation angles which can be derived from relations obtained in section 3.2.4.

Each of the factors in (A6.10) is now evaluated in sequence.

Parametric equations for the surface around P, are given by

-1

o 00 Y 1 "101 f102 Yt 3
Y = |1 ] =% 0 [)’z Z 0o _o0 | 0,200
£ 12 722 -

2 01 0
00 ¥, )
=110 -, + O ((y;,z;)°)
01
iz - 132 Zg + O(sz) (Aéll)

where I3, is a 3x2 matrix whose columns are the canonic vectors €5, €3. I3, is also the
matrix of the injective transformation from the local tangent plane Py, z; into 3-
space referenced by Pgx;y;z;. The Jacobian matrix of the above expression is given

by
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DX
‘—Z" = 132 + O(le) (A6.12)
Dz,

Dz,

The Jacobian matrix is now evaluated. The local gradient ff1,; on the sur-

D,
face Z in the neighborhood of P can be obtained frum (5.39)

e

-1

0 .0
My 11 712 Y 0 (z2)
=— +0(z
e T T ot Z
-1
m, = —-R, z, +0(z?) (A6.13)
This equation is inverted to produce
0 .0
M 11 712 My O (m2)
= - + O (m;
<1 rlo?. 7'??2 zl =
7z, = —R,m, +0(m2) (A6.14)

The desired Jacobian matrix is then obtained by differentiation.

oy OV
omy,  omy rd T
651 02 - 7'102 7"202 +O(mzzl)
omy oMy
Dz, -
= —R, + O (m}2 (A6.15)
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Finally. the local gradients are related to the global angles by (3.61) from which

the following form is derived for the last Jacobian matrix in equation (A6.10).

amyl amyl
cosndé o
amzl amzl - O 1 T O((§_§0:n_n0)2)
cosngé oM
Dm, 2
Dgz = —1,, + 0 ((¢—¢)?) (A6.16)

where I,, is the 2x2 unit matrix. The expressions obtained above for the Jacobian
matrices are inserted in equation (A6.10) and produce an expression for the differential
d %, in local coordinates, valid to first order around P . The expression is exact at P,

and since P is generic. applies to all regular points in appropriate local axes.

dx
l 0 11 T2 cosnd &
| =1 12 22 an
z 01

A differential for the surface in global coordinates is obtained by applying the coordi-

nate transformation in (3.10) to the above differentials

dx cosécosn —siné —cosésinm 00 ri 712 cosnd &
dy| = | sinécosn cos§ —sinésinm 10

: T2 Ta2 dmn
z sinn 0 cosnm 01

dX=RfC1,,Rd¢

which is the result exploited in the text, in equation (5.42).
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