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Abstract

We develop computationally efficient iterative algorithms for the joint Maxi-
mum Likelihood (ML) estimation of the time delays, Doppler shifts, and spectral
parameters of stationary Gaussian signals radiated from a stationary or moving
point source and observed in the presence of uncorrelated additive noise at two
or more spatially distributed receivers. Perhaps the most striking feature of these
algorithms is that they decompose the estimation of the signal spectral parameters
from the estimation of the delay and Doppler parameters, leading to a considerable
simplification in estimator structure and computation. The proposed algorithms
converge to the set of stationary points of the likelihood function, and each itera-
tion increases the likelihood. All algorithms are derived from a common iterative
framework related to the Estimate-Maximize algorithm, and we analyze their con-
vergence rates both theoretically and via simulation.
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1 Introduction

Time delays between signals radiated from a common point source and observed

at two or more spatially separated receivers can be used to determine source location.

Time delay estimation has therefore attracted a great deal of interest in the literature

(e.g. [1]). Most of the analyses assume that the source signal and the additive receiver

noises are mutually independent wide sense stationary (WSS) Gaussian processes with

known spectra, and that the observation interval is long compared with the correlation

time (inverse bandwidth) of the signal and the noises. In that case, the Maximum Like-

lihood (ML) estimate of the receiver-to-receiver delay is obtained by pre-filtering and

cross-correlating the received signals, and searching for the peak of the cross-correlator

response [13,10,7,12]. Under the stated assumptions, the ML delay estimate is optimal

in the sense that it is asymptotically unbiased and its error variance approaches the

Cramer-Rao lower bound.

If there are M > 2 receivers, there are (M - 1) linearly independent differential

delays to be estimated. Joint ML estimation of the these delays requires a search

over an (M - l)-dimensional space of delay values. An alternative approach that

avoids this multi-dimensional optimization consists of independently estimating the

M(M - 1)/2 differential delays between all receiver pairs, and then using a linear least

squares fit to convert these estimates into estimates of the (M - 1) linearly independent

delays [8]. However, this approach requires M(M - 1)/2 cross-correlators, which may

be prohibitive for large arrays.

If the source is moving relative to the array, the signals observed at different receivers

are not only time delayed but also time compressed relative to each other. Measurement

of these Doppler time compression coefficients provides important additional informa-

tion concerning source location, velocity, and heading. However, the time scaling effect

causes the signals observed at different receivers to be jointly non-stationary, and thus

complicates the estimation problem quite drastically. An approximate ML scheme was

developed in [11]. Basically, it forms the cross-correlation of one receiver output with

respect to a time-delayed and time-scaled version of the other receiver output, and
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obtains the joint ML estimate of the delay and Doppler parameters by maximizing

the cross-correlation response. In the multiple receiver case with M > 2, we need to

estimate all (M - 1) pairs of differential delay and Doppler parameters jointly, and the

amount of computation required increases substantially.

In all of these analyses, it is assumed that the signal and noise spectra are known a

priori. In practice, this is apt to be unrealistic. One is unlikely to have accurate prior

information about signal bandwidth, center frequency, or power level, and the spectral

description of the noise field may be similarly incomplete. It has been shown [191 that

lack of knowledge of spectral parameters does not degrade the quality (mean square

error) of the delay estimate, provided that the joint ML estimation of the delay and

the spectral parameters is carried out. Unfortunately, for most cases, the joint ML

estimation involves a complicated multi-dimensional optimization that is difficult to

solve. A common sub-optimal approach consists of estimating the signal and noise

spectra (or alternatively, the coherence function), and using these to construct the pre-

filters to be used prior to the cross-correlation operation (e.g. [7,12,3,4,91). However,

this procedure is ad-hoc, and its inherent accuracy critically depends on the method

employed for spectral estimation.

In this paper we develop computationally efficient schemes for joint ML estima-

tion of the delays, Dopplers, and spectral parameters, all based on different variants of

the iterative Estimate-Maximize (EM) algorithm. Perhaps the most striking feature of

these proposed algorithms is that they decompose the estimation of the spectral param-

eters from the estimation of the delay parameters without any sacrifice in estimation

accuracy (mean square error). In the multiple receiver case, we develop an algorithm

that further simplifies the problem, replacing the multidimensional optimization over

the vector of delays and Dopplers with an optimization which estimates each pair of

delay and Doppler parameters independently. The proposed algorithms increase the

likelihood on every iteration, and they converge to the set of stationary points and local

maxima of the likelihood function. Their convergence rates can be analyzed theoreti-

cally.

The organization of this report is as follows. In section 2 we present the ML problem
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of estimating the delays and spectral parameters of a stationary (non-moving) source

observed by an array of spatially separated receivers. We show that the direct ML

solution is quite difficult to compute. We briefly discuss some existing sub-optimal

solutions and ad-hoc approaches to the problem. In section 3, we develop iterative

algorithms for solving ML problems based on an approach related to the Estimate-

Maximize (EM) algorithm. The proposed algorithms are optimal in the sense that

they converge iteratively to a stationary point of the likelihood function, and each

iteration increases the likelihood of the estimated parameters. In section 4 we apply

the simplest algorithm to the time delay estimation problem. In section 5 we analyze the

convergence behavior of this algorithm for the case of very long observation intervals,

and show that the delay and spectral estimates converge linearly to the desired ML

solution. In section 6, we present several hybrid EM-ML iterative algorithms, which

require more computation, but which achieve super-linear convergence rates. Section 7

contains simulation results for the algorithms, and compares their performance (mean

square error) with the Cramer-Rao lower bound. In section 8 we consider the problem

of estimating the additional Doppler parameters caused by relative motion between

source and receivers. We confine our attention to stationary narrowband signals, in

which case the Doppler effect effectively causes a frequency shift of the signals observed

at the various receiver outputs. We first present the direct ML approach to the problem,

followed by computationally efficient EM and EM-ML hybrid algorithms. Finally, in

section 9 we summarize the results.
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2 Problem Formulation and Existing Results

Signals radiated from a stationary (non-moving) point source, propagating through

a non-dispersive medium, and observed in the presence of additive noise by M spatially

distributed receivers, can be modeled by:

T. < t < TF
zi(t) = ais(t - ri) + vi(t) - (1)

i= 1,...,M

where ri is the travel time of the signal s(t) from the source to the ith receiver, and

ai is the amplitude attenuation of the signal wavefront at the ith receiver. In many

applications, ai > 0.

We suppose that s(t) and vi(t) for i = 1,... ,M are mutually independent, jointly

wide-sense stationary Gaussian random processes with power spectra Ps(w;O) and

Pv,(w;ai) respectively. The vectors 0 and ai for i = 1,...,M represent possibly

unknown signal and noise spectral parameters such as bandwidth, center frequency,

fundamental frequency, average power level, pole/zero coefficients, etc.

Given continuous or discrete-time observations of the receiver outputs zl(t),..., ZM(t)

for TI < t < TF, we want to find the Maximum Likelihood (ML) estimate of the delays

ri. Because the likelihood function also depends on the unknown gains and spectral

parameters, we will have to estimate these also. Let r, a, a represent the vectors of

unknown delays, signal gains, and noise spectral parameters, respectively, and let e

represent the vector of all unknown parameters:

T

a
= a (2)

0

Because s(t) is unknown and stationary, we can only identify the relative delays ri - r i .

In the following we will sometimes explicitly recognize this by setting one of the delays

to a fixed value, e.g. TM = 0. If the model for Ps(w;O) allows adjusting the overall

signal spectral level, we may also wish to fix at least one of the gains to a fixed value,

4

i



e.g. aM = 1, or constrain the energy in the gains, Ei ai = c for some constant ec.

Because the vectors , a, a, and 0 will only contain the unknown parameters, their

dimensions may vary depending on how much is known about the application.

Note that in most beam forming applications with M > 2 receivers, the fixed

geometry of the array constrains the feasible set of delays ri. Rather than taking

arbitrary values, these delays may be restricted to being deterministic functions, ri =

Ti(P, b), of the source range p and bearing . In this case, the target location estimates

may be found by directly solving for the ML estimates of bearing and range. This

results in a lower dimension search for the optimum, and typically gives more robust

estimates. Although the methods in this paper can be adapted to estimate bearing and

range directly, we will not consider this in the development below.

2.1 Likelihood Function

For stationary signal and noises, it is convenient to state the estimation problem in

the frequency domain. Fourier analyzing the various zi(t):

Zi (wI) =zi(t)e dt (3)

where T = TF - T and where w = 27rn/T is the nth frequency sample. (In the case

of discrete observations, we replace the integral by the appropriate sum.) Similarly,

define S(w,) and Vi(wn) as the Fourier transforms of s(t) and vi(t) respectively. Define

Z(wn) as the M x 1 vectors of the M receiver coefficients associated with frequency an:

Z1 (Wn)

Z(wn = · (4)

Define V(w,) similarly.

Fourier transforming the model (1) gives a frequency domain version of the model:

Z i(wn) = aie-jw"iS(wn) + Vi(wn) (5)

Using the notation defined above, we can write (5) in a more convenient vector form

as follows:

Z(wn) = U (wn; , ) S(wn) + V(wn) (6)
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where:
l e-Jwnrl

u"; , _= I (7)
(w; A ct) 7)M-jnM

Assume that the signal and noises are bandlimited, with maximum bandwidth W.

Let us define the data vector z as the concatenation of all N frequency samples Z(w,)

in the band of interest, which for convenience we will assume to be between WL and

wU:

Z(L) 
Z = 1 (8)

Let N = U - L + 1 be the total number of independent frequency samples in the band

of interest. We note that since the zi(t) are real-valued functions, then Zi(-w,) =

Zi* (,) (where * denotes the complex conjugation) so we only need to consider positive

frequencies. To simplify the development, we will also ignore the DC term. (Since Z(O)

is real while all the other frequency samples are complex, the DC term would require

special handling.) We will indicate later how to modify the algorithms to include the

DC term.

We assume that the observation interval T is long compared with the correlation

time (inverse bandwidth W/2ir) of the signal and the noises (i.e. WT/27r > 1). In

that case, the vector Fourier coefficients Z(wn) associated with different frequencies

are statistically independent, multi-variate complex Gaussian random variables with

probability densities:

p(Z( W )) - Z*(n)Pz (w;)z(wn) (9)

det [rPz(wn; )]

where Pz(w,; ) is the data covariance matrix at frequency w,:

Pz(w; ) = E [Z(wn)Z*(wn)]

= U((n;r,c)Ps(w.;)U *(w.;r,) + Pv(w0 ;cu) (10)

where Z* is the complex conjugate transpose (Hermitian) of Z, U(w.; r, a) is defined
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in (7), and where Pv(w,,;a) is an M x M diagonal matrix of noise covariances:

Pv,(wn; Or1) 0

Pv (w,; o) = . (11)

o PVM (Wn; CM)

Invoking the statistical independence of the Z(wn), n = 1, N, the observed log

likelihood function is:

Lz() = log p (Z;)
U

E log p(Z(w.))
n=L

ET

- Z [log det [7rPz(wn; )] + Z *(wn)Pl(wn; )Z(wn)] (12)
n=L

(Note that this formula would be exactly correct if all the processes were periodic

with period T.) Substituting (10) into (12) and carrying out the indicated matrix

manipulations:

Lz() - E [I log 7rPv, (n;i)+ log 1 + E Ps(w;e)

+i= Pv,(w,;ai) 1 2p(13)
i=1 P~i G')";'gi) + I:M ai i= (IWn.; )/PV, (W.; Ci)

Computing the ML estimate of the unknown parameters requires maximizing Lz(_)

with respect to all the unknowns :

ML -- max Lz(_) (14)

The ML method is known to be asymptotically efficient. Thus, for WT/27r > 1 and

sufficiently high signal-to-noise ratios, ML is asymptotically unbiased, and its error

variance approaches the Cramer-Rao lower bound (CRLB), that is:

CoV (ML) - J- () (15)

where J(,) is the Fisher Information Matrix (FIM) defined by:

J(() = -E [ 2 Lz(()] (16)

7
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In [19] it is shown that:

J(() l- (17)

where J(r) is the FIM associated with the delay parameters:

w 2 SNR(w,)SNR(w,)

n= 1 + EM= SNR,(wn)
Jik (T) - 'SNRi(w,) Zmti SNRm(w=) (18)

where SNRi(wa) is the signal-to-noise spectral ratio at the ith receiver output:

SNRi, (w) = ) (19)

The block diagonal form of J() has several important implications. First, it asserts

that J-'() is also block diagonal, indicating that the errors in the r estimate are

asymptotically statistically uncorrelated with the errors in the a, a, and 0 estimates.

It further asserts that:

Cov(_) - J-'(r) (20)

But J-1(r) is the Cramer-Rao lower bound on the error covariance of r when a, a,

and 0 are known a-priori. Therefore, if we carry out the joint ML estimation of all

the unknown parameters, then the quality of the delay estimates is not degraded by

the errors in the gain and spectral estimates. Unfortunately, for most cases of interest,

the joint ML estimation of the delay, gain, and spectral parameters required in (14)

involves a complicated multi-parameter optimization that is very difficult to solve.

2.2 Approximate Likelihood Maximization Methods

Because the ML estimation problem is so difficult to solve directly, it is useful to

consider approximate methods first. The problem would be simplified, for example, if

the signal gains and spectral parameters were known exactly, so that we only needed

to optimize with respect to the delay parameters i. In this case, we could write the

log likelihood as:

U M-1 M

Lz(T) = c'+ 2 Re E E Wik(W,)Zi(Wn)Zk (Wn)e j " (i -Tk) (21)
n=L i=l1 k=i+l

8



where c' is independent of , and:

Wik(wn) = tP(;n)/iPV (Wn; )P (22)
1+ j=M SNR(wn)

and where SNRm(wn) is given by (19). The log likelihood (21) only depends on the

differential delays ri - rk, and so we could fix one of the delays to a constant value, e.g.

TM = O. Maximizing (21) then requires an M - 1 dimensional search for the optimal

delays T1,..., TM-1. For M = 2 receivers, this is particularly easy, since we are left with

the one-dimensional optimization:

j +-max Re [I W 2 (wn)Zn)Z (n)en1] (23)

This special case was developed in [10,7,12], and is called the Generalized Cross Corre-

lation (GCC) method [12]. It yields the ML estimate of the receiver-to-receiver delay

when the weighting function W 12 (w,,) is precisely known. Other delay estimation tech-

niques (e.g., [3,6,17]) have the same format as (23), but use a weighting function which

is chosen to optimize a different criterion (e.g., signal-to-noise ratio, detection index,

etc.). These methods are expected to outperform the conventional cross-correlation

method (W 12(w) = 1) by taking full advantage of the spectral details of the signal and

the noises.

In practice, we do not have prior knowledge of the signal gains or the spectral

parameters that are required to construct W 12 (wn). Therefore, it has been suggested

that one estimate the weighting function first, using parametric or non-parametric

spectral estimation techniques, and then use it in (23) (e.g., [7,12,3,4,9]). However,

this approach is only suboptimal, and its inherent performance critically depends on

the method employed for spectral estimation.

When there are M > 2 receivers, an approach that avoids the (M - 1) dimensional

optimization consists of maximizing M(M - 1)/2 separate GCC's between all possible

pairs of receiver outputs to form unconstrained ML estimates of the various differential

delays, ik = ri - k. A weighted linear least squares fit is then used to convert these

estimates into estimates of the (M - 1) linearly independent delays (see ([8])). This

approach is asymptotically equivalent to maximizing (21). Unfortunately, M(M - 1)/2

different GCC optimizations must be solved separately.

9



The chief difficulty with the ML approach to time delay estimation is that when

the signal gains and spectral parameters are unknown, it requires a difficult nonlinear

optimization over a large set of parameters to obtain asymptotically efficient estimates.

In the next section, we will develop a general class of iterative algorithms for solv-

ing ML problems. These algorithms effectively decouple the estimation of each of the

unknowns, allowing us to solve independent optimizations for each of the parameters.

This computational simplification is achieved without any loss of estimation accuracy.

The algorithms converge to a local maximum or stationary point of the likelihood func-

tion, increasing the likelihood on each step, and we can compute their convergence rates

analytically. Furthermore, the methods naturally generate estimates of the underlying

signal s(t) and its variance as they iterate, which is helpful if one of the goals is target

identification or analysis.

10



3 Iterative Likelihood Maximization Algorithms

In this section we will derive a family of iterative algorithms for solving Maximum

Likelihood problems. Let z be a (finite) vector of observations, let _ be a (finite) vector

of parameters, and let s be a (finite) set of "internal" signals which cannot be directly

observed, but which are stochastically related to z. The ML problem we would like to

solve is:

M'ML- max log p (24)

where p (z; ) denotes the probability density of z given the parameter values . We

will define Lz() = logp (; ), the log likelihood of the observed data.

3.1 Estimate-Maximize-like Algorithms

We will solve this problem indirectly, using an approach first presented in [16,15].

One version of the resulting algorithm is equivalent to the Estimate-Maximize algorithm

of[5]. Our derivation, however, is quite different. It yields considerable insight into the

hill-climbing behavior of the algorithm, and also allows us to develop better algorithms

with faster convergence rates.

The key idea is that if we knew the noise free signal value s, then we could estimate

the parameters by solving an ML problem which is often simpler:

(ML +- max log p (s ) (25)

Unfortunately the signal s is unknown. The algorithms we will introduce bypass this

difficulty by estimating the signal s using the available observations z, together with

the current parameter estimate ( ). Using this signal estimate, possibly together with

its variance or other higher order moments, we reestimate the model parameters by

solving a problem similar to (25). On the next iteration, the improved parameter

estimates are used to further improve the signal estimate, which in turn will lead to

even better parameter estimates. We will show that each iteration cycle increases the

observed data likelihood function Lz () in (24), and convergence to a stationary point

of Lz() is guaranteed.
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To derive the algorithm, let e be a second set of parameter values. Now define:

z ds (26)Q(;) =f P ( Z; ) log ( .-) ds (26)

where p (s, z; ) is the joint probability density of s and z given parameter values ,

and p (s IZ; ) is the conditional density of s given the observations z with parameter

values . Using some algebra, we can rewrite Q(C; ) in the form:

Q(C;I) = p(s lz;) (, ) -log ( ;)] ds

QJ~Ps(SIZ; O+log_; +lo )] ds

log p (; )) + P (S Z; I ofp(s z;) [log(z;) + log ( ds (27)
- logp(±;_)fp( z; ) ds+fp(s z; ) logp s_ z;_~ ds

- logp( ;)+ fp(, z; )log ( a- '; - ~ (27)

where in the transition from the first line to the second line we have used Bayes' Rule.

Now let us consider the problem of optimizing Q(}; _). Maximizing over , Jensen's

inequality applied to (27) implies that the maximum is achieved at C = I. Substituting

back into (27):

max Q(}; C) = Q(; ) = log p (z; ) = Lz( ) (28)

The global maximum of Q must therefore occur at C = e = ML' This implies that any

algorithm which maximizes Q jointly over and will also maximize the likelihood

function Lz().

Consider, for example, the following iterative coordinate ascent approach for max-

imizing Q:

Guess (O)

For I = 0, 1,2,...

- r maxQ ;Q (29)

1(2+l)- maxQ( 

12



By Jensen's inequality, the first step above yields:

(L~i (= ) (30)

Thus:

E'" 4- maxQ (31)

To solve this, we use formula (26). Omitting terms which do not depend on , we get

Dempster's EM algorithm [5]:

For I = 0,1, 2,...

(+1) -max p(s z;) logp (s, z;) ds (32)

(33)

or equivalently:

I(l )-maxEi,, [Ly _ ) ] (34)

where y = (ST ZT) is termed the complete data, and where Ly is the log likelihood of

the complete data y:

Ly () = log p (s, ; ) (35)

The notation E,(,) [... Iz] denotes the conditional expectation with respect to the obser-

vations z and with respect to parameter values ().

The computation in the EM algorithm naturally divides into two phases. The "Es-

timate" step (E-step) uses the latest parameter estimates (I) to compute the expected

value of the signal, possibly together with its variance and higher-order moments, in

order to evaluate the expected value of Ly(). The "Maximize" step (M-step) then

maximizes over e to get a better parameter estimate. On the next iteration, we use the

improved parameter estimate (+l) to improve the expectation calculation in the next

E-step, and thereby improve the next parameter estimates in the next M-step. Clearly,

each iteration increases the value of Q. Therefore,

Lz (((l+l)) Q ((1+1); (1+1))

> (();()) = Lz ( ( )) (36)

13
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Thus each iteration increases the log likelihood. In view of (29), the EM algorithm is

simply a coordinate ascent optimization applied to Q(). Therefore, if Q(; _) is bounded

above and differentiable in and , and the estimates (I) remain within a compact set,

then it can be shown [16,15,5,20] that the EM algorithm is guaranteed to converge to

the set of local maxima and stationary points of the observed data likelihood function

Lz(). Of course, as in all "hill-climbing" algorithms, the convergence point may not

be the global maximum of the objective function, and thus several starting points or

an initial coarse grid search may be needed to locate the global maximum.

3.2 Iterative Hybrid EM-ML Algorithms

As indicated earlier, any algorithm which iteratively maximizes Q will also iter-

atively maximize the likelihood function. For example, we can derive an iterative

algorithm which we call "EM-ML" by using a different coordinate ascent procedure.

Partition e into two disjoint sets of parameters, = (-,'-2). Partition similarly,

- = (-1' 2) Now consider the following approach for optimizing Q(; _):

For I = 0, 1,2,...
~.(/+1) (/+1 ) 1 (/ + 1

_ - -1 2)

(2 - max Q ; - '- 2

This is similar to the hill climbing approach used to derive EM, but the order in which

we search through the parameters is different.

Now to solve the first step, note that:

max Q ; _) = max maxQ 1,( ) (38)

(+l) 2( C)
Because of Jensen's inequality, the maximum inside the brackets is achieved at ( 2 )

= (-~' -2 ). Substituting back and maximizing over _l gives:

max Q Cl, ;6 l' 

= ax logp ( (1l) ) (39)

14



Thus the first set of parameters 1 is estimated by an ML-like step.

Solving the second step in (37) gives an EM-like step:

( +) ( l)

Each iteration clearly increases the value of Q(_ ; ). By the same argument used

in (36), each iteration must also increase Lz(). Furthermore, under the same regularity

conditions as for the EM algorithm, it can be shown that the EM-ML algorithm will

converge to the set of stationary points of Q, which in turn are just the stationary

points of Lz().

The name "EM-ML" is intended to reflect the use of direct ML optimization for

one set of parameters, ,1 and EM optimization for the remainder, 2. Obviously, there

are many possible variations to this approach. We may partition into more than 2

subsets, and we may maximize Q with respect to any combination of parameters in any

sequence we desire. Different optimization approaches will have different convergence

rates and different computational burdens. However, as long as we maximize Q with

respect to every parameter at least once per iteration, we will still converge to the set

of stationary points of Q and of Lz().

15



4 EM-like Time Delay Estimation Algorithms

Consider now applying an EM-like algorithm to the time delay estimation problem.

Let z be the vector of samples of the Fourier transform of the observed data defined

in (8). A natural choice for s is the vector of Fourier transform coefficients S(w.) of

the unobserved (internal) source signal s(t):

s = I (41)

S(Wu)

The complete data y is just the set of all the components in s and z. Since s(t), v(t),

and z i (t) for i = 1,2,...,M are jointly Gaussian processes, then for WT/27r > 1

the samples S(w.), V(w.), and Z(w.) are Gaussian variables which are statistically

independent of any other'samples S(w,), V(wm), or Z(wm) for m n. Therefore the

log likelihood of the complete data is given by:

Ly () = 1ogp (S(WL) Z(L), S(WU),Z(W); )

= E logp (S(wn), Z(wn); )
n=L

E logp (S(wn); ) + logp (Z(w) I(wS W); (42)
n=L i=l

where:

ogp (S();) = - [log s( P s(wn ;O)](n (43)

logp (Zi(w,) S(wn); ) = - (7Pv (n;i)) - Z(,) i( ) I (44)

We are now ready to apply one of our iterative algorithms. We could try using the

EM algorithm described in the previous section, but in general this approach does not

decouple the parameter estimation steps quite as effectively as the following approach.

Partition the parameters into two sets, 1 = (T, a, 0) and I-2 = (a). Now use the

following coordinate ascent algorithm to iteratively maximize Q(; _):

For I = 0, 1,2,...
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+- max Q ; ( ,1 )

*- max 

+- max Q ( ; 1 , 2)

As before, by Jensen's inequality the solution
A(1+1)

in the first step is 
( ') -( ')

= ' 2 

Substituting back gives:

For I = O, 1,2,...

(l (l+) ('+1l) [ a E( L1) Ly+1) (T, O, ) ]

{('1+) max E(l) [L ((1+1) (1+l), "+1),) za 

(46)

(47)

To solve this, substitute (43) and (44) into (42) and take the conditional expectation

given z at the parameter estimate _():

[r
n=L

log rPs (w,; ) +
Ps (w) (; )

+ E 2aiRe
.=.

L6uwnS( *()Pv(w;i)]E -jwni S(') (Ln) Zi (Wn) /PV, (Wn; Uj)

n=L

- Z I Zi (Wn) 
n=L PK(Wn; i)

U )

- logrPV (Wn; Ci)
n=L

where:

2 IS(W.n)
n=L PV (Wn; ai)

(48)

= E(l), [S(wn) IZ]

= E() [S(Wn) Z(wI), Z(c2) . , Z(WN)]

= E(' [(w " )lZ ]

= E,( [S(w,) Z(wL),Z(W2 ), ... , Z(WN)]

(49)

(50)
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The terms in (49) and (50) are the only conditional expectations required in this it-

erative algorithm. For large WT/27r, (S(w,),Z(w,)) are statistically independent of

Z(wm) for all frequencies m n. Thus:

(')(wn) = El,,) [S(wn) _Z(w.)] (51)

= EVOL [S(Wn)|2 Z(wn)] (52)

Since S(w,) and Z(w,) are jointly Gaussian, invoking well-known results (e.g. [2,

chap. 21):

U(L) (LW) = P () ( , ( ) I -1 (53)

|S (w.) 2 = ()(W)

Var,) S(wn) (,) = P(W,;

where from (6):

p Z( n)p( )

1 + Vary), [S(w.) Z(w.)]

P ) _ P (w)] z (Wn)

- EV(,, [S(w.)Z*(wn)]

(56)

and:

E [Z(wn)Z*(w)]

= (; T(') &()) Ps(wn; (L))U* (; (' ), ())+ P (n; )

Substituting (56,57) into (53,54) and simplifying gives:

E-step: Compute:

M

S )(W) L Zi((w)T(')(wn)/Pv (w,; _,')
i=1

iS(Wn) = §(,)

where T(l)(wn) -
1.

(w.) 2 + (l) ()
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IS(Wn) IZ

= Ps (L""�; _0)) U * (L,;"; f (1), & (1))

- [P(O (L'L"")] *
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and where SNR )( ) has the same formula as (19), but with the parameter values

set to the current estimates:

SNR (,) = k (61)
Pvk P,; &(o)

The M-step following the E-step requires maximizing (48) first with respect to r, a,

and , and then with respect to a. We observe that the first term in (48) depends only

on 0. We further observe that the ith component in the sum composing the remaining

terms depends only on the ith channel's delay, gain, and noise spectrum parameters Ti,

ai, and a i. Because these terms are quadratic in ai, we get a closed form solution for

the optimal choice of the ai's. Substituting back, the maximization over the unknown

parameters decouples as follows:

M-Step:

( 1- main nL [log Ps(w,;_) + Ps(w;O) (62)
n=L Ps (w,; n

For i = 1,2,..., M solve

+1l) - _ max Re i e-JS (( (w)Z (,) /Pv, (w,; -)) (63)

&?) =L (64)

IS( .)lI )Pv) (LI n
n=L

(1+1) min- log Pv,(wn; ai)} (65)

+ some of the parameters are known (for Ple, if we have set (65)

If some of the parameters are known (for example, if we have set M = o or aM = 1)

then these would not be estimated. (If we already know the value of some ai, then the

absolute value in (63) should be removed, and the expression multiplied by ai instead.)

(If we wish to constrain the channel gains to be positive, aci > 0, then remove the

absolute value in (63), and if the expression in (64) is negative, set u,+1) = 0 instead.)

Both the E-step and the M-step have structures which are easy to interpret. The

quantities S(t)(w,) and IS(w,) 2 ( computed in the E-step can be interpreted as the
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best, minimum mean square error estimates of S(wn) and IS(w,)12 respectively, based

on the current parameter estimates and the noisy observations. The signal is formed

from a weighted linear combination of delayed receiver outputs. IS(w,) 2 is found

by squaring S(')(w), then adding the signal variance T(')(w) to compensate for the

uncertainty in the signal estimate. The formulae (58,59) are, in fact, the non-causal

Wiener filter applied to the M-channel data.

In the M-step, the optimization for ) in (62) simply fits the signal spectral

density to the estimated signal periodogram S(wn)l 2 Each delay (1+') is estimated

by maximizing a cross-correlation between the signal estimate and the ith receiver

output, weighted by the inverse of the current noise spectrum estimate. The gain

C(t+) is estimated as the normalized height of the cross-correlation peak. To better

understand the formula for the noise spectrum parameter estimates o.i+1), define a noise

estimate Vi(w,) = Zi(wn) (- i+l)ejw('+' S(w,). Then it is easy to show that (65) can

be written:

() +-min EnL [ ( ; ] + log Pv,(wn;i)] (66)

Thus ai is estimated by fitting the noise power spectrum Pv,(wn;i) to the expected

periodogram of the estimated noise, Vi(w). All these optimizations in the M-step are

similar to the solutions to the ML problem in (25) for estimating the parameters given

both the signal s and the observations z. The difference is that the sufficient statistics

S(w.) and IS(w.)l 2 are replaced by their current estimates S(')(wn) and IS(w.)12

respectively.

The algorithm iterates back and forth, using the newest parameter estimates in

the E-step to build a better Wiener filter, thus generating better signal and signal

variance estimates. These in turn are used to further improve the parameter estimates

on the next M-step, with the signal variance used to compensate for the uncertainty

in the signal estimate. Each iteration increases Q(; ) and thus also increases the log

likelihood of the observations, Lz(l) on every step. Furthermore, because the algorithm

is a simple coordinate ascent approach for maximizing Q(~; ), it can be shown that

under the appropriate regularity conditions, convergence is guaranteed to the set of
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stationary points of Lz().

A computationally attractive feature of this algorithm is that it decouples the opti-

mization of all the parameters, allowing us to independently estimate the signal spec-

trum parameters 0, and each channel's delay, gain, and noise spectrum parameters

T,, ai, and r i. We have therefore replaced the full multi-dimensional search associated

with the direct maximization of (14) by an iterative search in much smaller dimensional

parameter sub-spaces, leading to a considerable savings in computation.

4.1 Exploiting Parameter Ambiguity

There are several ambiguities in our model which can be deliberately exploited

to improve the convergence rate. One important issue is the choice of which delay

parameters to estimate. As noted earlier, if the signal waveform s(t) is unknown, it

is only possible to estimate the relative delays ri - Tj between receiver channels. This

suggests that we set one of the delays to an arbitrary value, e.g. TM = 0. We then

only need to estimate the remaining M - 1 delays T,..., M-1. Alternatively, we could

estimate all M delays, and iterate until the relative differences i - fj have converged.

In the latter case, the delay estimates will be offset by some constant which depends

on the initial guesses. Also we will have to solve M rather than (M - 1) separate

cross-correlation maximizations on each iteration. However, we will show later that

this extra computation achieves more rapid and more reliable convergence.

A similar issue involves the estimates of the signal gain. Suppose that one of our

signal spectrum model parameters, perhaps 0 = g2 , controls the gain of the signal

spectrum, while the remaining parameters, call them 02, control the shape: Ps(wn; ) =

92Ps(wn; 02). In this case, the likelihood Lz() depends only the products of the gains

gai, and thus only the products gai can be identified from the observation data. We

could remove this ambiguity by setting one of the gains to a fixed value, e.g. g = 1

or aM = 1. Alternatively, we could try estimating all the parameters c,...,aM, g.

The products of the estimates g(l)&?L) will converge to their ML estimates, though the

final values of the individual parameters will depend on their initial guesses. As we

show later, although this latter approach involves more computational effort, it achieves
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much faster convergence of the signal energy estimates.

4.2 Signal and Noise Power Spectrum Models

The complexity of the optimizations over 0 and cr depend primarily on the structure

of the signal and noise spectral models. A convenient model for the source signal is a

discrete all-pole (autoregressive, or AR) process. Suppose the model has p poles. Let

8 = (g, a), where g is the model gain, and al,..., a are the p AR coefficients. If W is

the maximum signal bandwidth, the signal spectrum model is:

Ps (w,; O) = (67)
1 + E = ameiwm/wml (67)

Substituting this into (62), the resulting function is quadratic in the pole coefficients a.

Setting the derivatives with respect to g and a to zero yields a set of linear equations

to be solved for the optimal signal model coefficients:

M-Step - Estimate 0(l) by:

Solve R() al a1(+) (68)

ap 0

These are similar to the Yule-Walker equations, but where R( ) is a (p + 1) x (p + 1)

Toeplitz matrix whose elements are samples of the expected signal correlation:

[k]mk =(R (m - k) (69)

and where R)(m) is the inverse Discrete Fourier Transform (DFT) of the expected

signal periodogram, IS (w) :

1 vL ) (
t(mn) = IRe S (w,)1 ej " 'm/w (70)

n=L

As stated in the previous section, estimating both g and all the gains a,..., a,

introduces an ambiguity, since only the products gai can be identified from the observa-

tions. Nevertheless, fastest convergence is achieved by estimating all these parameters

on each iteration, and simply normalizing the gains afterwards.
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When the AR model order p is very high, the Ps(wn; ) model will have many

degrees of freedom, and its estimated shape will follow ]S(wn)2( quite closely. A

simpler alternative to using high order models is to use a non-parametric approach,

estimating samples Ps(wn;0) = Ps(wn) independently for all frequencies wn. In this

case, we just set the spectral estimate to the expected value of the signal periodogram:

Ps(+)(n) = S(Wn)l 2 (71)

As pointed out earlier, the delay estimates tend to be somewhat insensitive to spectral

details of the signal and noise fields. In practice, the primary advantage of signal

spectrum estimation seems to be that it helps to filter out noise energy in regions where

there is no signal. Therefore, if we are primarily interested in the delay estimation, we

need only choose a convenient model that captures the essential features of the signal

spectral distribution, such as its bandwidth and center frequency.

In a similar way, it is convenient to choose models for the noise spectrum which are

easy to estimate. In some applications, the noise spectra are known up to a constant

gain, that is:

Pvi (Wn; i) = ai Pv,(Wn) (72)

where Pv,(wn) are known functions of wn. For example, Pv,(wn) = 1 for spectrally white

noise, or Pv,(wn) = 1/wn for 1/f noise. In this case, the optimization for .('+l) in (65)

can be explicitly solved:

u j Z1(wn) - (±)e iwni S(L)(n ) (1+)2T(n)

?+i) - - NFk I- i~con ) -&?+l~e-i~"~J'+'}S(O~ton)I (73)
N n=L ' Pv; (wn)

This is just the average energy in the estimated noise periodogram. It is interesting to

note that with this simplified noise model (72), directly applying the EM algorithm (34)

would have yielded exactly the same estimation equations as algorithm (46).

It is also possible to estimate an AR model for the noise spectrum. Yule-Walker-

like equations would be solved for the AR parameters, where the Toeplitz correlation

matrix would be formed using estimated noise correlations derived from the inverse

DFT of the estimated noise periodogram, E(, [ i(wn) 22z]
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5 Convergence Analysis

An important issue associated with iterative algorithms is the rate of convergence.

It has been observed[14] that the EM algorithm possesses a linear (geometric) rate of

convergence with a factor that depends on the particular choice of complete data. In

this section, we carefully analyze the convergence properties of the algorithms developed

in the previous section. Based on this analysis, we will then suggest some modifications

of the algorithm that improve the convergence behavior.

5.1 Convergence of the Delay Estimates

When the length of the observation interval T is much larger than the correlation

time (inverse bandwidth) of the signal and noises, i.e. WT/27r > 1, it is possible to

apply the central limit theorem to develop approximate formulas for the convergence

rate of the EM time delay estimates. Consider the updating formula (63). Substituting

the value of S(t)(wn) from (58) into (63):

i + ) --max Re E )(w .)Z (w)Z ()ej ( ) (74)
n=L k=l

where /i(k)(wf) has the same formula as (22), but with parameter values set to the

current estimates:

li() (w) at, a ts(Wn,; )/P (n; lf ) Pv(;)75_)
1 E =a (1)1 ± Zm-= SNR..(wn)

Let tiO)(t) be the inverse Fourier Transform of (Wi1)(wn). Parseval's theorem can

then be applied to (74) to approximately express it in the time domain:

i(+) _max Ef ti)(t - r)zi(r + Ti)zk(t + )) dtdr (76)
This is just a sum of weighted cross-correlations between the receiver oupu zt

This is just a sum of weighted cross-correlations between the ith receiver output i(t)

with all the other receiver outputs Zk(t), with relative delay ri - i(). If the observation

interval T = TF - TI is much greater than any of the delays, and much greater than

the correlation time 2/W, then the law of large numbers guarantees that the value
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of the integral in (76) will almost always be close to the expected value of the integral

conditioned on the correct (but unknown) parameter values . Thus for large WT/27r,

each M-step approximately solves:

fi(l+) -max E T tw (t- r)El [zi(r + i)zk(t + -l))] dtdr (77)Ti kitTi

Converting back to the frequency domain:

fi (1+l ) - max Re t)(W)E [Zi(w.)Zk (W)] e (i) (78)
n=L k=l

From the covariance formula in (10):

E [Z()Z*()] = { i kPs(wn; -)e -j('i -k) for k f i

at 2Ps(wn;O) + Pv,(wn;ti) for k = i

Thus:

~i(l+l) t max Re E (LVi))(w)Pv~(w.n; vi,,(r,:")
n=L

M+ 
E Wk (Wn) kPs (w; )e (80)

n=L k=l

Let us define "weighted signal and noise covariance" functions (l) (t) and R(f) (t) as

the terms in the equation above:

Rk (t) = ae Wi )(w)aiakPs(wn;O)ej ' t (81)
n=L

)(t) = ReE W (i)(wn)Pv(wn;i)eijwnt (82)
n=L

Note that both R(') (t) and R() (t) behave like covariance functions because they are

the inverse Fourier Transforms of positive, real, symmetric functions. In particular,

these functions all peak at the origin: R(') (0) > R() (t) and R) (0) > IR(') (t) for all

t. Substituting these definitions back into (80):

M

ii ( l + l )- max ) ( -k (ri ri + k T 1) (83)
k=1

Note, for example, that if both Ps(Wn; ) and Pv, (w; ')) are flat, so that the signal

and noise both behave like bandlimited white Gaussian noise over the signal frequency
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band, then 1~()(w,,) is flat, and b ) (t), R(') (t), and R()(t) are all differently scaled sinc

functions of width 1/T.

The function in (83) has up to M separate peaks located near delay values ri +

(() - fk). Note also that the values of (z), (), and a ( ) affect IW ()(w,) and thus affect

the shape of the peaks of R(l) (t) and R(')(t), but they do not strongly affect the location

of the peak of these functions, which is always at t = 0. Thus we would expect that the

values of a(l), (), and (1) will have only a moderate effect on the convergence behavior

of the delay estimates in the large WT case.

5.2 Initial Convergence Behavior

Because of the multiple-peak structure of (83), the convergence behavior of the EM

algorithm will be quite different depending on whether the relative delay estimates

f(') - '1) are close to their correct values k - i, or are quite far off. In this section we

consider the initial convergence behavior; in the next we consider the behavior when

the delay estimates are close to their final values.

To simplify the analysis, we will only consider the case of M = 2 receivers. We also

consider two variations of the EM algorithm. In the first variation, we estimate both

(l+1) and '('+) on every iteration:

(1+1) maxl71 +' mirIaxI

mx T2 - 71 72 si (4) f2 + -1R) ( 2 ) (85)f2 72 -/ 22 2- 2(1) 2Z - /
m1+1x ¢-I) + 1) + ()

In the second variation, we set f2 = T2 = T2 ) = 0, and only estimate rl. In this case,

we will estimate rl with (84), and simply ignore the estimation equation for T2.

If the relative delay estimate ?') - f) is quite far from the correct value r2 - f 1 , then

the functions being maximized in (84) and (85) will have two separate peaks, as shown

in figure 1. The function in (84) has one peak at the old estimate 4'(), and another

peak at the correct value Fl + (4) - 2). Thus when we find the global optimum, the

new estimate (t+i) will fall between the old value and the correct one, at a location

which depends on the relative heights of the peaks R() (0) and R()l(O0) + R!)(O). The

r'+) estimate behaves in a similar manner.
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Figure 1: Functions (84) and (85) when initial estimates are far from convergence.
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To gain further insight, it is convenient to consider the case where the two re-

ceivers receive similar signal and noise. Suppose al = 2, &1 = 2,() = 51), and
P,1~ (w ; ) ) = PV2 (Wn;5 & )) for all w,. Then all the functions R(') (t) are identical ex-

2 -ik

cept that they are scaled by ((l), and all the functions R(1 )(t) are scaled by &() .
k i 'i ~ 

( )2

We can thus distinguish three cases:

1 (1) >> (1l)
2 1

2. ( 1) ct,

3. ) < a(1 )

In the first case, we will find that ri+) l - while r2 ) Thus the new

relative delay (Z+)- (1+1) jumps immediately to a value very close to the correct value

f2 - l. Similarly, in case 3, we will find that r(1i) () but ?(+L) r2 + r(L) -

The new relative delay I+i') - r(l+1) is again very close to its correct value. However, in

case 2 where the estimates of the signal gains on the receivers are close to each other,

then we find that andL+) -) and ) ' (1), and the new relative delay estimate

1+) (+ ) remains close to its previous value (1) - (), and far from the correct

value.

Note that if we force 2 = 0 and only estimate rl1, then good initial convergence

will only occur in the first case, where &) > &(). Similarly, if we force r1 = 0 and

only estimate r 2, then good initial convergence will only occur in the third case, where

&() << &(). This suggests that better initial convergence may be achieved by estimating

both delays, even though only the difference between them has any meaning.

This poor initial convergence behavior when the signal gain estimates are similar

implies that it is important to initialize the EM algorithm with a good delay estimate.

There are a couple of reasonable approaches. One is to artificially force the initial gain

estimates to be greatly mismatched, for example by setting &(O) = 0. In other words,

estimate the signal S(°)(w) using only the output of the second receiver, Z 2(wn). This

will give reasonable initial delay estimates provided that the signal-to-noise ratio on

receiver 2 is at least unity.
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A similar analysis for the case of M > 2 shows a similar effect. When the gain

estimates are all similar, and the receiver outputs have the same noise level, then the

initial convergence rate can be quite slow. This effect can be partially compensated for

by artificially setting all ak = 0 except for k = M, so that S()(w,) depends only on

ZM(w,), thereby giving reasonable initial delay estimates provided that the signal-to-

noise ratio on receiver M is at least unity.

5.3 Asymptotic Convergence Rate

The EM algorithm will converge at a linear rate when the relative delay estimates

-t) - 't) are close to their correct values k - ri. In this case, the M peaks of the

functions in (83) will merge into a single peak located at a better estimate.

Assuming that the delay estimates are close to their correct values, we can approx-

imate the shapes of R(') (t) and Rl')(t) near the origin as quadratic.

R(') (t) R(1) () - 3()t 2 3k) > 0 (86)
$ik i$i Oikk (86

r() (t) _ 1(!)(O) - A(L)t2 >() > O (87)

(These second order Taylor series expansions will always exist because of the finite

signal and noise bandwidth assumptions). Substituting into (83), we get the following

approximate optimization problems for the delays:

?+1 ) +_ max [ik Pi I- R() () ( - + + R () (88)

This function is quadratic in ri. We can find the peak by setting the derivative with

respect to ri to zero:
M

4T+1 a ) ()Tk) -k) (89)
k=l

where:

'ik k i(lr) _ivA k = i(90)
-m=l m + A(

Note that 0 < 0~ ) < 1. To simplify the analysis, let us assume that all channels have

about the same signal and noise energy, so that all the f/() have about the same value
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f(l), and all the A)1) have about the same value A(') . If we estimate all M delays on

every iteration, then the new relative delay estimates will be:

T(L1) - (= ) 1) ())+( - TM) (91)

where:

A()(92)
MP() + A(') (92)

The error in the relative delay estimate will tend to converge to zero at rate -() < 1.

If the number of channels M is large, or if the SNR is high so that XA() << P(t), then

.y(l) x 0, and the convergence rate will be very rapid.

If we choose to fix TM = 0, however, then the convergence rate slows significantly.

From (89):
T(I+1) _ ( 1) ( IL) - _ ( I ) M-1
i -- i) MP (') + A(') k=l k)(9

Summing over i = 1,...,M - 1 gives:

M-I 7 1

k=l (/+1) (Tk) -() + (') (94)

The error in the average delay error drops by less than (M - 1)/M on each iteration.

Clearly, estimating all M absolute delays is essential for fast convergence.

As indicated earlier, the errors of the ML delay estimates are asymptotically un-

correlated with the errors in the ML signal gain, noise gain, and spectral parameter

estimates. Therefore, if we are primarily interested in the delay estimates and we are

close to the point of convergence, we may consider performing a partial M-step, leav-

ing the spectral estimates at their current values and updating only the estimates of

T. This may save some computation, with only an insignificant effect on the rate of

convergence of the algorithm and the variance of the resulting delay estimates.

5.4 Convergence Rate of the Signal Spectral Parameters

The convergence rate of the spectral parameters () can be analyzed using similar

techniques. The diagonal block structure of the Fisher Information Matrix (FIM) shows

that the estimates of are statistically independent of those of . Therefore, to reduce
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the complexity of the analysis, let us assume that the correct time delays, , are known

perfectly, so that they do not need to be estimated. Also, let us assume that the noise

spectra are known and identical, so that &(') - k, and Pvk(wfn;0)) = Pvk(Wn; _k) -

Pv (wn).

Consider first the non-parametric approach of modeling the signal spectrum as an

arbitrary unknown function, Ps(w,). In that case, the estimated spectrum is given

by (71). Let Ps(wn) be the correct (but unknown) signal power spectrum. Substitute

the formula (59) for IS(w,)l 2( ) into (71), then assume that WT/27r > 1 so that we can

replace the right hand side with its expected value given the correct (but unknown)

power spectrum. After much algebra, we get:

(P(t+1)() - r(')2P(w )) (1 - () 2(Wn)) (P(l)(wn) - 1(l)Ps(w,)) (95)

where:

PS( (n) ) k= k I (96)
Pv(w) + Ps(w,) k=lCa)2

(j~)27
M (1)2 (97)

The shape of the spectrum estimate converges to the correct shape at rate (1 - () (w,)),

but the gain is off by (l )2. At frequencies with high signal-to-noise, B()(w) x 1 and

the spectrum converges very quickly. In the valleys where the signal spectrum is below

the noise floor, l(l)(w) 0, and the convergence rate is very slow. The gain error,

I(l)2, in the spectrum estimate reflects any mismatch in overall energy level between the

current signal gain estimates (l) and the actual gains a. Note that near convergence,

the ratio of estimated total signal power to actual total signal power is:

PS (Wn k &|) (-k=l &l )k) (98)

By the Cauchy Schwartz inequality, the factor on the right is always less than or equal

to one, with equality if and only if the relative channel gains are correct, so that

&(L) is proportional to . If in fact the relative gains are correct, then we must have

c(z) = _/c('), where c(l) is defined above, and the error in the signal power spectrum gain
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exactly cancels the error in the signal gains, so that the total estimated signal power

is correct. In other cases, where the relative gains are not correct, then the estimated

total signal power will somewhat underestimate the actual total signal power.

If the signal power spectrum Ps(w,,; ) is modeled as a discrete all-pole function,

then the convergence behavior will be far more complicated. Nevertheless, we would

expect to see the same type of behavior as for the non-parametric model, particularly

for large model orders p. Total signal power will be approximately correct; if the

signal gain estimates are systematically off by about 1/rc('), then the gain of the power

spectrum estimate will compensate by being off by about () 2 . Convergence will be

rapid near the peaks of the power spectrum, and slow near the valleys.

5.5 Convergence of the Signal Gains

The convergence behavior of the signal gains is more complicated to analyze. In

particular, we will show that the relative gains &(')/&$' ) converge quickly, but the av-

erage gain level converges slowly. To simplify the analysis, suppose that all the delay

parameter values are known exactly, T -') Tk and that all noise spectra are known

and identical, PVk (wn; ( ) ) = P,(wn; Ok) = Pv(wn) for all k. Then start with the for-

mula (64), and substitute the values for S(')(w,) and S(w,) from (58) and (59). In

the long observation interval case, WT/2r > 1, we can then replace the numerator

and denominator of (64) with their expected values conditioned on the correct (but

unknown) parameter values. After voluminous algebra:

(a)+1 _i/)c(l)) = (' (a)' )-ai/l(l) (99)

where:

(1)_= [(. ()( )) (W;)] /Pv()(100)

) [( -)(l) ) (' n)P( ) /P( ) ((101)E,) = (101)
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where:

= Z [ ) (w)2( )) (W) Ps( Wn;) + (1- (W)) PS(; )] /Pv(W)
n=L pV

(102)

The gains converge linearly at rate r-(1) to values a/c(1) which deviate uniformly from

their correct values by a constant factor ';). For high SNR, 3(t)(wn) x 1, and thus

.Y() O. The convergence rate will therefore be quite rapid. The error in the average

level of the gains, however, tends be change very slowly, particularly at high SNR.

For example, suppose that all the gain estimates initially deviate by the same factor,

(I) = i/('). Then 0(;) 5c('), and the new estimates t(i +) will again deviate from

their correct values by about the same amount, c(t) - K(l+l).

Intuitively, the problem of the poor estimates of the average signal gain level can be

traced to EM's use of iteration to decouple the estimation of S(w,) and the parameters

C. Unfortunately, the estimates of S(w,) and a are tightly coupled. If the gain estimates

a(l) are too low by a factor of K, for example, then the estimate S(t)(w) will be too large

by a factor of about c. On the next M-step, this again causes the new gain estimate

_(l+l) to be too low by about a factor of rc. Convergence will be very slow. Note,

however, that if we estimate at least the gain of the signal power spectrum, then the

estimated periodogram S(w,)l will be too large by about a factor of 0C2, and thus

the new power spectrum Ps(wn; + )) will be too large by about a factor 2 . The total

signal gain a('+l) Ps(wn; (+1)) will be approximately correct. Since the delay updating

procedure depends on 6(,+a) and (+)only through c &(,+ Ps(W,; ), this implies

that large but compensating errors in the signal gain and spectral estimate gain will

have little effect on the convergence of the delay estimates.

This observation suggests that we should always estimate all M gains al,..., aM

as well as an overall signal spectral gain g2. The relative balance of gains between

channels will converge quickly, and any systematic error in the level of () will be

quickly compensated by a corresponding inverse error in the level of (l).
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6 EM-ML Algorithms

The convergence analysis of the preceding section suggests a number of ways to

improve the EM algorithm. The most disturbing problem with the delay estimation

is that the functions (84,85) being optimized for ?l'+') have extra peaks centered at

the old estimates 't). When the old estimates are far from their true values, these

potentially large peaks confuse the search for the correct peak. Near convergence, they

slow the convergence rate.

We shall fix this problem, together with the problem of slow linear convergence for

the gain and spectral parameter estimates, by using various EM-ML algorithms to di-

rectly optimize the observed data likelihood function Lz(_) for some of the parameters,

while using an EM-style iteration to estimate the remaining parameters. We will show

that the resulting algorithms converge more quickly than the earlier algorithms, yet

are still guaranteed to increase the likelihood in every iteration, and to converge to the

set of stationary points of Lz().

6.1 EM-ML Joint Delay Estimation

Consider the following EM-ML-style iterative algorithm. Partition the parameters

_ into three sets, 1 = (r)' 2 = (,0), and 3 = (a). Partition _ similarly. Then use

the following hill-climbing approach for optimizing Q(; ):

For = 0, 1,2,...

4- (+) mr axQ (;l ,))

+- maxQ ; 1 2

(103)

Using the same reasoning as in section 3.2, this algorithm can be shown to be equivalent

to:

(+1), ~- max Lz ( l(l),1() (104)
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max Ea, [log p ) a 1 &)) (105)

a (+1) - max El) [log p (1Z+l) &(L+1) b(L+1) i) (106)

The delays are thus estimated by directly maximizing the likelihood function, while the

other parameters are estimated by EM-like steps. By directly maximizing the objective

function for _(l+l), we increase the likelihood more rapidly than does the conventional

EM algorithm, and may therefore improve the rate of convergence. Like other EM-ML

algorithms, each iteration must increase the observed data likelihood function Lz(),

and convergence to a local maxima or a stationary point of Lz(_) is guaranteed under

mild regularity conditions.

Substituting (13) into (104) gives:

ML-step:
U M-1 M

(,+1) _ maxRe E E E *i(wn)Zi(n)Z: (wn)ei wn ) (107)
n=L i=1 k=i+l

where the weighting function lWi(k)(wn) is defined in (75). Note that (107) depends only

on the relative delays ri - Tk, and so it is insensitive to adding a fixed constant to all

the delays. We can therefore set one of the delays to a fixed value, e.g. rM = 0, and

only optimize over the remaining M - 1 delays.

The second and third steps of the EM-ML joint delay estimation algorithm yield

similar formulas for (t+l1), +), and &(l+ l) as the EM algorithm:

E-step:

Estimate S(')(w,) and IS(w,)l 2 from (58) and (59), except use the most

recent delay estimates _(l+l).

M-step:

Estimate (+1) from (62), &('+l) from (64), and a(+l) from (65).

For large WT we can analyze the convergence rate with the techniques used before.

When WT/27r >> 1, the function maximized over r in (107) will be approximately equal

to its expected value conditioned on the correct (but unknown) parameters _. Thus:

U M-1 M

_(1+1) +-maxRe a Re W i(ki) (wn)E [Zi(n)Zk (n)] ej ( i- k (108)
n=L i=l k=i+l
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Recall (10):

U M-1 M

(1 +_ ) maxRe E E l(w) [ikP (w s(;)e ( i"( ' -' k)] e ' (ri 'k) (109)
-n=L i=l k=i+l

Using the definition of R(') (t) from (81):

M-1 M

(1+1) +- max E >E R() (ri - ¢i + Tk - Tk) (110)
- i=1 k=i+l

Note that this function has a global maximum at the correct differential delay estimates

(1() - = i- k for 1,.. ,M. Thus each set of delay estimates is not biased

by the previous delay estimates, and we should converge to approximately the correct

answer in one step, regardless of the initial delay estimate. The convergence rate,

therefore, is super-linear.

Another, less direct way to explain the fast convergence of this algorithm is to

compare it with the following strategy for maximizing Q(; _):

For = 0, 1,2,...

((. .1+1/) max Q 2' ' () 73i)

--maxQ 2~1 '(t l- max Q (; 1, 2 ,

^(+1 /^1 1^(1+1) (1+1) )
(111)

This is similar to the EM-ML algorithm, except that on the second step we re-estimate

~1 along with 2. Careful examination of the formula for this second ~1 estimate,

however, shows that as long as the signs of the gains a k(+') are the same as the signs of

&(l), then the second delay estimate must equal the first, +) = i+1/2). Thus, except

in those rare cases where the signal gain estimates change sign, this alternative strategy

generates exactly the same estimates as the EM-ML joint delay estimation algorithm.

On the other hand, if we compare this alternative strategy with the EM-like strategy

in section 4, the only difference is that we estimate 1 along with in the first step.

Because fewer constraints are imposed during this coordinate ascent, we would expect

this algorithm (and thus also EM-ML) to converge faster than EM.

36

__ __ ��__



6.2 EM-ML With Independent Delay Estimates

The previous EM-ML joint delay estimation algorithm requires an (M - 1) dimen-

sional search to compute each delay estimate. This is not necessarily convenient for

M > 2 receivers. A strategy which would use less computation on each iteration would

start with M small steps to maximize Q(; ) with respect to parameters (_,ri) for

i = 1,..., M. Then maximize with respect to (, 0), and then with respect to (). The

formulas for (+l), ( , and (') are the same as before, but now the delays are

estimated independently by maximizing the log likelihood directly with respect to one

delay at a time:

For i= 1,...,M

4- -maxLz 1) ) ) ((l), (l), ( l ) (1)) (112)Ti ri I "..,Ti ,1 iT l,... M, 

Substituting the formula for the likelihood function (13) and using straightforward

algebraic manipulations gives:

ML-step:

Fori= 1,..., M
U

j(1+) _ maxRe E e-i"r(i (w)Z (W,)/Pv (w; l) (113)
n=L

where:

Ps (wn;% ) &t )ein fk zk ()Pv (wn; i)]

k=l
k~i

S?(Wf) = (114)
M

1 + E SNRk ) (Wn)
k=1

where:
(l+l) for k < i

fT~~~~k Ti ~~~(115)
k = I) for k > i

Equation (113) is similar in form to the EM algorithm estimate of ?('+') in (63). The

new ri+) estimate is obtained by maximizing a weighted cross-correlation between

Z2*(wn) and and the signal estimate S(t)(w.). The difference between (63) and (113) is

that the EM-ML algorithm uses a signal estimate formed from all but the ith receiver
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outputs. If we repeat the convergence rate analysis for the large WT case, we will find

that each delay estimate approximately solves:

M

~?+) - Imax E R ) (r - i + k - k) (116)
Ti Ti Sik

k=l
k5i

This is an improvement over the behavior of the EM algorithm, since using Si)(w,)

rather than s(l)(wn) eliminates the extra peak in the vicinity of the old delay estimate.

Initial convergence should therefore be improved, particularly in the case where the

signal energy in all channels is equal.

With M = 2 channels, this algorithm is identical to the EM-ML joint delay esti-

mation algorithm. We can therefore set T2 = 0, optimize only over rl. and will achieve

superlinear convergence. With M > 2, however, the convergence rate is no longer

superlinear. Appendix B shows that when signal energy is equal in all channels, then

the asymptotic convergence rate should be between 1/8 and 1/9, for any SNR above

threshold and for any M. With unequal signal energy, we would expect faster con-

vergence. Note that this convergence behavior is quite different than EM, where the

rate depends on the SNR and on the number of channels. As with the EM algorithm,

however, fastest convergence is achieved by estimating all M delays, and by estimating

all M gains ak, together with the signal spectral gain g2.

This algorithm represents a compromise between the EM and the EM-ML joint

delay algorithms. It requires slightly more effort than the EM algorithm, since we

need to generate S(')(w,) for i = 1,...,M. However, we may expect significantly

better convergence behavior. When compared with the EM-ML algorithm in (107),

it replaces the (M - 1) dimensional search for the delay parameters with a series

of M searches for one delay at a time, thus trading off computational complexity

for a slower rate of convergence. Each iteration increases the likelihood Lz(), and

convergence is guaranteed to a stationary point of the likelihood under mild conditions.

The convergence rate, however, will only be linear.
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6.3 EM-ML Delay/Gain Algorithm

As already indicated, the convergence of the delay estimates and their final error

variance are somewhat insensitive to details of the signal and noise spectra. Therefore,

if we are primarily interested in the delay estimation, it may be sufficient to iterate on

the gain and spectral estimates a few times until they are "good enough", then iterate

solely to improve the delay estimates.

However, in some applications, it may be important to find good estimates of the

signal and noise parameters. For example, spectral shape and gain may be useful

in identifying the target. Also, wildly varying signal gains may be an indicator of

multipath distortion or sensor failure. In situations like these, it would be helpful to

expend effort to accelerate the convergence of the gain and spectral parameters.

We can try a hybrid EM-ML algorithm which directly maximizes the log likelihood

over , a, and ar, and only uses an EM step to update the 0 estimates. Start with the

same partitioning of the parameters as in the other EM-ML algorithms, then iteratively

maximize Q(;) with respect to (5,_1) then (-,'2), then 3. This hill climbing

approach is similar to that of the EM-ML joint delay estimation algorithm, except that

we maximize with respect to _ twice per iteration. We would therefore expect this

algorithm to converge more quickly to the ML solution. Following the reasoning in

section 3.2, this algorithm can be shown to be equivalent to:

For I = 0, 1,2,...

7(t+ ) max Lz (r( ) () ,(,))

_>(l1)(+l) -- maxLz (_(), ) (117)

( max E [log Ps(wn; ) + S(w 2(l) 

2(1)
where S(w,)l is computed using the latest parameter estimates (t+l), &(+l), and

('L+l). We could also maximize the likelihood over each delay variable one at a time. In

either case, the likelihood will increase on each iteration, and convergence is guaranteed

under mild conditions to a stationary point of the likelihood.
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The delay estimation step is the same as in the EM-ML joint or individual delay

algorithm, (107) or (113), and the spectral parameter estimate is the same as in the

EM algorithm, (62). The new step is the calculation of &(+l) and (+l). Unfortunately,

in general the maximization required is highly nonlinear.

In certain limited circumstances, however, it is possible to find a closed form solution

for the gain estimates. Let us assume that the noises on all receivers have the same

spectra, with the same shape and the same unknown gain, i = a for all i. Thus

Pv,(wn;a) = Pv(w,). Let us also assume that the parameters include an overall

signal gain level. This means that we can fix the average value of the cai to an arbitrary

level, and rely on 0 to control overall signal gain. One particularly useful normalization

for the ai is to restrict the gains to satisfy:

M

c7Etif ~~~ =5 r (118)
i=l

where y is an arbitrary positive constant. Substituting (118) into (13), ignoring terms

which do not depend on ca or a, and recognizing that a is restricted to be real:

1 M ( 2 N
Lz() c - NM log -- () + _aTR(r, )a (119)

where R(r, 6) is an M x M matrix of weighted receiver cross-correlations whose elements

are:

1 k eiw(,ri-k)Zi(wn)Zk (wn)Ps (Jn; )/P (n)Rik (, ) = Re L (120)
N nZL 1 + 'rPs(w,;)/P(w,)

To estimate &(t+l) and &(L+), we need to maximize (119) subject to the constraint

cT = -ya. Using the method of Lagrange multipliers, the solution to this constrained

maximization is derived in Appendix A. First we compute the largest eigenvalue (t) of

Rik (f_(+l), ()), together with the corresponding eigenvector v(). (There are numerous

computationally efficient methods for extracting the largest eigenvalue and eigenvec-

tor.) Then:

ML-step:

^(+1) M E Zi (Wn) -2 (() E E 11 _ _ A (121)
1 n=L i=1 P W) M

(l+1) = (. () v ) (122)
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To analyze the convergence rate, assume that the observation interval is sufficiently

large, WT/2r > 1, so that the matrix R(('+'),( 1 )) is close to its expected value

conditioned on the correct (but unknown) parameters. Let us further assume that the

delays are known exactly, (t+l1) = . In this case, using (10):

E R(,(L))] = s(('))T + b( 1()I (123)

where:
1 Ps(wn; -( )Ps(w;)/ Pv (w) (124)
N ) (124)

n=L 1 + yPs(wn;6 )/Pv(wn)

-u (1)

b('9)V ) = PS(wLn; (L) (125)
n=L 1 + Ps(wn;- )/Pv(wn)

where we assume that , the correct gain, satisfies the constraints, T/-y = 1. The

largest eigenvalue of the matrix in (123) is:

t (0) = qob,(1 ) + ( ) (126)

and the corresponding eigenvector is:

v( ) = _ (127)

Thus under the large WT assumption with known delays, the estimate of the gains

converges in one step (superlinearly) to the correct values, &(+l) = a. The noise gain

estimate, however, depends on the eigenvalue i(), which in turn depends on the latest

estimate of the signal spectrum parameters, (). Assuming large WT/2r > 1:

(1+1) M 1 i v fZi((Wn)l12] _ Hl) 
MN =L i=l Pv(wn) 

1 M __ [3Ps(wn;O ) + &Pv(w 2n)] 2Y5(1()) + qv(0()

MN =L Pv(Wn) J M

[Ps(wn; ) - Ps(W ()]/P(wn)J (128)
n=L 1 + Ps(w; ))/Pv(wn)

Since Ps(Wn;#()) converges at a linear (though rapid) rate to Ps(w.;_), ('+' ) will

converge at a linear (and rapid) rate to .
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6.4 ML Coordinate Ascent Algorithm

As the final step, we may try to replace the EM-like estimation of (+1) with a

direct maximization of the original log likelihood function. With the same partitioning

of the parameters as before, maximize Q(_;) with respect to (,l), then (,'2),

then (, _3), and then iterate. Because this algorithm maximizes over _ three times per

iteration, we would expect it to converge more quickly than any of the other algorithms.

The delay, gain, and noise parameter estimates are found by maximizing the like-

lihood function as in the previous algorithm. The spectral parameters, however, are

now also calculated by direct maximization of the likelihood function:

m(1+1- axLz (+) &(l+1) &(+l) 0 (129)

The complete algorithm is now just a direct coordinate ascent search over the observed

data likelihood Lz().

In general, this optimization is quite complicated, except in the special case that

we model the signal spectrum as a non-parametric unknown function Ps(w,). Let us

also restrict the noise spectra in the same way as in the EM-ML delay/gain estimation

algorithm, so that all noise spectra are identical, with the same unknown gain, a = a

and with Pv,(w,;c) = Pv(wn). Also constrain the signal gains with formula (118).

Then, following straightforward but tedious algebra, we obtain the following closed

form solution to (129):

M)) =(+() -l+l' Z() 2 I (130)

For frequency samples at which this expression is below some small positive value ,

the signal spectrum estimate should be set to E.

To assess the convergence rate of this procedure, we assume WT is large, so that

the expression above tends to its expected value based on the correct (but unknown)

parameters. Assume that the delay estimates are correct, ~(l+l) = T. Using (13) and

following straightforward algebra:

E~ [P5 ('+)w)] = Ps(wn) (- al) E &1 ),) + Pv(w.) ~(g) - 1) (131)
42i=1
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If the correct gains and noise spectral parameters were known, () = (x and &(') = ,

then we would have E1 [P(t+l)(wn)] = Ps(w,), and convergence would be superlinear.

Otherwise, the signal spectral estimate will converge at about the same rate that &)

converges to di and (0) converges to a.

6.5 Comparison of the EM-ML Algorithms

Note that the EM-ML algorithms represent an interesting tradeoff between compu-

tational complexity and convergence rate. The EM algorithm in section 3 represents

the computationally simplest approach. Its convergence rate, however, is only linear.

If we replace the delay estimation step with the more complicated (M - 1) dimensional

search of the EM-ML problems, then the convergence rate of the delays becomes super-

linear, although the other parameters converge linearly. If we restrict the form of the

noise power spectrum, and apply the gain and noise level EM-ML estimation algorithm,

then we need to solve a maximum eigenvalue and eigenvector problem, but the conver-

gence rate of the gains becomes super-linear. Finally, if we use a non-parametric signal

spectral model, and apply the EM-ML signal spectrum algorithm, then we achieve

super-linear convergence of the signal spectrum. Computationally simpler EM-ML de-

lay estimation algorithms can also be derived by maximizing the likelihood with respect

to one delay at a time. The disadvantage is that the convergence rates will only be

linear.
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7 Simulation Results

In this section we present some simulation results to illustrate the behavior of the

EM and EM-ML algorithms. In general, the results of the simulation follow the pre-

dictions of the theoretical analysis we have given.

7.1 Simulation Details

We start with Gaussian signals with unit spacing between samples, generated by

passing white Gaussian noise through an ARMA (pole-zero) filter. In the first set of

examples we present, we used a 3 pole, low pass filter with a strong resonance at around

.123 Hz. The signal power spectrum is:

Ps(; 0) = 1 (132)I(1 - .9e-j-)(1 - 1.92 cos(.246r)e-jwr + 0.9216e-j 2w) 2 (

Figure 2a shows the signal power spectrum, and figure 2b shows the signal correlation.

The noises on all receivers are white Gaussian, and have the same power, a, on all

channels:

Pv;(w; ) =a (133)

To avoid having to use special treatment at the boundaries of each frame of data, and

to avoid dealing with windowing issues, we synthesized all signals and noises S(w,)

and V(w,) directly in the frequency domain, with sample spacing 2r/N. The DC

samples S(O) and Vi(O) were real Gaussian zero mean variables with variance Ps(O; 0)

and respectively. All other samples S(w,) and Vi(w) were complex Gaussian zero

mean variables with variance Ps(wn;O) and a respectively. Samples S(7r) and V/(7r)

were set to zero. This method generates signals and noises having periodic correlation

functions, with period N. For these special sequences, the frequency domain formulas

for the likelihoods which are derived in this paper are exactly correct.

We also synthesized the receiver outputs Zi(wn) in the frequency domain, phase

shifting the signal S(w,) as in (5) in order to achieve time shifts which are not limited

to integer multiples of the sample period.
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Figure 2a - Ideal 3-pole Lowpass Signal Power Spectrum
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The noise levels were set to meet a specified array signal-to-noise ratio (SNR),

where we define:

SNR = 10 log 0 Ps ) (134)

To use all the available data, we modified the formulas for the likelihood functions

in order to include the DC term. Because this term is real while the others are complex,

the DC contribution to the likelihoods must be multiplied by 1/2. We achieve the same

effect by setting L = -(N/2 - 1) and U = N/2 -. 1, thus summing over both positive

and negative frequencies when forming the likelihoods.

Another minor adjustment that is necessary in practice is that most FFT subrou-

tines do not normalize the transform as assumed in (3). Thus FFT subroutine outputs

must be normalized by 1/N when computing the likelihood formulas.

The most difficult step in this algorithm is solving the maximizations required for

the delays. We first do a coarse search, using a rather conservative procedure to improve

the accuracy. Form a 4N point transform Fi(w,) as follows:

F (2n' \ S(~)* (2n) Z, (2n) n = O,...,N/2 - 1 and n = 4N -N/2 + 1,...,4N- 1
4N |0 else

(135)

Take the real part of the inverse Fourier Transform and find the largest sample. This

is the initial coarse estimate of the time delay. It should be within 1/4 sample of

the peak delay value. Note that oversampling is used in the coarse search step to

minimize difficulties caused when the global peak of the cross-correlation lies between

time samples. Without oversampling, we might underestimate the height of the global

peak, and therefore place the delay estimate at a lesser peak which might happen to

be centered at a sample location.

The coarse delay estimate is then refined by using binary search to locate the peak

of the inverse DFT of Fi(w) to within the minimum of .001 sample or .001 times the

square root of the Cramer-Rao lower bound (the expected standard deviation of the

delay estimate).
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7.2 Simulation of the EM Algorithm

Consider a two-channel problem, M = 2, with N = 128 points, and with delays

r = (-1.58 0 )T and equal signal gains a = (3 3 )T. Each step of the EM algorithm

estimates the signal and its variance (in the frequency domain), then maximizes the

cross-correlation between the signal estimate and each receiver signal (63) to estimate

each delay. The gains are found from the normalized peak of this cross-correlation

function. The signal power spectrum is estimated by fitting an all-pole model to the

expected value of the signal periodogram, and the noise levels are individually estimated

from the error between each receiver output and the appropriately scaled and phase

shifted signal estimate.

Our first simulation estimates two delays and two gains, but sets the signal and

noise power spectra to their correct values. Figures 3 show the estimates generated

under four different array SNR: -10dB, OdB, 10dB, and 30dB. For each case, we ran

20 simulations with different data, and iterated on each for 10 steps. In this and all

subsequent examples, the initial delay estimates were set to 0, and the initial gains were

set to 1. We show the behavior of the delay estimates, and the gain estimates, showing

the correct values with dotted lines. We also plot the standard deviation of the final

relative delay estimates from the correct value of -1.58 against the Cramer-Rao lower

bound, given in (18). For comparison purposes, we also plot the standard deviation

of the generalized cross correlation method (GCC) given by (23), where all the gains

and spectra are known, and against an unweighted cross-correlation method (CC) with

the window function set to W 12(w,) = 1, run on the same data. Note the strong

thresholding effect. Below a certain SNR, near OdB, all methods sometimes confuse

a noise peak at a random delay between -64 and +64 with the correct signal peak.

This causes a precipitous increase in the measured standard deviation of the estimates.

(The EM method in this case appears to have a better threshold than both GCC and

CC, but this is a statistical fluke of this particular example, and does not occur in

other runs.) Above the threshold, the methods choose the correct peak, but are able to

locate it with differing degrees of accuracy. Careful examination of the delay estimates
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in general shows that the EM delay estimates have variance which is similar to that

of GCC, and significantly better than CC. Note also the relatively rapid convergence

of the EM delay estimates. As predicted, convergence is fastest at high SNR (about

2 iterations). The EM gain estimates, on the other hand, converge much more slowly,

particularly at high SNR. This is consistent with our previous analysis which suggested

fast convergence of the relative values of the gains, but slow convergence of their average

level.

Figures 4 illustrate the behavior of the EM algorithm when we set r 2 = 0, and

only estimate r1. We also estimate both gains al, a2. From the plot of the standard

deviation of the final delay estimates, it is clear that we achieve the same ultimate

accuracy. However, the convergence rate of the delays is more than twice as slow as

when we estimate both delays on every iteration.

Next, figures 5 illustrate the behavior of the EM algorithm when we estimate all

the parameters. On each iteration, we estimate both delays, both signal gains, a 6

pole signal power spectrum with arbitrary gain g2 (the original data was only a 3 pole

spectrum), and every noise gain (the original data had all noise levels equal). The

initial signal power spectrum estimate is flat, with energy equal to the average energy

in the received data. All initial noise level estimates were set to 1. Despite the fact

that we use only estimated spectra when estimating the delays, for SNR above the

threshold the standard deviation of the final delay estimates is virtually unchanged,

and still approaches that of the GCC algorithm. The convergence rate of the delays,

however, is slower than in figure 3 where the spectra were known. As predicted, the

convergence rate depends strongly on the SNR, with fastest convergence (about 2

iterations) at 30dB. Note that the signal gains do not converge to their correct values.

This is because we have deliberately introduced an ambiguity in the signal gain level,

allowing both the gains a and the spectral gain g2 to control the effective signal level.

Only the product g c can be identified uniquely from the data. Convergence of the

signal power spectrum estimate, however, is quite a bit faster than that of the signal

gains. The result of introducing this gain ambiguity is that the signal spectrum level

shifts up to capture the average signal level in all channels, while the gains a(') adapt
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solely to capture the relative gain difference between channels. In 5e we show this by

plotting the normalized signal gain estimates &l')/n, where is a constant chosen to

make the average gain level equal the actual average gain level:

( -- -=1)) /2 (136)

The correct values of the normalized signal gains are shown in dotted lines. Note that

for SNR above threshold, these normalized signal gains converge rapidly to their correct

values.

Figure 5f shows the final 20 power spectra estimates for each of the four SNR levels.

Note that while the shape of the spectra are plausible in the low frequency region where

the signal energy is greater than the noise energy, the gain of the spectra are too high.

This is because the spectral gains compensate for the errors in the signal gains. In

figure 5g we plot the estimated total signal energy Ps(w,;? ) ll 1 a compared with

the actual total signal energy Ps (w; ) EM i2 . Note that these match quite closely

in the low frequency region. In all cases, note that in the high frequency region where

noise is stronger than signal, the signal spectral estimates are not correct, and simply

drop to about the noise level. Figure 5h shows 10 successive signal power spectrum

estimates from 10 iterations with one set of data. Note the rapid convergence at the

signal peaks, and the slower convergence in the valleys, exactly as predicted by theory.

Finally, figure 5h shows the convergence of the noise spectral level estimates for

both channels. The estimates converge in all cases within about 3 iterations. Note the

large initial errors at high SNR caused by poor initial delay estimates.

We also show an example with M = 3 channels. The signal and noise spectra are

the same as before, and the receiver delays and gains are = (-1.58 4.29 O)T and

a = (3 4.5 6 )T. Initial estimates were generated as in the previous examples. Again

we run 20 different sets of data for four different SNR levels, though iterating only 5

times for each run. We estimate all three delays, three signal gains, a 6 pole signal

power spectrum with gain g2, and individual noise spectra levels. Figure 6 plots all

these estimates, including the standard deviation of each of the relative delays (') - (t)

and 21) - -1). The Cramer-Rao lower bound for the delays is actually a 2 x 2 matrix.
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The variance of each relative delay, however, can be shown to be bounded below (not

tightly) by the corresponding diagonal element of the CR matrix. We therefore plot

the standard deviation of each delay as a function of SNR, compared with the square

root of the appropriate diagonal element of the CR bound. For completeness, we also

plot the standard deviation of delay estimates derived from 3 channel CC and GCC

algorithms run on the same data. These latter algorithms use a simple coordinate

ascent approach to maximize the two-dimensional unweighted or weighted correlation

function.

Note that in the threshold region, SNR=OdB, several large delay estimation errors

are made. Note the examples of initial convergence behavior, where estimates suddenly

lock onto the right peak, versus asymptotic convergence behavior where estimates con-

verge linearly. Convergence of the delays at high SNR is rapid (1-2 iterations), though

as SNR drops, the convergence rate slows. The standard deviation of the final delay

estimates is comparable to that of GCC. The signal gains do not converge to the cor-

rect average level, due to the gain ambiguity, but the normalized signal gains &)( Ir'c

do converge within 5 iterations for SNR above threshold. Convergence of the relative

(I) I ( Ogains if fastest at high SNR. The normalized signal power spectra Ps(w,; ( ) M=1 )1

converge at the peaks to correct values, although at threshold SNR the shapes are often

not correct. The noise power estimates converge rapidly, though above threshold SNR

the large initial delay estimate errors cause large initial noise level estimate errors.

To further demonstrate the reasonable performance of this algorithm, we present

an example with M = 8 channels and N = 256 points. The signal and noise spectra

are the same as before, and the receiver delays and gains are = ( -4.7 -4.9 -1.5

-3.5 -5.55 -.2 -2.3 0 )T, and a = (2 3 3 3 5 5 5 5)T. Again we run 20 different

sets of data for four different SNR levels: OdB, 10dB, 20dB, 30dB (n.b. these are

higher than in the previous examples). We iterate only 5 times for each run. We

estimate all eight delays, eight signal gains, a 10 pole signal power spectrum with gain

g2 , and individual noise spectra levels, using the usual initial guesses. Figure 6 plots

all these estimates, including the standard deviation of the relative delay ~T) - ).

The Cramer-Rao lower bound for the delays is actually a 7 x 7 matrix. The variance
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of each relative delay, however, can be shown to be bounded below (not tightly) by

the corresponding diagonal element of the CR matrix. We therefore plot the standard

deviation of the delay as a function of SNR, compared with the square root of the

appropriate diagonal element of the CR bound. For completeness, we also plot the

standard deviation of delay estimates derived from 8 channel CC and GCC algorithms,

on the same data. These latter algorithms use a simple coordinate ascent approach to

maximize the seven-dimensional unweighted or weighted correlation function.

Note that in the threshold region, SNR=OdB, several large delay estimation errors

are made. Convergence of the delays above threshold SNR is rather rapid (about 2

iterations). Despite the lack of knowledge of the correct model, the standard deviation

of the final delay estimates is comparable to that of GCC. The signal gains do not

converge to the correct average level, due to the gain ambiguity, but the normalized

signal gains &(?)/; converge rapidly (1-3 iterations) for SNR=lOdB and above. The

normalized signal power spectra Ps (w; ) ) M1 a() converge at the peaks to correct

values, although at threshold SNR the shapes are often not correct. The noise power

estimates converge rapidly, though above threshold SNR the large initial delay estimate

errors cause large noise level estimate errors after the first iteration.

We conclude this section with an example in which the EM algorithm fails. Consider

a 2 channel system with the delays (-1.58, 0) and gains (3,3), but with a white signal

and white noise. We estimate just the two delays and the two gains, and use the correct

signal and noise power spectra. Figure 8 plots the delay estimates for 20 runs at four

SNR levels. Note that substantial numbers of incorrect delay estimates are found, even

at SNR=30dB! The problem is that both the initial gain estimates and the true gain

values are equal to each other. As pointed out by our theoretical analysis, each function

that EM maximizes for each delay has two peaks, one at the correct delay value and

one at the previous estimate. With equal signal energy in both channels, the peaks

at the old estimates are larger than the peaks at the correct value. Given some noise,

the EM method tends to get confused as to which peak to pick, and can lock onto the

wrong one. As we will see, this problem is eliminated by the EM-ML delay estimation

algorithm.
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7.3 EM-ML Individual Delay Estimation

We ran similar simulations to test the behavior of the EM-ML individual delay

estimation algorithm. In this approach, the delays are estimated one at a time by

maximizing the likelihood function directly over each delay in turn. EM steps are then

used to estimate the remaining parameters. We used exactly the same signal and noise

models as in the previous section, using the same data sequences.

Figure 9 shows the behavior in the M = 2 example when we estimate the two time

delays together with both signal gains. We assume that the signal and noise spectra

are known. We use the same initial guesses as before. Compare these figures with the

EM algorithm in 3. Note that the EM-ML delay estimates converge quickly to their

final values. At SNR=OdB, EM-ML makes large initial delay errors twice, and cannot

recover in one of the cases. This is typical behavior near the threshold. (The flawless

performance of EM at SNR=OdB was a statistical fluke). Delay estimate standard

deviation is similar to the GCC method. The signal gain estimates, as usual, converge

very slowly.

Figure 10 shows the behavior when we estimate the all the parameters: two time

delays, plus both signal gains, a 6 pole signal spectrum with gain g2, and individual

noise levels on the two receivers. Note that the delay estimates converge somewhat more

slowly to their final values (about 2 iterations), due to the initial use of poor spectral

estimates. In the threshold case, SNR=OdB, more initial large delay estimate errors

are made than when the spectra are known. Compared with figure 5, convergence is

significantly faster than EM, except at 30dB where both methods essentially converge in

1-2 iterations. The standard deviation of the final delay estimates is still similar to that

of GCC. The gains do not converge to their correct values, due to the gain ambiguity

discussed earlier. However, the normalized gain estimates do converge within a couple

iterations, with fastest convergence at high SNR. The estimated signal power spectra

converge quickly near the peaks, but are poor in the valleys where the signal level dips

below the noise floor. Finally, the noise power level estimates are comparable to those

of EM, though they converge faster due to the faster delay estimate convergence.
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Figure 11 shows the behavior for our M = 3 channels example, where all the

parameters are estimated, including a 6 pole signal power spectrum model. Above the

SNR threshold, the delay estimates converge very rapidly to their final values (within 2

iterations). The convergence rate appears independent of SNR. The standard deviation

of the final delay estimates is comparable to the GCC method, and better than CC.

The signal gains do not converge to the correct values, but the normalized signal

gains do converge quickly for SNR above threshold. The normalized signal power

spectrum estimates are accurate near the peaks where the signal is well above the noise

floor, although poor in the valleys near the noise floor. Finally the noise spectra level

estimates converge rapidly to their correct values. Faster convergence occurs than in

the EM algorithm due to the faster convergence of the delay estimates.

Figure 12 shows the behavior for our M = 8 channels example, where all the

parameters are estimated, including a 10 pole signal power spectrum model. Above

the SNR threshold, the delay estimates converge very rapidly to their final values

(within 2 iterations). Note, however, that the EM-ML algorithm actually converges

no faster than EM in this case. The reason is that EM converges especially quickly

when M is large and when the noise level is small. With M = 8 peaks in the functions

being maximized for each delay, the extra peak that EM has at the old delay estimate

does not greatly influence the next delay estimate. The convergence rate of EM-ML,

on the other hand, is independent of M or SNR. The standard deviation of the final

EM-ML delay estimates is comparable to the GCC method, and better than CC. The

signal gains do not converge to the correct values, but the normalized signal gains do

converge for SNR above threshold. The convergence rate is comparable to EM. The

normalized signal power spectrum estimates are accurate near the peaks where the

signal is well above the noise floor, although poor in the valleys near the noise floor.

Finally 'the noise spectra level estimates converge rapidly to their correct values. Faster

convergence occurs than in the EM algorithm due to the faster convergence of the delay

estimates.

Finally, figure 13 shows the behavior for our flat (white) signal and noise example

with M = 2 channels. We only show the convergence of the EM-ML delay estimates.
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rn. Signal Gains (SNR=Odb)

5

4

3

2

1
O

A
m
p
1
i
t
U
d
e

5

4

3

2

1
5 0 5

Iteration Iteration

2

1
50

Signal Gains (SNR=30db)

50

Iteration Iteration

Figure 12c - EM-ML Algorithm, Normalized Gain Estimates &( 1)/.

98

A
m

p
1
i
t
U
d
e

Nor b)

5

4

A
m
p
1
i
t
U
d
e

V^ 'Jv1

5

4

A
m
P
1
i
t
U
d
e

2

1

3

....... ! .............

No -rr- -e - -_ _ -_ -_s -_ Nore db)

a - cs _ W.L V I

I

I



0 0.5

)

d
B

U-

Frequency

0 0.5

)

d
B

JU-

Frequency

b)

0 0.5

Frequency

b)

0 0.5

Frequency

Figure 12d - E

Ps(wn; b(L) ZM (t) 2

;M-ML Algorithm, Normalized Signal Power Spectra

99

d
B

iu-

d
B

L u



Noise Power (SNR=-lOdb)

5

Iteration Iteration

Noise Power (SNR=20db )

A
m
P
1
i
t
U
d
e

15

10

5

0
5

Noise Power

0

Iteration Iteration

Figure 12e - EM-ML Algorithm, Noise Level Estimates &(L)

100

-J -t 
tUUU

A
m
P
1I
i
t
U
d
e

6000

4000

2000

)

A
m
p
1
i
t
U
d
e

!

ouu

600

400

200

U0
0 5 0

60

A
m
p
1
i
t
u
d
e

40

(SNR=30db)

20

I
0

0
5

-

I

I

L

Vfnica Pnwar (NR=ndb
_zw v ~ u z v v *\ wP _-

I I



Relative Delay (SNR=Odb)

5

-5

' n

0 5

A
m
p
1I
i
t
U
d
e

40

20

0

-20
10 0 .5 10

Iteration

5 0

Iteration

Odb)

A
m
p
1
i
t
U

d
e

Est 0

-0.5

-1

-1.5

-2
10

a ln 1 mt. 1 -r Delav

5

Iteration Iteration

Figure 13a - EM-ML Algorithm, Relative Delay Estimates (l) - known flat (white)

signal model, known noise levels, 128 point data, M = 2 channels, fl -¢2 = -1.58,

_ = (3 3 )T, 20 runs for each SNR, estimate 2 delays, 2 gains.

101

A
m

.P
1
i
t
U
d

..e

--. UU

Est 0

A
m

i
t
U

d
e

-0.5

-1

-1 .5

-2
0 10

elative Dplay (S =3I -

-1I

I

Odb)Es IC EsAO

( C '17 n Ah )
· I,/ ,. - ,%J- I1. - .; -C U 1 VCi



Note that for SNR above the threshold, the EM-ML algorithm exhibits none of the

confusion shown by EM in this case in figure 8.

7.4 EM-ML Delay/Gain Estimation Algorithm

We ran the same simulations to test the EM-ML delay and gain estimation algo-

rithm. The M delays are estimated one at a time by maximizing the likelihood function

over each delay in turn. The M signal gains and a single noise level for all channels are

estimated by ML also, which requires solving an eigenvector problem. For convenience

in plotting the gain estimates against the actual gains, we choose the normalization

constant -y so that the average estimated gains will have the same value as the average

actual gains:

* =>:l~~~~~ ° r~ ~(137)

An EM step is used only to estimate the signal spectrum.

Figure 14 shows the behavior in the M = 2 example when we estimate the two time

delays together with both signal gains. We assume that the signal and noise spectra are

known, and we use the same initial guesses as before. Compare these figures with the

EM algorithm in 3 and EM-ML delay estimation in 9. Unlike the previous algorithms,

the EM-ML delay/gain algorithm achieves convergence of both delays and gains in one

iteration at all SNR. As predicted, the convergence rate is superlinear. This is a clear

improvement over the previous algorithms.

Figure 15 shows the behavior when we estimate all the parameters: two time delays,

plus both signal gains, a 6 pole signal spectrum with gain g 2, and the noise level on all

receivers. Initial guesses were chosen as before, and we used the same data. Compare

with EM in figure 5 and EM-ML Delay estimation in figure 10. The convergence

rate and standard deviation of the delays is virtually identical to that in the EM-ML

delay estimation algorithm. Unlike the promise of the theory or the previous example,

however, convergence of the gains is not superlinear. The problem is that the noise

gain estimate is set far too high after the first iteration, due to the initial error in the

delay estimates. Because the signal gain estimates scale proportionally to the noise
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level, they are also set far too high after the first iteration. If we ignore the overall

level of the signal gains, and plot only the normalized gains .(l)/(L), as in the previous

methods, then convergence of the relative gains is indeed faster than in EM or in the

EM-ML delay algorithm. Convergence of the power spectra is similar to the other

algorithms. The noise level, however, converges more quickly and with less variance

than in the other algorithms. This, however, is because this algorithm only estimates

a single noise level for all channels, while the others estimate separate noise levels for

each channel.

Figure 16 shows the behavior for our M = 3 channels example, where all the param-

eters are estimated, including a 6 pole signal power spectrum model. Our conclusions

for this case are virtually the same as in the previous example. The delay estimates

converge in the same manner as in the EM-ML delay estimation algorithm. Near

threshold, the normalized gains converge more quickly than in the other algorithms.

At SNR=lOdB and up, however, the difference is hardly noticeable. The power spec-

tral estimates converge in the same manner as before, as do the noise level estimates,

though the variance of the noise level is lower than before due to the use of only a

single noise level for all 3 channels.

Figure 17 shows the behavior for our M = 8 channels example, where all the

parameters are estimated, including a 10 pole signal power spectrum model. The

conclusions are nearly the same as in the M = 3 case. The delay estimates are virtually

unchanged from the EM-ML delay algorithm, the normalized gain estimates converge

faster only near threshold SNR, the noise level variance is lower due to the use of a

single parameter for all 8 channels, and the signal power spectra converge in the same

manner as before.

The advantages of the EM-ML delay/gain estimation algorithm thus only appear

striking when the noise level and signal power spectrum is known. In this case, con-

vergence really does appear superlinear. Otherwise, the convergence rate of the signal

gains is only significantly better than in the EM-ML delay estimation algorithm when

SNR is near threshold. The quality of the delay estimates in unchanged from the

EM-ML delay estimation algorithm. The overall advantage of this EM-ML delay/gain

112



Relative Delav

A
m
p
1
i
t
U
d
e

0 5

50

0

-50

-100

Iteration Iteration

Ralative Delav (q NR = I

0

Odb) Est6

A
m
P
1
i
t
U
d
e

4

2

0

-2
5

Relativ D l1av (SNR=l7nd b )

0 5

Iteration Iteration

Figure 16a - EM-ML Delay/Gain Algorithm, Relative Delay Estimates ('1) - unknown
lowpass signal model, unknown noise levels, N = 128 point data, M = 3 channels,

= (-1.58 4.29 0 )T , = (3 4.5 6 )T , 20 runs for each SNR, estimate 3 delays, 3
gains, 6 pole signal power spectrum with gain, 3 noise level parameters.

113

A
m

_ p
1
i
t
u
d
e

5

-5

-10

_ r
- VJ 

Es t1 0

0

5

A
m
P
1
i
t
U

d
e

5

/
0

-5

-10

- x x -- ..

-

M

- -------- ·-- -----� --- ----·-·- -----------· ------- ---------------·------------------------

EsC Odb) (SNR=Odb)111

--L-�

w . _ _ ^ , _ """
· r ' v�rr�



EM(o), CC(+), GCC(*), Cramer Rao
102

S
t
a
n
d
a
r
d

D
e
v
i
a
t
i
0
n

D
e
1
a

y

10l

10-1

10-2

I1 -3
l -

-1 0 0 10 20 30

SNR

Figure 16b - EM-ML Delay/Gain Algorithm, Standard Deviation of Relative Delay

Estimates (l)- 1) - EM(o), Cross Correlation Method (CC)(+), Generalized Cross
Correlation Method (GCC)(*). vs. Cramer-Rao lower bound.

114

\O

r r ·

I I 

--- - ---- -- -

(delay 2)



Nor 0b

6

5

4

3

2

1
0 5

Iteration Iteration

Signal Gains (SNR=lOdb) 11v . 1 

A
m
p
1
i
t
U
d
e

5

4

3

5

Sibnal Ga i ns (SNR=30db).- __

0

Iteration Iteration

Figure 16c - EM-ML Delay/Gain Algorithm, Normalized Gain Estimates (')/lc.

115

A
m
p
1
i
t
U
d
e

A
m
P
1
i
t
U
d
e

6

4

N -rm
"' J1

0
0

A
" m

p
1
i
t
U
d
e

5

4

2

0
0 5

- e 

r 

� ---------��-- � C·r�·--s�·-r�·-·----�·lls�-PI·I^P-·-·�-- Il_-ll··_··.�··CI�_-Il___�-l·�·PIIIII�-- � �.·11�11 1 --X- ·LI�II�--P·I -- 111�-·

Odb) Mn vyn i d-n n r -, i n I qvp =nr h 
L ,. ..... ... N ., -- -a-- . � - D---- -- -- e- u _.__ , .,J

===m

................

\V/

O - - - I T - m. - \ - . , 
- - - I

,



lY ll . I . .- I-' V k lMM' - I b)

0.50

Frequency

b)

105

d
B

102

101

0.5 0

Frequency

)

0.5

Frequency

Figure 16d - EM-ML Delay/Gain Algorithm,

Ps(,.; 6()) _1 a )I

Frequency

Normalized Signal Power Spectra

116

- 0"

105

Aht- -m C d IC TI-r - f CATO_ - nAI · A

104

=
T

_~~~~~~~~~~~~~~~~~~~~~~Z

d
B

105

104
d
B

102

10'

10°
0

102

10'

100
0.5

d
B

J

0

- - i5 - - - - - -
Z:

f U i L

-

- -

c4



Estb

2.5

2

1.5

1

0.5

0
0

A
m

p
1
i
t
U
d
e

2500

2000

1500

1000

500

0
5 0 5

Iteration Iteration

Lb)

A
m

p
1I
i
t
U
d
e

10

5

0
5 0

Iteration Iteration

Figure 16e - EM-ML Delay/Gain Algorithm, Noise Level Estimates 0(&)

117

A
m
p
1
i
t
U
d
e

A
m

p
1
i
t
U
d
e

250

200

150

100

b)

50

0
0 5

·_IIII1XI____·_�__ll)I�-L I1· --·11I· ·�-··------�XII�
_ --�IIC __l 11_._111_ · ·�·�·�--·-�---·^·-·-----C--·�LY--··IYYY 111_

db) b)



Relative Delay (NR=db) Es t 4

100

0

-100

0
-200

A
m
p
1
i
t
U
d
e

2

0

-2

-4

-6

-8
5 0 5

Iteration Iteration

b) Est 

A
m

p
1
i
t
U
d
e

-1

-2

-3

-4

-5

-6
5 0

Iteration
5

Iteration

Figure 17a - EM-ML Delay/Gain Algorithm, Relative Delay Estimates (L) - unknown
lowpass signal model, unknown noise levels, N = 256 point data, M = 8 channels,

= (-4.7 -4.9 -1.5 -3.5 -5.55 -.2 -2.3 0 )T, a = (2 3 3 3 5 5 5 5)T, 20 runs
for each SNR, estimate 8 delays, 8 gains, 10 pole signal power spectrum with gain, 8
noise level parameters.

118

A
m
p
1
i
t
U
d
e

Est.O

A
m

p
1
i
t
U
d
e

-2

-4

-6

db)

-8
0

I ��
I- -414,11, 1, \ '" __- -

L

----

E9o
Odb)



EM(o), CC(+), GCC(*), Cramer Rao (delay 2)
102

S
t
a
n
d
a
r
d

D
e
v

i
a
t
i
0
n

D
e
1
a
y

101

100

10-2

10-2
0 5 10 15 20 25 30

SNR

Figure 17b - EM-ML Delay/Gain Algorithm, Standard Deviation of Relative Delay
Estimates ()- - - EM(o), Cross Correlation Method (CC)(+), Generalized Cross
Correlation Method (GCC)(*) vs. Cramer-Rao lower bound.

119

_______�__111___111_I -- ^1 ·-



* Signal Gains (SNR= db)

_I
6

4

2

0
0

A
m

p
1
i
t
U
d
e

No ^ vm

5

4

3

2

1
5 0 5

Iteration Iteration

db) NorE

A
m

p
1
i
t
U
d
e

5

4

3

2

1
5

db)

50

Iteration Iteration

Figure 17c - EM-ML Algorithm, Normalized Gain Estimates &(L)/sc.

120

A
m

p
1
i
t
U
d
e

Nor~

5

4

A
m

p
1
i
t
U
d
e

3

2

1
0

I I

No r;
br SU~nal ains (SNR=10db)ayes W. J



b)

1

d
B

0.5 0 0.5

Frequency Frequency

b)

0 0.5

Frequency Frequency

Figure 17d - EM-ML

DP(L); 0)) 1 .(1)2 .

Delay/Gain Algorithm, Normalized Signal Power Spectra

121

10 4
d
B

102

101

0

1

1

1

0

)

d
B

U

0.5

b )

I U

U



b)61

A
m

1
i
t
U
d
e

u
0

A
m
p
1
i
t
U
d
e

600

400

200

0
5 0 5

Iteration Iteration

Noise Power (SNR=20db)

5

)

50

Iteration Iteration

Figure 17e - EM-ML Delay/Gain Algorithm, Noise Level Estimates r(l)

122

60

A
m

p
1
i
t
U
d
e

40

20

A
m

P

i
t
U
d
e

10

8

6

4

0
0

2

0

�i�;i�i

Lb)

--
j

_



estimation algorithm is therefore not that clear, particularly given the high computa-

tional overhead of solving an eigenvector problem for the signal gains.

7.5 ML Coordinate Ascent Algorithm

Finally, we ran the same simulations on the ML coordinate ascent algorithm. Each

of the M delays was estimated individually by maximizing the likelihood function.

The M signal gains and a single noise level were estimated by directly maximizing the

likelihood, which requires solving an eigenvector problem. An unparameterized signal

power spectrum was also estimated by direct likelihood maximization. Samples of this

spectral estimate which were negative or very small, were set to a small positive level

determined as a small fraction of the noise level. Figures 18 show the performance on

the M = 2 example, figures 19 show the M = 3 example, and figures 20 show the M = 8

example. In all cases, we estimated M delays, M gains, 1 noise level, and the signal

spectrum. Behavior of the delay, signal gain, and noise level parameter estimates is

virtually the same in all cases as for the EM-ML delay/gain algorithm, thus suggesting

that getting smooth power spectra estimates is not essential for good estimation of the

remaining parameters. (Note the ragged shape of the power spectra estimates, caused

by using a periodogram-like technique to estimate this spectrum.) The advantage of

this algorithm over the EM-ML delay/gain algorithm is that we avoid fitting an AR

model to the signal periodogram. However, the computation involved in fitting an AR

model is negligible compared with the time required to estimate the delays. Therefore,

in practice the advantage of direct ML maximization over all parameters is not clear.
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8 Delay and Doppler Estimation

If the source is moving relative to the array, the signals observed at different re-

ceivers are not only time delayed, but also time compressed relative to each other.

Measurement of these differential Doppler time compression coefficients can provide

important additional information concerning source location, velocity, and heading.

The signal model is now given by:

zi(t) = ais (t - ri(t)) + vi(t) for i = 1,2,...,M (138)

where ri (t) are the time-varying delays caused by the relative motion between the source

and the receivers. To simplify the exposition, we shall make the following assumptions.

(1) Assume that the change in the array-source geometry during the observation

interval is small, so that the various ri(t) are essentially linearly time varying:

ri(t) = ri +- it (139)

where r, is the delay at t = 0, and fi = dr,(t)/dt is the delay derivative, or Doppler

coefficient. Substituting (139) into (138), we observe that the Doppler effect results in

a time-scaling or compression of the received signals. We note that fi = vi/c where vi is

the radial component of source velocity towards the it h receiver, and c is the velocity of

propagation in the medium. Thus, estimation of the ?i is equivalent to the estimation of

the vi. In most situations of practical interest vi/c << 1, so that the expected Doppler

i << 1.

(2) Taking the Fourier transform of zi(t) gives:

Zi(wn) caie- j " S (1 -) + V(w,") (140)

This equation suggests that the Doppler shift causes signal components at higher fre-

quencies to shift more in frequency than components at lower frequencies. To avoid

having to compensate for this effect, let us assume that s(t) is narrowband, centered at

frequency wo with bandwidth Ws about the center frequency, where Ws/wo < 1. Let

us also assume that Wsfi < 2r/T, so that difference between the minimal and maximal

Doppler shift over the signal modulation bandwidth does not exceed a full cycle (27r

139
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radians) over the observation period T. Under these conditions, the Doppler shift is

approximately equivalent to a frequency shift of the signal waveform. Thus:

Zi(wn) aie-iw"riS (w, + AWi) + Vi(Wn) (141)

where Awi are the Doppler frequency shifts:

Awi = woii (142)

(3) In order to simplify the use of finite length FFT's, we shall confine the Awi to

the set:
271r.
T

i = 0, 1, 2,... (143)

For woT/27r > 1, the interval 27r/T is a very small fraction of the carrier frequency,

and this assumption is not very restrictive. (If necessary, the data could be lengthened

by zero padding to allow use of longer FFT's and denser sampling in the frequency

domain.)

(4) We will assume that the noises vi(t) are wideband relative to the signal s(t) and

have relatively smooth power spectra relative to the signal s(t) over a frequency range

equal to the maximum expected Doppler shifts, so that:

Pv,(w + Awi; i) P(w; i) (144)

We note that these assumptions are frequently satisfied

Rewriting (141):

in passive sonar applications.

Zi(W, - wL) = aie-j(w`Aw i)rS (Wn) + Vi(Wn - AW i)

Let us define:

Z(Wn) =

140

(145)

Z ( - Aw1)

Z2(Wn - a W2

ZM (W - WM)

(146)



Since we have assumed that Awi is a multiple integer of the fundamental frequency

Awi = 27r/T, then (145) implies that different frequency samples of Z(w,) are statisti-

cally uncorrelated with each other. Let be the vector of parameters to be estimated:

where Aw is the M x 1 vector of Awi's.

Z(W') is:

T7

Aw

a

0

a

Then

(147)

the covariance matrix associated with

+ Pv(w; a) (148)

where Pv(w,;a) is defined in (11), and:

U(Ln; ) =

ame-j(T--wM)T f I (149)

The observed data log-likelihood is given by:

ET

Lz(_) = - Z [log det Pz(wn; ) + Z* (wn)Pl (wn; )Z(wn)] (150)
n=L

Substituting (146) and (148) into (150) and carrying out the indicated matrix manip-

ulations, we obtain an expression similar to (13):

U [M (1 M a2Ps(P ';
Lz() c- E lg og PV (wn;i) + g + E P( ) (151)

n=L i= i=1 PiUn

M Zi( - Awi)l _ Ps(w; ) I-Ml aie-i(wn-Awi)riZ (wn - AWi)/Pv(w;-)2]

,=l Pv,(w,~;°--i) 1]+ t=l PvK(Wn;l~i 1 + EZ1 ai2Ps(wn;)/Pv(w, ) / P ; ( i)

where c is independent of ~.

The presence of the Doppler shifts complicates the estimation problem quite dras-

tically. Even if the signal gains and spectral parameters are precisely known, the direct

141

pz(L.;_) -= E [Z(w )Z* (w )]

= p(w;); !) U (w; I)
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ML approach requires maximizing with respect to and Aw jointly, leading to a com-

plex multi-dimensional search.

Careful examination of (151) indicates that, under our assumption that all spectra

are smooth, we can only estimate relative delays ri - rj and relative Dopplers Awi - Awj

from the observations (see [19,18]). Thus, as in the stationary case, we could fix one

delay and one Doppler to an arbitrary value, say rM = 0 and AwM = 0, and estimate

only the remaining (M - 1) delays and (M - 1) Dopplers.

8.1 EM Algorithm for Relative Doppler Estimation

Consider first the application of the EM algorithm. Here we iteratively compute:

For I = 0,1,...

^+ + (1+1) +,(l) max E () [logp (sz;1TW5a )z] ( )
(I+1) - max Ea( [log (, ,1

(/+1) +max E [logp( l, v ;+) 1Z)- (153)
, , ,

Following the development of the previous section, we obtain in complete

with (58), (59), (62), (63), (64), and (65):

E - step :
M

S()(Wn) = E (I)ej(wnw )k Zk(Wn - Aw1 )T( (n)/Pv (wn; ak)
k=l

(1= |'(')(w) 2 +

where T()(wn) = Ps(w (1)

1 + k 1 SpNRk (wn)
M - step :

(1+1) ,min t [log Ps(.n;) + Is(Wn) 
( )

a n=L Ps(W;_)

For i = 1,...,M

d, [- max Re(w
Ti'Aooi I

analogy

(154)

(155)

(156)

(157)

142
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R Z (1+1) - (+1) ()
Re - e - ( |- aW S' (Wn) ,Zi (Wn a "() )/P,(w,;

n=L

U 2

+ Z log Pv(wn;r Ci)i (158)
n=L

This algorithm is similar in structure and computation to the EM algorithm devel-

oped for the stationary (delay only) case. As before, the complicated multi-parameter

optimization is decomposed into optimizations in smaller dimensional parameter sub-

spaces, leading to a considerable simplification in the computations involved. As before,

convergence is guaranteed to the set of stationary points of the likelihood function, with

each iteration increasing the likelihood.

To solve (157), we must carry out a two-dimensional search in the delay-Doppler

plane. We may consider replacing the maximization with the following coordinate

search:

) -max Re Z ej3( " -)'S(l)(w)Z(w-n L~)/Pvi(wn;a )1

Awj- max Re e-(w '- °wi)(L)n AWi)PVj(Wn;L))159)

In this setting, the new delay estimate ~?+l) is obtained by performing a weighted cross-

correlation between the signal estimate and a Doppler shifted version of the signal at

the ith receiver output. The Doppler estimate Aw ) is obtained by performing a fre-

quency domain convolution between the weighted signal estimate §(')(wn)/Pvi(w.n;Q ))

and the ith receiver output delayed in time by ?1+l). Replacing the two-parameter

optimization (157) by the indicated two-step procedure, we obtain a computationally

attractive algorithm, which is guaranteed to converge to the set of stationary points of

the likelihood function, and which increases the likelihood on each step. The disadvan-

tage is that its convergence rate will be slower.
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8.2 EM-ML Delay, Doppler Estimation

As indicated before, the problem with the EM algorithm is its slow linear rate of

convergence. Therefore, it may be useful to develop hybrid EM-ML types of algorithms.

To this end, suppose we want to estimate the delay and Doppler parameters by direct

maximization of Lz(), that is:

(+ - t_ maxLz (, Aw, () &(')) (160)
r Aw

where &(), (), and ( ) are generated by the EM algorithm in the previous section.

Recall (151). By assumption (4), the term:

Zi(w - ) U IZi(wn)l Izi(W)lI

=L Pv,(W;i) V,n n=L Pv(wn;Ei)

is independent of Awi. Therefore, retaining only terms that depend significantly on r

and Aw:

=gPS(LJn; ) i= aie j(- Zi)Wz*i(wn -1 wi;Ps.;_O)/v;2

n=L 1 ai=l IPs(wn; ) j pv (wn; 9i)
U M a2p(w.O_Z.( ,)'P.

I 2PS(; )lZi(Wn - wi) /Pv,(w n;) (162)

n=L 1 + I ai=1 l PS(Wn; ) PV(wn; ji

U M-1 M aiakZi (wn - AWi)Zk(Wn - A\Wi)ej(w -wk)k-(wn-Aw)riJ

+2Re Z E Z - Z(
n=L i=1 k=i+l Pv,(wn,;Oi)Pvk(wn;ck) [1/Ps(wn;O) + , atl/Pv(wn;i)]

where c is independent of r and Aw. If Ps(wrn; ) and Pv,(w;) are smooth over the

signal bandwidth, and the maximum Doppler shift is small compared to the signal

bandwidth, then the first term in (162) does not depend strongly on Awi and can be

ignored. This leaves:

U M-1 M
(+) +(1+,) maxRe W()(w)Zi (w n - Awi)Zk(wn - Awi)

- n=L i=1 k=i+l

*ei[( n " wk )rk-(wn -Ai)ri]] (163)

where W~()(w.) is the same weighting function that was defined in (75). It can be

shown that for WT/27r > 1, the solution to (163) converges in about one step (super-

linearly) to the true r and Aw, regardless of the available gain and spectral estimates.
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However, it requires a complicated multi-dimensional search over all possible delays

and Dopplers.

We may consider maximizing Lz() with respect to one pair of (ri, Awi) at a time.

Similarly to (113), we obtain the following algorithm:

For I = 0, 1,...

(1+) ~ U e-j(wn-Aw-)ri )(Wn)Zi ( wn ) A1i6)
w i max Re E ()) (164)

n=L PV, P.; r 

where:
M - ))eZ Ps(w; () e(In-^Ik)fkZk(f - aWk)/Pvk(.Wf;U )

k=l
S(W) Mki (165)

1 + E SNR (W)
k=l

where:
k(+) for k < i

Tk = t)(166)
i { for k > i

- (+1)
_ / twkl) for k < i

Ak (1) (167)
Awk for k > i

Equation (164) is similar to (157), except that in (164) we use S,)(w,), the signal

estimate computed using all but the ith receiver outputs. This algorithm represents a

compromise between the EM algorithms and the EM-ML algorithm above. It requires

slightly more effort than the EM algorithm, since we need to generate (')(W,) for all

i = 1,..., M. However, we may expect significantly better convergence behavior. When

compared with (163), it replaces the multi-parameter optimization with a coordinate

search, thus trading off computational complexity for a slower rate of convergence.

We can further simplify the computations per iteration at the cost of reducing the

rate of convergence, by performing a coordinate search with respect to each delay and

Doppler parameter separately. We obtain:

= +1) + max Re K ej( " - A )Si (wn)Z (Wn -i))/Pv,(; b (- )

aw ) max Re [Z e-J(w"-+wi); n g )(wn)Zi (W,- Awi)/Pv,(w; ))J 168)
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This algorithm should converge more quickly than the EM algorithm (159). A conver-

gence analysis could be carried out using the same methods as in section 5 to quantify

the trade-off between the computational burden and convergence rate.

8.3 Other EM-ML Algorithms

In order to accelerate the convergence of the signal gains and spectral parameters,

we may try a hybrid EM-ML algorithm which directly maximizes the log-likelihood

over ac and a, and only uses the EM step to update the 8 parameters:

__./+l)(/+l) maxLz ( _(+1)_ -) (169)

* -- , , a~o',~ 1 

0 L max 0 [logPs (n; ) + ) 
- n=L P(W,; 0)

We may even try to replace the signal spectral estimate with a direct likelihood maxi-

mization:

0(1+1) ~maxLz (0u+1I £Al >j1+1) &(I±1) ) (170)

and not use the EM algorithm at all. Note, however, that the log-likelihood for the

Doppler case (151) is identical to that for the stationary case (13) except that terms

Zi(wn) are replaced by Zi(w, - Awi)e- j a" ir' . Otherwise, the likelihoods have exactly

the same dependence on a, 0, and a. Therefore, all the considerations and results

developed in section 5 are directly applicable here by simply substituting:

zi - L~h('+l ))eW i) (1+)

where ?(I+l) and A"wi ) denote the most recent estimates of ri and Awi respectively.
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9 Conclusions

In this report, we have developed a new class of iterative algorithms for solving

the Maximum Likelihood time delay estimation problem given multiple receivers, with

unknown signal, unknown signal power spectrum, unknown noise power spectra, and

unknown signal gains at each receiver. Our algorithms all decouple the various un-

known parameters, estimating only one unknown at a time, thereby reducing a difficult

nonlinear multidimensional optimization to a series of simpler, lower dimensional op-

timizations. Furthermore, the methods naturally generate an estimate of the signal

waveform, which can be used for target identification or other purposes. Each iteration

increases the likelihood function, and convergence is guaranteed to the set of stationary

points of the likelihood function.

We've suggested four different classes of iterative time-delay estimation algorithms.

The EM-like algorithm estimates the signal from a weighted, Weiner-Hopf filtered com-

bination of receiver data. It then cross-correlates this signal estimate against each

receiver to estimate the time delay, and the peak value of the cross-correlation is nor-

malized to form the signal gain. The noise spectrum model is fit to the remaining error

on each channel, and the signal power spectrum model is fit to the estimated signal

periodogram. All-pole models are particularly easy to use. The method then iterates,

using the improved spectral models to build better filters for the signal estimate. The

computation required is thus quite simple. The method has difficulty, however, with

initial convergence due to an extra peak at the old estimate in the objective function

being maximized for each delay. The asymptotic convergence rate can also be slow

when the SNR is low, and when there are few channels. In cases with large numbers of

channels or high SNR, however, the delay estimates will converge in about 2 iterations,

and the normalized signal gains and power spectra will converge in about 5 iterations.

Better convergence is achieved by the EM-ML delay estimation algorithm. This

approach directly maximizes the likelihood function to estimate the delays. If all de-

lays are estimated simultaneously, then superlinear convergence of the delay estimates

can be achieved. If the delays are estimated one by one, the computation is much
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simpler, but the convergence rate is slower. The ith delay is estimated by maximizing

a cross-correlation between a signal estimate and the ith receiver data, where the sig-

nal is estimated using all received data except from the ith channel. The asymptotic

convergence rate is approximately independent of the SNR or the number of channels,

and is between 1/8 and 1/9. In practice, about 2-3 iterations are needed to estimate

the delays, and about 3-4 iterations to estimate the signal gains.

Somewhat better convergence of the gain estimates can be achieved by modifying

this EM-ML algorithm so that the signal gains are also estimated by directly maxi-

mizing the likelihood function. This EM-ML delay/gain method can only estimate a

single noise level for all channels. To compute the new gains, we find the maximum

eigenvalue and corresponding eigenvector of a weighted correlation matrix formed from

the receiver data. The gains are the eigenvector components, and the noise level is

derived from the eigenvalue. In theory, superlinear convergence of the gains can be

achieved if the delays are estimated jointly. In practice, if we estimate the delays one

at a time, and estimate the noise level as well as the signal power spectrum, convergence

of the gains is only accelerated for SNR near threshold (about OdB). At high SNR, the

improvement in the convergence rate is probably not striking enough to justify solving

an eigenvector problem.

Finally, we suggested a direct coordinate ascent procedure for directly maximizing

the likelihood for all the parameters. To do this, we must restrict ourselves to a single

noise level parameter for all channels, and can only estimate a non-parameterized signal

power spectrum model. The resulting algorithm is identical to the EM-ML delay/gain

method, but rather than fitting an all-pole model for the signal spectrum, it uses an

expected periodogram estimate. Convergence of this direct ML method is similar to

that of the EM-ML delay/gain method. This observation suggests that getting excellent

models for the signal power spectrum is not essential for getting good delay or gain

estimates. Unfortunately, because the method requires solving an eigenvector problem

for the gains, it is computationally unattractive.

From our work in this paper, we conclude that the EM algorithm and the EM-ML

delay estimate algorithm are computationally simple and very attractive algorithms
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for getting highly accurate time delay estimates at an array of receivers. Unlike the

generalized cross-correlation (GCC) method, they do not require a priori estimates of

the signal or noise spectra or the signal gains, since they estimate these as they iterate.

Despite having to estimate so many parameters, the EM and EM-ML delay estimation

algorithms achieve delay estimates whose variance is close to that of the GCC method,

and is better than the simple cross-correlation method. With little effort at providing

good initial guesses, we were able to obtain reliable convergence in 1-5 iterations for

between 2 to 8 channels, and for a variety of SNR above threshold. Since the primary

advantage of the likelihood-based methods (and the GCC method as well) is that they

incorporate filtering, maximum advantage is obtained in examples where the signal is

narrow-band compared to the noise.

Many issues remain to be explored. The analysis techniques used in this paper are

quite novel, and have important implications for the analysis of nearly all EM-style

algorithms, in applications ranging from iterative clustering to adaptive equalization.

It should be possible, using these techniques, to derive analytical formulas for the

convergence rate of nearly all these algorithms. Furthermore, our general iterative

framework allows us to build hybrid iterative algorithms for a very wide range of

applications. In general, these algorithms should enjoy faster convergence rates than

the conventional EM approach, although at the possible cost of increased computation.

Another important area of research involves extensions of these algorithms for re-

lated applications. The most important extension is to estimate multiple signals re-

ceived at an array of sensors from different directions. The formulas for this case do

not decouple quite as nicely as the single source case, because of the non-orthogonality

of the received signal wavefronts. However, we expect that the general structure of this

iterative multiple source estimator would use multiple beamformers, each adapted to

preferentially pass only one of the signals, with iteration being used to model the signal,

model the noise, and adapt the beam weights and delays. Other important extensions

are to use pole-zero models, and to consider more complicated parameterized signal

and noise models.

Another useful extension would be to consider recursive versions of these algorithms.
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A convenient framework for this would be within the context of linear state space

models. A technical difficulty is that we need to use a continuous-time model for the

signal, in order to allow arbitrary receiver delays, but must use a discrete-time model for

the observations. We are currently working on extending our batch algorithms to this

recursive model. Our ultimate goal would be a Kalman Filter-like interpolator/filter for

estimating the signal, with a recursive update for the signal and noise model parameters.

The major technical difficulty we expect is that if the delay estimates should get "lost",

it is not clear whether the algorithm will "recapture" the correct delay values.

To conclude, the research area of iterative EM and EM-like algorithms has great

importance for a variety of stochastic estimation problems. It not only yields new

insight into the estimation process itself, but also suggests many new and practical

estimation algorithms.
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A EM-ML Gain and Noise Level Estimates

In this appendix, we will maximize equation (119) over a and a to get the EM-ML

gain and noise level estimates. Note that (119) is quadratic in the signal gains a. To

maximize it subject to the constraint (118), introduce a Lagrange multiplier A and form

the Lagrangian:

L U M Z(wn) 2 N 
() - Mlog E E + R(,) - (a Z ) (172)

n=L i=1

The maximum of Lz() over a and a subject to (119) can then be found by computing

the derivatives of £ () with respect to a and a and setting them to zero. This gives:

2N 2X
R(,) - -a = 0 (173)

U2 o

M
:- 1 = 0 (174)

i=1

MN 1 M ) 2N T M
e -+ o2 Z ZV i (wez ) 2N a R(7, ) + a'Eo (175)

z=_=l Pv (w,) -a -a i=1

Combining these expressions, setting u = Aa/Ny, and applying much algebra gives the

simplified form:

R(r, ) = ua (176)

1 T Mi (wn2
1 = A Zi(w)L 2 /M (177)

M n=Li= l P(wn)

-a- - at = 1 (178)
-a

Thus a must be an eigenvector of R, and pt is the corresponding eigenvalue. Which

eigenvalue and eigenvector? Substituting back into (119),

Lz(E) = c' - MN log a (179)

where c' is a constant. Clearly to maximize the log likelihood we should choose t such

that is as small as possible. Thus t should be chosen as the largest eigenvalue of R,

and a is the corresponding eigenvector.
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B EM-ML Individual Delay Estimation Algorithm

- Asymptotic Convergence Rate

In this appendix we analyze the asymptotic convergence rate of the EM-ML in-

dividual delay estimation algorithm. Assume that all channels have equal signal and

noise energy, so that all functions R(' (t) can be approximated with the same Taylor

series approximation (86), with #Q) - (L). Substituting (86) into (116) and setting the

derivatives with respect to ri to zero,

i-l M

, )= Ti + E (f+) -_ ) + E (1k(1+1) -
k=1 k=i+1

Tk)] (180)

where Or = 1/(M - 1). To analyze the convergence rate,

cyclically permuting the delay estimates:

_li + M(l + 1)] 

I (1)
'i+l - 'i+1

'TM - TM

~(1+1) -
Ti - i

define a state vector f[n] by

I

(181)

Then estimating a single delay is equivalent to:

f[n + 1] = r-n]

where (I is an M x M matrix which is in companion

/
O 1 0 --.

0 0 1 -..

0 0 0

0 U7 U

(182)

form, and is independent of i or 1:

0

0

1

7
I

(183)
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Estimating all M delays on one iteration is equivalent to applying the P matrix M

times to the previous delay estimates. Thus:

·- ( ) (184)
:TM -aT

The rate of convergence depends on the eigenvalues of . To find these, compute the

characteristic polynomial of 4:

det (sI - ) M - 7s M - l - 77SM - 2 _ s

= s(s - 1) ((M - 1)sM-2 + (M - 2 )SM - 3 +... + 2s + 1) /(M -(15)

1 - M M - 1 + SM
= S M- (186)

1-s

( has one eigenvalue of 1. This corresponds to our decision to estimate all M delays,

despite the fact that only the M - 1 relative delays can be identified from the data.

Therefore the average level of the delay estimates cannot be identified, and any constant

delay error will remain unchanged. The eigenvector corresponding to eigenvalue 1

is exactly this constant error vector. The convergence rate of the relative delays is

therefore equal to the absolute value of the root of the polynomial on the right of (185)

with the largest magnitude, raised to the Mth power. Figure 21 plots the convergence

rate for M in the range 3 through 150. Note that the convergence rate is between

about 1/8 and 1/9, independent of SNR and independent of the number of channels

M.

For unequal signal energy in the channels, we would expect faster convergence. For

example, if channel M is much stronger than the others, then its contribution to the

likelihood function will overwhelm the other channels, and each delay estimate will

tend to set ' (l+-) - to about the right value.
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Asymptotic Convergence Rate of EM-ML Individual Delay Algorithm
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Figure 21: Asymptotic convergence rate of EM-ML individual delay algorithm
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