
Efficient Verification of VLSI Circuits Based
on Syntax and Denotational Semantics

RLE Technical Report No. 546

July 1989

Filip Van Aelten

Research Laboratory of Electronics
Massachusetts Institute of Technology

Cambridge, MA 02139 USA

Efficient Verification of VLSI Circuits Based on
Syntax and Denotational Semantics

by

Filip Van Aelten

Submitted to the

Department of Electrical Engineering and Computer Science

on May 12, 1988 in partial fulfillment of the requirements

for the degree of Master of Science.

Abstract

A fully automatic circuit verification system takes in a circuit description and

a specification of its behavior, and checks whether the circuit behaves as specified.

Existing verification systems follow one of two approaches: a deductive approach,

based on a formal logic, or a rewrite rule approach, which starts from knowledge

about how transistors work, and goes straight but slowly from premises to con-

clusions. I present a new, more efficient approach, which incorporates large scale

knowledge about VLSI circuits in a coherent fashion. The approach is based on

the denotational method for defining the semantics of a programming language.

A circuit is parsed according to a circuit grammar, and the resulting parse tree

is mapped into a behavioral description which is matched with the user supplied

specification. The new strategy is implemented in the program Semanticist.

Thesis Supervisor: Jonathan Allen

Title: Professor of Electrical Engineering and Computer Science

1

2

Acknowledgements

I would like to give special thanks to Jonathan Allen, my thesis supervisor, for his

support, his encouragement, the work style that he exemplified, and his insistence

on a clear exposition of my ideas. Thanks also to Cyrus Bamji, for providing the

concepts and the practical support that got me started on this project, and to Ivo

Bolsens, for introducing me to circuit verification.

Thanks furthermore to all the people of the eighth floor VLSI group: Bob Arm-

strong, Don Baltus, Srinivas Devadas, Abe Elfadel, Kevin Lam, Jennifer Lloyd,

Andy Lumsdaine, Steve McCormick, Ig McQuirk, Keith Nabors, Mark Reichelt,

Miguel Silveira, Dave Standley, Ricardo Telichevesky, Barry Thompson, Chris Um-

minger, Jacob White and John Wyatt. It was a pleasure to work in your midst.

I would also like to thank the Belgian American Educational Foundation for

supporting me with a fellowship during my first year as a graduate student.

Finally, I would like to thank my parents for their support.

This report describes research done at the Research Laboratory of Electronics of

the Massachusetts Institute of Technology. Support for this research was provided

by Analog Devices, under a letter agreement dated 11/24/86.

3

4

Contents

1 Introduction

1.1 Computer Aided Design and Formal Verification

1.2

1.3

1.4

1.5

Formalisms for Circuit Verification

Previous Work on MOS VLSI Verification .

My work

Overview of Subsequent Chapters

2 Design Correctness

2.1 A Switch Level Model

2.2 Design Correctness.

2.3 Sufficient Conditions for Design Correctness

3 A View on Verification Strategies

3.1 Review of Semantics Formalisms

3.1.1 Operational Semantics.

3.1.2 Denotational Semantics

3.1.3 Axiomatic Semantics

3.2 A Framework for Understanding Circuit Vei

3.3 Review of Existing Verification Systems . .

3.3.1 Gordon's Logic Based System . . .

3.3.2 Weise's Silica Pithecus

3.3.3 Bolsens' DIALOG

3.3.4 Bryant's MOSSYM .

3.3.5 Spickelmier's Critic .

.

.

.

. . . .

:ification

.

.

.

.

5

7

7

9

11

14

15

17

. 18

23

26

31

32

32

34

37

39

42

43

44

46

47

49

..............
..............

..............

..............

............

............

............

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

6

3.4 The Denotational Semantics Approach . . .

CONTENTS

. 49

4 A Circuit Grammar with High Coverage

4.1 Cyrus Bamji's GRASP .

4.2 Summary of the Grammar

4.2.1 Transistor Blocks .

4.2.2 Gates

4.2.3 Pass Transistor Extensions of Gates

4.2.4 DCN's...............................

4.2.5 Combinatorial Logic.

4.3 Conclusion

4.3.1 What is covered by the grammar

4.3.2 What is not covered by the grammar

4.3.3 Checks that still have to be done at the semantic level .

5 Denotational Semantics Im

5.1 The Circuit Description

5.2

5.3

5.4

5.5

5.6

5.7

5.8

The Behavioral Descriptic

The Network Environmer

The Block Diagram Envii

Parsing.

Valuation.

Matching.

An Example Verification

lplemented 91

... 93

on 99

it 103

ronment 105

. 109

... 110

... 116

Run 118

6 Results and Further Work

6.1 Results .

6.1.1 Performance

6.1.2 Competence .

6.1.3 Practicality as CAD tool

131

131

131

134

135

6.....ueo. rk.136

53

54

56

59

67

74

81

83

87

87

88

89

A

...................

...................

...................

...................

6.2 Further work

Chapter 1

Introduction

1.1 Computer Aided Design and Formal Verifi-

cation

Building VLSI chips with hundreds of thousands of transistors on a die of about

lcm2 , is quite different from most other activities people are engaged in. The chips,

though gigantic constructions, are shaped at once, and are expected to work the

first time. VLSI designers can't continuously interact with the physical world. They

can't start with a partial physical implementation, see how it works, modify it, see

again how it works, go on with other parts, and so on. There is no game of action

and counteraction with the physical world, as in most of our activities. Chip builders

have to "sit and think" and perform one physical action that is immediately right.

Fortunately, designers don't literally have to sit and think until a correct de-

sign has evolved in their head. They can make symbolic representations of the

design, concentrate on one part at a time, and store all the representations they

made before without having to remember them. Better still, they can use comput-

ers that manipulate symbolic representations in interesting ways. One interesting

computer configuration is a simulator, which takes in symbolic representations of

input signals and behaves just the same way the physical device would operate on

the physical input signals. A VLSI designer can then interact with his simulator as

if he interacted with the physical world.

7

CHAPTER 1. INTRODUCTION

Unless he simulates all the situations that can possibly occur on the circuit,

which is out of the question for very large circuits, he still won't be sure that his

design is correct. A second kind of Computer Aided Design tool is a verification

program that takes a description of the design and answers whether, to its knowl-

edge, the design is correct or not. Still other tools are able to actually produce

designs from a given specification.

All these tools manipulate symbolic representations according to some formal

laws. One who wants to design the tools, embarks on a quest for formal mechanisms

that are correct and efficient. Formalisms that are compact, and that have clarity

and theoretical precision, are a great help. A set of ad hoc rules is just as formal as

any other prescription, but building a correct and efficient program from it is less

likely to succeed than building one from well structured and orderly organized laws.

The subject of this thesis is formal verification. Given a circuit description

and a behavioral description, how do you determine whether the circuit behaves as

specified in the behavioral description? How do you build a mechanical inference

system, that takes in symbolic descriptions of a circuit and its intended behavior,

and infers whether the circuit is correct or not?

Inference systems are at the heart of traditional Artificial Intelligence research.

A central theme in that research is the tradeoff between how complete the knowledge

of an inference system is, and how efficient it is (see for instance [LB 85]). Pure logic

systems, for instance, are fairly expressive but intractable. Tractability is bought

by resorting to simpler world views (e.g. a "closed world" view in which all you

know about the world at a given time is all there is).

A number of researchers are now trying to find a way out from this impasse by

giving up on the notion of having symbolic representations and inference systems

that operate on them (see for instance [Agre 88]). Instead of doing symbol crunch-

ing inside the "head", they try to establish a continuous interaction between the

agent and the physical world. The problem becomes too hard, so they argue, if you

abstract stimuli from the world to symbolic representations, and try to solve the

entire problem within the "head". By performing small actions and see how the

world reacts, by engaging in a play of action and counteraction with the environ-

8

1.2. FORMALISMS FOR CIRCUIT VERIFICATION

ment, agents get along without having to compute beforehand a complete plan of

action.

Design and verification of integrated circuits, however, does have to evolve "in

the head". It necessarily involves symbol manipulation and the engineering trade-

offs that go with it. One tradeoff, as mentioned before, is between completeness

(or competence) and efficiency. Not that in every application completeness and

efficiency can't be combined. There are some domains in which AI researchers suc-

ceeded in crafting competent and efficient systems. Symbolic algebra is one such

domain. The price for those successes was hard work. Only by spending enough

time analysing the application domain and building a program that was carefully

geared to it, did AI workers end up with complete and efficient systems.

1.2 Formalisms for Circuit Verification

How do we set off and build a verification system, that takes a circuit and a de-

scription of the intended behavior, and decides whether the circuit is correct or not?

The following questions have to be addressed:

* What is circuit structure, and how do you represent it?

* What is circuit behavior, and how do you represent it?

* What is the relation between structure and behavior, and how do you repre-

sent that?

* How do you verify a design with those formalisms? How efficient and correct

is each approach?

An analogy that I have found very productive is one between the relation com-

puter program - computational process and the relation circuit structure - circuit

behavior. A program is a syntactic entity, a sequence of strings that is ordered

in some way. It's a symbolic description of a computational process, which takes

in certain inputs, performs a number of operations and produces an output. The

9

CHAPTER 1. INTRODUCTION

process evolves when the program is interpreted on a computer. A circuit structure

is like a program: it's a syntactic configuration of symbols, a two dimensional one

this time. A circuit behavior is a computational process that evolves when the

physical circuit is 'interpreted' by nature, or when the symbolic version is handed

to a simulator.

Computer Science has developed compact and precise formalisms for expressing

the relation between a program text and the computational process that it stands

for. It has formal grammars to express the rules according to which correct pro-

grams are configured. It has formalisms to describe processes. And it has semantic

formalisms to relate parsed programs with formal process descriptions.

One method for describing the meaning of a program is the operational semantics

method. An operational definition of a programming language L consists of two

parts: a specification of an abstract machine M, and a function which transforms

programs in L to programs for M. The meaning of a program is taken to be the

result of interpreting the transformed program on the abstract machine M. There

is no direct representation of the meaning of a program as such. You just have

formal rules to determine the result of executing a program on some input.

A second method is denotational semantics. A denotational definition of a pro-

gramming language L maps programs in L to mathematical functions representing

a computational process. More specifically, it maps a parse tree (the result of pars-

ing the program text) to a process description by recursively mapping the subtrees

of the top node, and combining the results in a way that is appropriate for how the

top expression is composed of the subexpressions. Denotational semantics gives a

direct representation of the meaning of a program, and it has a functional formalism

to derive such a representation from a program text.

A third method is axiomatic semantics. An axiomatic semantics of a program-

ming language consists of a language to express properties of processes, and infer-

ence rules to derive statements in that language from portions of program text.

Again, there is no direct representation of the meaning of a program. Instead,

properties of the process are stated, like: "After execution of this program text, the

values of x, y and n are such that x = yn."

10

1.3. PREVIOUS WORK ON MOS VLSI VERIFICATION

Axiomatic semantics allows you to prove that a program meets some specifi-

cation (e.g. that x = yn after the program has been executed). Denotational

semantics only tells you what processes are performed, not what the outcome is.

From the point of view of program verification, the axiomatic formalism is clearly

the more expressive one. On the other hand, a logic inference system performing

the actual verification, is less efficient than the mappings in denotational semantics,

which go straight from premises to conclusions.

All three formalisms can be applied to circuit verification. Operational seman-

tics, which uses a new, better understood interpreter, translates to circuit simula-

tion, which uses mathematical machinery as a reference point for circuit behavior.

The other two approaches correspond to formal verification techniques. Axiomatic

semantics has already been tried out as a vehicle for circuit verification (see for

instance [CGM 87] and [HD 86]). Applying denotational semantics to verification

is the central idea of my work.

1.3 Previous Work on MOS VLSI Verification

This thesis concerns the verification of digital MOS circuits. The primitive building

blocks in these circuits are transistors, not boolean gates. Transistors have a W/L

ratio and their nodes have a capacitance. MOS designers often rely on these fea-

tures to establish certain computations. W/L effects and charge sharing between

nodes can also corrupt the behavior that the designer intended to establish. Other

features include capacitances between nodes of a transistor and between wires, and

resistances of wires, but these features are usually less critical to correct operation.

For the purpose of efficient analysis of digital MOS circuits, taking just the most

crucial effects into account, Randy Bryant proposed a switch level model, which con-

siders transistors as switches with a certain conductance and certain capacitances

at their nodes. This model is a starting point for serious work on verification of

MOS VLSI circuits. Simpler models fail to give an account of crucial effects on the

circuit. Researchers who started from this model to design verification systems for

arbitrary circuits are Ivo Bolsens (who built DIALOG), Daniel Weise (who built

11

CHAPTER 1. INTRODUCTION

Silica Pithecus), Rick Spickelmier (who built Critic), Randy Bryant (who built

MOSSYM), and a group of workers who built logic inference systems for circuit

verification. Below is a brief review of the work of these researchers. A more in

depth discussion follows in chapter 3, where I develop a framework for looking at

different verification systems.

Ivo Bolsens' DIALOG [Bolsens 88] is based on a formal theory about what it

means for a circuit to be correct. The theory starts with careful definitions of

structural and behavioral concepts, goes on with axioms that define the various

aspects of correct behavior, and derives theorems stating sufficient conditions for

correct behavior. DIALOG checks whether these conditions hold in a given design.

DIALOG's basic algorithms are generic over all circuit styles. They know how

a transistor works, and figure out how a circuit behaves from there. To speed

up the program, heuristics are included to recognize portions in a familiar design

style (e.g. static complementary logic), so that further analysis of these portions is
unnecessary. DIALOG doesn't verify whether the circuit conforms with a behavioral

specification. It only checks for electrical bugs (e.g. charge sharing, W/L bugs,

sneak paths, races). It does derive an internal boolean level representation which

can be used for logic simulation.

DIALOG's weak spot is the brute force nature of its basic algorithm. It par-

titions the circuits into certain subcircuits (DCN's, discussed in chapter 2), and

for each subcircuit, it sees what happens for all the combinations of input signals,

which takes an exponential amount of time. What accounts for DIALOG's weak

spot, also accounts for its strength. Thanks to the generic nature of the algorithm,

it handles all types of circuits correctly.

Daniel Weise's Silica Pithecus [Weise 86] is based on the notion of abstraction

from the circuit level to behavioral levels of representation. It abstracts the circuit

description to a logic level representation, makes sure that the abstraction is valid,

and matches the logic representation with a behavioral specification supplied by the

designer. Although different, at first inspection, from Ivo Bolsens' approach, it has

the same exponential algorithm buried in it. Silica Pithecus' position with regard

to the tradeoff between competence and performance is thus similar to the one of

I q 1 I

12

1.3. PREVIOUS WORK ON MOS VLSI VERIFICATION

DIALOG.

It does gain efficiency, however, by taking advantage of hierarchy. Subcircuits

are matched with subbehaviors, and subbehaviors are composed the same way the

subcircuits are composed. To make this approach work, Daniel Weise relied on the

notion of constraints. For a subcircuit to have the behavior of the corresponding

logic description, certain constraints have to be satisfied. At the next level in the

hierarchy, along with composing the subbehaviors, Silica Pithecus checks whether

the constraints are satisfied. If it can't verify them, it passes them on to the next

level. Eventually, a number of contraints pops out from the top level to the user.

Hierarchy helps to alleviate the exponential blowup problem. If a DCN (a sub-

circuit for which all combinations of inputs are considered) is broken up in the

hierarchy, the run time is not exponential in the total number of inputs any more.

There is no guarantee, however, that all large DCN's are broken up like that.

Rick Spickelmier's Critic [Spickelmier 88] is quite different from the other ver-
ification systems. It doesn't have a unified notion of design correcness. It has a

collection of error configurations that it knows of, and it can check whether one

of them occurs in a circuit, but it can't tell whether a design is correct or not. It
doesn't know all error configurations that can possibly occur.

Randy Bryant's MOSSYM is not quite the same as a verification system either.

It's a symbolic simulator: one that can take symbols as inputs and produce symbolic

expressions as outputs. In principle, the system could be used as a verification

system by giving symbols for all inputs, but the delay model is to weak to handle

static feedback loops and circuits with races, and the system is as least as inefficient

as the other systems.

A number of workers have built logic inference systems for circuit verification

(see for instance [CGM 87] and [HD 86]). They use a higher order logic to describe

the structure of a particular circuit, the behavior that it should have, and the

relation between structure and behavior in general. From these premises, their
systems try to prove that the design is correct. The programs suffer from the lack

of performance that characterizes all logic inference systems, but they give precise
answers to the question whether a design is correct or not.

q - - ,''

13

CHAPTER 1. INTRODUCTION

1.4 My work

My work consists of two parts.

1. An attempt at getting fundamental insight in circuit verification, which char-

acterizes existing verification systems, and points to a new, efficient verifica-

tion method, based on syntax and denotational semantics.

I developed a framework for understanding different approaches to verifica-

tion, borrowing semantic formalisms from Computer Science, and drawing

from experiences of other researchers in switch level simulation and verifica-

tion. The framework rests on a clear uderstanding of what circuit structure

and circuit behavior are, how they are represented, and how the relation be-

tween them can be expressed. The framework reveals the advantages and

disadvantages of existing verification strategies, and points to a new method

which is more efficient but also more conservative than other methods.

2. An implementation of the new method as a program, called Semanticist, and

an analysis of its performance, competence and practicality as a CAD tool.

Semanticist is a Lisp program that verifies combinatorial CMOS circuits. It

verifies whether a given circuit displays a given boolean functionality.

Semanticist is based on the denotational semantics approach to verification.

It sits on top of Cyrus Bamji's GRASP program [Bamji 89], which takes a

circuit grammar and produces a corresponding parser. Semanticist reads a

circuit description, calls GRASP to parse the circuit, gets back a parse tree

from GRASP, maps the parse tree to an internal behavioral description, and

matches it with the behavioral description that the user supplied. The user

supplied behavioral description consists of Lisp functions that can be executed

on the Lisp interpreter.

Cyrus Bamji used GRASP to verify whether a design adheres to a certain

design style. He implemented a grammar for NORA as an example. I wrote a

grammar which is intended to be as tolerant as possible. My grammar doesn't

I

14

1.5. OVERVIEW OF SUBSEQUENT CHAPTERS

have to incorporate all correctness constraints. Some constraints can be han-

dled by the denotational semantics functions, others can be dealt with once

the internal behavioral description has been built up. Cyrus Bamji verified

circuit designs that rely on structural well-formedness rules for their correct-

ness. I wanted to verify arbitrary circuits whose behavior can be understood

with a simple switch-level model.

Semanticist has efficient algorithms, but it rejects some circuits that are cor-

rect. The difficult part in the design of the program was to come up with a

circuit grammar that covers as many correct circuits as possible. The cur-

rent grammar covers most of the circuits in [Weste 85]. Further extension

of the range space can be achieved with more flexible grammar formalisms.

GRASP's grammar formalism is based on context free graph grammars. Fur-
ther work is needed to arrive at more flexible formalisms while maintaining

the efficiency properties of GRASP.

Semanticist can be used incrementally. Subcircuits at the bottom of the circuit
hierarchy can be verified first, higher level circuits next, and so on. It provides

useful guidance in case of design errors. The behavioral representation that it

matches with, extends all the way to the register transfer level and the system

level.

1.5 Overview of Subsequent Chapters

The first part of this thesis, comprising chapters 2 and 3, establishes a framework

to understand existing verification systems for MOS VLSI. Chapter 2 discusses

Bryant's switch level model and the notion of design correctness based on that

model. It recapitulates work that I did earlier in the field of circuit verification

[VAVO 87]. From a precise formulation of what it means for a design to be correct,

sufficient conditions for correctness are derived. These conditions formed the theo-

retical foundation for DIALOG, and they do so for my own verification system as
well.

15

CHAPTER 1. INTRODUCTION

Chapter 3 presents a spectrum of verification approaches, situated in a frame-

work that draws from the results of the previous chapter and from theoretical

Computer Science. Existing verification systems which prove design correctness

are shown to be at the inefficient side with regard to the efficiency - completeness

tradeoff, and a new method at the efficient side is contrasted with them.

The second part of the thesis elaborates on the implementation of the denota-

tional semantics approach. Chapter 4 presents the circuit grammar that I wrote.

It starts out with an informal enumeration of what combinatorial CMOS circuits

can look like, and discusses an attempt to implement it in Cyrus Bamji's grammar

formalism.

Chapter 5 explains how the denotational semantics approach is implemented. It

presents the overall architecture of Semanticist, elaborates on the major parts of it,

and shows an example verification run.

Chapter 6 presents the results of my research in terms of software. It discusses

Semanticist's performance, competence and practicality as a CAD tool.

Chapter 7 concludes with further work that has to be done.

r I I --

16

Chapter 2

Design Correctness

In the beginning of the 1980's, Randy Bryant proposed a switch level model for ana-

lyzing the digital behavior of MOS circuits [Bryant 84]. The model was intended as

a basis for switch level simulators which approach the speed of gate level simulators

while maintaining much of the accuracy of simulators based on a detailed electrical

model. It captures the phenomena that are most relevant to the logical behavior

of MOS circuits. The model is now widely in use as a basis for CAD tools. It also

forms the basis for formal verification systems for MOS circuits.

This chapter presents the switch level model that my verification system is based

on. It differs only in minor aspects from Bryant's original model. I also discuss the

notion of design correctness based on the model, and present sufficient conditions

for correctness. The purpose of this chapter is twofold. First, it presents the "raw

material" that has to go in a verification system. It introduces the knowledge that,

in one form or another, has to be present. Different representation schemes can

later be tested for how accurate they express the knowledge, and how efficient the

resulting verification strategy is. Second, it qualifies my verification system and

other systems that are based on similar models. If the logical behavior of a circuit

is corrupted by effects that are not accounted for by the model, the verification

system returns a wrong answer.

17

CHAPTER 2. DESIGN CORRECTNESS

Figure 2.1: Node n has a 1 value.

2.1 A Switch Level Model

A switch level model consists of an enumeration of states that nodes and transistors

can be in, and statements about causal relations between states of nodes and states
of transistors. My model makes statements about states of transistor paths instead

of transistors for reasons that will become clear later.

States of nodes and transistor paths

In my model, as in other models, there are three possible states for a node: it

can have a 1 value, a 0 value, or an X value. A node has a 1 value if it is logically

interpreted as a 1, and if its voltage is high enough to block currents that would

be blocked by a perfect Vdd voltage. Analogously, A node has a 0 value if it is

logically interpreted as a 0, and if its voltage is low enough to block currents that

would be blocked by a perfect Gnd voltage. A node has an X value if it has neither

a 1 nor a 0 value.

Some examples clarify these definitions. Node n in figure 2.1 has a 1 value.

It is interpreted as a 1 by the next stage, and it blocks the current in the pMOS
transistor it controls. Node o in figure 2.2 doesn't have a 1 value. Because of the

voltage drop over the nMOS transistor, it doesn't block the current in the pMOS

transistor it controls. Node p in figure 2.3 on the other hand, does have 1 value. In

spite of the voltage drop it suffered, it still blocks the current in the pMOS transistor

it controls, because source s also suffered a threshold drop.

I q II

18

2.1. A SWITCH LEVEL MODEL

5V

Figure 2.2 Node o doesn't have a 1 value.

Figure 2.2: Node o doesn't have a 1 value.

ov

Figure 2.3: Node p has a 1 value.

19

5

CHAPTER 2. DESIGN CORRECTNESS

Requiring 1 and 0 levels to be extreme enough so as to block currents has two

benefits. First, it avoids static currents that increase the power dissipation. Second,

when the node controls a pass transistor, it may be crucial to the correct operation

of the circuit that the pass transistor is not conducting.

Transistor paths are in a "closed", "open", or "unknown" state. A "closed"

state is a conducting state, being "open" is being non conducting, and being in an

"unknown" state means that it is not known whether the path is conducting or not.

Causal relations

The state of a transistor path depends on the state of its input nodes in my

model. Physically, it depends both on the source voltage and gate voltage whether a

transistor is conducting, not on the gate voltage alone. By making statements about

transistor paths between certain nodes (rather than about transistors in general),

we will try to get around this problem.

A path is said to be "open" if it has at least one nMOS transistor with a 0 value

at its gate, or if it has at least one pMOS transistor with a 1 value at its gate.

This statement poses no problems. Physically, there is indeed no current through

the path, unless you take subthreshold currents into consideration, or unless you

take account of the possibility that the source of a pMOS transistor can get a

voltage higher than Vdd by capacitive feedthrough, and that the source of an nMOS

transistor can get a voltage lower than Gnd by the same effect.

A path between Gnd and a node n is said to be "closed" when all nMOS transis-

tors in it have a 1 value and all pMOS transistors a 0 value. The path will physically

conduct until n has been set to OVolt (when the path has only nMOS transistors)

or OVolt + VT when there are pMOS transistors in it. Analogously, a path beween

Vdd and a node n is "closed" when all nMOS transistors in it have a 1 value and

all pMOS transistors a 0 value.

The state of a node depends on the states of the paths that connect it to Vdd

and Gnd, and on the previous state if the node is isolated. Whether a closed path

between a node n and Vdd or Gnd can impose a 1 or 0 value on n depends on

the types of the transistors in the path and on whether there is compensation for a

20

2.1. A SWITCH LEVEL MODEL

threshold drop in the path that n controls. For example, a closed path between Vdd

and n which contains an nMOS transistor, can only impose a 1 value if the next stage

is compensated for a threshold drop, like in figure 2.3 . In the following paragraphs

we ignore this complication for the sake of easy readability.. A closed path between

Vdd and n is supposed to contain only pMOS transistors. The statements we

make remain valid for the case of paths with nMOS transistors in it, if there is

compensation for threshold drops in the next stage.

A node n gets a 0 value in either of the following cases.

1. When all of the following conditions hold:

* There is a closed path between n and Gnd.

* All paths between n and Vdd are open.

Figure 2.4 gives an example of this situation.

2. When all of the following conditions hold:

* There is a closed path between n and Gnd.

* All paths between n and Vdd that are not open, have, all together, a

total WIL value smaller than some fraction f of the total W/L value of

the closed path between n and Gnd. The value of f has to be determined

for the particular fabrication process that is used.

Figure 2.5 gives an example of such a case. Node n is initially at 5V and the

output at OV. When the input changes to 5V, n gets a 0 value if the W/L of

T1 is small enough with respect to the W/L's of T2 and T3.

3. When all of the following conditions hold:

* All paths to Vdd and Gnd are open.

* n held a 0 value before.

* The capacitance of n is big enough to overcome charge sharing with

nodes from which it isn't isolated.

21

CHAPTER 2. DESIGN CORRECTNESS

5V T 4 n

Figure 2.4: Node n gets a 0 value.

5V

Figure 2.5: Node n gets a 0 value if the W/L of T1 is small enough with respect to
the ones of T2 and T3.

An example of this situation can be seen in figure 2.6 . Node n gets a 0 value

if its capacitance is high enough to overcome charge sharing with n'.

A symmetrical statement applies for getting a 1 value.

Comparison with other switch level models

This model differs only slightly from ones that other researchers have used. The

model underlying Bryant's switch level simulator MOSSIM [Bryant 84], and later

MOS analysis systems of his [Bryant 85,Bryant 87], has the following differences

with respect to the one presented above. First, it has discrete WIL values and

capacitances. This is essential to the algorithms Bryant uses: he iterates over all

possible values that W/L's and capacitances can take. Second, Bryant's model

' r '~~~~~~~~~~~~~~~~~~~~~~~~

22

2.2. DESIGN CORRECTNESS 23

9A
ov -cl

5V C

-- l1-(

phil =5V

Figure 2.6: Node n gets a 0 value if its capacitance is high enough to overcome
charge sharing with n'.

doesn't account for threshold drops over transistors. And third, the state of a

transistor depends only on the state of its gate in Bryant's model. The statements

above about the state of transistor paths are more realistic, but the net result in

interpreting practical circuits is the same.

Bolsens' model [Bolsens 88] is exactly the same as the one presented here.

Weise's model [Weise 86], on the other hand, is somewhat more complex. He models

a transistor as a resistor in series with a threshold device (i.e. a voltage controlled

switch which opens if the absolute voltage at the drain passes some threshold).

The resistance depends on the W/L and the type of the transistor, and both the

resistance and the threshold voltage depend on the gate voltage. The net result in

interpreting practical circuits, is not different, to my knowledge, from interpreta-

tions according to the model of Bolsens of me.

2.2 Design Correctness

Both Weise and Bolsen start from a formal statement of what it means for a design

to be correct [Weise 86,Bolsens 88]. Bolsens' correctness definition comes from work

that I did together with Cris Van Overloop [VAVO 87]. It states what it means for

V A,

CHAPTER 2. DESIGN CORRECTNESS

a circuit to be electrically correct (i.e. to have no circuit level bugs). Weise's

definition has a different scope. It defines correctness for a design consisting of a
circuit description and a description of the intended behavior. It subsumes Bolsens'

definition.

Weise defines a multilevel design to be correct if, given some constraints on how
the circuit is used, its abstracted behavior matches with the user supplied behavioral

description. The key notion in this definition is abstraction. A circuit is correct
if it can be abstracted to a logic level representation which matches with the one
supplied by the user. The circuit is abstracted to a logic level representation within
a certain context which is expressed as constraints that are guaranteed by the user
to be satisfied (e.g. that exclusively one of a set of input signals is logically one, or
that an input signal has suffered no voltage drop). Only in a certain context does

a circuit show a particular behavior.

The question: "When is a circuit correct?" is thus reduced to: "What is the
abstraction function from circuit to behavior?". The answer to that question is

spread out over a number of chapters in Weise's Ph.D. thesis. Bolsens' work deals
with the first component of Weise's notion of correctness. He gives a compact answer
to the question: "When can a circuit be abstracted to a logic level representation?".

He is not concerned with whether the abstracted behavior corresponds with the
intended one.

Bolsens' correctness definition assumes a level-sensitive design discipline. A
circuit is level-sensitive when its functionality depends only on voltage levels, never
on whether one signal has a longer delay than another. In order to ensure level-
sensitive behavior, the circuit should be synchronous. In synchronous systems,
feedback signals are held up by registers, and once all inputs to a combinatorial

block have arrived, they are all passed to the combinatorial block at the same time.
If feedback signals were passed to the combinatorial block as soon as they arrive,
the ultimate output of the circuit would depend on the order in which feedback
signals arrive, and the system would not be level-sensitive.

In the theory in [VAVO 87], synchronous circuits are partitioned into combina-
torial blocks which are connected through "memory nodes" and "control nodes".

q -- P

24

2.2. DESIGN CORRECTNESS

Figure 2.7: ml and m2 are memory nodes; c is a control node; D1, D2, D3 and C
are combinatorial blocks; D1, D2 and D3 are data blocks and C is a control block.

Memory nodes are particular nodes in the registers between combinatorial blocks,

and control nodes are nodes that control when the registers release their informa-

tion to the next combinatorial block.' Figure 2.7 gives a simple example. Nodes

ml and m2 are memory nodes, node c is a control node, and D1, D2, D3 and C

are combinatorial blocks. Combinatorial blocks that end in control nodes are called

control blocks (e.g. C in figure 2.7); ones that end in memory nodes are called data

blocks (e.g. D1, D2 and D3 in figure 2.7).

Correct level-sensitive behavior means that correct digital levels are produced

at the outputs of the combinatorial blocks, and that the time behavior of those

blocks is such that delays don't influence the overall digital behavior. Formally, a

circuit is said to have a correct level-sensitive behavior if its combinatorial blocks

have a "correct steady state behavior" and a "correct transient behavior", and if its

1The presentation of definitions and theorems in this chapter is kept informal. Precise formula-
tions can be found in [VAVO 87] or [Bolsens 88]

I 4 ---- r

25

CHAPTER 2. DESIGN CORRECTNESS

memory nodes have a "correct memory behavior". An informal definition of those

concepts follows below.

Steady state behavior is the fictitious behavior of a combinatorial block when

its inputs are kept constant for an infinite time. It is not concerned with whether

the inputs are indeed kept constant for a long enough time to allow the outputs

to reach a steady state. Neither is it concerned with how fast the outputs reach a

steady state. Those concerns have to do with transient behavior.

A combinatorial block is said to have a correct steady state behavior if, for any

combination of inputs to the block, the outputs evolve to steady states that represent

a valid logical 1 or 0, and that are only functions of the inputs (not of a state of the

circuit). In other words, correct steady state behavior means that the combinatorial

block can be abstracted to a combinatorial boolean function.

Memory nodes alternate between phases in which their value is memorized and

phases in which they get a new value. We call those phases memorization phases

and computation phases respectively. A memory node is said to have a correct

memorization behavior if it keeps its value during the memorization phase.

What it means for a combinatorial block to have a Correct transient behavior

depends on whether it is a data block or a control block. For a datablock it means

that the outputs get the appropriate steady state values before the end of their

computation phases. What happens during the transition is not important. A

control block has a correct transient behavior if the outputs have glitch-free tran-

sitions between two clock phases, and if their values remain constant during any

one clock phase. Unlike data block outputs, control block outputs have to satisfy

well-behavedness constraints at all times.

2.3 Sufficient Conditions for Design Correctness

In the previous section a design was defined to be correct if the circuit represen-

tation can be abstracted to a logic level representation, and if the abstracted logic

level representation corresponds with the one supplied by the designer. The first

component in the definition was further developed assuming a level-sensitive design

26

2.3. SUFFICIENT CONDITIONS FOR DESIGN CORRECTNESS

discipline. It was reduced to the requirements of correct steady state behavior,

correct transient behavior and correct memorization behavior. In this section the

notion of correct steady state behavior is further developed. Transient behavior

and memorization behavior are beyond the scope of my verification system, which

verifies only combinatorial circuit portions. Issues of transient behavior and mem-

orization behavior show up only when verifying sequential systems. They translate

to structural constraints (constraints on how to compose combinatorial blocks) and

timing constraints (constraints on the speed of combinatorial logic for a given clock

frequency). Timing constraints require a more advanced circuit model, but the

structural constraints fit perfectly in my verification strategy, I believe. It's not

demonstrated in this thesis, though.

The correct way to view a combinatorial circuit in the context of correct steady

state behavior, is as a partitioning of DCN's. The concept of DCN's was introduced

by Bryant [Bryant 81]. He called them "transistor groups". DCN's are maximal

subnetworks with DC paths between all its nodes (DCN is short for DC Network).

More formally, DCN's are the connected components of the graph with a vertex for

each node and an edge between each pair of vertices corresponding to the source and

drain of a transistors. (In these definitions Vdd and Gnd are thought of as being

split so that they connect to only one transistor.) Figure 2.8 gives an example.

DCN1, DCN2, DCN4 and DCN5 contain only one node. DCN3 is made up of

transistors T1 through T7, and DCN6 contains T8 and T9.

Partitioning a circuit into DCN's is useful because bidirectional effects take place

within a DCN whereas connections between DCN's carry unidirectional information

(we ignore capacitive coupling between a gate of a transistor and either the source

or the drain). A circuit can thus be reduced to a directed graph with DCN's as

vertices (see figure 2.8). We can now state a first set of sufficient conditions.

For a combinatorial block to have a correct steady state behavior, it suffices that

1. all composing DCN's have a correct steady state behavior;

2. there are no loops of DCN's, unless there is a DCN in the loop which has

I 4 ' I

27

CHAPTER 2. DESIGN CORRECTNESS

T3

T4

y4 ~ I o

Figure 2.8: Partioning of a circuit into DCN's. DCN1, DCN2, DCN4 and DCN5
contain only one node. DCN3 is made up of transistors T1 through T7, and DCN6
contains T8 and T9.

I 4 .

28

r�

�QI

f?

I

2.3. SUFFICIENT CONDITIONS FOR DESIGN CORRECTNESS

external inputs that dominate over the ones that come from the loop.

Applied to figure 2.8 this means that all the DCN's need to have a correct steady

state behavior, and that the output of DCN3 should be completely determined by

the inputs from DCN1, DCN2, DCN4 and DCN5. The input from DCN6 is only

allowed to reinforce the value that has already been selected by the other inputs.

This requirement boils down to a W/L constraint. The W/L of T7 should be small

enough with respect to the ones of T2, T3, T5 and T6.

Correct steady state behavior of a DCN can be further refined along the lines

of the switch level model presented in section 1 of this chapter.

For a DCN to have a correct steady state behavior, it must be true that for every

output, and for every possible combination of inputs, one of the following

conditions holds:

1. There is a connection to either Vdd or Gnd (not to both).

2. There is a connection to both Vdd and Gnd, but the WIL ratios are such that

a valid output is obtained.

3. There is no connection to Vdd or Gnd, but the output was precharged during

the previous clock phase, and its value is not corrupted by charge sharing.

A straightforward algorithm for verifying DCN's in which all input combination

are considered one after the other, has an exponential complexity in the number of

inputs. The computation time blows up for large DCN's. All existing verification

systems2 , however, have basic algorithms that work exactly along these lines. The

new verification strategy, proposed in this thesis, avoids this trap by bringing to

bear more knowledge about CMOS circuits than is contained in the switch level

model. Instead of looking at how individual transistors work and building up the

behavior of the circuit from there, the new verification system recognizes familiar

2I'm referring here to systems that reject all faulty circuits; I'm not including Critic.

1 - W-

29

30 CHAPTER 2. DESIGN CORRECTNESS

circuit configurations like dynamic gates, complementary static gates, pass transis-

tor logic, and so on, and goes on from there. Unlike Critic [Spickelmier 88], the

new verification system is organized in such a way that all faulty circuits are re-

jected. The following chapter presents a more complete view of different verification

strategies.

__ _�

Chapter 3

A View on Verification Strategies

An integrated circuit, in its physical form, is a structure in silicon which performs a

certain computational process in accordance with the laws of nature. A VLSI circuit,

as a design representation, is a composition of symbols which, in the imagination

of the designer, performs a computational process in accordance with some circuit

model. The goal of verification is to make sure that a given circuit schematic has

the right computational process associated with it. A fully automatic verification

system is based on formal, symbolic laws for inferring processes from structures.

Writing a good verification program comes down to finding accurate formalisms

which allow efficient computations.

Formalisms for relating structures with computational processes constitute a fa-

miliar theme in Computer Science. Specifications of the semantics of programming

languages are exactly such formalisms. They relate program texts, essentially struc-

tural compositions of character symbols, with the computational processes that they

describe.

This chapter uses formalisms for describing the semantics of programming lan-

guages as a window on different strategies for circuit verification. It discusses exist-

ing verification methods within the framework that semantics definitions provide,

and it introduces a new approach, based on denotational semantics. The first sec-

tion reviews semantics formalisms, the second section translates them to the realm

of VLSI design, the third section gives a review of existing verification systems, and

the last section presents the denotational semantics approach to circuit verification.

31

_ 1�1__11__1_1________^_1_1__11__1/1_-1-- ..-- 1-1-1 1

CHAPTER 3. A VIEW ON VERIFICATION STRATEGIES

3.1 Review of Semantics Formalisms

3.1.1 Operational Semantics

An operational semantics definition of a programming language L assigns a meaning

to a program by reference to a formally specified machine M. It provides a formal

definition of M and a formal definition of a function that transforms programs in

L to programs that run on M . The meaning of a program in L is taken to be the

evaluation history that M produces when it runs the transformation of the program.

In some operational semantics definitions, M is defined to operate on programs in
L directly. Those definitions consist of a specification of M only.

To clarify operational semantics specification, as well as other approaches to
semantics that are discussed later on, we introduce the ultra simple language USL.

USL has the following grammar:

C ::= 112131+11-1

I ::= x ylz
E ::= C I (lambda (I) E) I (E 1 E2)

Informally the language can be described as follows. USL has 5 constants (C): 1,
2, 3, +1 and -1. The constants +1 and -1 denote procedures that take a number and

increment or decrement it. It has 3 identifiers (I): x, y and z. A valid expression (E)

in USL is a constant, an identifier, a lambda expression or an application. A lambda

expression (lambda (I) E) denotes a procedure that takes an identifier and evaluates

the expression E with I bound to the identifier that it took in. An expression of

the form (El E 2) denotes an application of the procedure represented by E1 to the

value of E 2. An example of a valid expression in USL is the following:

((lambda (x) (+1 x)) 2)

The result of evaluating this expression is 3.

Here is an operational definition of the semantics of USL. It's one of the kind

that only has a definition of a machine M which evaluates expressions in a proper

way (programs in USL are not translated to an intermediate form). In order to

define M, we introduce one more syntactic variable (one that represents values):

I

32

3.1. REVIEW OF SEMANTICS FORMALISMS

V ::= C I (lambda (I) E)

M is defined by three axioms and two inference rules. The axioms are as follows:

((lambda (I) E)V) ~ [V/I]E
(+1) v+i

(-iv) v -1

These axioms prescribe reductions of expressions in which all subexpressions are

values. The first axiom says that a lambda expression (lambda (I) E) should be

reduced to its body E in which V is substituted for I. The two other axioms are

obvious. By "V+1" I mean 2 if V is 1, 3 if V is 2, and "error" otherwise. Likewise

for V-1.

The inference rules prescribe reductions of expressions in which not all subex-

pressions are values. They allow reducing subexpressions to values, so that, after-

wards, axioms can be applied for further reductions. The inference rules are as

follows:

If E1 ~ El

then (E 1 E2) 4 (El E2)

If E2 4 E

then (V1 E2) = (V E)

Together, the axioms and inference rules define an abstract machine M that

interprets expressions as follows. If the expression is not an application, nothing

has to be done. If it is, then evaluate the procedure subexpression first and the

argument subexpression next, and apply the value of the procedure to the argument

value.

Operational semantics was introduced the 1960's by Peter Landin [Landin 64].

An example of an operational semantics definition of a programming language can

be found in [Gifford 87]. 1

1Most of the references to the literature in this section come from "Introduction to the Literature",
MIT, 6-821 - Concepts in Modern Programming Languages, Handout #59, December 4, 1986.

--------.---- -------- ·----.------ ·-- --- F ------ I I'

33

CHAPTER 3. A VIEW ON VERIFICATION STRATEGIES

3.1.2 Denotational Semantics

The denotational semantics method maps a program directly to a representation of

the computational process that it describes. Whereas operational semantics spec-

ifies the meaning of a program by reference to a machine that interprets it in a

well-defined way, denotational semantics produces a representation of the meaning

of the program directly. It doesn't need a machine to say things about computa-

tional processes. The processes are described as such.

A denotational semantics definition of a programming language consists of three

parts: a description of the syntax, a description of the semantic world and mappings

from syntactic entities to objects in the semantic world. To make this more concrete,

we give a denotational definition of USL.

Syntax

The description of the syntax of USL can just be copied from above:

C ::= 112131+11-1

I ::= xIy z

E ::= C I (lambda (I) E) I (E1 E2)

Formally, a grammar is a 4-tuple consisting of a set of variables, a set of terminal

symbols , a set of production rules and a top variable. The variables of USL's

grammar are C , I and E. The terminal symbols are 1, 2, 3, +1, -1, x, y, z, (,

), and lambda. Each line in the grammar is a compression of several production

rules. For each alternative in the right hand side of each line, there is a production

rule. An example of a single production rule is:

C ::= 1

The top variable in the grammar above is E. The set of syntactically correct

programs in USL is the set of terminal strings that can be produced from the top

variable E by applying production rules. The tree that shows the productions from

the top variable to the terminal symbols is called a parse tree. Parsing a string of

terminal symbols is building up a parse tree on top of it.

I I IT

34

3.1. REVIEW OF SEMANTICS FORMALISMS

The semantic world

The semantic world consists of semantic domains and processes that are ex-

pressed as mappings between semantic domains. Semantic domains can be under-

stood as sets, although they are a bit more complicated in reality (we leave all

subtleties aside in this discussion). Here are the semantic domains that are relevant

to USL.

e E Expressible_value = Natural-number + Procedure

p E Procedure = Expressible_value -- Expressiblevalue

u E Environment = Identifier -- Expressible_value

There is a domain Expressible-value which is the (disjoint) union of Naturalnumber

and Procedure. We don't want to get into the details of what a disjoint union is

and why it is needed (they are given in [Schmidt 86]). Just take it that an express-

ible value is a natural number or a procedure. Elements of Expressible_value are

usually written as e. Procedure is the set of all mappings from Expressiblevalue

to Expressiblevalue. It's not exactly that but, again, we don't want to get into

subtleties. Environment is the set of all mappings from identifiers (these are syn-

tactic objects) to Expressible-value. Intuitively, an environment holds bindings

between identifiers and expressible values.

Computational processes are described as mappings over semantic domains.

These mappings are represented by expressions in the lambda calculus (see [Barendregt 84]

for more on the lambda calculus). A lambda expression is of the form:

A (variable). .(expression)

expression is a variable, a lambda expression, or an application of an expression

to an other expression, written as:

((expressionl) (expression2))

You will notice that expressions in the lambda calculus are not a lot different

from expressions in USL. There two reasons for this. First, USL is a subset of

Scheme [RCA* 86] (a Lisp dialect) which is rooted in the lambda calculus. And

II____� __� Ill·I^IIll·IIIIIC-·-_IX-IC 1--·-1 ---------·--- ·111111111·LIYI--·-LI-·IIY---l*I1YII----l

35

CHAPTER 3. A VIEW ON VERIFICATION STRATEGIES

second, it's too simple to have features that could be semantically ambiguous. The

exercise of giving a denotational definition of USL is thus somewhat artificial. Our

concern here is with the denotational semantics formalism itself, of course, not with

USL.

Valuation functions

The third component of a denotational definition of a programming language

consists of valuation functions which map syntactic entities to lambda expressions.

There is a valuation function for each variable in the grammar:

C : C Expressible_value

I : I -+ (Environment -- Expressible_value)

£ : E -- (Environment - Expressiblevalue)

The valuation function C takes a constant and returns an expressible value. Z

takes an identifier I and returns a function from environments to expressible values.

Given an environment u, this function will return the value that I is bound to in

u. takes an expression and returns a function from environments to expressible

values.

Each valuation function is defined for each production rule that is associated

with it in the grammar. Below, we define £ for each production rule that has E as

a left hand side. The definitions for C and I are obvious.

c[[C]] = Au.C[[C]
C[[I]] = Au.(f[[I]I u)

£[[(lambda (I) E)]] = Au.Ae.(C[[E]] u[e/I])

9[[(E1 E2)I] = Au.((-[[El]] u) ([[E 2]] u))

£ applied to C returns a function that takes in an environment and returns

the result of applying C to C. £ applied to I returns a function that takes in an

environment u and returns the result of applying /[[I]] to u. In other words, £

applied to I returns a function that takes in an environment u and returns the value

that I is bound to in u. S applied to (lambda (I) E) returns a function that takes in

an environment u and returns a procedure from an expressible value e to the result

I It I '

36

3.1. REVIEW OF SEMANTICS FORMALISMS

of applying E[[E]] to the environment u extended with a binding of I to e. £ applied

to (E1 E2) returns a function that takes in an environment u and returns the result
of applying the value of E1 in u to the value of E2 in u.

These specifications suffice to map all syntactically valid expressions in USL
to a mathematical function that represents a computational process. To valuate

an expression E, parse it, take the top variable, recursively valuate its subexpres-

sions, and combine the results in the appropriate way. The recursive nature of the

grammar and the valuation functions allows an infinite number of expressions to be

mapped according to a finite number of specifications.

Denotational semantics was developed by Dana Scott and Christopher Strachey

in the 1970's at Oxford. A comprehensive treatment of the subject can be found

in [Stoy 77] or [Schmidt 86]. [Schmidt 86] also contains references to denotational

descriptions of real languages.

3.1.3 Axiomatic Semantics

An axiomatic semantics description of a programming language consists of a logic

language for expressing properties of computational processes, and axioms, one for
each kind of statement in the programming language, which describe the effect of
executing a statement. Relying on the axioms for each individual statement, it is

possible to derive statements about the execution of a whole portion of program
text. An example of such a statement is: "After execution of this portion of program

text, the values of x, y and z are such that z = xy."

Again, an example helps in getting a more concrete picture of the axiomatic

method. We use the following notation to make assertions about portions of pro-
gram text:

{P}S{q}

The meaning of this is as follows: "If P is true before the execution of S is begun,

and if S terminates normally, then Q will be true afterwards." In this notation, we

can write down axioms about sequences of statements, assignment statements and
while-loops:

I i '

37

CHAPTER 3. A VIEW ON VERIFICATION STRATEGIES

If {P} S {Q} A {Q} S2 {R}

then {P} S1;S2 R}

{P} x := E [E/x]P}

If {P A B} S {P}

then {P} while(B) (S) {P A -B}

If P leads to Q after execution of S1, and Q leads to R after execution of S2, then

P leads to R after execution of the sequence S1; S 2. If P is true before executing

the assignment x := E, then P remains true afterwards if E is substituted for x in

P. If P is an invariant for S, as long as B holds before executing S, then executing

while(B) (S) establishes P A B.

What can be proven from these axioms is illustrated by the following annotated

program:

i := 0;

z := 0;

{z = iy}

while(i < x) (

i :=i + 1;
z := z + y;

{z = xy}

(z = iy) is established by the initializing statements, and it is an invariant for

the body of the while loop. After executing the while-loop, it is true that (z = iy)

and (i = x), and therefore it is true that (z = xy).

As this example illustrates, axiomatic semantics provides the power to prove

that a program meets some specification. Whereas denotational semantics derives

a description of the computational process itself, axiomatic semantics produces as-

sertions about the computational process (for instance assertions about the overall

1 -4 r-r l

38

3.2. A FRAMEWORK FOR UNDERSTANDING CIRCUIT VERIFICATION 39

input output relation). In the context of program verification, axiomatic seman-

tics is thus the superior formalism what expressiveness is concerned. On the other

hand, when it comes to performance of automatic verification systems, denotational

semantics is by far the most attractive. The valuation functions go straight from

program texts to descriptions of processes. The proof rules of axiomatic semantics

do no better then specifying a search tree where each branch might or might not

have interesting assertions on it. Finding the relevant assertions involves extensive

search.

Axiomatic semantics was introduced by Hoare in the late 1960's [Hoare 69]. An

example of the use of axiomatic semantics is Hoare and Wirth's axiomatic definition

of Pascal [HW 73]. Dijkstra and Gries used the axiomatic formalism as a basis for

a programming methodology in which a correctness proof is developed at the same

time the program is being written [Dijkstra 76,Gries 81].

3.2 A Framework for Understanding Circuit Ver-

ification

The theory of programming languages distinguishes syntactic program texts from

the computational processes that they describe, and it presents formalisms for relat-

ing the two. By translating these ideas to VLSI design, we can set up a framework

for getting fundamental insight in circuit verification. In the context of fully auto-

matic verification, we will be exclusively interested in denotational and axiomatic

semantics. Operational semantics can tell you how a program works on a partic-

ular input, by reference to an abstract machine that interprets the program in a

well-defined way. It doesn't yield a description of a computational process as such.

Operational semantics matches with circuit simulation. A simulator is like the ab-

stract machine. It tells you how the circuit responds on certain inputs. It doesn't

provide a description of how the circuit responds on any input.

In this section we set up a framework for understandings circuit verification that

is based on denotational and axiomatic semantics. The framework is established in

I q I
-- --- ·- ·- - ----- --------------- I

CHAPTER 3. A VIEW ON VERIFICATION STRATEGIES

the form of answers to the following questions:

1. What is circuit structure, and how can it be represented?

2. What is circuit behavior, and how can it be represented?

3. How can the relation between structure and behavior be represented, and to

what kind of formal reasoning does this representation lead?

4. What is the relation between questions 1, 2 and 3?

1. What is circuit structure, and how can it be represented?

Circuit structure is information about how modules are interconnected. A struc-

tural representation describes a circuit as a network of modules. Structure is a

static concept. It tells nothing about sequences of events that can take place on a

circuit.

A grammar can be used to describe the set of all possible circuit structures.

One grammar allows just any interconnection of transistors. Other grammars put

more constraints on which interconnections are valid and which not. If the grammar

is explicitly represented, a circuit structure can be transformed into a parse tree.

Parsing a circuit is "making sense of it". Once the circuit has been parsed, all the

parts of it have been placed in familiar categories.

2. What is circuit behavior, and how can it be represented?

Circuit behavior is information about how events are causally related. Behavior

is a dynamic concept. It expresses information of the kind: "If this happens, then

that will happen". A behavioral representation has to capture the causal relations

that underlie chains of events.

There are two ways of representing behavior. One way is to specify the overall

input-output relation of the circuit, without saying how it is established. The other

way is to give a detailed process description. Such a description gives not only the

output signals that correspond with a given set of inputs, but also the algorithm

according to which they are computed. The first kind of representation is declarative

_ _LI �_

40

3.2. A FRAMEWORK FOR UNDERSTANDING CIRCUIT VERIFICATION 41

(it declares what the input-output relation is without specifying how it is realized),

the second one procedural (it specifies the process that establishes a certain input-

output relation). The same duality occurs with respect to programming languages:

PROLOG is an example of a declarative language, Lisp one of a procedural language.

3. How can the relation between structure and behavior be represented,

and to what kind of formal reasoning does this representation lead?

One way to represent the relation between structure and behavior is by means of

inference rules in a formal logic. This scheme corresponds to the axiomatic seman-

tics approach. The kind of automatic reasoning that goes with this representation

is deductive reasoning. The knowledge about the relation between structure and

behavior is organized in small chunks (small reasoning steps, expressed as inference

rules) with no clue as to how to put them together to infer the behavior of a given

circuit. To infer the behavior, different sequences of reasoning steps have to be tried

out, until a solution is arrived at. Deductive reasoning is a search process in a space

of assertions which might or might not be of interest.

The other way to represent the relation between structure and behavior is with

mappings from structural entities to behavioral descriptions (as in denotational

semantics). The corresponding form of reasoning is transformational reasoning. A

variant of the denotational semantics mappings which can still be classified under

transformational reasoning are rewrite rules. Rewrite rules are like denotational

mappings in that they go straight from structure to behavior, unlike logic inference

rules which lead to search. The difference with denotational mappings is that they

involve intermediate representations, whereas the mappings go from structure to

behavior in one step.

Deductive reasoning and transformational reasoning are familiar concepts in

the context of program synthesis. A deductive approach to program synthesis

can be found in [MW 81]; a transformational approach is taken in [BD 77]. The

notion of transformational reasoning is also in use in the field of digital systems

[Johnson 84,Boute 86,Paillet 87], but so far it was never applied as low as the cir-

cuit level or the switch level.

I qI-
'

CHAPTER 3. A VIEW ON VERIFICATION STRATEGIES

4. What is the relation between questions 1, 2 and 3?

The relation between questions 2 and 3 is that deductive reasoning fits with

declarative behavior representations and transformational reasoning with procedu-

ral ones. Deductive reasoning has the inferential power to prove that a circuit

meets a declarative specification. Transformational reasoning maps the circuit to

its behavioral mirror. It can't reason about the behavior.

Question 1 is related to question 3 in the sense that an explicit (and constrain-

ing enough) grammar is a prerequisite for transformational reasoning with direct

mappings from circuits to behavior descriptions. If there is only an implicit gram-

mar which allows any interconnection of transistors, rewrite rules with intermediate

representations between structure and behavior are the only vehicle for transforma-

tional reasoning. With a grammar, a system can "make sense" of the circuit first,

so that the subsequent transformation proceeds much more efficiently.

In sum, there are three fundamental approaches to circuit verification. The

first one, deductive reasoning, is the least efficient but the most competent. The

other extreme, transformational reasoning along denotational semantics mappings,

is the most efficient but potentially the least competent: not only is it not able

to prove that a circuit meets a declarative specification, but, because it imposes

a grammar on circuits, it might reject some circuits that are correct. In between

lies the transformational approach with rewrite rules. It has medium efficiency and

medium competence. It can't prove that a circuit meets some specification, but it

is less conservative than the denotational semantics approach.

3.3 Review of Existing Verification Systems

We are now in a good position to review existing verification systems. Some systems

correspond exactly with one of the fundamental approaches mentioned above. Gor-

don's logic based approach [CGM 87] corresponds with deductive reasoning, and

both Weise's Silica Pithecus [Weise 86] and Bolsens' DIALOG [Bolsens 88] can be

categorized as transformational systems based on rewrite rules (DIALOG is actu-

ally a bit more complex than that; see further for more details). The remaining

42

3.3. REVIEW OF EXISTING VERIFICATION SYSTEMS

strategy, transformational reasoning based on denotational semantics mappings, is

the one that I have taken.

Other systems don't fit exactly in the framework because they aren't really veri-

fication systems. Bryant's MOSSYM [Bryant 85] is based on a simulation paradigm,

and Spickelmier's Critic [Spickelmier 88] can criticize a circuit design, but can't tell

whether a design is correct. The rest of this section elaborates on each of these

systems.

3.3.1 Gordon's Logic Based System

A number of systems have been built that use formal logic as a vehicle for hard-

ware verification. For most of them, the input is a gate level representation, or a

representation on still a higher level (e.g. Barrow's VERIFY [Barrow 84], Hanna's

Veritas [HD 86] and Hunt's theorem prover which verified the FM8501 micropro-
cessor [Hunt 87]). To my knowledge, only the work of Gordon and his co-workers

[CGM 87,JBG 85] deals with switch level representations.

Gordon's work is based on higher-order logic. Higher-order logic is an extension

over the predicate calculus. It extends over the predicate calculus in three ways:

1. Functions and predicates can be quantified.

2. Functions and predicates can be the arguments and results of other functions

and predicates.

3. Terms can be lambda expressions.

Higher-order logic is appropriate for describing the structure and the intended

behavior of a circuit, and for expressing inference rules about the relation between

structure and behavior. In principle, a theorem prover could fully automatically

search for a correctness proof, but in practice only a guided theorem prover has been

built [JBG 85]. The practicality of the logic approach to verification is illustrated

by the following quote from [CGM 87], p 65:

I a _ _ __

43

CHAPTER 3. A VIEW ON VERIFICATION STRATEGIES

"Formal verification is very expensive using current theorem-proving

technologies. Experts are needed to guide proof generating tools and
typical proofs take months of work. In the short term it is likely that

verification by formal proof will only be worthwhile for those systems

whose failure would result in disasters such as loss of life, destruction of
costly equipment, or recall of a mass produced product."

3.3.2 Weise's Silica Pithecus

Silica Pithecus can be categorized as a transformational system based on rewrite
rules. It takes a straight path from premises to conclusion, but the path is long

and tedious. The key reason for this is the lack of circuit syntax. It doesn't "make

sense" of the circuit before starting with the transformations. The transformations

are applied to an arbitrary interconnection of transistors.

Silica Pithecus verifies a design in three steps. First, the circuit representation is

transformed into a series of "net behavior expressions". A net behavior expression

for a node n is a conditional expression with clauses consisting of a predicate and a

set of nodes to which n is connected if the predicate holds. For instance, node Out

in figure 3.1 has the following net behavior expression:

Outet = At. Passb(t) A Inb(t) - [Out I Vdd Gnd]

Passb(t) A Inb(t) -- [Out Vdd I]

n-Passb(t) - [Out]

This expression says that the net that Out belongs to (i.e. the set of nodes that
n is connected with) is a function of time as follows. If Pass and In are logically 1,

Out belongs to the net [Out I Vdd Gnd]; if Pass is 1 and In 0, Out is connected

to I and Vdd, and if Pass is 0, Out is isolated.

Net behavior expressions are generated for each "interesting" node. "Interest-

ing" nodes are outputs, nodes that are inputs to a transistor, and nodes that carry
state information. The net behavior expressions are obtained by merging net be-

havior expressions of subcircuits, starting with the ones for the gate, source and

drain of a single transistor.

1 _ I

44

3.3. REVIEW OF EXISTING VERIFICATION SYSTEMS 45

Pass

In Out

Figure 3.1: Example circuit for illustrating net behavior

It's easy to see that a net behavior expression for a node gets very big if the node
is part of a large DCN. Silica Pithecus doesn't look at every possible combination of
DCN inputs individually, but the number of clauses in the net behavior expression
still grows exponentially with the size of the DCN.

The second step in the verification process involves a transformation from net
behavior expressions to a digital representation. A digital representation is (more
or less) a representation of the boolean functionality of the circuit. Each net in
the net behavior description is analyzed to find the corresponding boolean value of
the node. In the third step, the digital behavior is matched against a procedural
description of the intended behavior of the circuit.

In addition to abstracting structural descriptions to behavioral descriptions
and matching derived behavior with intended behavior, Silica Pithecus passes con-
straints around. Constraints are things that have to be satisfied for the abstraction
from structure to behavior to be valid. Silica Pithecus takes constraints as inputs
and produces constraints as outputs. Input constraints are constraints that are
guaranteed by the user to be satisfied. An example of such a constraint is the
promise that the boolean values of two inputs will always be mutually exclusive.
Output constraints are precise conditions under which Silica Pithecus wants to ac-
cept a design.

The great thing about constraints is that they allow a circuit to be broken up
along arbitrary lines and verified hierarchically. Remember from chapter 2 that
DCN's are the natural units with respect to circuit correctness. A DCN contains

a - l ..

CHAPTER 3. A VIEW ON VERIFICATION STRATEGIES

all the paths that can connect a node n to Vdd or Gnd. All those paths have to be

taken into consideration when ensuring that n always gets a proper logical value.

The straightforward algorithm for ensuring a good logical value on n looks, for all

combinations of input values, whether there is a connection to Vdd or Gnd. This

algorithm is exponential in the number of inputs. Silica Pithecus can get around this

problem by breaking up large DCN's, processing the parts separately, and issuing

constraints under which the parts are correct. The constraints are handled higher

up in the hierarchy, or passed on to the user if they can't be verified.

Constraints and hierarchy are not a panacea for the combinatorial blowup prob-

lem, though. They rely on the goodwill of the user to break up large DCN's, and

in many cases he is unlikely to do so. A 32-input nor gate, for instance, will most

probably remain intact.

3.3.3 Bolsens' DIALOG

DIALOG is different from the former two systems in that it doesn't check whether

the behavior of a system corresponds with a given specification. DIALOG checks

whether a circuit has a deterministic boolean behavior without matching it against

a behavioral specification. It detects electrical bugs like charge sharing, W/L-bugs,

sneak paths and races. The system is based on a precise formulation of what it

means for a circuit to be free of electrical bugs. A sequential system is viewed as

an interconnection of combinatorial blocks (CB's for short) which connect through

memory nodes and control nodes; the CB's are required to have a correct steady

state behavior and a correct transient behavior, and the memory nodes are required

to have a correct memorization behavior (see chapter 2).

DIALOG proceeds roughly in two phases. There is a preprocessing phase in

which a sequential circuit is partitioned in CB's, and the CB's in DCN's. Loops

within a CB are cut after being checked against certain correctness requirements.

This allows the combinatorial block to be broken up in DCN layers, where the

outputs of one layer are sufficient to compute the outputs of the next layer.

DIALOG then proceeds to verify the CB's for correct steady state behavior.

First it fires rules to detect subcircuits that it is familiar with (e.g. complementary

1 - q

46

3.3. REVIEW OF EXISTING VERIFICATION SYSTEMS

static gates). For the rest of the CB, it executes a generic algorithm. For every
possible combination of inputs to the CB it does the following. It looks at each
output of each DCN. For each output, it looks whether it is connected to Vdd or

Gnd. If it is connected to both or to none of them, it checks whether there is a
sensitive path from the node to a CB output. If there is, it studies the node in more

detail, and prints an error or warning message if needed.

If the whole CB has to be verified with this algorithm, the complexity is ex-

ponential in the number of inputs to the combinatorial block. The complexity is

smaller if the system found circuit portions in a familiar design style. For instance,

if a CB has a complementary static gate with n inputs at its front end, the system

can check off this gate as correct, and consider its output as input to the remain-

der of the CB. Thereby the number of inputs decreases by n - 1, which cuts the

computation time by a factor of 2" -1.

The generic algorithm incorporates a rewrite rule approach to verification. The

path from premises to conclusion is known from the beginning, but it takes a long

time to reach the destination. The system needs to accumulate a lot of intermediate

results before reaching a final conclusion. In particular, it needs to derive the behav-

ior of a combinatorial block for each combination of inputs. The heuristic rules that

are added to relieve the blowup problem incorporate a mapping approach. They go

directly from premises to conclusions. Still, they form only loose patches. There is

no coherent organization of knowledge about familiar circuit configurations which

would allow complete circuits to be mapped to a statement about their correctness.

3.3.4 Bryant's MOSSYM

Bryant's MOSSYM comes close to a verification system, but it's a bit different in

spirit. MOSSYM is a symbolic simulator. It's a simulator which can take symbols

as inputs to circuits. It produces symbolic expressions as outputs. The system has

exactly the structure of a numerical simulator, except that it performs operations

in an algebra over boolean functions instead of an algebra over boolean values. The

system is typically used to simulate datapath portions with symbolic data inputs

and numerical control inputs.

47

CHAPTER 3. A VIEW ON VERIFICATION STRATEGIES

In principle, MOSSYM could be used as a verification system by giving it sym-

bolic values for all circuit inputs. If MOSSYM produces symbolic expressions for

all outputs, the circuit is correct in the sense that there are no electrical bugs that

prevent it from having a deterministic boolean functionality. It would verify cor-

rectness in the same sense as DIALOG. Two comments are to be made on using

MOSSYM in this fashion:

1. MOSSYM can't detect races and can't handle static feedback loops. A simu-

lator uses a certain scheme for ordering the computations for each component

of the circuit. The scheme that MOSSYM uses is too rudimentary to be able

to handle races and static feedback. Furthermore, its circuit model doesn't

account for threshold drops over transistors, and the user has to map capaci-

tances and W/L-ratios onto a discrete ordering.

2. MOSSYM is at least as inefficient as the other systems. Among other things, it

has to prove boolean equivalence of some expressions, which is an NP-complete

problem. The problem occurs where it has to compare two boolean expressions

that it computed for an output. The two expressions should evaluate to

respectively 1 and 0 if the output carries a 1, to 0 and 1 if it carries a 0,

and to 1 and 1 if it carries an X. One boolean expression is computed from

paths that connect the output to a node with a 1 value, the other from paths

that connect it to a node with a 0 value. For the output to have a correct

logical value, the two expressions should be complementary. The problem is

reminiscent of the straightforward algorithm for checking correct steady state

behavior of a DCN. The problem occurs in one form or another in all systems

discussed so far.

In short, the algebraic machinery underlying switch level simulators is too narrow

to cover all aspects of circuit correctness, and it doesn't have any advantage from

the standpoint of efficiency. Bryant didn't carry on this approach to full verification.

Instead, he continued working on simulators. [Bryant 87].

q 5w

48

3.4. THE DENOTATIONAL SEMANTICS APPROACH

3.3.5 Spickelmier's Critic

Critic is a knowledge based system for critiquing circuit level designs. It has a loose
enumeration of possible error configurations, and looks whether one of them occurs
in a given design. Critic can criticize a design, but it can't tell whether a design is
correct or not.

Critic operates in two phases. The first one is a structure finding phase. A
structure is a certain configuration of transistors. Critic has a number of those in
its knowledge base, and it can recognize them in the circuit. After that comes the
error checking phase. The knowledge base has, for every structure, a list of possible
error situations. Critic looks at every structure instance in the circuit, and goes
over the appropriate list of errors to see if any of them actually occurs.

There was no attempt in the design of Critic to come up with a complete enu-
meration of possible error configurations. To cite Spickelmier in [Spickelmier 88]:

"The main purpose of Critic was not to collect knowledge of circuit
design, but to build a circuit critiquer that was integrated into a design
system, with interactive control."

3.4 The Denotational Semantics Approach

My denotational semantics based system operates in three steps. In the first step,
the circuit is parsed according to a circuit grammar. On the resulting parse tree, the
system applies valuation functions to derive an internal behavior description. This
is the second step. While performing this mapping, the system issues and checks
circuit level constraints that have to be satisfied for the mappings to be valid. Some
of these constraints can be verified right where they emerge (e.g. W/L-constraints
and capacitive constraints). Others are issued explicitly and verified later on (e.g.
the NORA constraints for avoiding input delay races). In the third step, the derived
behavior is matched with a procedural specification supplied by the user.

The system is less competent than Gordon's logic based system, because it takes
a procedural behavior specification that mirrors the structural representation. This

qW

49

CHAPTER 3. A VIEW ON VERIFICATION STRATEGIES

approach is imperative, however, in order to arrive at an efficient system. Checking

whether two combinatorial functions are equivalent, is an NP-complete problem.

The way to tackle this is to impose the same hierarchy on the two functions, and then

decompose the problem. Imposing the same hierarchy in structure and behavior

means that the behavioral description has to be procedural, that it describes the

detailed process of how the outputs are computed from the inputs. My system is a

bit more flexible than this. It allows boolean portions of the behavior description

not to be a perfect mirror of the structure (it does tautology checking on them),

and it allows the behavioral hierarchy to be a subset of the structural hierarchy:

all modules in the structural hierarchy need to have an equivalent in the behavioral

hierarchy, but not vice versa. For example, an and circuit consisting of a nand

subcircuit and a not subcircuit, is successfully matched with a single and function.

The denotational semantics approach is potentially also less competent then

the rewrite rule approach in Silica Pithecus and DIALOG, because it imposes a

grammar on circuits. The difficult part in designing a denotational semantics based

system is to come up with a tolerant enough grammar. The current grammar comes

close to being successful in this respect, but there are some correct circuits that it

rejects (see chapter 4 for more on this). Still better grammars can be realized by

modifying the grammar formalism in which the current grammar is written.

The major advantage of the denotational semantics approach is efficiency. The

key difference between this approach and other approaches is the coherent repre-

sentation of large scale knowledge about VLSI circuits. Instead of figuring out the

behavior of a circuit starting form the behavior of single transistors, my system

parses the circuit into a hierarchy of configurations that it is familiar with. For

each such configuration it knows exactly where to look for circuit level bugs and

how to derive a behavioral description of it.

The approach has much in common with the concept of frames for knowledge

representation. Frames are large structures that represent familiar situations. It

has slots for things that always occur in that situation. When an agent is confronted

with a new situation, it selects the proper frame and fills the slots with the right

elements of the situation (some slots may have default values as well). The idea of

50

3.4. THE DENOTATIONAL SEMANTICS APPROACH

frames was brought into AI by Marvin Minsky [Minsky 81,Minsky 85], but existed in

other fields before (as he acknowledges). Minsky presented frames as an alternative

for small, independent chunks of reasoning, which dominated much of the early

research in AI, typically in the form of inference rules in a formal logic.

4. q - r

51

52 CHAPTER 3. A VIEW ON VERIFICATION STRATEGIES

Chapter 4

A Circuit Grammar with High Coverage

The preceding chapters gave an extensive introduction to circuit verification. We

discussed what design correctness means and how it can be verified. In particular,

we saw that certain aspects of correctness lead to exponential running times in sys-

tems that are organized around small chunks of reasoning. All existing verification

systems see no more than arbitrary transistor interconnections in circuits, and em-

ploy the behavior model of a single transistor to figure out how circuits work. My

system recognizes a richer structure in VLSI circuits, and it relies on this structure

to give meaning to the circuit, much like humans rely on the grammatical structure

of a sentence to give meaning to it. Once the syntactic structure of the circuit has

been revealed, the remaining work is much easier.

We now have to argue that we indeed built a working system that is efficient and

that covers all aspects of correctness accurately. Arguing efficiency is the easy part.

It follows easily from the denotational semantics paradigm on which the program is

based. Accuracy is the difficult part. We have to show that the program comes close

to accepting all correct circuits and rejecting all faulty ones. This chapter contains

part of the argument. It presents the circuit grammar that the program is based

on. We will show that it comes close to covering all correct combinatorial CMOS

circuits, while still excluding certain circuit bugs and revealing enough structure to

make the semantic part easy. The grammar doesn't have to include all circuit level

constraints. Certain constraints can be checked at the semantic level. The following

chapter discusses the program as a whole, and shows that it detects all bugs. The

53

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

burden of this chapter is to demonstrate that the grammar covers a wide range of

correct circuits.

The chapter is organized in three parts. The first part reviews Cyrus Bamji's

work. It discusses the abstract parser that he built, and it differentiates the scope

of his work on verification from the scope of my work. The second part gives an

overview of the grammar that I wrote, and the last part contains a conclusion.

4.1 Cyrus Bamji's GRASP

Cyrus Bamji was the first researcher to introduce grammars into the world of VLSI

circuits [Bamji 89]. He wrote GRASP, an abstract parser, which takes a circuit

grammar, and produces a concrete parser. He used the program for design style

verification. As an example, he implemented a grammar which captures the NORA

design style. NORA is a design discipline for combining dynamic and static logic

in a way which makes internal delay races impossible [Goncalves 83]. 1 NORA

imposes structural rules to avoid input delay races. It constrains the way dynamic

and complementary static gates may be interconnected. Therefore, it is perfectly fit

for implementation as a set of grammar rules. Apart from constraints for avoiding

charge sharing in dynamic gates, Bamji's grammar captures all correctness require-

ments within the NORA design discipline.

My verification system is intended to handle all correct circuits (not only ones

that adhere to a certain design methodology), and it is intended to cover all cor-

rectness requirements. It's clear that, for this purpose, grammars are not sufficient

any more. A grammar can't capture constraints on capacitances or W/L ratios, for

instance. Constraints that are not checked by the parser are verified after parsing.

My grammar is a tolerant one. Its range space is a superset of the set of all correct

circuits.

My circuit grammar still sits on top of GRASP, the abstract parser that Bamji

wrote. What follows in this section is a quick introduction to GRASP. Much of this

'NORA has also rules for avoiding clock races with a two-phase clock, but those were not imple-
mented in Bamji's grammar. Bamji used a four-phase non-overlapping clock.

54

4.1. CYRUS BAMJI'S GRASP

will become clearer and more concrete when we look at grammar rules in the next

section.

GRASP takes in a grammar and produces a concrete parser corresponding with

the grammar. The concrete parser takes in a network of modules and nets. Mod-

ules have a module-type and an indexed set of pins. For each module-type, there

is a fixed number of pins. For instance, modules of type "n-trans" have 3 pins.

Connections between modules are established by nets. A net has pointers to all the

pins that it is connected to, and vice versa.

Module-types correspond to variables and terminal symbols in string grammars.

There is one particular module-type which plays the same role as the start variable

in a string grammar. And there are production rules that have a module-type

on the left-hand side and an internal structure, possibly with a presence and/or

absence condition, on the right-hand side. Internal structures, presence conditions

and absence conditions are all networks of modules and nets. A subnetwork that

matches with the internal structure on the right-hand side of a production rule can

be reduced to a module of the type on the left-hand side, if there is a surrounding

network matching with the presence condition (when there is one in the rule), and

if there is not a surrounding network matching with the absence condition (if there

is one).

When a network is parsed, it is reduced to fewer and fewer modules, while

the number of nets that connect it to the outside world remains constant. In

order to retain a fixed number of pins for each module-type, net bundles had to be

introduced. A net bundle is simply a set of nets which is treated as one object. It

plays the same role as single nets. For ease of exposition, we refer to both as net

bundles from here on. Apart from connections between a net bundle and a module

pin, there are also connections between a net bundle and another net bundle. Those

connections are inferior, superior and adjacent pointers. If net bundle nl has an

inferior pointer to net bundle n2, n2 has emerged from bundling nl with some other

bundles. n2 then has a superior pointer to nl. If nl has an adjacent pointer to n2,

nl and n2 have exactly one subbundle in common.

The concrete parser that GRASP produces does no backtracking. Once it has

4 - I

55

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

reduced a subnetwork to a certain module, it never undoes the reduction again.

Therefore, a grammar that is given to GRASP should be deterministic. There

should never be more that one grammar rule according to which a module can

be absorbed in a bigger module. Deterministic reduction leads to a very efficient

parsing algorithm. The algorithm uses an queue of modules to schedule its work.

Initially the queue contains all the primitive modules in the network. The parser

performs the following action until the queue is empty: it removes the first module

from the queue, fires any applicable grammar rule in which it appears in the internal

structure or in the presence condition, puts the resulting module on the queue, and

removes from the queue all modules that were absorbed in the new module. The

complexity of this algorithm depends on the density of the network (i.e. on how

heavily the modules are interconnected), but it is linear for practical VLSI circuits.

4.2 Summary of the Grammar

This section presents the circuit grammar that is used by my verification system to

parse a circuit. What is shown below is a summary of the actual grammar that was

written for GRASP. I have filtered out a number of details that have to be taken care

of when writing grammar rules in GRASP's grammar format. What is presented as

a single production rule below, often requires multiple rules in the actual grammar.

Also, a sequence of rules that is almost identical to a sequence that appeared before,

is often left out. Furthermore, I have often used textual annotations to summarize

the effect of presence and absence modules in a rule. The pseudo grammar below is

only intended to provide an idea of what circuits are covered, how they are covered,

what circuits are not covered, and why they are not covered. The reader who is

interested in the precise details of the grammar is referred to the code.

Still, this section has a lot of meat. In order to convince the reader of the

competence of my verification system, the grammar is more than other parts in need

of strong argumentation. By consequence, I'm going a far way towards the details

of the code to demonstrate the coverage of my system. Of course, the coverage

isn't perfect and the grammar is indeed the weak link in my system. Improving

p

4 P." _ . . KrV

56

4.2. SUMMARY OF THE GRAMMAR

the grammar is the main avenue for further research. That's another reason for

elaborating extensively on the grammar that I have so far.

This being said, let's focus on the grammar now. The main idea behind the

grammar is that a combinatorial circuit is an interconnection of DCN's which have

a general form as depicted on figure 4.1. As mentioned in the third section of chapter

2, there may be loops of DCN's, so long as there is a DCN in the loop whose output

is completely determined by inputs external to the loop. In other words, the loop is

only allowed to reinforce values that are determined by inputs external to the loop.

We are already hitting one case where my grammar falls short of covering all

correct circuits. Except in certain cases (that occur very frequently), my grammar

doesn't cover loops at all. In order to cover legitimate loops and reject illegitimate

ones, the parser would have to look inside modules that it formed before (to see

whether a W/L requirement is met, for instance). This is not possible within

GRASP's framework. There are two ways out. One way is to add features to

GRASP so that it can look inside modules. An alternative solution would be to

accept all loops, and to check them after parsing. The first solution is the most

appropriate one. If the loop is not legal, it's better not to continue parsing the

circuit. The new feature that would have to be added to the parser, is also necessary

to make up for an other shortcoming of the current grammar that we will encounter

later.

So, a combinatorial circuit is viewed as a loop free interconnection of DCN's,

and a DCN has the form of figure 4.1: it has 1/0 generators in the front and

(possibly) a pass transistor network in the back. A 1/0 generator can just be a

Vdd or a Gnd node, or it can be a gate: a complementary static gate, a dynamic

gate, or a more general structure with a pull and a pull down structure, where

the logical context ensures proper behavior (an example of this follows later). A

pseudo nMOS gate is also possible, but I left it out of my grammar to exclude

static power dissipation. The pull up and pull down branches in gates can consist

of parallel/series interconnections of transistors, but they don't have to (again, an

example follows later).

A pass transistor network consists of nMOS transistors or parallel combinations

57

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

Figure 4.1: general form of a DCN

I)C

58

4.2. SUMMARY OF THE GRAMMAR

5V

0V : !

Figure 4.2: Compensation for a threshold drop over an nMOS pass transistor

of an nMOS transistor and a pMOS transistor. In the case of nMOS pass gates, there

has to be level restoration or precharging at the outputs to make up for the threshold

drop, unless the next stage has a compensation for it (see figure 4.2). Nodes in a

pass transistor network may be connected to a gate or a gate-like structure, like in

a manchester carry chain or a pass transistor exor.

We are now ready to look at the grammar. It has five levels of production rules.

The first level contains rules that define intermediate transistor blocks from single

transistors. These blocks form the building blocks for gates and pass transistor

extensions of gates, which are defined at the second and third level respectively.

The rules at the fourth level convert pass transistor extensions of gates to DCN's,

and the fifth level defines blocks of combinatorial logic from DCN's.

4.2.1 Transistor Blocks

I have defined two kinds of transistor blocks as building blocks for more complicated

structures: ones that contain parallel/series interconnections, and ones that have

non parallel/series interconnections. In the first category, I defined the module-

types N*, P*, and V*: parallel/series interconnections of nMOS transistors, pMOS

transistors and complementary transmission gates respectively. V* modules are

used in pass transistor networks that don't need level restoration. I used V as in

"valve". The * character is meant to suggest "one or more (of something)".

The production rules for N*, P* and V* are almost identical. The ones for

59

I ir I11

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

N* are shown on figure 4.3. Figure 4.3 says that an N* type module is an nMOS

transistor, a parallel combination of two N* modules, or a series combination of N*

modules.

A few words about graphical conventions are in place here. Figure 4.3 represents

all the production rules with module-type N* as a left-hand side. A module-type

is represented as a box with a name and an indexed set of pins. The different

right-hand sides are separated by straight horizontals. The last one is followed by

a broken horizontal. Each right-hand side is a network of modules and nets, with

a box around some portion of the network. Nets and net bundles in network are

represented by little circles, modules by boxes with indexed pins (little stubs on

the box) and with the name of the module-type that they are an instance of. A

plain line between a module pin and a net indicates that the pin is connected to

that net. An arrow from a net or a net bundle to another net bundle indicates that

the first one is inferior to the last one (i.e. it forms a subset of the bundle that it

points to). The box with indexes in each right-hand side indicates how the pins of

the module-type of the left-hand side map to nets on the right-hand side.

From a parsing point of view, the parallel rule, for instance, reads like this.

Whenever you see two N* type modules whith both their 1 pins and 2 pins connected

to common nets, you can combine them into a new N* type module with pin 0

connected to the bundle consisting of the nets at the 0 pins of the composing

modules (you have to create that bundle now), pin 1 connected to the net at the 1

pins, and pin 2 connected to the net at the 2 pins. Everything inside the large box

has disappeared now. The new N* module has been substituted for it. The N*

module has three pins, just like an nMOS transistor: pin 0 is the gate, pin 1 the

source, and pin 2 the drain.

Not all transistor configurations in VLSI circuits are parallel/series interconnec-

tions. Figure 4.4 shows a parity ladder, which is a non parallel/series interconnec-

tion. At each bit slice, the input pair at the left is swapped if the controlling bit

is 0, and it is maintained if the controlling bit is 1. The input pair at the extreme

left can be connected to Vdd and Gnd, or it can be connected to the drains of two

transistors that connect both to Gnd. In this case, each intermediate pair consists

60

4.2. SUMMARY OF THE GRAMMAR

1 N* 2j1 N° 2L-

Figure 4.3: Production rules for module-type N*

q - P

61

62 CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

_ P i

Figure 4.4: Parity ladder, example of a non parallel/series interconnection of tran-
sistors

of one node with a 0 voltage and one node with a high impedance voltage. The

outputs at the right can be precharged (we then have a dynamic gate), or they can

be connected to a pMOS transistor portion with a complementary functionality (to

form a compementary static gate). Full blown illustrations of such circuits can be

seen in [Weste 85] on page 334, figures 8.23.b and 8.23.c.

How do we write grammar rules that cover non parallel/series transistor config-

urations? We need a rule with a seed for such a configuration, and further rules that

glue more transistors to it. The general form of a seed for a non parallel/series

interconnection is shown on figure 4.5. Each block represents a transistor (or a

V* block), and the dashed lines represent zero or more transistors in series. The

problem is that these dashed lines can't be expressed in a circuit grammar. In a

one dimensional string grammar, you can say something like "one or more of X"

because the parser knows in which direction to look for more X's (there is only one

direction), but in a two dimensional grammar, the parser doesn't know that any

more. In order to detect an internal structure as in figure 4.5, the parser would

have to perform search over an unbounded portion of the circuit.

Figures 4.6 and 4.7 show the production rules for module-type RN, a non par-

allel/series combination of transistors. The letter R comes from "recursive". Very

often, the behavioral specification of these transistor blocks will be recursive, al-

though they don't have to: they can also consist of a flat series of conditional

4.2. SUMMARY OF THE GRAMMAR

._ _ /7
/

Figure 4.5: general form of a seed for a non parallel/series interconnection

statements. Boolean algebra is not appropriate any more to describe these circuits.

The algebraic expressions for these circuits get exponentially big, and are neither

suggestive for the functionality of the circuit, nor for the circuit implementation.

The first production in figure 4.6 contains the seed for an RN type module. The

N* module below is a presence module. It has to be there for the rule to apply, but

it is not taken in in the new RN module. The seed is less general than the one on

4.5, but it covers all the circuits that I have encountered.

An RN module has five pins. Pin 0 and 1 form the inputs to the left and the right

portion of the module respectively. Pin 2 is the source (or bundle of sources), pin

4 the drain (or bundle of drains), and pin 3 the bundle of intermediate nodes. The

second and third production rule for RN add N* modules to the left portion of it.

The second rule takes in an N* module with its drain connected to the intermediate

bundle, and the third rule takes in an N* module with its source connected to

the source bundle of RN. The fourth rule adds an N* module, connected with its

source to the intermediate bundle, to the right portion of the RN module. The last

rule applies when nothing is connected to the intermediate bundle, and there is an

additional layer of pass transistors behind the RN module. The RN module forms

the left portion of the new RN module, and the first transistor in the next layer

qr

63

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

forms the right portion.

With those rules, the parser can handle the parity circuit on figure 4.4. There

are similar rules for module-types RP and RV with P* modules and V* modules as

building blocks.

I 1

64

4.2. SUMMARY OF THE GRAMMAR

1 N* 2

Figure 4.6: Production rules for module-type RN, first part

I I
�--���� 11�111�1111 -- _1�

65

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

Figure 4.7: Production rules for module-type RN, second and last part

I -9 W_ I

66

4.2. SUMMARY OF THE GRAMMAR

4.2.2 Gates

I defined three types of gates: complementary static ones (module-type S), dynamic

ones (module-types DN and DP) and more general ones (module-type PS, to be

read as "possibly static", depending on the logical context).

Module-type S represents complementary static gates. The production rules for

it are shown on figures 4.8 and 4.9. The first rule covers the case where the pull

up and pull down branches are parallel/series connections. The supply module in

the rule is a presence module. It has to be there for the rule to apply, but it is

not part of the internal structure of the new S module that gets created. Note

that the parser hasn't checked whether the pull up and pull down branches are

complementary. This is done at the semantic level, by doing tautology checking.

The second rule covers the case where the pull up and pull down branches are

non parallel/series interconnections. As mentioned before, an example of this can

be seen in [Weste 85] on page 334, figure 8.23.c.

The third rule covers gates with parallel/series blocks and more than one output.

It only covers the case of two outputs. A similar rule for 3 or more outputs can

also be written, but I don't know of any practical circuits for which this would be

necessary. An example of such a circuit appears on figure 4.10 (the functionality of

this circuit is explained later): the 6 transistor portion in the front matches with

the internal structure of the grammar rule. It may be confusing that the net at pin

0 of the above most P* module in the internal structure remains inside the enclosing

box, and that it isn't connected to anything else. Remember that the net bundle at

pin 0 of the new module is created after firing the rule. It isn't there when a circuit

portion is matched with the internal structure. Note also that, for the rule to apply,

all the connection between the inside and the outside of the enclosing box should go

over the nets that are connected to the pins of the newly created module. With this

in mind, the rule in the bottom of figure 4.9 can be read like this: whenever you

see two N* modules and two P* modules with their sources and drains connected

as on the figure, you can merge them into an S module if all the nets connected to

pin 0 of the above most P* module appear in the union of the nets connected to

pin 0 of the other modules.

_· _II 1_1_ _ _1�1 UI�II--�.----Y--I-I--�.�-1. �-C------llllll�---·111111�··1�·1�

67

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

The circuit on figure 4.10 is a tristate buffer. Whenever C is 0, P becomes 1 and

N 0, and OUT gets in a high impedance state. If C is 1, the 6 transistor portion

behaves like an invertor on D, and OUT just follows D. The 6 transistor portion

can be viewed as a nand gate and a nor gate merged together.

The two transistors in the back of figure 4.10 form an example of a PS type

module. The rule for this module-type appears on figure 4.11. PS stands for "pos-

sibly static". The semantic machinery has to check whether the logical conditions

for correct operation are satisfied.

Figure 4.12 shows the grammar rules for module-type DN. A DN type module is

a dynamic gate which is precharged high. The rules for module-type DP, covering

dynamic gates which are precharged low, are almost identical. The first production

for DN covers the case where the pull down branch is a parallel/series block. Pins

0, 1, 2 and 3 on the clock module correspond to phil, -phil, phi2, and -phi2. On

the figure, -phil is used as input to the gate. The real grammar has analogous

rules with -phi2 as input.

The second production covers dynamic gates with a non parallel/series pull down

branch. The rule on the figure covers only the case where there are two outputs.

The real grammar is more general than that. It defines an intermediate module

which takes in an arbitrary number of pMOS precharge transistors, and uses that

as a building block for a DN type module.

1 4 --17

68

4.2. SUMMARY OF THE GRAMMAR

Figure 4.8: Production rules for module-type S1, first part

I q r l

69

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

Figure 4.9: Production rules for module-type S1, second and last part

I !1 . . I

70

4.2. SUMMARY OF THE GRAMMAR

C -I
C -

Figure 4.10: Tristate buffer: the 6 transistor portion in the front forms an S type
modules with two outputs; the 2 transistor portion in the back forms a PS type
module

OUT

_II _ _·_ _1 _II _I _·II_�_^�· _PII�� 1-111�--^·11_11 1^1·-1-111^�·-··11�·Ili-·Lil�

71

72 CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

Figure 4.11: Production rule for module-type PS

4.2. SUMMARY OF THE GRAMMAR

Figure 4.12: Production rules for module-type DN

q pr

73

-

74 CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

4.2.3 Pass Transistor Extensions of Gates

Only pass transistor extensions of S modules are defined in this section. Extensions

of DN and DP modules are very similar. Pass transistor extensions of S modules

are covered by module-type S*. The first two productions for S* cover the base

cases: their internal structures consist simply of an S module and a PS module

respectively. The next production covers a pass transistor exor with input buffers,

as shown on figure 4.15. The last two productions cover circuit portions with one

or more S modules in the front and transmission gates in the back. S*FV! type

modules contain complementary transmission gates; S*FN!p! type modules have
nMOS transmission gates with the outputs connected to invertors with a feedback

pMOS transistor for level restoration. Figure 4.16 shows an example of such a

circuit.

Only productions that build up S*FV! type modules are shown here. The overall

flow of these productions is this. First, an S* module is extented whith V* tran-

sismission gates at its output to form an S*FV module. The letter F in this name

comes from "fanning out". The V* modules fan the output of the S* module to

what eventually will be multiple outputs of an S*FV module. When nothing else is

connected to the output of the original S* module, the S*FV module becomes an

S*FV+ module, possibly combining with other S*FV+ modules which share out-
puts with it, forming a composite S*FV+ module. If no more drains are connected

to the output of the composite S*FV+ module, it is converted into a S*FV! module

(the ! character is meant to suggest "finished"; you can read it as "bang"). This

module is then converted into a S* module, which can take in a new layer of trans-

mission gates at its outputs. This being said, the productions for S*FV, S*FV+

and S*FV! should be clear by themselves. They appear on figures 4.17, 4.18, and
4.19.

Note that these rules don't cover transmission circuits with bypassing, as in
figure 4.20. (Assume that the transmission gates on the top can't be merged into
one transistor block for some reason). I didn't find a way to include bypassing and

to still end up with a parse tree that makes sense of a circuit (i.e. a parse tree that

contains enough information for the semantic process). In order to cover bypassing,

I q

4.2. SUMMARY OF THE GRAMMAR

0- -0

U

0- -0

Figure 4.13: Production rules for module-type S*, first part

I 4 . - I

1

0 2

I.)

3

1

0 2 2

3

.

75

N
II

I I

!

!

76 CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

Figure 4.14: Production rules for module-type S*, second and last part

�

�----�-- �--

4.2. SUMMARY OF THE GRAMMAR

Figure 4.15: Pass transistor exor with input buffers: example of the right-hand side
of the third production rule for module-type S*.

Figure 4.16: Example of an S*FN!p! type module

I A--- I

77

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

Figure 4.17: Production rules for module-type S*FV

I I~~If r

__

78

4.2. SUMMARY OF THE GRAMMAR

Figure 4.18: Production rules for module-type S*FV+

Il

__ __

79

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

Figure 4.19: Production rule for module-type S*FV!

Figure 4.20: Bypassing in a transmission circuit

we need an additional feature in GRASP, similar to the one that I proposed to

handle feedback loops. GRASP should be able to get its hands on modules that it

already formed. In this case, it should be able to make changes in the parse tree it

already built up. With the grammar rules above, GRASP would put the left most

transmission gate on figure 4.20 and the bottom one in a first layer, and then get

stuck somewhere. It should somehow be able to detect that it shouldn't have put

the bottom transmission gate in the first layer, and put it in a different module in

the parse tree.

The flow from module-type S* to S*FN!p! goes like this. The beginning is the

same as the flow from S* to S*FV!: it goes from S* over S*FN and S*FN+ to

80

J

�---- -- `----

4.2. SUMMARY OF THE GRAMMAR

S*FN!. The following module-type in the flow is S*FN!p. It is an S*FN! with some

outputs connected to a level restoration circuit. If all outputs are connected to

such a circuit, an S*FN!p! gets formed, which can then be converted into a new

composite S*.

The rules for pass transistor extensions of dynamic gates are similar, with one

difference. A dynamic gate followed by pass transistors can be connected directly

to the output of an other dynamic gate. This occurs in a manchester carry chain,

for instance.

4.2.4 DCN's

DCN's are just S* modules, DN* modules or DP* modules that are "complete", in

the sense that they don't connect to sources or drains of transistors or transistor

blocks any more. This is expressed with a textual annotation in figure 4.21. The

real grammar contains the appropriate absence module to express this. There is

also a presence module in the rule. It is there for the following reason. It could be

that an S* module has no sources or drains connected to it in the subcircuit that

is being parsed, but when the subcircuit is implanted in a bigger circuit, there may

be sources or drains connected to the S* module. If the S* module has its output

connected to the input of an other gate, it is likely that the S* module is "finished",

i.e. that there are no transmission extensions any more. This is only a heuristic,

of course. It worked for all the test cases that I ran. If a circuit doesn't get parsed

properly, the user can always change the hierarchical partitioning to arrive at a

succesful parse.

Figure 4.21 shows only one production for a DCN type module. The other ones

differ only in the presence module. There are also productions with a DN* type

module and ones with a DP* module in the internal structure.

q - r F

81

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

0
*

0

0

Figure 4.21: Production rules for module-type DCN

82

4.2. SUMMARY OF THE GRAMMAR

4.2.5 Combinatorial Logic

Combinatorial logic is covered by module-type CL. The production rules are shown

on figures 4.22 and 4.23. The base case is a DCN which has inputs that are only

connected to external inputs, clocks, other DCN inputs or other CL inputs. (Exter-

nal inputs are represented by a module of type "in", which has one pin.) The DCN

should not be connected to the output of something. The reason why the input is

bundled with the output will become clear later.

The CL module is then expanded in breadth and in depth. Let's look at the

last production rule first. It leads to expansion in depth. A DCN is taken in if all

its inputs appear in the outputs of the old CL, and if the outputs of the old CL and

the ones of the DCN are disjoint (this excludes loops). The second production rule

is necessary to build up broader CL's until a CL is formed whose outputs form a

superset of the inputs of the next DCN, so that the third rule can be applied.

When a CL module is built up, all inputs and intermediate nodes get bundled

with the outputs. This is necessary for the following reason. Suppose that a DCN

A and a DCN B are connected up like in figure 4.24. If the inputs of A were not

bundled with its outputs, the CL productions would not allow to parse the circuit.

If A's inputs are bundled with its outputs, they are still available as inputs for the

next layer of DCN's.

We have finally arrived now at the top module-type of the grammar. A CB type

module is a complete combinatorial block. A CB is formed from a CL, if the CL

is only connected to external things: external outputs, external inputs or clocks.

External outputs are, similar to external inputs, represented by a module of type

"out", with one pin. External inputs and clocks must be allowed at the output

because the inputs of the CL module are bundled with the outputs.

I · * F
I -~~~ --·-- ---···------- ----- ------------- ~~~~~~~~~~~~~~~~~~~~~,,,,, ,

83

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

Only connected to
external inputs, clocks,
DCN inputs, or CL inputs

Figure 4.22: Production rules for module-type CL, first part

84

4.2. SUMMARY OF THE GRAMMAR

disjoint

Figure 4.23: Production rules for module-type CL, second and last part

Figure 4.24: Example of a circuit where bundling of CL inputs with CL outputs is
needed

I - - Ir
I P I

_ ___

85

- - - I

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

Only connected to
external outputs,
external inputs,
and clocks

Figure 4.25: Production rule for module-type CB, the start module-type

86

4.3. CONCLUSION

4.3 Conclusion

This section concludes the chapter by stating succinctly what is covered by the

grammar, what is not covered by it, and which checks still have to be performed at

the semantic level.

4.3.1 What is covered by the grammar

The grammar covers loop free combinations of DCN's. The DCN's are made up of
1/0 generators and a pass transistor network.

A 1/0 generator can be one of the following:

1. A Vdd or Gnd.

Currently, this is only covered where the Vdd or Gnd node feeds into a non
parallel/series pass transistor network. Covering the case of parallel/series

networks just requires writing more rules.

2. A complementary gate.

The pull up and pull down branches may be parallel/series interconnections

or non parallel/series interconnections. There may be one or more outputs.
In the case of parallel/series branches, only gates with one or two outputs are
covered.

3. A dynamic gate.

Both parallel/series interconnections and non parallel/series interconnections

are covered. In the latter case, there may be an arbitrary number of outputs.

4. A more general gate structure with a parallel/series pMOS pull up branch

and a parallel/series nMOS pull down branch.

A pass transistor network can be one of the following:

1. One with complementary transmission gates.

�� .�..11111_ 111111 1-1-·-�·11(--_11·_-·II�C·l�l -·-- -I_·-LI I_1^1II ------ · IIIIXIII^-� I�IY�LII-�I^---

87

CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

This is only allowed if all the 1/0 generators are complementary static gates

or Vdd or Gnd nodes. For the case of Vdd and Gnd nodes as 1/0 generators,

only non parallel/series networks are covered. The specific case of a pass

transistor exor is also covered.

2. One with nMOS transmission gates and level restoration at all outputs,

This is allowed if the 1/0 generators are complementary gates or Vdd or

Gnd nodes. For the case of Vdd and Gnd nodes as 1/0 generators, only non

parallel/series networks are covered.

3. One with nMOS transistors and precharging at the outputs.

This is allowed if the 1/0 generators are dynamic gates. The intermediate

nodes and the outputs of the pass transistor network may be connected to the

output of a dynamic gate.

4.3.2 What is not covered by the grammar

The following is a list of transistor configurations which are correct according to

the switch level model that we use, but that are not covered by the grammar. The

list is probably not complete, because it is difficult to envisage the set of all correct

circuits. To the best of my knowledge, these are the configurations that are correct

but not covered by the grammar:

1. Legal feedback loops over DCN's.

2. Bypassing in pass transistor networks.

3. Non parallel/series blocks that don't have a four transistor seed.

4. Parallel/series pass transistor networks that start directly from Vdd and Gnd.

5. A gate followed by pass transistors where both the gate output and the output

of the pass transistors are inputs to other parts of the circuit.

88

4.3. CONCLUSION

6. Pass transistor networks with nMOS transistors and no level restoration,

where the next stage is compensated for a threshold drop.

7. Pass transistor extensions of dynamic gates that are precharged low.

8. Complementary gates with parallel/series pull up and pull down branches and

more than two outputs.

9. Combinations of pass transistor exors where certain nodes are shared.

The first two items can be covered by modifying the parsing framework. The

third item can't be covered in general, but additional specific cases can be included

by writing more grammar rules. The other ones just require writing more rules.

4.3.3 Checks that still have to be done at the semantic level

The following things still have to be checked at the semantic level:

1. That there are no W/L bugs.

2. That there are no charge sharing bugs.

3. That there are no input delay races in dynamic logic.

4. That there are no sneak paths or undesired high impedance states in pass

transistor logic.

5. That the pull up and pull down branches in complementary gates have a

complementary functionality.

^j 1-^I-----__·_^1--1I�^ �C----DI I-.·- -I.I .IC^·l�·l�-..-^.-_l-.1111�1111�_--^ _ _I--CI-l -- I-- ---C---I--CI·IIIII^L--------_II__

89

90 CHAPTER 4. A CIRCUIT GRAMMAR WITH HIGH COVERAGE

I _ _ _ _ _ __�_�_�_�___�

p

Chapter 5

Denotational Semantics Implemented

The claim of this thesis is that the denotational method for defining the semantics

of a programming language forms a powerful paradigm for circuit verification, one

that provides efficiency and accuracy. That a denotational semantics strategy leads

to efficiency is straightforward. The part of the claim that is most in need of support

is the point of accuracy: the fact that a denotational semantics based verification

system rejects incorrect circuits and comes close to accepting all correct ones.

The current chapter, together with the former one, build up this support by

going down to the details of how denotational semantics can be implemented. The

previous chapter showed that a circuit grammar can be written with a range space

that comes close to covering all correct circuits. This chapter will show that the

denotational semantics method forms an adequate framework for checking circuit

level constraints that are not incorporated in the grammar, and for deriving a

behavioral description which can be matched with the user supplied specification.

The overall architecture of Semanticist, my implementation of denotational se-

mantics, is shown on figure 5.1. Semanticist takes in a circuit and a behavior

description. It uses two intermediate representations, a network environment and

a block diagram environment. A network environment contains bindings between

cell names and network objects. Network objects in turn have pointers to module

objects and net objects. The network environment can be viewed as an object ori-

ented world containing structural information: information about how things are

interconnected. After parsing, the network environment contains a parse tree of the

91

_ I II LI ·X___ �___�___�II 1 ·L1� _ ___I��_�_L�_·__L__YLI__l�ii-IIP�

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

PARSE

network
environment

VALUATE

MATCH

Figure 5.1: Semanticist's overall architecture

I i

92

5.1. THE CIRCUIT DESCRIPTION

circuit. A block diagram environment contains bindings between cell names and

block diagrams. Block diagrams are objects that contain behavioral information.

They represent a computational process in the form of functional blocks with inputs

and outputs, and with arrows from an output of one block to an input of an other.

Once a parse tree has been formed in the network environment, a valuation func-

tion looks at it, performs circuit level checks that are not covered by the grammar,

and produces behavioral information in the block diagram environment. Once that

is done, the matcher goes through the behavioral description and traces the block

diagrams to check whether the derived behavior corresponds with the specified one.

The following sections provide more details on each component of this architec-

ture. They cover successively the circuit description, the behavioral description, the

network environment, the block diagram environment, parsing, valuation, matching,

and an example of a verification run. The discussion focuses on the most impor-

tant objects that are used, and on the functionality of the most crucial procedures

(what they take in and what they produce). The character of the most important

objects and the functionality of the major procedures form this framework of the

verification program. Once the framework is established, everything else falls pretty

much in place. Finding a framework that is able to do the job, is really what the

implementation exercise is all about.

5.1 The Circuit Description

Circuits are described in a hierarchical way. Each cell in the hierarchy is described

by a list of primitive modules, or a list of subcircuits, or both. The primitive

modules in our grammar are of type "p-trans", "n-trans", "in", "out", "supply"

or "clock". For each primitive module, the user gives the names of the nets that

connect to the pins of the module. He gives a list of net names that correspond to

pins 0, 1, etc. in that order. For instance, a pMOS transistor with its gate (pin

0) connected to "in", its source (pin 1) connected to "vdd" and its drain (pin 2)

connected to "out", is described as:

(p-trans (in vdd out))

l q P I

93

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

A net name may be accompanied by a capacitance value. For the modules of type

p-trans or n-trans, a WIL value may be specified. The modules in and out have one

pin that connects to an external input and an external output respectively. A supply

and clock module are inserted automatically by the system. They are connected to

the nets with names "vdd", "gnd", "phil", "-phil", "phi2" and "-phi2".

Each element in a list of subcircuits consists of a cell name and a renaming list.

For instance, if a cell "invertor" is instantiated with its "in" node renamed to "a",

and its "out" node renamed to "not-a", the corresponding element in the subcircuit

list reads:

(invertor ((in a) (out not-a)))

Below, we give a circuit description for an 8 bit transmission gate adder (with

some repetitive parts omitted). The corresponding behavioral specification will be

given in the next section, and the output of Semanticist on these input descriptions

will be shown in the last section of this chapter.

Figures 5.2, 5.3 and 5.4 show the cells exor, mux and add-bit (one bit-slice of

the adder). You will notice that add-bit contains a number of redundant invertors.

These were introduced to get rid of loops over DCN's, which can't be handled by

the grammar. For the same reason, we had to introduce two nodes for the carry

bit.

(defc 'invertor

'((primitives (p_trans (in vdd out) 1)

(ntrans (in gnd out) 1))))

(defc 'inv/,

'((primitives (ptrans (in vdd out))

(ntrans (in gnd out)))))

(defc exor

'((primitives (ptrans (a b aexorb) 1)

I -qr PI

94

5.1. THE CIRCUIT DESCRIPTION

(ntrans (nota b aexorb) 1)

(ptrans (b a aexorb) 1)

(ntrans (b nota aexorb) 1))

(subcircuits (invertor ((in a) (out not_a))))))

(defc 'mux

'((primitives

(defc 'add-bit

'((subcircuits

(ptrans

(ntrans

(ptrans

(ntrans

(-contr x out))

(contr x out))

(contr y out))

(-contr y out)))))

(invertor ((in ain) (out -a)))

(invertor ((in bin) (out -b)))

(invertor ((in -a) (out a)))

(invertor ((in -b) (out b)))

(exor ())

(invertor ((in aexorb) (out -aexorb)))

(inv% ((in bin) (out -bE)))

(invertor ((in c) (out -c)))

(mux ((x -c) (y c) (contr -a_exor_b) (-contr aexorb)

(out -sum)))

(mux ((x -b,) (y -c) (contr -aexor_b) (-contr aexorb)

(out -cout)))

(invertor ((in -cout) (out cout)))

(inv% ((in -cout) (out cout%)))

(invertor ((in -sum) (out sum))))))

(defc 'adder

'((subcircuits (add-bit ((a al)

(b bi)

(-a -al)

(-b -bl)

(ain

(-bY.

ainl)

-b1l) (bin binl)

_ I _III__1______C1_LLIILI�L-·YLII --�-�-� --X�I·----·IIII--PI^_·I�--I -·I -- I-� �- ---- - I �- 1_--_11_-_1

95

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

(c ci) (cZ cl%) (-c -cl)

(cout c2) (cout% c2%) (-cout -c2)

(sum sumi) (-sum -sumi)

(aexorb aexorbi) (-aexorb -aexorbl)))

(add-bit ((a a8) (-a -a8) (ain ain8)

(b b8) (-b -b8) (-b% -b%8) (bin bin8)

(c c8) (c% c8%) (-c -c8)

(cout c9) (coutY c9)/, (-cout -c9)

(sum sum8) (-sum -sum8)

(aexorb aexorb_8) (-aexorb -aexorb_8)))

(invertor ((in -cin) (out cl)))

(invY. ((in -cin) (out c%))))

(primitives (in (ainl)) (in (bini)) (out (sumi))

(in (-cin)) (out (c9)) (out (c9/,)))))

Reading the circuit description is the first thing that Semanticist does. When

reading it, it builds up a "circuit environment" in which cell names are bound to

cell descriptions, just as they appear in the input file.

__

96

5.1. THE CIRCUIT DESCRIPTION

Figure 5.2: Cell "exor"

contr -contr

x

y

Figure 5.3: Cell "mux"

97

a

b a_exor_b

out

��__ __1_1__1____1_____1_1_111�_111__1_1111·_ . _- _- .I_ ··.I-�-.· I· -·- 1_1 .^· IX 1QP
b

_

98 CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

cout

cout 0/o

sum

Figure 5.4: Cell "add-bit"

ain

bin

c

c%

.0~

5.2. THE BEHAVIORAL DESCRIPTION

5.2 The Behavioral Description

The behavioral description is again hierarchical. The hierarchy is not necessarily

the same as the one in the circuit description. All the elements in the behavioral
hierarchy should have a corresponding element in the circuit hierarchy, but not vice
versa. A circuit description consisting of an and cell with a nand and an invertor
subcell, can have a behavioral specification consisting of only an and cell.

The behavior of each cell is described by a Lisp function (a Scheme function to
be precise, [RCA* 86]). Lisp, with its applicative order evaluation, 1 was sufficient
because we restricted ourselves to combinatorial circuits. If you want to handle
sequential circuits, you need a functional language with some kind of lazy evaluation.
2 Sequential circuits are to be described by functions with take in streams and
produce streams. A stream is an infinite list of values. In order to implement
streams, you need a lazy evaluation scheme so that the values in a stream are
computed as they are needed. For more information on this point, and on functional
languages for behavioral specifications in general, the reader is referred to chapter
7 in [Weise 86]. Our behavior language is very similar to Weise's.

The behavioral description language is a subset of Scheme. It has six data types:
booleans, logicals, floats, vectors, lists and procedures.

1. Booleans can have two values: 0 or 1. A boolean is a digital abstraction of a
voltage level. There are three primitive procedures which take booleans and
produce a boolean: and, or and inv. not doesn't work on O's and 's in
Scheme, so we used inv instead.

2. A logical has a true or a false value. Logicals are used by the Scheme inter-
preter when it runs a behavioral description. It uses them to make decisions

(for instance to decide when to stop with a recursion). logic is a primitive
procedure that converts a boolean into a logical.

1In applicative order evaluation, the arguments to a procedure are evaluated first before the body
of the procedure is executed.

2Lazy evaluation means that the arguments to a procedure are not evaluated first. At the latest,
they are evaluated when they are needed in the body of the procedure.

99

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

3. Something of type float can have only one value: float. float describes a

high impedance state. Only one primitive procedure takes floats as inputs:

join. join takes an arbitrary number of arguments. If all of them are float,

the result is float. If all the non float arguments are 0, the result is 0. If

they are all 1, the result is 1.

4. A vector is a sequence of booleans and floats. It is used to describe a set

of values which is accessed in parallel by a circuit, or produced in parallel.

Vectors are constructed with the primitive procedure vector, which takes an

arbitrary number of arguments. A component of a vector is selected with the

primitive procedure vector-ref, which takes a vector and an index.

5. Lists are also sequences of booleans and floats. They are used to describe a set

of values that are accessed or produced one after the other (e.g. the input bits

of a carry ripple adder). Lists are constructed with the primitive procedure

lst-accum, which takes a list and an element, and produces a new list with

the new element in the back of the list. The selectors for lists are : car,

which selects the first element, cdr, which selects the sublist which doesn't

have the first element, last, which selects the last element of the list, and

without-last, which selects the sublist which doesn't have the last element.

The predicate null? checks whether the list is empty, and returns a logical.

6. Procedures are functions from one or more of the things above to one or more

of the things above. They are produced by a lambda form (see further).

There are five special forms (i.e. forms which are not procedure applications):

define forms, lambda forms, let forms, cond forms and if forms.

1. A lambda form is of the form:

(lambda (x y) expression)

It produces a procedure.

100

5.2. THE BEHAVIORAL DESCRIPTION

2. A define form establishes a binding between a name and a procedure.

(define (fun x y) expression)

is a shorthand for

(define fun (lambda (x y) expression))

3. A let form binds names to intermediate values in a computation.

4. A cond form is of the form

(cond ((conditioni resultl) (condition2 result) ...))

It evaluates to the value of resulti if conditioni is true, to the value of

result2 if condition2 is true, and so on. A cond form describes the behavior

of multiplexer structures in a circuit.

5. An if form is of the form

(if condition resulti result2)

It evaluates to the value of resulti if condition holds, and to the value of

result2 otherwise. If forms that correspond to multiplexer structures in the

circuit are converted to cond forms before matching. Only ones that are used

to check when a recursion comes to an end (i.e. ones of the form (if (null?

xxx-lst) yyy zzz)) are maintained. These forms have nothing equivalent

in the circuit description.

As an example, here is the behavioral description of the 8 bit adder, the circuit

description of which was given in the former section.

101

102 CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

(defb 'inv/,

'(lambda (in)

(inv in)))

(defb 'exor

'(lambda (a b)

(if (not (logic a))

b

(inv b))))

(defb 'mux

'(lambda (contr -contr x y)

(cond ((logic contr) x)

((logic -contr) y))))

(defb 'add-bit

'(lambda (ain bin c c%)

(let ((-a (inv ain))

(-b (inv bin)))

(let ((a-exor-b (exor (inv -a)

(inv -b))))

(vector

(inv (mux (inv a-exor-b) a-exor-b (inv% bin) (inv c)))

(invY. (mux (inv a-exor-b) a-exor-b (inv% bin) (inv c)))

(inv (mux (inv a-exor-b) a-exor-b (inv c) c)))))))

(defb 'adder

'(lambda (ain-lst bin-lst -cin)

(define (adder-aux ain-lst bin-lst c c% sum-lst)

(if (null? ain-lst)

_ -

- -

.1

5.3. THE NETWORK ENVIRONMENT

sum-ist

(let ((vec (add-bit (car ain-lst) (car bin-lst) c c)))

(adder-aux (cdr ain-lst) (cdr bin-lst)

(vector-ref vec 0)

(vector-ref vec 1)

(lst-accum sum-lst (vector-ref vec 2))))))

(adder-aux ain-lst bin-lst (inv -cin) (inv% -cin) '()))

Reading the behavioral description is the second thing Semanticist does (after

reading the circuit description). While reading it, it adds bindings to three environ-

ments: the top level Scheme environment, the behavior environment and the block

diagram environment. An environment is something that contains bindings between

variables and values. If you evaluate a variable in a certain environment, you get

the value that is bound to it in that environment (hence the name "environment").

All the environments that are talked about in this chapter contain bindings for

the same cell names. The circuit environment binds the cell names to circuit descrip-

tions, the network environment to network objects, the block diagram environment

to block diagram objects, the behavior environment to behavior descriptions, and

the top level Scheme environment (the "user-initial-environment") to evaluated be-

havior descriptions. These last bindings can be used to run the behavior descriptions

on the Scheme interpreter.

When the behavior description is read, three of the environments get bindings:

the behavior environment gets bindings of cell names to unevaluated behavior de-

scriptions, the top level Scheme environment to evaluated behavior descriptions,

and the block diagram environment to initialized block diagram objects.

5.3 The Network Environment

The network environment contains bindings between cell names and network ob-

jects. Before parsing, these objects just contain a flat network description. After

103

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

parsing, they have a parse tree on top of them. Network objects have pointers to

module objects and net objects.

A network object can be accessed through the following procedures:

1. (add-primitive-module module-type list-of-nets)

You specify a primitive module-type and list of nets to which the pins have

to be connected, and the network object puts the module in its internal data

structure.

2. (add-net net-name)

3. (add-subnetwork subnetwork renaming-list)

The subnetwork is copied with certain nets renamed, as specified in the re-

naming list. The subnetwork should have been parsed by now. Only the top

level modules after parsing are copied.

4. (parse)

The network parses itself. It uses the concrete parser that GRASP produced

for the circuit grammar in the previous chapter.

5. (give-top-modules)

This returns the top modules of the network. The network should have been

parsed by now.

Module objects contain the obvious information. They can give the nets to

which the module is connected, the type of the module, the production rule (if

any) according to which they emerged, the submodules of the module (if it emerged

through application of a production rule), its model (if it is a leaf module in a

certain network, copied from an other network), the name of the network to which

it belongs, and a WIL value (if any). A Net object knows its name, the modules to

which it is connected, its superior, inferior and adjacent bundles, and its capacitance

(if any).

The binding between cell names and networks is established in a table which,

for each network, also contains the parent cells in the circuit hierarchy.

104

5.4. THE BLOCK DIAGRAM ENVIRONMENT

5.4 The Block Diagram Environment

The block diagram environment contains bindings between cell names and block

diagram objects. A block diagram object can be visualized as a set of blocks rep-

resenting functions with arrows between them. It is made up of net objects which

know to which other net objects they are inputs, and how their own values are a

function of other nets.

A block diagram object can be accessed through the following procedures:

1. (add-function net-name lambda-form)

lambda-form gets attached to the net object corresponding with net-name,

and the net objects corresponding to the formal parameters of the lambda

form get pointers to the object corresponding with net-name.

2. (give-lambda-form net-name)

This returns the lambda-form associated with net.

3. (give-net net-name)

This returns the net object corresponding with net-name. Each block diagram

object has its own bindings between net names and net objects.

4. (insert-race-constraints inputs outputs dyn-type)

This says that there is a dynamic gate of type dyn-type between inputs

and outputs. dyn-type is either n (the type of gates whose outputs are

precharged high) or p (precharged low). The diagram object will register

proper constraints for avoiding input delay races in the dynamic gate.

An input delay race can occur when an input to a dynamic gate is itself

determined by a dynamic gate. Suppose an input i to an n-type dynamic gate

is itself output of an n-type dynamic gate. Suppose the steady state value of

i is 0. i only gets this 0 value after a precharging period, and if this period

lasts longer than the precharging period for the next gate, the output of the

next gate gets connected to ground for a short time, potentially loosing its

105

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

charge. In order to avoid this, we impose an alternation of gates that are

precharged high and ones that are precharged low. (This is the NORA rule
for avoiding input delay races [Goncalves 83].) If a node is only determined
by static gates, it may be input to a dynamic gate of any type. If a node is

precharged high (e.g. it is output of an n-type dynamic gate, or of a p-type

dynamic gate followed by an invertor), it may only be connected to an input

of a p-type dynamic gate. If it is output of a dynamic gate followed by a

static gate other than an invertor, it may become precharged high in some

circumstances and low in others. Such a node may not be connected to a

dynamic gate any more.

The block diagram object takes care of this by attaching race constraints

and race constraint challengers to net objects. There are two kinds of race

constraints: no-precharging-high (for inputs of n-type dynamic logic) and

no-precharging-low (for inputs of p-type dynamic logic). There are three

types of race constraint challengers: precharged-high, precharged-low and

precharged-high-or-low.

The grammar rules for combinatorial logic are such that the valuation function

runs through the circuit from inputs to outputs. This means that, when race

constraints are inserted at the inputs of dynamic logic, all the race constraint

challengers have already been attached to those inputs. The constraints can

then be checked against the constraint challengers.

5. (add-to-parent-diagrams parent-diagram renaming-list)

Once the current block diagram has been matched with its behavioral spec-

ification, a function block which is an abstraction of its behavior has to be

copied in all the diagrams above it in which it is instantiated. For this to be

possible, the diagram has to know all the parent diagrams in which it should

be copied (together with a list of net renamings for each copy).

6. (set-inputs inputs)

(set-outputs outputs)

I -5 - r I

106

5.4. THE BLOCK DIAGRAM ENVIRONMENT

In order to be able to copy itself in its parent diagrams, the diagram should

know what its inputs and outputs are. The inputs and outputs are filled in

after the diagram has been matched. The outputs are the result of tracing

the behavioral specification through the diagram.

7. (matched)

This tells the diagram that its inputs and outputs are set, that its parent

diagrams have been filled in, and that it can copy itself in its parent diagrams.

Each block diagram has its own environment with bindings between net names

and net objects. A net object can be accessed with the following procedures.

1. (give-diagram)

Give the diagram to which you belong.

2. (add-lambda-form lambda-form)

If you don't have a lambda-form attached to you yet, attach this one. If you

already have one, do one of the following:

* If lambda-form has a boolean expression as body, check whether it is

tautologous with the one you already have attached to you.

* If lambda-form has a conditional statement as body, then check whether

the lambda-form you already have also has a conditional as body. If so,

just add to clauses of the new conditional to it, and add the conditions of

these clauses to your list exclusive-i-constraints. This list contains

nets of which exactly one should have a 1 value at any time.

This case occurs if there is a set of pass transistors that feed into the

same output. Each pass transistor is valuated to a lambda-form with a

conditional as body. All these lambda forms are added to the same net

object. The net object takes care of accumulating all the conditionals

to form one big expression, and it builds up a logic constraint which

ensures that, at any time, exactly one pass transistor passes a value to

the output.

107

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

* If lambda-form has neither a boolean expression nor a conditional as

body, flag an error.

3. (add-to-outputs output)

Add output to your list of outputs. This list contains nets which have a

lambda-form with the current net in its formal parameters.

4. (give-lambda-form)

5. (give-outputs)

6. (add-to-input-instances input-instances)

(add-to-output-models output-models)

(give-input-instances input-instances)

(give-output-models output-models)

These features make it possible to walk through the hierarchy of block dia-

grams as though it was one flat block diagram. This is needed to check logic

constraints. In order to check whether exactly one net in a list of nets has a 1

value at any given time, you need to find common inputs to all these nets, and

express the functions of all the nets in terms of these inputs. The only form

of walking through the block diagrams that is needed for this is walking back-

wards from outputs to inputs. This is exactly what is supported by the four

procedures above. If you have an input at the edge of some block diagram,

you have pointers to the instances of this input higher up in the hierarchy, so

that you can go further left. Once you found a block to which your net is an

output, you can go down again by using pointers to the models of the output

(i.e. the nets of which the output is an instance).

7. (set-race-constraint race-constraint)

(set-race-constraint-challenger race-constraint-challenger)

(check-race-constraint)

These procedures were explained above.

108

5.5. PARSING

8. (send-exclusive-l-constraints)

This causes the net-object to put its list exclusive-l-constraints (see

above) in a global list of logical constraints. These constraints can be ver-

ified after matching, when the hierarchy of block diagrams is complete, so

that you can walk through the hierarchy as described above.

In the current implementation of Semanticist, only the most simple logic con-

straints are verified, namely exclusive-l-constraints for two nets (i.e. con-

straints which say that exactly one of two nets should have a 1 value at any

given time). Checking logic constraints in general is extremely hard, and not

really necessary to prove that a circuit matches with a behavioral specifica-

tion. The user can always simulate his behavioral description to see whether

it is correct.

Here is why exclusive-l-constraints are so hard to check. In order to find

a set of common inputs to the nets (of which exactly one should have a 1

value), you need to look at the trees which originate at each net, and point,

for each net, to inputs at deeper and deeper levels. To find a common set of

inputs, you need to look at all combinations of cuts in the trees, and there are

exponentially many of them.

5.5 Parsing

The function parse takes a description of one circuit cell, creates a network object

for that cell, fills in all the primitive modules and subnetworks, and tells the network

object to parse itself. Every time it needs a subnetwork that hasn't been parsed

yet, it calls parse recursively for the subcell, and copies the top level modules in

the current network. A subnetwork that is used several times in the circuit is only

parsed once. To parse the whole circuit, it suffices to call parse on the top cell.

If parsing is done, the system checks whether the top modules consist of one CB

type module-and a number of in and out modules (representing external inputs and

outputs). If this is the case, Semanticist goes on with valuation. If not, it flags a

109

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

syntax error and prints out all the top modules the parser ended up with.

Note that the hierarchy of the parse tree differs from the one of the input de-

scription. The hierarchy of the parse tree is based on a partitioning into DCN's,

whereas the input description may have any partitioning. Having those two differ-

ent hierarchies around is an essential ingredient of circuit verification. It's because

the user partitions a circuit into parts that are not the natural units with regard to

circuit correctness that he makes mistakes. Circuit level bugs have often to do with

electrical interactions across cell boundaries. For instance, if a multiplexer struc-

ture consisting of an nMOS pass transistors followed by an invertor with a feedback

pMOS transistor for level restoration is contained in one cell, and the static gates

that produce the inputs to the multiplexer in another cell, there is a good chance

that the designer didn't think of the W/L effects when he designed the static gates

at the inputs.

5.6 Valuation

valuate is a recursive function which takes in a module, produces a valuation, and

(possibly) modifies the block diagram environment. It calls valuate recursively

on the children modules in the parse tree, and uses the the resulting valuations to

produce its own valuation, and possibly to add information to the block diagram

environment. Again, it suffices to call valuate on the top level CB type module.

There are two kinds of valuations: handled valuations and valuations that are

not handled. The valuations that are passed up from the bottom of the parse

tree are ones that are not handled. They accumulate a behavioral function that is

eventually going to be inserted into the block diagram environment. Once this be-

havioral information is filled in in the block diagrams, handled valuations are passed

up. They contain only information that is necessary for checking well-formedness

constraints.

A valuation gets handled if one of the following conditions applies:

1. The module for which the valuation contains a behavioral description, covers

more than one leaf diagram. The chunk of behavioral information doesn't

110

5.6. VALUATION

correspond to any one chunk in the specification any more, so the parts of the

behavioral information are filled in in the leaf diagrams.

2. The behavioral description in the valuation is a mixture of boolean and non

boolean expressions. It makes no sense to combine these expressions into

one chunk. There won't be any corresponding chunk in the specification.

Therefore, the parts are inserted in the corresponding block diagram.

3. The valuation function decides to handle the valuation.

As long as neither of these conditions apply, the behavioral information is ac-

cumulated without writing anything into the block diagrams. This is done to allow

for flexible matching of boolean portions in the circuit with boolean portions in

the behavioral specification. A boolean portion in the derived behavior is inserted

in the block diagrams as one entity, which will be matched with a corresponding

expression in the specification by tautology checking. A circuit portion consisting

of a nand gate followed by an invertor is transformed into one combined function,

so that it can be matched with a single and function. If separate functions would

have been created for the nand and the invertor, the matcher would not be able to

find corresponding portions in the behavioral specification.

Here is the exact contents of handled and non handled valuations. A non handled

valuation consists of a function, a list of diagrams, a capacitance and a W/L value.

1. A function consists of a renamed lambda form and a renamed net. A renamed

lambda form is just like a normal lambda form, except that it has renamed

nets instead of normal net names. Renamed nets had to be introduced because

the hierarchy of the behavioral description can be sparser than the hierarchy

of the circuit description. This difference in hierarchy implies that a cell in

the circuit description may not have an equivalent in the behavior description.

The behavioral information for that cell has to go to the diagrams immediately

above it. To identify a net in such a cell, we use a renamed net: a list of pairs

consisting of a diagram and a name of the net in that diagram. There is one

such pair for each diagram immediately above the cell.

111

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

So, a function consists of a renamed lambda-form and a renamed net. The
renamed net represents the node whose value is determined by the renamed

lambda form.

2. The list of diagrams in a non handled valuation, is just a list of all the diagrams

in which the behavioral information is to be inserted. It contains all the

diagrams in the renamed net in the function component of the valuation.

3. The capacitance slot is used to accumulate capacitances of transistor branches

in dynamic logic. These are used to make sure that the output of the dynamic

logic is not corrupted by charge sharing. The output capacitance is required

to be larger than some multiple of the total capacitance with which it can

share charge.

4. The WIL slot accumulates an equivalent W/L value of a transistor branch.

This value is obviously used to check for W/L constraints.

A handled valuation has only components that are necessary to check for circuit

level constraints. It consists of a list of inputs, a list of outputs, a capacitance and

a T'V/L value.

* The inputs and outputs are the global inputs and outputs of the module that

has been valuated. They are necessary to issue and check race constraints.

If some of the inputs are dynamic (i.e. precharged high, or precharged low,

or sometimes precharged high and sometimes precharged low), the race con-

straint challengers at the outputs are set to the proper values (see also under

net objects in the section on the block diagram environment). If the output

already has a precharged-high or precharged-low challenger, nothing hap-

pens. If it hasn't, and if inputs and outputs contain each one element and the

behavior between them is inversion, the challenger of the output is set to the

complement of the one at the input. In all other cases, the challenger at the

output is set to precharged-high-or-precharged-low.

The inputs and outputs are maintained up to the level where a DCN disap-

pears into a CL module. They are used at the time an internal structure of the

112

5.6. VALUATION

third production rule for module-type CL is encountered (see section 4.2.5).

Roughly speaking, this rule combines a CL module in series with a DCN mod-
ule into one CL module. It's at that time that the net objects corresponding

to the inputs of the DCN are triggered to check their race constraints against

their race constraint challengers, and it's also then that race constraint chal-

lengers are propagated from the inputs of the DCN to the outputs. This is

the right time for these operations because the grammar allows an order of

valuation in which modules at the external inputs of the whole circuit are

valuated first and following modules next. This order ensures that, when a

DCN in series with a CL is valuated, the inputs of the DCN have the right

race constraints and race constraint challengers.

* The capacitance and W/L value are used for checking charge sharing con-

straints and WIL constraints, as in non handled valuations.

So far for the general functionality of the valuation function. Within this frame-

work, specialized valuation functions do their own specific thing. The general valu-

ate function dispatches to specialized valuation functions for each module-type, and

each such function does different things for different forms of the internal structure
of the module.

Below is an excerpt from the valuation function for module-type N*, a paral-

lel/series combination of nMOS transistors. The specialized valuation function for

this module-type has three cases corresponding to the three production rules for it:

one for the case it has an nMOS transistor as internal structure, one for the case
where it has a parallel combination of two N* modules as internal structure, and

one for a series combination. One other possibility is that the module is a copy of

a top level module in another network.

What N*-valuate does in case of a parallel combination as internal structure
is given in full. First it applies val-accum to the two submodules. val-accum

computes the valuations of the submodules, and accumulates the result. If the

combination of submodules is crossed by a diagram boundary, it handles the valu-

ations automatically. If val-acc, the accumulation of valuations that val-accum

113

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

returned, contains handled valuations, N*-valuate constructs a handled valuation,

consisting of a list of inputs, a list of outputs, a combined capacitance and a com-

bined WIL value. If not, it combines the behaviors of the submodules, and produces

a non handled valuation from that. The behavior of an N* module is represented

by a conditional statement. The conditionals of the submodules are ored together

in the proper way. This combination forms a renamed lambda-form (written as

lambda-form% in the program), which, together with a renamed net (written as

net%), namely the common drain of the two submodules, forms a function. This

function, combined with a list of diagrams, is used to construct a valuation. The

capacitance and W/L slot in that valuation function are initially empty, but they

are filled in by the commands that follow. When that is done, N*-valuate returns

the resulting valuation val.

(define (N*-valuate module)

(cond ((N*_fromtrans? module)

. ··)

((N*_fromparal? module)

(let ((val-acc (val-accum

((module 'give-submodule) O)

((module 'give-submodule)))))

(if (handled? val-acc)

(let ((inputs (merge (val-inputs (get-val val-acc 0))

(val-inputs (get-val val-acc 1))))

(outputs (val-outputs (get-val val-acc 0)))

(cap (cap-add (val-cap (get-val val-acc 0))

(val-cap (get-val val-acc 1))))

(W/L (W/L-add (val-W/L (get-val val-acc 0))

(val-W/L (get-val val-acc 1)))))

(make-handled-valuation inputs outputs W/L cap))

(let ((val

(make-valuation

(make-function

114

5.6. VALUATION

(or-cond-lambdas%

(fun-lambda-form% (val-function

(get-val val-acc 0)))

(fun-lambda-form% (val-function

(get-val val-acc 1))))

(fun-net% (val-function (get-val val-acc 1))))

(get-diagrams val-acc))))

(val-add-cap val (val-cap (get-val val-acc 0)))

(val-add-cap val (val-cap (get-val val-acc 1)))

(val-set-W/L val

(W/L-add (val-W/L (get-val val-acc 0))

(val-W/L (get-val val-acc 1))))

val))))

((N*_fromseries? module)

((copy? module)

(else (error ...))))

After the valuation function returns from valuating the top level CB module,

the following things have been done:

1. All WIL constraints have been verified.

2. All charge sharing constraints have been verified.

3. All race constraints have been verified.

4. All logic constraints in pass transistor logic have been accumulated.

5. Complementarity of the pull up and pull down branches in complementary

static logic has been checked for.

115

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

6. The block diagrams have been partially filled in with behavioral information.

What has been filled in is the "bottom level" behavioral information. To com-

plete the block diagrams, lower level diagrams have to be instantiated as one

function in their parent diagrams. This is done each time a lower level diagram

is matched with the corresponding description in the behavioral specification.

When a block diagram is complete with "bottom level" behavioral information

and function blocks describing lower level diagrams, it should match exactly

with the description of the corresponding cell in the behavioral specification.

The example at the end of this chapter will probably make this clearer (if it

isn't already).

5.7 Matching

The key function of the matcher is trace, which looks at a portion of behavioral

specification and follows the flow of it on one of the block diagrams. trace takes in

an expression, a block diagram, a list of net bindings (bindings between net names

and net objects in the block diagram), and a list of procedure bindings (bindings

between procedure names and Lisp code), and returns a pointer in the diagram to

a net object whose value is computed according to the expression that was given as

argument. trace has exactly the shape of a Lisp interpreter, except that it returns

pointers to net objects instead of values.

trace looks at the syntactic form of the expression that it received as argument

and dispatches to a specialized trace function. For instance, the specialized trace

function for a sequence of define forms and a main expression

(define procedures lambda-forml)

(define procedure2 lambda-form2)

main-expression

calls trace recursively on the main expression with the procedure bindings ex-

tended with the bindings that are given in the define forms. The specialized trace

116

5.7. MATCHING

function for a let form

(let ((variablel expressionl)

(variables expression2)

body)

calls trace recursively on the body of the let form with the net bindings extended

with bindings between the variables in the let form and the pointers that result from

tracing the expressions corresponding with the variables. The specialized trace

function for an application

(procedure arguments argument2 ...)

calls trace recursively on the arguments, looks at the common outputs of the

resulting net objects, and selects the one which has the right lambda form attached

to it. In case of a boolean application, the trace function checks whether the argu-

ments are boolean applications themselves, looks for the ultimate inputs, takes the

common outputs of those inputs on the diagram, and performs tautology checking

to select the right one.

The top level form in the behavioral specification of a cell name is a lambda-form:

(lambda (formall formal2 ...)

body)

The matcher localizes net objects with names formall, formal2, etc in the

block diagram corresponding to the cell, and traces the body of the lambda form

with the resulting net bindings. As a result of that, it gets a list of net objects

that are the outputs of the block diagram. It communicates the list of inputs and

the list of outputs that it found to the block diagram, and gives it a (matched)

message, which causes the diagram to insert a function block (a summary of itself)

in its parent diagrams.

In order for this to work, the cells have to be matched in the right order (lower

level ones first), and the block diagrams need to know their parent diagrams. These

117

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

things are arranged for before matching begins. The block diagrams get pointers to

their parents, and a queue of cell names is formed with low level diagrams first and

high level ones last. The matcher then goes through an iteration in which it takes

the first element from the queue and matches it.

The only thing that hasn't been done after that is checking the logic constraints

associated with pass transistor structures. These logic constraints are accumulated

in a global list. In the current implementation of Semanticist, only the simplest

constraints are checked, namely ones that require exactly one of two nets to have a

1 value at any time. As mentioned in the discussion of net objects in the section on

block diagrams, handling logic constraints in general is exponentially hard, and it

isn't necessary to prove that a circuit has the behavior specified by the user. The

user can always simulate his behavioral description to make sure it is correct.

5.8 An Example Verification Run

This section shows how the adder of section 1 and section 2 is verified. The first

thing Semanticist does is reading the circuit and behavior descriptions. Once the

behavior description is read, we can run it on the Scheme interpreter. To make

this easier, we can write a layer on top of the adder function for type conversion

between integers and lists of booleans.

(define int-adder

(lambda (a b c)

(bin->int (adder (int->bin a 8) (int->bin b 8) (inv c)))))

This leaves us with an adder function which operates on integers. Also, the

carry bit is inverted because the adder circuit takes an inverted carry bit as input.

We can run int-adder on some inputs to make sure it works properly.

(int-adder 7 8 0)

;Value: 15

118

5.8. AN EXAMPLE VERIFICATION RUN

(int-adder 23 32 0)

;Value: 55

Once we know the behavioral description is all right, we can go on and verify

the design.

(verify 'adder)

After some time, the system says it's done with parsing the circuit, and goes on

valuating the parse tree.

** Parsing done **

The parse tree has also been checked by now to consist of one top level CB

module, and a number of in and out modules (representing external inputs and

outputs). If the parse tree wasn't correct, the system would have printed all the

top level modules that it ended up with. If the user can't locate the error in the

circuit with that information, he can verify subcircuits first, make sure that they

are correct, and move on gradually to higher levels in the circuit hierarchy.

In our case the parse tree was correct and Semanticist went on valuating the

top level CB module. It recursively calls the valuation function for the children on

the CB module, and so on. When it returns form valuating the CB module, it has

traversed the whole parse tree. At that time, it says:

** Valuation done **

There are no violations of WIL constraints, charge sharing constraints, race

constraints or complementarity constraints in our circuit. If there were, the system

would have given an error message by now.

Semanticist now starts with the matching part. It matches the lowest level cell

first, and higher level cells later on. Before it matches a cell, it prints out the

behavioral information in the corresponding block diagram.

The first cell that is matched is the exor cell.

_ -II·· ̂--·---·^I--··.--_^1^1.^-. -·1_-^1---·^---- �-.1111111_- 1111---1 1 1111�----------·111�--sl

119

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

EXOR

NOTA lambda-form:(LAMBDA (A) (NOT A))

input to: (A_EXORB)

A lambda-form:NONE

input to: (NOT_A A_EXOR_B)

B lambda-form:NONE

input to: (A_EXOR_B NOT_B)

AEXORB lambda-form:(LAMBDA (A NOTA B NOTB) (COND (A NOT_B) (NOTA

B)))

input to: ()

NOTB lambda-form:(LAMBDA (B) (NOT B))

input to: (AEXORB)

EXOR matched

The behavioral description in the block diagram matches with the one supplied

by the user. If the system would have failed to match the two descriptions, it would

have said at which point in the user supplied description it couldn't find anything

that matches with that in the block diagram. The behavioral contents of the block

diagram printed out above makes it easy to find the bug.

Semanticist goes on matching the other cells now.

INVO

IN lambda-form:NONE

input to: (OUT)

a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I 1 - W

120

5.8. AN EXAMPLE VERIFICATION RUN

OUT lambda-form:(LAMBDA (IN) (NOT IN))

input to: ()

INV% matched

MUX

-CONTR lambda-form:NONE

input to: (OUT)

CONTR lambda-form:NONE

input to: (OUT)

Y lambda-form:NONE

input to: (OUT)

OUT lambda-form:(LAMBDA (CONTR X -CONTR Y) (COND (-CONTR Y) (CONTR X)))

input to: ()

X lambda-form:NONE

input to: (OUT)

MUX matched

ADD-BIT

-A lambda-form:(LAMBDA (AIN) (NOT AIN))

input to: (A)

__ _�I(^_�II1_I Illl�IU----_- . -I�-� II I-l--I�·-Y·III�L-LII··�·�.�

121

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

A lambda-form:(LAMBDA (-A) (NOT -A))

input to: (AEXOR_B)

-B lambda-form:(LAMBDA (BIN) (NOT BIN))

input to: (B)

-AEXORB lambda-form:(LAMBDA (AEXORB) (NOT A_EXORB))

input to: (-COUT -SUM)

-C lambda-form:(LAMBDA (C) (NOT C))

input to: (-COUT -SUM)

-B% lambda-form:(LAMBDA (BIN) (INV% BIN))

input to: (-COUT)

-SUM lambda-form:(LAMBDA (C/, -C AEXORB -AEXORB) (MUX C/, -C AEXORB

-AEXORB))

input to: (SUM)

-COUT lambda-form:(LAMBDA (-C -B. AEXORB -AEXORB) (MUX -C -B. A_EXORB

-AEXORB))

input to: (COUT COUT/,)

B lambda-form:(LAMBDA (-B) (NOT -B))

input to: (AEXOR_B)

AIN lambda-form:NONE

input to: (-A)

AEXORB lambda-form:(LAMBDA (B A) (EXOR B A))

input to: (-A_EXORB -COUT -SUM)

122

5.8. AN EXAMPLE VERIFICATION RUN

BIN lambda-form:NONE

input to: (-B -B/,)

C lambda-form:NONE

input to: (-C)

SUM lambda-form:(LAMBDA (-SUM) (NOT -SUM))

input to: ()

COUT lambda-form:(LAMBDA (-COUT) (NOT -COUT))

input to: ()

C% lambda-form:NONE

input to: (-SUM)

COUT/, lambda-form:(LAMBDA (-COUT) (INV% -COUT))

input to: ()

ADD-BIT matched

ADDER

-CIN lambda-form:NONE

input to: (Ci C%)

C1 lambda-form:(LAMBDA (-CIN) (NOT -CIN))

input to: (C2 C2/, SUM1)

BIN8 lambda-form:NONE

123

I_�__�_��II_ �___I__�_I·_ _�_1_1·_�__ 1_�·_1_111111 -- - - 11�_11�------

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

input to: (C9 C9% SUM8)

AIN8 lambda-form:NONE

input to: (C9 C9% SUM8)

AIN7 lambda-form:NONE

input to: (C8 C8% SUM7)

AIN6 lambda-form:NONE

input to: (C7 C7% SUM6)

AIN5 lambda-form:NONE

input to: (C6 C6% SUM5)

AIN4 lambda-form:NONE

input to: (C5 C5% SUM4)

AIN3 lambda-form:NONE

input to: (C4 C4% SUM3)

AIN2 lambda-form:NONE

input to: (C3 C3% SUM2)

AINi lambda-form:NONE

input to: (C2 C2% SUM1)

BIN7 lambda-form:NONE

input to: (C8 C8% SUM7)

BIN6 lambda-form:NONE

input to: (C7 C7% SUM6)

I

124

5.8. AN EXAMPLE VERIFICATION RUN

BIN5 lambda-form:NONE

input to: (C6 C6% SUM5)

BIN4 lambda-form:NONE

input to: (C5 C5% SUM4)

BIN3 lambda-form:NONE

input to: (C4 C4% SUM3)

BIN2 lambda-form:NONE

input to: (C3 C3% SUM2)

BINi lambda-form:NONE

input to: (C2 C2% SUM1)

Cl% lambda-form:(LAMBDA (-CIN) (INV% -CIN))

input to: (C2 C2% SUM1)

C8% lambda-form:(LAMBDA (C7/ C7 BIN7 AIN7) (VECTOR-REF (ADD-BIT C7 C7

BIN7 AIN7) 1))

input to: (C9 C9% SUM8)

C8 lambda-form:(LAMBDA (C7% C7 BIN7 AIN7) (VECTOR-REF (ADD-BIT C7% C7

BIN7 AIN7) 0))

input to: (C9 C9% SUM8)

C7% lambda-form:(LAMBDA (C6% C6 BIN6 AIN6) (VECTOR-REF (ADD-BIT C6 C6

BIN6 AIN6) 1))

input to: (C8 C8% SUM7)

____�� ��___�_lllllillli___II_

125

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

C7 lambda-form:(LAMBDA (C6% C6 BIN6 AIN6) (VECTOR-REF (ADD-BIT C6% C6

BIN6 AIN6) 0))

input to: (C8 C8% SUM7)

C6% lambda-form:(LAMBDA (C5% C5 BIN5 AIN5) (VECTOR-REF (ADD-BIT C5% C5

BIN5 AIN5) 1))

input to: (C7 C7%/, SUM6)

C6 lambda-form:(LAMBDA (C5% C5 BIN5 AIN5) (VECTOR-REF (ADD-BIT C5% C5

BIN5 AIN5) 0))

input to: (C7 C7% SUM6)

C5% lambda-form:(LAMBDA (C4% C4 BIN4 AIN4) (VECTOR-REF (ADD-BIT C4% C4

BIN4 AIN4) 1))

input to: (C6 C6% SUM5)

C5 lambda-form:(LAMBDA (C4% C4 BIN4 AIN4) (VECTOR-REF (ADD-BIT C4% C4

BIN4 AIN4) 0))

input to: (C6 C6% SUMS)

C4% lambda-form:(LAMBDA (C3% C3 BIN3 AIN3) (VECTOR-REF (ADD-BIT C3% C3

BIN3 AIN3) 1))

input to: (C5 C5% SUM4)

C4 lambda-form:(LAMBDA (C3% C3 BIN3 AIN3) (VECTOR-REF (ADD-BIT C3% C3

BIN3 AIN3) 0))

input to: (C5 C5% SUM4)

C3% lambda-form:(LAMBDA (C2% C2 BIN2 AIN2) (VECTOR-REF (ADD-BIT C2% C2

BIN2 AIN2) 1))

input to: (C4 C4% SUM3)

126

5.8. AN EXAMPLE VERIFICATION RUN

C3 lambda-form:(LAMBDA (C2% C2 BIN2 AIN2) (VECTOR-REF (ADD-BIT C2 C2

BIN2 AIN2) 0))

input to: (C4 C4% SUM3)

C2% lambda-form:(LAMBDA (Ci1 Cl BINi AIN1) (VECTOR-REF (ADD-BIT C1% Cl

BINi AIN1) 1))

input to: (C3 C3% SUM2)

C2 lambda-form:(LAMBDA (Ci% Cl BINi AINi) (VECTOR-REF (ADD-BIT C1% C1

BIN1 AINi) 0))

input to: (C3 C3% SUM2)

C9 lambda-form:(LAMBDA (C8% C8 BIN8 AIN8) (VECTOR-REF (ADD-BIT C8% C8

BIN8 AIN8) 0))

input to: ()

C9% lambda-form:(LAMBDA (C8% C8 BIN8 AIN8) (VECTOR-REF (ADD-BIT C8% C8

BIN8 AIN8) 1))

input to: ()

SUM8 lambda-form:(LAMBDA (C8% C8 BIN8 AIN8) (VECTOR-REF (ADD-BIT C8%

C8 BIN8 AIN8) 2))

input to: ()

SUM7 lambda-form:(LAMBDA (C7% C7 BIN7 AIN7) (VECTOR-REF (ADD-BIT C7/,

C7 BIN7 AIN7) 2))

input to: ()

SUM6 lambda-form:(LAMBDA (C6% C6 BIN6 AIN6) (VECTOR-REF (ADD-BIT C6%

C6 BIN6 AIN6) 2))

� 111 �1·11 ·-rll-·-·-1^-_ -1(----�·111�-·��--·IIU·-·l�

127

CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

input to: ()

SUM5 lambda-form:(LAMBDA (C5/, C5 BIN5 AINS) (VECTOR-REF (ADD-BIT C5/,

C5 BIN5 AIN5) 2))

input to: ()

SUM4 lambda-form:(LAMBDA (C4% C4 BIN4 AIN4) (VECTOR-REF (ADD-BIT C4%

C4 BIN4 AIN4) 2))

input to: ()

SUM3 lambda-form:(LAMBDA (C3/, C3 BIN3 AIN3) (VECTOR-REF (ADD-BIT C3%

C3 BIN3 AIN3) 2))

input to: ()

SUM2 lambda-form:(LAMBDA (C2% C2 BIN2 AIN2) (VECTOR-REF (ADD-BIT C2%

C2 BIN2 AIN2) 2))

input to: ()

SUM1 lambda-form:(LAMBDA (C1% C1 BIN1 AIN1) (VECTOR-REF (ADD-BIT C1%

C1 BIN1 AIN1) 2))

input to: ()

ADDER matched

** Matching done **

At this point the whole behavior has been matched. The only thing that remains

to be done is handling the logic constraints. The system prints out all the logic

constraints, and verifies the simple ones.

the-excl-l-constraints:

(-CONTR CONTR)

I --

128

p

5.8. AN EXAMPLE VERIFICATION RUN 129

(CONTR -CONTR)

(A NOTA)

** Logic constraints verified **

All the lists under the-excl-l-constraints should have exactly one net with

a 1 value at any time. In the case of this circuit, they are all simple ones, which

can be checked automatically.

Once that is done, the system ensures us:

Correct circuit: ADDER

_ I _I · _I ii _·_�1� �^1·1111_�--�114·� s

130 CHAPTER 5. DENOTATIONAL SEMANTICS IMPLEMENTED

I ---. --_ _ _ _� � _ �_ _ _ _ ��___��_

Chapter 6

Results and Further Work

The result of this research is a working program, Semanticist. Semanticist is im-

plemented in Scheme, a Lisp dialect [RCA* 86], on an HP workstation 9000/350

running UNIX. The Scheme code consists of about 5000 lines. Semanticist inter-

faces to GRASP for circuit parsing. GRASP is implemented in C. The portion of

GRASP that is used by Semanticist contains about 6000 lines, and the grammar

that I wrote for it takes about 3000 lines. Semanticist also interfaces to the Espresso

program from UC Berkeley for tautology checking.

Section one of this chapter takes a close look at the quality of Semanticist. It

discusses its performance, competence, and practicality as a CAD tool. Section 2

points to opportunities for further research.

6.1 Results

6.1.1 Performance

Table 6.1 contains run times of Semanticist on a number of circuits. The adder is

the transmission gate adder that was verified in the previous chapter. It is based

on a pass transistor exor.

The shifter is a variable logarithmic shifter with an 8 bit up section and an 8 bit

down section. A multiplexer at the output chooses between one of these sections.

Each section contains three stages: one which can shift the input over 1 bit, one

131

1�·_��1_ I__II�I__�_ _�i^_ll__X___I�I^__·11�·�-�1111�---·111 ·s�- 1I�I.·---· CIII-- --��-�------·I

CHAPTER 6. RESULTS AND FURTHER WORK

adder 2 bit version (72 transistors) 1 min. 20 s.
4 bit version (140 transistors) 2 min. 00 s.
6 bit version (208 transistors) 2 min. 50 s.
8 bit version (276 transistors) 3 min. 40 s.
16 bit version (548 transistors) 8 min. 30 s.

shifter 8 bit version (232 transistors) 11 min. 50 s.
8 bit version (232 transistors) 15 min. 30 s.

ALU 2 bit version (126 transistors) 8 min. 20 s.
4 bit version (228 transistors) 14 min. 50 s.

Table 6.1: Run times of Semanticist on a number of circuits

which can shift it over 2 bits, and one which can shift it over 4 bits. All these
sections consist of pass transistor logic. By controlling these three stages, you can

shift over any number of bits between 0 and 7. (For it to make sense to have an

up and down section, the input vector should have been at least 16 bits long.) The

first run time in the table is for input descriptions which have exactly the same

hierarchy. The second run time covers the case where the behavioral hierarchy is

sparser than the circuit hierarchy.

The ALU is a CMOS version of a Mead and Conway ALU. It has pass transistor

blocks which produce propagate and generate signals, generalized static gates (PS

type gates in my grammar) which produce the carry signal for the next bit based on

the propagate and generate signals, and again pass transistor blocks for producing

the result bits from the carry and propagate signals.

Although the efficiency of the overall verification strategy mattered a lot in my

research, the implementation was not written with a concern for efficiency in all

its details. The implementation exercise has served in the first place to clarify my
ideas about circuit verification and denotational semantics. The result of it is a clear

understanding of how denotational semantics can be applied to circuit verification.

There are two facts that account for the inefficiency of the current implementa-
tion.

1. Semanticist runs on interpreted Lisp. Compiling the code would give a speedup

132

6.1. RESULTS

factor of 5 to 10.

2. Although the backbone algorithm has a linear complexity, there are individual

steps which, in the worst case, can take time proportional to the square of

the circuit size. These operations give rise to a cubic term in the overall

complexity function. There are two such operations:

* Operations on renamed nets.

A renamed net is a list of pairs consisting of a diagram and the name the

net has in that diagram. If the hierarchy of the behavioral specification

matches exactly with the one of the circuit description, each renamed

net consists of only one pair. If not, a renamed net can have a length

proportional to the circuit size. There are several operations on renamed

nets (e.g. comparing whether two renamed nets identify the same net)

which take time proportional to the square of the length of the renamed

net. This accounts for the difference between the two run times for the

shifter. When the behavioral representation was written in the same

hierarchy as the circuit description, the run time went down from 15'30"

to 11'50".

As a way out, we can either try to find better representations to identify

nets, and better operations on them, or present the user with a choice

between efficiency and sparse behavioral descriptions.

* Operations on the inputs and outputs slots in a handled valuation.

A handled valuation contains a list of all the inputs of the module and

all the outputs. These are necessary to check race constraints. They are

maintained up to the level where a DCN disappears into a CL block.

On the level of CL blocks, the inputs and outputs are not necessary any

more. Again there are operations on these lists that take quadratic time

(e.g. merging the input lists of two submodules). If there are large DCN's

in the circuit, they have again a large impact on the overall verification

time. This is the case in the shifter and the ALU in table 6.1, which

both have DCN's that span over all bitslices.

_�__1_��__1_____ 1_111^_1_1 �11�-_11_1�--- ��-�_l__l�_-__-I�_L�I.-l-LI·L--I�-II-III -· �-.�XIII^I �.·--------�-_-·II1I111 ·-·-PI�l_-- I lil -·

133

CHAPTER 6. RESULTS AND FURTHER WORK

The solution here is to check race constraints on the syntactic level, i.e.
to incorporate them into the grammar. This will be eased if we have a
more flexible grammar formalism, one in which the parser can look inside
modules that it already formed. This way, it is easy to distinguish an
invertor from an other static gate, for instance.

The 8 bit shifter and the 4 bit ALU were also verified by DIALOG [Bolsens 88].
Bolsens reported a run time of 10' for the shifter and 4'20" for the ALU (in a
personal communication). DIALOG is a mixture of an inefficient general purpose
algorithm and fast heuristics for specific circuit configurations. This makes it diffi-
cult to compare DIALOG's run times on some specific circuits with Semanticist's.
A lot depends on how much the system can rely on heuristics for a specific cir-
cuit. Furthermore, DIALOG doesn't check whether a circuit meets a behavioral
specification.

Weise is very optimistic about the performance of Silica Pithecus, but (as far as
I know from the literature) he never implemented it completely. He projects a run
time of 51 seconds for a circuit of more than 1100 transistors, and one of 80 seconds
for a circuit of 9000 transistors [Weise 86]. It's difficult to appreciate the value of
these estimates in comparing with my run times. Also, it depends on the hierarchy
of the input description whether the system suffers from combinatorial explosion or
not.

I didn't find any run times for Gordon's logic based system in the literature. It
is common knowledge, however, that logic based systems are very inefficient.

6.1.2 Competence

There are three issues with regard to competence in circuit verification. Does the
system reject all incorrect circuits (within a simple switch level model)? Does the
system accept all correct circuits (within a simple switch level model)? Is the system
able to check whether the circuit meets a behavioral specification, and, if so, does
the behavioral specification have to be procedural, or can it be declarative?

1. Does the system reject all incorrect circuits?

_ � � __

134

6.1. RESULTS

Semanticist does, as well as DIALOG, Silica Pithecus and Gordon's logic

based system.

2. Does the system accept all correct circuits?

This is where my system has some weaknesses that DIALOG, Silica Pithecus

and Gordon's system don't have. The degree to which my system covers all

correct circuits depends on the range space of the grammar. Section 4.3.1 of

this thesis summarized the range space of the current grammar, and section

4.3.2 listed a number of circuit configurations that are not covered. In a nut-

shell, the grammar doesn't cover all cases of feedback over DCN's, it doesn't

cover bypassing in pass transistor networks, it doesn't cover all conceivable

non parallel/series combinations of transistors, and there is a small number

of configurations that aren't covered in the grammar yet, but that could be.

The current grammar comes fairly close to covering all correct circuits, and an

even better coverage is possible if we develop a new parsing framework. Most

of the imperfections of the current grammar can be overcome if we would have

a parser which can look inside modules that it already formed, and which can

modify portions of the parse tree that it already constructed.

3. How well does the system in checking whether a behavioral specification is

met?

Just like Silica Pithecus and Gordon's system, Semanticist checks whether

a behavioral specification is met. DIALOG doesn't. Both Silica Pithecus

and Semanticist need procedural specifications. Gordon's system can han-

dle declarative specifications, but the efficiency penalty is very heavy, and it

doesn't bring a great advantage from a practical viewpoint (as we will argue

in the next subsection).

6.1.3 Practicality as CAD tool

One objection I could imagine against Semanticist from a practical viewpoint, is that

it needs a procedural behavior description that mirrors the circuit description. First,

___�1___11___1_111_1__I� -- --�---------·I

135

CHAPTER 6. RESULTS AND FURTHER WORK

we did include some features that allow behavioral descriptions that are not perfect

mirrors of the circuit: the correspondence between boolean portions of circuit and

behavior is checked by tautology checking, and the hierarchy of the behavioral

description is allowed to be sparser than the one of the circuit description. Second,

a functional language is very appropriate as a behavioral representation. By simple

procedural abstraction, it extends all the way from the logic level to the register

transfer level and even the system level. Other levels of description require only an

introduction of more data types besides booleans and lists and vectors of booleans

(e.g. integers). Semanticist's procedural behavior language is indeed close to the

circuit description, but it is also close to higher levels of representation.

A further argument in favor of Semanticist in terms of practicality is that it can

be used incrementally (in some sense). Cells that are below in the hierarchy can

be designed and verified first, and the user can gradually move up in the hierarchy.

However, if he changes a cell down in the hierarchy, he has to verify all cells above

it again.

A last argument in favor of Semanticist's practicality is that it gives reasonable

guidance in case of errors. Errors other than syntax error are perfectly located and

explained by the system. In case of a syntax error, the user is less fortunate but he

still gets enough information to locate the error himself. If the parser fails to reduce

a circuit to the start module, it prints out all the top level modules of the parse tree

that it ended up with. If the user can't locate the error with that information, he

can parse lower subcircuits in the hierarchy, and see whether the top level modules

there correspond with what he expects to get. Focusing on small enough circuit

portions makes is possible to find out why the syntax error occurred.

6.2 Further work

In my view, the way to go from here is to interleave syntax and semantics in some

way. When people process a sentence, they don't deal with syntax and semantics

separately. In order to improve on the shortcomings of Semanticist that were men-

tioned in the previous section, we have to give up on the notion of having a pure

__I__ I __

136

6.2. FURTHER WORK

syntactic analysis first, and a semantic analysis next. We have to give up on a

parser that only reduces modules to higher level modules. The parser needs to have

the ability to look at the contents of modules that it already formed, and base its

decisions on that contents. This would make it possible to cover feedback loops over

DCN's. It would also make it easier to cover the NORA rules, thereby improving

the efficiency of the system: the parser could look at a static gate and see whether it

is an invertor or not. In order to handle bypassing in pass transistor logic, it would

also be handy if the parser could make changes to the parse tree that it already

formed.

A further topic to be dealt with is how useful the formalisms and mechanisms

in Semanticist are for circuit synthesis. An interesting question in natural language

processing is to which extent the machinery for understanding sentences is also used

to produce ones. A similar question can be asked with respect to VLSI design. How

far does syntax and semantics bring us in solving the synthesis problem? Maybe

synthesis and verification are not that far apart.

_ _1____ 1____1_1 ___ 1.-_11111�----·1111111111111111

137

138 CHAPTER 6. RESULTS AND FURTHER WORK

_ �I ____

Bibliography

[Agre 88]

[Bamji 89]

[Barendregt 84]

[Barrow 84]

[Bolsens 88]

[Boute 86]

[BD 77]

[Bryant 81]

Philip E. Agre, The Dynamic Structure of Everyday Life, Ph.D.

thesis, MIT, AI-TR 1085, 1988.

Cyrus Bamji, "GRASP: A Grammar-based Schematic Parser", to

appear in Proceedings of the 1989 Design Automation Confer-

ence; a comprehensive presentation of GRASP can be found in

Bamji's Ph.D. thesis, which is appearing soon (MIT).

H. P. Barendregt, The Lambda Calculus: Its Syntax and Seman-

tics, North-Holland, New York, 1984, Revised Edition.

H. Barrow, "Proving the Correctness of Digital Hardware De-

signs", VLSI Design, Vol. 5, No. 7, 1984.

Ivo Bolsens, W. De Rammelaere, C. Van Overloop, L. Claesen,

H. De Man. "A formal approach towards electrical verification

of synchronous MOS circuits", Proceedings of the 1988 ISCAS

conference.

R.T.Boute, "Current Work on the Semantics of Digital Systems",

in G. Milne, and P.A. Subrahmanyam (editors), Formal Aspects

of VLSI design, North-Holland, 1986.

R. M. Burstall, J. Darlington, "A Transformation System for De-

veloping Recursive Programs", J. ACM 24, 1, pp 44-67, Jan-

uary 1977.

Randal E. Bryant, A Switch-level Simulation Model for Integrated

Logic Circuits, Ph.D. thesis, MIT, VLSI memo 81-50, 1981.

139

�·IIIL-----·lll ·1�-111__11 .·1-1_1 ·1�- ----

BIBLIOGRAPHY

[Bryant 84]

[Bryant 85]

[Bryant 87]

[CGM 87]

[Dijkstra 76]

[Gifford 87]

[Goncalves 83]

[Gries 81]

[HD 86]

[Hoare 69]

Randal E. Bryant, "A Switch-level Model and Simulator for the

MOS Digital Systems", IEEE Trans. Comput., vol. C-33, pp

160-177, Feb 1984.

Randal E. Bryant, "Symbolic Verification of MOS circuits", 985

Chapel Hill Conference on Very Large Scale Integration, pp

419-438, 1985.

Randal E. Bryant, "Boolean Analysis of MOS circuits", IEEE

Transactions of Computer-Aided Design, vol. CAD-6, July

1987.

A. Camilleri, M. Gordon, and T. Melham, "Hardware Verifica-

tion using Higher-Order Logic", in D. Borrione (editor), From

HDL descriptions to guaranteed correct circuit designs, North-

Holland, 1987.

Edsger W. Dijkstra, A Discipline of Programming, Prentice-Hall,

Englewood Cliffs, N. J., 1976.

David Gifford et al., FX-87 Reference Manual, MIT/LCS/TR-407,

1987.

Nelson Goncalves, Hugo De Man, "NORA: A Racefree Dynamic

CMOS Technique for Pipelined Logic Structures", IEEE Jour-

nal of Solid-State Circuits, Vol. SC-18, No 3, pp 261-266, June

1983.

David Gries, The Science of Programming, Springer-Verlag, New

York, 1981.

F. K. Hanna, and N. Daeche, "Specification and Verification using

Higher-Order Logic: A Case Study", in G. Milne, and P.A. Sub-

rahmanyam (editors), Formal Aspects of VLSI design, North-

Holland, 1986.

C. A. R. Hoare, "An Axiomatic Basis for Computer Program-

ming", Communications of the ACM, 12(10):576-583, October

140

BIBLIOGRAPHY

1969.

[Hunt 87]

[HW 73]

[Johnson 84]

[JBG 85]

[LB 85]

[Landin 64]

[Minsky 81]

[Minsky 85]

[MW 81]

[Paillet 87]

Warren A. Hunt, "The Mechanical Verification of a Microprocessor

design", in D. Borrione (editor), From HDL descriptions to

guaranteed correct circuit designs, North-Holland, 1987, pp 89-

129.

C. A. R. Hoare, N. Wirth, An Axiomatic Definition of the Program-

ming Language Pascal, Acta Informatica, 2(4):335-355, 1973.

S. Johnson, Synthesis of Digital Designs from Recursion Equations,

MIT press, 1984.

J. Joice, J. Birtwistle, M. Gordon, Proving a Computer Correct in

Higher Order Logic, Technical Report, University of Calgary,

1985.

Hector J. Levesque, Ronald J. Brachman, "A Fundamental Trade-

off in Knowledge Representation and Reasoning", in Ronald J.

Brachman, Hector J. Levesque (editors), Readings in Knowl-

edge Representation, Morgan Kaufmann, 1985, pp. 41-70.

Peter J. Landin, "The Mechanical Evaluation of Expressions",

Computer Journal, 6:308-320, 1964.

Marvin Minsky, "A Framework for Representing Knowledge", in J.

Haugeland (editor), Mind Design, pp 95-128, The MIT Press,

Cambridge, Massachusetts, 1981.

Marvin Minsky, The Society of Mind, Simon and Schuster, New

York, 1985.

Zohar Manna, Richard Waldinger, "A Deductive Approach to Pro-

gram Synthesis", in Bonnie Lynn Webber, Nils J. Nilsson (ed-

itors), Readings in Artificial Intelligence, Morgan Kaufmann,

Los Altos, California, 1981, pp. 141-172.

J.-L. Paillet, "A Functional Model for Descriptions and Speci-

fications of Digital Devices", in D. Borrione (editor), From

141

BIBLIOGRAPHY

HDL descriptions to guaranteed correct circuit designs, North-

Holland, 1987, pp 21-42.

Jonathan Rees, William Clinger, H. Abelson, N. I. Adams IV,

D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman, R.

Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley,

K. M. Pitman, G. J. Rozas, G. J. Sussman, M. Wand, Revised3

Report on the Algorithmic Language Scheme, ACM SIGPLAN

Notices, 21(12), December 1986.

[Schmidt 86]

[Spickelmier 88]

[Stoy 77]

[VAVO 87]

[Weise 86]

[Weste 85]

David A. Schmidt, Denotational Semantics: A Methodology for

Language Development, Allyn and Bacon Inc., Boston, 1986.

Rick L. Spickelmier, A. Richard Newton, "Critic: A Knowledge-

Based Program for Critiquing Circuit Design", Proceedings of

the 1988 ICCD Conference, pp. 324-327.

Joseph E. Stoy, Denotational Semantics: The Scott-Strachey Ap-

proach to Programming Language Theory, The MIT Press,

Cambridge, Mass., 1977.

Filip Van Aelten, Cris Van Overloop, Formele theorie over correct

gedrag van CMOS VLSI circuits, Ingenieursthesis, K.U.Leuven,

1987.

Daniel W. Weise, Formal Multilevel Hierarchical Verification of

Synchronous MOS VLSI Circuits, Ph.D. Thesis, MIT, AI-TR

978, 1986; a summary of this appeared in Proceedings of the

1987 Design Automation Conference, pp 265-270.

Neil Weste, Kamran Eshraghian. Principles of CMOS VLSI design,

Addison Wesley, 1985.

[RCA* 86]

142

